WorldWideScience

Sample records for cdf-2 mediates zinc

  1. Zinc mediated domino elimination-alkylation of methyl 5-iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Poulsen, Carina Storm; Madsen, Robert

    1999-01-01

    5-Iodopentofuranosides are converted with zinc and allyl/propargyl bromide into dienes/enynes which are further used in carbohydrate annulation reactions.......5-Iodopentofuranosides are converted with zinc and allyl/propargyl bromide into dienes/enynes which are further used in carbohydrate annulation reactions....

  2. Zinc Mediated Tandem Fragmentation-Allylation of Methyl 5-Iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Madsen, Robert

    1999-01-01

    In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols....

  3. Zinc

    Science.gov (United States)

    ... increase zinc absorption, although a protein in cow's milk slows absorption down. Soy proteins also reduce zinc absorption, possibly due to their ... cow's milk, and even less from soy-based milk. It isn't known whether high-protein diets influence zinc balance in adults.VegetarianismVegetarian diets ...

  4. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress

    NARCIS (Netherlands)

    C. Abrantes, Marta; Kok, Jan; de Fatima Silva Lopes, Maria

    2014-01-01

    Two Enterococcus faecalis genes encoding the P-type ATPase EF1400 and the putative SapB protein EF0759 were previously shown to be strongly upregulated in the presence of high concentrations of zinc. In the present work, we showed that a Zn(2+)-responsive DNA-binding motif (zim) is present in the pr

  5. Enterococcus faecalis zinc-responsive proteins mediate bacterial defence against zinc overload, lysozyme and oxidative stress.

    Science.gov (United States)

    Abrantes, Marta C; Kok, Jan; Silva Lopes, Maria de Fátima

    2014-12-01

    Two Enterococcus faecalis genes encoding the P-type ATPase EF1400 and the putative SapB protein EF0759 were previously shown to be strongly upregulated in the presence of high concentrations of zinc. In the present work, we showed that a Zn(2+)-responsive DNA-binding motif (zim) is present in the promoter regions of these genes. Both proteins were further studied with respect to their involvement in zinc homeostasis and invasion of the host. EF0759 contributed to intramacrophage survival by an as-yet unknown mechanism(s). EF1400, here renamed ZntAEf, is an ATPase with specificity for zinc and plays a role in dealing with several host defences, i.e. zinc overload, oxidative stress and lysozyme; it provides E. faecalis cells with the ability to survive inside macrophages. As these three host defence mechanisms are important at several sites in the host, i.e. inside macrophages and in saliva, this work suggested that ZntAEf constitutes a crucial E. faecalis defence mechanism that is likely to contribute to the ability of this bacterium to endure life inside its host.

  6. [Zinc].

    Science.gov (United States)

    Couinaud, C

    1984-10-01

    Zinc is indispensable for life from bacteria to man. As a trace element it is included in numerous enzymes or serves as their activator (more than 80 zinc metallo-enzymes). It is necessary for nucleic acid and protein synthesis, the formation of sulphated molecules (insulin, growth hormone, keratin, immunoglobulins), and the functioning of carbonic anhydrase, aldolases, many dehydrogenases (including alcohol-dehydrogenase, retinal reductase indispensable for retinal rod function), alkaline phosphatase, T cells and superoxide dismutase. Its lack provokes distinctive signs: anorexia, diarrhea, taste, smell and vision disorders, skin lesions, delayed healing, growth retardation, delayed appearance of sexual characteristics, diminished resistance to infection, and it may be the cause of congenital malformations. Assay is now simplified by atomic absorption spectrophotometry in blood or hair. There is a latent lack prior to any disease because of the vices of modern eating habits, and this increases during stress, infections or tissue healing processes. Its lack is accentuated during long-term parenteral feeding or chronic gastrointestinal affections. Correction is as simple as it is innocuous, and zinc supplements should be given more routinely during surgical procedures.

  7. Proposed glucocorticoid-mediated zinc signaling in the hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna

    2012-07-01

    Corticosteroid hormones are secreted from the adrenal glands in hourly pulses and signal the hippocampus for the development and function. In contrast, the stress-induced rise in corticosteroid concentrations has a profound effect on emotional arousal, motivational processes and cognitive performance. This rise is required as the stress response to maintain homeostasis in the living body or restore it. However, abnormal rise in corticosteroid concentrations is a disadvantage to the hippocampus. Corticosteroid-glutamatergic interactions during information processing are proposed as a potential model to explain many of the diverse actions of corticosteroids in synaptic plasticity such as long-term potentiation and cognition. Because zincergic neurons are a subtype of glutamatergic neurons and release Zn(2+) and glutamate into the synaptic cleft, it is possible that homeostasis of synaptic Zn(2+), in addition to homeostasis of glutamate, is modified by glucocorticoids, followed by the changes in cognitive function and stress response. Zn(2+) signal participates in cognitive and emotional behavior in cooperation with signaling of glucocorticoids and glutamate, while can disadvantageously act on the hippocampus under sever stress circumstances. This paper analyzes the actions of glucocorticoid-mediated Zn(2+) signal in the hippocampus under stressful circumstances and its significance in both hippocampal function and dysfunction.

  8. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration.

    Directory of Open Access Journals (Sweden)

    M Indriati Hood

    Full Text Available Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP-mediated chelation of manganese (Mn and zinc (Zn in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections.

  9. Zinc Prevents Abdominal Aortic Aneurysm Formation by Induction of A20-Mediated Suppression of NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    Ya-Wei Yan

    Full Text Available Chronic inflammation and degradation of elastin are the main processes in the development of abdominal aortic aneurysm (AAA. Recent studies show that zinc has an anti-inflammatory effect. Based on these, zinc may render effective therapy for the treatment of the AAA. Currently, we want to investigate the effects of zinc on AAA progression and its related molecular mechanism. Rat AAA models were induced by periaortic application of CaCl2. AAA rats were treated by daily intraperitoneal injection of ZnSO4 or vehicle alone. The aorta segments were collected at 4 weeks after surgery. The primary rat aortic vascular smooth muscle cells (VSMCs were stimulated with TNF-α alone or with ZnSO4 for 3 weeks. The results showed that zinc supplementation significantly suppressed the CaCl2-induced expansion of the abdominal aortic diameter, as well as a preservation of medial elastin fibers in the aortas. Zinc supplementation also obviously attenuated infiltration of the macrophages and lymphocytes in the aortas. In addition, zinc reduced MMP-2 and MMP-9 production in the aortas. Most importantly, zinc treatment significantly induced A20 expression, along with inhibition of the NF-κB canonical signaling pathway in vitro in VSMCs and in vivo in rat AAA. This study demonstrated, for the first time, that zinc supplementation could prevent the development of rat experimental AAA by induction of A20-mediated inhibition of the NF-κB canonical signaling pathway.

  10. Zinc Prevents Abdominal Aortic Aneurysm Formation by Induction of A20-Mediated Suppression of NF-κB Pathway.

    Science.gov (United States)

    Yan, Ya-Wei; Fan, Jun; Bai, Shu-Ling; Hou, Wei-Jian; Li, Xiang; Tong, Hao

    2016-01-01

    Chronic inflammation and degradation of elastin are the main processes in the development of abdominal aortic aneurysm (AAA). Recent studies show that zinc has an anti-inflammatory effect. Based on these, zinc may render effective therapy for the treatment of the AAA. Currently, we want to investigate the effects of zinc on AAA progression and its related molecular mechanism. Rat AAA models were induced by periaortic application of CaCl2. AAA rats were treated by daily intraperitoneal injection of ZnSO4 or vehicle alone. The aorta segments were collected at 4 weeks after surgery. The primary rat aortic vascular smooth muscle cells (VSMCs) were stimulated with TNF-α alone or with ZnSO4 for 3 weeks. The results showed that zinc supplementation significantly suppressed the CaCl2-induced expansion of the abdominal aortic diameter, as well as a preservation of medial elastin fibers in the aortas. Zinc supplementation also obviously attenuated infiltration of the macrophages and lymphocytes in the aortas. In addition, zinc reduced MMP-2 and MMP-9 production in the aortas. Most importantly, zinc treatment significantly induced A20 expression, along with inhibition of the NF-κB canonical signaling pathway in vitro in VSMCs and in vivo in rat AAA. This study demonstrated, for the first time, that zinc supplementation could prevent the development of rat experimental AAA by induction of A20-mediated inhibition of the NF-κB canonical signaling pathway.

  11. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    Science.gov (United States)

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  12. Theoretical calculations of the high-pressure phases of ZnF2 and CdF2

    Science.gov (United States)

    Wu, X.; Wu, Z.

    2006-04-01

    First-principles calculations based on density functional theory were used to study the high-pressure phases of both ZnF2 and CdF2. We found that the sequence of the pressure-induced phase transitions is: Rutile (P42/mnm) ↦ CaCl2 (Pnnm) ↦ PdF2 (Pa-3) and CaF2 (Fm3m) ↦ PbCl2 (Pnma) ↦ Ni2In (P63/mmc) for ZnF2 and CdF2 respectively. In ZnF2 the behavior of the ground-state total energy, of the Gibbs free energy and of the lattice constant vs. pressure shown that the phase transition at 4 GPa from the rutile-type phase to the CaCl2-type phase is a second-order phase transition. The mechanism of the structural change was also revealed by the transition from the PbCl2-type phase to the Ni2In-type phase in CdF2. Moreover, the high-pressure behavior of divalent metal fluorides was compared and discussed.

  13. Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules.

    Science.gov (United States)

    Tang, Chun-Fang; Kumar, S Ashok; Chen, Shen-Ming

    2008-09-15

    Electrochemical oxidation of serotonin (SN) onto zinc oxide (ZnO)-coated glassy carbon electrode (GCE) results in the generation of redox mediators (RMs) that are strongly adsorbed on electrode surface. The electrochemical properties of zinc oxide-electrogenerated redox mediator (ZnO/RM) (inorganic/organic) hybrid film-coated electrode has been studied using cyclic voltammetry (CV). The scanning electron microscope (SEM), atomic force microscope (AFM), and electrochemical techniques proved the immobilization of ZnO/RM core/shell microparticles on the electrode surface. The GCE modified with ZnO/RM hybrid film showed two reversible redox peaks in acidic solution, and the redox peaks were found to be pH dependent with slopes of -62 and -60 mV/pH, which are very close to the Nernst behavior. The GCE/ZnO/RM-modified electrode exhibited excellent electrocatalytic activity toward the oxidations of ascorbic acid (AA), dopamine (DA), and uric acid (UA) in 0.1M phosphate buffer solution (PBS, pH 7.0). Indeed, ZnO/RM-coated GCE separated the anodic oxidation waves of DA, AA, and UA with well-defined peak separations in their mixture solution. Consequently, the GCE/ZnO/RMs were used for simultaneous detection of DA, AA, and UA in their mixture solution. Using CV, calibration curves for DA, AA, and UA were obtained over the range of 6.0 x 10(-6) to 9.6 x 10(-4)M, 1.5 x 10(-5) to 2.4 x 10(-4)M, and 5.0 x 10(-5) to 8 x 10(-4)M with correlation coefficients of 0.992, 0.991, and 0.989, respectively. Moreover, ZnO/RM-modified GCE had good stability and antifouling properties.

  14. Mother-plant-mediated pumping of zinc into the developing seed.

    Science.gov (United States)

    Olsen, Lene Irene; Hansen, Thomas H; Larue, Camille; Østerberg, Jeppe Thulin; Hoffmann, Robert D; Liesche, Johannes; Krämer, Ute; Surblé, Suzy; Cadarsi, Stéphanie; Samson, Vallerie Ann; Grolimund, Daniel; Husted, Søren; Palmgren, Michael

    2016-01-01

    Insufficient intake of zinc and iron from a cereal-based diet is one of the causes of 'hidden hunger' (micronutrient deficiency), which affects some two billion people(1,2). Identifying a limiting factor in the molecular mechanism of zinc loading into seeds is an important step towards determining the genetic basis for variation of grain micronutrient content and developing breeding strategies to improve this trait(3). Nutrients are translocated to developing seeds at a rate that is regulated by transport processes in source leaves, in the phloem vascular pathway, and at seed sinks. Nutrients are released from a symplasmic maternal seed domain into the seed apoplasm surrounding the endosperm and embryo by poorly understood membrane transport processes(4-6). Plants are unique among eukaryotes in having specific P1B-ATPase pumps for the cellular export of zinc(7). In Arabidopsis, we show that two zinc transporting P1B-ATPases actively export zinc from the mother plant to the filial tissues. Mutant plants that lack both zinc pumps accumulate zinc in the seed coat and consequently have vastly reduced amounts of zinc inside the seed. Blockage of zinc transport was observed at both high and low external zinc supplies. The phenotype was determined by the mother plant and is thus due to a lack of zinc pump activity in the seed coat and not in the filial tissues. The finding that P1B-ATPases are one of the limiting factors controlling the amount of zinc inside a seed is an important step towards combating nutritional zinc deficiency worldwide.

  15. Myeloid zinc finger 1 mediates sulindac sulfide-induced upregulation of death receptor 5 of human colon cancer cells

    OpenAIRE

    Mano Horinaka; Tatsushi Yoshida; Mitsuhiro Tomosugi; Shusuke Yasuda; Yoshihiro Sowa; Toshiyuki Sakai

    2014-01-01

    A combined therapy of sulindac sulfide and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising strategy for the treatment of cancer. Sulindac sulfide had been shown to induce the expression of death receptor 5 (DR5), a receptor for TRAIL, and sensitize cancer cells to TRAIL-induced apoptosis; however, the molecular mechanism underlying the upregulation of DR5 has not yet been elucidated. We demonstrate here that myeloid zinc finger 1 (MZF1) mediates the induction of...

  16. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply

    DEFF Research Database (Denmark)

    Tiong, Jingwen; Mcdonald, Glenn K.; Genc, Yusuf

    2014-01-01

    , barley (Hordeum vulgare) HvZIP7 was investigated for its functions in Zn transport. The functions of HvZIP7 in planta were studied using in situ hybridization and transient analysis of subcellular localization with a green fluorescent protein (GFP) reporter. Transgenic barley lines overexpressing HvZIP7......Summary: High expression of zinc (Zn)-regulated, iron-regulated transporter-like protein (ZIP) genes increases root Zn uptake in dicots, leading to high accumulation of Zn in shoots. However, none of the ZIP genes tested previously in monocots could enhance shoot Zn accumulation. In this report...... were also generated to further understand the functions of HvZIP7 in metal transport. HvZIP7 is strongly induced by Zn deficiency, primarily in vascular tissues of roots and leaves, and its protein was localized in the plasma membrane. These properties are similar to its closely related homologs...

  17. HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    Science.gov (United States)

    We have previously shown that exposure to zinc ions can activate epidermal growth factor (EGF) receptor (EGFR) signaling in murine fibroblasts and A431 cells through a mechanism involving Src kinase. While studying the effects of zinc ions in normal human bronchial epithelial cel...

  18. Lysosomal and mitochondrial permeabilization mediates zinc(II) cationic phthalocyanine phototoxicity.

    Science.gov (United States)

    Marino, Julieta; García Vior, María C; Furmento, Verónica A; Blank, Viviana C; Awruch, Josefina; Roguin, Leonor P

    2013-11-01

    In order to find a novel photosensitizer to be used in photodynamic therapy for cancer treatment, we have previously showed that the cationic zinc(II) phthalocyanine named Pc13, the sulfur-linked dye 2,9(10),16(17),23(24)-tetrakis[(2-trimethylammonium) ethylsulfanyl]phthalocyaninatozinc(II) tetraiodide, exerts a selective phototoxic effect on human nasopharynx KB carcinoma cells and induces an apoptotic response characterized by an increase in the activity of caspase-3. Since the activation of an apoptotic pathway by chemotherapeutic agents contributes to the elimination of malignant cells, in this study we investigated the molecular mechanisms underlying the antitumor action of Pc13. We found that after light exposure, Pc13 induced the production of reactive oxygen species (ROS), which are mediating the resultant cytotoxic action on KB cells. ROS led to an early permeabilization of lysosomal membranes as demonstrated by the reduction of lysosome fluorescence with acridine orange and the release of lysosomal proteases to cytosol. Treatment with antioxidants inhibited ROS generation, preserved the integrity of lysosomal membrane and increased cell proliferation in a concentration-dependent manner. Lysosome disruption was followed by mitochondrial depolarization, cytosolic release of cytochrome C and caspases activation. Although no change in the total amount of Bax was observed, the translocation of Bax from cytosol to mitochondria, the cleavage of the pro-apoptotic protein Bid, together with the decrease of the anti-apoptotic proteins Bcl-XL and Bcl-2 indicated the involvement of Bcl-2 family proteins in the induction of the mitochondrial pathway. It was also demonstrated that cathepsin D, but not caspase-8, contributed to Bid cleavage. In conclusion, Pc13-induced cell photodamage is triggered by ROS generation and activation of the mitochondrial apoptotic pathway through the release of lysosomal proteases. In addition, our results also indicated that Pc13 induced

  19. Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles

    Science.gov (United States)

    Supraja, N.; Prasad, T. N. V. K. V.; Krishna, T. Giridhara; David, E.

    2016-04-01

    Synthesis of metal nanoparticles using biological systems is an expanding research area in nanotechnology. Moreover, search for new nanoscale antimicrobials is been always attractive as they find numerous avenues for application in medicine. Biosynthesis of metallic nanoparticles is cost effective and eco-friendly compared to those of conventional methods of nanoparticles synthesis. Herein, we present the synthesis of zinc oxide nanoparticles using the stem bark extract of Boswellia ovalifoliolata, and evaluation of their antimicrobial efficacy. Stable ZnO nanoparticles were formed by treating 90 ml of 1 mM zinc nitrate aqueous solution with 10 ml of 10 % bark extract. The formation of B. ovalifoliolata bark-extract-mediated zinc oxide nanoparticles (BZnNPs) was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance (LSPR) at 230 nm. Fourier transform infrared spectroscopic (FT-IR) analysis revealed that primary and secondary amine groups in combination with the proteins present in the bark extract are responsible for the reduction and stabilization of the BZnNPs. The morphology and crystalline phase of the nanocrystals were determined by Transmission electron microscopy (TEM). The hydrodynamic diameter (20.3 nm) and a positive zeta potential (4.8 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of BZnNPs was evaluated (in vitro) against fungi, Gram-negative, and Gram-positive bacteria using disk diffusion method which were isolated from the scales formed in drinking water PVC pipelines.

  20. Effect of Ca2EDTA on zinc mediated inflammation and neuronal apoptosis in hippocampus of an in vivo mouse model of hypobaric hypoxia.

    Directory of Open Access Journals (Sweden)

    Udayabanu Malairaman

    Full Text Available BACKGROUND: Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia mediated neuronal damage is obscure. The role of free zinc in such neuropathological condition has not been elucidated. In the present study, we investigated the underlying role of free chelatable zinc in hypobaric hypoxia-induced neuronal inflammation and apoptosis resulting in hippocampal damage. METHODS: Adult male Balb/c mice were exposed to hypobaric hypoxia and treated with saline or Ca2EDTA (1.25 mM/kg i.p daily for four days. The effects of Ca2EDTA on apoptosis (caspases activity and DNA fragmentation, pro-inflammatory markers (iNOS, TNF-α and COX-2, NADPH oxidase activity, poly(ADP ribose polymerase (PARP activity and expressions of Bax, Bcl-2, HIF-1α, metallothionein-3, ZnT-1 and ZIP-6 were examined in the hippocampal region of brain. RESULTS: Hypobaric hypoxia resulted in increased expression of metallothionein-3 and zinc transporters (ZnT-1 and ZIP-6. Hypobaric hypoxia elicited an oxidative stress and inflammatory response characterized by elevated NADPH oxidase activity and up-regulation of iNOS, COX-2 and TNF-α. Furthermore, hypobaric hypoxia induced HIF-1α protein expression, PARP activation and apoptosis in the hippocampus. Administration of Ca2EDTA significantly attenuated the hypobaric hypoxia induced oxidative stress, inflammation and apoptosis in the hippocampus. CONCLUSION: We propose that hypobaric hypoxia/reperfusion instigates free chelatable zinc imbalance in brain associated with neuroinflammation and neuronal apoptosis. Therefore, zinc chelating strategies which block zinc mediated neuronal damage linked with cerebral hypoxia

  1. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial Epithelial Cells In Vitro

    Science.gov (United States)

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examin...

  2. Nitric oxide and zinc-mediated protein assemblies involved in mu opioid receptor signaling.

    Science.gov (United States)

    Rodríguez-Muñoz, María; Garzón, Javier

    2013-12-01

    Opioids are among the most effective analgesics in controlling the perception of intense pain, although their continuous use decreases their potency due to the development of tolerance. The glutamate N-methyl-D-aspartate (NMDA) receptor system is currently considered to be the most relevant functional antagonist of morphine analgesia. In the postsynapse of different brain regions the C terminus of the mu-opioid receptor (MOR) associates with NR1 subunits of NMDARs, as well as with a series of signaling proteins, such as neural nitric oxide synthase (nNOS)/nitric oxide (NO), protein kinase C (PKC), calcium and calmodulin-dependent kinase II (CaMKII) and the mitogen-activated protein kinases (MAPKs). NO is implicated in redox signaling and PKC falls under the regulation of zinc metabolism, suggesting that these signaling elements might participate in the regulation of MOR activity by the NMDAR. In this review, we discuss the influence of redox signaling in the mechanisms whose plasticity triggers opioid tolerance. Thus, the MOR C terminus assembles a series of signaling proteins around the homodimeric histidine triad nucleotide-binding protein 1 (HINT1). The NMDAR NR1 subunit and the regulator of G protein signaling RGSZ2 bind HINT1 in a zinc-independent manner, with RGSZ2 associating with nNOS and regulating MOR-induced production of NO. This NO acts on the RGSZ2 zinc finger, providing the zinc ions that are required for PKC/Raf-1 cysteine-rich domains to simultaneously bind to the histidines present in the HINT1 homodimer. The MOR-induced activation of phospholipase β (PLCβ) regulates PKC, which increases the reactive oxygen species (ROS) by acting on NOX/NADPH, consolidating the long-term PKC activation required to regulate the Raf-1/MAPK cascade and enhancing NMDAR function. Thus, RGSZ2 serves as a Redox Zinc Switch that converts NO signals into Zinc signals, thereby modulating Redox Sensor Proteins like PKCγ and Raf-1. Accordingly, redox-dependent and

  3. Zinc phthalocyanine-conjugated with bovine serum albumin mediated photodynamic therapy of human larynx carcinoma

    Science.gov (United States)

    Silva, E. P. O.; Santos, E. D.; Gonçalves, C. S.; Cardoso, M. A. G.; Soares, C. P.; Beltrame, M., Jr.

    2016-10-01

    Phthalocyanines, which are classified as second-generation photosensitizers, have advantageous photophysical properties, and extensive studies have demonstrated their potential applications in photodynamic therapy. The present work describes the preparation of a new zinc phthalocyanine conjugated to bovine serum albumin (compound 4a) and its photodynamic efficiency in human larynx-carcinoma cells (HEp-2 cells). The unconjugated precursor (compound 4) was also studied. Compounds 4 and 4a penetrated efficiently into the cell, exhibiting cytoplasmic localization, and showed no cytotoxicity in the dark. However, high photodynamic activities were observed in HEp-2 cells after treatments with 5 µM photosensitizers and 4.5 J cm-2 light. These conditions were sufficient to decrease the cell viability to 57.93% and 32.75% for compounds 4 and 4a, respectively. The present results demonstrated high photodynamic efficiency of zinc phthalocyanine conjugated with bovine serum albumin in destroying the larynx-carcinoma cells.

  4. Zinc(II) mediated imine-enamine tautomerization as a new chemosensory protocol

    Science.gov (United States)

    Basa, Premnath

    Zinc (II) and copper (II) are prime transition cations that are not only abundant in free state in the human body but also in bound form. They play a key role in enzymes, electron transport, and oxygen transport systems. Recently, these cations have gained interest because of their implications in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Although numerous fluorescent chemosensors are currently available, less is known about their homeostasis or their etiological role in serious neurological disorders. Therefore, the current research is dedicated to developing novel chemosensors with excellent photophysical and photochemical properties and investigating their potential application for real-life problems. The dynamic nature of imines has been well utilized for the selective detection of zinc by blocking the E/Z isomerization process. However, other mechanistic pathways are available for imines; analyte-induced imine hydrolysis and metal-triggered tautomerization approaches are proving to be attractive sensory protocols. The current project is focused on understanding the basic principles that dictate Zn(II)-triggered tautomerization as a new "OFF-ON" type chemosensor. Synthesis of target compounds was achieved and confirmed through elemental analysis, 1H NMR and 13C NMR, ESI-MS, FTIR, and single-crystal XRD techniques. Zinc sensitivity and selectivity in the presence of 16 other transition, alkali, and alkaline earth cations was monitored by means of various spectroscopic and spectrometric techniques (fluorescence, UV-Vis absorbance, NMR and ESI-MS). The environmental parameters (solvents, pH) of zinc-induced fluorescence were also investigated and details will be discussed. A second project that describes Cu(II)-catalyzed imine hydrolysis via colorimetric and fluorescence change was also investigated.

  5. Zinc-induced dimerization of the amyloid-β metal-binding domain 1-16 is mediated by residues 11-14.

    Science.gov (United States)

    Kozin, Sergey A; Mezentsev, Yuri V; Kulikova, Alexandra A; Indeykina, Maria I; Golovin, Andrey V; Ivanov, Alexis S; Tsvetkov, Philipp O; Makarov, Alexander A

    2011-04-01

    Analysis of complex formation between amyloid-β fragments using surface plasmon resonance biosensing and electrospray mass spectrometry reveals that region 11-14 mediates zinc-induced dimerization of amyloid-β and may serve as a potential drug target for preventing development and progression of Alzheimer's disease.

  6. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    Science.gov (United States)

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. BrombergCenter fo...

  7. Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

    Directory of Open Access Journals (Sweden)

    Florian Waltz

    2015-03-01

    Full Text Available In this study we present a three-step process for the low-temperature chemical bath deposition of crystalline ZnO films on glass substrates. The process consists of a seeding step followed by two chemical bath deposition steps. In the second step (the first of the two bath deposition steps, a natural polysaccharide, namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of hyaluronic acid and the time of its addition on the morphology of the resulting ZnO film were investigated. By meticulous adjustment of the parameters in this step, the film morphology can be tailored to provide an optimal growth platform for the third step (a subsequent chemical bath deposition step. In this step, the film is covered by a dense layer of ZnO. This optimized procedure leads to ZnO films with a very high electrical conductivity, opening up interesting possibilities for applications of such films. The films were characterized by means of electron microscopy, X-ray diffraction and measurements of the electrical conductivity.

  8. Nuclear import of cutaneous beta genus HPV8 E7 oncoprotein is mediated by hydrophobic interactions between its zinc-binding domain and FG nucleoporins

    Energy Technology Data Exchange (ETDEWEB)

    Onder, Zeynep; Moroianu, Junona, E-mail: moroianu@bc.edu

    2014-01-20

    We have previously discovered and characterized the nuclear import pathways for the E7 oncoproteins of mucosal alpha genus HPVs, type 16 and 11. Here we investigated the nuclear import of cutaneous beta genus HPV8 E7 protein using confocal microscopy after transfections of HeLa cells with EGFP-8E7 and mutant plasmids and nuclear import assays in digitonin-permeabilized HeLa cells. We determined that HPV8 E7 contains a nuclear localization signal (NLS) within its zinc-binding domain that mediates its nuclear import. Furthermore, we discovered that a mostly hydrophobic patch {sub 65}LRLFV{sub 69} within the zinc-binding domain is essential for the nuclear import and localization of HPV8 E7 via hydrophobic interactions with the FG nucleoporins Nup62 and Nup153. Substitution of the hydrophobic residues within the {sub 65}LRLFV{sub 69} patch to alanines, and not R66A mutation, disrupt the interactions between the 8E7 zinc-binding domain and Nup62 and Nup153 and consequently inhibit nuclear import of HPV8 E7. - Highlights: • HPV8 E7 has a cNLS within its zinc-binding domain that mediates its nuclear import. • Discovery of a hydrophobic patch that is critical for the nuclear import of HPV8 E7. • HPV8 E7 nuclear import is mediated by hydrophobic interactions with FG-Nups, Nup62 and Nup153.

  9. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity.

    Directory of Open Access Journals (Sweden)

    Sophiya Karki

    Full Text Available The zinc finger antiviral protein (ZAP is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV, the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.

  10. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity.

    Science.gov (United States)

    Karki, Sophiya; Li, Melody M H; Schoggins, John W; Tian, Suyan; Rice, Charles M; MacDonald, Margaret R

    2012-01-01

    The zinc finger antiviral protein (ZAP) is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV), the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs) resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function.

  11. Inhibition of interleukin-1β-mediated interleukin-1 receptor-associated kinase 4 phosphorylation by zinc leads to repression of memory T helper type 17 response in humans.

    Science.gov (United States)

    Lee, Hyunju; Kim, Bonah; Choi, Yeon Ho; Hwang, Yuri; Kim, Dong Hyun; Cho, Sunjung; Hong, Sung Jun; Lee, Won-Woo

    2015-12-01

    Zinc is an essential trace element that plays pivotal roles in multiple facets of the immune system. Besides its catalytic and structural roles, zinc also functions as an intracellular signalling molecule, and changes in zinc levels can cause both direct and indirect modulation of immune responses. Further, cytoplasmic levels of bioavailable zinc in immune cells are largely influenced by many extracellular stimuli. Here we provide evidence that zinc represses memory T helper type 17 responses in humans by inhibiting interleukin-1β (IL-1β)-mediated signal. In vitro zinc treatment of CD4(+) T cells in the presence of activated monocytes inhibited interferon-γ-producing cells and IL-17-producing cells, but not IL-4-producing cells. Of note, production of IL-17(+) cells from memory CD4(+) T cells, which is significantly up-regulated by lipopolysaccharide-stimulated monocytes, was preferentially repressed by zinc. Increased cytoplasmic zinc in T cells suppressed IL-1β signalling through repression of phosphorylation of IL-1 receptor-associated kinase 4 (IRAK4), so leading to an inhibitory effect on T helper type 17 responses facilitated by monocyte-derived IL-1β in humans. These findings suggest that extracellular zinc bioavailability may affect memory CD4(+) T-cell responses by modulating the zinc-mediated signalling pathway.

  12. Induction of Fetal Hemoglobin In Vivo Mediated by a Synthetic γ-Globin Zinc Finger Activator

    Directory of Open Access Journals (Sweden)

    Flávia C. Costa

    2012-01-01

    Full Text Available Sickle cell disease (SCD and β-thalassemia patients are phenotypically normal if they carry compensatory hereditary persistence of fetal hemoglobin (HPFH mutations that result in increased levels of fetal hemoglobin (HbF, γ-globin chains in adulthood. Thus, research has focused on manipulating the reactivation of γ-globin gene expression during adult definitive erythropoiesis as the most promising therapy to treat these hemoglobinopathies. Artificial transcription factors (ATFs are synthetic proteins designed to bind at a specific DNA sequence and modulate gene expression. The artificial zinc finger gg1-VP64 was designed to target the −117 region of the Aγ-globin gene proximal promoter and activate expression of this gene. Previous studies demonstrated that HbF levels were increased in murine chemical inducer of dimerization (CID-dependent bone marrow cells carrying a human β-globin locus yeast artificial chromosome (β-YAC transgene and in CD34+ erythroid progenitor cells from normal donors and β-thalassemia patients. Herein, we report that gg1-VP64 increased γ-globin gene expression in vivo, in peripheral blood samples from gg1-VP64 β-YAC double-transgenic (bigenic mice. Our results demonstrate that ATFs function in an animal model to increase gene expression. Thus, this class of reagent may be an effective gene therapy for treatment of some inherited diseases.

  13. Copper–zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Kelley Salem

    2015-04-01

    Full Text Available Multiple myeloma (MM is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper–zinc superoxide dismutase (CuZnSOD or SOD1 correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266 and the BTZ-resistant (BR lines (MM.1SBR, 8226BR were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1, and glutathione (GSH were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity.

  14. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma.

    Science.gov (United States)

    Salem, Kelley; McCormick, Michael L; Wendlandt, Erik; Zhan, Fenghuang; Goel, Apollina

    2015-01-01

    Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper-zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity.

  15. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination.

    Directory of Open Access Journals (Sweden)

    Sourabh Dwivedi

    Full Text Available The formation of bacterial biofilm is a major challenge in clinical applications. The main aim of this study is to describe the synthesis, characterization and biocidal potential of zinc oxide nanoparticles (NPs against bacterial strain Pseudomonas aeruginosa. These nanoparticles were synthesized via soft chemical solution process in a very short time and their structural properties have been investigated in detail by using X-ray diffraction and transmission electron microscopy measurements. In this work, the potential of synthesized ZnO-NPs (∼ 10-15 nm has been assessed in-vitro inhibition of bacteria and the formation of their biofilms was observed using the tissue culture plate assays. The crystal violet staining on biofilm formation and its optical density revealed the effect on biofilm inhibition. The NPs at a concentration of 100 µg/mL significantly inhibited the growth of bacteria and biofilm formation. The biofilm inhibition by ZnO-NPs was also confirmed via bio-transmission electron microscopy (Bio-TEM. The Bio-TEM analysis of ZnO-NPs treated bacteria confirmed the deformation and damage of cells. The bacterial growth in presence of NPs concluded the bactericidal ability of NPs in a concentration dependent manner. It has been speculated that the antibacterial activity of NPs as a surface coating material, could be a feasible approach for controlling the pathogens. Additionally, the obtained bacterial solution data is also in agreement with the results from statistical analytical methods.

  16. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors.

    Science.gov (United States)

    Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E

    2016-09-01

    The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.

  17. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat

    Directory of Open Access Journals (Sweden)

    Zschemisch Nils-Holger

    2012-11-01

    Full Text Available Abstract Background Engineered zinc-finger nucleases (ZFN represented an innovative method for the genome manipulation in vertebrates. ZFN introduced targeted DNA double strand breaks (DSB and initiated non-homologous end joining (NHEJ after pronuclear or cytoplasmatic microinjection into zygotes. Resulting frame shift mutations led to functional gene ablations in zebra fish, mice, pigs and also in laboratory rats. Therefore, we targeted the rat Rag1 gene essential for the V(DJ recombination within the immunoglobulin production process and for the differentiation of mature B and T lymphocytes to generate an immunodeficient rat model in the LEW/Ztm strain. Results After microinjection of Rag1 specific ZFN mRNAs in 623 zygotes of inbred LEW/Ztm rats 59 offspring were born from which one carried a 4 bp deletion. This frame shift mutation led to a premature stop codon and a subsequently truncated Rag1 protein confirmed by the loss of the full-length protein in Western Blot analysis. Truncation of the Rag1 protein was characterized by the complete depletion of mature B cells. The remaining T cell population contained mature CD4+/CD3+/TCRαβ+ as well as CD8+/CD3+/TCRαβ+ positive lymphocytes accompanied by a compensatory increase of natural killer cells in the peripheral blood. Reduction of T cell development in Rag1 mutant rats was associated with a hypoplastic thymus that lacked follicular structures. Histological evaluation also revealed the near-complete absence of lymphocytes in spleen and lymph nodes in the immunodeficient Rag1 mutant rat. Conclusion The Rag1 mutant rat will serve as an important model for transplantation studies. Furthermore, it may be used as a model for reconstitution experiments related to the immune system, particularly with respect to different populations of human lymphocytes, natural killer cells and autoimmune phenomena.

  18. Dissection of splicing regulation at an endogenous locus by zinc-finger nuclease-mediated gene editing.

    Directory of Open Access Journals (Sweden)

    Sandra Cristea

    Full Text Available Sequences governing RNA splicing are difficult to study in situ due to the great difficulty of traditional targeted mutagenesis. Zinc-finger nuclease (ZFN technology allows for the rapid and efficient introduction of site-specific mutations into mammalian chromosomes. Using a ZFN pair along with a donor plasmid to manipulate the outcomes of DNA repair, we introduced several discrete, targeted mutations into the fourth intron of the endogenous BAX gene in Chinese hamster ovary cells. Putative lariat branch points, the polypyrimidine tract, and the splice acceptor site were targeted. We recovered numerous otherwise isogenic clones carrying the intended mutations and analyzed the effect of each on BAX pre-mRNA splicing. Mutation of one of three possible branch points, the polypyrimidine tract, and the splice acceptor site all caused exclusion of exon five from BAX mRNA. Interestingly, these exon-skipping mutations allowed usage of cryptic splice acceptor sites within intron four. These data demonstrate that ZFN-mediated gene editing is a highly effective tool for dissection of pre-mRNA splicing regulatory sequences in their endogenous context.

  19. Myeloid zinc finger 1 mediates sulindac sulfide-induced upregulation of death receptor 5 of human colon cancer cells.

    Science.gov (United States)

    Horinaka, Mano; Yoshida, Tatsushi; Tomosugi, Mitsuhiro; Yasuda, Shusuke; Sowa, Yoshihiro; Sakai, Toshiyuki

    2014-08-08

    A combined therapy of sulindac sulfide and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising strategy for the treatment of cancer. Sulindac sulfide had been shown to induce the expression of death receptor 5 (DR5), a receptor for TRAIL, and sensitize cancer cells to TRAIL-induced apoptosis; however, the molecular mechanism underlying the upregulation of DR5 has not yet been elucidated. We demonstrate here that myeloid zinc finger 1 (MZF1) mediates the induction of DR5 by sulindac sulfide. Sulindac sulfide induced the expression of DR5 at the protein and mRNA levels in colon cancer SW480 cells. Furthermore, sulindac sulfide increased DR5 promoter activity. We showed that sulindac sulfide stimulated DR5 promoter activity via the -301 to -253 region. This region contained a putative MZF1-binding site. Site-directed mutations in the site abrogated the enhancement in DR5 promoter activity by sulindac sulfide. MZF1 directly bound to the putative MZF1-binding site of the DR5 promoter and the binding was increased by sulindac sulfide. The expression of MZF1 was also increased by sulindac sulfide, and MZF1 siRNA attenuated the upregulation of DR5 by sulindac sulfide. These results indicate that sulindac sulfide induces the expression of DR5 by up-regulating MZF1.

  20. Use of Cyclic Allylic Bromides in the Zinc–Mediated Aqueous Barbier–Grignard Reaction

    Directory of Open Access Journals (Sweden)

    Suzanne M. Perala

    2001-07-01

    Full Text Available The zinc–mediated aqueous Barbier–Grignard reaction of cyclic allylic bromide substrates with various aldehydes and ketones to afford homoallylic alcohols was investigated. Aromatic aldehydes and ketones afforded adducts in good yields (66–90% and with good diastereoselectivities. Non–aromatic aldehydes also reacted well under these conditions, but only poor yields were obtained with non–aromatic ketones. Regioselectivity was high when some substituted cyclic allylic bromides were investigated.

  1. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide

    Directory of Open Access Journals (Sweden)

    Shumin Li

    2014-01-01

    Full Text Available Angiotensin II (AngII is the main effector peptide of the renin–angiotensin system (RAS, and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2·−. Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2·−. We have previously reported that over-expression of manganese superoxide dismutase (MnSOD, a mitochondrial matrix-localized O2·− scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD, which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2·−. Using a neuronal cell culture model (CATH.a neurons, we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2·− levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2·−, and inhibits AngII intra-neuronal signaling.

  2. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide.

    Science.gov (United States)

    Li, Shumin; Case, Adam J; Yang, Rui-Fang; Schultz, Harold D; Zimmerman, Matthew C

    2013-01-01

    Angiotensin II (AngII) is the main effector peptide of the renin-angiotensin system (RAS), and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2 (•-)). Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2 (•-). We have previously reported that over-expression of manganese superoxide dismutase (MnSOD), a mitochondrial matrix-localized O2 (•-) scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD), which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2 (•-). Using a neuronal cell culture model (CATH.a neurons), we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD) are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2 (•-) levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2 (•-), and inhibits AngII intra-neuronal signaling.

  3. Zinc sensing receptor signaling, mediated by GPR39, reduces butyrate-induced cell death in HT29 colonocytes via upregulation of clusterin.

    Directory of Open Access Journals (Sweden)

    Limor Cohen

    Full Text Available Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn(2+ sensing G-protein coupled receptor (ZnR that activates Ca(2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn(2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca(2+ release and Zn(2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na(+/H(+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na(+/H(+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn(2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn(2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes.

  4. Iron Availability Affects Phosphate Deficiency-Mediated Responses, and Evidence of Cross-Talk with Auxin and Zinc in Arabidopsis.

    Science.gov (United States)

    Rai, Vandna; Sanagala, Raghavendrarao; Sinilal, Bhaskaran; Yadav, Sandeep; Sarkar, Ananda K; Dantu, Prem Kumar; Jain, Ajay

    2015-06-01

    Phosphate (Pi) is pivotal for plant growth and development. Pi deficiency triggers local and systemically regulated adaptive responses in Arabidopsis thaliana. Inhibition of primary root growth (PRG) and retarded development of lateral roots (LRs) are typical local Pi deficiency-mediated responses of the root system. Expression of Pi starvation-responsive (PSR) genes is regulated systemically. Here, we report the differential influence of iron (Fe) availability on local and systemic sensing of Pi by Arabidopsis. P-Fe- condition disrupted local Pi sensing, resulting in an elongated primary root (PR). Altered Fe homeostasis in the lpsi mutant with aberration in local Pi sensing provided circumstantial evidence towards the role of Fe in the maintenance of Pi homeostasis. Reporter gene assays, expression analysis of auxin-responsive genes (ARGs) and root phenotyping of the arf7arf19 mutant demonstrated the role of Fe availability on local Pi deficiency-mediated LR development. In addition, Fe availability also exerted a significant influence on PSR genes belonging to different functional categories. Together, these results demonstrated a substantial influence of Fe availability on Pi deficiency-mediated responses of ontogenetically distinct traits of the root system and PSR genes. The study also provided evidence of cross-talk between Pi, Fe and Zn, highlighting a complex tripartite interaction amongst them for maintaining Pi homeostasis.

  5. Preparation of heterocyclic amines by an oxidative amination of zinc organometallics mediated by Cu(I): a new oxidative cycloamination for the preparation of annulated indole derivatives.

    Science.gov (United States)

    Kienle, Marcel; Wagner, Andreas J; Dunst, Cora; Knochel, Paul

    2011-02-01

    Functionalized heterocyclic zinc reagents are easily aminated by an oxidative amination reaction of zinc amidocuprates prepared from various lithium amides. For the oxidation step, PhI(OAc)(2) proved to be the best reagent. The required heterocyclic zinc organometallics can be prepared either by direct metalation, by magnesium insertion in the presence of ZnCl(2), or by transmetalation of a suitable magnesium reagent. Furthermore, we report a new ring-closing reaction involving an intramolecular oxidative amination reaction. This reaction allows the preparation of tetracyclic heterocycles containing furan, thiophene, or indole rings.

  6. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.

  7. Examination of nanoformulated crosslinked polymers complexed with copper/zinc superoxide dismutase as a therapeutic strategy for angiotensin II-mediated hypertension

    Science.gov (United States)

    Savalia, Krupa

    Excessive generation of superoxide (O2·-) has been extensively implicated as a signaling molecule in cardiovascular pathologies, including hypertension. As a major risk factor for myocardial infarction, stroke, and heart failure, the morbidity and mortality associated with hypertension is a worldwide epidemic. Although there are several standard therapies that effectively lower blood pressure, many hypertensive patients have uncontrolled blood pressure despite taking available medications. Thus, there is a necessity to develop new pharmacotherapies that target novel molecular effectors (e.g. O2·-) that have been implicated to be integral in the pathogenesis of hypertension. To overcome the failed therapeutic impact of currently available antioxidants in cardiovascular disease, we developed a nanomedicine-based delivery system for the O2 ·- scavenging enzyme, copper/zinc superoxide dismutase (CuZnSOD), in which CuZnSOD protein is electrostatically bound to poly-L-lysine (PLL 50)-polyethylene glycol (PEG) block co-polymer to form CuZnSOD nanozyme. Different formulations of CuZnSOD nanozyme are covalently stabilized by either reducible or non-reducible crosslinked bonds between the PLL50-PEG polymers. Herein, we tested the overall hypothesis that PLL50-PEG CuZnSOD nanozyme delivers active CuZnSOD protein to neurons and decreases blood pressure in a model of Angll-dependent hypertension. As determined by electron paramagnetic resonance (EPR) spectroscopy, nanozymes retain full SOD enzymatic activity. Furthermore, non-reducible crosslinked nanozyme delivers active CuZnSOD protein to central neurons in culture (CATH.a neurons) without inducing significant neuronal toxicity. In vivo studies conducted in Angll-mediated hypertensive adult male C57BL/6 mice demonstrate that the non-reducible crosslinked nanozyme significantly attenuates blood pressure when given directly into the brain and prevents the further increase in hypertension when intravenously (IV) administered

  8. Nutritional zinc deficiency, immune capacity and malaria : a study on mediators of immunity to malaria caused by Plasmodium falciparum in African children

    NARCIS (Netherlands)

    Mbugi, E.V.

