Sample records for cd123 mediate potent

  1. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    Energy Technology Data Exchange (ETDEWEB)

    Nishikado, Hideto [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko [Laboratory of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Ogawa, Hideoki; Okumura, Ko [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Takai, Toshiro, E-mail: [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan)


    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.

  2. A Human Lin(-) CD123(+) CD127(low) Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis. (United States)

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C


    Innate lymphoid cells (ILC) are members of a heterogeneous family with a lymphoid origin that mimics the T helper (Th) cytokine profile. ILC are involved in early effector cytokine-mediated responses during infections in peripheral tissues. ILC also play an important role in chronic skin inflammatory diseases, including psoriasis. Although classical ILC express CD127, it has been recently reported that the presence of non-classical CD127(-) ILC populations and an early ILC precursor (EILP) CD127(low). ILC development has predominately been investigated in mouse models. However, in humans, different transcription factors have been described for ILC identification. NFIL3 (nuclear factor, IL-3 regulated) is crucial for ILC development in response to IL-7. CD123 (IL-3Rα) is usually used to exclude basophils during ILC identification, however, it is unknown if in response to IL-3, NFIL3 could be relevant to induce ILC features in Lin(-) CD123(+) populations in addition, is also unknown whether peripheral blood (PB) population with ILC features may have skin-homing potential to participate in skin inflammatory chronic diseases. Here, we report a Lin(-) CD123(+) CD127(low) CD7(+) CLA(+) population that share some phenotypic properties with basophils, but expresses several transcription factors for ILC commitment such as inhibitor of DNA binding 2 (Id2), NFIL3, promyelocytic leukemia zinc finger (PLZF), thymocyte selection-associated high-mobility group box protein (TOX), and T cell factor-1 (TCF-1). In addition, this population expresses different ILC markers: CD132, CD90, CD161, α4 integrin, c-Kit, CRTH2, AhR, and IL-23R. IL-3 prevents apoptosis and increases their NFIL3, TOX, and PLZF expression. In PB, the CD123(+) CD127(low) population is predominantly a conspicuous population that expresses T-bet and RORγt. The Lin(-) CD123(+) CD127(low) population in PB has a limited Th type cytokine expression and highly expresses IL-8. The Lin(-) CD123(+) CD127(low) population

  3. A Human Lin− CD123+ CD127low Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis (United States)

    Mora-Velandia, Luz María; Castro-Escamilla, Octavio; Méndez, Andrés González; Aguilar-Flores, Cristina; Velázquez-Avila, Martha; Tussié-Luna, María Isabel; Téllez-Sosa, Juan; Maldonado-García, César; Jurado-Santacruz, Fermín; Ferat-Osorio, Eduardo; Martínez-Barnetche, Jesus; Pelayo, Rosana; Bonifaz, Laura C.


    Innate lymphoid cells (ILC) are members of a heterogeneous family with a lymphoid origin that mimics the T helper (Th) cytokine profile. ILC are involved in early effector cytokine-mediated responses during infections in peripheral tissues. ILC also play an important role in chronic skin inflammatory diseases, including psoriasis. Although classical ILC express CD127, it has been recently reported that the presence of non-classical CD127− ILC populations and an early ILC precursor (EILP) CD127low. ILC development has predominately been investigated in mouse models. However, in humans, different transcription factors have been described for ILC identification. NFIL3 (nuclear factor, IL-3 regulated) is crucial for ILC development in response to IL-7. CD123 (IL-3Rα) is usually used to exclude basophils during ILC identification, however, it is unknown if in response to IL-3, NFIL3 could be relevant to induce ILC features in Lin− CD123+ populations in addition, is also unknown whether peripheral blood (PB) population with ILC features may have skin-homing potential to participate in skin inflammatory chronic diseases. Here, we report a Lin− CD123+ CD127low CD7+ CLA+ population that share some phenotypic properties with basophils, but expresses several transcription factors for ILC commitment such as inhibitor of DNA binding 2 (Id2), NFIL3, promyelocytic leukemia zinc finger (PLZF), thymocyte selection-associated high-mobility group box protein (TOX), and T cell factor-1 (TCF-1). In addition, this population expresses different ILC markers: CD132, CD90, CD161, α4 integrin, c-Kit, CRTH2, AhR, and IL-23R. IL-3 prevents apoptosis and increases their NFIL3, TOX, and PLZF expression. In PB, the CD123+ CD127low population is predominantly a conspicuous population that expresses T-bet and RORγt. The Lin− CD123+ CD127low population in PB has a limited Th type cytokine expression and highly expresses IL-8. The Lin− CD123+ CD127low population expresses skin

  4. The expression of CD123 can decrease with basophil activation: implications for the gating strategy of the basophil activation test


    Santos, Alexandra F.; Bécares, Natalia; Stephens, Alick; Turcanu, Victor; Lack, Gideon


    Background Basophil activation test (BAT) reproduces IgE-mediated allergic reactions in vitro and has been used as a diagnostic test. Different markers can be used to identify basophils in whole blood and have implications for the outcome of the test. We aimed to assess changes in the expression of CD123 and HLA-DR following basophil activation and to select the best gating strategy for BAT using these markers. Methods BAT was performed in whole blood from 116 children. Peanut extract, anti-I...

  5. CD123在儿童急性B淋巴细胞白血病中的表达及其在微小残留病检测中的应用%Expressions of CD123 in childhood B-lineage acute lymphoblastic leukemia and the application of CD123 in minimal residual disease detection

    Institute of Scientific and Technical Information of China (English)

    计雪强; 季正华; 邵惠江; 王红英; 何亚香; 朱宏; 邵雪君


    Objective: Detecting the expression of CD123 in childhood B-lineage acute lymphoblastic leukemia ( B-ALL ) and discussing the application and significance of CD123 in minimal residual disease ( MRD ) detection. Methods: With the normal children bone marrow lymphocytes as control, multiparame-ter flow cytometry was used to study the bone marrow lymphocytes immunophenotype and the expression of CD123 in 91 cases of children with B-ALL, 78 cases of which were underwent bone marrow cells chromosome cultivation and cytogenetic analysis. 65 cases of B-ALL children with CD123 positive expression were screened and monitored by CD10/CD123/CD34/CD19 in MRD detection. Results: The expression of CD 123 in normal children bone marrow lymphocytes was negative, while 65 cases of 91 in B-ALL children was positive( positive rate 71.43% ), and the expression level of CD123 was negatively correlated with the leukemic cells maturity. When children had a high expression of CD34, the expression of CD123 was also in a high level. The results of cytogenetic analysis showed that hyperdiploid B-ALL children had a higher level of CD123 expression, when comparing with the non-hyperdiploid cases. Forty-seven cases of B-ALL children ( 51. 65% ) had a high level of CD 123 expression, and CD 123 could be used as an effective marker for MRD monitoring. Conclusion: Most of B-ALL children had an expression of CD123 , which was negatively correlated with the leukemic cells maturity. CD123 can be used as a maker for MRD monitoring in childhood B-ALL.%目的:检测细胞表面抗原CD123在儿童急性B淋巴细胞白血病(B-lineage acute lymphoblastic leukemia,B-ALL)中的表达,并探讨其在儿童B-ALL微小残留病(minimal residual disease,MRD)检测中的应用及意义.方法:以健康儿童骨髓淋巴细胞为对照,应用多参数流式细胞术检测91例儿童B-ALL患者骨髓淋巴细胞免疫表型及CD123的表达,其中78例B-ALL患者进行了骨髓细胞染色体培养及

  6. CD 123 - Wheat bread for white flour in cool regions of Brazil

    Directory of Open Access Journals (Sweden)

    Volmir Sergio Marchioro


    Full Text Available Cultivar CD 123 is recommendable for the wheat-growing regions 1, 2 and 3 of the States of Rio Grande do Sul, Santa Catarina and Paraná. It is a white flour wheat destined for production in cooler regions. The mean potential yield is 3514 kg ha-1, exceeding that of the control cultivars by 5%.

  7. Cocaethylene is more potent than cocaine in mediating lethality. (United States)

    Hearn, W L; Rose, S; Wagner, J; Ciarleglio, A; Mash, D C


    Cocaethylene is a pharmacologically active cocaine metabolite that is formed in the presence of ethanol by the activity of liver enzymes. The pharmacology of cocaethylene has not been extensively investigated and its acute toxicity is unknown. The acute toxicity of cocaethylene was compared to cocaine in Swiss-Webster mice. The LD50 of cocaethylene was 60.7 mg/kg and 63.8 mg/kg in female and male mice, respectively. In comparison, the LD50 of cocaine was 93.0 mg/kg in both female and male mice. These studies demonstrate that the cocaine-alcohol metabolite, cocathylene, is more potent in mediating lethality than the parent drug.