    2009-01-01

    This thesis aimed at investigating the role of genetic and nutritional factors that affect the immune response to malaria in Tanzanian children. The introductory chapter (Chapter 1) reviews the importance of nutritional deficiencies, particularly of zinc, and presents the hypothesis that such defici

  9. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  10. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    Science.gov (United States)

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs.

  11. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA.

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-04-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia.

  12. A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3.

    Science.gov (United States)

    Simpson, Raina J Y; Yi Lee, Stella Hoi; Bartle, Natalie; Sum, Eleanor Y; Visvader, Jane E; Matthews, Jacqueline M; Mackay, Joel P; Crossley, Merlin

    2004-09-17

    Classic zinc finger domains (cZFs) consist of a beta-hairpin followed by an alpha-helix. They are among the most abundant of all protein domains and are often found in tandem arrays in DNA-binding proteins, with each finger contributing an alpha-helix to effect sequence-specific DNA recognition. Lone cZFs, not found in tandem arrays, have been postulated to function in protein interactions. We have studied the transcriptional co-regulator Friend of GATA (FOG), which contains nine zinc fingers. We have discovered that the third cZF of FOG contacts a coiled-coil domain in the centrosomal protein transforming acidic coiled-coil 3 (TACC3). Although FOG-ZF3 exhibited low solubility, we have used a combination of mutational mapping and protein engineering to generate a derivative that was suitable for in vitro and structural analysis. We report that the alpha-helix of FOG-ZF3 recognizes a C-terminal portion of the TACC3 coiled-coil. Remarkably, the alpha-helical surface utilized by FOG-ZF3 is the same surface responsible for the well established sequence-specific DNA-binding properties of many other cZFs. Our data demonstrate the versatility of cZFs and have implications for the analysis of many as yet uncharacterized cZF proteins.

  13. A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1

    DEFF Research Database (Denmark)

    Negishi, Masamitsu; Saraya, Atsunori; Mochizuki, Shinobu

    2010-01-01

    . METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through......BACKGROUND: Polycomb group (PcG) proteins play a crucial role in cellular senescence as key transcriptional regulators of the Ink4a/Arf tumor suppressor gene locus. However, how PcG complexes target and contribute to stable gene silencing of the Ink4a/Arf locus remains little understood...... direct interaction with Bmi1. Loss of Zfp277 in mouse embryonic fibroblasts (MEFs) caused dissociation of PcG proteins from the Ink4a/Arf locus, resulting in premature senescence associated with derepressed p16(Ink4a) and p19(Arf) expression. Levels of both Zfp277 and PcG proteins inversely correlated...

  14. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    Science.gov (United States)

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  15. Mechanisms of mammalian zinc-regulated gene expression.

    Science.gov (United States)

    Jackson, Kelly A; Valentine, Ruth A; Coneyworth, Lisa J; Mathers, John C; Ford, Dianne

    2008-12-01

    Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.

  16. Zinc(II) complexes containing bis-benzimidazole derivatives as a new class of apoptosis inducers that trigger DNA damage-mediated p53 phosphorylation in cancer cells.

    Science.gov (United States)

    Liu, Shenggui; Cao, Wenqiang; Yu, Lianling; Zheng, Wenjie; Li, Linlin; Fan, Cundong; Chen, Tianfeng

    2013-04-28

    In the present study, two zinc(II) complexes containing bis-benzimidazole derivatives, Zn(bpbp)Cl2 (1) and [Zn(bpbp)2](ClO4)2·CH3CH2OH·H2O (2) (bpbp = 2,6-bis(1-phenyl-1H-benzo[d]imidazol-2-yl)pyridine), have been designed, synthesized and evaluated for their in vitro anticancer activities. The underlying molecular mechanisms through which they caused the cancer cell death were also elucidated. The complexes were identified as potent antiproliferative agents against a panel of five human cancer cell lines by comparing with cisplatin. Complex 2 demonstrated dose-dependent growth inhibition on MCF-7 human breast carcinoma cells with IC50 at 2.9 μM. Despite this potency, the complexes possessed great selectivity between human cancer cells and normal cells. Induction of apoptosis in MCF-7 cells by complex 2 was evidenced by accumulation of sub-G1 cell population, DNA fragmentation and nuclear condensation. Further investigation on intracellular mechanisms revealed that complex 2 was able to induce p53-dependent apoptosis in cancer cells by triggering DNA damage. On the basis of this evidence, we suggest that Zn(II) complexes containing bis-benzimidazole derivatives may be candidates for further evaluation as chemotherapeutic agents for human cancers.

  17. Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae

    Science.gov (United States)

    Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B.

    2015-02-01

    In this study, zinc oxide nanoparticles were biologically synthesized using the leaf extract of Plectranthus amboinicus (Pam-ZnO NPs). The synthesized Pam-ZnO NPs were characterized by UV-Vis spectrophotometer, FTIR, TEM and XRD analysis. TEM analysis of Pam-ZnO NPs showed the average size of about 20-50 nm. Pam-ZnO NPs control the growth of methicillin-resistant Staphylococcus aureus biofilms (MRSA ATCC 33591) at the concentration of 8-10 μg/ml. Confocal laser scanning microscope (CLSM) images revealed that Pam-ZnO NPs strongly inhibited the biofilm forming ability of S. aureus. In addition, Pam-ZnO NPs showed 100% mortality of fourth instar mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Culex tritaeniorhynchus at the concentration of 8 and 10 μg/ml. The histopathological studies of Pam-ZnO NPs treated A. stephensi and C. quinquefasciatus larvae revealed the presence of damaged cells and tissues in the mid-gut. The damaged tissues suffered major changes including rupture and disintegration of epithelial layer and cellular vacuolization. The present study conclude that Pam-ZnO NPs showed effective control of S. aureus biofilms and mosquito larvae by damaging the mid gut cells.

  18. Exclusive Dijet production from CDF2LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gallinaro, Michele; /Rockefeller U.

    2005-04-01

    Exclusive dijet production at the Tevatron can be used as a benchmark to establish predictions on exclusive diffractive Higgs production, a process with a much smaller cross section. Exclusive dijet production in Double Pomeron Exchange processes, including diffractive Higgs production with measurements at the Tevatron and predictions for the Large Hadron Collider are presented. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Upper limits on the exclusive dijet production cross section are presented and compared to current theoretical predictions.

  19. Zinc: the neglected nutrient.

    Science.gov (United States)

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  20. An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2015-08-01

    Full Text Available Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs, especially from plants. In the present study, a simple, eco-friendly, and inexpensive approach was followed for the synthesis of zinc oxide nanoparticles (ZnO NPs using the aqueous leaf extract of Eclipta prostrata. The synthesized ZnO NPs were characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX, High-resolution transmission electron microscopy (HRTEM, and Selected area (electron diffraction (SAED. The HRTEM images confirmed the presence of triangle, radial, hexagonal, rod, and rectangle, shaped with an average size of 29 ± 1.3 nm. The functional groups for synthesized ZnO NPs were 3852 cm−1 for H-H weak peak, 3138 cm−1 for aromatic C-H extend, and 1648 cm−1 for Aromatic ring stretch. The 3-(4,5-Dimethylthiazol-2-yl-2,5-Diphenyltetrazolium Bromide (MTT, caspase and DNA fragmentation assays were carried out using various concentrations of ZnO NPs ranging from 1 to 100 mg/mL. The synthesized ZnO NPs showed dose dependent cytopathic effects in the Hep-G2 cell line. At 100 mg/mL concentration, the synthesized ZnO NPs exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays.

  1. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans.

    Science.gov (United States)

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J; Killilea, David W; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

  2. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  3. Is zinc a neuromodulator?

    Science.gov (United States)

    Kay, Alan R; Tóth, Katalin

    2008-01-01

    The vesicles of certain glutamatergic terminals in the mammalian forebrain are replete with ionic zinc. It is believed that during synaptic transmission zinc is released, binds to receptors on the pre- or postsynaptic membranes, and hence acts as a neuromodulator. Although exogenous zinc modulates a wide variety of channels, whether synaptic zinc transits across the synaptic cleft and alters the response of channels has been difficult to establish. We will review the evidence for zinc as a neuromodulator and propose diagnostic criteria for establishing whether it is indeed one. Moreover, we will delineate alternative ways in which zinc might act at synapses.

  4. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism.

    Directory of Open Access Journals (Sweden)

    Susan Richter

    Full Text Available Zinc finger nucleases (ZFN are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK, in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116. All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002 and 4.3±0.8% (p = 0.001 for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.

  5. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  6. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  7. Cadmium and zinc relationships

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.; Piscator, M.

    1978-08-01

    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  8. Cadmium and zinc relationships.

    Science.gov (United States)

    Elinder, C G; Piscator, M

    1978-08-01

    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  9. Nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children

    Directory of Open Access Journals (Sweden)

    Márcia Marília Gomes Dantas Lopes

    2015-10-01

    Full Text Available Background: Zinc is an essential nutrient that is required for numerous metabolic functions, and zinc deficiency results in growth retardation, cell-mediated immune dysfunction, and cognitive impairment. Objective: This study evaluated nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children. Design: We performed a randomised, controlled, triple-blind study. The children were divided into a control group (10% sorbitol, n=31 and an experimental group (10 mg Zn/day, n=31 for 3 months. Anthropometric and dietary assessments as well as bioelectrical measurements were performed in all children. Results: Our study showed (1 an increased body mass index for age and an increased phase angle in the experimental group; (2 a positive correlation between nutritional assessment parameters in both groups; (3 increased soft tissue, and mainly fat-free mass, in the body composition of the experimental group, as determined using bioelectrical impedance vector analysis; (4 increased consumption of all nutrients, including zinc, in the experimental group; and (5 an increased serum zinc concentration in both groups (p<0.0001. Conclusions: Given that a reference for body composition analysis does not exist for intervention studies, longitudinal studies are needed to investigate vector migration during zinc supplementation. These results reinforce the importance of employing multiple techniques to assess the nutritional status of populations.

  10. [Zinc and type 2 diabetes].

    Science.gov (United States)

    Fukunaka, Ayako; Fujitani, Yoshio

    2016-07-01

    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been a topic of great interest. While many studies demonstrating possible involvement of zinc deficiency in diabetes have been reported, precise mechanisms how zinc regulates glucose metabolism are still far from understood. Recent studies revealed that zinc can transmit signals that are driven by a variety of zinc transporters in a tissue and cell-type specific manner and deficiency in some zinc transporters may cause human diseases. Here, we review the role of zinc in metabolism particularly focusing on the emerging role of zinc transporters in diabetes.

  11. Effects of Dietary Zinc Manipulation on Growth Performance, Zinc Status and Immune Response during Giardia lamblia Infection: A Study in CD-1 Mice

    Directory of Open Access Journals (Sweden)

    Humberto Astiazarán-García

    2013-09-01

    Full Text Available Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA, low-zinc (ZnL, high-zinc (ZnH and supplemented-zinc (ZnS diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days. Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection.

  12. Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases.

    Science.gov (United States)

    Hwang, Ih-Yeon; Sun, Eun-Sun; An, Ji Hak; Im, Hana; Lee, Sun-Ho; Lee, Joo-Yong; Han, Pyung-Lim; Koh, Jae-Young; Kim, Yang-Hee

    2011-09-01

    Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc, expression of tPA and its substrate, plasminogen, were significantly increased, as was the proteolytic activity of tPA. In contrast, increasing extracellular or intracellular calcium levels did not affect the expression or secretion of tPA. Changing zinc influx or chelating intracellular zinc also failed to alter tPA/plasminogen induction by zinc, indicating that zinc acts extracellularly. Zinc-mediated extracellular activation of matrix metalloproteinase (MMP) underlies the up-regulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (Trk) signaling. Consistent with these findings, co-treatment with a neutralizing antibody against BDNF or specific inhibitors of MMPs or Trk largely reversed tPA/plasminogen induction by zinc. Treatment of cortical cultures with p-aminophenylmercuric acetate, an MMP activator, MMP-2, or BDNF alone induced tPA/plasminogen expression. BDNF mRNA and protein expression was also increased by zinc and mediated by MMPs. Thus, an extracellular zinc-dependent, MMP- and BDNF-mediated synaptic mechanism may regulate the levels and activity of tPA.

  13. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  14. Chelators for investigating zinc metalloneurochemistry.

    Science.gov (United States)

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  15. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    Science.gov (United States)

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  16. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Andrey A. Skalny

    2015-09-01

    Full Text Available Background. A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the infl uence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD and glutathione peroxidase (GPx activity in Wistar rats. Material and methods. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the fi rst and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Results. Intragastric administration of zinc asparaginate signifi cantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats’ organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. Conclusion. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  17. Ion Channels and Zinc: Mechanisms of Neurotoxicity and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Deborah R. Morris

    2012-01-01

    Full Text Available Ionotropic glutamate receptors, such as NMDA, AMPA and kainate receptors, are ligand-gated ion channels that mediate much of the excitatory neurotransmission in the brain. Not only do these receptors bind glutamate, but they are also regulated by and facilitate the postsynaptic uptake of the trace metal zinc. This paper discusses the role of the excitotoxic influx and accumulation of zinc, the mechanisms responsible for its cytotoxicity, and a number of disorders of the central nervous system that have been linked to these neuronal ion channels and zinc toxicity including ischemic brain injury, traumatic brain injury, and epilepsy.

  18. The zinc finger protein ZNF658 regulates the transcription of genes involved in zinc homeostasis and affects ribosome biogenesis through the zinc transcriptional regulatory element.

    Science.gov (United States)

    Ogo, Ogo A; Tyson, John; Cockell, Simon J; Howard, Alison; Valentine, Ruth A; Ford, Dianne

    2015-03-01

    We previously identified the ZTRE (zinc transcriptional regulatory element) in genes involved in zinc homeostasis and showed that it mediates transcriptional repression in response to zinc. We now report that ZNF658 acts at the ZTRE. ZNF658 was identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry of a band excised after electrophoretic mobility shift assay using a ZTRE probe. The protein contains a KRAB domain and 21 zinc fingers. It has similarity with ZAP1 from Saccharomyces cerevisiae, which regulates the response to zinc restriction, including a conserved DNA binding region we show to be functional also in ZNF658. Small interfering RNA (siRNA) targeted to ZNF658 abrogated the zinc-induced, ZTRE-dependent reduction in SLC30A5 (ZnT5 gene), SLC30A10 (ZnT10 gene), and CBWD transcripts in human Caco-2 cells and the ability of zinc to repress reporter gene expression from corresponding promoter-reporter constructs. Microarray analysis of the effect of reducing ZNF658 expression by siRNA uncovered a large decrease in rRNA. We find that ZTREs are clustered within the 45S rRNA precursor. We also saw effects on expression of multiple ribosomal proteins. ZNF658 thus links zinc homeostasis with ribosome biogenesis, the most active transcriptional, and hence zinc-demanding, process in the cell. ZNF658 is thus a novel transcriptional regulator that plays a fundamental role in the orchestrated cellular response to zinc availability.

  19. Exploring zinc coordination in novel zinc battery electrolytes.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2014-06-14

    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  20. Treatment of Wilson's disease with zinc: X. Intestinal metallothionein induction.

    Science.gov (United States)

    Yuzbasiyan-Gurkan, V; Grider, A; Nostrant, T; Cousins, R J; Brewer, G J

    1992-09-01

    Oral zinc therapy is effective in controlling copper balance in patients with Wilson's disease and blocks the intestinal absorption of copper, as demonstrated by uptake of copper 64 and copper balance measurements. In this study, 64Cu uptake measurements were concomitantly carried out with intestinal biopsies to investigate the relationship of reduced copper absorption to the levels of intestinal metallothionein in patients with Wilson's disease at different stages of zinc therapy. A pronounced increase in intestinal metallothionein levels and a sharp drop in 64Cu absorption were found 4 to 5 days after the initiation of zinc treatment. Conversely, metallothionein levels decreased and 64Cu uptake increased on the discontinuation of zinc therapy. The data indicate that 64Cu absorption varies as a function of intestinal metallothionein level. Intestinal metallothionein levels were found to correlate linearly with urinary zinc levels, which reflect body zinc status. These findings support our hypothesis that intestinal metallothionein induction mediates decreased copper absorption observed during zinc therapy. The suppressive effect of zinc on copper absorption appears to have a half-life of about 11 days.

  1. Modulation of zinc toxicity by tissue plasminogen activator.

    Science.gov (United States)

    Siddiq, Mustafa M; Tsirka, Stella E

    2004-01-01

    The tissue plasminogen activator (tPA)-plasmin proteolytic system mediates excitotoxin-induced neurodegeneration in vivo and in cell culture. tPA also confers neuroprotection from zinc toxicity in cell culture through a proteolysis-independent mechanism. This raises two questions: what is this non-enzymatic mechanism, and why tPA does not synergize with zinc to promote neuronal cell death? We show here that zinc binds to tPA and inhibits its activity in a dose-dependent fashion, thus terminating its protease-dependent neurotoxic capacity. We extend the previously reported culture findings to demonstrate that elevated zinc is neurotoxic in vivo, and even more so when tPA is absent. Thus, physiological levels of tPA confer protection from elevated free zinc. Mechanistically, tPA promotes movement of zinc into hippocampal neuron cells through voltage-sensitive Ca(2+) channels and Ca(2+)-permeable AMPA/KA channels. Therefore, zinc and tPA each appear to be able to limit the potential of the other to facilitate neurodegeneration, a reciprocal set of actions that may be critical in the hippocampus where tPA is secreted during the nonpathological conditions of learning and memory at sites known to be repositories of free and sequestered zinc.

  2. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Wu Chang-Yi

    2008-08-01

    Full Text Available Abstract Background The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. We previously used transcriptome profiling with DNA microarrays to identify 46 potential Zap1 target genes in the yeast genome. In this new study, we used complementary methods to identify additional Zap1 target genes. Results With alternative growth conditions for the microarray experiments and a more sensitive motif identification algorithm, we identified 31 new potential targets of Zap1 activation. Moreover, an analysis of the response of Zap1 target genes to a range of zinc concentrations and to zinc withdrawal over time demonstrated that these genes respond differently to zinc deficiency. Some genes are induced under mild zinc deficiency and act as a first line of defense against this stress. First-line defense genes serve to maintain zinc homeostasis by increasing zinc uptake, and by mobilizing and conserving intracellular zinc pools. Other genes respond only to severe zinc limitation and act as a second line of defense. These second-line defense genes allow cells to adapt to conditions of zinc deficiency and include genes involved in maintaining secretory pathway and cell wall function, and stress responses. Conclusion We have identified several new targets of Zap1-mediated regulation. Furthermore, our results indicate that through the differential regulation of its target genes, Zap1 prioritizes mechanisms of zinc homeostasis and adaptive responses to zinc deficiency.

  3. Zinc level and obesity

    Directory of Open Access Journals (Sweden)

    Doaa S.E. Zaky

    2013-01-01

    Conclusion Plasma zinc concentration in obese individuals showed an inverse relationship with the waist circumference and BMI as well as serum low-density lipoprotein-cholesterol and correlated positively with high-density lipoprotein.

  4. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  5. Zinc level and obesity

    OpenAIRE

    Doaa S.E Zaky; Eman A Sultan; Mahmoud F Salim; Rana S Dawod

    2013-01-01

    Background Obesity is a chronic condition that is associated with disturbances in the metabolism of zinc. Therefore, the aim of this study was to investigate the relationship between serum zinc level and different clinical and biochemical parameters in obese individuals. Patients and methods Twenty-four individuals with BMI more than 30 kg/m 2 and 14 healthy controls (BMI < 24 kg/m 2 ) were assessed for BMI and waist circumference using anthropometric measurements. Colorimetric tes...

  6. Treatment of zinc deficiency without zinc fortification

    Institute of Scientific and Technical Information of China (English)

    Donald OBERLEAS; Barbara F. HARLAND

    2008-01-01

    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physi-ology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.

  7. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, C.A.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  8. Zinc at Sub-Cytotoxic Concentrations Induces Heme Oxygenase-1 Expression in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jing Xue

    2013-07-01

    Full Text Available Background/Aims: This study investigated the effects of zinc on heme oxygenase-1 (HO-1 expression in human cancer cells. Methods/Results: Zinc at sub-cytotoxic concentrations (50-100 μM induces HO-1 expression in the MDA-MB-231 (human breast cancer and A2780 (human ovarian cancer cell lines in a concentration- and time-dependent manner. The induction of HO-1 by zinc was detected after 4-6 hours of treatment, reached maximal level at 8 hours, and declined thereafter. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs that mediated the zinc-induced increase in HO-1 gene transcription, indicating that the nuclear factor (erythroid-derived 2-like 2 (Nrf2 signaling pathway is involved in this event. This assumption was supported by the observations that knockdown of Nrf2 expression compromised the zinc-induced increase in HO-1 gene transcription, and that zinc increased Nrf2 protein expression and the Nrf2 binding to the AREs. Additionally, we found that the zinc-induced HO-1 gene transcription can be enhanced by clioquinol, a zinc ionophore, and reversed by pretreatment with TPEN, a known zinc chelator, indicating that an increase in intracellular zinc levels is responsible for this induction. Conclusion: These findings demonstrate that zinc at sub-cytotoxic concentrations induces HO-1 expression in human cancer cells. The biological significance of this induction merits further investigation.

  9. Zinc Determination in Pleural Fluid

    OpenAIRE

    Nazan DEMİR; DEMİR, Yaşar

    2000-01-01

    In this study, an enzymatic zinc determination method was applied to pleural fluid, the basis of which was the regaining of the activity of apo carbonic anhydrase by the zinc present in the sample. The method was used for pleural fluid zinc determination in order to show the application to body fluids other than serum. For this purpose, pleural fluids were obtained from 20 patients and zinc concentrations were determined. Carbonic anhydrase was purified by affinity chromatography from bovine ...

  10. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Live

  11. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  12. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  13. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs ref

  14. Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents.

    Science.gov (United States)

    Uzzo, Robert G; Leavis, Paul; Hatch, William; Gabai, Vladimir L; Dulin, Nickolai; Zvartau, Nadezhda; Kolenko, Vladimir M

    2002-11-01

    Prostate carcinogenesis involves transformation of zinc-accumulating normal epithelial cells to malignant cells, which do not accumulate zinc. In this study, we demonstrate by immunoblotting and immunohistochemistry that physiological levels of zinc inhibit activation of nuclear factor (NF)-kappa B transcription factor in PC-3 and DU-145 human prostate cancer cells, reduce expression of NF-kappa B-controlled antiapoptotic protein c-IAP2, and activate c-Jun NH(2)-terminal kinases. Preincubation of PC-3 cells with physiological concentrations of zinc sensitized tumor cells to tumor necrosis factor (TNF)-alpha, and paclitaxel mediated cell death as defined by terminal deoxynucleotidyl transferase-mediated nick end labeling assay. These results suggest one possible mechanism for the inhibitory effect of zinc on the development and progression of prostate malignancy and might have important consequences for the prevention and treatment of prostate cancer.

  15. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut.

    Science.gov (United States)

    Liu, Janet Z; Jellbauer, Stefan; Poe, Adam J; Ton, Vivian; Pesciaroli, Michele; Kehl-Fie, Thomas E; Restrepo, Nicole A; Hosking, Martin P; Edwards, Robert A; Battistoni, Andrea; Pasquali, Paolo; Lane, Thomas E; Chazin, Walter J; Vogl, Thomas; Roth, Johannes; Skaar, Eric P; Raffatellu, Manuela

    2012-03-15

    Neutrophils are innate immune cells that counter pathogens by many mechanisms, including release of antimicrobial proteins such as calprotectin to inhibit bacterial growth. Calprotectin sequesters essential micronutrient metals such as zinc, thereby limiting their availability to microbes, a process termed nutritional immunity. We find that while calprotectin is induced by neutrophils during infection with the gut pathogen Salmonella Typhimurium, calprotectin-mediated metal sequestration does not inhibit S. Typhimurium proliferation. Remarkably, S. Typhimurium overcomes calprotectin-mediated zinc chelation by expressing a high affinity zinc transporter (ZnuABC). A S. Typhimurium znuA mutant impaired for growth in the inflamed gut was rescued in the absence of calprotectin. ZnuABC was also required to promote the growth of S. Typhimurium over that of competing commensal bacteria. Thus, our findings indicate that Salmonella thrives in the inflamed gut by overcoming the zinc sequestration of calprotectin and highlight the importance of zinc acquisition in bacterial intestinal colonization.

  16. Tissue Plasminogen Activator Alters Intracellular Sequestration of Zinc through Interaction with the Transporter ZIP4

    Energy Technology Data Exchange (ETDEWEB)

    Emmetsberger, Jaime; Mirrione, Martine M.; Zhou, Chun; Fernandez-Monreal, Monica; Siddiq, Mustafa M.; Ji, Kyungmin; Tsirka, Stella E. (SBU)

    2010-09-17

    Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm. Tissue plasminogen activator (tPA), a secreted serine protease, is also proepileptic and excitotoxic. However, tPA counters zinc toxicity by promoting zinc import back into the neurons in a sequestered form that is nontoxic. Here, we identify the zinc influx transporter, ZIP4, as the pathway through which tPA mediates the zinc uptake. We show that ZIP4 is upregulated after excitotoxin stimulation of the mouse, male and female, hippocampus. ZIP4 physically interacts with tPA, correlating with an increased intracellular zinc influx and lysosomal sequestration. Changes in prosurvival signals support the idea that this sequestration results in neuroprotection. These experiments identify a mechanism via which neurons use tPA to efficiently neutralize the toxic effects of excessive concentrations of free zinc.

  17. Doped zinc oxide microspheres

    Science.gov (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  18. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  19. Zinc in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Frederiksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  20. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    H B Muralidhara; Y Arthoba Naik

    2008-08-01

    Nano zinc coatings were deposited on mild steel by electrodeposition. The effect of additive on the morphology of crystal size on zinc deposit surface and corrosion properties were investigated. Corrosion tests were performed for dull zinc deposits and bright zinc deposits in aqueous NaCl solution (3.5 wt.%) using electrochemical measurements. The results showed that addition of additive in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM). The preferred orientation and average size of the zinc electrodeposited particles were obtained by X-ray diffraction analysis. The particles size was also characterized by TEM analysis.

  1. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen

    Directory of Open Access Journals (Sweden)

    Morgan Carrie I

    2011-12-01

    Full Text Available Abstract Background Zinc supplementation can modulate immunity through inhibition of NF-κB, a transcription factor that controls many immune response genes. Thus, we sought to examine the mechanism by which zinc supplementation tempers the response to a common allergen and determine its effect on allergic airway inflammation. Methods Mice were injected with zinc gluconate prior to German cockroach (GC feces (frass exposure and airway inflammation was assessed. Primary bone marrow-derived neutrophils and DMSO-differentiated HL-60 cells were used to assess the role of zinc gluconate on tumor necrosis factor (TNFα expression. NF-κB:DNA binding and IKK activity were assessed by EMSA and in vitro kinase assay. Protein levels of A20, RIP1 and TRAF6 were assessed by Western blot analysis. Establishment of allergic airway inflammation with GC frass was followed by administration of zinc gluconate. Airway hyperresponsiveness, serum IgE levels, eosinophilia and Th2 cytokine production were assessed. Results Administration of zinc gluconate prior to allergen exposure resulted in significantly decreased neutrophil infiltration and TNFα cytokine release into the airways. This correlated with decreased NF-κB activity in the whole lung. Treatment with zinc gluconate significantly decreased GC frass-mediated TNFα production from bone-marrow derived neutrophils and HL-60 cells. We confirmed zinc-mediated decreases in NF-κB:DNA binding and IKK activity in HL-60 cells. A20, a natural inhibitor of NF-κB and a zinc-fingered protein, is a potential target of zinc. Zinc treatment did not alter A20 levels in the short term, but resulted in the degradation of RIP1, an important upstream activator of IKK. TRAF6 protein levels were unaffected. To determine the application for zinc as a therapeutic for asthma, we administered zinc following the establishment of allergic airway inflammation in a murine model. Zinc supplementation decreased airway hyperresponsiveness

  2. Zinc transporter 5 and zinc transporter 7 induced by high glucose protects peritoneal mesothelial cells from undergoing apoptosis.

    Science.gov (United States)

    Zhang, Xiuli; Liang, Dan; Guo, Baolei; Deng, Wenyan; Chi, Zhi-Hong; Cai, Yuan; Wang, Lining; Ma, Jianfei

    2013-04-01

    Zinc is an essential micronutrient and cytoprotectant involved in many types of apoptosis. The zinc transporter family SLC30A (ZnTs) is an important factor in the regulation of zinc homeostasis; however, its function in apoptosis in peritoneal mesothelial cells (PMCs) remains unknown. This study explores the regulation of zinc transporters and how they play a role in cell survival, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations, and the molecular mechanism involved. The messenger RNA (mRNA) transcripts were quantitatively measured by real-time polymerase chain reaction for all known nine zinc transport exporters (SLC30A1-8,10), as well as in primary RPMCs and the cells cultured under nonstimulated and HG-stimulated conditions. While many zinc transporters were constitutively expressed, ZnT5 mRNA and ZnT7 mRNA were strongly induced by HG. Overexpression of ZnT5 and ZnT7 respectively resulted in a decrease in the expression of caspace 3, caspace 8, BAX, and AIF and coincided with cell survival in the presence of HG. Inhibition of ZnT5 and ZnT7 expression using considerable siRNA-mediated knockdown of RPMCs was examined and, afterwards, the impact on cell apoptosis was investigated. Increased levels of apoptosis were observed after knockdown of ZnT5 and ZnT7. Furthermore, overexpression of ZnT5 and ZnT7 is accompanied by activation of PI3K/Akt pathway and inhibiting HG-induced apoptosis. This study suggests that the zinc transporting system in RPMCs is influenced by exposure to HG, particularly ZnT5 and ZnT7. This may account for the inhibition of HG-induced RPMC apoptosis and peritoneum injury, likely through targeting PI3K/Akt pathway-mediated cell survival.

  3. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  4. Isotopic discrimination of zinc during root-uptake and cellular incorporation in higher plants

    Science.gov (United States)

    Mason, T. F.; Weiss, D. J.; Coles, B. J.; Horstwood, M.; Parrish, R. R.; Zhao, F. J.; Kirk, G. J.

    2003-04-01

    shoot were found. From these results it is apparent that two or more processes are controlling the zinc isotopic composition of the plant materials: one that favours isotopically heavy zinc (which we tentatively link to isotopic partitioning between species within the nutrient/soil-solutions), and one that favours isotopically light zinc (which is consistent with biologically-mediated uptake and cellular incorporation by plants). The lack of isotopic variability in the zinc-deficient soil system may indicate the predominance of a high-affinity zinc uptake pathway that is not isotopically selective.

  5. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  6. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  7. Leptin and zinc relation : In regulation of food intake and immunity

    Directory of Open Access Journals (Sweden)

    Abdulkerim Kasim Baltaci

    2012-01-01

    Full Text Available Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY, which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD +4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity.

  8. Dietary zinc deficiency predisposes mice to the development of preneoplastic lesions in chemically-induced hepatocarcinogenesis.

    Science.gov (United States)

    Romualdo, Guilherme Ribeiro; Goto, Renata Leme; Henrique Fernandes, Ana Angélica; Cogliati, Bruno; Barbisan, Luis Fernando

    2016-10-01

    Although there is a concomitance of zinc deficiency and high incidence/mortality for hepatocellular carcinoma in certain human populations, there are no experimental studies investigating the modifying effects of zinc on hepatocarcinogenesis. Thus, we evaluated whether dietary zinc deficiency or supplementation alter the development of hepatocellular preneoplastic lesions (PNL). Therefore, neonatal male Balb/C mice were submitted to a diethylnitrosamine/2-acetylaminefluorene-induced hepatocarcinogenesis model. Moreover, mice were fed adequate (35 mg/kg diet), deficient (3 mg/kg) or supplemented (180 mg/kg) zinc diets. Mice were euthanized at 12 (early time-point) or 24 weeks (late time-point) after introducing the diets. At the early time-point, zinc deficiency decreased Nrf2 protein expression and GSH levels while increased p65 and p53 protein expression and the number of PNL/area. At the late time-point, zinc deficiency also decreased GSH levels while increased liver genotoxicity, cell proliferation into PNL and PNL size. In contrast, zinc supplementation increased antioxidant defense at both time-points but not altered PNL development. Our findings are the first to suggest that zinc deficiency predisposes mice to the PNL development in chemically-induced hepatocarcinogenesis. The decrease of Nrf2/GSH pathway and increase of liver genotoxicity, as well as the increase of p65/cell proliferation, are potential mechanisms to this zinc deficiency-mediated effect.

  9. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  10. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  11. Zinc In CCl4 Toxicity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the protective effect of zinc in CCl4-induced hepatotoxicity. Methods Rats were treated with zinc acetate for four days. The zinc doses were 5 mg Zn/kg and 10 mg Zn/kg body weight respectively. Two groups of the zinc acetate-treated rats were later challenged with a single dose of CCl4 (1.5 mL/kg body weight). Results Compared to control animals, the plasma of rats treated with CCl4 showed hyperbilirubinaemia, hypoglycaemia, hypercreatinaemia and hypoproteinaemia. When the animals were however supplemented with zinc in form of zinc acetate before being dosed with CCl4, the 5 mg Zn/kg body weight of zinc acetate reversed the hypoproteinaemia induced by CCl4, whereas the 10mg Zn/kg body weight of zinc acetate reversed the hypoglycaemia, hyperbilimbinaemia and hypercreatinaemia induced by CCl4. Conclusion The 10mug Zn/kg body weight of zinc acetate is more consistent in protecting against CCl4 hepatotoxicity. The possible mechanisms of protection are highlighted.

  12. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Jia Zhu

    Full Text Available BACKGROUND: Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex. CONCLUSIONS: Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.

  13. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution.

    Science.gov (United States)

    McCormick, Nicholas H; Hennigar, Stephen R; Kiselyov, Kirill; Kelleher, Shannon L

    2014-03-01

    Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1-14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1-10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.

  14. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide.

    Science.gov (United States)

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnic, Marica; Hurrell, Richard F

    2014-02-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with (67)Zn and (70)Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6-71.0) and was not different from that from zinc gluconate with 60.9% (50.6-71.7). Absorption from zinc oxide at 49.9% (40.9-57.7) was significantly lower than from both other supplements (P zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627.

  15. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  16. Insulin production hampered by intermittent hypoxia via impaired zinc homeostasis.

    Directory of Open Access Journals (Sweden)

    Eung-Kwon Pae

    Full Text Available Without zinc, pancreatic beta cells cannot either assemble insulin molecules or precipitate insulin crystals; thus, a lack of zinc concentration in the beta cells would result in a decreased insulin production. ZIP8 is one of the zinc uptake transporters involved in zinc influx into the cytosol of beta cells. Thus, if ZIP8 is down-regulated, a decreased insulin production would result. We assumed that intermittent hypoxic exposure to the beta cells may result in a decreased production of insulin due to a lack of zinc. To test this hypothesis we harvested pancreatic islets from the rats conditioned under intermittent hypoxia (IH (fluctuating between 20.5% and 10% every 4 min for 1 h and compared the results with those from control animals and islets. We also compared their insulin and glucose homeostasis using glucose tolerance tests (GTT after 3 weeks. GTT results show a significant delay (P<0.05 in recovery of the blood glucose level in IH treated pups. ZIP8 expression in the beta cell membrane was down-regulated. The zinc concentration in the cell as well as insulin production was significantly decreased in the islets harvested from IH animals. However, mRNA for insulin and C-peptide/insulin protein levels in the total cell lysates remained the same as those of controls. When we treated the beta cells using siRNA mediated ZIP8, we observed the commensurate results from the IH-treated islets. We conclude that a transient IH exposure could knockdown ZIP8 transporters at mRNA as well as protein levels in the beta cells, which would decrease the level of blood insulin. However, the transcriptional activity of insulin remains the same. We conclude that the precipitation process of insulin crystal may be disturbed by a lack of zinc in the cytosol that is modulated by mainly ZIP8 after IH exposure.

  17. Nanostructures of zinc oxide

    Directory of Open Access Journals (Sweden)

    Zhong Lin Wang

    2004-06-01

    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  18. El zinc: oligoelemento esencial

    Directory of Open Access Journals (Sweden)

    C. Rubio

    Full Text Available En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.

  19. Danxia Zinc Smelter started construction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Zinc smelting project of Danxia Smelting Plant has a total investment of about RMB 4 billion, which is designed by Changsha Engineering & Research Institute of Nonferrous Metallurgy and planned to be implemented in three stages. The first stage 100,000 tons of electrolytic zinc improvement work is planned to be completed by the end of 2008. The second and third stages

  20. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  1. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D; Suschek, Christoph V

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  2. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  3. 21 CFR 73.1991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide...

  4. Zinc-bromine battery development

    Science.gov (United States)

    Richards, Lew; Vanschalwijk, Walter; Albert, George; Tarjanyi, Mike; Leo, Anthony; Lott, Stephen

    1990-05-01

    This report describes development activities on the zinc-bromine battery system conducted by Energy Research Corporation (ERC). The project was a cost-shared program supported by the U.S. Department of Energy and managed through Sandia. The project began in September 1985 and ran through January 1990. The zinc-bromine battery has been identified as a promising alternative to conventional energy storage options for many applications. The low cost of the battery reactants and the potential for long life make the system an attractive candidate for bulk energy storage applications, such as utility load leveling. The battery stores energy by the electrolysis of an aqueous zinc bromide salt to zinc metal and dissolved bromine. Zinc is plated as a layer on the electrode surface while bromine is dissolved in the electrolyte and carried out of the stack. The bromine is then extracted from the electrolyte with an organic complexing agent in the positive electrolyte storage tank. On discharge the zinc and bromine are consumed, regenerating the zinc bromide salt.

  5. Cytotoxicity of zinc in vitro.

    Science.gov (United States)

    Borovanský, J; Riley, P A

    1989-01-01

    The effect of zinc ions on B16 mouse melanoma lines, HeLa cells and I-221 epithelial cells was investigated in vitro in order to ascertain whether sensitivity to Zn2+ is a general feature of cells in vitro and in an attempt to elucidate the mechanism(s) of zinc cytotoxicity. The proliferation of B16, HeLa and I-221 cell lines was inhibited by 1.25 x 10(-4), 1.50 x 10(-4) and 1.50 x 10(-4) mol/l Zn2+, respectively. The free radical scavengers, methimazole and ethanol, did not suppress the toxicity of Zn2+, neither did superoxide dismutase or catalase. The addition of the chelating agent EDTA reduced the zinc cytotoxicity. It was possible to suppress the cytotoxicity of zinc by increasing the concentration of either Fe2+ or Ca2+ but not Mg2+, which suggests that a prerequisite for the toxic action of zinc is entry into cells using channels that are shared with iron or calcium. This view was supported by experiments in which transferrin intensified the cytotoxic action of zinc in serum-free medium. Another agent facilitating zinc transport, prostaglandin E2, inhibited the proliferation of the B16 melanoma cell line. There were no conspicuous differences in zinc toxicity to pigmented and unpigmented cells. The toxic effect of zinc in the cell systems studied exceeded that of iron, copper, manganese and cobalt in the same concentration range. In vitro, Zn2+ should be regarded as a dangerous cation.

  6. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  7. Zinc Oxide Nanoparticle Photodetector

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available A zinc oxide (ZnO nanoparticle photodetector was fabricated using a simple method. Under a 5 V applied bias, its dark current and photocurrent were 1.98×10-8 and 9.42×10-7 A, respectively. In other words, a photocurrent-to-dark-current contrast ratio of 48 was obtained. Under incident light at a wavelength of 375 nm and a 5 V applied bias, the detector’s measured responsivity was 3.75 A/W. The transient time constants measured during the turn-ON and turn-OFF states were τON=204 s and τOFF=486 s, respectively.

  8. Use of serum zinc concentration as an indicator of population zinc status.

    Science.gov (United States)

    Hess, Sonja Y; Peerson, Janet M; King, Janet C; Brown, Kenneth H

    2007-09-01

    Assessing the prevalence and severity of zinc deficiency in populations is critical to determine the need for and appropriate targeting of zinc intervention programs and to assess their effectiveness for improving the health and well-being of high-risk populations. However, there is very little information on the zinc status of populations worldwide due to the lack of consensus on appropriate biochemical indicators of zinc status. The objective of this review was to evaluate the use of serum zinc concentration as an indicator of population zinc status. We have reviewed the response of serum zinc concentration to dietary zinc restriction and zinc supplementation. In addition, we completed pooled analyses of nine zinc intervention trials in young children to assess the relations between serum zinc concentration of individuals before treatment and their responses to zinc supplementation. Also, in updated combined analyses of previously published data, we investigated the relation between the mean initial serum zinc concentration of a study population and their mean growth responses to zinc supplementation in randomized intervention trials among children. The results from depletion/repletion studies indicate that serum zinc concentrations respond appreciably to severe dietary zinc restriction, although there is considerable interindividual variation in these responses. There is also clear evidence that both individual and population mean serum zinc concentrations increase consistently during zinc supplementation, regardless of the initial level of serum zinc concentration. By contrast, an individual's serum zinc concentration does not reliably predict that person's response to zinc supplementation. Serum zinc concentration can be considered a useful biomarker of a population's risk of zinc deficiency and response to zinc interventions, although it may not be a reliable indicator of individual zinc status.

  9. Zinc tolerance and zinc removal ability of living and dried biomass of Desmodesmus communis.

    Science.gov (United States)

    Novák, Zoltán; Jánószky, Mihály; B-Béres, Viktória; Nagy, Sándor Alex; Bácsi, István

    2014-12-01

    Effects of zinc on growth, cell morphology, oxidative stress, and zinc removal ability of the common phytoplankton species Desmodesmus communis were investigated at a concentration range of 0.25-160 mg L(-1) zinc. Cell densities and chlorophyll content decreased in treated cultures, changes in coenobia morphology and elevated lipid peroxidation levels appeared above 2.5 mg L(-1) zinc. The most effective zinc removal was observed at 5 mg L(-1) zinc concentration, while maximal amount of removed zinc appeared in 15 mg L(-1) zinc treated culture. Removed zinc is mainly bound on the cell surface. Dead biomass adsorbed more zinc than living biomass relative to unit of dry mass, but living biomass was more effective, relative to initial zinc content. This study comprehensively examines the zinc tolerance and removal ability of D. communis and demonstrates, in comparison with published literature, that these characteristics of different isolates of the same species can vary within a wide range.

  10. Zinc toxicology following particulate inhalation

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2008-01-01

    Full Text Available The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl 2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  11. Prevalence of Zinc Deficiency by “ Zinc Taste Test” in Pre School Children in Yazd.

    Directory of Open Access Journals (Sweden)

    Gh Maleki

    2004-10-01

    Full Text Available Introduction: Zinc deficiency is a health problem in many communities, especially among children because of growth spurt. Zinc deficiency can cause;growth limitation, delay in sexuel maturity, behavior disorders and abnormalities of immune system,susceptibility to respiratory and gasterointestinal infections and impairment of taste and smell perception. Material and Method: One of the methods of assessment the zinc defeciency is “ Zinc taste test” using zinc sulfate solution 0.1% , this test performed used to assess the zinc deficiency among preshool childeren in Yazd. The results were evaluated with measurments of weight,height and demographic data. 400 preschool children were selected by multi stage random sampling.Having good taste perception of zinc sulfate 0.1% was used as impaired taste test ( zinc deficiency and having bad taste perception as normal zinc level. Results: Regarding to zinc taste test 73.9% of study group had zinc deficiency (77.6%femal, 69.7% male There were no significant relation between zinc deficiency and measurment of weight and height,but there was higher prevalence of zinc deficiency in children who were below the 5th percentile in height and weight by age. Conclusion: 70% of preschool children in yazd had zinc deficiency assessed by “ zinc taste test”,31% of adolecents in Tehran have had zinc deficiency based on plasma , erythrocyte and hairindex. There is no significant relation between zinc deficiency and antropometric and demographic data, in this study and the study that had been done on adolescents in Tehran.Considering the prevalnce of zinc deficiency with “ Zinc taste test” ;it seems more accurate studies need to be done like zinc measurment in WBC,RBC and Platelets and zinc taste test at the same time,if correlation coefficients between zinc taste test and other tests were very strong , we can used zinc tase test in the different age for assessment of zinc body.

  12. [Role of zinc in type 2 diabetes].

    Science.gov (United States)

    Tamaki, Motoyuki; Fujitani, Yoshio

    2014-01-01

    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been of great interest. To date, many studies of zinc and diabetes have been reported, including studies demonstrating that diabetic patients and mice have a decreased amount of zinc in the pancreas. Zinc may counteract the deleterious effects of oxidative stress, which contributes to reduced insulin resistance, and may also protect pancreatic β cells from glucolipotoxicity. Recently, we have shown that SLC30A8/zinc transporter 8, which is a transporter expressed on the surface of insulin granules, plays a key role in zinc transport into insulin granules and in the regulation of hepatic insulin clearance. Here, we review the role of zinc in whole-body maintenance and the latest information on the relationship between zinc and diabetes.

  13. Zinc finger recombinases with adaptable DNA sequence specificity.

    Directory of Open Access Journals (Sweden)

    Chris Proudfoot

    Full Text Available Site-specific recombinases have become essential tools in genetics and molecular biology for the precise excision or integration of DNA sequences. However, their utility is currently limited to circumstances where the sites recognized by the recombinase enzyme have been introduced into the DNA being manipulated, or natural 'pseudosites' are already present. Many new applications would become feasible if recombinase activity could be targeted to chosen sequences in natural genomic DNA. Here we demonstrate efficient site-specific recombination at several sequences taken from a 1.9 kilobasepair locus of biotechnological interest (in the bovine β-casein gene, mediated by zinc finger recombinases (ZFRs, chimaeric enzymes with linked zinc finger (DNA recognition and recombinase (catalytic domains. In the "Z-sites" tested here, 22 bp casein gene sequences are flanked by 9 bp motifs recognized by zinc finger domains. Asymmetric Z-sites were recombined by the concomitant action of two ZFRs with different zinc finger DNA-binding specificities, and could be recombined with a heterologous site in the presence of a third recombinase. Our results show that engineered ZFRs may be designed to promote site-specific recombination at many natural DNA sequences.

  14. Stability and Folding Behavior Analysis of Zinc-Finger Using Simple Models

    Directory of Open Access Journals (Sweden)

    Xu-Hong Tian

    2010-10-01

    Full Text Available Zinc-fingers play crucial roles in regulating gene expression and mediating protein-protein interactions. In this article, two different proteins (Sp1f2 and FSD-1 are investigated using the Gaussian network model and anisotropy elastic network model. By using these simple coarse-grained methods, we analyze the structural stabilization and establish the unfolding pathway of the two different proteins, in good agreement with related experimental and molecular dynamics simulation data. From the analysis, it is also found that the folding process of the zinc-finger motif is predominated by several factors. Both the zinc ion and C-terminal loop affect the folding pathway of the zinc-finger motif. Knowledge about the stability and folding behavior of zinc-fingers may help in understanding the folding mechanisms of the zinc-finger motif and in designing new zinc-fingers. Meanwhile, these simple coarse-grained analyses can be used as a general and quick method for mechanistic studies of metalloproteins.

  15. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora.

    Science.gov (United States)

    Hsieh, Heidi; Vignesh, Kavitha Subramanian; Deepe, George S; Choubey, Divaker; Shertzer, Howard G; Genter, Mary Beth

    2016-09-01

    Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200μM ZG for 0-24h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons.

  16. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose, 60 ppm Zn (high dose or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  17. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Science.gov (United States)

    Yang, Yang; Jing, Xiao-Peng; Zhang, Shou-Peng; Gu, Run-Xia; Tang, Fang-Xu; Wang, Xiu-Lian; Xiong, Yan; Qiu, Mei; Sun, Xu-Ying; Ke, Dan; Wang, Jian-Zhi; Liu, Rong

    2013-01-01

    Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  18. Zinc Plating Industry Drives Zinc Consumption by Power Grids, Railways and Highways

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On the afternoon of June 30, at the Chengdu Lead and Zinc Summit, more than 150 partici-pants voted for the product they felt drives zinc consumption the most. 48% went for zinc plat-ing products, 16% voted for zinc oxide,

  19. Intercultural Mediation

    OpenAIRE

    Dragos Marian Radulescu; Denisa Mitrut

    2012-01-01

    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  20. Zinc Blotting Assay for Detection of Zinc-Binding Prolamin in Barley (Hordeum vulgare) Grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Langkilde, Ane; Vincze, Éva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc......-binding protein. However, to our knowledge so far this zinc blotting assay has never been applied to detect a prolamin fraction in barley grains. A radioactive zinc (65ZnCl2) blotting technique was optimized to detect zinc-binding prolamins, followed by development of an easy-to-follow nonradioactive colorimetric...... zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  1. Zinc metalloproteins as medicinal targets.

    Science.gov (United States)

    Anzellotti, A I; Farrell, N P

    2008-08-01

    Zinc bioinorganic chemistry has emphasized the role of the metal ion on the structure and function of the protein. There is, more recently, an increasing appreciation of the role of zinc proteins in a variety of human diseases. This critical review, aimed at both bioinorganic and medicinal chemists, shows how apparently widely-diverging diseases share the common mechanistic approaches of targeting the essential function of the metal ion to inhibit activity. Protein structure and function is briefly summarized in the context of its clinical relevance. The status of current and potential inhibitors is discussed along with the prospects for future developments (162 references).

  2. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573...

  3. 21 CFR 582.5991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  4. 21 CFR 182.8991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used...

  5. 21 CFR 73.2991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  6. Zinc supplementation in children with cystic fibrosis

    Science.gov (United States)

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  7. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  8. PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis.

    Science.gov (United States)

    Yang, N; Zhao, B; Rasul, A; Qin, H; Li, J; Li, X

    2013-09-19

    Prostate cancer is one of the most frequently diagnosed cancers among men. Dietary intake of nutrients is considered crucial for preventing the initiation of events leading to the development of carcinoma. Many dietary compounds have been considered to contribute to cancer prevention including zinc, which has a pivotal role in modulating apoptosis. However, the mechanism for zinc-mediated prostate cancer chemoprevention remains enigmatic. In this study, we investigated the therapeutic effect of zinc in prostate cancer chemoprevention for the first time. Exposure to zinc induced apoptosis and resulted in transactivation of p21(WAF1/Cip1) in a Smad-dependent and p53-independent manner in prostate cancer cells. Smad2 and PIAS1 proteins were significantly upregulated resulting in dramatically increased interactions between Smad2/4 and PIAS1 in the presence of zinc in LNCaP cells. Furthermore, it was found that the zinc-induced Smad4/2/PIAS1 transcriptional complex is responsible for Smad4 binding to SBE1 and SBE3 regions within the p21(WAF1/Cip1) promoter. Exogenous expression of Smad2/4 and PIAS1 promotes zinc-induced apoptosis concomitant with Smad4 nuclear translocation, whereas endogenous Smad2/4 silencing inhibited zinc-induced apoptosis accompanying apparent p21(WAF1/Cip1) reduction. Moreover, the knockdown of PIAS1 expression attenuated the zinc-induced recruitment of Smad4 on the p21(WAF1/Cip1) promoter. The colony formation experiments demonstrate that PIAS1 and Smad2/4 silencing could attenuate zinc apoptotic effects, with a proliferation of promoting effects. We further demonstrate the correlation of apoptotic sensitivity to zinc and Smad4 and PIAS1 in multiple cancer cell lines, demonstrating that the important roles of PIAS1, Smad2, and Smad4 in zinc-induced cell death and p21(WAF1/Cip1) transactivation were common biological events in different cancer cell lines. Our results suggest a new avenue for regulation of zinc-induced apoptosis, and provide a

  9. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM-type zinc fingers in ZNF261 and ZNF198.

    Directory of Open Access Journals (Sweden)

    Catherine M Guzzo

    Full Text Available SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs. Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs. In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.

  10. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation.

    Science.gov (United States)

    Wessels, Inga; Cousins, Robert J

    2015-11-01

    Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinflammatory stimuli, could influence zinc metabolism during sepsis and serve as a target for therapy. Using cecal ligation-and-puncture (CLP) to model polymicrobial sepsis, we narrowed the function of ZIP14 to regulation of zinc homeostasis in hepatocytes, while hepatic leukocytes were mostly responsible for driving inflammation, as shown by higher expression of IL-1β, TNFα, S100A8, and matrix metalloproteinase-8. Using Zip14 knockout (KO) mice as a novel approach, we found that ablation of Zip14 produced a delay in development of leukocytosis, prevented zinc accumulation in the liver, altered the kinetics of hypozincemia, and drastically increased serum IL-6, TNFα, and IL-10 concentrations following CLP. Hence, this model revealed that the zinc transporter ZIP14 is a component of the pathway for zinc redistribution that contributes to zinc dyshomeostasis during polymicrobial sepsis. In contrast, using the identical CLP model, we found that supplemental dietary zinc reduced the severity of sepsis, as shown by amelioration of cytokines, calprotectins, and blood bacterial loads. We conclude that the zinc transporter ZIP14 influences aspects of the pathophysiology of nonlethal polymicrobial murine sepsis induced by CLP through zinc delivery. The results are promising for the use of zinc and its transporters as targets for future sepsis therapy.

  11. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    . There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...... minutes, in any one of the baths, at 60¢XC. Some movement of the submerged samples, or stirring with air-bubbles, should be applied, just as a thorough rinse of the zinc surface immediately before the pas-sivation is extremely important....

  12. Pharmacokinetics of zinc tannate after intratesticular injection.

    Science.gov (United States)

    Migally, N B; Fahim, M S

    1984-01-01

    Forty-eight sexually mature male rats were injected intratesticularly with either 1, 3, or 6 mg zinc tannate (Kastrin) or with saline (as control). Zinc localized only in low concentration in primary spermatocytes and could not be detected in spermatogonia, Sertoli cells, spermatids, or spermatozoa. Forty-eight hours after injection of 1 mg Kastrin, zinc was accumulated in the spermatogonia and primary spermatocytes while, after injection of 3 mg, zinc was preferentially localized in Sertoli cells and spermatids; however, zinc was observed in the spermatids and spermatozoa 48 h after injection with 6 mg, and germ cells lost their identity and were fragmented after 1 week.

  13. Zinc leaching from tire crumb rubber.

    Science.gov (United States)

    Rhodes, Emily P; Ren, Zhiyong; Mays, David C

    2012-12-04

    Because tires contain approximately 1-2% zinc by weight, zinc leaching is an environmental concern associated with civil engineering applications of tire crumb rubber. An assessment of zinc leaching data from 14 studies in the published literature indicates that increasing zinc leaching is associated with lower pH and longer leaching times, but the data display a wide range of zinc concentrations, and do not address the effect of crumb rubber size or the dynamics of zinc leaching during flow through porous crumb rubber. The present study was undertaken to investigate the effect of crumb rubber size using the synthetic precipitation leaching procedure (SPLP), the effect of exposure time using quiescent batch leaching tests, and the dynamics of zinc leaching using column tests. Results indicate that zinc leaching from tire crumb rubber increases with smaller crumb rubber and longer exposure time. Results from SPLP and quiescent batch leaching tests are interpreted with a single-parameter leaching model that predicts a constant rate of zinc leaching up to 96 h. Breakthrough curves from column tests displayed an initial pulse of elevated zinc concentration (~3 mg/L) before settling down to a steady-state value (~0.2 mg/L), and were modeled with the software package HYDRUS-1D. Washing crumb rubber reduces this initial pulse but does not change the steady-state value. No leaching experiment significantly reduced the reservoir of zinc in the crumb rubber.

  14. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  15. Zinc Therapy in Dermatology: A Review

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2014-01-01

    Full Text Available Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts, inflammatory dermatoses (acne vulgaris, rosacea, pigmentary disorders (melasma, and neoplasias (basal cell carcinoma. Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc.

  16. Recovery of zinc from low-grade zinc oxide ores by solvent extraction

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中

    2003-01-01

    The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260# kerosene as diluent. The results show that it is possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle is 32.57 g/L, and in the sixteenth cycle the zinc concentration is 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning.Extra-pure zinc metal was obtained in the electrowinning test under conventional conditions.

  17. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Science.gov (United States)

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  18. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Rebecca L. Wilson

    2016-10-01

    Full Text Available Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE; spontaneous preterm birth (sPTB; low birthweight (LBW; and gestational diabetes (GDM. Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g and those who gave birth to an infant of adequate weight (>2500 g, particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg. No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status.

  19. The biological inorganic chemistry of zinc ions.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn(2+) without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn(2+) differs from s-block cations such as Ca(2+) with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  20. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide.

    Science.gov (United States)

    Brnić, Marica; Wegmüller, Rita; Zeder, Christophe; Senti, Gabriela; Hurrell, Richard F

    2014-09-01

    Fortification of cereal staples with zinc is recommended to combat zinc deficiency. To optimize zinc absorption, strategies are needed to overcome the inhibitory effect of phytic acid (PA) and perhaps polyphenols. Five zinc absorption studies were conducted in young adults consuming maize or sorghum porridges fortified with 2 mg zinc as zinc sulfate (ZnSO4) or zinc oxide (ZnO) and containing combinations of PA or polyphenols as potential inhibitors and EDTA and phytase as potential enhancers. Fractional absorption of zinc (FAZ) was measured by using the double isotopic tracer ratio method. Adding phytase to the maize porridge immediately before consumption or using phytase for dephytinization during meal preparation both increased FAZ by >80% (both P zinc molar ratio of 1:1 increased FAZ from maize porridge fortified with ZnSO4 by 30% (P = 0.01) but had no influence at higher EDTA ratios or on absorption from ZnO. FAZ was slightly higher from ZnSO4 than from ZnO (P = 0.02). Sorghum polyphenols had no effect on FAZ from dephytinized sorghum porridges but decreased FAZ by 20% from PA-rich sorghum porridges (P zinc absorption from zinc-fortified cereals, EDTA at a 1:1 molar ratio modestly enhanced zinc absorption from ZnSO4-fortified cereals but not ZnO-fortified cereals, and sorghum polyphenols inhibited zinc absorption in the presence, but not absence, of PA. This trial was registered at clinicaltrials.gov as NCT01210794.

  1. El zinc: oligoelemento esencial Zinc: an essential oligoelement

    Directory of Open Access Journals (Sweden)

    C. Rubio

    2007-02-01

    Full Text Available En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.This article comprehensively reviews zinc, the metallic element essential for body functioning. We review and highlight issues related to pharmacokinetics, the most important dietary sources, as well as its RDIs (Recommended Dietary Intakes. We also focus on signs and symptoms related with both a deficient intake and possible toxic effects derived from excessive intakes.

  2. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus.

    Science.gov (United States)

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.

  3. The Current Trend of China’s Zinc Consumption

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> According to estimations of zinc consumptionby China’s major zinc consumption industries,the growth rate of China’s actual zinc con-sumption in the period 1998-2002 was 10.2percent.Of China’s total zinc consumption inyear 2002,galvanizing zinc made 36 percent,

  4. Zinc stannate nanostructures: hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Sunandan Baruah and Joydeep Dutta

    2011-01-01

    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  5. Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries

    Directory of Open Access Journals (Sweden)

    Nurhaswani Alias

    2015-01-01

    Full Text Available The morphology of Zinc (Zn deposits was investigated as anode for aqueous batteries. The Zn was deposited from zinc sulfate solution in direct current conditions on a copper surface at different current densities. The morphology characterization of Zn deposits was performed via field emission scanning electron microscopy. The Zn deposits transformed from a dense and compact structure to dendritic form with increasing current density. The electrodeposition of Zn with a current density of 0.02 A cm−2 exhibited good morphology with a high charge efficiency that reached up to 95.2%. The Zn deposits were applied as the anode in zinc–air and zinc–carbon batteries, which gave specific discharge capacities of 460 and 300 mA h g−1, respectively.

  6. Production of nano zinc, zinc sulphide and nanocomplex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri.

    Science.gov (United States)

    Mirhendi, Mansoureh; Emtiazi, Giti; Roghanian, Rasoul

    2013-12-01

    ZnO (Zincite) nanoparticle has many industrial applications and is mostly produced by chemical reactions, usually prepared by decomposition of zinc acetate or hot-injection and heating-up method. Synthesis of semi-conductor nanoparticles such as ZnS (Sphalerite) by ultrasonic was previously reported. In this work, high-zinc tolerant bacteria were isolated and used for nano zinc production. Among all isolated microorganisms, a gram negative bacterium which was identified as Brevundimonas diminuta could construct nano magnetite zinc oxide on bacterial surface with 22 nm in size and nano zinc with 48.29 nm in size. A piece of zinc metal was immersed in medium containing of pure culture of B. diminuta. Subsequently, a yellow-white biofilm was formed which was collected from the surface of zinc. It was dried at room temperature. The isolated biofilm was analysed by X-ray diffractometer. Interestingly, the yield of these particles was higher in the light, with pH 7 at 23°C. To the best of the authors knowledge, this is the first report about the production of nano zinc metal and nano zinc oxide that are stable and have anti-bacterial activities with magnetite property. Also ZnS (sized 12 nm) produced by Pseudomonas stutzeri, was studied by photoluminescence and fluorescent microscope.

  7. Recovery of Zinc from Zinc Ash and Flue Dusts by Hydrometallurgical Processing

    Science.gov (United States)

    Thorsen, G.; Grislingås, A.; Steintveit, G.

    1981-01-01

    A process has been developed for recovering zinc and other metal values from chloride-containing solid zinc waste materials such as zinc ash from galvanizing baths, and flue dusts from zinc smelting and Waelz processes. The waste is leached with a liquid organic phase containing a cation exchanger; the commercial carboxylic acid Versatic 911 is highly efficient for this operation. Halogens present in the organic phase are readily washed out with water. Zinc and other metal values are then selectively stripped with sulfuric acid, generating a neutral solution of zinc sulfate suitable for electrolytic production of zinc metal. Alternatively, zinc sulfate can be crystallized directly from the organic phase by stripping with concentrated sulfuric acid.

  8. The zinc electrode - Its behaviour in the nickel oxide-zinc accumulator

    Science.gov (United States)

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling.

  9. Zinc therapy for different causes of diarrhea

    OpenAIRE

    Hafaz Zakky Abdillah; Supriatmo Supriatmo; Melda Deliana; Selvi Nafianti; Atan Baas Sinuhaji

    2013-01-01

    Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Method...

  10. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.

    Science.gov (United States)

    Wu, Chang-Yi; Roje, Sanja; Sandoval, Francisco J; Bird, Amanda J; Winge, Dennis R; Eide, David J

    2009-10-02

    The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. Previous studies identified over 80 genes activated by Zap1 in zinc-limited cells. In this report, we identified 36 genes repressed in a zinc- and Zap1-responsive manner. As a result, we have identified a new mechanism of Zap1-mediated gene repression whereby transcription of the MET3, MET14, and MET16 genes is repressed in zinc-limited cells. These genes encode the first three enzymes of the sulfate assimilation pathway. We found that MET30, encoding a component of the SCF(Met30) ubiquitin ligase, is a direct Zap1 target gene. MET30 expression is increased in zinc-limited cells, and this leads to degradation of Met4, a transcription factor responsible for MET3, MET14, and MET16 expression. Thus, Zap1 is responsible for a decrease in sulfate assimilation in zinc-limited cells. We further show that cells that are unable to down-regulate sulfate assimilation under zinc deficiency experience increased oxidative stress. This increased oxidative stress is associated with an increase in the NADP(+)/NADPH ratio and may result from a decrease in NADPH-dependent antioxidant activities. These studies have led to new insights into how cells adapt to nutrient-limiting growth conditions.

  11. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    Science.gov (United States)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  12. Consequence of irrigation with arsenic and zinc contaminated water on accumulation of zinc in radishes plant

    Directory of Open Access Journals (Sweden)

    Hossein Banejad

    2014-10-01

    Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.

  13. Reversal of uraemic impotence by zinc.

    Science.gov (United States)

    Antoniou, L D; Shalhoub, R J; Sudhakar, T; Smith, J C

    1977-10-29

    In eight impotent haemodialysed men with low plasma-zinc levels sexual function, including potency, frequency of intercourse, libido, and plasma testosterone, follicle-stimulating hormone, and luteinising hormone levels, was determined before and after therapy with zinc (four patients) or placebo (four patients). Dialytic administration of zinc strikingly improved potency in all patients and raised the plasma-testosterone to normal in the two with low pretreatment plasma-testosterone levels. Placebo did not improve sexual function in any patient. Zinc deficiency is a reversible cause of gonadal dysfunction in uraemia.

  14. Evolution of zinc morphology during continuous electrodeposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The morphology evolution of zinc continuous electrodeposits with nano-sized crystals on the ferrite substrate has been studied by in-situ scanning tunnel spectroscopy (STM). It is found that the morphology of zinc electrodeposits varies from initial granules with a size of about 30 nm to layered platelets with increasing deposition time. Meanwhile, the crystal structure of the zinc electrodeposits is identified to be hexagonal η-phase by X-ray diffraction. The orientation relationship between zinc crystals and the substrate surface can be interpreted in terms of the misfit and the atomic correspondence of the interphase boundary between the η-phase deposits and α-Fe substrate.

  15. Zinc and Brass in Archaeological Perspective

    Directory of Open Access Journals (Sweden)

    J. S. Kharakwal

    2006-12-01

    Full Text Available Brass has a much longer history than zinc. There has been a bit of confusion about the early beginning of zinc as several claims are made out side of India. Both literary as well as archaeological records reveal that production of pure zinc had begun in the second half of the first millennium BC, though production on commercial scale begun in the early Medieval times. This paper attempts to examine the archaeological record and literary evidence to understand the actual beginning of brass and zinc in India.

  16. Zinc absorption in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-07-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered.

  17. Zinc oxide varistor; Sanka aen barisuta

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.

    2000-01-01

    Characteristics of zinc oxide varistors, applications to electronic equipment protection and to power arrester are explained. Zinc oxide varistors were invented in Japan, which function by ceramics boundary phenomena and are applied to various fields from power plants to houses. Zinc oxide varistors protect electronic equipment from malfunctions and destructions by surge voltage, accordingly have spread rapidly. Protection performance of the power arresters has been improved by development of zinc oxide varistors for electric power, and power arresters came to be used to protect electric lines all over the world. (NEDO)

  18. Half-metallic ferromagnetism in C-doped zinc-blende ZnO:A first-principles study

    Institute of Scientific and Technical Information of China (English)

    Dan Xu; Yao Kai-Lun; Gao Guo-Ying; Ma Guo-Qiang

    2013-01-01

    We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method.Results show that C-doped zinc-blende ZnO exhibits half-metallic ferromagnetism with a stable ferromagnetic ground state.The calculated magnetic moment of the 32-atom supercell containing one C dopant is 2.00 μB,and the C dopant contributes most.The calculated low formation energy suggests that C-doped zinc-blende ZnO is energetically stable.The hole-mediated double exchange mechanism can be used to explain the ferromagnetism in C-doped zinc-blende ZnO.

  19. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Sheng, E-mail: Lin.Yu-Sheng@epa.gov [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States); Ho, Wen-Chao [Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China); Caffrey, James L. [Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX (United States); Sonawane, Babasaheb [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States)

    2014-10-15

    Background: Despite animal evidence suggests that zinc modulates cadmium nephrotoxicity, limited human data are available. Objective: To test the hypothesis that low serum zinc concentrations may increase the risk of cadmium-mediated renal dysfunction in humans. Methods: Data from 1545 subjects aged 20 or older in the National Health and Nutrition Examination Survey (NHANES), 2011–2012 were analyzed. Renal function was defined as impaired when estimated glomerular filtration rate (eGFR) fell below 60 ml/min/1.73 m{sup 2} and/or the urinary albumin-to-creatinine ratio surpassed 2.5 in men and 3.5 mg/mmol in women. Results: Within the study cohort, 117 subjects had reduced eGFR and 214 had elevated urinary albumin. After adjusting for potential confounders, subjects with elevated blood cadmium (>0.53 μg/L) were more likely to have a reduced eGFR (odds ratio [OR]=2.21, 95% confidence interval [CI]: 1.09–4.50) and a higher urinary albumin (OR=2.04, 95% CI: 1.13–3.69) than their low cadmium (<0.18 μg/L) peers. In addition, for any given cadmium exposure, low serum zinc is associated with elevated risk of reduced eGFR (OR=3.38, 95% CI: 1.39–8.28). A similar increase in the odds ratio was observed between declining serum zinc and albuminuria but failed to reach statistical significance. Those with lower serum zinc/blood cadmium ratios were likewise at a greater risk of renal dysfunction (p<0.01). Conclusions: This study results suggest that low serum zinc concentrations are associated with an increased risk of cadmium nephrotoxicity. Elevated cadmium exposure is global public health issue and the assessment of zinc nutritional status may be an important covariate in determining its effective renal toxicity. - Highlights: • Blood cadmium was associated with increased risk of nephrotoxicity. • Low serum zinc may exacerbate risk of cadmium-mediated renal dysfunction. • Both zinc deficiency and elevated cadmium exposure are global public health issues.

  20. Dosage Effect of Zinc Glycine Chelate on Zinc Metabolism and Gene Expression of Zinc Transporter in Intestinal Segments on Rat.

    Science.gov (United States)

    Huang, Danping; Hu, Qiaoling; Fang, Shenglin; Feng, Jie

    2016-06-01

    Zinc plays an essential role in various fundamental biological processes. The focus of this research was to investigate the dosage effect of zinc glycine chelate (Zn-Gly) on zinc metabolism and the gene expression of zinc transporters in intestinal segments. A total of 30 4-week-old SD rats were randomized into five treatment groups. The basal diets for each group were supplemented with gradient levels of Zn (0, 30, 60, 90, and 180 mg/kg) from Zn-Gly. After 1-week experiment, the results showed that serum and hepatic zinc concentration were elevated linearly with supplemental Zn levels from 0 to 180 mg Zn/kg. Serum Cu-Zn SOD activities resulted in a significant (P zinc levels (P zinc content and was significantly higher (P zinc levels and the activities of Cu-Zn SOD and AKP on rats. Dietary Zn-Gly has a certain effect on MT1, Zip4, Zip5, and ZnT1 expression, which expressed differently in intestinal segments with different levels of Zn-Gly load. Besides, Zn-Gly also could regulate PepT1 expression in intestinal segments.

  1. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties

    Science.gov (United States)

    Khan, Samreen Heena; Suriyaprabha, R.; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in many technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ˜50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical shaped

  2. Clinical Aspects of Trace Elements: Zinc in Human Nutrition - Assessment of Zinc Status

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Because the limiting and vulnerable zinc pool has not been identified, it becomes a challenge to determine which of the many zinc pools is most susceptible to deficiency. As a consequence, defining and assessing zinc status in the individual patient is a somewhat uncertain process. Laboratory analysis of zinc status is difficult because no single biochemical criterion can reliably reflect zinc body stores. Many indexes have been examined in the hopes of discovering a method for the assessment of zinc nutriture. None of the methods currently used can be wholeheartedly recommended because they are fraught with problems that affect their use and interpretation. However, these methods remain in use for clinical and research purposes, though their benefits and drawbacks must always be acknowledged. Until an acceptable method of analysis is discovered, clinicians must rely for confirmation of zinc deficiency on a process of supplementing with zinc and observing the patient’s response. The main indexes (plasma/serum, erythrocyte, leukocyte, neutrophil, urine, hair and salivary zinc levels, taste acuity and oral zinc tolerance tests, and measurement of metallothionein levels are reviewed. Measurement of plasma or erythrocyte metallothionein levels shows promise as a future tool for the accurate determination of zinc status.

  3. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  4. Solubilization and Transformation of Insoluble Zinc Compounds by Fungi Isolated from a Zinc Mine

    Directory of Open Access Journals (Sweden)

    Thanawat Sutjaritvorakul

    2013-07-01

    Full Text Available Fungi were isolated from zinc-containing rocks and mining soil. They were screened for the ability to solubilize and transform three insoluble zinc compounds: ZnO, Zn3(PO4, and ZnCO3. Fungi were plated on potato dextrose agar (PDA medium which was supplemented with 0.5% (w/v of insoluble zinc compounds. Of the strains tested, four fungal isolates showed the highest efficiency for solubilizing all the insoluble zinc compounds, producing clearing zone diameters > 40 mm. These were identified as a Phomopsis spp., Aspergillus sp.1, Aspergillus sp.2, and Aspergillus niger. Zinc oxide was the most easily solubilized compound and it was found that 87%, 52%, and 61% of the tested fungi (23 isolates were able to solubilize zinc oxide, zinc phosphate, and zinc carbonate, respectively. Precipitation of zinc-containing crystals was observed in zinc oxide-containing agar medium underneath colonies of Aspergillus sp.1, and these were identified as zinc oxalate. It is suggested that these kinds of fungi have the potential application in bioremediation practices for heavy metal contaminated soils.

  5. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.

    Directory of Open Access Journals (Sweden)

    Avery G Frey

    Full Text Available The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.

  6. Bidirectional reflectance of zinc oxide

    Science.gov (United States)

    Scott, R.

    1973-01-01

    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  7. Intravenous zinc therapy for acquired zinc deficiency secondary to gastric bypass surgery: a case report.

    Science.gov (United States)

    Vick, Garrett; Mahmoudizad, Rod; Fiala, Katherine

    2015-01-01

    Zinc deficiency may result from either a congenitally inherited defect of zinc absorption or is acquired secondarily from a variety of factors affecting dietary zinc intake, absorption, or loss. We report a case of acquired zinc deficiency secondary to gastric bypass surgery that resulted in vulvar cutaneous manifestations of delayed onset, with failure to clear after oral supplementation with zinc. The patient experienced improvement of symptoms only after administration of intravenous zinc supplementation. Upon review of the current literature, it is thought that the patient's original suboptimal response to oral supplementation and improvement after receiving intravenous zinc were related to the intentional surgical alteration and bypass of the absorptive capacity of the duodenum and jejunum. With the current prevalence of obesity and availability of surgical weight loss therapies, it is important to be mindful of the resulting nutritional deficiencies, their clinical manifestations, and factors affecting the efficacy of therapeutic approaches as seen in this case.

  8. Zinc dosing and glucose tolerance in humans

    Energy Technology Data Exchange (ETDEWEB)

    Greenley, S.; Taylor, M.

    1986-03-05

    Animal data suggest the existence of a physiologic relationship between glucoregulatory hormones and zinc metabolism. In order to investigate this proposed relationship in humans, they examined the effect of moderately elevated plasma zinc levels on blood glucose clearance. Eight women (24-37 yrs) served as subjects for the study. Fasted volunteers were tested under two experimental conditions (a) ingestion of 50 g D-glucose (b) ingestion of 25 mg zinc followed 60 min later by ingestion of 50 g D-glucose. Five ml venous blood was drawn into trace-metal-free, fluoride-containing vacutainer tubes prior to and 15, 30, 45, 60, 90, and 120 min after glucose ingestion. Plasma was analyzed for glucose and zinc; glycemic responses were quantified by computing areas under the curves and times to peak concentration. Their human data indicate varied glycemic responses to the acute elevation of plasma zinc: 4 subjects showed little apparent effect; 3 subjects marginally increased either the area under the curve or time to peak and 1 subject (classified as suspect diabetic in the non-zinc condition) showed marked improvement in glycemic response following zinc ingestion. Their preliminary results suggest that blood glucose clearance may be affected in some individuals by the acute elevation of plasma zinc.

  9. Mediatized Humanitarianism

    DEFF Research Database (Denmark)

    Vestergaard, Anne

    2014-01-01

    The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts to legiti......The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts...... legitimation by accountancy, legitimation by institutionalization, and legitimation by compensation. The analysis relates these changes to a problem of trust associated with mediatization through processes of mediation....

  10. Recent advances in zinc-air batteries.

    Science.gov (United States)

    Li, Yanguang; Dai, Hongjie

    2014-08-07

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  11. A reduced zinc diet or zinc transporter 3 knockout attenuate light induced zinc accumulation and retinal degeneration.

    Science.gov (United States)

    Bai, Shi; Sheline, Carolyn R; Zhou, Yongdong; Sheline, Christian T

    2013-03-01

    Our previous study on retinal light exposure suggests the involvement of zinc (Zn(2+)) toxicity in the death of RPE and photoreceptors (LD) which could be attenuated by pyruvate and nicotinamide, perhaps through restoration of NAD(+) levels. In the present study, we examined Zn(2+) toxicity, and the effects of NAD(+) restoration in primary retinal cultures. We then reduced Zn(2+) levels in rodents by reducing Zn(2+) levels in the diet, or by genetics and measured LD. Sprague Dawley albino rats were fed 2, or 61 mg Zn(2+)/kg of diet for 3 weeks, and exposed to 18 kLux of white light for 4 h. We light exposed (70 kLux of white light for 50 h) Zn(2+) transporter 3 knockout (ZnT3-KO, no synaptic Zn(2+)), or RPE65 knockout mice (RPE65-KO, lack rhodopsin cycling), or C57/BI6/J controls and determined light damage and Zn(2+) staining. Retinal Zn(2+) staining was examined at 1 h and 4 h after light exposure. Retinas were examined after 7 d by optical coherence tomography and histology. After LD, rats fed the reduced Zn(2+) diet showed less photoreceptor Zn(2+) staining and degeneration compared to a normal Zn(2+) diet. Similarly, ZnT3-KO and RPE65-KO mice showed less Zn(2+) staining, NAD(+) loss, and RPE or photoreceptor death than C57/BI6/J control mice. Dietary or ZnT3-dependent Zn(2+) stores, and intracellular Zn(2+) release from rhodopsin recycling are suggested to be involved in light-induced retinal degeneration. These results implicate novel rhodopsin-mediated mechanisms and therapeutic targets for LD. Our companion manuscript demonstrates that pharmacologic, circadian, or genetic manipulations which maintain NAD(+) levels reduce LD.

  12. Semenogelin I promotes prostate cancer cell growth via functioning as an androgen receptor coactivator and protecting against zinc cytotoxicity.

    Science.gov (United States)

    Ishiguro, Hitoshi; Izumi, Koji; Kashiwagi, Eiji; Zheng, Yichun; Li, Yi; Kawahara, Takashi; Miyamoto, Hiroshi

    2015-01-01

    A seminal plasma protein, semenogelin I (SgI), contributes to sperm clotting, upon binding to Zn(2+), and can be proteolyzed by prostate-specific antigen (PSA), resulting in release of the trapped spermatozoa after ejaculation. In contrast, the role of SgI in the development and progression of any types of malignancies remains largely unknown. We previously demonstrated that SgI was overexpressed in prostate cancer tissues and its expression was enhanced by zinc treatment in LNCaP cells. In the current study, using cell lines stably expressing SgI, we investigated its biological functions, in conjunction with zinc, androgen, and androgen receptor (AR), in prostate cancer. Zinc, without SgI, inhibited cell growth of both AR-positive and AR-negative lines. Co-expression of SgI prevented zinc inhibiting dihydrotestosterone-mediated proliferation of AR-positive cells, whereas SgI and/or dihydrotestosterone showed marginal effects in AR-negative cells. Similar effects of SgI overexpression in LNCaP on dihydrotestosterone-induced cell invasion, such as its significant enhancement with zinc, were seen. Overexpression of SgI in LNCaP and CWR22Rv1 cells also augmented dihydrotestosterone-mediated PSA expression (mRNA, protein) in the presence of zinc. However, culture in the conditioned medium containing secreted forms of SgI failed to significantly increase cell viability with or without zinc. In luciferase reporter gene assays, SgI showed even slight inhibitory effects (8% and 15% decreases in PC3 and CWR22Rv1, respectively) at 0 μM zinc and significant stimulatory effects (2.1- and 3.2-fold) at 100 μM zinc on dihydrotestosterone-enhanced AR transactivation. Co-immunoprecipitation then demonstrated dihydrotestosterone-induced physical interactions between AR and SgI. These results suggest that intracellular SgI, together with zinc, functions as an AR coactivator and thereby promotes androgen-mediated prostate cancer progression.

  13. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    Science.gov (United States)

    Pickles, Chris A.

    2011-04-01

    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  14. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid;

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  15. Zinc distribution in blood components, inflammatory status, and clinical indexes of disease activity during zinc supplementation in inflammatory rheumatic diseases.

    Science.gov (United States)

    Peretz, A; Nève, J; Jeghers, O; Pelen, F

    1993-05-01

    The effects of zinc supplementation on zinc status and on clinical and biological indicators of inflammation were investigated in 18 patients with chronic inflammatory rheumatic diseases and in 9 healthy control subjects. Patients with mild and recent onset disease were assigned to a 60-d trial to receive either 45 mg Zn (as gluconate)/d or a placebo, while control subjects received the zinc supplement. Baseline mean plasma zinc of the patients was low whereas mononuclear cell zinc content was elevated, suggesting a redistribution of the element related to the inflammatory process rather than to a zinc-deficient state. Zinc supplementation increased plasma zinc to a similar extent in patients and in control subjects, which suggested no impairment of zinc intestinal absorption as a result of the inflammatory process. On the contrary, erythrocyte and leukocyte zinc concentrations were not modified in the two groups examined. No beneficial effect of zinc treatment could be demonstrated on either clinical or inflammation indexes.

  16. Role of ZnuABC and ZinT in Escherichia coli O157:H7 zinc acquisition and interaction with epithelial cells

    Directory of Open Access Journals (Sweden)

    Nicolini Laura

    2011-02-01

    Full Text Available Abstract Background Zinc is an essential element for all living cells. Recent studies have shown that the ZnuABC zinc uptake system significantly contributes to the ability of several pathogens to multiply in the infected host and cause disease, suggesting that zinc is scarcely available within different tissues of the host. To better understand the role of zinc in bacterial pathogenicity, we have undertaken a functional characterization of the role of the ZnuABC-mediated zinc uptake pathway in enterohemorrhagic Escherichia coli O157:H7. Results In this work we have analyzed the expression and the role in metal uptake of ZnuA, the periplasmic component of the ZnuABC transporter, and of ZinT, another periplasmic protein which has been shown to contribute to zinc recruitment. We report that the expression of zinT and znuA, regulated by Zur, is induced in zinc-poor media, and that inactivation of either of the genes significantly decreases E. coli O157:H7 ability to grow in zinc depleted media. We also demonstrate that ZinT and ZnuA have not a redundant function in zinc homeostasis, as the role of ZinT is subordinated to the presence of ZnuA. Moreover, we have found that znuA and zinT are strongly induced in bacteria adhering to cultured epithelial cells and that lack of ZnuA affects the adhesion ability. In addition we have found that a fraction of apo-ZinT can be secreted outside the cell where the protein might sequester environmental zinc, inducing a condition of metal starvation in surrounding cells. Conclusions The here reported results demonstrate that ZnuABC plays a critical role in zinc uptake also in E. coli O157:H7 and that ZinT contributes to the ZnuA-mediated recruitment of zinc in the periplasmic space. Full functionality of the zinc import apparatus is required to facilitate bacterial adhesion to epithelial cells, indicating that the microbial ability to compete with the host cells for zinc binding is critical to establish successful

  17. Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys₂ His₂ zinc finger induces structural rearrangements of typical DNA base determinant positions.

    Science.gov (United States)

    Malgieri, Gaetano; Zaccaro, Laura; Leone, Marilisa; Bucci, Enrico; Esposito, Sabrina; Baglivo, Ilaria; Del Gatto, Annarita; Russo, Luigi; Scandurra, Roberto; Pedone, Paolo V; Fattorusso, Roberto; Isernia, Carla

    2011-11-01

    Among heavy metals, whose toxicity cause a steadily increasing of environmental pollution, cadmium is of special concern due to its relatively high mobility in soils and potential toxicity at low concentrations. Given their ubiquitous role, zinc fingers domains have been proposed as mediators for the toxic and carcinogenic effects exerted by xenobiotic metals. To verify the structural effects of zinc replacement by cadmium in zinc fingers, we have determined the high resolution structure of the single Cys₂ His₂ zinc finger of the Arabidopsis thaliana SUPERMAN protein (SUP37) complexed to the cadmium ion by means of UV-vis and NMR techniques. SUP37 is able to bind Cd(II), though with a dissociation constant higher than that measured for Zn(II). Cd-SUP37 retains the ββα fold but experiences a global structural rearrangement affecting both the relative orientation of the secondary structure elements and the position of side chains involved in DNA recognition: among them Ser17 side chain, which we show to be essential for DNA binding, experiences the largest displacement.

  18. Pseudomonas aeruginosa capability to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter

    Science.gov (United States)

    D'Orazio, Melania; Mastropasqua, Maria Chiara; Cerasi, Mauro; Pacello, Francesca; Consalvo, Ada; Chirullo, Barbara; Mortensen, Brittany; Skaar, Eric P.; Ciavardelli, Domenico; Pasquali, Paolo; Battistoni, Andrea

    2015-01-01

    The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and Protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism. PMID:25751674

  19. Serum zinc levels in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Rahimi Sharbaf F

    2008-12-01

    Full Text Available "nBackground: Maternal zinc deficiency during pregnancy has been related to adverse pregnancy outcomes. Most studies in which pregnant women have been supplemented with zinc to examine its effects on the outcome of the pregnancy have been carried out in industrialized countries and the results have been inconclusive. It has been shown that women with gestational diabetes (GDM have lower serum zinc levels than healthy pregnant women, and higher rates of macrosomia. Zinc is required for normal glucose metabolism, and strengthens the insulin-induced transportation of glucose into cells by its effect on the insulin signaling pathway. The purpose of this study was to assess the serum zinc levels of GDM patients and evaluate the effect of zinc supplementation. "nMethods: In the first stage of this prospective controlled study, we enrolled 70 women who were 24-28 weeks pregnant at the Prenatal Care Center of Mirza Kochak Khan Hospital, Tehran, Iran. The serum zinc level of each subject was determined. In the second stage, among these 70 subjects, the diabetics receiving insulin were divided into two groups, only one of which received a zinc supplement and the other group was the control group. Birth weight of neonates and insulin dosages were recorded. "nResults: The mean serum zinc level in the GDM group was lower than that of the control group (94.83 vs. 103.49mg/dl, respectively and the mean birth weight of neonates from the GDM women who received the zinc supplement was lower than that of the control group (3849g vs. 4136g. The rate of macrosomia was lower in the zinc supplemented group (20% vs. 53%. The mean of increase of insulin after receiving the zinc supplement was lower (8.4u vs. 13.53. "nConclusion: Maternal insulin resistance is associated with the accumulation of maternal fat tissue during early stages of pregnancy and greater fetoplacental nutrient availability in later stages, when 70% of fetal growth occurs, resulting in macrosomia. In

  20. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    Science.gov (United States)

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  1. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...... that have helped to enrich our understanding of mediated work and the design of computer mediation for such work....

  2. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  3. Interactions of cadmium and zinc during pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Sorell, T.L.

    1988-01-01

    The interactions of cadmium exposure and zinc during pregnancy were investigated by studying rats exposed to 0, 5, 50, or 100 ppm cadmium (as CdCl{sub 2}) in the drinking water from day 6 to day 20 of pregnancy. On day 20 of pregnancy, fetuses of rats exposed to 50 and 100 ppm of cadmium were slightly but significantly smaller than those of control animals. Fetal weight was negatively correlated with fetal cadmium concentration and positively correlated with fetal cadmium concentration. Significant fetal cadmium accumulation occurred in both the 50 and 100 ppm cadmium exposure groups; fetal zinc concentrations were decreased. Maternal liver and kidney zinc concentrations were slightly elevated, and the possible role of maternal organ sequestration of available zinc is discussed. The activity of two zinc metalloenzymes, alkaline phosphatase and {delta}-aminolevulinic acid dehydratase, was decreased in maternal and fetal tissues, providing evidence of an alteration in zinc metabolism. In addition, the placental transport of {sup 65}Zn was characterized in control animals and compared to exposed groups; placental zinc transport was significantly decreased in the 50 and 100 ppm exposure groups.