  8. A concise synthesis of the potent inflammatory mediator 5-oxo-ETE

    DEFF Research Database (Denmark)

    Tyagi, Rahul; Shimpukade, Bharat; Blättermann, Stefanie;


    A concise and practical method for synthesis of the potent inflammatory mediator 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE, 1) from arachidonic acid in four steps and 70% overall yield is reported. Stability studies indicate that 1 can be safely handled without rigorous precautions...

  9. Neo-lymphoid aggregates in the adult liver can initiate potent cell-mediated immunity.

    Directory of Open Access Journals (Sweden)

    Melanie Greter


    Full Text Available Subcutaneous immunization delivers antigen (Ag to local Ag-presenting cells that subsequently migrate into draining lymph nodes (LNs. There, they initiate the activation and expansion of lymphocytes specific for their cognate Ag. In mammals, the structural environment of secondary lymphoid tissues (SLTs is considered essential for the initiation of adaptive immunity. Nevertheless, cold-blooded vertebrates can initiate potent systemic immune responses even though they lack conventional SLTs. The emergence of lymph nodes provided mammals with drastically improved affinity maturation of B cells. Here, we combine the use of different strains of alymphoplastic mice and T cell migration mutants with an experimental paradigm in which the site of Ag delivery is distant from the site of priming and inflammation. We demonstrate that in mammals, SLTs serve primarily B cell priming and affinity maturation, whereas the induction of T cell-driven immune responses can occur outside of SLTs. We found that mice lacking conventional SLTs generate productive systemic CD4- as well as CD8-mediated responses, even under conditions in which draining LNs are considered compulsory for the initiation of adaptive immunity. We describe an alternative pathway for the induction of cell-mediated immunity (CMI, in which Ag-presenting cells sample Ag and migrate into the liver where they induce neo-lymphoid aggregates. These structures are insufficient to support antibody affinity maturation and class switching, but provide a novel surrogate environment for the initiation of CMI.

  10. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors. (United States)

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N


    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.

  11. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors (United States)

    Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E.; Laskowski, Tamara; McNamara, George; Cooper, Laurence J. N.


    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR’s in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies. PMID:27548616

  12. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors. (United States)

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai


    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors.

  13. Langerhans cells (CD1a and CD207), dermal dendrocytes (FXIIIa) and plasmacytoid dendritic cells (CD123) in skin lesions of leprosy patients. (United States)

    Hirai, Kelly Emi; Aarão, Tinara Leila de Sousa; Silva, Luciana Mota; de Sousa, Jorge Rodrigues; de Souza, Juarez; Dias, Leonidas Braga; Carneiro, Francisca Regina Oliveira; Fuzii, Hellen Thais; Quaresma, Juarez Antonio Simões


    The clinical course of infection with Mycobacterium leprae varies widely and depends on the pattern of the host immune response. Dendritic cells play an important role in the activation of the innate and adaptive immune system and seem to be essential for the development of the disease. To analyze the presence of epidermal dendritic cells (CD1a and CD207), plasmacytoid dendritic cells (CD123) and dermal dendrocytes (factor XIIIa) in lesion fragments of leprosy patients, skin samples from 30 patients were studied. These samples were submitted to immunohistochemistry against CD1a, CD207, FXIIIa, and CD123. The results showed a larger number of Langerhans cells, detected with the CD1a or CD207 marker, dermal dendrocytes and plasmacytoid dendritic cells in patients with the tuberculoid form. A positive correlation was observed between the Langerhans cell markers CD1a and CD207 in both the tuberculoid and lepromatous forms, and between Langerhans cells and dermal dendrocytes in samples with the tuberculoid form. The present results indicate the existence of a larger number of dendritic cells in patients at the resistant pole of the disease (tuberculoid) and suggest that the different dendritic cells studied play a role, favoring an efficient immune response against infection with M. leprae.

  14. Dioscorea bulbifera Mediated Synthesis of Novel AucoreAgshell Nanoparticles with Potent Antibiofilm and Antileishmanial Activity

    Directory of Open Access Journals (Sweden)

    Sougata Ghosh


    Full Text Available Dioscorea bulbifera is a potent medicinal plant used in both Indian and Chinese traditional medicine owing to its rich phytochemical diversity. Herein, we report the rapid synthesis of novel AucoreAgshell nanoparticles by D. bulbifera tuber extract (DBTE. AucoreAgshell NPs synthesis was completed within 5 h showing a prominent peak at 540 nm. HRTEM analysis revealed 9 nm inner core of elemental gold covered by a silver shell giving a total particle diameter upto 15 nm. AucoreAgshellNPs were comprised of 57.34±1.01% gold and 42.66±0.97% silver of the total mass. AucoreAgshellNPs showed highest biofilm inhibition upto 83.68±0.09% against A. baumannii. Biofilms of P. aeruginosa, E. coli, and S. aureus were inhibited up to 18.93±1.94%, 22.33±0.56%, and 30.70±1.33%, respectively. Scanning electron microscopy (SEM and atomic force microscopy (AFM confirmed unregulated cellular efflux through pore formation leading to cell death. Potent antileishmanial activity of AucoreAgshellNPs (MIC=32 µg/mL was confirmed by MTT assay. Further SEM micrographs showed pronounced deformity in the spindle shaped cellular morphology changing to spherical. This is the first report of synthesis, characterization, antibiofilm, and antileishmanial activity of AucoreAgshellNPs synthesized by D. bulbifera.

  15. Case Report: A case of hypertrophic lupus erythematosus with negative CD123 staining and absence of transepidermal elimination of elastin [v2; ref status: indexed,

    Directory of Open Access Journals (Sweden)

    Matthew Hughes


    Full Text Available We report the case of a 49-year-old male with clinical and histological findings consistent with hypertrophic lupus erythematosus (HLE. HLE must be clinically and histologically differentiated from keratoacanthoma, hypertrophic lichen planus, squamous cell carcinoma and plaque type psoriasis. CD123 positivity and transepidermal elimination of elastin have recently been reported as tools to distinguish HLE. Interestingly, in this case, biopsies of two separate lesions failed to reveal these two features. The etiology of this discrepancy is unknown and further studies are needed to clarify the utility of CD123 positivity and transepidermal elimination of elastin in the diagnosis of hypertrophic lupus erythematosus.

  16. IL-35-mediated induction of a potent regulatory T cell population. (United States)

    Collison, Lauren W; Chaturvedi, Vandana; Henderson, Abigail L; Giacomin, Paul R; Guy, Cliff; Bankoti, Jaishree; Finkelstein, David; Forbes, Karen; Workman, Creg J; Brown, Scott A; Rehg, Jerold E; Jones, Michael L; Ni, Hsiao-Tzu; Artis, David; Turk, Mary Jo; Vignali, Dario A A


    Regulatory T cells (T(reg) cells) have a critical role in the maintenance of immunological self-tolerance. Here we show that treatment of naive human or mouse T cells with IL-35 induced a regulatory population, which we call 'iT(R)35 cells', that mediated suppression via IL-35 but not via the inhibitory cytokines IL-10 or transforming growth factor-β (TGF-β). We found that iT(R)35 cells did not express or require the transcription factor Foxp3, and were strongly suppressive and stable in vivo. T(reg) cells induced the generation of iT(R)35 cells in an IL-35- and IL-10-dependent manner in vitro and induced their generation in vivo under inflammatory conditions in intestines infected with Trichuris muris and within the tumor microenvironment (B16 melanoma and MC38 colorectal adenocarcinoma), where they contributed to the regulatory milieu. Thus, iT(R)35 cells constitute a key mediator of infectious tolerance and contribute to T(reg) cell-mediated tumor progression. Furthermore, iT(R)35 cells generated ex vivo might have therapeutic utility.

  17. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes. (United States)

    Zhang, Qian; Wei, Fang; Wang, Hong Yi; Liu, Xiaobin; Roy, Darshan; Xiong, Qun-Bin; Jiang, Shuguang; Medvec, Andrew; Danet-Desnoyers, Gwenn; Watt, Christopher; Tomczak, Ewa; Kalos, Michael; Riley, James L; Wasik, Mariusz A


    With this study we have demonstrated that in vitro transduction of normal human CD4(+) T lymphocytes with NPM-ALK results in their malignant transformation. The transformed cells become immortalized and display morphology and immunophenotype characteristic of patient-derived anaplastic large-cell lymphomas. These unique features, which are strictly dependent on NPM-ALK activity and expression, include perpetual cell growth, proliferation, and survival; activation of the key signal transduction pathways STAT3 and mTORC1; and expression of CD30 (the hallmark of anaplastic large-cell lymphoma) and of immunosuppressive cytokine IL-10 and cell-surface protein PD-L1/CD274. Implantation of NPM-ALK-transformed CD4(+) T lymphocytes into immunodeficient mice resulted in formation of tumors indistinguishable from patients' anaplastic large-cell lymphomas. Our findings demonstrate that the key aspects of human carcinogenesis closely recapitulating the features of the native tumors can be faithfully reproduced in vitro when an appropriate oncogene is used to transform its natural target cells; this in turn points to the fundamental role in malignant cell transformation of potent oncogenes expressed in the relevant target cells. Such transformed cells should permit study of the early stages of carcinogenesis, and in particular the initial oncogene-host cell interactions. This experimental design could also be useful for studies of the effects of early therapeutic intervention and likely also the mechanisms of malignant progression.