  4. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  5. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  6. Crucial role of Toll-like receptors in the zinc/nickel-induced inflammatory response in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Liou, Saou-Hsing; Yeh, Szu-Ching; Tsai, Feng-Yuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Chao, How-Ran [Emerging Compounds Research Center, Department of Environmental Science and Engineering, National Pingtung University and Science and Technology, Neipu, Pingtung 912, Taiwan (China)

    2013-12-15

    Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs in the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause

  7. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuo, E-mail: zchen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Shanyong; Chen, Jincan [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Linsen [Department of Biochemistry, Shenyang Medical College, Shenyang, Liaoning 110034 (China); Hu, Ping; Chen, Song [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Mingdong, E-mail: mhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-08-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys){sub 5}) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys){sub 5} shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys){sub 5} in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys){sub 5} toward bacteria. These findings suggest ZnPc-(Lys){sub 5} is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys){sub 5} is a potent photosensitizer for treatment of infectious diseases.

  8. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  9. Physiological roles of semenogelin I and zinc in sperm motility and semen coagulation on ejaculation in humans.

    Science.gov (United States)

    Yoshida, Kaoru; Kawano, Natsuko; Yoshiike, Miki; Yoshida, Manabu; Iwamoto, Teruaki; Morisawa, Masaaki

    2008-03-01

    At ejaculation, human sperm are considered to be mechanically trapped and become immotile in the semen coagulum by binding to semenogelins (Sgs) from the seminal vesicle and zinc ions from the prostate. However, the physiological combined roles of the protein and heavy metal on sperm motility are unknown. Here, we have first demonstrated that Sg I alone, which does not form the semen coagulum without zinc, is an inhibitor of the motility of intact human sperm at physiological concentration. On the other hand, zinc ions alone had no effect on sperm motility, but confer recovery of sperm motility that has been inhibited by Sg I at a concentration equal to or less than 1 mg/ml. These observations suggest that the roles played by Sg I and zinc on sperm motility are not mechanical but physiological. Quartz crystal microbalance analysis suggests that the sperm extract first bind to Sg I and then zinc ions which subsequently increase the protein accumulation, suggesting that Sgs inhibit sperm motility by directly binding to the sperm surface. Further accumulation of Sg I mediated by zinc ions may entrap the quiescent sperm at semen ejaculation.

  10. Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury.

    Science.gov (United States)

    Zhang, Y; Xing, F; Zheng, H; Xi, J; Cui, X; Xu, Z

    2013-07-01

    While nitric oxide (NO) induces cardioprotection by targeting the mitochondrial permeability transition pore (mPTP), the precise mitochondrial signaling events that mediate the action of NO remain unclear. The purpose of this study was to test whether NO induces cardioprotection against ischemia/reperfusion by inhibiting oxidative stress through mitochondrial zinc and Src tyrosine kinase. The NO donor S-nitroso-N-acetyl penicillamine (SNAP) given before the onset of ischemia reduced cell death in rat cardiomyocytes subjected to simulated ischemia/reperfusion, and this was abolished by the zinc chelator N,N,N',N'-tetrakis-(2-pyridylmethyl)ethylenediamine (TPEN) and the Src tyrosine kinase inhibitor PP2. SNAP also prevented loss of mitochondrial membrane potential (ΔΨm) at reperfusion, an effect that was blocked by TPEN and PP2. SNAP increased mitochondrion-free zinc upon reperfusion and enhanced mitochondrial Src phosphorylation in a zinc-dependent manner. SNAP inhibited both mitochondrial complex I activity and mitochondrial reactive oxygen species (ROS) generation at reperfusion through zinc and Src tyrosine kinase. Finally, the anti-infarct effect of SNAP was abrogated by TPEN and PP2 applied at reperfusion in isolated rat hearts. In conclusion, NO induces cardioprotection at reperfusion by targeting mitochondria through attenuation of oxidative stress resulted from the inhibition of complex I at reperfusion. Activation of mitochondrial Src tyrosine kinase by zinc may account for the inhibition of complex I.

  11. Preparation of zinc oxide particles by using layered basic zinc acetate as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lanqin, E-mail: lanqin_tang@ycit.edu.cn [College of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ding, Xuefeng; Zhao, Xu; Wang, Zichen; Zhou, Bing [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A simple aqueous solution process has been applied to prepare zinc oxide particles. Black-Right-Pointing-Pointer This novel method exempts traditional calcinations. Black-Right-Pointing-Pointer Various zinc oxide particles are obtained. - Abstract: TEA and NaOH are applied to transform layered basic zinc acetate into zinc oxide particles by a simple aqueous solution process (<100 Degree-Sign C). Zinc oxide with different morphologies, including dumbbells, earthnuts, ellipsoids and hexagonal pillars, are obtained by carefully controlling the amounts of sodium hydroxide, triethanolamine, and reaction temperature. Field emission scanning electron microscope images, X-ray powder diffraction patterns, X-ray photoelectron spectroscopy spectra and room-temperature photoluminescence spectra are used to characterize final products. Furthermore, a possible growth mechanism is discussed in this paper. This easy procedure for zinc oxide fabrication offers the possibility of a generalized approach to the production of metal oxide with tunable morphology.

  12. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  13. Zinc supplementation in burn patients.

    Science.gov (United States)

    Caldis-Coutris, Nancy; Gawaziuk, Justin P; Logsetty, Sarvesh

    2012-01-01

    Micronutrient supplementation is a common practice throughout many burn centers across North America; however, uncertainty pertaining to dose, duration, and side effects of such supplements persists. The authors prospectively collected data from 23 hospitalized patients with burn sizes ranging from 10 to 93% TBSA. Each patient received a daily multivitamin and mineral supplement, 50 mg zinc (Zn) daily, and 500 mg vitamin C twice daily. Supplements were administered orally or enterally. Albumin, prealbumin, C-reactive protein, serum Zn, and serum copper were measured weekly during hospital admission until levels were within normal reference range. Our study concluded that 50 mg daily dose of Zn resulted in normal serum levels in 19 of 23 patients at discharge; 50 mg Zn supplementation did not interfere with serum copper levels; and Zn supplements, regardless of administration route, did not result in gastrointestinal side effects.

  14. Thermally induced microstrain broadening in hexagonal zinc

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Andrew C [Los Alamos National Laboratory; Valdez, James A [Los Alamos National Laboratory; Roberts, Joyce A [Los Alamos National Laboratory; Leineweber, Andreas [STUTTGART, GERMANY; Mittemeijer, E J [STUTTGART, GERMANY; Kreher, W [DRESDEN UNIV

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  15. Zinc and biotin deficiencies after pancreaticoduodenectomy.

    Science.gov (United States)

    Yazbeck, N; Muwakkit, S; Abboud, M; Saab, R

    2010-01-01

    We report zinc and biotin deficiencies after pancreaticoduodenectomy in a 16 year old female presenting clinically with marked alopecia, total body hair loss, dry skin with scales, and maculopathy with significant vision loss. These micronutrient deficiencies likely occurred due to resection of the duodenum and proximal jejunum, sites of primary absorption of several micronutrients and their protein carriers, including zinc and biotin. Early diagnosis is essential to prevent irreversible sequelae. Adequate supplementation of zinc and biotin as well as dietary advice is needed for clinical improvement.

  16. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  17. Zinc therapy for different causes of diarrhea

    OpenAIRE

    Hafaz Zakky Abdillah; Supriatmo; Melda Deliana; Selvi Nafianti; Atan Baas Sinuhaji

    2013-01-01

    Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Methods We performed a...

  18. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    OpenAIRE

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen; Jensen, Kristian E.; Hansen, Heine A.; Hummelshøj, Jens Strabo; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs; Nørskov, Jens K.; Rossmeisl, Jan

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two m...

  19. Effects of zinc transporters on Cryptococcus gattii virulence

    OpenAIRE

    Schneider, Rafael de Oliveira; Diehl, Camila; dos Santos, Francine Melise; Piffer, Alícia Corbellini; Garcia, Ane Wichine Acosta; Kulmann, Marcos Iuri Roos; Schrank, Augusto; Kmetzsch, Lívia; Vainstein, Marilene Henning; Staats, Charley C.

    2015-01-01

    Zinc is an essential nutrient for all living organisms because it is a co-factor of several important proteins. Furthermore, zinc may play an essential role in the infectiousness of microorganisms. Previously, we determined that functional zinc metabolism is associated with Cryptococcus gattii virulence. Here, we characterized the ZIP zinc transporters in this human pathogen. Transcriptional profiling revealed that zinc levels regulated the expression of the ZIP1, ZIP2 and ZIP3 genes, althoug...

  20. Zinc compounds, a new treatment in peptic ulcer.

    Science.gov (United States)

    Escolar, G; Bulbena, O

    1989-01-01

    Effects of zinc in gastric ulcer have been reviewed through investigations carried out on zinc acexamate (ZAC). ZAC is an organic compound that has been shown to possess an experimental antiulcer effect and a wide therapeutic index, making it a useful drug in the treatment of peptic ulcer disease. ZAC protects from ulceration in several experimental models such as pylorus occlusion, reserpine-induced ulcer, necrotizing agents, PAF-induced ulcer and cold-restraint stress. ZAC first reduces the gastric acid output by inhibiting the mast cell degranulation, an action likely to be mediated through a membrane stabilizing action. Secondly, it enhances the mucosal protection factors by increasing mucus secretion, inhibiting the H+ retrodiffusion and improving microcirculation. ZAC is also effective in acetic acid-induced chronic ulcer, restoring the continuity of the damaged mucosa. Several clinical trials have shown the usefulness of ZAC in acute and maintenance treatment of both gastric and duodenal ulcers. Endoscopic studies showed that ZAC reduced the inflammatory processes (gastritis and duodenitis) associated with ulcer healing. This reduction was statistically significant and not observed with other comparative treatments (H2-antagonists). The observed side-effects were minimal and affected less than 2% of treated patients. The pharmacological profile, clinical effectiveness and good tolerance of ZAC suggest this compound as an interesting option in the treatment of peptic disease.

  1. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  2. Measurement of Zinc Absorption From Meals: Comparison of Extrinsi Zinc Labeling and Independent Measurements of Dietary Zinc Absorption

    Science.gov (United States)

    Sheng, Xiao-Yang; Hambidge, K. Michael; Miller, Leland V.; Westcott, Jamie E.; Lei, Sian; Krebs, Nancy F.

    2017-01-01

    Background Extrinsic labeling techniques are typically used to measure fractional absorption of zinc (FAZextrinsic) but none have been adequately evaluated. Objective To compare determination of the quantity of zinc absorbed (TAZextrinsic) using measurements of FAZextrinsic with results of simultaneous determinations of dietary zinc absorbed (TAZmetabolic) that are not dependent on labeling ingested food with an extrinsic tracer (modified metabolic balance technique). Design 70Zn was administered orally with all meals for 6 consecutive days to 21 healthy, free-living adult women consuming a constant diet. 68Zn and 67Zn were administered intravenously. FAZextrinsic was measured using a dual isotope tracer ratio technique and multiplied by dietary zinc to give TAZextrinsic TAZmetabolic was determined by addition of net absorption of zinc and endogenous fecal zinc, the latter determined by an isotope dilution technique. Results TAZextrinsic and TAZmetabolic were 3.0 ± 1.1mg/day and 3.1 ± 1.1 mg/day respectively, paired t-test p = 0.492. The correlation coefficient for TAZextrinsic and TAZmetabolic was 0.91, and for FAZextrinsic and FAZmetabolic was 0.95. A Bland Altman analysis indicated a bias of 0.07, and the limits of agreement of −0.86 to 1.01 for TAZextrinsic and TAZmatabolic Conclusion These results from two independent methods provide reasonable validation of our extrinsic labeling technique for a wide range of composite diets. PMID:20209474

  3. Zinc and its importance for human health: An integrative review.

    Science.gov (United States)

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer

    2013-02-01

    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  4. Zinc and its importance for human health: An integrative review

    Directory of Open Access Journals (Sweden)

    Nazanin Roohani

    2013-01-01

    Full Text Available Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers, human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  5. Genome editing in plant cells by zinc finger nucleases.

    Science.gov (United States)

    Weinthal, Dan; Tovkach, Andriy; Zeevi, Vardit; Tzfira, Tzvi

    2010-06-01

    Gene targeting is a powerful tool for functional gene studies. However, only a handful of reports have been published describing the successful targeting of genome sequences in model and crop plants. Gene targeting can be stimulated by induction of double-strand breaks at specific genomic sites. The expression of zinc finger nucleases (ZFNs) can induce genomic double-strand breaks. Indeed, ZFNs have been used to drive the replacement of native DNA sequences with foreign DNA molecules, to mediate the integration of the targeted transgene into native genome sequences, to stimulate the repair of defective transgenes, and as site-specific mutagens in model and crop plant species. This review introduces the principles underlying the use of ZFNs for genome editing, with an emphasis on their recent use for plant research and biotechnology.

  6. Enhanced protein production by engineered zinc finger proteins.

    Science.gov (United States)

    Reik, Andreas; Zhou, Yuanyue; Collingwood, Trevor N; Warfe, Lyndon; Bartsevich, Victor; Kong, Yanhong; Henning, Karla A; Fallentine, Barrett K; Zhang, Lei; Zhong, Xiaohong; Jouvenot, Yann; Jamieson, Andrew C; Rebar, Edward J; Case, Casey C; Korman, Alan; Li, Xiao-Yong; Black, Amelia; King, David J; Gregory, Philip D

    2007-08-01

    Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells.

  7. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  8. Model of how plants sense zinc deficiency

    DEFF Research Database (Denmark)

    Assuncao, Ana G.L.; Persson, Daniel Olof; Husted, Søren;

    2013-01-01

    to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency....... They represent not only the first regulators of zinc homeostasis identified in plants, but also a very promising starting-point that can provide new insights into the molecular basis of how plants sense and adapt to the stress of zinc deficiency. Considering the available information thus far we propose...... in this review a putative model of how plants sense zinc deficiency....

  9. Controlling fires in silver/zinc batteries

    Science.gov (United States)

    Boshers, W. A.; Britz, W. A.

    1977-01-01

    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  10. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  11. The Nuts and Bolts of Zinc-Nickel: OEM Zinc Nickel Implementation on Fasteners - Getting It Into Production

    Science.gov (United States)

    2014-11-01

    Blake Simpson Louie Tran The Nuts and Bolts of Zinc- Nickel OEM Zinc Nickel Implementation on Fasteners – Getting It Into Production Report...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Nuts and Bolts of Zinc- Nickel : OEM Zinc Nickel Implementation on...currently in production 2. Problem at Hand – Hexavalent Chromates 3. Transition to Zinc- Nickel 4. Preliminary Testing 5. Plan moving forward for

  12. Zinc coordination spheres in protein structures.

    Science.gov (United States)

    Laitaoja, Mikko; Valjakka, Jarkko; Jänis, Janne

    2013-10-07

    Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.

  13. Relationship between gastric levels and antiulcerogenic activity of zinc.

    Science.gov (United States)

    Navarro, C; Ramis, A; Sendrós, S; Bulbena, O; Ferrer, L; Escolar, G

    1990-01-01

    The relationship between the absorption of an organic zinc salt, zinc acexamate, and its antiulcerogenic activity in a model of cold-restraint stress was studied. Serum and gastric levels of zinc, as well as its antiulcerogenic effect, were determined after oral or intravenous administration of zinc acexamate. Cytochemical and X-ray microanalysis techniques were also applied. In the rats subjected to cold-restraint stress, gastric levels of zinc correlated with the antiulcerogenic effect observed after administration of zinc acexamate. However, it was not possible to establish a relationship between serum levels and the pharmacologic effect of zinc. Our results in animals subjected to regular diet indicate that the antiulcerogenic effect exhibited by zinc compounds could be associated with the presence of zinc at different levels of gastric tissue.

  14. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Samir Samman

    2012-07-01

    Full Text Available In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination.

  15. Serum and semen zinc levels in normozoospermic and oligozoospermic men

    Energy Technology Data Exchange (ETDEWEB)

    Madding, C.I.; Jacob, M.; Ramsay, V.P.; Sokol, R.Z.

    1986-01-01

    We studied 11 unselected men who presented to a Reproductive Endocrinology Clinic with histories of infertility and low sperm counts. Reproductive hormones and semen und serum zinc levels were measured. All men had semen analyses performed on at least three separate occasions. A similar set of laboratory evaluations were performed on 11 other men who had normal semen analyses and no history of infertility. No abnormalities of reproductive hormones were found in either group. Mean serum zinc levels were significantly lower in the infertile men. Mean semen zinc levels were not significantly different. There was no correlation between serum and semen zinc levels in either group. A significant correlation was found between sperm count and semen zinc in the volunteers with normal counts, but not in the oligozoospermic men. The results obtained in this study suggest that lowered serum zinc is more common than formerly appreciated in unselected patients with infertility. The high level of zinc found in semen is due primarily to the secretions of the prostate gland and reflects prostatic stores. Serum zinc is thought to be a reasonable indicator of zinc status. The lack of correlation between serum zinc and semen zinc found in our study suggests that mild zinc deficiency may lower serum zinc while the larger prostatic zinc stores remain unaffected.

  16. Axion Mediation

    CERN Document Server

    Baryakhtar, Masha; March-Russell, John

    2013-01-01

    We explore the possibility that supersymmetry breaking is mediated to the Standard Model sector through the interactions of a generalized axion multiplet that gains a F-term expectation value. Using an effective field theory framework we enumerate the most general possible set of axion couplings and compute the Standard Model sector soft-supersymmetry-breaking terms. Unusual, non-minimal spectra, such as those of both natural and split supersymmetry are easily implemented. We discuss example models and low-energy spectra, as well as implications of the particularly minimal case of mediation via the QCD axion multiplet. We argue that if the Peccei-Quinn solution to the strong-CP problem is realized in string theory then such axion-mediation is generic, while in a field theory model it is a natural possibility in both DFSZ- and KSVZ-like regimes. Axion mediation can parametrically dominate gravity-mediation and is also cosmologically beneficial as the constraints arising from axino and gravitino overproduction ...

  17. Bioavailability of zinc in Wistar rats fed with rice fortified with zinc oxide.

    Science.gov (United States)

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Sant'Ana, Helena Maria Pinheiro

    2014-06-13

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification.

  18. Effect of zinc from zinc sulfate on trace mineral concentrations of milk in Varamini ewes

    NARCIS (Netherlands)

    Zali, A.; Ganjkhanlou, M.

    2009-01-01

    This study was conducted to evaluate the effect of feeding supplemental zinc (zinc sulfate) in different levels (15, 30, or 45 mg/kg) on trace mineral concentrations in milk of ewes. Thirty lactating Varaminni ewes were assigned to three experimental groups according to their live body weights, milk

  19. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    Science.gov (United States)

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.

    2005-01-01

    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  20. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  1. Mediatized Parenthood

    DEFF Research Database (Denmark)

    Sonne Damkjær, Maja

    2017-01-01

    to parenthood? The dissertation explores this question on the basis of a synchronous study within an overall mediatization perspective. The first part of the dissertation focuses on a conceptualization of the relationship between digital media and parenting as well as an exploration of theoretical perspectives...... and methods that make it possible to study the interactions between the two. Concretely, the dissertation builds on a number of key studies within audience research, which have contributed knowledge about the media’s role in the family and the home. This is done by including three approaches to mediatization......) a family-oriented, b) a peer-oriented, c) an oppositional, and d) non-use. Secondary contribution: Based on qualitative audience research and mediatization theory, the dissertation contributes a conceptualization of the relationship between media and parenthood. This is carried out in a study design...

  2. Growth of zinc oxide nanostructures

    Indian Academy of Sciences (India)

    K Sreenivas; Sanjeev Kumar; Jaya Choudhury; Vinay Gupta

    2005-11-01

    Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2 m) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 m length was observed after a post-deposition annealing of the prepared structure at 300–400 ° C. An array of highly -axis oriented ZnO columns (70–300 nm in dia. and up to 10 m long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol.

  3. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  4. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  5. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts....... In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  6. Zinc, copper and selenium in reproduction.

    Science.gov (United States)

    Bedwal, R S; Bahuguna, A

    1994-07-15

    Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion of (FSH) and (LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation period, teratogenicity, stillbirths, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake decreases by step 15. Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and lactating mother are increased as a result of selenium transport to the fetus via

  7. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    Directory of Open Access Journals (Sweden)

    Rosa O. Méndez

    2014-06-01

    Full Text Available Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall, absorption, plasma zinc (by absorption spectrophotometry and the expression levels (by quantitative PCR, of the transporters ZIP1 (zinc importer and ZnT1 (zinc exporter in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001 from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05 near 150 µg/dL, but increased by 31 µg/dL (p < 0.05 for 6/24 adolescents (group A and decreased by 25 µg/dL (p < 0.05 for other 6/24 adolescents (group B. Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006 in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39. An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05 the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1.

  8. Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells.

    Science.gov (United States)

    Ishihara, Kaori; Yamazaki, Tomohiro; Ishida, Yoko; Suzuki, Tomoyuki; Oda, Kimimitsu; Nagao, Masaya; Yamaguchi-Iwai, Yuko; Kambe, Taiho

    2006-06-30

    Zinc transporters play important roles in a wide range of biochemical processes. Here we report an important function of ZnT5/ZnT6 hetero-oligomeric complexes in the secretory pathway. The activity of human tissue-nonspecific alkaline phosphatase (ALP) expressed in ZnT5(-)ZnT7(-/-) cells was significantly reduced compared with that expressed in wild-type cells as in the case of endogenous chicken tissue-nonspecific ALP activity. The inactive human tissue-nonspecific ALP in ZnT5(-)ZnT7(-/-) cells was degraded by proteasome-mediated degradation without being trafficked to the plasma membrane. ZnT5(-)ZnT7(-/-) cells showed exacerbation of the unfolded protein response as did the wild-type cells cultured under a zinc-deficient condition, revealing that both complexes play a role in homeostatic maintenance of secretory pathway function. Furthermore, we showed that expression of ZnT5 mRNA was up-regulated by the endoplasmic reticulum stress in various cell lines. The up-regulation of the hZnT5 transcript was mediated by transcription factor XBP1 through the TGACGTGG sequence in the hZnT5 promoter, and this sequence was highly conserved in the ZnT5 genes of mouse and chicken. These results suggest that zinc transport into the secretory pathway is strictly regulated for the homeostatic maintenance of secretory pathway function in vertebrate cells.

  9. Effect of low zinc intake on absorption and excretion of zinc by infants studied with 70Zn as extrinsic tag.

    Science.gov (United States)

    Ziegler, E E; Serfass, R E; Nelson, S E; Figueroa-Colón, R; Edwards, B B; Houk, R S; Thompson, J J

    1989-11-01

    The effect of low dietary intake of zinc was studied in six normal infants with the use of 70Zn as an extrinsic tag. Of the two study formulas, one provided a zinc intake similar to that of customary infant formulas ("high" intake), whereas the other provided a "low" zinc intake. Two zinc absorption studies were performed with each formula (sequence: high-low-low-high). Extrinsically labeled formula was fed for 24 h and excreta were collected for 72 h. Zinc isotope ratios were determined by inductively coupled plasma mass spectrometry (ICP/MS). When zinc intake was high, net zinc absorption was 9.1 +/- 8.7% (mean +/- SD) of intake and net zinc retention was 74 +/- 91 micrograms/(kg.d). True zinc (70Zn) absorption was 16.8 +/- 5.8% of intake and fecal excretion of endogenous zinc was 78 +/- 56 micrograms/(kg.d). When zinc intake was low, net absorption of zinc increased significantly (P less than 0.001) to 26.0 +/- 13.0% of intake, but net retention was not significantly different at 42 +/- 33 micrograms/(kg.d). True absorption of zinc also increased significantly (P less than 0.001) to 41.1 +/- 7.8% of intake, whereas fecal endogenous zinc decreased (P less than 0.05) to 34 +/- 16 micrograms/(kg.d) during low zinc intake. Thus, infants maintain zinc balance in the face of low zinc intake through increased efficiency of absorption and decreased excretion of endogenous zinc.

  10. Apoptosis may underlie the pathology of zinc-deficient skin.

    Science.gov (United States)

    Wilson, Dallas; Varigos, George; Ackland, M Leigh

    2006-02-01

    The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the

  11. Role of nutritional zinc in the prevention of osteoporosis.

    Science.gov (United States)

    Yamaguchi, Masayoshi

    2010-05-01

    Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and

  12. Different Zinc Sources Have Diverse Impacts on Gene Expression of Zinc Absorption Related Transporters in Intestinal Porcine Epithelial Cells.

    Science.gov (United States)

    Huang, Danping; Zhuo, Zhao; Fang, Shenglin; Yue, Min; Feng, Jie

    2016-10-01

    This study was conducted to investigate the effects of zinc sources on gene expression of zinc-related transporters in intestinal porcine epithelial cells (IPEC-1). IPEC-1 cells were treated with zinc glycine chelate (Zn-Gly), zinc methionine (Zn-Met), and zinc sulfate (ZnSO4), respectively, for measurement of cell viability. Then, the relative expression of zinc-related transporters in IPEC-1 in response to different zinc sources (50 μmol/L zinc) was measured. Zinc transporter SLC39A4 (ZIP4) expression was selectively silenced to assess the function of ZIP4 in inorganic and organic zinc absorption. The result showed that Zn-Gly and Zn-Met had lower cell damage compared with ZnSO4 on the same zinc levels. Different zinc sources improved the expression of metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) messenger RNA (mRNA) compared with the control (P zinc addition. MT1 and ZnT1 mRNA expressions in Zn-Gly and Zn-Met were higher than those in ZnSO4, and ZIP4 mRNA expression in Zn-Met was the lowest among three kinds of zinc sources (P zinc sources groups. Silencing of ZIP4 significantly decreased MT1 mRNA expression in ZnSO4 and Zn-Gly treatments, reduced zinc absorption rate, and increased DMT1 mRNA expression in ZnSO4 compared with negative control. In summary, different zinc sources could improve zinc status on IPEC-1 cells and organic zinc had lower cell damage compared with ZnSO4. Moreover, Zn-Gly and Zn-Met are more efficient on zinc absorption according to the expression of various zinc-related transporters MT1, ZIP4, ZnT1, and DMT1. ZIP4 played a direct role in inorganic zinc uptake, and the absorption of zinc in Zn-Gly depends on ZIP4 partly, while absorption of Zn-Met is less dependent on ZIP4.

  13. New chromate-free passivation treatments for zinc, zinc alloy, and zinc-containing coatings and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C. J. E.; King, J. E.; Wright, D. G.; Erricker, S. L.; Wilcox, G.; Treacy, G.; Hovestad, A.; Woodhead, T.; Buckland, J.; Lindsey, L.; Eruli, M.; Koelewijn, H.; Shropshire, I. [Defence Evaluation and Research Agency, Farnborough, Hampshire (United Kingdom)

    2001-07-01

    Results of a series of experiments to develop chromate-free treatments which provide the same level of corrosion protection and promote adhesion of surface coatings and paint films are discussed. The initial phase of the project identified two different treatments which prompted the investigation of pH, temperature and immersion time, as part of the effort to optimize the processes. When subjected to accelerated corrosion tests, one of the two processes (the PTA process) compared favourably with conventional chromate filming when applied to electrodeposited zinc-nickel coatings. Further investigation revealed that the process also works effectively on brass and nickel substrates and provides an appropriate substrate for the application of lacquer. Development of an effective treatment for zinc coatings, particularly hot dip galvanized zinc, is in progress. This paper discusses the results of toxicological and environmental studies conducted in conjunction with the two processes and reviews lessons learned and opportunities for exploiting the findings. 5 refs., 6 tabs.

  14. Antioxidant role of zinc in diabetes mellitus.

    Science.gov (United States)

    Cruz, Kyria Jayanne Clímaco; de Oliveira, Ana Raquel Soares; Marreiro, Dilina do Nascimento

    2015-03-15

    Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity. Zinc plays an important role in antioxidant defense in type 2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme, by modulating the glutathione metabolism and metallothionein expression, by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotide phosphate-oxidase enzyme. Zinc also improves the oxidative stress in these patients by reducing chronic hyperglycemia. It indeed promotes phosphorylation of insulin receptors by enhancing transport of glucose into cells. However, several studies reveal changes in zinc metabolism in individuals with type 2 diabetes mellitus and controversies remain regarding the effect of zinc supplementation in the improvement of oxidative stress in these patients. Faced with the serious challenge of the metabolic disorders related to oxidative stress in diabetes along with the importance of antioxidant nutrients in the control of this disease, new studies may contribute to improve our understanding of the role played by zinc against oxidative stress and its connection with type 2 diabetes mellitus prognosis. This could serve as a prelude to the development of prevention strategies and treatment of disorders associated with this chronic disease.

  15. Zinc Leaching from Tire Crumb Rubber

    Science.gov (United States)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  16. Intraprostatic injection of neutralized zinc in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, M.S.; Wang, M.; Sutcu, M.F.; Fahim, Z.; Safron, J.A.; Ganjam, V.K. (Univ. of Missouri, Columbia (United States) Xian Medical University (China))

    1991-03-11

    Zinc has been implicated in steroid endocrinology of the prostate gland. The conversion of testosterone to dihydrotestosterone (DHT) by 5{alpha}-reductase enzyme is believed to express androgenic responses in the prostate. To note the effect of neutralized zinc on the prostate, 50 sexually mature rats, weighing 325 {plus minus} 20 grams, were divided into 5 groups as follows: (1) control, (2) sham, (3) castrated, (4) injected intraprostatically with 10 mg. neutralized zinc, and (5) injected intraprostatically with 20 mg. neutralized zinc. Results in the treated groups indicated significant reduction of prostate weights, 12% and 53% and histologically normal prostate; no significant change in weight and histological structure of testes, epididymides, and seminal vesicles; significant reduction in 5{alpha}-reductase activity and total protein and DNA concentrations in prostate tissue; and no significant effect on progeny of treated animals. These results suggest that direct application of neutralized zinc to the prostate offers a new modality for treatment of prostatitis without affecting spermatogenesis and testosterone production.

  17. Stunting prevalence, plasma zinc concentrations, and dietary zinc intakes in a nationally representative sample suggest a high risk of zinc deficiency among women and young children in Cameroon.

    Science.gov (United States)

    Engle-Stone, Reina; Ndjebayi, Alex O; Nankap, Martin; Killilea, David W; Brown, Kenneth H

    2014-03-01

    Before initiating a mass zinc fortification program, this study assessed the prevalence of and risk factors for low zinc status among Cameroonian women and children. In a nationally representative survey, we randomly selected 30 clusters in each of 3 strata (North, South, and Yaoundé/Douala) and 10 households per cluster, each with a woman aged 15-49 y and a child aged 12-59 mo (n = 1002 households). Twenty-four-hour dietary recalls (with duplicates in a subset) and anthropometric measurements were conducted, and non-fasting blood was collected to measure plasma zinc concentration (PZC) and markers of inflammation. PZC was adjusted for methodologic factors (time of collection and processing, and presence of inflammation). The prevalence of stunting was 33% (32% South; 46% North; 13% Yaoundé/Douala). Among women, 82% had low adjusted PZC (Nutrition Consultative Group (IZiNCG), 29 and 41% of women had inadequate zinc intakes, assuming moderate and low bioavailability, respectively, but only 8% of children had inadequate zinc intake. Depending on the estimated physiologic zinc requirement applied, 17% (IZiNCG) and 92% (Institute of Medicine) of women had inadequate absorbable zinc intakes. Total zinc intakes were greatest in the North region, possibly because of different dietary patterns in this area. Zinc deficiency is a public health problem among women and children in Cameroon, although PZC and dietary zinc yield different estimates of the prevalence of deficiency. Large-scale programs to improve zinc nutrition, including food fortification, are needed.

  18. Relative Penetration of Zinc Oxide and Zinc Ions into Human Skin after Application of Different Zinc Oxide Formulations.

    Science.gov (United States)

    Holmes, Amy M; Song, Zhen; Moghimi, Hamid R; Roberts, Michael S

    2016-02-23

    Zinc oxide (ZnO) is frequently used in commercial sunscreen formulations to deliver their broad range of UV protection properties. Concern has been raised about the extent to which these ZnO particles (both micronized and nanoparticulate) penetrate the skin and their resultant toxicity. This work has explored the human epidermal skin penetration of zinc oxide and its labile zinc ion dissolution product that may potentially be formed after application of ZnO nanoparticles to human epidermis. Three ZnO nanoparticle formulations were used: a suspension in the oil, capric caprylic triglycerides (CCT), the base formulation commonly used in commercially available sunscreen products; an aqueous ZnO suspension at pH 6, similar to the natural skin surface pH; and an aqueous ZnO suspension at pH 9, a pH at which ZnO is stable and there is minimal pH-induced impairment of epidermal integrity. In each case, the ZnO in the formulations did not penetrate into the intact viable epidermis for any of the formulations but was associated with an enhanced increase in zinc ion fluorescence signal in both the stratum corneum and the viable epidermis. The highest labile zinc fluorescence was found for the ZnO suspension at pH 6. It is concluded that, while topically applied ZnO does not penetrate into the viable epidermis, these applications are associated with hydrolysis of ZnO on the skin surface, leading to an increase in zinc ion levels in the stratum corneum, thence in the viable epidermis and subsequently in the systemic circulation and the urine.

  19. Green Synthesis and Regioselective Control of Sn/I2 Mediated Allylation of Carbonyl Compounds with Crotyl Halide in Water

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan; ZHA,Zhang-Gen; ZHOU,Yu-Qing; WANG,Zhi-Yong

    2004-01-01

    @@ Barbier-type carbonyl allylation is particularly useful due to ease of operation and the availability and tractability of allylic substrates,[1] Metals such as indium, zinc and tin are often used as the mediator. Here we present a green approach toward the synthesis, that is, Sn/I2 mediated allylation of carbonyl compounds with crotyl halide in water.

  20. Synthesis of different architectures like stars, multipods, ellipsoids and spikes of zinc oxide by surfactantless precipitation.

    Science.gov (United States)

    Navaladian, S; Viswanathan, B

    2011-11-01

    Zinc oxide with different morphologies like stars, multipods, ellipsoids and spikes was synthesized using zinc nitrate and sodium hydroxide in the absence of surfactants. Seed mediation was found to be essential for the formation of ZnO nanospikes. Synthesized ZnO samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-visible diffuse reflectance spectroscopy (UV-vis-DRS) and energy dispersive analysis by X-rays (EDAX) techniques. The predominant c-axis growth of hexagonal lattice was observed in ZnO anisotropic particles. TEM analysis revealed the formation of two types of ZnO ellipsoid particles. Concentration of the reactants was found to have a role in controlling the morphology of the resulting ZnO. Mechanism of formation of varying morphologies of ZnO particles has been proposed.

  1. Design, construction, and analysis of specific zinc finger nucleases for microphthalmia - associate transcription factor

    Directory of Open Access Journals (Sweden)

    Wenwen Wang

    2012-08-01

    Full Text Available This work studied the design, construction, and cleavage analysis of zinc finger nucleases (ZFNs that could cut the specific sequences within microphthalmia - associate transcription factor (mitfa of zebra fish. The target site and ZFPs were selected and designed with zinc finger tools, while the ZFPs were synthesized using DNAWorks and two-step PCR. The ZFNs were constructed, expressed, purified, and analyzed in vitro. As expected, the designed ZFNs could create a double-stand break (DSB at the target site in vitro. The DNAWorks, two-step PCR, and an optimized process of protein expression were firstly induced in the construction of ZFNs successfully, which was an effective and simplified protocol. These results could be useful for further application of ZFNs - mediated gene targeting.

  2. The changes of zinc transporter ZnT gene expression in response to zinc supplementation in obese women.

    Science.gov (United States)

    Noh, Hwayoung; Paik, Hee Young; Kim, Jihye; Chung, Jayong

    2014-12-01

    Obesity is associated with an alteration in zinc metabolism. This alteration may be associated with changes in gene expression of zinc transporters. In this study, we examined the leukocyte expression of zinc transporter ZnTs in response to zinc supplementation in young obese women. Thirty-five young obese women (BMI ≥ 25 kg/m(2)), aged 18-28 years, were randomly assigned to two groups: a placebo group or a zinc group (30 mg zinc/day for 8 weeks). Usual dietary zinc intake was estimated from 3-day diet records. Serum zinc and urinary zinc concentrations were measured by atomic absorption spectrometry. Messenger RNA (mRNA) levels of leukocyte ZnT transporters were examined using quantitative real-time PCR. Expression levels of two ZnT transporters, ZnT1 and ZnT5, in obese women, increased significantly after zinc supplementation. At the end of the study, mRNA levels of ZnT1 and ZnT5 showed no correlation with serum zinc or urinary zinc concentration in obese women. In addition, a further study was conducted to identify whether the association between the gene expression levels of leukocyte ZnT1 and ZnT5 and dietary zinc intake remained consistent in 216 healthy young adults aged 20-29 years. A positive correlation between ZnT1 and dietary zinc intake (r = 0.181, P = 0.089) was also observed in healthy men although the significance was marginal. Taken together, these results show that the gene expression levels of ZnT1 and ZnT5 may be changed by zinc intake, suggesting that zinc supplementation could potentially restore ZnT transporter expression in obese women with altered zinc metabolism.

  3. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    Science.gov (United States)

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang

    2015-01-01

    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed

  4. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    Science.gov (United States)

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely.

  5. The Zinc Transport Systems and Their Regulation in Pathogenic Fungi.

    Science.gov (United States)

    Jung, Won Hee

    2015-09-01

    Zinc is an essential micronutrient required for many enzymes that play essential roles in a cell. It was estimated that approximately 3% of the total cellular proteins are required for zinc for their functions. Zinc has long been considered as one of the key players in host-pathogen interactions. The host sequesters intracellular zinc by utilizing multiple cellular zinc importers and exporters as a means of nutritional immunity. To overcome extreme zinc limitation within the host environment, pathogenic microbes have successfully evolved a number of mechanisms to secure sufficient concentrations of zinc for their survival and pathogenesis. In this review, we briefly discuss the zinc uptake systems and their regulation in the model fungus Saccharomyces cerevisiae and in major human pathogenic fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus gattii.

  6. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  7. Oral zinc and common childhood infections--An update.

    Science.gov (United States)

    Basnet, Sudha; Mathisen, Maria; Strand, Tor A

    2015-01-01

    Zinc is an essential micronutrient important for growth and for normal function of the immune system. Many children in developing countries have inadequate zinc nutrition. Routine zinc supplementation reduces the risk of respiratory infections and diarrhea, the two leading causes of morbidity and mortality in young children worldwide. In childhood diarrhea oral zinc also reduces illness duration and risk of persistent episodes. Oral zinc is therefore recommended for the treatment of acute diarrhea in young children. The results from the studies that have measured the therapeutic effect of zinc on acute respiratory infections, however, are conflicting. Moreover, the results of therapeutic zinc for childhood malaria also are so far not promising.This paper gives a brief outline of the current evidence from clinical trials on therapeutic effect of oral zinc on childhood respiratory infections, pneumonia and malaria and also of new evidence of the effect on serious bacterial illness in young infants.

  8. Functional genomics of drug-induced ion homeostasis identifies a novel regulatory crosstalk of iron and zinc regulons in yeast.

    Science.gov (United States)

    Landstetter, Nathalie; Glaser, Walter; Gregori, Christa; Seipelt, Joachim; Kuchler, Karl

    2010-12-01

    Pyrrolidine dithiocarbamate (PDTC), a known inhibitor of NFκB activation, has antioxidative as well as antiviral activities. PDTC is effective against several virus families, indicating that its antiviral mechanism targets host rather than viral functions. To investigate its mode of action, we used baker's yeast as a simple eukaryotic model system and two types of genome-wide analysis. First, expression profiling using whole-genome DNA microarrays identifies more than 200 genes differentially regulated upon PDTC exposure. Interestingly, the Aft1-dependent iron regulon is a main target of PDTC, indicating a lack of iron availability. Moreover, the PDTC-caused zinc influx triggers a strong regulatory effect on zinc transporters due to the cytoplasmic zinc excess. Second, phenotypic screening the EUROSCARF collection for PDTC hypersensitivity identifies numerous mutants implicated in vacuolar maintenance, acidification as well as in transport, mitochondrial organization, and translation. Notably, the screening data indicate significant overlaps of PDTC-sensitive genes and those mediating zinc tolerance. Hence, we show that PDTC induces cytoplasmic zinc excess, eliciting vacuolar detoxification, which in turn, disturbs iron homeostasis and activates the iron-dependent regulator Aft1. Our work reveals a complex crosstalk in yeast ion homeostasis and the underlying regulatory networks.

  9. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials.

  10. Selective extraction of zinc from sulfate leach solution of zinc ore

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中; 邱冠周

    2003-01-01

    Selective extraction of zinc from sulfate leach solution of zinc ore was studied.D2EHPA dissolved in260# kerosene was used as extractant.The pH-extraction isotherms show the extraction order of D2EHPA for metals is Fe3+>Zn2+>Ca2+>Al3+>Mn2+>Cu2+>Cd2+>Co2+>Ni2+>Mg2+(pH0.5).This confirms that Fe3+ ispreferentially extracted before the extraction of zinc.Extraction experiments were carried out with varying the extractant content,equilibration time,aqueous pH and phase ratio,and the solvent extraction of zinc with sodium saltof D2EHPA were also investigated.Some impurity co-extracted into the zinc loaded organic phase was efficiently removed by scrub,and the Fe3+ was hardly stripped from organic phase by sulfuric acid,hence zinc was separatedfrom Fe3+ by selective stripping.A pregnant zinc sulfate solution with low contaminants was obtained by selectivesolvent extraction.

  11. Anti-ulcer activity of a slow-release zinc complex, zinc monoglycerolate (Glyzinc).

    Science.gov (United States)

    Rainsford, K D; Whitehouse, M W

    1992-06-01

    A slow-release zinc complex, zinc monoglycerolate (ZMG) was examined for its potential gastroprotective activity in various gastric ulcer models. These models comprised (a) oral or parenteral non-steroidal anti-inflammatory drugs (NSAIDs) given to rats whose gastrointestinal mucosa was pre-sensitized by prior development of arthritis, oleyl alcohol-induced inflammation and cold exposure, (b) oral ethanol (12.5-100%) with and without added 4% HCl, (c) intraperitoneal reserpine (5 mg kg-1) in arthritic and normal rats and in normal mice, (d) oral NSAIDs given to mice in which acid and pepsin production was stimulated by co-administration of intraperitoneal bethanechol chloride (5 mg kg-1) to enhance ulcer development, and (e) NSAIDs given to carrageenan-inflamed rats to determine effects of ZMG on paw inflammation. In these models, ZMG given orally was effective in preventing development of gastric lesions, except with propionic acid NSAIDs; the effective doses being apparently dependent on the severity of the mucosal injury. In many of the models ZMG was superior to zinc sulphate and other zinc salts or metal ion complexes investigated but was slightly more effective or equipotent compared with zinc acexamate. ZMG did not impair the anti-oedemic effects of NSAIDs. ZMG is thus an effective agent in preventing ulcer development in a wide range of model systems and may be more effective than zinc salts because of the controlled slow-release of zinc from the complex.

  12. Book review: Current perspectives on zinc deposits

    Science.gov (United States)

    Kelley, Karen D.

    2016-01-01

    This book, published in 2015 by the Irish Association for Economic Geology (IAEG), is a compilation of papers and abstracts written by selected authors who attended the ZINC 2010 Conference in Cork, Ireland. Unlike most books produced each decade by the IAEG, which are focused primarily on achievements of the Irish and European mineral sectors, this book has a global perspective of a single commodity—zinc. As stated in the Preface, the theme of the conference and book was quite relevant for the IAEG because Ireland has the highest concentration of zinc per square kilometer on the planet. The book contains 7 full papers and 5 extended abstracts by keynote speakers, followed by 17 extended abstracts by other presenters, plus an Appendix (reprint) of a previously published paper.