  18. Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures. (United States)

    Loppnow, Harald; Zhang, Li; Buerke, Michael; Lautenschläger, Michael; Chen, Li; Frister, Adrian; Schlitt, Axel; Luther, Tanja; Song, Nan; Hofmann, Britt; Rose-John, Stefan; Silber, Rolf-Edgar; Müller-Werdan, Ursula; Werdan, Karl


    Inflammatory pathways are involved in the development of atherosclerosis. Interaction of vessel wall cells and invading monocytes by cytokines may trigger local inflammatory processes. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are standard medications used in cardiovascular diseases. They are thought to have anti-inflammatory capacities, in addition to their lipid-lowering effects. We investigated the anti-inflammatory effect of statins in the cytokine-mediated-interaction-model of human vascular smooth muscle cells (SMC) and human mononuclear cells (MNC). In this atherosclerosis-related inflammatory model LPS (lipopolysaccharide, endotoxin), as well as high mobility group box 1 stimulation resulted in synergistic (i.e. over-additive) IL-6 (interleukin-6) production as measured in ELISA. Recombinant IL-1, tumour necrosis factor-α and IL-6 mediated the synergistic IL-6 production. The standard anti-inflammatory drugs aspirin and indomethacin (Indo) reduced the synergistic IL-6 production by 60%. Simvastatin, atorvastatin, fluvastatin or pravastatin reduced the IL-6 production by 53%, 50%, 64% and 60%, respectively. The inhibition by the statins was dose dependent. Combination of statins with aspirin and/or Indo resulted in complete inhibition of the synergistic IL-6 production. The same inhibitors blocked STAT3 phosphorylation, providing evidence for an autocrine role of IL-6 in the synergism. MNC from volunteers after 5 day aspirin or simvastatin administration showed no decreased IL-6 production, probably due to drug removal during MNC isolation. Taken together, the data show that anti-inflammatory functions (here shown for statins) can be sensitively and reproducibly determined in this novel SMC/MNC coculture model. These data implicate that statins have the capacity to affect atherosclerosis by regulating cytokine-mediated innate inflammatory pathways in the vessel wall.

  19. Piperidine-mediated synthesis of thiazolyl chalcones and their derivatives as potent antimicrobial agents. (United States)

    Venkatesan, P; Maruthavanan, T


    A series of new thiazolyl chalcones, 1-[2-amino-4-methyl-1,3-thiazol-5-yl]-3-aryl-prop-2-en-1-one were prepared by piperidine mediated Claisen-Schmidt condensation of thiazolyl ketone with aromatic aldehyde. These chalcones on cyclisation gave 2-amino-6-(2-amino-4-methyl-1,3-thiazol-5-yl)-4-aryl-4H-pyridine-3-carbonitrile and 2-amino-6-(2-amino-4-methyl-1,3-thiazol-5-yl)-4-aryl-4H-pyran-3-carbonitrile. The result showed that the compounds exhibited marked potency as antimicrobial agents.

  20. Alloantibody induced platelet responses in transplants: potent mediators in small packages. (United States)

    Kuo, Hsiao-Hsuan; Morrell, Craig N; Baldwin, William M


    The early histological studies of organ allografts noted platelets attached to vascular endothelium. Platelets adhere to vessels before any morphological evidence of endothelial injury. Subsequently, in vitro and in vivo experiments have demonstrated that alloantibodies can induce exocytosis of von Willebrand factor and P-selectin from endothelial cells and attachment of platelets within minutes. Platelets also adhere to and stimulate leukocytes. These interactions are increased by complement activation. After attachment platelets degranulate, releasing preformed mediators. Some chemokines stored together in platelet granules can form heteromers with synergistic functions. Heteromers containing platelet factor 4 (PF4; CXCL4) are specific to platelets and provide insights to unique platelet functions and opportunities for therapeutic intervention.

  1. Toll样受体9和CD123在寻常型银屑病患者皮损中的表达%Expression of Toll-like Receptors 9 and CD123 Plasmacytoid Dendritic Cells in Lesions of Patients with Psoriasis Vulgaris

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the expression of toll-like receptors 9( TLR9) and CD123 plasma-cytoid dendritic cells in skin lesions of patients with psoriasis vulgaris and its significance .Methods A total of 26 patients with psoriasis vulgaris admitted in People′s hospital of Yanzhou City from Jun.2012 to Apr. 2013 were selected as the experimental group,another 23 healthy people underwent physical examination were selected as the control group.Skin lesion samples from the bodies of all the cases were collected by the method of general skin surgeries and received biopsies,and the expression of CD123 and TLR9 in the samples were detected by S-P immunohistochemical method and reverse transcription-polymerase chain reaction ( RT-PCR) ,and the relationship between the overexpression of the two factors and the pathogenesis of psoria-sis vulgaris was analyzed.Results The positive expression rate of CD123 and TLR9 in the experiment group detected by S-P immunohistochemical method were both 100%,the expression mean values of CD123 and TLR9 were respectively (10.1 ±2.3) figures/mm3,(14.4 ±2.0)figures/mm3,while in control group,the expression mean values of CD123 and TLR9 were respectively (1.5 ±0.6) figures/mm3,(2.2 ±1.0) fig-ures/mm3 ,both without positive expression;the expression levels of TLR mRNA in experiment group and con-trol group detected by RT-PCR method were (1.32 ±0.08) figures/mm3 and (0.87 ±0.04) figures/mm3, respectively,the difference was statistically significant(P<0.01).Conclusion Plasmacytoid dendritic cells may be involved in stimulating the activation and proliferation of autoimmune T cell ,which is an important mechanism of the incidence of psoriasis vulgaris.%目的:探讨 Toll 样受体9( TLR9)和 CD123在寻常型银屑病患者皮损中的表达及意义。方法选择2012年6月至2013年4月兖州市人民医院收治的26例寻常型银屑病患者为试验组,另选23例健康体检者为对照组,分别按照

  2. Synthetic conantokin peptides potently inhibit N-methyl-D-aspartate receptor-mediated currents of retinal ganglion cells. (United States)

    Huang, Luoxiu; Balsara, Rashna D; Castellino, Francis J


    Retinal ganglion cells (RGCs), which are the sole output neurons of the retina, express N-methyl-D-aspartate receptors (NMDARs), rendering these cells susceptible to glutamate excitotoxicity, with implications for loss of normal RGC excitatory responses in disorders such as glaucoma and diabetic retinopathy. Therefore, antagonists that inhibit NMDAR-mediated currents specifically by targeting the GluN2B component of the ion channel have the potential to serve as a basis for developing potential therapeutics. The roles of peptidic conantokins, which are potent brain neuronal NMDAR inhibitors, were studied. By using patch-clamp whole-cell analyses in dissociated RGCs and retinal whole-mount RGCs, we evaluated the effects of synthetic conantokin-G (conG) and conantokin-T (conT), which are small γ-carboxyglutamate-containing peptides, on NMDA-mediated excitatory responses in mouse RGCs. Both conG and conT inhibited the NMDA-mediated currents of dark-adapted dissociated and whole-mount RGCs in a dose-dependent, reversible, noncompetitive manner. Inhibition of NMDA-mediated steady-state currents by NMDAR nonsubunit-selective conT was approximately threefold greater than GluN2B-selective conG or ifenprodil, demonstrating its potential ability to inhibit both GluN2A- and GluN2B-containing ion channels in RGCs. Because the extent of inhibition of NMDA-evoked currents by conG and the pharmacologic GluN2B-selective inhibitor ifenprodil were similar (40-45%) to that of the GluN2A-selective antagonist NVP-AAM0077, we conclude that the levels of GluN2A and GluN2B subunits are similar in RGCs. These results provide a novel basis for developing effective neuroprotective agents to aid in the prevention of undesired glutamatergic excitotoxicity in neurodegenerative diseases of the retina and demonstrate functional assembly of NMDARs in RGCs.

  3. Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1

    Directory of Open Access Journals (Sweden)

    George K. Lewis


    Full Text Available The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion by antibodies that protect only by potent Fc-mediated effector function.

  4. The oestrogenic effects of gestodene, a potent contraceptive progestin, are mediated by its A-ring reduced metabolites. (United States)

    Lemus, A E; Zaga, V; Santillán, R; García, G A; Grillasca, I; Damián-Matsumura, P; Jackson, K J; Cooney, A J; Larrea, F; Pérez-Palacios, G


    Gestodene (17 alpha-ethynyl-13 beta-ethyl-17 beta-hydroxy-4, 15-gonadien-3-one) is the most potent synthetic progestin currently available and it is widely used as a fertility regulating agent in a number of contraceptive formulations because of its high effectiveness, safety and acceptability. The observation that contraceptive synthetic progestins exert hormone-like effects other than their progestational activities, prompted us to investigate whether gestodene (GSD) administration may induce oestrogenic effects, even though the GSD molecule does not interact with intracellular oestrogen receptors (ER). To assess whether GSD may exert oestrogenic effects through some of its neutral metabolites, a series of experimental studies were undertaken using GSD and three of its A-ring reduced metabolites. Receptor binding studies by displacement analysis confirmed that indeed GSD does not bind to the ER, whereas its 3 beta,5 alpha-tetrahydro reduced derivative (3 beta GSD) interacts with a relative high affinity with the ER. The 3 alpha,5 alpha GSD isomer (3 alpha GSD) also binds to the ER, though to a lesser extent. The ability of the A-ring reduced GSD derivatives to induce oestrogenic actions was evaluated by the use of two different molecular bioassays: (a) transactivation of a yeast system co-transfected with the human ER alpha (hER alpha) gene and oestrogen responsive elements fused to the beta-galactosidase reporter vector and (b) transactivation of the hER alpha-mediated transcription of the chloramphenicol acetyl transferase (CAT) reporter gene in a HeLa cells expression system. The oestrogenic potency of 3 beta GSD was also assessed by its capability to induce oestrogen-dependent progestin receptors (PR) in the anterior pituitary of castrated female rats. The results demonstrated that 3 beta GSD and 3 alpha GSD were able to activate, in a dose-dependent manner, the hER alpha-mediated transcription of both the beta-galactosidase and the CAT reporter genes in the

  5. Expression of the T cell receptor αβ on a CD123+ BDCA2+ HLA-DR+ subpopulation in head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Annette Thiel

    Full Text Available Human Plasmacytoid Dendritic Cells (PDCs infiltrating solid tumor tissues and draining lymph nodes of Head and Neck Squamous Cell Carcinoma (HNSCC show an impaired immune response. In addition to an attenuated secretion of IFN-α little is known about other HNSCC-induced functional alterations in PDCs. Particular objectives in this project were to gain new insights regarding tumor-induced phenotypical and functional alterations in the PDC population. We showed by FACS analysis and RT-PCR that HNSCC orchestrates an as yet unknown subpopulation exhibiting functional autonomy in-vitro and in-vivo besides bearing phenotypical resemblance to PDCs and T cells. A subset, positive for the PDC markers CD123, BDCA-2, HLA-DR and the T cell receptor αβ (TCR-αβ was significantly induced subsequent to stimulation with HNSCC in-vitro (p = 0.009 and also present in metastatic lymph nodes in-vivo. This subgroup could be functionally distinguished due to an enhanced production of IL-2 (p = 0.02, IL-6 (p = 0.0007 and TGF-β (not significant. Furthermore, after exposure to HNSCC cells, mRNA levels revealed a D-J-beta rearrangement of the TCR-beta chain besides a strong enhancement of the CD3ε chain in the PDC population. Our data indicate an interface between the PDC and T cell lineage. These findings will improve our understanding of phenotypical and functional intricacies concerning the very heterogeneous PDC population in-vivo.

  6. Copper(I) mediated facile synthesis of potent tubulin polymerization inhibitor, 9-amino-α-noscapine from natural α-noscapine. (United States)

    Manchukonda, Naresh K; Sridhar, Balasubramanian; Naik, Pradeep K; Joshi, Harish C; Kantevari, Srinivas


    Facile synthesis of natural α-noscapine analogue, 9-amino-α-noscapine, a potent inhibitor of tubulin polymerization for cancer therapy, is achieved via copper(I) iodide mediated in situ aromatic azidation and reduction of 9-bromo-α-noscapine (obtained by bromination of natural α-noscapine) with NaN(3) in DMSO at 130°C in the presence of L-proline as an amino acid promoter. The protocol developed here avoided isolation of 9-azido-α-noscapine and did not cleave the sensitive C-C bond between two heterocyclic phthalide and isoquinoline units.

  7. Ionic liquid mediated synthesis and molecular docking study of novel aromatic embedded Schiff bases as potent cholinesterase inhibitors. (United States)

    Abd Razik, Basma M; Osman, Hasnah; Basiri, Alireza; Salhin, Abdussalam; Kia, Yalda; Ezzat, Mohammed Oday; Murugaiyah, Vikneswaran


    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively.

  8. Pazopanib, a novel multi-kinase inhibitor, shows potent antitumor activity in colon cancer through PUMA-mediated apoptosis. (United States)

    Zhang, Lingling; Wang, Huanan; Li, Wei; Zhong, Juchang; Yu, Rongcheng; Huang, Xinfeng; Wang, Honghui; Tan, Zhikai; Wang, Jiangang; Zhang, Yingjie


    Colon cancer is still the third most common cancer which has a high mortality but low five-year survival rate. Novel tyrosine kinase inhibitors (TKI) such as pazopanib become effective antineoplastic agents that show promising clinical activity in a variety of carcinoma, including colon cancer. However, the precise underlying mechanism against tumor is unclear. Here, we demonstrated that pazopanib promoted colon cancer cell apoptosis through inducing PUMA expression. Pazopanib induced p53-independent PUMA activation by inhibiting PI3K/Akt signaling pathway, thereby activating Foxo3a, which subsequently bound to the promoter of PUMA to activate its transcription. After induction, PUMA activated Bax and triggered the intrinsic mitochondrial apoptosis pathway. Furthermore, administration of pazopanib highly suppressed tumor growth in a xenograft model. PUMA deletion in cells and tumors led to resistance of pazopanib, indicating PUMA-mediated pro-apoptotic and anti-tumor effects in vitro and in vivo. Combing pazopanib with some conventional or novel drugs, produced heightened and synergistic antitumor effects that were associated with potentiated PUMA induction via different pathways. Taken together, these results establish a critical role of PUMA in mediating the anticancer effects of pazopanib in colon cancer cells and provide the rationale for clinical evaluation.

  9. The novel heteromeric bivalent ligand SB9 potently antagonizes P2Y(1) receptor-mediated responses. (United States)

    Lambrecht, G; Ganso, M; Bäumert, H G; Spatz-Kümbel, G; Hildebrandt, C; Braun, K; Mutschler, E


    Effects of 6-[(4,6,8-trisulfo-1-naphthyl)iminocarbonyl-1, 3-(4-methylphenylene)iminocarbonyl-1, 3-phenylene-azo]-pyridoxal-5'-phosphate (SB9), a heterodimeric bivalent ligand consisting of pyridoxal-5'-phosphate and the suramin monomer, were studied on contractions of the rat vas deferens elicited by alpha beta-methylene ATP (alpha beta meATP; mediated by P2X(1)-like receptors), contractions of the guinea-pig ileal longitudinal smooth muscle elicited by adenosine 5'-O-(2-thiodiphosphate) (ADP beta S mediated by P2Y(1)-like receptors), and the degradation of ATP by ecto-nucleotidases in folliculated Xenopus laevis oocytes. SB9 (0.1-10 microM) antagonized contractile responses produced by alpha beta meATP or ADP beta S in a concentration-dependent manner. Schild analysis yielded linear regression lines of unit slope, indicating competitive antagonism. From the rightward shifts of the agonist concentration-response curves pA(2) values of 6.05+/-0.13 (vas deferens) and 6.98+/-0.07 (ileum) were derived. In both preparations, SB9 behaved as a slow onset, slow offset antagonist. Incubation of three oocytes in the presence of ATP produced an increase in inorganic phosphate (P(i)) over a 30-min period, which amounted to 35.1+/-1.9 microM P(i) from 100 microM ATP. SB9 (10-1000 microM) reduced this degradation (pIC(50)=4.33+/-0.10). The results illustrate that SB9 is a high-affinity P2Y(1) receptor antagonist with a remarkable selectivity for P2Y(1) vs. P2X(1) receptors (about 10-fold) and ecto-nucleotidases (447-fold). These properties make it unique among the pyridoxal-5'-phosphate and suramin derivatives reported to date.

  10. An EGF receptor targeting Ranpirnase-diabody fusion protein mediates potent antitumour activity in vitro and in vivo. (United States)

    Kiesgen, Stefan; Arndt, Michaela A E; Körber, Christoph; Arnold, Ulrich; Weber, Tobias; Halama, Niels; Keller, Armin; Bötticher, Benedikt; Schlegelmilch, Anne; Liebers, Nora; Cremer, Martin; Herold-Mende, Christel; Dyckhoff, Gerhard; Federspil, Philippe A; Jensen, Alexandra D; Jäger, Dirk; Kontermann, Roland E; Mier, Walter; Krauss, Jürgen


    Cytotoxic ribonucleases such as the leopard frog derivative Ranpirnase (Onconase(®)) have emerged as a valuable new class of cancer therapeutics. Clinical trials employing single agent Ranpirnase in cancer patients have demonstrated significant clinical activity and surprisingly low immunogenicity. However, dose-limiting toxicity due to unspecific uptake of the RNase into non-cancerous cells is reached at relatively low concentrations of > 1 mg/m(2). We have in the present study generated a dimeric anti-EGFR Ranpirnase-diabody fusion protein capable to deliver two Ranpirnase moieties per molecule to EGFR-positive tumour cells. We show that this compound mediated far superior efficacy for killing EGFR-positive tumour cells than a monomeric counterpart. Most importantly, cell killing was restricted to EGFR-positive target cells and no dose-limiting toxicity of Ranpirnase-diabody was observed in mice. These data indicate that by targeted delivery of Ranpirnase non-selective toxicity can be abolished and suggests Ranpirnase-diabody as a promising new drug for therapeutic interventions in EGFR-positive cancers.