  13. Effect of zinc on Entamoeba histolytica pathogenicity.

    Science.gov (United States)

    Vega Robledo, G B; Carrero, J C; Ortiz-Ortiz, L

    1999-06-01

    The present study analyzes the effects of zinc on Entamoeba histolytica activity and on its pathogenicity. Metal activity was evaluated in vitro with regard to the parasite's viability, replication, and adhesion to epithelial cells and in vivo with regard to its pathogenicity. The results obtained in vitro show that zinc at 1.0 mM concentration does not affect amebic viability; however, it does decrease amebic replication and adhesion (P vivo studies performed on a model of experimental liver abscess in the hamster indicate that the intraperitoneal administration of a single dose of zinc at 48 h after the intrahepatic inoculation of amebic trophozoites significantly inhibits (P vivo as manifested by inhibition of amebic pathogenicity.

  14. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN.

    Directory of Open Access Journals (Sweden)

    Jonathan E Foley

    Full Text Available BACKGROUND: Customized zinc finger nucleases (ZFNs form the basis of a broadly applicable tool for highly efficient genome modification. ZFNs are artificial restriction endonucleases consisting of a non-specific nuclease domain fused to a zinc finger array which can be engineered to recognize specific DNA sequences of interest. Recent proof-of-principle experiments have shown that targeted knockout mutations can be efficiently generated in endogenous zebrafish genes via non-homologous end-joining-mediated repair of ZFN-induced DNA double-stranded breaks. The Zinc Finger Consortium, a group of academic laboratories committed to the development of engineered zinc finger technology, recently described the first rapid, highly effective, and publicly available method for engineering zinc finger arrays. The Consortium has previously used this new method (known as OPEN for Oligomerized Pool ENgineering to generate high quality ZFN pairs that function in human and plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that OPEN can also be used to generate ZFNs that function efficiently in zebrafish. Using OPEN, we successfully engineered ZFN pairs for five endogenous zebrafish genes: tfr2, dopamine transporter, telomerase, hif1aa, and gridlock. Each of these ZFN pairs induces targeted insertions and deletions with high efficiency at its endogenous gene target in somatic zebrafish cells. In addition, these mutations are transmitted through the germline with sufficiently high frequency such that only a small number of fish need to be screened to identify founders. Finally, in silico analysis demonstrates that one or more potential OPEN ZFN sites can be found within the first three coding exons of more than 25,000 different endogenous zebrafish gene transcripts. CONCLUSIONS AND SIGNIFICANCE: In summary, our study nearly triples the total number of endogenous zebrafish genes successfully modified using ZFNs (from three to eight and suggests that OPEN

  15. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands.

    Science.gov (United States)

    Stein, Otto R; Borden-Stewart, Deborah J; Hook, Paul B; Jones, Warren L

    2007-08-01

    To characterize the effects of season, temperature, plant species, and chemical oxygen demand (COD) loading on sulfate reduction and metals removal in treatment wetlands we measured pore water redox potentials and concentrations of sulfate, sulfide, zinc and COD in subsurface wetland microcosms. Two batch incubations of 20 day duration were conducted in each of four seasons defined by temperature and daylight duration. Four treatments were compared: unplanted controls, Typha latifolia (broadleaf cattail), and Schoenoplectus acutus (hardstem bulrush), all at low COD loading (267 mg/L), plus bulrush at high COD loading (534 mg/L). Initial SO4-S and zinc concentrations were 67 and 24 mg/L, respectively. For all treatments, sulfate removal was least in winter (4 degrees C, plant dormancy) greatest in summer (24 degrees C, active plant growth) and intermediate in spring and fall (14 degrees C), but seasonal variation was greater in cattail, and especially, bulrush treatments. Redox measurements indicated that, in winter, plant-mediated oxygen transfer inhibited activity of sulfate reducing bacteria, exacerbating the reduction in sulfate removal due to temperature. Doubling the COD load in bulrush treatments increased sulfate removal by only 20-30% when averaged over all seasons and did not alter the basic pattern of seasonal variation, despite tempering the wintertime increase in redox potential. Seasonal and treatment effects on zinc removal were broadly consistent with sulfate removal and presumably reflected zinc-sulfide precipitation. Results strongly suggest that interactive effects of COD loading rate, temperature, season, and plant species control not only sulfate reduction and zinc sequestration, but also the balance of competition between various microbial consortia responsible for water treatment in constructed wetlands.

  16. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    Science.gov (United States)

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  17. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2.

    Science.gov (United States)

    Mayer, Magnus C; Schauenburg, Linda; Thompson-Steckel, Greta; Dunsing, Valentin; Kaden, Daniela; Voigt, Philipp; Schaefer, Michael; Chiantia, Salvatore; Kennedy, Timothy E; Multhaup, Gerhard

    2016-04-01

    The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts.

  18. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.

    Science.gov (United States)

    McCracken, Lindsay M; Blednov, Yuri A; Trudell, James R; Benavidez, Jillian M; Betz, Heinrich; Harris, R Adron

    2013-02-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.

  19. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-02-03

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation.

  20. Evaluating the cost-effectiveness of preventive zinc supplementation

    OpenAIRE

    Fink, Günther; Heitner, Jesse

    2014-01-01

    Background Even though the WHO currently recommends zinc for diarrhea management, no consensus has been reached with respect to routine distribution of zinc for preventive reasons. We reviewed the health impact of preventive zinc interventions, and evaluated the relative cost effectiveness of currently feasible interventions. Methods Using the latest relative risk estimates reported in the literature, we parameterized a health impact model, and calculated the expected benefits of zinc supplem...

  1. Evaluating the cost-effectiveness of preventive zinc supplementation

    OpenAIRE

    Fink, Günther; Heitner, Jesse

    2014-01-01

    Background: Even though the WHO currently recommends zinc for diarrhea management, no consensus has been reached with respect to routine distribution of zinc for preventive reasons. We reviewed the health impact of preventive zinc interventions, and evaluated the relative cost effectiveness of currently feasible interventions. Methods: Using the latest relative risk estimates reported in the literature, we parameterized a health impact model, and calculated the expected benefits of zinc suppl...

  2. Microwave-assisted additive free synthesis of nanocrystalline zinc oxide

    OpenAIRE

    Bhatte, Kushal D.; Tambade, Pawan; Fujita, Shin-ichiro; Arai, Masahiko; Bhalchandra M. Bhanage

    2010-01-01

    An additive free synthesis of nanocrystalline zinc oxide using microwave technique is reported. Current methodology is faster, cleaner and cost effective compared with conventional method for the synthesis of zinc oxide nanocrystalline materials. The structure and morphology of nanocrystalline zinc oxide was investigated by TEM, XRD, EDAX, UV-Vis spectroscopy. The results demonstrate that microwave heating can produce polygonal zinc oxide within a short span of time.

  3. Chelating ionic liquids for reversible zinc electrochemistry.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  4. Deficiencia de zinc y sus implicaciones funcionales

    Directory of Open Access Journals (Sweden)

    ROSADO JORGE L

    1998-01-01

    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.

  5. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer

    Directory of Open Access Journals (Sweden)

    Kajdacsy-Balla André

    2005-09-01

    Full Text Available Abstract Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1 as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands. In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN. These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down

  6. New separators for nickel-zinc batteries

    Science.gov (United States)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  7. Zinc oxide interdigitated electrode for biosensor application

    Science.gov (United States)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  8. The importance of zinc on osteoporotic bones

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I.; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: ricardo@lin.ufrj.br; inaya@lin.ufrj.br; Anjos, M.J. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: marcelin@lin.ufrj.br; Farias, M.L.F. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Hospital Universitario. Servico de Endocrinologia]. E-mail: fleiuss@hucff.ufrj.br; Rosenthal, D. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Fisiologia Endocrina]. E-mail: doris@biof.ufrj.br

    2007-07-01

    Zinc is an essential element that can be found in bones, such as calcium and phosphorus. It seems to have effects on growth, bone turnover and mineralization making its relationship with bones still opening. The goal of this study is, by XRF analysis, characterized bone samples, with and without pathology, in the trabecular region. For that purpose, it was used an XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results show that the profile of the zinc distribution and its concentration on femoral heads are strongly related to the associated pathology. (author)

  9. Efficacy of highly bioavailable zinc from fortified water

    NARCIS (Netherlands)

    Galetti, Valeria; Kujinga, Prosper; Mitchikpè, C.E.S.; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D.; Zimmermann, Michael B.; Moretti, Diego

    2015-01-01

    Background: Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel pointof-use water ultrafiltration device

  10. Height, zinc and soil-transmitted helminth infections in schoolchildren

    DEFF Research Database (Denmark)

    de Gier, Brechje; Mpabanzi, Liliane; Vereecken, Kim;

    2015-01-01

    on height, STH infection and zinc concentration in either plasma (Cambodia) or hair (Cuba). We analyzed whether STH and/or zinc were associated with height for age z-scores and whether STH and zinc were associated. In Cuba, STH prevalence was 8.4%; these were mainly Ascaris lumbricoides and Trichuris...

  11. Comparative analysis of salivary zinc level in recurrent herpes labialis

    Directory of Open Access Journals (Sweden)

    Faezeh Khozeimeh

    2012-01-01

    Conclusion: According to the results, zinc level is significantly lower in acute phase than in convalescent phase and significantly lower in both phases compared to healthy individuals,so determination of serum zinc level and prescribing zinc complement in low serum status has both treatmental and preventive effects in RHL patients.

  12. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R; Jyai, Rita N

    2014-01-01

    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012).

  13. Zinc oxide's hierarchical nanostructure and its photocatalytic properties

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmed; Sheikh, Faheem A.; Barakat, Nasser A. M.

    2012-01-01

    In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol...

  14. Crosstalk between Zinc Status and Giardia Infection: A New Approach

    Directory of Open Access Journals (Sweden)

    Humberto Astiazarán-García

    2015-06-01

    Full Text Available Zinc supplementation has been shown to reduce the incidence and prevalence of diarrhea; however, its anti-diarrheal effect remains only partially understood. There is now growing evidence that zinc can have pathogen-specific protective effects. Giardiasis is a common yet neglected cause of acute-chronic diarrheal illness worldwide which causes disturbances in zinc metabolism of infected children, representing a risk factor for zinc deficiency. How zinc metabolism is compromised by Giardia is not well understood; zinc status could be altered by intestinal malabsorption, organ redistribution or host-pathogen competition. The potential metal-binding properties of Giardia suggest unusual ways that the parasite may interact with its host. Zinc supplementation was recently found to reduce the rate of diarrhea caused by Giardia in children and to upregulate humoral immune response in Giardia-infected mice; in vitro and in vivo, zinc-salts enhanced the activity of bacitracin in a zinc-dose-dependent way, and this was not due to zinc toxicity. These findings reflect biological effect of zinc that may impact significantly public health in endemic areas of infection. In this paper, we shall explore one direction of this complex interaction, discussing recent information regarding zinc status and its possible contribution to the outcome of the encounter between the host and Giardia.

  15. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    Science.gov (United States)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  16. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    DEFF Research Database (Denmark)

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete

    2015-01-01

    BACKGROUND: The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role...... and during adipogenesis. However, in silico analysis revealed that the ZIP14 promoter does not contain PPARγ-binding motifs. CONCLUSIONS: We hypothesize that ZIP14-mediated zinc influx might directly influence PPARγ activity and that ZIP14 may regulate expansion and function of adipose tissue and serve...

  17. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  18. Reduced serum zinc levels while improving growth of underweight school children in trial of zinc-fortified milk in Indonesia

    Directory of Open Access Journals (Sweden)

    Endang Dewi Lestari

    2012-03-01

    Full Text Available Background Most children in low-income countries have inadequate dietary zinc. The study was aimed to demonstrate the effect of iron-zinc fortified milk in improving zinc status among underweight school children in Indonesia. Objective To evaluate the effects of milk fortification with zinc on serum zinc levels in underweight Indonesian school children. Methods A double-blind, randomized, controlled, communitybased study was conducted on 426 underweight children aged 7 to 9 years in several low economic income level elementary schools in Jakarta and Solo . Subjects were randomly allocated to receive either zinc-fortified milk (n= 217 or standard milk (n=209 for 6 months. The fortified milk provided an 2.38 mg zinc per day and the standard milk provided 0.88 mg zinc per day. Results Among underweight children, the prevalence of stunting with a height-for-age z-score < −2.0 SD was 39.7%. Almost all subjects (98% had zinc intake of less than 60% of the Indonesian recommended daily allowance (RDA for that particular age group. After receiving the milk intervention, mean serum zinc concentration declined significantly in both groups (from 13.50 + 3.05 μmol/L at baseline to 10.59 + 1.93 μmol/L, P< 0.05, but growth parameters (weight and height improved. Conclusion Reduced mean serum zinc levels were observed in children who received standard milk, as well as those who received zinc-fortified milk. These reduction in serum zinc levels may be a part of homeostatic control mechanim for improving the negative zinc balance in zinc pools, as a negative effect on linear growth was not observed. Larger clinical trials of adequate sample size need to be conducted in order to provide better understanding on zinc regulation among underweight school children. [Paediatr Indones. 2012;52:118-24].

  19. A case of transient zinc deficiency in a breast-fed preterm infant successfully treated with oral zinc supplementation: review of zinc metabolism and related diseases.

    Science.gov (United States)

    Mandato, F; Rubegni, P; Buonocore, G; Fimiani, M

    2009-12-01

    A 15-week-old baby girl, born at the 29 week of gestation, presented with a four-week history of demarcated, erythematous, erosive and exudative patches on the perianal, perioral and acral areas. A clinical diagnosis of zinc deficiency was considered. Serum zinc level was decreased (0.5 mg/L; normal 0.70-1.50 mg/L), the mother's serum and milk had normal zinc values. The baby was started an empiric trial of oral zinc supplementation (3 mg zinc gluconate/kg body weight/ day) with complete healing of lesions after two weeks. Treatment was gradually withdrawn at six months of age with no relapse. Transient zinc deficiency due to increased zinc requirements in breast-fed mainly preterm infants is a condition similar to acrodermatitis enteropathica, an autosomal recessive disorder of enteric zinc absorption affecting almost exclusively not breast-fed infants. Early recognition of the disorder and introduction of zinc supplementation rapidly reverses transient zinc deficiency, that probably will become more and more frequent, because of the rising rate of premature infants with breast-feeding only.

  20. The Limiting Phenomena at the Anode of the Electrowinning of Zinc from Zinc Chloride in a Molten Chloride Electrolyte

    NARCIS (Netherlands)

    Lans, S.C.

    2004-01-01

    The objective of this research is to investigate the possibilities and technological viability for the electrowinning of zinc from zinc chloride. This research contributes to development of an alternative process, because it provides: ⢠A clear understanding and overview of the present zinc industr

  1. Effectiveness of zinc fortified drinking water on zinc intake, status and morbidity of rural Kenyan pre-school children

    NARCIS (Netherlands)

    Kujinga-Chopera, P.

    2016-01-01

    Background: Zinc deficiency is considered a significant public health problem in preschool children in Africa together with infections such as diarrhea, which further deplete the body of zinc. Young children are more vulnerable to zinc deficiency due to increased requirements and fr

  2. Nickel doped zinc oxide nanoparticles produced by hydrothermal decomposition of nickel-doped zinc hydroxide nitrate

    Institute of Scientific and Technical Information of China (English)

    Mohammad Yeganeh Ghotbi

    2012-01-01

    Zinc hydroxide nitrate,an anionic exchanger layered material,undoped as well as doped with 2-10% nickel,was synthesized by using a pH-controlled precipitation method.The layered materials were then used to produce the undoped and nickel-doped zinc oxides by hydrothermal-treatment.X-ray diffraction,Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the formation of pure phase undoped and nickel-doped layered materials,as well as the products of the hydrothermaltreated materials,nanostructured zinc oxides.Optical studies of the nanostructured zinc oxides showed a decrease in band gap with increasing content of the doping agent,nickel.

  3. Influence of concentration of zinc ions on electrocrystallization process of zinc

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao

    2005-01-01

    Cyclic voltammetry, chronoamperometry and scanning electron microscopy were employed to study the influence of Zn2+ ion concentration in electrolyte solutions on zinc electroplating process. The results show that, at high overpotentials, the nucleation of zinc is instantaneous, and nuclear density increases with the overpotentials increasing. While at low overpotentials, the zinc may be preferentially electrodeposited on surface inhomogeneities such as emergence points of edge, screw dislocations, atomic disorder, kink sites, or monoatomic steps, and no distinguished nucleation current can be observed. The major dissolution peak in cyclic voltammogram drifts positively due to the change of the rate-determining step of zinc electroplating processes from diffusion to the electrochemical reaction with the increase of Zn2+ ion concentration.

  4. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

    Science.gov (United States)

    Sun, Yi; Shen, Xiao-yi; Zhai, Yu-chun

    2015-05-01

    Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/ RT)· t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

  5. Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries

    Science.gov (United States)

    Smith, David F.; Gucinski, James A.

    Reserve activated silver oxide-zinc cells were constructed with synthetic silver oxide (Ag 2O) electrodes with Pb-treated zinc electrodes produced by a non-electrolytic process. The cells were tested before and after thermally accelerated aging. At discharge rates up to 80 mA cm -2, the discharge was limited by the Ag 2O electrode, with a coulombic efficiency between 89-99%. At higher rates, the cells are apparently zinc-limited. Test cells were artificially aged at 90°C for 19 h and discharged at 21°C at 80 mA cm -2. No capacity loss was measured, but a delayed activation rise time was noted (192 ms fresh vs. 567 ms aged). The delay is thought to be caused by zinc passivation due to the outgassing of cell materials.

  6. Phosphorylation of p65 Is Required for Zinc Oxide Nanoparticle–Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    OpenAIRE

    Wu, Weidong; Samet, James M.; Peden, David B.; Bromberg, Philip A.

    2010-01-01

    Background Exposure to zinc oxide (ZnO) in environmental and occupational settings causes acute pulmonary responses through the induction of proinflammatory mediators such as interleukin-8 (IL-8). Objective We investigated the effect of ZnO nanoparticles on IL-8 expression and the underlying mechanisms in human bronchial epithelial cells. Methods We determined IL-8 mRNA and protein expression in primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line usin...

  7. SN2-type ring opening of substituted--tosylaziridines with zinc (II) halides: Control of racemization by quaternary ammonium salt

    Indian Academy of Sciences (India)

    Manas K Ghorai; Deo Prakash Tiwari; Amit Kumar; Kalpataru Das

    2011-11-01

    Quaternary ammonium salt mediated highly regioselective ring opening of aziridines with zinc(II) halides to racemic and non-racemic -halo amines in excellent yield and selectivity is described. The reaction proceeds via an SN2-type pathway and the partial racemization of the starting substrate and the product was effectively controlled by using quaternary ammonium salts to afford the enantioenriched products (er up to 95:5).

  8. Zinc Transporters and Zinc Signaling: New Insights into Their Role in Type 2 Diabetes

    OpenAIRE

    Myers, Stephen A.

    2015-01-01

    Zinc is an essential trace element that plays a vital role in many biological processes including growth and development, immunity, and metabolism. Recent studies have highlighted zinc’s dynamic role as a “cellular second messenger” in the control of insulin signaling and glucose homeostasis. Accordingly, mechanisms that contribute to dysfunctional zinc signaling are suggested to be associated with metabolic disease states including cancer, cardiovascular disease, Alzheimer’s disease, and dia...

  9. Height, zinc and soil-transmitted helminth infections in schoolchildren

    DEFF Research Database (Denmark)

    de Gier, Brechje; Mpabanzi, Liliane; Vereecken, Kim;

    2015-01-01

    Soil-transmitted helminth (STH) infections and zinc deficiency are often found in low- and middle-income countries and are both known to affect child growth. However, studies combining data on zinc and STH are lacking. In two studies in schoolchildren in Cuba and Cambodia, we collected data...... on height, STH infection and zinc concentration in either plasma (Cambodia) or hair (Cuba). We analyzed whether STH and/or zinc were associated with height for age z-scores and whether STH and zinc were associated. In Cuba, STH prevalence was 8.4%; these were mainly Ascaris lumbricoides and Trichuris...

  10. West Mining Expanding Into Lead Zinc Smelting Industry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>West Mining,China’s 2nd largest lead zinc miner(only next to Yunnan Jinding Zinc with an annual lead and zinc output of approx. 180,000 tons in metal content),has been put- ting efforts on the control of resources for years.Additionally,it has recently increased its investment on smelting business by holding shares of Bayanzhuoer Zijin for more zinc smelting asset.West Mining has just com- pleted the construction of its 60,000-ton zinc

  11. CHANGES OF ZINC CONTAMINATION IN HIPPOCAMPUS CELLS OF ADRENALECTOMIZED RATS

    Directory of Open Access Journals (Sweden)

    Bondaruyk О.А.

    2013-09-01

    Full Text Available Adrenalectomy causes the decline of zinc maintenance in the neurons of hippocampus and B cells of pancreas that has been observed in experiments on rats. The loss of zinc of these cells has been partly compensated by the injection of adrenalin and prednizolon to the adrenalectomized animals. The increase of zinc maintenance in these cells has been caused by the sharp-stress process due to the simultaneous physical activity and immobilization. The given data prove the participation of adrenal glands in the mechanism of zinc exchanges regulation in central (hippocampus and peripheral (cells B of pancreas zinc-containing organs of animals.

  12. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum) o

  13. Zinc finger structure-function in Ikaros

    Institute of Scientific and Technical Information of China (English)

    Marvin; A; Payne

    2011-01-01

    The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function.The Ikaros gene is alternately spliced to produce several isoforms that confer diversity of function and consequently have complicated analysis of the function of Ikaros in vivo.Key features of Ikaros in vivo function are associated with six C2H2 zinc fingers;four of which are alternately incorporated in the production of the various Ikaros isoforms.Although no complete structures are available for the Ikaros protein or any of its family members,considerable evidence has accumulated about the structure of zinc fingers and the role that this structure plays in the functions of the Ikaros family of proteins.This review summarizes the structural aspects of Ikaros zinc fingers,individually,and in tandem to provide a structural context for Ikaros function and to provide a structural basis to inform the design of future experiments with Ikaros and its family members.

  14. Fibrous zinc anodes for high power batteries

    Science.gov (United States)

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  15. Photoemission studies of wurtzite zinc oxide.

    Science.gov (United States)

    Powell, R. A.; Spicer, W. E.; Mcmenamin, J. C.

    1972-01-01

    The electronic structure of wurtzite zinc oxide, investigated over the widest possible photon energy range by means of photoemission techniques, is described. Of particular interest among the results of the photoemission study are the location of the Zn 3rd core states, the width of the upper valence bands, and structure in the conduction-band and valence-band density of states.

  16. Zinc biofortification of cereals: problems and solutions

    DEFF Research Database (Denmark)

    Palmgren, Michael G; Clemens, Stephan; Williams, Lorraine E;

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...

  17. Zinc fate in animal husbandry systems.

    Science.gov (United States)

    Romeo, A; Vacchina, V; Legros, S; Doelsch, E

    2014-11-01

    Zinc (Zn) is considered in animal production systems as both an essential nutrient and a possible pollutant. While it is generally supplemented at low levels in animal diets, with less than 200 mg kg(-1) in complete feeds, it is under scrutiny due to potential accumulation in the environment. This explains why international regulations limit maximum supplementation levels in animal feeds in a stricter way. This article gives an overview of the current knowledge on the fate of zinc in animal production systems, from animal diets to animal wastes. Some analytical methods can be used for the quantification and qualification of Zn chemical forms: X-ray crystallography, electrospray tandem mass spectrometry, separation techniques, hyphenated techniques… Analysis of chelated forms issued from complex matrices, like hydrolysed proteins, remains difficult, and the speciation of Zn in diluted carriers (premix and feed) is a challenge. Our understanding of Zn absorption has made progress with recent research on ZnT/Zip families and metallothioneins. However, fine-tuned approaches towards the nutritional and metabolic interactions for Zn supplementation in farm conditions still require further studies. The speciation of zinc in pig manure and poultry litter has been a priority as monogastric animals are usually raised under intensive conditions and fed with high quantities of trace minerals, leading to high animal density and elevated quantities of zinc from animal wastes.

  18. Calcium And Zinc Deficiency In Preeclamptic Women

    Directory of Open Access Journals (Sweden)

    Sultana Ferdousi

    2011-12-01

    Full Text Available Background: Pre-eclampsia is the most common medical complication of pregnancy associated withincreased maternal and infant mortality and morbidity. Reduced serum calcium and zinc levels arefound associated with elevated blood pressure in preeclampsia. Objective: To observe serum calciumand zinc levels in preeclamptic women. Methods: This cross sectional study was carried out in theDepartment of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka betweenJuly 2009 to June 2010. In this study, 60 pregnant women of preeclampsia, aged 18-39 years withgestational period more than 20th weeks were included as the study (group B. For comparison ageand gestational period matched 30 normotensive pregnant women control (group A were also studied.All the subjects were selected from Obstetric and Gynae In and Out patient Department of BSMMUand Dhaka Medical College Hospital. Serum calcium was measured by Colorimetric method and serumzinc was measured by Spectrophotometric method. Data were analysed by independent sample t testand Pearson’s correlation coefficient test. Results: Mean serum calcium and zinc levels weresignificantly (p<0.001 lower in study group than those of control group. Again, serum calcium andzinc showed significant negative correlation with SBP and DBP in preeclamptic women. Conclusion:This study concludes that serum calcium and zinc deficiency may be one of the risk factor ofpreeclampsia. Therefore, early detection and supplementation to treat this deficiency may reduce theincidence of preeclampsia.

  19. Metal-Mediated Affinity and Orientation Specificity in a Computationally Designed Protein Homodimer

    Energy Technology Data Exchange (ETDEWEB)

    Der, Bryan S.; Machius, Mischa; Miley, Michael J.; Mills, Jeffrey L.; Szyperski, Thomas; Kuhlman, Brian (UNC); (Buffalo)

    2015-10-15

    Computationally designing protein-protein interactions with high affinity and desired orientation is a challenging task. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity and specifying the binding mode, thereby improving robustness of designed interactions for use as tools in basic research as well as in applications from biotechnology to medicine. Here we describe a Rosetta-based approach for the rational design of a protein monomer to form a zinc-mediated, symmetric homodimer. Our metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a dissociation constant <30 nM. Without zinc the dissociation constant is 4 {micro}M. The crystal structure of MID1-zinc shows good overall agreement with the computational model, but only three out of four designed histidines coordinate zinc. However, a histidine-to-glutamate point mutation resulted in four-coordination of zinc, and the resulting metal binding site and dimer orientation closely matches the computational model (C{alpha} rmsd = 1.4 {angstrom}).

  20. Zinc finger peptide based optic sensor for detection of zinc ions.

    Science.gov (United States)

    Verma, Neelam; Kaur, Gagandeep

    2016-12-15

    In the present work, polyacrylamide gel has been used as a matrix for the immobilization of zinc finger peptide and fluorescent dye acrydine orange on the micro well plate to fabricate the fluorescence based biosensor for the detection of zinc ions in milk samples. The fluorescent dye moves in the hydrophobic groove formed after folding of the peptide in the presence of zinc ions. Under optimized conditions, linear range was observed between 0.001µg/l to 10µg/l of Zinc ions, with a lowest detection limit of 0.001µg/l and response time of 5min. Presented biosensor has shown 20% decrease in fluorescent intensity values after 5 regenerations and stable for more than one month, stored at 4°C. Interference study with other metal ions like lead, cadmium and copper showed a negligible change in fluorescence intensity in comparison to zinc ions. Developed bio sensing system was found to be novel, quick, reliable, miniaturized, stable, reproducible and repeatable and specific for zinc ion, which has been applied to various milk samples.

  1. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  2. Kinetics of the intestinal uptake of zinc acexamate in normal and zinc-depleted rats.

    Science.gov (United States)

    Torres-Molina, F; Martínez-Coscollá, A; Gisbert, S; Quintana, E; Sendrós, S; Peris-Ribera, J E; Plá-Delfina, J M

    1990-10-01

    The uptake of zinc as acexamic acid salt in the small intestine of the anaesthetized rat was shown to be a two-phase process in normal animals. The first phase is rapid mucosal binding which satisfies the Freundlich isotherm equation and which involves about 30 per cent of the initially perfused zinc. The second phase was characterized as an apparent absorption step which obeys Michaelis-Menten and first-order combined kinetics, with the following parameters: Vm = 6.51 mg h-1; Km = 2.96 mg; ka = 0.306 h-1. In largely non-saturated conditions, an apparent global rate constant of about 2.50 h-1 was calculated. No significant interference due to endogenous zinc excretion into the small intestine was observed during the absorption period. In zinc-deficient animals, the two phases were not so well characterized. Binding was non-linear and apparent absorption efficiency was much greater at high zinc concentrations, so no evidence of saturable kinetics was found, thus confirming the hypothesis of a homeostatic zinc regulation mechanism.

  3. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar

    2012-07-01

    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  4. Zinc in thalassemic patients and its relation with depression.

    Science.gov (United States)

    Moafi, Alireza; Mobaraki, Gholamhossein; Taheri, Seyed Sadr; Heidarzadeh, Abtin; Shahabi, Iraj; Majidi, Farshad

    2008-01-01

    Studies have shown that there is a relationship between zinc levels and depression. Thalassemic patients are at risk of zinc deficiency due to various causes including Desferal injection. The aim of this study, therefore, is to investigate hair zinc levels in thalassemic patients and their association with depression. For the purposes of this survey, 50 patients with major thalassemia between 10-20 years old were selected randomly. The patients' hair zinc concentration was compared with a control group of similarly aged healthy individuals. Simultaneously, their psychological status was evaluated with either the "Beck" or "Marya Kovacs" test (according to age) so that the relation between depression and zinc concentration could be assessed. The mean hair zinc concentration in patients was more than the controls (193.96 +/- 92.4 ppm vs 149.6 +/- 72.21 ppm). Zinc deficiency was present in 10% of the patients, and 52% had some degree of depression. There was a reverse correlation between zinc deficiency and blood transfusion rate (p < 0.05). Also, while there were more incidences of depression among the zinc deficient patients, the difference was not significant. Regarding the high prevalence of depression and insignificant relation to the zinc deficiency in these thalassemic patients, this research suggests the need for further consideration concerning patients' psychological status, the risk factors of zinc deficiency, as well as extended assessment into other causes of depression.

  5. Accelerating degradation rate of pure iron by zinc ion implantation

    Science.gov (United States)

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  6. Preparation and Purification of Zinc Sulphinate Reagents for Organic Synthesis

    Science.gov (United States)

    O’Hara, Fionn; Baxter, Ryan D.; O’Brien, Alexander G.; Collins, Michael R.; Dixon, Janice A.; Fujiwara, Yuta; Ishihara, Yoshihiro; Baran, Phil S.

    2014-01-01

    SUMMARY The present protocol details the synthesis of zinc bis(alkanesulphinate)s that can be used as general reagents for the formation of radical species. The zinc sulphinates described herein have been generated from the corresponding sulphonyl chlorides by treatment with zinc dust. The products may be used crude, or a simple purification procedure may be performed to minimize incorporation of water and zinc chloride. Elemental analysis has been conducted in order to confirm the purity of the zinc sulphinate reagents; reactions with caffeine have also been carried out to verify the reactivity of each batch that has been synthesized. Although the synthesis of the zinc sulphinate salts generally proceeds within 3 h, workup can take up to 24 h and purification can take up to 3 h. Following the steps in this protocol would enable the user to generate a small toolkit of zinc sulphinate reagents over the course of one week. PMID:23640168

  7. Effect of Phosphate on Zinc Transport in Lou Soil

    Institute of Scientific and Technical Information of China (English)

    LUJIALONG; DONGLINGIAO; 等

    1998-01-01

    A study on the transport characteristics of zinc in lou soil with phosphate at different concentrations was carried out by the method of step input.The effects of phosphate and temperature on zinc transport were studied through analysing the diffusion-dipsersion coefficients(D) and the retardation factor(R) obtained by the program CXTFIT.The results showed that D decreased and R increased with increasig concentration of phosphate so that iv was difficult for zinc to break through the soil column,and zinc stopped to break through the column at high temperature.One order equation,double constant equation and the Elovich equation were all suitable for the escription of zinc dynamics.Effects of phosphate and temperature on zinc transport were further confirmed by the analysis on pseudo-thermodynamic parameters of zinc transport.

  8. Predicting zinc binding at the proteome level

    Directory of Open Access Journals (Sweden)

    Rosato Antonio

    2007-02-01

    Full Text Available Abstract Background Metalloproteins are proteins capable of binding one or more metal ions, which may be required for their biological function, for regulation of their activities or for structural purposes. Metal-binding properties remain difficult to predict as well as to investigate experimentally at the whole-proteome level. Consequently, the current knowledge about metalloproteins is only partial. Results The present work reports on the development of a machine learning method for the prediction of the zinc-binding state of pairs of nearby amino-acids, using predictors based on support vector machines. The predictor was trained using chains containing zinc-binding sites and non-metalloproteins in order to provide positive and negative examples. Results based on strong non-redundancy tests prove that (1 zinc-binding residues can be predicted and (2 modelling the correlation between the binding state of nearby residues significantly improves performance. The trained predictor was then applied to the human proteome. The present results were in good agreement with the outcomes of previous, highly manually curated, efforts for the identification of human zinc-binding proteins. Some unprecedented zinc-binding sites could be identified, and were further validated through structural modelling. The software implementing the predictor is freely available at: http://zincfinder.dsi.unifi.it Conclusion The proposed approach constitutes a highly automated tool for the identification of metalloproteins, which provides results of comparable quality with respect to highly manually refined predictions. The ability to model correlations between pairwise residues allows it to obtain a significant improvement over standard 1D based approaches. In addition, the method permits the identification of unprecedented metal sites, providing important hints for the work of experimentalists.

  9. Zinc therapy for different causes of diarrhea

    Directory of Open Access Journals (Sweden)

    Hafaz Zakky Abdillah

    2013-11-01

    Full Text Available Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Methods We performed a cross-sectional study in the Secanggang District, Langkat Regency of North Sumatera, from August to November 2009 in children aged 2 months to 14 years. Microscopic stool examinations were undertaken to separate subjects into the acute bacterial or non-bacterial diarrhea groups. Both groups received 10 mg/day of zinc sulphate for subjects aged <6 months or 20 mg/day for those aged ≥6 months for 10 days. Measurement of disease severity was based on the frequency of diarrhea (times/day and the duration of diarrhea (hours after initial drug consumption. We performed independent T-test for statistical analysis. Results Sixty-two children participated in this study, with 31 children in the acute bacterial group, and the remainder in the non-bacterial group. There were no significant differences between the two groups in frequency of diarrhea (2.61 vs 2.70 times/day, respectively, P=0.27 or in duration of diarrhea (63.39 vs 66.68 hours, respectively, P=0.06. Conclusion Zinc is not more effective in reducing the severity of acute bacterial diarrhea compared to non-bacterial diarrhea in children. [Paediatr Indones. 2013;53:334-8.].

  10. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Nishio, Ryusuke; Murakami, Taku

    2016-01-01

    Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency. PMID:27438830

  11. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    2016-07-01

    Full Text Available Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD, as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency.

  12. Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells by suppressing ERK1/2 and NF-κB phosphorylation.

    Science.gov (United States)

    Shih, Chia-Ju; Chiou, Ya-Ling

    2013-06-01

    Inflammation of airway smooth muscle cells (ASMCs) is believed to be important in causing airway hyperresponsiveness. However, zinc has been reported to be implicated in many kinds of cell inflammation. Little is known about the effect of zinc treatment on Der p2 (group II Dermatophagoides pteronyssinus)-induced inflammation from ASMCs. This study investigated effects and mechanisms of zinc in Der p2-treated ASMCs. Der p2-treated primary ASMCs were cultured with various concentrations of zinc sulfate (ZnSO₄) 6 μM, 12 μM, 24 μM, and 96 μM. The proteins and mRNAs of cytokines in ASMCs were examined by ELISA and real-time PCR. Intracellular zinc was stained with Zinquin fluorescence. The cell signaling protein expression was detected by Western blot. Der p2 was used to induce interleukin (IL)-6, IL-8, IL-1, and monocyte chemotactic protein-1 production of ASMCs. However, we found that 24 μM ZnSO₄ reduced these inflammatory mediators production of Der p2-treated primary ASMCs. Der p2-induced extracellular signal-regulated kinases (ERK) and nuclear factor-kappa B (NF-κB) phosphorylation were suppressed by supplementation of 24 μM ZnSO₄. Zinc is an anti-inflammatory agent that reduces inflammation of Der p2-treated ASMCs through the suppression of the ERK and NF-κB pathway. The results may be helpful for the development of effective treatments.

  13. Zinc transporters and their role in the pancreatic β‐cell

    OpenAIRE

    Lemaire, Katleen; Chimienti, Fabrice; Schuit, Frans

    2012-01-01

    Abstract Zinc is an essential nutrient with tremendous importance for human health, and zinc deficiency is a severe risk factor for increased mortality and morbidity. As abnormal zinc homeostasis causes diabetes, and because the pancreatic β‐cell contains the highest zinc content of any known cell type, it is of interest to know how zinc fluxes are controlled in β‐cells. The understanding of zinc homeostasis has been boosted by the discovery of multiprotein families of zinc transporters, and ...

  14. New preparation of benzylic aluminum and zinc organometallics by direct insertion of aluminum powder.

    Science.gov (United States)

    Blümke, Tobias D; Groll, Klaus; Karaghiosoff, Konstantin; Knochel, Paul

    2011-12-16

    The reaction of commercial Al-powder (3 equiv) and InCl(3) (1-5 mol %) with benzylic chlorides provides various functionalized benzylic aluminum sesquichlorides under mild conditions (THF, 20 °C, 3-24 h) without homocoupling (organometallics reacted smoothly with various electrophiles (Pd-catalyzed cross-couplings, or Cu-mediated acylations, allylations, or 1,4-addition reactions). Electron-poor benzylic chlorides or substrates prone to Wurtz coupling can be converted to benzylic zinc compounds by the reaction of Al-powder in the presence of ZnCl(2).

  15. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Joep Schothort

    2017-03-01

    Full Text Available Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  16. Effect of zinc fortification on Cheddar cheese quality.

    Science.gov (United States)

    Kahraman, O; Ustunol, Z

    2012-06-01

    Zinc-fortified Cheddar cheese containing 228 mg of zinc/kg of cheese was manufactured from milk that had 16 mg/kg food-grade zinc sulfate added. Cheeses were aged for 2 mo. Culture activity during cheese making and ripening, and compositional, chemical, texture, and sensory characteristics were compared with control cheese with no zinc sulfate added to the cheese milk. Compositional analysis included fat, protein, ash, moisture, zinc, and calcium determinations. The thiobarbituric acid (TBA) assay was conducted to determine lipid oxidation during aging. Texture was analyzed by a texture analyzer. An untrained consumer panel of 60 subjects evaluated the cheeses for hardness, off-flavors, appearance, and overall preference using a 9-point hedonic scale. Almost 100% of the zinc added to cheese milk was recovered in the zinc-fortified cheese. Zinc-fortified Cheddar cheese had 5 times more zinc compared with control cheese. Zinc-fortified cheese had higher protein and slightly higher fat and ash contents, whereas moisture was similar for both cheeses. Zinc fortification did not affect culture activity during cheese making or during the 2-mo aging period. The TBA value of control cheese was higher than that of zinc-fortified cheese at the end of ripening. Although zinc-fortified cheese was harder as determined by the texture analyzer, the untrained consumer panel did not detect differences in the sensory attributes and overall quality of the cheeses. Fortification of 16 mg/kg zinc sulfate in cheese milk is a suitable approach to fortifying Cheddar cheese without changing the quality of Cheddar cheese.

  17. Dietary intervention causes redistribution of zinc in obese adolescents.

    Science.gov (United States)

    Freire, Simone Cardoso; Fisberg, Mauro; Cozzolino, Silvia Maria Franciscato

    2013-08-01

    Obese people tend to have low zinc circulation levels; this is not always related to zinc intake but can reflect the distribution of zinc in relation to the proportion of body fat and factors related to the inflammatory processes that cause obesity. The purpose of this study was to assess zinc distribution in 15 obese adolescent girls before and after a nutritional orientation program. Participants ranged from 14 to 18 years old (postpubescent) and had a body fat percent (BF%) of >35 %. Zinc nutritional status and other zinc-dependent parameters, such as superoxide dismutase (SOD) and insulin levels, were assessed by biochemical analysis of plasma and erythrocytes, salivary sediment, and urine. Samples were collected before and after 4 months of dietary intervention. Dual energy X-ray absorptiometry (DXA) was used to verify BF% both at the beginning and at the end of the study. Food consumption was assessed in ten individual food questionnaires throughout the study; food groups were separated on the questionnaires in the same way as suggested by some authors to develop the Healthy Eating Index (HEI) but with the addition of zinc. After 4 months of nutritional orientation, 78 % of the participants showed a decrease in BF%. Intraerythrocytic zinc increased over the study period, while salivary sediment zinc, SOD, insulin, and Zn urinary24 h/creatinine all decreased (p zinc intake throughout the study but participants did increase their consumption of fruits, dairy, and meats during the study (p zinc and decreased levels of SOD. There was also a statistically significant correlation between BF% and Zn urinary 24h/creatinine, and SOD. All these parameters were diminished at the end of the study. The dietary intervention for obese adolescent girls is effective with decrease of BF that led to the redistribution of zinc in the body as shown by the changes in erythrocytes, plasma, salivary, urine zinc, as well as the complementary parameters of insulin and SOD. These

  18. Effects of maternal mild zinc deficiency and different ways of zinc supplementation for offspring on learning and memory

    Directory of Open Access Journals (Sweden)

    Xiaogang Yu

    2016-01-01

    Full Text Available Background: The effect of different ways of zinc supplementation on spatial learning and memory remains unclear. Objectives: This study aims to assess the effectiveness of two ways of zinc supplementation – oral use and intravenous transfusion – in zinc-deficient offspring rats on learning and memory. Design: Rats were randomly divided into six groups on the first day of pregnancy (n=12: control (CO, pair fed (PF, zinc deprived (ZD, oral zinc supplementation (OZS, injection zinc supplementation (IZS, and injection control. The offspring's spatial learning and memory were tested at postnatal day 35 using Morris water maze (MWM. Maternal rats’ serum zinc was measured at postnatal day 21, while pups’ serum zinc was measured at postnatal day 35. Results: Compared with the CO and PF groups, pups in ZD group spent more time finding the latent platform and swam longer distances (p0.05. However, compared with ZD groups, pups in IZS did not show any improvement in the indexes of MWM (p>0.05 although their zinc serum concentration increased significantly (p<0.05. Conclusions: These results indicate that mild zinc deficiency during pregnancy and lactation leads to the impairment of learning and memory function in offspring, and that OZS, instead of intravenous transfusion zinc supplementation, can recover the impairment of spatial learning and memory function.

  19. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  20. Dietary intake of Zinc, serum levels of Zinc and risk of gastric cancer: A review of studies

    Directory of Open Access Journals (Sweden)

    Sayyed Saeid Khayyatzadeh

    2015-01-01

    Full Text Available Gastric cancer (GC is considered as most fourth common cancer in the world. Findings from animal, experimental and epidemiologic studies indicate that diet plays an important role in the etiology of stomach cancer. Among dietary factors, Zinc status has received great attention in recent years. The purpose of the present study was to review the association of serum levels of Zinc, dietary intake of Zinc and GC risk. A complete search was performed about the association of Zinc status and risk of GC was in databases electronic through such as ISI web of science, PubMed, Scopus, IrMedx and SID. Our results of current review suggest that dietary intake of Zinc and serum levels of Zinc are lower in GC patient. In other word, high serum levels of Zinc may be protective in GC risk. However, it seems further studies in particular epidemiological studies with large scale setting are required to reach a definite conclusion.

  1. Iron and zinc concentrations and /sup 59/Fe retention in developing fetuses of zinc-deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.

    1987-11-01

    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of /sup 59/Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing /sup 59/Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for /sup 59/Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of /sup 59/Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more /sup 59/Fe in the plasma fraction.

  2. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    Science.gov (United States)

    Belardi, G; Lavecchia, R; Medici, F; Piga, L

    2012-10-01

    The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357°C and 906°C the boiling point of mercury and zinc and 1564°C the melting point of Mn(2)O(3). Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400°C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000°C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200°C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.

  3. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential.

    Directory of Open Access Journals (Sweden)

    Michiel Stork

    Full Text Available Since the concentration of free iron in the human host is low, efficient iron-acquisition mechanisms constitute important virulence factors for pathogenic bacteria. In Gram-negative bacteria, TonB-dependent outer membrane receptors are implicated in iron acquisition. It is far less clear how other metals that are also scarce in the human host are transported across the bacterial outer membrane. With the aim of identifying novel vaccine candidates, we characterized in this study a hitherto unknown receptor in Neisseria meningitidis. We demonstrate that this receptor, designated ZnuD, is produced under zinc limitation and that it is involved in the uptake of zinc. Upon immunization of mice, it was capable of inducing bactericidal antibodies and we could detect ZnuD-specific antibodies in human convalescent patient sera. ZnuD is highly conserved among N. meningitidis isolates and homologues of the protein are found in many other Gram-negative pathogens, particularly in those residing in the respiratory tract. We conclude that ZnuD constitutes a promising candidate for the development of a vaccine against meningococcal disease for which no effective universal vaccine is available. Furthermore, the results suggest that receptor-mediated zinc uptake represents a novel virulence mechanism that is particularly important for bacterial survival in the respiratory tract.

  4. Classification of the treble clef zinc finger: noteworthy lessons for structure and function evolution

    Science.gov (United States)

    Kaur, Gurmeet; Subramanian, Srikrishna

    2016-01-01

    Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the DUF1364 family. The structural malleability of TCs is evident from the many examples with variations to the core structural elements of the fold. We observe domains wherein the structural core of the TC fold is circularly permuted, and also some examples where the overall fold resembles both the TC motif and another unrelated fold. All extant TC families do not share a monophyletic origin, as several TC proteins are known to have been present in the last universal common ancestor and the last eukaryotic common ancestor. We identify several TCs where the zinc-chelating site and residues are not merely responsible for structure stabilization but also perform other functions, such as being redox active in C1B domain of protein kinase C, a nucleophilic acceptor in Ada and catalytic in organomercurial lyase, MerB. PMID:27562564

  5. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG.

    Science.gov (United States)

    Formosa-Dague, Cécile; Speziale, Pietro; Foster, Timothy J; Geoghegan, Joan A; Dufrêne, Yves F

    2016-01-12

    Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between β-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.

  6. Nosotros y el cinc We and zinc

    Directory of Open Access Journals (Sweden)

    D. I. Florea

    2012-06-01

    Full Text Available La Nutrición es la base de los procesos fisiológicos humanos. Una nutrición inadecuada puede inducir a la disfunción en eslabones de la cadena metabólica. Todos los nutrientes esenciales son imprescindibles y el déficit o exceso de cualquiera de ellos conlleva a efectos adversos en la salud. El cinc es un micronutriente extensamente demandado en el organismo, como lo demuestra la amplia diversidad de funciones biológicas que presenta. La ingesta de cinc presenta un gran margen en la población mundial actual, pudiendo ser de 7 mg/d en Reino Unido y llegando a 15 mg/d en EEUU, aunque por supuesto, las RDAs se fijan en función de la edad, sexo, situación fisiológica (embarazo, lactancia, etc., o enfermedad. Se conoce que el cinc es fundamental para la estructura y funcionamiento del DNA y así como de enzimas, coenzimas, hormonas, etc. La vida del cinc es corta, dado que la mayor cantidad se absorbe y rápidamente es transferida a depósitos, donde se almacena, por lo tanto la cantidad se cinc disponible en sangre puede no ser la cantidad "real". En el presente trabajo hemos realizado una breve revisión del paso del cinc por nuestro organismo, tratando desde su ingesta hasta su recorrido por la sangre tanto en personas sanas como enfermas.Nutrition is the basis of human physiological processes. Inadequate nutrition can lead to dysfunction in the metabolic chain links. One of the most important micronutrients is zinc, as evidenced by its wide range of carriers in the body. Zinc intake has a large margin in the current world population, may be 7 mg/d in the UK, reaching 15 mg/d in the U.S., although of course, the RDA's are set according to age, sex , physiological status (pregnancy, lactation, etc.., or disease. It is known that zinc is essential for the structure and function as well as DNA and enzymes, coenzymes, hormones and so on. Life is short, zinc, since the most rapidly absorbed and is transferred to tanks where it is stored, so

  7. Metallothionein as an Anti-Inflammatory Mediator

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Inoue

    2009-01-01

    Full Text Available The integration of knowledge concerning the regulation of MT, a highly conserved, low molecular weight, cystein-rich metalloprotein, on its proposed functions is necessary to clarify how MT affects cellular processes. MT expression is induced/enhanced in various tissues by a number of physiological mediators. The cellular accumulation of MT depends on the availability of cellular zinc derived from the diet. MT modulates the binding and exchange/transport of heavy metals such as zinc, cadmium, or copper under physiological conditions and cytoprotection from their toxicities, and the release of gaseous mediators such as hydroxyl radicals or nitric oxide. In addition, MT reportedly affects a number of cellular processes, such as gene expression, apoptosis, proliferation, and differentiation. Given the genetic approach, the apparently healthy status of MT-deficient mice argues against an essential biological role for MT; however, this molecule may be critical in cells/tissues/organs in times of stress, since MT expression is also evoked/enhanced by various stresses. In particular, because metallothionein (MT is induced by inflammatory stress, its roles in inflammation are implied. Also, MT expression in various organs/tissues can be enhanced by inflammatory stimuli, implicating in inflammatory diseases. In this paper, we review the role of MT of various inflammatory conditions.

  8. Investigation of zinc biosorption by brewer's yeast cells

    Directory of Open Access Journals (Sweden)

    Dodić Siniša N.

    2005-01-01

    Full Text Available The highest amount of zinc (= 90% is bound after 3 hrs of contact at low initial (total concentrations of zinc in suspension of yeast, 10-100 mg/l at 10-30°C. The equilibrium between bound and free zinc ions is established after 6 hrs of contact time, independently on the total zinc concentration in yeast milk. No bigger changes of content of zinc bound to brewer's yeast cells was determined at temperatures 10°C and 30°C. 40% of bound zinc in the equilibrium state is bound during the first 15 min of contact of zinc ions and brewer's yeast cells at all initial (total zinc concentrations in suspension of yeast both at 10°C and 30°C. The "KEKAM" equation can be used for the description of kinetics of zinc biosorption by waste brewer's yeast cells, for the ranges of zinc concentration 10-100 mg/l at 30°C (mean correlation coefficient 0,96 and 60,0-100 mg/l at 10°C (mean correlation coefficient 0,95.

  9. Zinc and diabetes--clinical links and molecular mechanisms.

    Science.gov (United States)

    Jansen, Judith; Karges, Wolfram; Rink, Lothar

    2009-06-01

    Zinc is an essential trace element crucial for the function of more than 300 enzymes and it is important for cellular processes like cell division and apoptosis. Hence, the concentration of zinc in the human body is tightly regulated and disturbances of zinc homeostasis have been associated with several diseases including diabetes mellitus, a disease characterized by high blood glucose concentrations as a consequence of decreased secretion or action of insulin. Zinc supplementation of animals and humans has been shown to ameliorate glycemic control in type 1 and 2 diabetes, the two major forms of diabetes mellitus, but the underlying molecular mechanisms have only slowly been elucidated. Zinc seems to exert insulin-like effects by supporting the signal transduction of insulin and by reducing the production of cytokines, which lead to beta-cell death during the inflammatory process in the pancreas in the course of the disease. Furthermore, zinc might play a role in the development of diabetes, since genetic polymorphisms in the gene of zinc transporter 8 and in metallothionein (MT)-encoding genes could be demonstrated to be associated with type 2 diabetes mellitus. The fact that antibodies against this zinc transporter have been detected in type 1 diabetic patients offers new diagnostic possibilities. This article reviews the influence of zinc on the diabetic state including the molecular mechanisms, the role of the zinc transporter 8 and MT for diabetes development and the resulting diagnostic and therapeutic options.

  10. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean

    Science.gov (United States)

    Vance, Derek; Little, Susan H.; de Souza, Gregory F.; Khatiwala, Samar; Lohan, Maeve C.; Middag, Rob

    2017-02-01

    Zinc is vital for the physiology of oceanic phytoplankton. The striking similarity of the depth profiles of zinc to those of silicate suggests that the uptake of both elements into the opaline frustules of diatoms, and their regeneration from these frustules, should be coupled. However, the zinc content of diatom opal is negligible, and zinc is taken up into and regenerated from the organic parts of diatom cells. Thus, since opaline frustules dissolve deep in the water column while organic material is regenerated in the shallow subsurface ocean, there is little reason to expect the observed close similarity between zinc and silicate, and the dissimilarity between zinc and phosphate. Here we combine observations with simulations using a three-dimensional model of ocean circulation and biogeochemistry to show that the coupled distribution of zinc and silicate, as well as the decoupling of zinc and phosphate, can arise in the absence of mechanistic links between the uptake of zinc and silicate, and despite contrasting regeneration length scales. Our simulations indicate that the oceanic zinc distribution is, in fact, a natural result of the interaction between ocean biogeochemistry and the physical circulation through the Southern Ocean hub. Our analysis demonstrates the importance of uptake stoichiometry in controlling ocean biogeochemistry, and the utility of global-scale elemental covariation in the ocean in understanding these controls.

  11. Identification of the Human Zinc Transcriptional Regulatory Element (ZTRE)

    Science.gov (United States)

    Coneyworth, Lisa J.; Jackson, Kelly A.; Tyson, John; Bosomworth, Helen J.; van der Hagen, Eline; Hann, Georgia M.; Ogo, Ogo A.; Swann, Daniel C.; Mathers, John C.; Valentine, Ruth A.; Ford, Dianne

    2012-01-01

    Many genes with crucial roles in zinc homeostasis in mammals respond to fluctuating zinc supply through unknown mechanisms, and uncovering these mechanisms is essential to understanding the process at cellular and systemic levels. We detected zinc-dependent binding of a zinc-induced protein to a specific sequence, the zinc transcriptional regulatory element (ZTRE), in the SLC30A5 (zinc transporter ZnT5) promoter and showed that substitution of the ZTRE abrogated the repression of a reporter gene in response to zinc. We identified the ZTRE in other genes, including (through an unbiased search) the CBWD genes and (through targeted analysis) in multiple members of the SLC30 family, including SLC30A10, which is repressed by zinc. The function of the CBWD genes is currently unknown, but roles for homologs in metal homeostasis are being uncovered in bacteria. We demonstrated that CBWD genes are repressed by zinc and that substitution of the ZTRE in SLC30A10 and CBWD promoter-reporter constructs abrogates this response. Other metals did not affect expression of the transcriptional regulator, binding to the ZTRE or promoter-driven reporter gene expression. These findings provide the basis for elucidating how regulation of a network of genes through this novel mechanism contributes to zinc homeostasis and how the cell orchestrates this response. PMID:22902622

  12. Titanium(III) chloride mediated synthesis of furan derivatives: Synthesis of (±)-evodone

    Indian Academy of Sciences (India)

    S K Mandal; M Paira; S C Roy

    2010-05-01

    Titanocene(III) chloride (Cp2TiCl) mediated one-pot synthesis of furan derivatives has been accomplished. This radical method has been applied for the synthesis of a furanomonoterpene, evodone. Ti(III) species was prepared in situ from commercially available titanocene dichloride (Cp2TiCl2) and zinc dust in THF.

  13. Assimilation of zinc by Porcellio scaber (Isopoda, Crustacea) exposed to zinc

    Energy Technology Data Exchange (ETDEWEB)

    Bibic, A.; Drobne, D.; Strus, J. [Univ. of Ljubijana (Slovenia)

    1997-05-01

    The ability of terrestrial isopods to accumulate high amounts of metals, to survive in industrially polluted areas and respond to environmental contaminants in a dose-dependent manner makes them one of the most favorite experimental organisms for terrestrial ecotoxicology. Understanding metal uptake, assimilation and loss by these animals is important to explain how they cope with polluted environments. Metal uptake depends on the rate of food consumption, on metal availability in the food, on the pH inside the gut and some other factors. Isopods respond to high metal concentrations in the food in different ways and try to avoid the negative effects of metal poisoning. Zinc is one of the metals present in high concentrations in industrially polluted areas. Zinc poisoning may be avoided by the regulation of the consumption rate, by behavioral response, by storing metals in the hepatopancreas as insoluble granules, and by fecal, and possibly urinary, excretion. Zinc in organisms is a constituent of more than 200 metalloenzymes and other metabolic compounds and assures stability of biological molecules and structures. High Zn levels in food cause a reduction of feeding rate, affect growth and reproduction, cause changes in the structure of the digestive glands and influence the duration of the molting cycle. The present study investigated zinc assimilation by Porcellio scaber exposed to leaves contaminated with radioactively labeled zinc at five different concentrations. 17 refs., 2 figs., 2 tabs.

  14. Zinc injection in German PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Stellwag, B. [Framatome ANP GmbH, Erlangen (Germany); Juergensen, M. [Kernkraftwerk Obrigheim GmbH (Germany); Wolter, D. [RWE Power AG, Kraftwerk Biblis (Germany)

    2002-07-01

    Zinc injection for further reduction of radiation fields was introduced at Unit B of Biblis Nuclear Power Station in September 1996 and at Obrigheim Nuclear Power Station in February 1998. Zinc injection is still being implemented today at these plants. This paper gives an overview of the experience acquired with the method, including the annual refueling outages in the year 2001. The main topic addressed by the paper is the evolution of dose rates at the primary system and work-related doses since introduction of the method. Reductions in high dose rate areas have meanwhile achieved values of 40 to 50%. Annual collective doses per man-hour spent in the controlled access area of the plant as well as personal doses for specific activities are also decreasing. (authors)

  15. Zinc-redox battery: A technology update

    Science.gov (United States)

    Hollandsworth, R. P.

    Since 1977, scientists at Lockheed Missiles and Space Company, Inc., have been developing the Zinc-Redox Battery for large-scale electrical energy storage. The current state of technology for this battery has demonstrated a number of positive features: (1) high energy efficiency (82.6 +/- 4.4%) demonstrated for more than 754 cycles with a low-cost alpha-methyl styrene membrane; (2) minimal environmental concerns because the only toxic reactant is 2N sodium hydroxide, and thus low projected balance-of-plant costs; and (3) good cell performance over a wide range of discharge rates with cell IR being the main determinant of energy efficiency. Current studies have focused on zinc electrode performance parameters, high current density discharge evaluation, and low-cost membrane cycle-life performance.

  16. Synthesis of monoclinic zinc diphosphide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mowles, T.A.

    1978-05-01

    Monoclinic zinc diphosphide is a cheap, plentiful, direct-gap semiconductor with an optimum transition energy for solar absorption. Single crystals were grown from the vapor to be evaluated as a new photovoltaic material. Monoclinic and tetragonal crystal formed within evacuated quartz ampules that were charged with zinc and excess phosphorous and heated in a temperature gradient to give phosphorous pressures from 0.07 to 8.5 atmospheres. The monoclinic form melts incongruently near 990/sup 0/C. The tetragonal form is metastable; its growth is enhanced by impurities but retarded by high phosphorous pressures. The mechanism of the synthesis indicates that a tightly-controlled vapor deposition is possible and that high-quality thin films should form at temperatures from 950 to 990/sup 0/C at pressures below 10 atmospheres. By a modification of the technique, sesquizinc phosphide single crystals were grown for comparison.

  17. Iron and Zinc Exploitation during Bacterial Pathogenesis

    Science.gov (United States)

    Ma, Li; Terwilliger, Austen; Maresso, Anthony W.

    2016-01-01

    Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response. PMID:26497057

  18. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.

    Science.gov (United States)

    Herzberg, M; Bauer, L; Nies, D H

    2014-03-01

    Cupriavidus metallidurans strain CH34 accomplishes a high level of transition metal resistance by a combination of rather unspecific transition metal import and controlled efflux of surplus metals. Using the plasmid-free mutant strain AE104 that possesses only a limited number of metal efflux systems, cellular metal pools were identified as counterparts of these transport reactions. At low zinc concentrations strain AE104 took up Zn(II) until the zinc content reached an optimum level of 70,000 Zn(II) per cell in the exponential phase of growth, whereas a ΔzupT mutant lacking the zinc importer ZupT contained only 20,000 Zn(II)/cell, possibly the minimum zinc content. Mutant and parent cells accumulated up to 125,000 Zn(II) per cell at high (100 μM) external zinc concentrations (optimum zinc content). When the mutant strain Δe4, which has all the known genes for zinc efflux systems deleted, was cultivated in the presence of zinc concentrations close to its upper tolerance level (10 μM), these cells contained 250,000 Zn(II) per cell, probably the maximum zinc content. Instead of zinc, 120,000 cobalt or cadmium ions could also fill-up parts of this zinc pool, showing that it is in fact an undefined pool of divalent transition metal cations bound with low substrate specificity. Even when the cells contained sufficient numbers of total zinc, the zinc importer ZupT was required for important cellular processes, indicating the presence of a pool of tightly bound zinc ions, which depends on ZupT for efficient replenishment. The absence of ZupT led to the formation of inclusion bodies, perturbed oxidative stress resistance and decreased efficiency in the synthesis of the zinc-dependent subunit RpoC of the RNA polymerase, leading to RpoC accumulation. Moreover, when a czc allele for a zinc-exporting transenvelope efflux system CzcCBA was constitutively expressed in a ΔzupT mutant, this led to the disappearance of the CzcA protein and the central subunit of the protein

  19. Zinc Oxide Nanostructured Biosensor for Glucose Detection

    Institute of Scientific and Technical Information of China (English)

    X. W.Sun; J.X. Wang; A. Wei

    2008-01-01

    Zinc oxide (ZnO) nanocombs were fabricated by vapor phase transport, and nanorods and hierarchical nanodisk structures by aqueous thermal decomposition. Glucose biosensors were constructed using these ZnO nanostructures as supporting materials for glucose oxidase (GOx) loading. These ZnO glucose biosensors showed a high sensitivity for glucose detection and high affinity of GOx to glucose as well as the low detection limit. The results demonstrate that ZnO nanostructures have potential applications in biosensors.

  20. The Marine Biogeochemistry of Zinc Isotopes

    Science.gov (United States)

    2007-06-01

    dust (Niger) Sapropel (Mediterranean) 4* Deep-Sea Sediments * • Lobster Liver Mussel tissue Plankton Zooplankton Zinc ores * * * Sediment trap material...of natural plankton over large changes in nutrient concentrations in the Peru Upwelling Region. This suggests either that the isotope effect for Zn...hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton , and seawater. By measuring Zn isotopes in a diverse array of

  1. Impact properties of zinc die cast alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P. (MPM Technologies, Inc.); Goodwin, F.E. (ILZRO)

    2005-01-01

    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  2. Zinc Status of Vegetarians during Pregnancy: A Systematic Review of Observational Studies and Meta-Analysis of Zinc Intake.

    Science.gov (United States)

    Foster, Meika; Herulah, Ursula Nirmala; Prasad, Ashlini; Petocz, Peter; Samman, Samir

    2015-06-05

    Pregnant women are vulnerable to a low zinc status due to the additional zinc demands associated with pregnancy and foetal development. The present systematic review explores the relationship between habitual vegetarian diets and dietary zinc intake/status during pregnancy. The association between vegetarian diets and functional pregnancy outcome also is considered. A literature search was conducted of MEDLINE; PubMed; Embase; the Cochrane Library; Web of Science; and Scopus electronic databases up to September 2014. Six English-language observational studies qualified for inclusion in the systematic review. A meta-analysis was conducted that compared the dietary zinc intake of pregnant vegetarian and non-vegetarian (NV) groups; the zinc intake of vegetarians was found to be lower than that of NV (-1.38 ± 0.35 mg/day; p vegetarian nor NV groups met the recommended dietary allowance (RDA) for zinc. In a qualitative synthesis; no differences were found between groups in serum/plasma zinc or in functional outcomes associated with pregnancy. In conclusion; pregnant vegetarian women have lower zinc intakes than NV control populations and both groups consume lower than recommended amounts. Further information is needed to determine whether physiologic adaptations in zinc metabolism are sufficient to meet maternal and foetal requirements during pregnancy on a low zinc diet.

  3. Effects of Different Zinc Species on Cellar Zinc Distribution, Cell Cycle, Apoptosis and Viability in MDAMB231 Cells.

    Science.gov (United States)

    Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun

    2016-03-01

    Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.

  4. Linking zinc and leptin in chronic kidney disease: future directions.

    Science.gov (United States)

    Lobo, Julie Calixto; Aranha, Luciana Nicolau; Moraes, Cristiane; Brito, Luciana Catunda; Mafra, Denise

    2012-04-01

    Anorexia is a common complication in patients with chronic kidney disease (CKD) and is associated with the development of malnutrition and an increased risk of mortality. Several compounds are linked to anorexia in these patients; however, the mechanisms are unknown. Zinc (Zn) deficiency is associated with decreased food intake and has been observed in CKD patients. In addition, leptin is an anorexigenic peptide, and patients with CKD present generally high levels of this hormone. Studies have suggested an association between Zn and leptin status in human and rats; however, the results are inconsistent. Some claimed that Zn supplementation does not change leptin release or that there is no significant relationship between Zn and leptin. Others have reported that Zn might be a mediator of leptin production. CKD patients have hyperleptinemia and hypozincemia, but the relationship between Zn deficiency and leptin levels in CKD patients has been poorly understood until now. The aim of this review is to integrate knowledge on leptin and Zn actions to provide a cohesive clinical perspective regarding their interactions in CKD patients.

  5. Castor bean response to zinc fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Lucia Helena Garofalo; Cunha, Tassio Henrique Cavalcanti da Silva; Lima, Vinicius Mota; Cabral, Paulo Cesar Pinto; Barros Junior, Genival; Lacerda, Rogerio Dantas de [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola

    2008-07-01

    Zinc is a trace element and it is absolutely essential for the normal healthy growth of plants. This element plays a part of several enzyme systems and other metabolic functions in the plants. Castor beans (Ricinus communis L.) crop is raising attention as an alternative crop for oil and biodiesel production. Despite the mineral fertilization is an important factor for increasing castor beans yield, few researches has been made on this issue, mainly on the use of zinc. In order to evaluate the effects of zinc on growth of this plant an experiment was carried out in a greenhouse, in Campina Grande, Paraiba State, Brazil, from July to December 2007. The substrate for the pot plants was a 6 mm-sieved surface soil (Neossolo Quartzarenico). The experimental design was a completely randomized with three replications. The treatments were composed of five levels of Zn (0; 2; 4; 6 and 8 mg dm{sup -3}), which were applied at the time of planting. One plant of castor bean, cultivar BRS 188 - Paraguacu, was grown per pot after thinning and was irrigated whenever necessary. Data on plant height, number and length of leaves and stem diameter were measured at 21, 34, 77 and 103 days after planting. Under conditions that the experiment was carried out the results showed that the Zn levels used, did not affect the castor bean plants growth. (author)

  6. Antioxidant role of zinc in diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Kyria Jayanne Clímaco Cruz; Ana Raquel Soares de Oliveira; Dilina do Nascimento Marreiro

    2015-01-01

    Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity. Zinc plays an important role in antioxidant defense in type 2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme, by modulating the glutathione metabolism and metallothionein expression, by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotidephosphate-oxidase enzyme. Zinc also improves theoxidative stress in these patients by reducing chronichyperglycemia. It indeed promotes phosphorylation ofinsulin receptors by enhancing transport of glucose intocells. However, several studies reveal changes in zincmetabolism in individuals with type 2 diabetes mellitusand controversies remain regarding the effect of zincsupplementation in the improvement of oxidative stressin these patients. Faced with the serious challengeof the metabolic disorders related to oxidative stressin diabetes along with the importance of antioxidantnutrients in the control of this disease, new studies maycontribute to improve our understanding of the roleplayed by zinc against oxidative stress and its connectionwith type 2 diabetes mellitus prognosis. This could serveas a prelude to the development of prevention strategiesand treatment of disorders associated with this chronicdisease.

  7. Cadmium and zinc in pregnancy and lactation

    Energy Technology Data Exchange (ETDEWEB)

    Lucis, O.J.; Lucis, R.; Shaikh, Z.A.

    1972-07-01

    Radioactive cadmium (/sup 109/Cd) and zinc (/sup 65/Zn) were injected subcutaneously into pregnant rats. More cadmium than zinc was found in the placentae. After birth, newborns showed detectable /sup 109/Cd only in liver, gastrointestinal tract, and in the brain tissue. Zinc 65 was present in all newborns' tissues. During lactation, highest output of /sup 65/Zn was in colostrum and, on subsequent days, /sup 65/Zn in milk declined rapidly. Cadmium 109 in milk was present in low concentration throughout the lactation period. Rats injected with /sup 109/Cd and /sup 65/Zn after parturition excreted these isotopes in milk in a similiar pattern. Newborns nursed on radioactive milk showed rapid absorption of /sup 65/Zn, whereas /sup 109/Cd accumulated primarily in the intestinal tract; a lesser quantity of /sup 109/Cd was deposited in the liver. In other organs, only /sup 65/Zn was found. The lactating mammary gland contained more /sup 109/Cd than /sup 65/Zn; after lactation, /sup 65/Zn was depleted, whereas /sup 109/Cd remained in mammary tissue.

  8. Defect reactions in gallium antimonide studied by zinc and self-diffusion

    Science.gov (United States)

    Sunder, Kirsten; Bracht, Hartmut

    2007-12-01

    Extrinsic diffusion of zinc (Zn) in gallium antimonide (GaSb) under Ga-rich conditions was analyzed on the basis of the kick-out and the dissociative diffusion mechanism. It is concluded that the changeover of interstitial Zn to substitutional gallium (Ga) sites is mainly mediated by Ga interstitials ( IGa). Fitting of the Zn profiles provides the relative contributions of IGa to Ga diffusion. This contribution is lower than the directly measured Ga diffusion coefficient indicating that Ga diffusion in GaSb is rather mediated by Ga vacancies than by Ga interstitials even under Ga-rich conditions. This finding supports transformation reactions between native point defects that are confirmed by first-principles total-energy calculations. In addition Ga and Sb diffusion experiments under H22 atmosphere were performed to reconcile the controversial data on self-diffusion in GaSb published by Weiler et al. and Bracht et al.

  9. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    S K Rajappa; T V Venkatesha; B M Praveen

    2008-02-01

    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  10. Zinc as an adjunct for childhood pneumonia - interpreting early results.

    Science.gov (United States)

    Natchu, Uma Chandra Mouli; Fataki, Maulidi R; Fawzi, Wafaie W

    2008-07-01

    Zinc supplementation has been consistently shown to reduce the incidence of childhood pneumonia, but its effect on the course of pneumonia when administered as an adjunct to antibiotic therapy is still unclear. Three trials published to date have shown mixed results, and a recent trial from India raises the possibility that zinc may be detrimental in some circumstances. Study sites and designs differ, particularly in the timing of zinc treatment and in determining recovery from pneumonia, which can explain the differences in study findings. Serum zinc concentrations are unreliable indicators of zinc status, particularly during acute infectious illnesses. Subgroup analyses, especially using serum zinc levels, must be cautioned against. Future studies are needed that are large enough to be sufficiently powered to accommodate larger treatment failure rates, an issue that ongoing trials will hopefully address.

  11. Activation of transcriptional activity of HSE by a novel mouse zinc finger protein ZNFD specifically expressed in testis.

    Science.gov (United States)

    Xu, Fengqin; Wang, Weiping; Lei, Chen; Liu, Qingmei; Qiu, Hao; Muraleedharan, Vinaydhar; Zhou, Bin; Cheng, Hongxia; Huang, Zhongkai; Xu, Weian; Li, Bichun; Wang, Minghua

    2012-04-01

    Zinc finger proteins (ZFPs) that contain multiple cysteine and/or histidine residues perform important roles in various cellular functions, including transcriptional regulation, cell proliferation, differentiation, and apoptosis. The Cys-Cys-His-His (C(2)H(2)) type of ZFPs are the well-defined members of this super family and are the largest and most complex proteins in eukaryotic genomes. In this study, we identified a novel C(2)H(2) type of zinc finger gene ZNFD from mice which has a 1,002 bp open reading frame and encodes a protein with 333 amino acid residues. The predicted 37.4 kDa protein contains a C(2)H(2) zinc finger domain. ZNFD gene is located on chromosome 18qD1. RT-PCR analysis revealed that the ZNFD gene was specifically expressed in mouse testis but not in other tissues. Subcellular localization analysis demonstrated that ZNFD was localized in the nucleus. Reporter gene assays showed that overexpression of ZNFD in the COS7 cells activates the transcriptional activities of heat shock element (HSE). Overall, these results suggest that ZNFD is a member of the zinc finger transcription factor family and it participates in the transcriptional regulation of HSE. Many heat shock proteins regulated by HSE are involved in testicular development. Therefore, our results suggest that ZNFD may probably participate in the development of mouse testis and function as a transcription activator in HSE-mediated gene expression and signaling pathways.

  12. Effect of DHA and CoenzymeQ10 Against Aβ- and Zinc-Induced Mitochondrial Dysfunction in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Nadia Sadli

    2013-07-01

    Full Text Available Background: Beta-amyloid (Aβ protein is a key factor in the pathogenesis of Alzheimer's disease (AD and it has been reported that mitochondria is involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Coenzyme Q10 (CoQ10 is an essential cofactor involved in the mitochondrial electron transport chain and has been suggested as a potential therapeutic agent in AD. Zinc toxicity also affects cellular energy production by decreasing oxygen consumption rate (OCR and ATP turnover in human neuronal cells, which can be restored by the neuroprotective effect of docosahexaenoic acid (DHA. Method: In the present study, using Seahorse XF-24 Metabolic Flux Analysis we investigated the effect of DHA and CoQ10 alone and in combination against Aβ- and zinc-mediated changes in the mitochondrial function of M17 neuroblastoma cell line. Results: Here, we observed that DHA is specifically neuroprotective against zinc-triggered mitochondrial dysfunction, but does not directly affect Aβ neurotoxicity. CoQ10 has shown to be protective against both Aβ- and zinc-induced alterations in mitochondrial function. Conclusion: Our results indicate that DHA and CoQ10 may be useful for the prevention, treatment and management of neurodegenerative diseases such as AD.

  13. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    Science.gov (United States)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  14. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen

    2013-01-01

    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because...... the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two models are envisaged, the most stable (0001) surface and a kink surface. The kink model proves to be more....... The applied methodology provides new insight into computational modelling and design of secondary metal-air batteries....

  15. Growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition

    Science.gov (United States)

    Uno, Kazuyuki; Yamasaki, Yuichiro; Tanaka, Ichiro

    2017-01-01

    The growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition (mist-CVD) were experimentally investigated from the viewpoint of mist behaviors and chemical reactions. The proper growth model, either vaporization or the Leidenfrost model, was studied by supplying two kinds of mists with different kinds of sources, such as H2 16O and H2 18O for ZnO growth and ZnCl2 and thiourea for ZnS growth. Moreover, the origin of the oxygen atoms of ZnO was investigated using a quantitative analysis. The role of chloro complex of zinc in the growth of ZnS from aqueous solutions was also examined by systematic studies.

  16. Impact of residual elements on zinc quality in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2016-07-01

    Full Text Available The paper is focused on zinc oxide manufacturing process. The present work deals with the character and morphology of the input material for the production of ZnO by the indirect pyrometallurgical process. Undesirable phases in the feedstock can be identified through profound recognition of the source material and the nature of its microstructure. If these compounds diffuse into the lining during thermal processes, they become the cause of stress in metallurgical ceramics. The emergence of these chemical reactions may subsequently affect the entire metallurgical zinc smelting process. The results obtained by analysis are used to minimize waste - zinc slag and to eliminate the conditions which enable the formation of the undesired product, thereby increasing the productivity of the ZnO production.

  17. Deficiencia de zinc y sus implicaciones funcionales Zinc deficiency and its functional implications

    Directory of Open Access Journals (Sweden)

    JORGE L ROSADO

    1998-03-01

    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.The purpose of this article is to review theoretical aspects and research performed in Mexico suggesting the existence of marginal zinc deficiency in rural children and its consequences on health. Zinc is an indispensable nutrient for humans since it plays an important role in several metabolic pathways: it participates in the catalytic site of several enzymes, as a structural ion of biological membranes and is

  18. Jiangxi Copper Marching into Lead-zinc Industry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On November 13,Jiangxi Copper officially signed transfer agreement on the share rights of lead-zinc mines with Jiangxi Provincial Geol- ogy & Mineral Resources Bureau,marking the beginning of full-strategic cooperation between the two parties for the common exploitation of lead-zinc industry in the province. The Jiangxi Province is rich in lead-zinc re- sources,but most of them are in scattered lay-

  19. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    Science.gov (United States)

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  20. HYDROTHERMAL SYNTHESIS OF NANO-METER MICROPOROUS ZINC FERRITE

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Hu; Ping Guan; Xin Yan

    2004-01-01

    Nano-meter microporous zinc ferrite was prepared by a hydrothermal method, using triethylamine as a template. Adsorption curves showed that the product had a microporous structure. The effects of precursor pH, reaction temperature and reaction time on the preparation were studied, yielding optimal conditions: pH=11,448 K, 360 min. The morphology of zinc ferrite as observed by TEM, showed that zinc ferrite was well-crystallized and well-dispersed with little conglomeration.

  1. Zinc glycine chelate absorption characteristics in Sprague Dawley rat.

    Science.gov (United States)

    Yue, M; Fang, S L; Zhuo, Z; Li, D D; Feng, J

    2015-06-01

    This study was conducted to investigate absorption characteristics of zinc glycine chelate (Zn-Gly) by evaluating tissues zinc status and the expression of zinc transporters in rats. A total of 24 male rats were randomly allocated to three treatments and administered either saline or 35 mg Zn/kg body weight from zinc sulphate (ZnSO4 ) or Zn-Gly by feeding tube separately. Four rats per group were slaughtered and tissues were collected at 2 and 6 h after gavage respectively. Our data showed that Zn-Gly did more effectively in increasing (p < 0.05) serum zinc levels, and the activities of serum and liver alkaline phosphatase (ALP) and liver Cu/Zn superoxide dismutase (Cu/Zn SOD) at 2 and 6 h. By 2 h after the zinc load, the mRNA and protein abundance of intestinal metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) were higher (p < 0.05), and zinc transporter SLC39A4 (Zip4) lower (p < 0.05) in ZnSO4 compared to other groups. Zinc transporter SLC39A5 (Zip5) mRNA expression was not zinc responsive, but Zip5 protein abundance was remarkably (p < 0.05) increased in ZnSO4 2 h later. Overall, our results indicated that in short-term periods, Zn-Gly was more effective in improving body zinc status than ZnSO4 , and ZnSO4 did more efficiently on the regulation of zinc transporters in small intestine.

  2. Zinc and Diarrheal Disease: Current Status and Future Perspectives

    Science.gov (United States)

    2008-01-01

    therapy (ORS) has dramatically reduced mortality from dehydration caused by diarrhea - estimates of global mortality from diarrhea declined from...arc approximately 2.8 million Giardia Imnbliil infections per year. Recurrent asymptomatic and symptom~llic infec- tions by these and other...effects of zinc, not zinc· replacement therapy , as they also occur in the absence of zinc deficiency. Cholera is a common disease in many countries of

  3. HUBUNGAN ANTARA ZINC SERUM DENGAN STATUS GIZI LANSIA

    Directory of Open Access Journals (Sweden)

    Fitrah Emawati

    2012-11-01

    Full Text Available RELATIONSHIP BETWEEN ZINC SERUM AND NUTRITIONAL STATUS OF ELDERLY PEOPLE.Background: The findings of study that 30% in Bogor and 27% in Jakarta of elderly people were undernourished. Malnutrition may occur due to infection and low food intake. Among elderly people, one of the factors that causes low food intake is affected by impairment of taste sensory and teeth function. The impairment of taste sensory is influenced by zinc status in the body.Objective: To collect food consumption pattem data of zinc rich foods, zinc concentration in serum and to analyze association of zinc concentration and nutritional status.Methods: Research design was cross sectional, and conducted in two sub districts in Bogor city. The respondents were women in 60-75 years of age, no suffering from illnesses and chronically disease. The total respondent was 90 people, and divided into three groups of 30 peoples. Data gathered included respondent identity, physical examination, anthropometry, blood biochemical and zinc dietary consumption.Results: Zinc dietary consumption adequacy of underweight group was only 30% of recommended dietary allowance, while for normal and overweight groups were 40% of dietary allowance. Zinc serum concentration of underweight group (82 ug/dl was not significantly different with normal group (85 ug/dl, however differed significantly (p<0.05 with overweight group (95 ug/dl. Underweight group suffered 40% zinc deficiency, 27% for normal and only 7% for overweight group.Conclusions: Zinc deficiency was more prevalent in underweight group than that of normal and overweight group. [Panel Gizi Makan 2002,25: 26-33.Keywords: zinc serum concentration, zinc dietary consumption, underweight

  4. Zinc: Role in the management of diarrhea and cholera

    OpenAIRE

    Qadir, M Imran; Arshad, Arfa; Ahmad, Bashir

    2013-01-01

    Diarrhea and cholera are major health problems. Vibrio cholera, the causative agent of cholera, infects the small intestine, resulting in vomiting, massive watery diarrhea and dehydration. Reduced water and electrolyte absorption is also due to zinc deficiency. Zinc has an important role in recovery from the disease. The combination of zinc with cholera vaccine and oral rehydration solutions has a positive impact on cholera and diarrhea. It has led to a decrease in the mortality and morbidity...

  5. Role of zinc and zinc transporters in the molecular pathogenesis of diabetes mellitus.

    Science.gov (United States)

    Quraishi, Iram; Collins, Sibrina; Pestaner, Joseph P; Harris, Twaina; Bagasra, Omar

    2005-01-01

    Diabetes is one of the most common chronic diseases in the United States. An estimated 18.2 million people in the US (6.3%) have diabetes; among them 2.8 million are African Americans (AAs). On average, AAs are twice as likely to have diabetes as European Americans (EAs) of similar age. AAs disproportionately suffer from various diseases in the US. Many of these diseases include hypertension, cardiovascular disease (CVD), diabetes mellitus (DM-beta predominantly Type II), and cancers of the prostate and pancreas. A number of risk factors such as smoking, a high fat diet, little physical activity, stress, and meager access to health care have been the subject of numerous investigations. However, the factor of the interaction between genetics and the environment has received very little attention in the scientific community. Of note, the content of zinc in pancreatic beta gells is among the highest in the body; however, very little is known about the uptake and storage of zinc inside these cells. We hypothesize that one of the major reason AAs disproportionally suffer from DM (as well as some other illnesses like prostate cancer, CVD and hypertension) is due to their inherent inability to transport appropriate amount of zinc in the crucial cell types that require relatively higher amount of zinc than the other cell types. In this article, we will explore in detail the possible genetic and environmental link between human zinc transporters (hZIPs) and their differential expressions in the islet beta cells from AAs as compared to other racial groups, particularly EAs, in both normal healthy individuals and diabetic patients. We hypothesize that the hZIPs play an important role in the development of diabetes, and the main reason AAs disproportionately suffer from DM (as well as other illnesses like prostate and pancreatic cancers, hypertension, and CVD) as compared to EAs may be due the low degree of expressions of the critical zinc transporters in the beta cells

  6. Dietary polyphenols display zinc ionophore activity and modulate zinc signaling in hepatocarcinoma cells

    OpenAIRE

    2015-01-01

    El zinc es el metal de transición más abundante después del hierro en todas las células, y un micronutriente esencial, presentando diversas funciones en sistemas biológicos. Por otra parte, los polifenoles de la dieta son micronutrientes bioactivos que muestran numerosos beneficios para la salud, tales como actividad antitumoral y neuroprotectora. Anteriores trabajos de nuestro grupo de investigación han demostrado que los polifenoles interaccionan con cationes de zinc y tienen la capacidad d...

  7. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites

    OpenAIRE

    Zahid, Henna; Miah, Layeque; Lau, Andy; Brochard, Lea; Hati, Debolina; Bui, T. T.; Drake, A. F.; Gor, Jayesh; Perkins, Stephen J.; McDermott, Lindsay C.

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigate...

  8. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  9. Cadmium and zinc relationships in kidney cortex, liver, and pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G.; Piscator, M.; Linnman, L.

    1977-06-01

    Zinc and cadmium have been determined in kidney cortex, liver, and pancreas from 292 subjects autopsied in Stockholm, Sweden. In the liver and pancreas zinc was found to have a normal frequency distribution, average 45.3 ..mu..g/g and 26.9 ..mu..g/g wet wt, respectively. The concentrations of zinc in these two organs were constant regardless of age at death. Zinc was shown to accumulate with age in the kidney cortex in a way similar to cadmium, and had a log-normal distribution. The calculation of the regression line between individual cadmium concentrations below 60 ..mu..g/g and zinc concentrations gave a slope constant of 0.61 (Y/sub Zn/ = 0.61 X/sub Cd/ + 24.4), which corresponds to a nearly equimolar increase of zinc. The concentrations of ''physiological zinc,'' i.e., total zinc minus the zinc related to cadmium, were normally distributed (anti x = 24.6 ..mu..g Zn/g) and did not change with age. Furthermore, data on dry weight/wet weight ratios and ash weight/dry weight ratios in relation to age are presented.

  10. Trophic skin ulceration of leprosy: skin and serum zinc concentrations.

    Science.gov (United States)

    Oon, B B; Khong, K Y; Greaves, M W; Plummer, V M

    1974-06-08

    Skin and serum zinc measurements have been made in patients with leprosy with and without trophic skin ulceration and in several other groups. Serum zinc concentrations were decreased in leprosy irrespective of the presence or absence of skin ulceration. Serum zinc concentrations in leprosy were also unrelated to smears positive for Mycobacterium leprae and to the clinical type of leprosy. Since a decrease of the serum zinc was also found in patients with dermatitis herpetiformis and pulmonary tuberculosis it seems likely that the decreased serum zinc in leprosy is a nonspecific metabolic consequence of chronic skin and internal disease. The mean skin zinc concentration in leprosy did not differ significantly from the corresponding value in control subjects, the lack of agreement between serum and skin concentrations being possibly related to the presence of nonexchangeable keratin-bound zinc in skin. Though the clinical significance of lowered serum zinc concentrations in leprosy is uncertain therapeutic trials of zinc treatment in leprosy with trophic skin ulceration seem justifiable.

  11. Phytic acid reduction in soy protein improves zinc bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. (Univ. of Illinois, Urbana (United States) Mead Johnson Research Center, Evansville, IN (United States))

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  12. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  13. Zinc Modulates Nanosilver-Induced Toxicity in Primary Neuronal Cultures.

    Science.gov (United States)

    Ziemińska, Elżbieta; Strużyńska, Lidia

    2016-02-01

    Silver nanoparticles (NAg) have recently become one of the most commonly used nanomaterials. Since the ability of nanosilver to enter the brain has been confirmed, there has been a need to investigate mechanisms of its neurotoxicity. We previously showed that primary neuronal cultures treated with nanosilver undergo destabilization of calcium homeostasis via a mechanism involving glutamatergic NMDA receptors. Considering the fact that zinc interacts with these receptors, the aim of the present study was to examine the role of zinc in mechanisms of neuronal cell death in primary cultures. In cells treated with nanosilver, we noted an imbalance between extracellular and intracellular zinc levels. Thus, the influence of zinc deficiency and supplementation on nanosilver-evoked cytotoxicity was investigated by treatment with TPEN (a chelator of zinc ions), or ZnCl(2), respectively. Elimination of zinc leads to complete death of nanosilver-treated CGCs. In contrast, supplementation with ZnCl(2) increases viability of CGCs in a dose-dependent manner. Addition of zinc provided protection against the extra/intracellular calcium imbalance in a manner similar to MK-801, an antagonist of NMDA receptors. Zinc chelation by TPEN decreases the mitochondrial potential and dramatically increases the rate of production of reactive oxygen species. Our results indicate that zinc supplementation positively influences nanosilver-evoked changes in CGCs. This is presumed to be due to an inhibitory effect on NMDA-sensitive calcium channels.