  11. Potent Anti-inflammatory and Analgesic Actions of the Chloroform Extract of Dendropanax morbifera Mediated by the Nrf2/HO-1 Pathway. (United States)

    Akram, Muhammad; Kim, Kyeong-A; Kim, Eun-Sun; Syed, Ahmed Shah; Kim, Chul Young; Lee, Jong Soo; Bae, Ok-Nam


    Dendropanax morbifera LEVEILLE (DP) has been used in traditional Korean medicines to treat a variety of inflammatory diseases. Although the in vitro anti-inflammatory potential of this plant is understood, its in vivo efficacy and underlying molecular mechanism of anti-inflammatory effects are largely unknown. We elucidated the anti-inflammatory and analgesic activities and the underlying molecular mechanisms of DP using in vitro and in vivo models. Lipopolysaccharide (LPS)-stimulated murine macrophages were used to analyze the in vitro anti-inflammatory potential of DP extract and to elucidate the underlying mechanisms. In vivo animal models of phorbol 12-myristate 13-acetate (TPA)-induced ear edema and acetic acid-induced writhing response tests were used to analyze the in vivo anti-inflammatory effects and anti-nociceptive effects of DP extract, respectively. Methanolic extract of DP (DPME) significantly inhibited the release of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-activated macrophages. Among the five sub-fractions, the chloroform fraction (DP-C) showed the most potent suppressive effects against pro-inflammatory mediators and cytokines in LPS-stimulated macrophages. These effects were attributed to inhibition of nuclear factor-κB (NF-κB) nuclear translocation and c-Jun N terminal kinase (JNK) 1/2 phosphorylation and to activation of NF-E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling. DP-C exhibited strong protective in vivo effects in TPA-induced ear edema mouse model and acetic acid-induced writhing response test. Our data suggest that DP-C has potent anti-inflammatory and analgesic activities and may be a promising treatment against a variety of inflammatory diseases.

  12. Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1

    Energy Technology Data Exchange (ETDEWEB)

    Pejchal, Robert; Walker, Laura M.; Stanfield, Robyn L.; Phogat, Sanjay K.; Koff, Wayne C.; Poignard, Pascal; Burton, Dennis R.; Wilson, Ian A. (Scripps); (IAVI)


    Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize {approx}80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 {angstrom} resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue 'specificity loop' on the 'hammerhead' subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 {angstrom} facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.

  13. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. (United States)

    Villarreal, Daniel O; Walters, Jewell; Laddy, Dominick J; Yan, Jian; Weiner, David B


    Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.

  14. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. (United States)

    Padi, Satyanarayana S V; Shi, Xiang Q; Zhao, Yuan Q; Ruff, Michael R; Baichoo, Noel; Pert, Candace B; Zhang, Ji


    Chemokine signaling is important in neuropathic pain, with microglial cells expressing CCR2 playing a well-established key role. DAPTA, a HIV gp120-derived CCR5 entry inhibitor, has been shown to inhibit CCR5-mediated monocyte migration and to attenuate neuroinflammation. We report here that as a stabilized analog of DAPTA, the short peptide RAP-103 exhibits potent antagonism for both CCR2 (half maximal inhibitory concentration [IC50] 4.2 pM) and CCR5 (IC50 0.18 pM) in monocyte chemotaxis. Oral administration of RAP-103 (0.05-1 mg/kg) for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats. Administered from days 8 to 12, RAP-103 (0.2-1 mg/kg) reverses already established hypersensitivity. RAP-103 relieves behavioral hypersensitivity, probably through either or both CCR2 and CCR5 blockade, because by using genetically deficient animals, we demonstrated that in addition to CCR2, CCR5 is also required for the development of neuropathic pain. Moreover, RAP-103 is able to reduce spinal microglial activation and monocyte infiltration, and to inhibit inflammatory responses evoked by peripheral nerve injury that cause chronic pain. Our findings suggest that targeting CCR2/CCR5 should provide greater efficacy than targeting CCR2 or CCR5 alone, and that dual CCR2/CCR5 antagonist RAP-103 has the potential for broad clinical use in neuropathic pain treatment.

  15. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. (United States)

    Bretscher, Peter; Egger, Julian; Shamshiev, Abdijapar; Trötzmüller, Martin; Köfeler, Harald; Carreira, Erick M; Kopf, Manfred; Freigang, Stefan


    Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.

  16. Gene targeting by RNAi-mediated knockdown of potent DNA ligase IV homologue in the cellulase-producing fungus Talaromyces cellulolyticus. (United States)

    Hayata, Koutarou; Asada, Seiya; Fujii, Tatsuya; Inoue, Hiroyuki; Ishikawa, Kazuhiko; Sawayama, Shigeki


    The genome of the cellulase-producing fungus Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) was screened for a potent DNA ligase IV gene (ligD homologue). Homologous recombination efficiency in T. cellulolyticus is very low. Therefore, suppression of a non-homologous end-joining system was attempted to enable specific gene knockouts for molecular breeding. The transcript levels of ligD homologue were 0.037 of those of the parental YP-4 strain in the Li20 transformant carrying the RNAi construct targeting the ligD homologue. Transformation of the hairpin-type RNAi vector into T. cellulolyticus could be useful in fungal gene knockdown experiments. Cellulase production and protein secretion were similar in the parental YP-4 strain and the Li20 transformant. Knockout transformation of ligD homologue using the Li20 transformant led to 23.1 % double crossover gene targeting. Our results suggest that the potent DNA ligase IV gene of T. cellulolyticus is related to non-homologous end joining and that the knockdown of the ligD homologue is useful in gene targeting.

  17. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine. (United States)

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun


    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production.

  18. Antibody-Dependent Cell-Mediated Cytotoxicity Effector-Enhanced EphA2 Agonist Monoclonal Antibody Demonstrates Potent Activity against Human Tumors

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Bruckheimer


    Full Text Available EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID mice (which have functional NK cells and monocytes and SCID nonobese diabetic (NOD mice (which largely lack functional NK cells and monocytes. Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells.

  19. Adenoviral vector-mediated gene transfer of IL-13Ralpha2 chain followed by IL-13 cytotoxin treatment offers potent targeted therapy for cytotoxin-resistant cancers. (United States)

    Saito, Makoto; Murata, Takashi; Watanabe, Ken; Kawakami, Koji; Suzuki, Motoyoshi; Koji, Takehiko; Puri, Raj K; Kitazato, Kaio; Kobayashi, Nobuyuki


    Previous studies demonstrated that IL-13Ralpha2 chain-overexpressing cancer cells were highly sensitive to IL-13 cytotoxin (IL13-PE38QQR) and could be targeted by cytotoxin treatment. However, the majority of human tumors do not express high levels of IL-13Ralpha2 chain. To expand the IL-13 cytotoxin-mediated cancer targeting therapy, we combined cytotoxin treatment with gene transfer of IL-13Ralpha2 chain. We constructed a recombinant adenoviral vector carrying the human IL-13Ralpha2 gene (Ad-IL-13Ralpha2), which expresses high levels of IL-13Ralpha2 chain on infected cells. Human cancer cell lines A549 and HOS, which originally show no IL-13Ralpha2 expression and little sensitivity to IL-13 cytotoxin, were effectively converted to become sensitive to this cytotoxin after Ad-IL-13Ralpha2 infection. The CC(50) of IL-13 cytotoxin for Ad-IL-13Ralpha2-infected A549 cells was 500 ng/ml. We also examined the antitumor activity of IL-13 cytotoxin in an established xenograft model of cytotoxin-resistant human lung tumor. Only a single i.t. injection of Ad-IL-13Ralpha2 markedly enhanced the sensitivity of established tumors to IL-13 cytotoxin treatment; furthermore, this antitumor effect was significantly sustained for more than 1 month after the last treatment with IL-13 cytotoxin. Taken together, these results suggest the combination of adenoviral vector-mediated IL-13Ralpha2 gene transfer and IL-13 cytotoxin administration can be an effective targeting approach for several types of IL-13 cytotoxin-resistant cancers which show no or little expression of IL-13Ralpha2 chain.