  14. Influence of Cortisol on zinc metabolism in morbidly obese women

    Directory of Open Access Journals (Sweden)

    Luana Mota Martins

    2014-01-01

    Full Text Available Introduction: The accumulation of visceral fat affects the metabolism of hormones and some nutrients, but these mechanisms remain unclear. Objective: To assess the influence of cortisol on the metabolism of zinc in morbidly obese women. Method: Cross-sectional, case-control study involving 80 women aged between 20 and 59 years. The participants were divided into two groups: experimental (morbidly obese, n = 40 and control (normal weight, n = 40. Zinc concentrations were determined by atomic absorption spectroscopy and serum and urinary cortisol by chemiluminescence method. Results: Zinc intake was significantly different between groups. Mean plasma zinc was lower in obese compared to control group. Mean values for erythrocyte zinc were 44.52 ± 7.84 μg/gHb and 40.17 ± 6.71 μg/gHb for obese and control groups, respectively. Urinary excretion of this mineral was higher in obese compared to control subjects (p 0.05. The correlation analysis between cortisol and zinc was not significant (p > 0.05. Conclusions: Obese patients have hypozincemia and high erythrocyte zinc levels. The correlation between zinc parameters and cortisol concentration showed no influence of this hormone on zinc metabolism.

  15. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Peralta

    2016-07-01

    Full Text Available Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  16. Copper and zinc concentrations in serum of healthy Greek adults

    Energy Technology Data Exchange (ETDEWEB)

    Kouremenou-Dona, Eleni [A' Hospital of IKA, Athens (Greece); Dona, Artemis [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)]. E-mail: artedona@med.uoa.gr; Papoutsis, John [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece); Spiliopoulou, Chara [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)

    2006-04-15

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46 {+-} 23.56 {mu}g/dl and 77.11 {+-} 17.67 {mu}g/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries.

  17. Zinc content of maturing spermatozoa in oestrogen treated rats.

    Science.gov (United States)

    Srivastava, A; Chowdhury, A R; Setty, B S

    1983-02-01

    Zinc content of spermatozoa collected from the caput and cauda portions of the rat epididymis was determined by atomic absorption spectroscopy. The results showed about 60% reduction in the spermatozoal zinc content by the time they reach the cauda epididymis. This reduction was inhibited in rats receiving micro dose oestrogen which induced 'functional' sterility. It appears that the fall in zinc content of spermatozoa during their transport in the epididymis is related to sperm maturation and that oestrogen treatment interferes with this reduction in sperm zinc content.

  18. Effect of Zinc Toxicity on Lymphoid Organs in Chickens

    Institute of Scientific and Technical Information of China (English)

    CUI Heng-min; ZHAO Cui-yan; LI De-bing; PENG Xi; DENG Jun-liang

    2004-01-01

    The experiment was conducted with the objective of studies on effects of zinc toxicity on lymphoid organs by the methods of experimental pathology and flow cytometry (FCM). 200one-day-old Avian broilers were divided into four groups randomly, and fed on diets as follows: controls (Zn 100mg kg-1)and zinc toxic (Zn 1 500mg kg-1, zinc toxic group Ⅰ; Zn 2 000 mg kg-1, zinc toxic group Ⅱ; Zn 2 500 mg kg-1, zinc toxic group Ⅲ) for seven weeks. The weight and growth index of the thymus, spleen and bursa of Fabricius were reduced in both zinc toxic group Ⅱ and zinc toxic group Ⅲ when compared with those of control group. The G0/G1 phase of the cell cycles of the lymphoid organs was higher, and S, G2+M phases lower in zinc toxic groups Ⅱ and Ⅲ than in control group. Lymphocytes were depleted and degenerate in the lymphoid organs. The reticular cells of the bursa of Fabricius proliferated and the reticular cells of the thymus were also degenerate and necrotic,particularly in zinc toxic groups Ⅱ and Ⅲ. The results demonstrated that more than 1 500 mg kg-1 impaired the progression of lymphocytes from the G0/G1 phase to S phase obviously, inhibited the development of lymphoid organs and caused marked pathological changes in the lymphoid organs. Potential mechanisms underlying these observations are also discussed.

  19. Anti-ulcer and membrane stabilizing actions of zinc acexamate.

    Science.gov (United States)

    Pfeiffer, C J; Bulbena, O; Esplugues, J V; Escolar, G; Navarro, C; Esplugues, J

    1987-01-01

    The effects of zinc acexamate on stress and reserpine ulcers as well as on gastric mast cells degranulation and membrane stability were evaluated in the rat. Zinc acexamate (100 mg/kg) has demonstrated an inhibitory effect on cold-restraint stress and reserpine-induced ulcer in a dose-dependent manner. Pretreatment of rats, prior to cold restraint stress, reduced gastric mast cell degranulation. Zinc acexamate (10(-4) M) inhibits Triton X-100 release of beta-glucuronidase in isolated hepatic lysosomes. These observations suggest that ulcer protective actions of zinc acexamate may be exerted in part through enhancing gastric mucosal resistance by stabilizing biological membrane integrity.

  20. Intensification of zinc dissolution process in sulphuric acid

    Directory of Open Access Journals (Sweden)

    Stanojević D.

    2005-01-01

    Full Text Available Many high purity salts are produced by dissolving pure metal in non-oxidizing mineral acids. If hydrogen overpotential on the given metal is high, then the rate of overall process is defined by reaction of hydrogen ion reduction. This study investigated the possibility of accelerated dissolving of metal zinc in sulphuric acid by introducing copper cathode on which evolving hydrogen is much easier than on zinc. It was found out that the acceleration of zinc dissolving is possible and, at constant surface of copper cathode depends on the quality of electrical contact between copper electrode and zinc.

  1. Abnormalities of zinc and copper during total parenteral nutrition.

    Science.gov (United States)

    Lowry, S F; Goodgame, J T; Smith, J C; Maher, M M; Makuch, R W; Henkin, R I; Brennan, M F

    1979-01-01

    Changes in serum zinc and copper levels were studied in 19 tumor bearing patients undergoing parenteral nutrition (TPN) for five to 42 days. Before initiation of intravenous feeding mean serum zinc and copper concentrations were within normal limits but during TPN levels decreased significantly below those measured prior to parenteral nutrition. During TPN nitrogen, zinc, and copper intake, urinary output and serum levels were studied prospectively in nine of these patients. These nine patients exhibited positive nitrogen retention based upon urinary nitrogen excretion, but elevated urinary zinc and copper excretion and lowered serum zinc and copper concentrations. Neither blood administration nor limited oral intake was consistently able to maintain normal serum levels of zinc or copper. Zinc and copper supplementation of hyperalimentation fluids in four patients studied for five to 16 days was successful in increasing serum zinc and copper levels in only two. The data obtained suggest that patients undergoing parenteral nutrition may require supplementation of zinc and copper to prevent deficiencies of these elements. PMID:103506

  2. Serum zinc levels in newborns with neural tube defects.

    Science.gov (United States)

    Golalipour, Mohammad Jafar; Mansourian, Azad Reza; Keshtkar, Abasali

    2006-09-01

    Neural tube defects (NTD) comprise of a group of congenital malformations that include spina bifida, anencephaly and encephalocele. Reports have implicated zinc deficiency as one of the causative factors of NTDs. We compared the serum zinc level of 23 newborns having neural tube defects with 35 healthy controls by spectrophotometery during 2003-2004. Zinc deficiency was documented in 43.5% of the cases and 8.6% of the controls (P = 0.002). Multivariate logistic regression analysis revealed a significant association between the presence of NTDs and zinc deficiency (OR = 8.2, 95% Cl: 1.9-34.7).

  3. Differences in zinc status between patients with osteoarthritis and osteoporosis

    DEFF Research Database (Denmark)

    Ovesen, Janne; Møller-Madsen, Bjarne; Nielsen, Poul Torben

    2009-01-01

    Zinc has been suggested to play an important role in the development of osteoporosis, whereas the influence of zinc on osteoarthritis has attracted much less attention. The aim of the study was to investigate and compare the zinc status and bone turnover, density, and biomechanical properties...... of osteoarthritic and osteoporotic patients. The study comprised 40 women who underwent hip replacement due to osteoarthritis or osteoporosis. Serum and urine zinc content, and bone resorption markers and serum bone formation markers were determined. The unaffected hip and the exarticulated affected femoral head...... that osteoporosis and osteoarthritis rarely occur in the same individual....

  4. Behavioral impairments in animal models for zinc deficiency

    Directory of Open Access Journals (Sweden)

    Simone eHagmeyer

    2015-01-01

    Full Text Available Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.

  5. Benefits and drawbacks of zinc in glass ionomer bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Delia S; Hill, Robert G [Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gentleman, Eileen; Stevens, Molly M [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Farrar, David F, E-mail: d.brauer@qmul.ac.uk [Smith and Nephew Research Centre, York Science Park, Heslington YO10 5DF (United Kingdom)

    2011-08-15

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 {mu}M Zn{sup 2+} or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  6. Impact of high dietary zinc on zinc accumulation, enzyme activity and proteomic profiles in the pancreas of piglets.

    Science.gov (United States)

    Pieper, R; Martin, L; Schunter, N; Villodre Tudela, C; Weise, C; Klopfleisch, R; Zentek, J; Einspanier, R; Bondzio, A

    2015-04-01

    The exocrine pancreas plays an important role in zinc homeostasis. Feeding very high (2000-3000mgzinc/kg diet) levels of zinc oxide to piglets for short periods is a common practice in the swine industry to improve performance and prevent diseases. The impact on pancreatic function and possible side effects during long-term feeding of high dietary zinc levels are still poorly understood. A total of 54 weaned piglets were either fed with low (57mg/kg, LZn), normal (164mg/kg, NZn) or high (2425mg/kg, HZn) zinc concentration in the diets. After 4 weeks of feeding, ten piglets per treatment were euthanized and pancreas samples were taken. Tissue zinc concentration and metallothionein abundance was greater with HZn compared with NZn and LZn (Ppancreas tissue was higher with HZn diets compared with the other treatments (Ppancreas of young pigs. The data provide new insights into pancreatic function under outbalanced zinc homeostasis.

  7. Identification of the human zinc transcriptional regulatory element (ZTRE): a palindromic protein-binding DNA sequence responsible for zinc-induced transcriptional repression

    NARCIS (Netherlands)

    Coneyworth, L.J.; Jackson, K.A.; Tyson, J.; Bosomworth, H.J.; Hagen, E.A.E. van der; Hann, G.M.; Ogo, O.A.; Swann, D.C.; Mathers, J.C.; Valentine, R.A.; Ford, D.

    2012-01-01

    Many genes with crucial roles in zinc homeostasis in mammals respond to fluctuating zinc supply through unknown mechanisms, and uncovering these mechanisms is essential to understanding the process at cellular and systemic levels. We detected zinc-dependent binding of a zinc-induced protein to a spe

  8. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly:A randomized double-blind placebo-controlled trial

    Science.gov (United States)

    Background: Zinc is essential for the regulation of immune response. T cell function declines with age. Zinc supplementation has the potential to improve serum zinc concentrations and immunity of nursing home elderly with low serum zinc concentration. Objective: We aimed to determine the effect of ...

  9. Zinc bioavailability in rats fed a plant-based diet: a study of fermentation and zinc supplementation

    Directory of Open Access Journals (Sweden)

    Claudia E. Lazarte

    2015-11-01

    Full Text Available Background: Zinc deficiency is a significant problem, in developing countries and in vegetarians, which can be caused by plant-based diets. Thus, dietary strategies, such as fermentation, to improve zinc bioavailability of diets should be investigated. Objective: To improve zinc bioavailability in a plant-based diet by the inclusion of fermented food. Design: Cassava tubers were fermented and made to replace the unfermented cassava in a basal plant-based diet, and compared with plant-based diets with and without zinc supplement. The zinc bioavailability of the diets was evaluated in Wistar rats that were fed these diets for 28 days. The evaluation was for zinc apparent absorption (ZnAA, serum zinc levels, and zinc deposits in liver and femur; in addition, the feed efficiency ratio (FER of the diets and femur weight (FW of the rats were evaluated. Results: During the cassava fermentation, lactic acid increased and pH decreased (from 6.8 to 3.9, which is favorable for native phytase activity, resulting in a 90.2% reduction of phytate content in cassava. The diet containing fermented cassava showed significantly higher levels of ZnAA, FER, and FW (p<0.001. Moreover, the zinc levels in serum and femur were significantly higher (p<0.001 compared with the results of the diet with unfermented cassava. The results clearly show a higher zinc bioavailability in the diet containing fermented cassava and are comparable with the results obtained with the plant-based diet with zinc supplement. Conclusions: In conclusion, the fermentation of cassava reduces the phytate content. The diet containing the fermented cassava represents a better nutritional alternative than the diet with unfermented cassava and is comparable with the zinc-supplemented diets.

  10. Ultrafine Zinc and Nickel, Palladium, Silver Coated Zinc Particles Used for Reductive Dehalogenation of Chlorinated Ethylenes in Aqueous Solution

    OpenAIRE

    Li, Weifeng; Kenneth J. Klabunde

    1998-01-01

    Zero-valent zinc metal has been employed for the reductive dehalogenation of chlorinated ethylenes. In order to enhance this environmental remediation chemistry, ultrafine zinc particles and transition metal additives (coatings) have been employed. Indeed, activated zinc (cryozinc) significantly enhanced the reduction/dehalogenation process, especially in the presence of nickel and palladium coatings. These reagents were able to achieve rapid, deep reductive dehalogenation of trichloroethylen...

  11. X-ray absorption fine structure analysis of the local environment of zinc in dentine treated with zinc compounds.

    Science.gov (United States)

    Takatsuka, Tsutomu; Hirano, Junko; Matsumoto, Hitoshi; Honma, Tetsuo

    2005-04-01

    It has been reported that zinc oxide (ZnO) inhibits dentine demineralization. By using the X-ray absorption fine structure (XAFS) technique, our aims in this study were to provide information about the local environment of zinc atoms in dentine that had been treated with zinc compounds. We measured the Zn K-edge X-ray absorption near-edge structure (XANES) and the extended X-ray absorption fine structure (EXAFS) of dentine specimens treated with zinc chloride or ZnO. In XAFS analyses, the spectra of dentine specimens treated with ZnO (D-ZO) or with zinc chloride (D-ZC) were similar and obviously different from the reference ZnO spectrum. This suggests that most of the zinc atoms detected in D-ZO are not derived from particles of ZnO. The spectra of D-ZO and D-ZC were similar to the spectrum of the synthetic, zinc-containing hydroxyapatite, but were not similar to that of zinc in ZnCl2-treated collagen. The results of this study suggest that most of the zinc atoms detected were attached to hydroxyapatite and not to collagen.

  12. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    Energy Technology Data Exchange (ETDEWEB)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O' Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes

  13. Etapas iniciales del zinc runoff en clima tropical Etapas iniciales del zinc runoff en clima tropical

    Directory of Open Access Journals (Sweden)

    Meraz, E.

    2007-04-01

    Full Text Available Frecuently used metals in building application are Zinc and hot dip galvanized steel. The zinc has a relativelly good atmospheric resitance, due to its oxidation in air and formation of protective layer. However, some of the zinc corrosion products can be dissolved by pluvial precipitations and water condensed on the metal surface. This process is called metal runof. In order to estimate el zinc runoff in humid tropical climate, since its firs stages, samples of pure zinc and hot dip galvanized steel have been exposed during 2 years in outdorr atmosphere (rural and urban. The data reveal high annual values of zinc runoff (8,20–12,40 ±0.30 g/m2año, being this process 80% of total mass loss of corroded zinc. The runoff and corrosion processes are more accelerated for zinc, than that of galvanized steel. The principal factors that control the runoff process are discussed.

    El zinc y acero galvanizado (hot dip se utilizan frecuentemente como materiales de construcción. El zinc tiene relativamente buena resistencia en la atmósfera debido a su oxidación en el aire, formando una capa protectora. Sin embargo, algunos productos de corrosión de zinc pueden ser disueltos por las lluvias y agua condensada sobre la superficie del metal. Este proceso es conocido como runoff del metal. Con el objetivo de estimar el proceso de runoff de zinc desde sus primeras etapas en clima tropical húmedo, muestras de zinc puro y acero galvanizado han sido expuestas en atmósfera abierta (rural y urbana durante 2 años. Los resultados revelan altos valores de runoff de zinc (8,20–12,40 ±0,30 g/m2año, siendo este, hasta 80 % de la masa total perdida por corrosión del zinc. El proceso runoff y de corrosión es más acelerado en el zinc, que en el acero galvanizado. Se discuten los principales factores que controlan el proceso runoff.

  14. Potential ecological risk assessment and predicting zinc accumulation in soils.

    Science.gov (United States)

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2017-02-22

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg(-1) d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg(-1) d.m. (0.01 mol dm(-3) CaCl2), and between 0.03 and 71.54 mg kg(-1) d.m. (1 mol dm(-3) NH4NO3). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90

  15. Zinc deficiency is common in several psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Ole Grønli

    Full Text Available BACKGROUND: Mounting evidence suggests a link between low zinc levels and depression. There is, however, little knowledge about zinc levels in older persons with other psychiatric diagnoses. Therefore, we explore the zinc status of elderly patients suffering from a wide range of psychiatric disorders. METHODS: Clinical data and blood samples for zinc analyzes were collected from 100 psychogeriatric patients over 64 of age. Psychiatric and cognitive symptoms were assessed using the Montgomery and Aasberg Depression Rating Scale, the Cornell Scale for Depression in Dementia, the Mini-Mental State Examination, the Clockdrawing Test, clinical interviews and a review of medical records. In addition, a diagnostic interview was conducted using the Mini International Neuropsychiatric Interview instrument. The prevalence of zinc deficiency in patients with depression was compared with the prevalence in patients without depression, and the prevalence in a control group of 882 older persons sampled from a population study. RESULTS: There was a significant difference in zinc deficiency prevalence between the control group (14.4% and the patient group (41.0% (χ(2 = 44.81, df = 1, p<0.001. In a logistic model with relevant predictors, zinc deficiency was positively associated with gender and with serum albumin level. The prevalence of zinc deficiency in the patient group was significantly higher in patients without depression (i.e. with other diagnoses than in patients with depression as a main diagnosis or comorbid depression (χ(2 = 4.36, df = 1, p = 0.037. CONCLUSIONS: Zinc deficiency is quite common among psychogeriatric patients and appears to be even more prominent in patients suffering from other psychiatric disorders than depression. LIMITATIONS: This study does not provide a clear answer as to whether the observed differences represent a causal relationship between zinc deficiency and psychiatric symptoms. The blood sample collection time points

  16. Zinc in Pancreatic Islet Biology, Insulin Sensitivity, and Diabetes

    Science.gov (United States)

    Maret, Wolfgang

    2017-01-01

    About 20 chemical elements are nutritionally essential for humans with defined molecular functions. Several essential and nonessential biometals are either functional nutrients with antidiabetic actions or can be diabetogenic. A key question remains whether changes in the metabolism of biometals and biominerals are a consequence of diabetes or are involved in its etiology. Exploration of the roles of zinc (Zn) in this regard is most revealing because 80 years of scientific discoveries link zinc and diabetes. In pancreatic β- and α-cells, zinc has specific functions in the biochemistry of insulin and glucagon. When zinc ions are secreted during vesicular exocytosis, they have autocrine, paracrine, and endocrine roles. The membrane protein ZnT8 transports zinc ions into the insulin and glucagon granules. ZnT8 has a risk allele that predisposes the majority of humans to developing diabetes. In target tissues, increased availability of zinc enhances the insulin response by inhibiting protein tyrosine phosphatase 1B, which controls the phosphorylation state of the insulin receptor and hence downstream signalling. Inherited diseases of zinc metabolism, environmental exposures that interfere with the control of cellular zinc homeostasis, and nutritional or conditioned zinc deficiency influence the patho-biochemistry of diabetes. Accepting the view that zinc is one of the many factors in multiple gene-environment interactions that cause the functional demise of β-cells generates an immense potential for treating and perhaps preventing diabetes. Personalized nutrition, bioactive food, and pharmaceuticals targeting the control of cellular zinc in precision medicine are among the possible interventions.

  17. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  18. ANTIFUNGAL EFFECT OF ZINC OXIDE BASED PASTES CONTAINING VARIOUS ESSENTIAL OILS AGAINST CANDIDA ALBICANS AND COMPARISON OF ITS EFFECT WITH ZINC OXIDE EUGENOL

    OpenAIRE

    Dr.Nilima Thosar*, Dr. Manoj Chandak, Dr.Manohar Bhat, Dr.Silpi Basak

    2016-01-01

    Background: Endodontic treatment of primary teeth is required to eliminate microorganisms from the infected root canals having complex root canal anatomy. Objectives: To assess the antifungal effect of zinc oxide paste with tea tree oil, thyme oil, peppermint oil on candida albicans and to compare it with zinc oxide eugenol paste. Materials and methods: Zinc oxide pastes containing essential oils used in the present study were zinc oxide tea tree oil paste (ZOT); zinc oxide thyme oil ...

  19. Zinc Biofortification of Rice in China: A stimulation of zinc intake with different dietary patterns

    NARCIS (Netherlands)

    Qin, Y.; Boonstra, A.; Yuan, B.; Pan, X.; Dai, Yue

    2012-01-01

    A cross-sectional survey of 2819 adults aged 20 years and above was undertaken in 2002 in Jiangsu Province. Zinc intake was assessed using a consecutive 3-day 24-h dietary recall method. Insufficient and excess intake was determined according to the Chinese Dietary Recommended Intakes. Four distinct

  20. Zinc signaling in the hippocampus and its relation to pathogenesis of depression.

    Science.gov (United States)

    Takeda, Atsushi

    2012-06-01

    Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons, a subclass of glutamatergic neurons. Zn(2+) serves as a signal factor in both the extracellular and intracellular compartments. Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of hippocampal function, i.e., cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation

  1. Importance of luminal and mucosal zinc in the mechanism of experimental gastric ulcer healing.

    Science.gov (United States)

    Opoka, W; Adamek, D; Plonka, M; Reczynski, W; Bas, B; Drozdowicz, D; Jagielski, P; Sliwowski, Z; Adamski, P; Brzozowski, T

    2010-10-01

    induction (day 0) and at day 3 but then it rose significantly at day 7 after ulcer induction. Treatment with zinc hydroaspartate (65 mg/kg-d i.g.), which significantly raised the gastric luminal and mucosal levels of Zn(2+), significantly accelerated ulcer healing at day 7 upon ulcer induction. The GBF, which reached a significantly higher value at the ulcer margin than the ulcer bed, was significantly increased in rats treated with zinc hydroaspartate compared with vehicle-controls. The gastric acid output was significantly inhibited in GF rats with gastric ulcer at day 3 then restored at day 14 followed by a significant rise in the plasma gastrin levels. Treatment with zinc hydroaspartate significantly inhibited gastric secretion and also significantly raised the plasma gastrin level when compared to vehicle-control rats. We concluded that 1) trace micronutrients such as Zn(2+) could be successfully measured in the gastric juice and gastric mucosa during ulcer healing; 2) compounds chelating of Zn(2+) can exert a beneficial influence on the ulcer healing via Zn(2+) mediated increase in gastric microcirculation, antisecretory activity and gastrin release, which may enhance the cell proliferation and differentiation during ulcer healing, ultimately exerting a trophic action on the ulcerated gastric mucosa.

  2. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: Effect of composite precursors and titania as a blocking layer on photovoltaic performance

    Science.gov (United States)

    Habibi, Mohammad Hossein; Habibi, Amir Hossein; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-06-01

    This research investigates the performance of a zinc ferrite (ZF) as working electrodes in a dye-sensitized solar cell (DSSC). This ZF working electrode was prepared by sol-gel and thermal decomposition of four different precursors including: zinc acetate dihydrate (Zn(CH3COO)2ṡ2H2O), ferric nitrate nonahydrate (Fe(NO3)3ṡ9H2O), iron(III) acetate; Fe(C2H3O2)3, and zinc nitrate hexahydrate, Zn(NO3)2ṡ6H2O. The effects of annealing temperature and precursors on the structural, morphological, and optical properties were investigated. The field emission scanning electron microscope images (FESEM) and scanning electron microscopy (SEM) show that ZFe films are polycrystalline in nature and homogeneous with densely packed grains. Nanoporous zinc ferrite coatings were prepared by doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in DSSC. In all DSSCs, platinized FTO and [Co(bpy)3]2+/3+ in 3-methoxy proponitrile were used as counter electrode and redox mediator system respectively. Comparing the fill factors of four different zinc ferrite nanocomposites, the highest fill factor was for ZnFe2O4-TBL sample. Cell fabricated with ZnFeA working electrode shows relatively higher Jsc.

  3. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: effect of composite precursors and titania as a blocking layer on photovoltaic performance.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Habibi, Amir Hossein; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-06-01

    This research investigates the performance of a zinc ferrite (ZF) as working electrodes in a dye-sensitized solar cell (DSSC). This ZF working electrode was prepared by sol-gel and thermal decomposition of four different precursors including: zinc acetate dihydrate (Zn(CH3COO)2·2H2O), ferric nitrate nonahydrate (Fe(NO3)3·9H2O), iron(III) acetate; Fe(C2H3O2)3, and zinc nitrate hexahydrate, Zn(NO3)2·6H2O. The effects of annealing temperature and precursors on the structural, morphological, and optical properties were investigated. The field emission scanning electron microscope images (FESEM) and scanning electron microscopy (SEM) show that ZFe films are polycrystalline in nature and homogeneous with densely packed grains. Nanoporous zinc ferrite coatings were prepared by doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in DSSC. In all DSSCs, platinized FTO and [Co(bpy)3](2+/3+) in 3-methoxy proponitrile were used as counter electrode and redox mediator system respectively. Comparing the fill factors of four different zinc ferrite nanocomposites, the highest fill factor was for ZnFe2O4-TBL sample. Cell fabricated with ZnFeA working electrode shows relatively higher Jsc.

  4. Magnetic resonance in superparamagnetic zinc ferrite

    Indian Academy of Sciences (India)

    Jitendra Pal Singh; Gagan Dixit; R C Srivastava; Hemant Kumar; H M Agrawal; Prem Chand

    2013-08-01

    In the present work, we have synthesized zinc ferrite nanoparticles by nitrate method. Presence of almost zero value of coercivity and remanence in the hysteresis of these samples shows the superparamagnetic nature at room temperature. Electron paramagnetic resonance spectroscopy performed on these samples in the temperature range 120–300 K indicates the systematic variation of the line-shapes of the spectra with temperature. Both gvalue and peak-to-peak linewidth decrease with increase in temperature. The variation of g-values and peak-topeak linewidth with temperature has been fitted with existing models and we observed different values of activation energies of the spins for both the samples.

  5. Chirality sensing with stereodynamic biphenolate zinc complexes.

    Science.gov (United States)

    Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian

    2015-10-01

    Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods.

  6. Severe Zinc Depletion of Escherichia coli: ROLES FOR HIGH AFFINITY ZINC BINDING BY ZinT, ZINC TRANSPORT AND ZINC-INDEPENDENT PROTEINS*

    OpenAIRE

    Graham, A.I.; Hunt, S; Stokes, S.L.; Bramall, N.; Bunch, J.; Cox, A G; McLeod, C.W.; Poole, R K

    2009-01-01

    Zinc ions play indispensable roles in biological chemistry. However, bacteria have an impressive ability to acquire Zn2+ from the environment, making it exceptionally difficult to achieve Zn2+ deficiency, and so a comprehensive understanding of the importance of Zn2+ has not been attained. Reduction of the Zn2+ content of Escherichia coli growth medium to 60 nM or less is reported here for the first time, without recourse to chelators of poor specificity. Cells grown in Zn2+-deficient medium ...

  7. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    A K Mukhopadhyay; M Ray Chaudhuri; A Seal; S K Dalui; M Banerjee; K K Phani

    2001-04-01

    The mechanical characterization of microwave sintered zinc oxide disks is reported. The microwave sintering was done with a specially designed applicator placed in a domestic microwave oven operating at a frequency of 2.45 GHz to a maximum power output of 800 Watt. These samples with a wide variation of density and hence, of open pore volume percentage, were characterized in terms of its elastic modulus determination by ultrasonic time of flight measurement using a 15 MHz transducer. In addition, the load dependence of the microhardness was examined for the range of loads 0.1–20 N. Finally, the fracture toughness data (IC) was obtained using the indentation technique.

  8. Antimicrobial property of zinc based nanoparticles

    Science.gov (United States)

    Chiriac, V.; Stratulat, D. N.; Calin, G.; Nichitus, S.; Burlui, V.; Stadoleanu, C.; Popa, M.; Popa, I. M.

    2016-06-01

    Pathogen bacteria strains with wide spectrum can cause serious infections with drastic damages on humans. There are studies reflecting antibacterial effect of nanoparticles type metal or metal oxides as an alternative or concurrent treatment to the diseases caused by infectious agents. Synthesised nanoparticles using different methods like sol-gel, hydrothermal or plant extraction were tested following well-established protocols with the regard to their antimicrobial activity. It was found that zinc based nanoparticles possess strong synergistic effect with commonly used antibiotics on infection tratment.

  9. Oral zinc supplementation restore high molecular weight seminal zinc binding protein to normal value in Iraqi infertile men

    Directory of Open Access Journals (Sweden)

    Hadwan Mahmoud

    2012-11-01

    Full Text Available Abstract Background Zinc in human seminal plasma is divided into three types of ligands which are high (HMW, intermediate (IMW, and low molecular weight ligands (LMW. The present study was aimed to study the effect of Zn supplementation on the quantitative and qualitative characteristics of semen along with Zinc Binding Protein levels in the seminal plasma in asthenozoospermic patients. Methods Semen samples were obtained from 37 fertile and 37 asthenozoospermic infertile men with matched age. The subfertile group was treated with zinc sulfate, every participant took two capsules per day for three months (each one 220mg. Semen samples were obtained (before and after zinc sulfate supplementation. After liquefaction seminal fluid at room temperature, routine semen analyses were performed. For determination of the amount of zinc binding proteins, the gel filtration of seminal plasma on Sephadex G-75 was performed. All the fractions were investigated for protein and for zinc concentration by atomic absorption spectrophotometry. Evaluation of chromatograms was made directly from the zinc concentration in each fraction. Results A significant high molecular weight zinc binding ligands percentage (HMW-Zn % was observed in seminal plasma of fertile males compared with subfertile males. However, seminal low molecular weight ligands (LMW-Zn have opposite behavior. The mean value of semen volume, progressive sperm motility percentage and total normal sperm count were increased after zinc sulfate supplementation. Conclusions Zinc supplementation restores HMW-Zn% in seminal plasma of asthenozoospermic subjects to normal value. Zinc supplementation elevates LMW-Zn% in seminal plasma of asthenozoospermic subjects to more than normal value. Trial registration ClinicalTrials.gov identifier NCT01612403

  10. Concurrent repletion of iron and zinc reduces intestinal oxidative damage in iron-and zinc-deficient rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To understand the interactions between iron and zinc during absorption in iron- and zinc-deficient rats,and their consequences on intestinal oxidant-antioxidant balance.METHODS: Twenty-four weanling Wistar-Kyoto rats fed an iron- and zinc-deficient diet (< 6.5 mg Fe and 4.0 mg Zn/kg diet) for 4 wk were randomly divided into three groups (n = 8, each) and orally gavaged with 4 mg iron, 3.3 mg zinc, or 4 mg iron + 3.3 mg zinc for 2wk. At the last day of repletion, 3 h before the animals were sacrificed, they received either 37 mBq of 55Fe or 65Zn, to study their localization in the intestine, using microautoradiography. Hemoglobin, iron and zinc content in plasma and liver were measured as indicators of iron and zinc status. Duodenal sections were used for immunochemical staining of ferritin and metallothionein.Duodenal homogenates (mitochondrial and cytosolic fractions), were used to assess aconitase activity,oxidative stress, functional integrity and the response of antioxidant enzymes.RESULTS: Concurrent repletion of iron- and zinc-deficient rats showed reduced localization of these minerals compared to rats that were teated with iron or zinc alone;these data provide evidence for antagonistic interactions.This resulted in reduced formation of lipid and protein oxidation products and better functional integrity of the intestinal mucosa. Further, combined repletion lowered iron-associated aconitase activity and ferritin expression,but significantly elevated metallothionein and glutathione levels in the intestinal mucosa. The mechanism of interactions during combined supplementation and its subsequent effects appeared to be due to through modulation of cytosolic aconitase, which in turn influenced the labile iron pool and metallothionein levels, and hence reduced intestinal oxidative damage.CONCLUSION: Concurrent administration of iron and zinc corrects iron and zinc deficiency, and also reduces the intestinal oxidative damage associated with iron

  11. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  12. Novel synthesis of layered double hydroxides (LDHs) from zinc hydroxide

    Science.gov (United States)

    Meng, Zilin; Zhang, Yihe; Zhang, Qian; Chen, Xue; Liu, Leipeng; Komarneni, Sridhar; Lv, Fengzhu

    2017-02-01

    The most common synthesis methods for layered double hydroxides (LDHs) are co-precipitation and reconstruction, which can have some limitations for application. Here, we report a novel synthesis method for LDHs. We use zinc hydroxide as the precursor to synthesize LDHs phase through a simple transformation process of zinc hydroxide phase. For this transformation process, aluminum can enter into zinc hydroxide and replace zinc quickly to transform it into LDH by creating positive charges in the zinc hydroxide solid phase. The mechanism of LDH formation was through Al3+ reaction first with zinc hydroxide followed by recrystallization of the original structure of zinc hydroxide. Thus, the new process of LDH formation involves a reaction of Al to substitute for Zn and recrystallization leading to LDH and the final pH influences the crystallization of LDHs by this process. In addition, Cr3+ was employed as a trivalent cation for LDH formation to react with zinc hydroxide, which also led to LDH structure.

  13. Zinc corrosion runoff process induced by humid tropical climate

    Energy Technology Data Exchange (ETDEWEB)

    Veleva, L. [Center for Investigation and Advanced Study (CINVESTAV-Merida), Applied Physics Department, Carr. Ant. a Progreso, Km.6, C.P. 97310, Merida, Yuc. (Mexico); Meraz, E. [Universidad Juarez Autonoma de Tabasco, Division Academica de Ingenieria y Arquitectura, Km 1 Carretera Cunduacan-Jalpa de M., A.P. 24, C.P. 86690, Cunduacan, Tabasco (Mexico); Acosta, M. [Universidad Juarez Autonoma de Tabasco, Division Academica de Ciencias Basicas, Km 1 Carretera Cunduacan-Jalpa de M., A.P. 24, C.P. 86690, Cunduacan, Tabasco (Mexico)

    2007-05-15

    Zinc and hot dip galvanized steel are frequently used metals in building application. They have relatively good atmospheric resistance to corrosion, due to its oxidation in air and formation of protective rust on its surface, which acts as barrier between the metal and environment. However, some part of the rust can be dissolved by pluvial precipitations and water condensed on the metal surface. This process, called metal runoff, contributes for zinc dispersion in soils and waters. In order to make accurate estimation of zinc runoff induced by atmosphere in humid tropical climate, samples of pure Zn and hot dip galvanized steel have been exposed in the Gulf of Mexico. The data reveal that this process is strongly influenced by factors which determine the aggressivity of the environment (pluvial precipitations, cycles of dry and rainy periods, atmospheric pollutants, air humidity). High annual rates of zinc runoff (6.5 - 8.5 {+-} 0.30 g Zn m{sup -2}yr{sup -1}) were released, being the runoff 63 - 87% of the zinc corrosion rust. The zinc mass loss has been related to several independent parameters, presenting linear equation, which indicates the air contaminant SO{sub 2} as the major factor controlling the runoff of zinc. The reported results show higher runoff of zinc samples, compared to that of hot dip galvanized steel. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  14. Zinc deficiency alters soybean susceptibility to pathogens and pests

    Science.gov (United States)

    Inadequate plant nutrition and biotic stress are key threats to current and future crop yields. Zinc deficiency and toxicity in major crop plants have been documented, but there is limited information on how pathogen and pest damage may be affected by differing plant zinc levels. In our study, we us...

  15. Lattice dynamical investigations on Zn diffusion in zinc oxide

    Indian Academy of Sciences (India)

    P Vinotha Boorana Lakshmi; K Ramachandran

    2011-04-01

    Zinc self diffusion in bulk zinc oxide is studied by lattice dynamical approach here to get more insight into the diffusion in nano ZnO. The results reveal that only cationic self diffusion is dominant over anionic self diffusion and that too by single vacancy mechanism. The results are compared with the available experiments and discussed.

  16. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents.

    Science.gov (United States)

    Bowen, Patrick K; Guillory, Roger J; Shearier, Emily R; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-11-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells.

  17. Biovailability of copper and zinc in pig and cattle slurries

    NARCIS (Netherlands)

    Jakubus, M.; Dach, J.; Starmans, D.A.J.

    2013-01-01

    Slurry is an important source of macronutrients, micro-nutrients and organic matter. Despite the considerable fertilizer value of slurry, it may be abundant in amounts of copper and zinc originating from dietary. The study presents quantitative changes in copper and zinc in individual slurries (pig

  18. EURRECA—Estimating Zinc Requirements for Deriving Dietary Reference Values

    NARCIS (Netherlands)

    Lowe, N.M.M.; Dykes, F.C.; Skinner, A.L.; Patel, S.; Warthon-Medina, M.; Decsi, T.; Fekete, K.; Souverein, O.W.; Dullemeijer, C.; Cavelaars, A.J.E.M.; Serra-Majem, L.; Nissensohn, M.; Bel, S.; Moreno, L.A.; Hermoso, M.; Vollhardt, C.; Berti, C.; Cetin, I.; Gurinovic, M.; Novakovic, R.N.; Harvey, L.J.; Collings, R.; Hall-Moran, V.

    2013-01-01

    Zinc was selected as a priority micronutrient for EURRECA, because there is significant heterogeneity in the Dietary Reference Values (DRVs) across Europe. In addition, the prevalence of inadequate zinc intakes was thought to be high among all population groups worldwide, and the public health conce

  19. EURRECA-Estimating zinc requirements for deriving dietary reference values.

    Science.gov (United States)

    Lowe, Nicola M; Dykes, Fiona C; Skinner, Anna-Louise; Patel, Sujata; Warthon-Medina, Marisol; Decsi, Tamás; Fekete, Katalin; Souverein, Olga W; Dullemeijer, Carla; Cavelaars, Adriënne E; Serra-Majem, Lluis; Nissensohn, Mariela; Bel, Silvia; Moreno, Luis A; Hermoso, Maria; Vollhardt, Christiane; Berti, Cristiana; Cetin, Irene; Gurinovic, Mirjana; Novakovic, Romana; Harvey, Linda J; Collings, Rachel; Hall-Moran, Victoria

    2013-01-01

    Zinc was selected as a priority micronutrient for EURRECA, because there is significant heterogeneity in the Dietary Reference Values (DRVs) across Europe. In addition, the prevalence of inadequate zinc intakes was thought to be high among all population groups worldwide, and the public health concern is considerable. In accordance with the EURRECA consortium principles and protocols, a series of literature reviews were undertaken in order to develop best practice guidelines for assessing dietary zinc intake and zinc status. These were incorporated into subsequent literature search strategies and protocols for studies investigating the relationships between zinc intake, status and health, as well as studies relating to the factorial approach (including bioavailability) for setting dietary recommendations. EMBASE (Ovid), Cochrane Library CENTRAL, and MEDLINE (Ovid) databases were searched for studies published up to February 2010 and collated into a series of Endnote databases that are available for the use of future DRV panels. Meta-analyses of data extracted from these publications were performed where possible in order to address specific questions relating to factors affecting dietary recommendations. This review has highlighted the need for more high quality studies to address gaps in current knowledge, in particular the continued search for a reliable biomarker of zinc status and the influence of genetic polymorphisms on individual dietary requirements. In addition, there is a need to further develop models of the effect of dietary inhibitors of zinc absorption and their impact on population dietary zinc requirements.

  20. Da Xinganling Lead Zinc Smelting Base Commencing the Construction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The construction of the first phase of 150,000- ton lead zinc smelting base project,the largest lead zinc smelting project in Heilongjiang Province,of Da Xinganling Yunye Mining Ltd. officially started on May 24 in Jiagedaqi Indus- trial Park in Da Xinganling Region.

  1. Reversing Sports-Related Iron and Zinc Deficiencies.

    Science.gov (United States)

    Loosli, Alvin R.

    1993-01-01

    Many active athletes do not consume enough zinc or iron, which are important for oxygen activation, electron transport, and injury healing. Subclinical deficiencies may impair performance and impair healing times. People who exercise regularly need counseling about the importance of adequate dietary intake of iron and zinc. (SM)

  2. Zinc nanoparticles in solution by laser ablation technique

    Indian Academy of Sciences (India)

    S C Singh; R Gopal

    2007-06-01

    Colloidal zinc metallic nanoparticles are synthesized using pulsed laser ablation of metal plate in an aqueous solution of suitable surfactant to prevent aggregation. UV-visible absorption, TEM, small angle X-ray diffraction and wide-angle X-ray diffraction are used for the characterization of colloidal zinc metallic nanoparticles. Colloidal nanoparticles are found highly stable for a long time.

  3. Zinc supplementation, production and quality of coffee beans

    Directory of Open Access Journals (Sweden)

    Herminia Emilia Prieto Martinez

    2013-04-01

    Full Text Available Besides its importance in the coffee tree nutrition, there is almost no information relating zinc nutrition and bean quality. This work evaluated the effect of zinc on the coffee yield and bean quality. The experiment was conducted with Coffea arabica L. in "Zona da Mata" region, Minas Gerais, Brazil. Twelve plots were established at random with 4 competitive plants each. Treatments included plants supplemented with zinc (eight plots and control without zinc supplementation (four plots. Plants were subjected to two treatments: zinc supplementation and control. Yield, number of defective beans, beans attacked by berry borers, bean size, cup quality, beans zinc concentration, potassium leaching, electrical conductivity, color index, total tritable acidity, pH, chlorogenic acids contents and ferric-reducing antioxidant activity of beans were evaluated. Zinc positively affected quality of coffee beans, which presented lower percentage of medium and small beans, lower berry borer incidence, lower potassium leaching and electrical conductivity, higher contents of zinc and chlorogenic acids and higher antioxidant activity in comparison with control beans.

  4. Sequestration of zinc oxide by fimbrial designer chelators

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Sørensen, Jack K; Schembri, Mark;

    2000-01-01

    , one of the inserts exhibited significant homology to a specific sequence in a putative zinc-containing helicase, which suggests that searches such as this one may aid in identifying binding motifs in nature. The zinc-binding bacteria might have a use in detoxification of metal-polluted water...

  5. Physiology and modelling of zinc allocation in aerobic rice

    NARCIS (Netherlands)

    Jiang, W.

    2008-01-01

    Keywords: Zinc, rice, Oryza sativa, grain, Zn mass concentration, biofortification Zinc (Zn) deficiency in humans is widespread in many regions of the world, especially in the developing world. Rice, the staple food of more than half of the world’s population, is potentially an important source of

  6. Vitamin A, iron and zinc deficiency in Indonesia

    NARCIS (Netherlands)

    Dijkhuizen, M.A.; Wieringa, F.T.

    2001-01-01

    The research described in this thesis was concerned with vitamin A, iron and zinc deficiency in pregnant and lactating women and in infants. The effects of supplementation withβ-carotene, iron and zinc on micronutrient status, growth, pregnancy outcome and immune function, and interactions between m

  7. Chemical and biological rhizosphere interactions in low zinc soils

    NARCIS (Netherlands)

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essenti

  8. Determination of the density of zinc powders for alkaline battery

    Institute of Scientific and Technical Information of China (English)

    Beatriz Ares Tejero; David Guede Carnero

    2007-01-01

    The density of zinc powder for alkaline battery was determined using a pyknometer.The results showed that powders made before the end of 2003 could reach relative densities above 99% of the theoretical density.Investigating the relative volume swelling of electrolysed gels of zinc powders,no evident relation between swelling and pyknometer density was found.

  9. Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents

    Science.gov (United States)

    Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy

    2015-01-01

    Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616

  10. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum.

    Science.gov (United States)

    Singh, Ajey; Singh, N B; Hussain, Imtiyaz; Singh, Himani; Yadav, Vijaya; Singh, S C

    2016-09-10

    In the present study, zinc oxide nanoparticles (ZnO NPs) were rapidly synthesized at room temperature by treating zinc acetate dihydrate with the flower extract of Elaeagnus angustifolia (Russian olive). The formation of ZnO NPs was primarily confirmed by UV-visible absorption spectrum in the range of 250-700nm. XRD analysis and DLS particle size analyzer revealed the size of ZnO NPs. The FTIR spectrum revealed the presence of phytochemicals in the flower extract mediated ZnO NPs. Moreover, the morphology of the ZnO NPs was determined using SEM. Seeds of Solanum lycopersicum (tomato) were separately treated with different concentrations of synthesized ZnO NPs and zinc sulphate (ZnSO4) salt suspensions (common zinc supplement). The effect of these treatments on seed germination, seedling vigor, chlorophyll, protein and sugar contents as well as on the activities of lipid peroxidation and antioxidant enzyme were studied. Leaves of plants treated with 6.1mM concentration of ZnO NPs recorded maximum reflectance while it was minimum in plants treated with 1.2mM concentration of NPs. The effect of synthesized ZnO NPs on seedling vigor, pigment, protein and sugar content was found affirmative at lower concentrations contrary to control and ZnSO4 salt. The inhibitory effect at higher concentration of NPs indicated importance in the precise application of NPs, in Zn deficient system, where plant response varies with concentration. To the best of our knowledge this is the first report on Elaeagnus angustifolia mediated synthesis of ZnO NPs and their effects on germination and physiological activity of tomato.

  11. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  12. Efficacy of zinc sulfate in reducing unconjugated hyperbilirubinemia in neonates

    Directory of Open Access Journals (Sweden)

    Somayyeh Hashemian

    2014-09-01

    Full Text Available Hyperbilirubinemia is a common disease and unconjugated hyperbilirubinemia has been seen mainly in neonates. Severe form of unconjugated hyperbilirubinemia may cause kernicterus and even death. Conventional treatment for severe unconjugated hyperbilirubinemia consists of phototherapy and exchange transfusion that have several known disadvantages; specially exchange transfusion is associated with a significant morbidity and even mortality. These harmful effects indicate the need to develop alternative pharmacological treatment strategies for unconjugated hyperbilirubinemia. One of these pharmacological agents is zinc salts. Zinc has been shown to lower the bilirubin levels by inhibition of the enterohepatic cycling of unconjugated bilirubin. Oral zinc has been shown to reduce serum unconjugated bilirubin in animals, adolescents and low birth weight neonates. However, studies in healthy term neonates given oral zinc showed no reduction in hyperbilirubinemia based on daily measurement. In order to improve the accuracy, hyperbilirubinemia may be determined based on measurements every hour. More studies are needed to know the effect of zinc in neonatal jaundice.

  13. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  14. Leaching and recycling of zinc from liquid waste sediments

    Institute of Scientific and Technical Information of China (English)

    PENG Bing; GAO Hui-mei; CHAI Li-yuan; SHU Yu-de

    2008-01-01

    The selective leaching and recovery of zinc in a zinciferous sediment from a synthetic wastewater treatment was investigated. The main composition of the sediment includes 6% zinc and other metal elements such as Ca, Fe, Cu, Mg. The effects of sulfuric acid concentration, temperature, leaching time and the liquid-to-solid ratio on the leaching rate of zinc were studied by single factor and orthogonal experiments. The maximum difference of leaching rate between zinc and iron, 89.85%, was obtained by leaching under 170 g/L H2SO4 in liquid-to-solid ratio 4.2 mL/g at 65 "C for 1 h, and the leaching rates of zinc and iron were 91.20% and 1.35%, respectively.

  15. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2014-12-01

    Full Text Available The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS. In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5. In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

  16. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole

    2014-04-01

    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  17. Isothermal corrosion Fe3Si alloy in liquid zinc

    Institute of Scientific and Technical Information of China (English)

    Wen jun Wang; Junping Lin; Yanli Wang; Guoliang Chen

    2007-01-01

    The isothermal corrosion testing,microscopic examination and the performance of Fe3Si alloy as materials of construction for bath hardware in continuous hot-dipping lines were studied.The corrosion of Fe3Si alloy in molten zinc was controlled by attacking the grain boundaries preferentially.Aluminum reacted with iron of Fe3Si alloy firstly while the samples were immersed in molten zinc,although aluminum contents in the molten zinc were very low.The phase of reaction product was thought to be Fe2Al5.The corrosion rate of the Fe3Si alloy in molten zinc was determined to be approximately 2.9×10-3 mm/h,therefore the liquid zinc corrosion resistance of Fe3Si alloy was very weak.

  18. SERUM ZINC LEVEL IN PATIENTS WITH SIMPLE FEBRILE SEIZURE

    Directory of Open Access Journals (Sweden)

    Farhad HEYDARIAN

    2010-10-01

    Full Text Available ObjectiveTo evaluate the serum zinc level of the patients with simple febrile seizure and compare them with febrile children without seizure.Materials & MethodsThis prospective case - control study was performed on 60 patients aged 6 months to 6 years from Apr. 2009 to Jan.2010 in Ghaem, Imam Reza and Dr. Sheikh Hospitals in Mashhad. The serum zinc level was assessed and compared between the cases (30 individuals who suffered from simple febrile seizure and the controls (30 individuals who had fever without seizure.ResultsMean serum zinc level was 663.7 µg /l and 758.33  µg /l in the case group and the control group, respectively (PConclusionIt was revealed that the serum level of zinc was significantly lower in children with simple febrile seizure in comparison with febrile children without seizure.Keywords: Simple febrile seizure, children, zinc, CSF (cerebrospinal fluid

  19. Zinc in hair and urine of paediatric patients.

    Science.gov (United States)

    van Wouwe, J P; de Wolff, F A; van Gelderen, H H

    1986-02-28

    Zinc concentrations in hair and urine were measured in groups of children varying in one condition - short stature, or after prolonged upper respiratory infection, or during non-infectious diarrhea, or while on chemotherapy for acute lymphatic leukaemia and in healthy controls. As compared with controls, hair zinc was significantly low after respiratory infection (p less than 0.0001) and high in short stature (p less than 0.01). Urinary zinc was increased during initial chemotherapy (p less than 0.001) and diarrhea (p less than 0.02). It is shown that zinc deficiency occurs in one of the common symptoms in paediatric medicine, namely upper respiratory tract infection. The high overlap (34-88%) proves hair and urine zinc to be of no use for reliable individual diagnostic statements.

  20. Galvanizing action: conclusions and next steps for mainstreaming zinc interventions in public health programs.

    Science.gov (United States)

    Brown, Kenneth H; Baker, Shawn K

    2009-03-01

    This paper summarizes the results of the foregoing reviews of the impact of different intervention strategies designed to enhance zinc nutrition, including supplementation, fortification, and dietary diversification or modification. Current evidence indicates a beneficial impact of such interventions on zinc status and zinc-related functional outcomes. Preventive zinc supplementation reduces the incidence of diarrhea and acute lower respiratory tract infection among young children, decreases mortality of children over 12 months of age, and increases growth velocity. Therapeutic zinc supplementation during episodes of diarrhea reduces the duration and severity of illness. Zinc fortification increases zinc intake and total absorbed zinc, and recent studies are beginning to confirm a positive impact of zinc fortification on indicators of population zinc status. To assist with the development of zinc intervention programs, more information is needed on the prevalence of zinc deficiency in different countries, and rigorous evaluations of the effectiveness of large-scale zinc intervention programs should be planned. Recommended steps for scaling up zinc intervention programs, with or without other micronutrients, are described. In summary, there is now clear evidence of the benefit of selected interventions to reduce the risk of zinc deficiency, and a global commitment is urgently needed to conduct systematic assessments of population zinc status and to develop interventions to control zinc deficiency in the context of existing public health and nutrition programs.

  1. Trace elements in human physiology and pathology: zinc and metallothioneins.

    Science.gov (United States)

    Tapiero, Haim; Tew, Kenneth D

    2003-11-01

    Zinc is one of the most abundant nutritionally essential elements in the human body. It is found in all body tissues with 85% of the whole body zinc in muscle and bone, 11% in the skin and the liver and the remaining in all the other tissues. In multicellular organisms, virtually all zinc is intracellular, 30-40% is located in the nucleus, 50% in the cytoplasm, organelles and specialized vesicles (for digestive enzymes or hormone storage) and the remainder in the cell membrane. Zinc intake ranges from 107 to 231 micromol/d depending on the source, and human zinc requirement is estimated at 15 mg/d. Zinc has been shown to be essential to the structure and function of a large number of macromolecules and for over 300 enzymic reactions. It has both catalytic and structural roles in enzymes, while in zinc finger motifs, it provides a scaffold that organizes protein sub-domains for the interaction with either DNA or other proteins. It is critical for the function of a number of metalloproteins, inducing members of oxido-reductase, hydrolase ligase, lyase family and has co-activating functions with copper in superoxide dismutase or phospholipase C. The zinc ion (Zn(++)) does not participate in redox reactions, which makes it a stable ion in a biological medium whose potential is in constant flux. Zinc ions are hydrophilic and do not cross cell membranes by passive diffusion. In general, transport has been described as having both saturable and non-saturable components, depending on the Zn(II) concentrations involved. Zinc ions exist primarily in the form of complexes with proteins and nucleic acids and participate in all aspects of intermediary metabolism, transmission and regulation of the expression of genetic information, storage, synthesis and action of peptide hormones and structural maintenance of chromatin and biomembranes.

  2. Oral Zinc Supplementation for the Treatment of Acute Diarrhea

    Directory of Open Access Journals (Sweden)

    Sh Gheibi

    2014-04-01

    Full Text Available Introduction: Diarrheal diseases are a serious health problem and important causes of growth retardation and death in the developing world, especially those of prolonged duration. Since diarrhea is constantly found in children with zinc deficiency, very studies supported zinc supplements beneficial on the duration and severity of diarrhea among children. We review the impact of zinc effects on diarrhea in South-West Asia to update the evidences and to assess its effect on the global burden of diarrhea.   Materials and Methods: We conduct a systematic review through January 2014, for randomized controlled trials relevant to effect of zinc on diarrhea in children. We searched the MeSH terms zinc, acute gastroenteritis and children from various databases of Cochrane Library and PubMed, then clinical trials done in South-West Asia, selected for making written. Results: In recent years, several studies have reported the therapeutic effect of zinc supplementation on diarrheal diseases that was beneficial on decreased episode duration, stool output, stool frequency, hospitalization duration. In some countries in West Asia such as Lebanon, Israel, Saudi Arabia and Iran in clinical trials showed a faster improvement in acute gastroenteritis in children less than five years. But in some countries, such as Turkey, this effect was not significant.   Conclusions: Oral zinc supplementation significantly decreases diarrhea duration and has a greater effect on malnourished children. Zinc supplementation seems to be an appropriate public health strategy, mainly in areas of endemic deficiencies. Global attempts should is increased to support recommended regimen of therapeutic zinc by WHO in all areas. Keywords: Acute Gastroenteritis, Children, Zinc, South-West Asia.  

  3. Pancreatitis in wild zinc-poisoned waterfowl

    Science.gov (United States)

    Sileo, Louis; Beyer, W. Nelson; Mateo, Rafael

    2003-01-01

    Four waterfowl were collected in the TriState Mining District (Oklahoma, Kansas and Missouri, USA), an area known to be contaminated with lead, cadmium and zinc (Zn). They were part of a larger group of 20 waterfowl collected to determine the exposure of birds to metal contamination at the site. The four waterfowl (three Branta canadensis, one Anas platyrhynchos) had mild to severe degenerative abnormalities of the exocrine pancreas, as well as tissue (pancreas, liver) concentrations of Zn that were considered toxic. The mildest condition was characterized by generalized atrophy of exocrine cells that exhibited cytoplasmic vacuoles and a relative lack of zymogen. The most severe condition was characterized by acini with distended lumens and hyperplastic exocrine tissue that completely lacked zymogen; these acini were widely separated by immature fibrous tissue. Because the lesions were nearly identical to the lesions reported in chickens and captive waterfowl that had been poisoned with ingested Zn, and because the concentrations of Zn in the pancreas and liver of the four birds were consistent with the concentrations measured in Zn-poisoned birds, we concluded that these waterfowl were poisoned by Zn. This may be the first reported case of zinc poisoning in free-ranging wild birds poisoned by environmental Zn.

  4. Zinc transporters and dysregulated channels in cancers

    Science.gov (United States)

    Pan, Zui; Choi, Sangyong; Ouadid-Ahidouch, Halima; Yang, Jin-Ming; Beattie, John H.; Korichneva, Irina

    2016-01-01

    As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field. PMID:27814637

  5. Solar thermal production of zinc: Program strategy

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A.; Weidenkaff, A.; Moeller, S.; Palumbo, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The solar thermal production of zinc is considered for the conversion of solar energy into storable and transportable chemical fuels. The ultimate objective is to develop a technically and economically viable technology that can produce solar zinc. The program strategy for achieving such a goal involves research on two paths: a direct path via the solar thermal splitting of ZnO in the absence of fossil fuels, and an indirect path via the solar carbothermal/CH{sub 4}-thermal reduction of Zn O, with fossil fuels (coke or natural gas) as chemical reducing agents. Both paths make use of concentrated solar energy for high-temperature process heat. The direct path brings us to the complete substitution of fossil fuels with solar fuels for a sustainable energy supply system. The indirect path creates a link between today`s fossil-fuel-based technology and tomorrow`s solar chemical technology and builds bridges between present and future energy economies. (author) 1 fig., 15 refs.

  6. Zinc oxide: Connecting theory and experiment

    Directory of Open Access Journals (Sweden)

    Dejan Zagorac

    2013-09-01

    Full Text Available Zinc oxide (ZnO is a material with a great variety of industrial applications including high heat capacity, thermal conductivity and temperature stability. Clearly, it would be of great importance to find new stable and/or metastable modifications of zinc oxide, and investigate the influence of pressure and/or temperature on these structures, and try to connect theoretical results to experimental observations. In order to reach this goal, we performed several research studies, using modern theoretical methods. We have predicted possible crystal structures for ZnO using simulated annealing (SA, followed by investigations of the barrier structure using the threshold algorithm (TA. Finally, we have performed calculations using the prescribed path algorithm (PP, where connections between experimental structures on the energy landscape, and in particular transition states, were investigated in detail. The results were in good agreement with previous theoretical and experimental observations, where available, and we have found several additional (metastable modifications at standard, elevated and negative pressures. Furthermore, we were able to gain new insight into synthesis conditions for the various ZnO modifications and to connect our results to the actual synthesis and transformation routes.

  7. Serum concentration of copper, zinc, iron, and cobalt and the copper/zinc ratio in horses with equine herpesvirus-1.

    Science.gov (United States)

    Yörük, Ibrahim; Deger, Yeter; Mert, Handan; Mert, Nihat; Ataseven, Veysel

    2007-07-01

    The serum concentrations of copper, zinc, iron, and cobalt and copper/zinc ratio were investigated in horses infected with equine herpesvirus-1 (EHV-1). Nine horses were naturally infected with the virus and nine healthy horses served as controls. The concentrations of copper, zinc, iron, and cobalt were determined spectrophotometrically in the blood serum of all horses. The results were (expressed in micrograms per deciliters) copper 2.80 +/- 0.34 vs 1.12 +/- 0.44, zinc 3.05 +/- 0.18 vs 0.83 +/- 0.06, iron 2.76 +/- 0.17 vs 3.71 +/- 0.69, cobalt 0.19 +/- 0.37 vs 0.22 +/- 0.45, and copper/zinc ratio 0.72 +/- 0.38 vs 1.41 +/- 0.36 for control vs infected group, respectively. In conclusion, copper and zinc concentrations of the infected group were lower than the control group (p copper/zinc ratio of the infected group were higher than the control group (p cobalt concentration was not found to be statistically different between two groups. It might be emphasized that copper/zinc ratio was significantly affected by the EHV-1 infection, so it could be taken into consideration during the course of infection.

  8. Stunting and zinc deficiency among primary school children in rural areas with low soil zinc concentrations in Jiangsu Province, China

    NARCIS (Netherlands)

    Qin, Yu; Boonstra, A.; Zhao, J.; Wu, M.; Hu, X.; Kok, F.J.

    2009-01-01

    OBJECTIVE: To assess stunting and zinc deficiency among primary school children in north rural area of Jiangsu Province with low soil zinc concentrations, eastern part of China. METHODS: Two data collection rounds were conducted. In the first data collection round, 2268 primary school children aged

  9. Modeling the temporal variability of zinc concentrations in zinc roof runoff-experimental study and uncertainty analysis.

    Science.gov (United States)

    Sage, Jérémie; El Oreibi, Elissar; Saad, Mohamed; Gromaire, Marie-Christine

    2016-08-01

    This study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel. A reformulation of a commonly used conceptual runoff quality model is introduced and its ability to simulate the evolution of zinc concentrations is evaluated. A systematic and sharp decrease from initially high to relatively low and stable zinc concentrations after 0.5 to 2 mm of rainfall is observed for both experiments, suggesting that highly soluble corrosion products are removed at early stages of runoff. A moderate dependence between antecedent dry period duration and the magnitude of zinc concentrations at the beginning of a rain event is evidenced. Contrariwise, results indicate that concentrations are not significantly influenced by rainfall intensities. Simulated rainfall experiment nonetheless suggests that a slight effect of rainfall intensities may be expected after the initial decrease of concentrations. Finally, this study shows that relatively simple conceptual runoff quality models may be adopted to simulate the variability of zinc concentrations during a rain event and from a rain event to another.

  10. Effects of Dietary Zinc Pectin Oligosaccharides Chelate Supplementation on Growth Performance, Nutrient Digestibility and Tissue Zinc Concentrations of Broilers.

    Science.gov (United States)

    Wang, Zhongcheng; Yu, Huimin; Wu, Xuezhuang; Zhang, Tietao; Cui, Hu; Wan, Chunmeng; Gao, Xiuhua

    2016-10-01

    The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P zinc concentrations (P zinc concentrations (P zinc concentrations in liver and pancreas of broilers.

  11. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  12. Synthetic, spectral and solution studies on imidazolate-bridged copper(II)-copper(II) and copper(II)-zinc(II) complexes

    Indian Academy of Sciences (India)

    Subodh Kumar; R N Patel; P V Khadikar; K B Pandeya

    2001-02-01

    Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying H values suggest that the imidazolate-bridged complex is stable over the H-range 7 15-10 0.

  13. Rescue of Impaired Fear Extinction and Normalization of Cortico-Amygdala Circuit Dysfunction in a Genetic Mouse Model by Dietary Zinc Restriction

    OpenAIRE

    Whittle, Nigel; Hauschild, Markus; Lubec, Gert; Holmes, Andrew; Singewald, Nicolas

    2010-01-01

    Fear extinction is impaired in neuropsychiatric disorders, including posttraumatic stress disorder. Identifying drugs that facilitate fear extinction in animal models provides leads for novel pharmacological treatments for these disorders. Zinc (Zn) is expressed in neurons in a cortico-amygdala circuit mediating fear extinction, and modulates neurotransmitter systems regulating extinction. We previously found that the 129S1/SvImJ mouse strain (S1) exhibited a profound impairment in fear extin...

  14. Chronic but not acute antidepresant treatment alters serum zinc/copper ratio under pathological/zinc-deficient conditions in mice.

    Science.gov (United States)

    Mlyniec, K; Ostachowicz, B; Krakowska, A; Reczynski, W; Opoka, W; Nowak, G

    2014-10-01

    Depression is the leading psychiatric disorder with a high risk of morbidity and mortality. Clinical studies report lower serum zinc in depressed patients, suggesting a strong link between zinc and mood disorders. Also copper as an antagonistic element to zinc seems to play a role in depression, where elevated concentration is observed. In the present study we investigated serum copper and zinc concentration after acute or chronic antidepressant (AD) treatment under pathological/zinc-deficient conditions. Zinc deficiency in mice was induced by a special diet administered for 6 weeks (zinc adequate diet - ZnA, contains 33.5 mgZn/kg; zinc deficient diet - ZnD, contains 0.2 mgZn/kg). Animals received acute or chronically saline (control), imipramine, escitalopram, reboxetine or bupropion. To evaluate changes in serum copper and zinc concentrations the total reflection X-ray fluorescence (TXRF) and flame atomic absorption spectrometry (FAAS) was performed. In ZnD animals serum zinc level was reduced after acute ADs treatment (similarly to vehicle treatment), however, as demonstrated in the previous study after chronic ADs administration no differences between both ZnA and ZnD groups were observed. Acute ADs in ZnD animals caused different changes in serum copper concentration with no changes after chronic ADs treatment. The calculated serum Zn/Cu ratio is reduced in ZnD animals (compared to ZnA subjects) treated with saline (acutely or chronically) and in animals treated acutely with ADs. However, chronic treatment with ADs normalized (by escitalopram, reboxetine or bupropion) or increased (by imipramine) this Zn/Cu ratio. Observed in this study normalization of serum Zn/Cu ratio in depression-like conditions by chronic (but not acute) antidepressants suggest that this ratio may be consider as a marker of depression or treatment efficacy.

  15. Comparison of zinc-probiotic combination theraphy to zinc theraphy alone in reducing the severity of acute diarrhea

    Directory of Open Access Journals (Sweden)

    Muhammad Hatta

    2011-01-01

    Full Text Available Background Although the incidence of diarrhea in Indonesia has declined in the last five years, the mortality rate in children under five years old is still high. Therefore, appropriate and comprehensive management of diarrhea is essential. There have been many studies on the role of zinc therapy and probiotic therapy in reducing the severity of acute diarrhea, but not many studies have compared the use of a combination of the two therapies to zinc therapy alone. Objective To compare the efficacy of zinc-probiotic combination therapy to zinc alone in reducing the severity of acute diarrhea. Methods We conducted a randomized, open-label, controlled trial from July 2009 to January 2010 in Adam Malik Hospital and Pirngadi Hospital , Medan. Children aged between 1 month and 5 years who met the criteria were divided into two groups. Group I recieved zinc sulphate (aged 6 months: 20mg/day combined with heat-killed Lactobacillus acidophilus (3x1010 CFU/day for 10 days. zinc sulphate at the same dosage as group I. Measurement of disease severity was based on the frequency of diarrhea (times/day and the duration of diarrhea (hours after initial drug consumption. Results Eighty subjects were enrolled, randomised, and divided equally into two groups. 40 children received zinc-probiotic in combination (group I and the remainder (group II received zinc alone. We observed significant differences in frequency of diarrhea (2.1 vs 3.1 times/day, P= 0.001, 95%CI-1.62 to -0.49, and duration of diarrhea (52.1 vs 72.6 hours, P=0.001, 95%CI-30.91 to -10.18 in the two groups. Conclusion Combination of zinc-probiotic therapy was more effective in reducing the severity of acute diarrhea than zinc therapy alone in children under five years of age. [Paediatr Indones. 2011;51:1-6].

  16. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting.

    Directory of Open Access Journals (Sweden)

    K Ryan Wessells

    Full Text Available BACKGROUND: Adequate zinc nutrition is essential for adequate growth, immunocompetence and neurobehavioral development, but limited information on population zinc status hinders the expansion of interventions to control zinc deficiency. The present analyses were conducted to: (1 estimate the country-specific prevalence of inadequate zinc intake; and (2 investigate relationships between country-specific estimated prevalence of dietary zinc inadequacy and dietary patterns and stunting prevalence. METHODOLOGY AND PRINCIPAL FINDINGS: National food balance sheet data were obtained from the Food and Agriculture Organization of the United Nations. Country-specific estimated prevalence of inadequate zinc intake were calculated based on the estimated absorbable zinc content of the national food supply, International Zinc Nutrition Consultative Group estimated physiological requirements for absorbed zinc, and demographic data obtained from United Nations estimates. Stunting data were obtained from a recent systematic analysis based on World Health Organization growth standards. An estimated 17.3% of the world's population is at risk of inadequate zinc intake. Country-specific estimated prevalence of inadequate zinc intake was negatively correlated with the total energy and zinc contents of the national food supply and the percent of zinc obtained from animal source foods, and positively correlated with the phytate: zinc molar ratio of the food supply. The estimated prevalence of inadequate zinc intake was correlated with the prevalence of stunting (low height-for-age in children under five years of age (r = 0.48, P<0.001. CONCLUSIONS AND SIGNIFICANCE: These results, which indicate that inadequate dietary zinc intake may be fairly common, particularly in Sub-Saharan Africa and South Asia, allow inter-country comparisons regarding the relative likelihood of zinc deficiency as a public health problem. Data from these analyses should be used to determine

  17. Iron and zinc supplementation improved iron and zinc status, but not physical growth, of apparently healthy, breast-fed infants in rural communities of northeast Thailand.

    Science.gov (United States)

    Wasantwisut, Emorn; Winichagoon, Pattanee; Chitchumroonchokchai, Chureeporn; Yamborisut, Uruwan; Boonpraderm, Atitada; Pongcharoen, Tippawan; Sranacharoenpong, Kitti; Russameesopaphorn, Wanphen

    2006-09-01

    Iron deficiency is prevalent in children and infants worldwide. Zinc deficiency may be prevalent, but data are lacking. Both iron and zinc deficiency negatively affect growth and psychomotor development. Combined iron and zinc supplementation might be beneficial, but the potential interactions need to be verified. In a randomized, placebo-controlled trial using 2 x 2 factorial design, 609 Thai infants aged 4-6 mo were supplemented daily with 10 mg of iron and/or 10 mg of zinc for 6 mo to investigate effects and interactions on micronutrient status and growth. Iron supplementation alone increased hemoglobin and ferritin concentrations more than iron and zinc combined. Anemia prevalence was significantly lower in infants receiving only iron than in infants receiving iron and zinc combined. Baseline iron deficiency was very low, and iron deficiency anemia was almost nil. After supplementation, prevalence of iron deficiency and iron deficiency anemia were significantly higher in infants receiving placebo and zinc than in those receiving iron or iron and zinc. Serum zinc was higher in infants receiving zinc (16.7 +/- 5.2 micromol/L), iron and zinc (12.1 +/- 3.8 micromol/L) or iron alone (11.5 +/- 2.5 micromol/L) than in the placebo group (9.8 +/- 1.9 micromol/L). Iron and zinc interacted to affect iron and zinc status, but not hemoglobin. Iron supplementation had a small but significant effect on ponderal growth, whereas zinc supplementation did not. To conclude, in Thai infants, iron supplementation improved hemoglobin, iron status, and ponderal growth, whereas zinc supplementation improved zinc status. Overall, for infants, combined iron and zinc supplementation is preferable to iron or zinc supplementation alone.

  18. Laser fluorescence spectroscopy of zinc neutrals originating from laser-irradiated and ion-bombarded zinc sulfide and zinc surfaces

    Science.gov (United States)

    Arlinghaus, H. F.; Calaway, W. F.; Young, C. E.; Pellin, M. J.; Gruen, D. M.; Chase, L. L.

    Time-of-flight (TOF) measurements, employing high-resolution laser-induced fluorescence spectroscopy (LFS) as a probe, have been used to measure the yield and velocity distribution of Zn atoms ejected from a ZnS single crystal under irradiation by 308 nm photons. By comparison with the known ion sputtering yield for pure zinc, the absolute yield was determined to be 10 to the 10th power atoms/pulse at a laser fluence of 30 mJ/sq cm. The velocity distribution of the Zn atoms could be fitted by a Maxwell-Boltzmann distribution, having characteristic temperature of approx 2300 K. In addition, Doppler-shift techniques have been combined with TOF measurements in order to separate prompt from delayed emission of ablated atoms, as well as to probe possible molecular or cluster fragmentation. The results obtained suggest the possibility of molecular or cluster emission from ZnS.

  19. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    Science.gov (United States)

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  20. Pulsed laser ablation of zinc selenide in nitrogen ambience: Formation of zinc nitride films

    Science.gov (United States)

    Simi, S.; Navas, I.; Vinodkumar, R.; Chalana, S. R.; Gangrade, Mohan; Ganesan, V.; Pillai, V. P. Mahadevan

    2011-09-01

    Zinc nitride (Zn 3N 2) thin films are prepared using pulsed laser deposition (PLD) from zinc selenide (ZnSe) target at different nitrogen ambient pressures viz. 1, 3, 5, 7 and 10 Pa. The films prepared with nitrogen pressures 1 and 3 Pa are amorphous in nature, whereas the films prepared at 5, 7 and 10 Pa exhibit the presence of cubic bixbyite Zn 3N 2 structure with lattice parameter very close to bulk of Zn 3N 2. The particle size calculated by Debye Scherrer's formula is in the nano regime. Surface morphology of the films is studied by SEM and AFM analysis. Optical parameters such as band gap, refractive index and porosity of the films are calculated. Moreover, the present study confers an outlook about how do various factors such as substrate temperature, reactive supplementing gas and laser-target interaction influence the film developing process during pulsed lased deposition.

  1. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    Science.gov (United States)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2016-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  2. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  3. Impact of Testosterone, Zinc, Calcium and Magnesium Concentrations on Sperm Parameters in Subfertile Men

    Science.gov (United States)

    Aydemir, Birsen; Kiziler, Ali Riza; Onaran, Ilhan; Alici, Bülent; Özkara, Hamdi; Akyolcu, Mehmet Can

    2007-04-01

    To investigate the impact of testosterone, zinc, calcium and magnesium concentrations in serum and seminal plasma on sperm parameters. There were significant decrease in sperm parameters, serum and seminal plasma zinc levels in subfertile males. It indicates zinc has a essential role in male infertility; the determination the level of zinc during infertility investigation is recommended.

  4. Is There a Relationship between Zinc and the Peculiar Comorbidities of Down Syndrome?

    Science.gov (United States)

    Romano, Corrado; Pettinato, Rosa; Ragusa, Letizia; Barone, Concetta; Alberti, Antonino; Failla, Pinella

    2002-01-01

    A comparison was made between a range of clinical and biochemical variables and zinc levels in 120 individuals with Down syndrome. No significant differences were found between the normal-zinc and low-zinc groups, except for IgG4 which was, unexpectedly, significantly decreased in the group with normal zinc levels. (Contains references.)…

  5. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-01-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections.Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops.The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  6. Zinc antagonizes homocysteine-induced fetal heart defects in rats.

    Science.gov (United States)

    He, Xiaoyu; Hong, Xinru; Zeng, Fang; Kang, Fenhong; Li, Li; Sun, Qinghua

    2009-09-01

    It has been suggested that zinc may have a protective role against heart defects during fetal development. We investigated the effects of zinc on the development of fetal cardiac malformations induced by homocysteine. Pregnant Sprague-Dawley rats were randomized into one of five groups: control (C), homocysteine (H), homocysteine + zinc (Z), homocysteine + folic acid (F), or homocysteine + zinc + folic acid (ZF) (each n = 8). Homocysteine (8 nmol/day) was administered intraperitoneally in the H, Z, F, and ZF groups on gestation days (GD) 8, 9, and 10. Zinc (30 mg/kg day), folic acid (30 mg/kg day), or both (30 mg/kg day each) were administered intragastrically daily in the Z, F, and ZF groups, respectively, throughout the pregnancy. In each group, two fetuses were removed on GD 13, 15, 17, and 19 and examined for cardiac malformations; maternal copper/zinc-containing-superoxide dismutase (Cu/Zn-SOD) activity and metallothionein type I (MT-1) mRNA expression were measured simultaneously. The prevalence of cardiac malformations was significantly higher in group H than in group C, and significantly lower in group Z than in group H at the studied time points. Cu/Zn-SOD activity and MT-1 mRNA levels were significantly lower in group H than in group C, and significantly higher in group Z than in group H. Our data suggest that zinc antagonizes homocysteine-induced teratogenic effects on the fetal heart, possibly via the inhibition of excessive peroxidation.

  7. Spectrophotometric determination of micro quantities of zinc in rocks

    Science.gov (United States)

    Huffman, C.; Lipp, H.H.; Rader, L.F.

    1963-01-01

    A chemical method is presented for the determination of microgram amounts of zinc in rocks. Zinc is absorbed on anion-exchange resin from 1.2 M hydrochloric acid and eluted with 0.01 M hydrochloric acid. A diethyldithiocarbamate separation removes traces of interfering elements from the eluate. The zinc-diethyldithiocarbamate complex is extracted into chloroform at pH 8.5 and reextracted from other elements in the chloroform solution with 0.16 M hydrochloric acid and finally determined spectrophotometrically as the zincon complex at 621 m??. The coefficient of variation of the method determined from replicate determinations of zinc on 75 selected samples of basalt, ranging in zinc content from 0.004 to 0.018 per cent, was found to be 6.3 per cent and essentially constant in the range of zinc content studied. This method of analysis has been used extensively for a study of zinc in basalts reported by Rader, Swadley, Huffman and Lipp (companion paper, 1963). ?? 1963.

  8. Alkaline Leaching of Low Zinc Content Iron-Bearing Sludges

    Directory of Open Access Journals (Sweden)

    Gargul K.

    2016-03-01

    Full Text Available Various types of waste materials containing zinc (e.g. dusts and sludges from gas dedusting process are obtained in steel industry. The contents of Zn in these materials may vary considerably. Even a low concentration of zinc in recirculated products precludes their recycling in ferrous metallurgy aggregates. Long storage of this type of material can lead to contamination of soil and water by zinc compounds which can be leached out by acid rain, for example. This paper focuses on research involving alkaline leaching tests of low zinc content iron-bearing materials. These tests were preceded by the analysis of the elemental, phase and grain size composition, and analysis of the thermodynamic conditions of the leaching process. The main aim of research was to decrease the content of the zinc in the sludge to the level where it is suitable as an iron-bearing material for iron production (~1% Zn. Leaching at elevated temperatures (368 K, 60 min has led to a decrease in the zinc content in the sludge of about 66%. The research revealed that long hour leaching (298 K, 100 hours carried out at ambient temperatures caused a reduction in zinc content by 60% to the value of 1.15-1.2% Zn.

  9. Role of Zinc Fertilizers in Increasing Grain Zinc Concentration and Improving Grain Yield of Rice

    OpenAIRE

    Phattarakul, Nattinee; Cakmak, Ismail; Boonchuay, Panomwan; Wongmo, Jumniun; Rerkasem, Benjavan

    2009-01-01

    Iron (Fe) toxicity is a widespread nutrient disorder and limit to grain yield in lowland rice. As it is, however, sometimes associated with deficiency of other nutrients, Fe toxicity might be also managed and alleviated by applications of concerned nutrients such as potassium (K) and zinc (Zn). However, the information on this topic available in literature is very limited, especially in the case of Zn. The objective of this study was to evaluate the effects of soil and foliar Zn applicatio...

  10. Copper and Zinc Metallation Status of Copper Zinc Superoxide Dismutase form Amyotrophic Lateral Sclerosis Transgenic Mice

    Energy Technology Data Exchange (ETDEWEB)

    Lelie, H.L.; Miller, L.; Liba, A.; Bourassa, M.W.; Chattopadhyay, M.; Chan, P.K.; Gralla, E.B.; Borchelt, D.R.; et al

    2010-09-24

    Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS. Insoluble SOD1-rich fractions were not enriched in copper and zinc. However, the soluble mutant and WT SOD1s were highly metallated except for the metal-binding-region mutant H46R/H48Q, which did not bind any copper. Due to the stability conferred by high metallation of G37R and G93A, it is unlikely that these soluble SOD1s are prone to aggregation in vivo, supporting the hypothesis that immature nascent SOD1 is the substrate for aggregation. We also investigated the effect of SOD1 overexpression and disease on metal homeostasis in spinal cord cross-sections of SOD1-ALS mice using synchrotron-based x-ray fluorescence microscopy. In each mouse genotype, except for the H46R/H48Q mouse, we found a redistribution of copper between gray and white matters correlated to areas of high SOD1. Interestingly, a disease-specific increase of zinc was observed in the white matter for all mutant SOD1 mice. Together these data provide a picture of copper and zinc in the cell as well as highlight the importance of these metals in understanding SOD1-ALS pathology.

  11. Plasma cadmium and zinc and their interrelationship in adult Nigerians: potential health implications

    Directory of Open Access Journals (Sweden)

    Ugwuja Emmanuel Ike

    2015-06-01

    Full Text Available Zinc (an essential trace element and cadmium (a ubiquitous environmental pollutant with acclaimed toxicity have been found to occur together in nature, with reported antagonism between the two elements. The present study aimed at determination of plasma levels of zinc (Zn and cadmium (Cd and their interrelationship in adult Nigerians. The series comprised adults (n=443 aged ≥18 yrs (mean ± SD 38.4±13.7 yrs, consisting of 117 males, 184 non-pregnant and 140 pregnant females. Sociodemographic data were collected by questionnaire while anthropometrics were determined using standard methods. Plasma Cd and Zn were determined by using an atomic absorption spectrophotometer. The mean plasma zinc and cadmium were 94.7±18.1 μg/dl and 0.150±0.548 μg/dl, respectively. Age, sex, pregnancy, and parity had no effect on either plasma Zn or Cd. Although educational level had no effect on plasma Zn, it had a significant effect on Cd; subjects possessing either secondary or tertiary education had significantly lower plasma Cd than subjects without formal education. Moreover, there seemed to be an inverse relationship between Cd and Zn, but this was not statistically significant (r=–0.089; p=0.061. Although plasma Zn was not related to BMI (r=0.037; p=0.432, Cd was significantly negatively correlated with BMI (r=–0.124; p=0.009. It may be concluded that adult Nigerians in Ebonyi State have elevated plasma levels of Cd, with apparent impact on the levels of plasma Zn. This has important public health implications considering the essential roles of Zn in the protection of Cd mediated adverse health effects. While food diversification is recommended to improve plasma Zn, efforts should be made to reduce exposure to Cd to mitigate partially its possible adverse effects.

  12. Vegetation establishment on a deposit of zinc mine wastes.

    Science.gov (United States)

    Bergholm, J; Steen, E

    1989-01-01

    Field trials concerning the establishment of plant cover on a deposit of wastes from the Ammeberg zinc mine in central Sweden were carried out during 1976-1985. Different soil conditioners and manures were applied and plant species cultivars were evaluated with regard to plant biomass, vigour, durability and content of zinc, lead and cadmium. Sewage sludge and topsoil led to better establishment of grasses than did municipal waste, straw and hydraulic seeding. After 2 years, Festuca rubra and Poa pratensis dominated the swards. Other species (Dactylis glomerata, Bromus inermis, Lolium perenne, Phleum nodosum, Festuca pratensis and F. arundinacea) constituted only a minor part of the stand. After 10 years, F. rubra was the most dominant species, while native Agrostis tenuis had invaded 20-50% of the area within the plots. Merlin was the clearly dominant red fescue cultivar. The concentration of zinc in shoots (616 mg kg(-1) dw) was about 10% of that in the soil. Zinc concentration decreased with increasing biomass above ground. It increased with age in Scots pine needles and was very high in birch leaves. Grasses survived longer than legumes in the zinc sand waste. Among the surviving grasses was a group with high (3800 mg kg(-1) dw) and a group with low (320 mg kg(-1) dw) zinc concentrations. The low group included Merlin red fescue and Sobel creeping bent. The cultivar Merlin contained a much lower zinc concentration than the other cultivars of red fescue (375 and 624 mg kg(-1) dw, respectively). A large amount of root biomass was present in plots with dominating Merlin red fescue (1715 g m(-2)), 97% of which was concentrated in the top 10 cm of the soil. The concentration of zinc in the roots was very high (13 000-25 000 mg kg(-1) dw). Nitrate fertilizer, especially ammonium nitrate, and acidic water (pH 4.3) increased zinc leaching.

  13. Human sperm chromatin stabilization: a proposed model including zinc bridges.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2010-01-01

    The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.

  14. Biofortification of Wheat Cultivars to Combat Zinc Deficiency

    Science.gov (United States)

    Chattha, Muhammad U.; Hassan, Muhammad U.; Khan, Imran; Chattha, Muhammad B.; Mahmood, Athar; Chattha, Muhammad U.; Nawaz, Muhammad; Subhani, Muhammad N.; Kharal, Mina; Khan, Sadia

    2017-01-01

    Zinc (Zn) deficiency caused by inadequate dietary intake is a global nutritional problem, particularly in developing countries. Therefore, zinc biofortification of wheat and other cereal crops is being urgently addressed and highly prioritized as a research topic. A field study was planned to evaluate the influence of zinc application on grain yield, grain zinc content, and grain phytic acid concentrations of wheat cultivars, and the relationships between these parameters. Three wheat cultivars, C1 = Faisalabad-2008, C2 = Punjab-2011, and C3 = Millet-2011 were tested with five different methods of zinc application: T1 = control, T2 = seed priming, T3 = soil application, T4 = foliar application, and T5 = soil + foliar application. It was found that grain yield and grain zinc were positively correlated, whereas, grain phytic acid and grain zinc were significantly negatively correlated. Results also revealed that T5, T3, and T4 considerably increased grain yield; however, T2 only slightly enhanced grain yield. Grain zinc concentration increased from 33.1 and 33.7 mg kg−1 in T1 to 62.3 and 63.1 mg kg−1 in T5 in 2013–2014 and 2014–2015, respectively. In particular, T5 markedly decreased grain phytic acid content; however, maximum concentration was recorded in T1. Moreover, all the tested cultivars exhibited considerable variation in grain yield, grain zinc, and grain phytic acid content. In conclusion, T5 was found to be most suitable for both optimum grain yield and grain biofortification of wheat. PMID:28352273

  15. Kinetics of the dissolution of zinc sulfide in an oxidizing slag

    Science.gov (United States)

    Gupta, Suresh K.

    1990-10-01

    A new concept has been developed for the production of zinc from zinc and complex zinc concentrates. It is a two-stage process involving oxidation of zinc sulfide to oxide and dissolution into slag and the fuming of zinc from the slag by injecting carbonaceous materials into it to produce zinc vapors which can be subsequently condensed in a lead-splash condenser such as those used in the Imperial Smelting Process (ISP). In this paper, the effects of the quantity of air, temperature, and concentrate feed rate have been discussed on the production of zinc-rich slag, which is the first stage of the proposed process.

  16. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery

    Science.gov (United States)

    Lee, Chang Woo; Sathiyanarayanan, K.; Eom, Seung Wook; Yun, Mun Soo

    In our continued efforts for improving the performance of zinc anodes for a Zn/air battery, we now report the preparation of three alloys and improved performances of anodes made up with these alloys. The alloys contained zinc, nickel, and indium with different weight percentages and were calcined at two different temperatures. Out of the six alloys, the alloy which has a composition of zinc 90%, nickel 7.5% and Indium 2.5% and fired at 500 °C is found to be the best. In the case of the hydrogen evolution reaction, this alloy had its potential shifted to a more negative potential. As far as the cyclic voltammograms were concerned, the difference between the anodic and cathodic part was minimal when compared with other alloys. Surprisingly, this alloy had reversibility even after 100 cycles of the cyclic voltammogram. This is a clear indication that dendrite formation was reduced to a considerable extent. Images taken with a scanning electron microscope also indicated reduced dendrite formation.

  17. Zinc oxide films prepared by spray pyrolysis

    Directory of Open Access Journals (Sweden)

    Maciąg Andrzej

    2017-01-01

    Full Text Available In this work we developed and tested spray pyrolysis system for layers deposition. In the system we have used ultrasonic apparatus (nebulizator as a sprayer. A zinc nitrate aqueous solution has been used as a precursor solution. The idea of the method is the decomposition of nitrate on a hot substrate according to the reaction Zn(NO32 → ZnO +2 NO2 +1/2O2. The layers were grown on glass, (001Si and KCl substrates at the temperatures 300 – 500°C. The thickness of the obtained layers was in the range 50 – 500 nm, depending on the growth time and rate. The influence of substrate temperature on the morphology of the layers has been studied by SEM method. The energy gap of the layers was found to be the range of 3.26-3.3 eV from their absorption spectra.

  18. Sprayed lanthanum doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouznit, Y., E-mail: Bouznit80@gmail.com [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Beggah, Y. [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Ynineb, F. [Laboratory of Thin Films and Interface, University Mentouri, Constantine 25000 (Algeria)

    2012-01-15

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  19. Sprayed lanthanum doped zinc oxide thin films

    Science.gov (United States)

    Bouznit, Y.; Beggah, Y.; Ynineb, F.

    2012-01-01

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  20. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...... measurements it is revealed that ZnFe2O4 particles prepared are in superparamagnetic state at ambient temperature. A doublet with an average quadrupole splitting of 0.8 nm/s is observed for the as-milled sample at 295 K, which is much larger than that for bulk ZnFe2O4 prepared by traditional ceramic method...... and that for ultrafine ZnFe2O4 particles prepared by the co-precipitation method. This indicates larger structural defects in the nanometer-sized ZnFe2O4 particles prepared by high-energy ball milling....