  20. A peptide released by pepsin from kininogen domain 1 is a potent blocker of ANP-mediated diuresis-natriuresis in the rat. (United States)

    Croxatto, H R; Silva, R; Figueroa, X; Albertini, R; Roblero, J; Boric, M P


    A 20-amino acid peptide, KYEIKEGDCPVQSGKTWQDC (PU-D1), released by pepsin hydrolysis of LMW kininogen domain 1 was tested for its ability to antagonize the diuretic and natriuretic effect of ANP(103-125) in anesthetized rats. A single dose of 10.8 or 21.6 pmol (25 or 50 ng) PU-D1 given intravenously or into the duodenal lumen suppressed the diuresis-natriuresis induced by 209 pmol (500 ng) ANP by 43% to 59% and 69% to 96%, respectively. None of the doses tested (2.16 to 432 pmol, 5 ng to 1 microg) modified systemic blood pressure. Strikingly, a single IV dose of 10.8 pmol PU-D1 blocked the action of ANP for more than 3 hours. ANP blockade by PU-D1 was annulled completely by the bradykinin (BK) B2 receptor inhibitor Hoe 140. On a molar basis, PU-D1 is more effective than BK and kinins of 15, 16, and 18 amino acids for blocking the ANP-mediated diuresis-natriuresis. As with BK and other kinins, the inhibitory effect of Pu-D1 on ANP is obtained only within a small range of picomol doses. A single dose of 2.16 or 4.32 pmol PU-D1 or 47 pmol (50 ng) BK is ineffective against ANP if injected alone. However, when both substances are administered concomitantly at these subthreshold doses, they totally suppress ANP-induced diuresis-natriuresis. These results raise the question of whether PU-D1, released from kininogen domain 1, either alone or associated with BK, may interact with ANP in the regulation of urinary water and electrolyte excretion in physiological and pathological conditions.

  1. Potent and selective mediators of cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K; Johansson, Jan


    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  2. DNA Vaccine Encoding HPV16 Oncogenes E6 and E7 Induces Potent Cell-mediated and Humoral Immunity Which Protects in Tumor Challenge and Drives E7-expressing Skin Graft Rejection (United States)

    Chandra, Janin; Dutton, Julie L.; Li, Bo; Woo, Wai-Ping; Xu, Yan; Tolley, Lynn K.; Yong, Michelle; Wells, James W.; R. Leggatt, Graham; Finlayson, Neil


    We have previously shown that a novel DNA vaccine technology of codon optimization and the addition of ubiquitin sequences enhanced immunogenicity of a herpes simplex virus 2 polynucleotide vaccine in mice, and induced cell-mediated immunity when administered in humans at relatively low doses of naked DNA. We here show that a new polynucleotide vaccine using the same technology and encoding a fusion protein of the E6 and E7 oncogenes of high-risk human papillomavirus type 16 (HPV16) is immunogenic in mice. This vaccine induces long-lasting humoral and cell-mediated immunity and protects mice from establishment of HPV16-E7-expressing tumors. In addition, it suppresses growth of readily established tumors and shows enhanced efficacy when combined with immune checkpoint blockade targeted at PD-L1. This vaccine also facilitates rejection of HPV16-E7-expressing skin grafts that demonstrate epidermal hyperplasia with characteristics of cervical and vulvar intraepithelial neoplasia. Clinical studies evaluating the efficacy of this vaccine in patients with HPV16+ premalignancies are planned. PMID:28166181

  3. microRNA-101 is a potent inhibitor of autophagy

    DEFF Research Database (Denmark)

    Frankel, Lisa B; Wen, Jiayu; Lees, Michael


    performed a functional screen in search of microRNAs (miRNAs), which regulate the autophagic flux in breast cancer cells. In this study, we identified the tumour suppressive miRNA, miR-101, as a potent inhibitor of basal, etoposide- and rapamycin-induced autophagy. Through transcriptome profiling, we...... identified three novel miR-101 targets, STMN1, RAB5A and ATG4D. siRNA-mediated depletion of these genes phenocopied the effect of miR-101 overexpression, demonstrating their importance in autophagy regulation. Importantly, overexpression of STMN1 could partially rescue cells from miR-101-mediated inhibition...

  4. The research development of potent suppression mechanisms of NK cells response mediated by MUC16 in epithelial ovarian cancer%MUC16介导卵巢癌细胞免疫逃逸NK细胞杀伤的研究进展

    Institute of Scientific and Technical Information of China (English)

    金夏; 赵卫东


    过继性自体NK细胞免疫治疗临床应用的效果不明显可能与肿瘤在恶化过程中对NK细胞的免疫逃逸有关,MUC16作为一种表达于卵巢癌上皮细胞表面的跨膜黏蛋白可能参与了卵巢癌细胞对NK细胞杀伤作用的免疫逃逸.因而了解MUC16介导卵巢癌细胞免疫逃逸NK细胞杀伤作用的相关性研究很重要.%The fact that there is no significant clinical benefit of autologous NK cell immunotherapy may be associated with the immune escape of ovarian cells in tumor progression . MUC16 is a membrane spanning mucin that is expressed on ovarian surface epithelial cells. This mucin may participate in the immune escape of ovarian cancer cells to NK cell killing effect. In this review, we summarized the relative researches a-bout potent suppression mechanisms of NK cells response mediated by MUC16 in epithelial ovarian cancer.

  5. Discovery of a potent and selective GPR120 agonist. (United States)

    Shimpukade, Bharat; Hudson, Brian D; Hovgaard, Christine Kiel; Milligan, Graeme; Ulven, Trond


    GPR120 is a receptor of unsaturated long-chain fatty acids reported to mediate GLP-1 secretion, insulin sensitization, anti-inflammatory, and anti-obesity effects and is therefore emerging as a new potential target for treatment of type 2 diabetes and metabolic diseases. Further investigation is however hindered by the lack of suitable receptor modulators. Screening of FFA1 ligands provided a lead with moderate activity on GPR120 and moderate selectivity over FFA1. Optimization led to the discovery of the first potent and selective GPR120 agonist.

  6. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    Directory of Open Access Journals (Sweden)

    Yuan CX


    autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR and p38 mitogen-activated protein kinase pathways as well as activation of 5' AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression of N-cadherin in both cell lines. Taken together, danusertib has potent inducing effects on cell cycle arrest, apoptosis, and autophagy, but has an inhibitory effect on epithelial to mesenchymal transition, with involvement of signaling pathways mediated by PI3K/Akt/mTOR, p38 mitogen-activated protein kinase, and 5' AMP-activated protein kinase in AGS and NCI-N78 cells. Keywords: danusertib, gastric cancer, Aurora kinase, apoptosis, autophagy, epithelial to mesenchymal transition

  7. The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors. (United States)

    Xiang, Yibin; Hirth, Bradford; Asmussen, Gary; Biemann, Hans-Peter; Bishop, Kimberly A; Good, Andrew; Fitzgerald, Maria; Gladysheva, Tatiana; Jain, Annuradha; Jancsics, Katherine; Liu, Jinyu; Metz, Markus; Papoulis, Andrew; Skerlj, Renato; Stepp, J David; Wei, Ronnie R


    Novel benzofuran-2-carboxylic acids, exemplified by 29, 38 and 39, have been discovered as potent Pim-1 inhibitors using fragment based screening followed by X-ray structure guided medicinal chemistry optimization. The compounds demonstrate potent inhibition against Pim-1 and Pim-2 in enzyme assays. Compound 29 has been tested in the Ambit 442 kinase panel and demonstrates good selectivity for the Pim kinase family. X-ray structures of the inhibitor/Pim-1 binding complex reveal important salt-bridge and hydrogen bond interactions mediated by the compound's carboxylic acid and amino groups.

  8. Deoxygedunin, a natural product with potent neurotrophic activity in mice.

    Directory of Open Access Journals (Sweden)

    Sung-Wuk Jang

    Full Text Available Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF -/- pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases.

  9. House dust extracts contain potent immunological adjuvants

    NARCIS (Netherlands)

    Beukelman, C.J.; Dijk, H. van; Aerts, P.C.; Rademaker, P.M.; Berrens, L.; Willers, J.M.N.


    A crude aqueous extract of house dust and two house dust subfractions were tested for adjuvant activity in a sensitivity assay performed in mice. Evidence is presented that house dust contains at least two potent immunological adjuvants. One of these, present in both subfractions, was probably endot

  10. Phenyltriazolinones as potent factor Xa inhibitors. (United States)

    Quan, Mimi L; Pinto, Donald J P; Rossi, Karen A; Sheriff, Steven; Alexander, Richard S; Amparo, Eugene; Kish, Kevin; Knabb, Robert M; Luettgen, Joseph M; Morin, Paul; Smallwood, Angela; Woerner, Francis J; Wexler, Ruth R


    We have discovered that phenyltriazolinone is a novel and potent P1 moiety for coagulation factor Xa. X-ray structures of the inhibitors with a phenyltriazolinone in the P1 position revealed that the side chain of Asp189 has reoriented resulting in a novel S1 binding pocket which is larger in size to accommodate the phenyltriazolinone P1 substrate.


    Institute of Scientific and Technical Information of China (English)

    侯绳照; 侯晋川


    Let B(X) be the Banach algebra of all bounded linear operators on a complcx Banach space X. Let k ≥ 2 be an integer and φ a weakly continuous linear surjective map from B(X) into itself. It is shown that φ is k-potent preserving if and only if it is k-th-power preserving, and in turn, if and only if it is either an automorphism or an antiautomorphism on B(X) multiplied by a complex number λ satisfying λk-1 = 1. Let A be avon Neumann algebra andB be a Banach algebra, it is also shown that a bounded surjective linear map from A onto B is k-potent preserving if and only if it is a Jordan homomorphism multiplied by an invertible element with (k - 1)-th power I.

  12. Synthesis of (-)-callicarpenal, a Potent Arthropod Repellent (United States)


    synthetic derivatives.12 2. Results and discussion Our synthesis of ()-1 departed from the readily available en- antiomeric pure diketone ()-7 (ee...diastereoselectivity. The synthesis of ()-callicarpenal proceeds in 12 steps and 36% overall yield from diketone ()-7. The synthetic strategy utilizes readily...Author’s personal copy Synthesis of ()-callicarpenal, a potent arthropod repellent Taotao Ling a, Jing Xu a, Ryan Smith a, Abbas Ali b, Charles L

  13. Dmt and opioid peptides: a potent alliance. (United States)

    Bryant, Sharon D; Jinsmaa, Yunden; Salvadori, Severo; Okada, Yoshio; Lazarus, Lawrence H


    The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance.

  14. Which potent opioid? Important criteria for selection. (United States)

    Bovill, J G


    Opioids remain the drugs of choice for the treatment of severe pain. In recent years several new potent opioids have become available for clinical use. These newer drugs are generally safer than the older morphine-like compounds and their differing pharmacological and pharmacokinetic properties allow the physician to choose an appropriate drug according to the clinical situation and need of an individual patient. These drugs are classified according to their activity at the opioid receptors. The opioid agonists produce their pharmacological effect by an almost exclusive action at mu-receptors. The agonist-antagonist group are kappa-receptor agonists and either competitive antagonists at the mu-receptor or weak mu-agonists. The use of the potent opioid agonists, because of their potential for causing respiratory depression, is restricted to hospitals. Fentanyl, the oldest drug of this class, is extensively used as a supplement to general anaesthesia, or in high doses as a 'complete' anaesthetic for patients undergoing cardiac surgery. Alfentanil and sufentanil are newer fentanyl derivatives. Alfentanil is unique in having a very short elimination half-life. This is a particular advantage during short operations and for day-case surgery. For longer operations alfentanil can be given as a continuous infusion to supplement nitrous oxide anaesthesia. Sufentanil is about 10 times more potent than fentanyl and is more rapidly eliminated. Initial reports suggest that it may be more effective than fentanyl as an anaesthetic supplement and that recovery may be more rapid. Both sufentanil and alfentanil are also used in cardiac anaesthesia. The newer agonist-antagonist opioids, butorphanol, nalbuphine and buprenorphine, have largely replaced pentazocine in clinical practice. Unlike pentazocine, they cause a low incidence of dysphoric side effects. Like the pure agonists, they cause respiratory depression; however, in contrast to the pure agonists this is not dose related

  15. Synthesis and Bioactivity of Substituted Benzoylguanidine Derivatives as Potent Na+/H+ Exchanger Inhibitors%Synthesis and Bioactivity of Substituted Benzoylguanidine Derivatives as Potent Na+/H+ Exchanger Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Jin, Ning; Yang, Yun; Xu, Wenting; Yang, Xiaozhi; Gong, Guoqing; Xu, Yungen


    A novel series of substituted benzoylguanidine derivatives were designed and synthesized in order to evaluate their NHE 1 inhibitory activity. Most of them were found to inhibit NHE 1-mediated platelet swelling in a concentration-dependent manner, and eight compounds showed more potent NHE 1 inhibitory activity than Cariporide. Compound 6f with an IC50 value of 1.08 × 10-10 mol·L-1, was 39 times more potent than lead compound CPU-X-050420 in vitro tests.

  16. POTENT Reconstruction from Mark III Velocities (United States)

    Dekel, A.; Eldar, A.; Kolatt, T.; Yahil, A.; Willick, J. A.; Faber, S. M.; Courteau, S.; Burstein, D.


    We present an improved version of the POTENT method for reconstructing the cosmological velocity and mass density fields from radial peculiar velocities, test it with mock catalogs, and apply it to the Mark III Catalog of Galaxy Peculiar Velocities. The method is improved in several ways: (1) the inhomogeneous Malmquist bias is reduced by grouping and corrected statistically in either forward or inverse analyses of inferred distances, (2) the smoothing into a radial velocity field is optimized such that window and sampling biases are reduced, (3) the density field is derived from the velocity field using an improved weakly nonlinear approximation in Eulerian space, and (4) the computational errors are made negligible compared to the other errors. The method is carefully tested and optimized using realistic mock catalogs based on an N-body simulation that mimics our cosmological neighborhood, and the remaining systematic and random errors are evaluated quantitatively. The Mark III catalog, with ~3300 grouped galaxies, allows a reliable reconstruction with fixed Gaussian smoothing of 10-12 h-1 Mpc out to ~60 h-1 Mpc and beyond in some directions. We present maps of the three-dimensional velocity and mass-density fields and the corresponding errors. The typical systematic and random errors in the density fluctuations inside 40 h-1 Mpc are +/-0.13 and +/-0.18 (for Ω=1). In its gross features, the recovered mass distribution resembles the galaxy distribution in redshift surveys and the mass distribution in a similar POTENT analysis of a complementary velocity catalog (SFI), including such features as the Great Attractor, Perseus-Pisces, and the large void in between. The reconstruction inside ~40 h-1 Mpc is not affected much by a revised calibration of the distance indicators (VM2, tailored to match the velocities from the IRAS 1.2 Jy redshift survey). The volume-weighted bulk velocity within the sphere of radius 50 h-1 Mpc about the Local Group is V50=370+/-110 km s-1


    Directory of Open Access Journals (Sweden)



    Full Text Available Objective: To synthesize thirteen effective microbial potent oxazine-2-amine derivatives and evaluate the antimicrobial activities of these compounds. Material and methods: The solvent-free solid fly-ash: H2SO4 catalyzed cyclization of 4-bromo-1-naphthyl chalcones and urea under microwave irradiation technique was utilized for the synthesis of oxazine derivatives. The synthesized oxazines were characterized by their physical constants and spectroscopic data. The Bauer-Kirby disc-diffusion method of measurement of zone of inhibition was used for evaluation antimicrobial activity of synthesized oxazines. Results: The cyclization was effective and this reaction gave more than 80% yield. The catalyst was reused up to five times consecutively without appreciable decreasing of yield. All compounds were active against their microbial strains. Conclusions: This solvent-free synthetic method was effective for the synthesis of oxazine derivatives. The amino, dimethylamino, halogens, methoxy and methyl substituted oxazines shows significant antibacterial activity. Chloro, hydroxy and nitro substituted oxazine derivative have shown significant antifungal activity.

  18. Intercultural Mediation


    Dragos Marian Radulescu; Denisa Mitrut


    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  19. Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. (United States)

    Knutson, Mitchell D; Leeuwenburgh, Christiaan


    Studies show that the plant polyphenol resveratrol can extend the life span of yeast, worms, flies, and fish. It also mitigates the metabolic dysfunction of mice fed high-fat diets. Resveratrol appears to mediate these effects partly by activating SIRT1, a deacetylase enzyme that regulates the activity of several transcriptional factors and enzymes responsive to nutrient availability. However, few foods contain resveratrol and humans metabolize it extensively, resulting in very low systemic bioavailability. Substantial research effort now focuses on identifying and testing more bioavailable and potent activators of SIRT1 for use as pharmacologic interventions in aging and age-related disorders.

  20. Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody


    Freeman, Michael M.; Seaman, Michael S; Rits-Volloch, Sophia; Hong, Xinguo; Kao, Chia-Ying; Ho, David D.; Chen, Bing


    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 Å resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121-125) of D2, sitting...

  1. Carbapenems: a potent class of antibiotics. (United States)

    Nicolau, David P


    The purpose of this review is to assess the relative strengths and weaknesses of individual members of the carbapenem class of antibiotics. Clinical trials and review articles were identified from a Medline search (1979 - July 2006), in addition to, reference citations from identified publications, abstracts from the Interscience Conferences on Antimicrobial Agents and Chemotherapy and the 12th International Congress on Infectious Disease, and package inserts. Articles in English were reviewed, with emphasis on those containing efficacy or safety data. Carbapenems bind to critical penicillin-binding proteins, disrupting the growth and structural integrity of bacterial cell walls. They provide enhanced anaerobic and Gram-negative coverage as compared with other beta-lactams and their stability against extended-spectrum beta-lactamases (ESBLs) makes them an effective treatment option. The most common adverse effects are infusion-site complications and gastrointestinal distress. Ertapenem has limited efficacy against non-fermenting, Gram-negative bacteria, restricting its use to community-acquired infections. Imipenem is slightly more effective against Gram-positive organisms and meropenem slightly more effective against Gram-negative organisms. However, both have broad-spectrum activity, including non-fermenting, Gram-negative bacteria. Among non-fermenting, Gram-negatives, resistance to imipenem in particular is increasing. Doripenem is in late-stage clinical development and combines the broad-spectrum coverage of imipenem and meropenem, and more potent activity against Pseudomonas aeruginosa. Due to the increasing challenges represented by ESBLs and multi-drug resistant organisms, the carbapenems are assuming a greater role in the treatment of serious infections. Imipenem and meropenem are presently available and have been shown to be effective against nosocomial infections. Doripenem is an investigational carbapenem that has completed Phase III clinical trials and

  2. Sifuvirtide, a potent HIV fusion inhibitor peptide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Pang, Wei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Department of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Tam, Siu-Cheung [Department of Physiology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Tien, Po [Department of Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080 (China); Zheng, Yong-Tang, E-mail: [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)


    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  3. A potent potassium channel blocker from Mesobuthus eupeus scorpion venom. (United States)

    Gao, Bin; Peigneur, Steve; Tytgat, Jan; Zhu, Shunyi


    Scorpion venom-derived peptidyl toxins are valuable pharmacological tools for investigating the structure-function relationship of ion channels. Here, we report the purification, sequencing and functional characterization of a new K(+) channel blocker (MeuKTX) from the venom of the scorpion Mesobuthus eupeus. Effects of MeuKTX on ten cloned potassium channels in Xenopus oocytes were evaluated using two-electrode voltage-clamp recordings. MeuKTX is the orthologue of BmKTX (α-KTx3.6), a known Kv1.3 blocker from the scorpion Mesobuthus martensii, and classified as α-KTx3.13. MeuKTX potently blocks rKv1.1, rKv1.2 and hKv1.3 channels with 50% inhibitory concentration (IC(50)) of 203.15 ± 4.06 pM, 8.92 ± 2.3 nM and 171 ± 8.56 pM, respectively, but does not affect rKv1.4, rKv1.5, hKv3.1, rKv4.3, and hERG channels even at 2 μM concentration. At this high concentration, MeuKTX is also active on rKv1.6 and Shaker IR. Our results also demonstrate that MeuKTX and BmKTX have the same channel spectrum and similar pharmacological potency. Analysis of the structure-function relationships of α-KTx3 subfamily toxins allows us to recognize several key sites which may be useful for designing toxins with improved activity on hKv1.3, an attractive target for T-cell mediated autoimmune diseases.

  4. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. (United States)

    Shirasu, Naoto; Yamada, Hiromi; Shibaguchi, Hirotomo; Kuroki, Motomu; Kuroki, Masahide


    Conventional photodynamic therapy (PDT) for cancer is limited by the insufficient efficacy and specificity of photosensitizers. We herein describe a highly effective and selective tumor-targeted PDT using a near-infrared (NIR) photosensitizer, IRDye700DX, conjugated to a human monoclonal antibody (Ab) specific for carcinoembryonic antigen (CEA). The antitumor effects of this Ab-assisted PDT, called photoimmunotherapy (PIT), were investigated in vitro and in vivo. The Ab-IRDye conjugate induced potent cytotoxicity against CEA-positive tumor cells after NIR-irradiation, whereas CEA-negative cells were not affected at all, even in the presence of excess photoimmunoconjugate. We found an equivalent phototoxicity and a predominant plasma membrane localization of Ab-IRDye after both one and six hours of incubation. Either no or little caspase activation and membrane peroxidation were observed in PIT-treated cells and a panel of scavengers for reactive oxygen species showed only partial inhibition of the phototoxic effect. Strikingly, Ab-IRDye retained significant phototoxicity even under hypoxia. We established a xenograft model, which allowed us to sensitively investigate the therapeutic efficacy of PIT by non-invasive bioluminescence imaging. Luciferase-expressing MKN-45-luc human gastric carcinoma cells were subcutaneously implanted into both flanks of nude mice. NIR-irradiation was performed for only the tumor on one side. In vivo imaging and measurement of the tumor size revealed that a single PIT treatment, with intraperitoneal administration of Ab-IRDye and subsequent NIR-irradiation, caused rapid cell death and significant inhibition of tumor growth, but only on the irradiated side. Together, these data suggest that Ab-IRDye-mediated PIT has great potential as an anticancer therapeutics targeting CEA-positive tumors.

  5. New pyrazolopyrimidine inhibitors of protein kinase d as potent anticancer agents for prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Manuj Tandon

    Full Text Available The emergence of protein kinase D (PKD as a potential therapeutic target for several diseases including cancer has triggered the search for potent, selective, and cell-permeable small molecule inhibitors. In this study, we describe the identification, in vitro characterization, structure-activity analysis, and biological evaluation of a novel PKD inhibitory scaffold exemplified by 1-naphthyl PP1 (1-NA-PP1. 1-NA-PP1 and IKK-16 were identified as pan-PKD inhibitors in a small-scale targeted kinase inhibitor library assay. Both screening hits inhibited PKD isoforms at about 100 nM and were ATP-competitive inhibitors. Analysis of several related kinases indicated that 1-NA-PP1 was highly selective for PKD as compared to IKK-16. SAR analysis showed that 1-NA-PP1 was considerably more potent and showed distinct substituent effects at the pyrazolopyrimidine core. 1-NA-PP1 was cell-active, and potently blocked prostate cancer cell proliferation by inducing G2/M arrest. It also potently blocked the migration and invasion of prostate cancer cells, demonstrating promising anticancer activities on multiple fronts. Overexpression of PKD1 or PKD3 almost completely reversed the growth arrest and the inhibition of tumor cell invasion caused by 1-NA-PP1, indicating that its anti-proliferative and anti-invasive activities were mediated through the inhibition of PKD. Interestingly, a 12-fold increase in sensitivity to 1-NA-PP1 could be achieved by engineering a gatekeeper mutation in the active site of PKD1, suggesting that 1-NA-PP1 could be paired with the analog-sensitive PKD1(M659G for dissecting PKD-specific functions and signaling pathways in various biological systems.

  6. Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity

    NARCIS (Netherlands)

    Mahasreshti, P.J.; Kataram, M.; Wang, Miao; Stockard, C.R.; Grizzle, W.E.; Carey, D.; Siegal, G.P.; Haisma, H.J.; Alvarez, R.D.; Curiel, D.T.


    Purpose: Vascular endothelial growth factor (VEGF) is a potent angiogenic agent and plays a major role in tumor growth and metastases. We have previously reported the locoregional (i.p.) delivery of adenovirus-mediated antiangiogenic soluble FLT-1 (sFLT-1; a naturally encoded potent VEGF antagonist)

  7. Potent anti-melanoma effect by combination of mytomycin C with recombinant adeno-associated virus-mediated tumor-targeting expressed Smac/DIABLO%丝裂霉素C与表达Smac/DIABLO的肿瘤靶向腺相关病毒联用对抗恶性黑色素瘤的效果

    Institute of Scientific and Technical Information of China (English)

    王坚; 林茂; 吴平; 何惠娟; 刘新垣


    To investigate whether recombinant adeno-associated virus-mediated tumor-targeting expressed Smac/DIABLO can improve sensitivity of melanoma to mitomycin C both in vitro and in vivo. Methods Tumor-targeting expressed Smac/DIABLO or green fluorescence protein (EGFP) in recombinant adeno-associated virus vectors (rAAV-hTERT/Smac/DIABLO or rAAV-hTERT/EGFP) was constructed. The culture cells were transfected with rAAV-hTERT/Smac/DIABLO or rAAV-hTERT/EGFP. The expression of EGFP in culture cells was observed with fluorescence microscope. Smac/DIABLO expression was detected by RT-PCR method. Proliferation of tumor cells was measured by MTT method. Apoptosis of tumor cells at different drug concentrations was examined by flow cytometry. Synergistic anti-tumor activity of mitomycin C combined with rAAV-hTERT/ Smac/DIABLO was measured by MTT in vitro and animal experiment in vivo. Data was evaluated by SPSS statisticssoftware analysis. Results Green fluorescence could be observed in tumor cells but not in normal cells 48 h after rAAV-hTERT/EGFP transfection. Almost all tumor cells displayed bright yellow-green fluorescence after 96 h. The expression of Smac/DIABLO in rAAV-hTERT/Smac/DIABLO transfected tumor cells showed Smac/DIABLO mRNA band 24 h after transfection and stabilized 48 h after transfection. Tumor cell inhibition rate was increased obviously higher in group of combination of mitomycin C with rAAV-hTERT/Smac/DIABLO than mitomycin C alone (P<0.01). Flow cytometry results indicated that mitomycin C combined with rAAV-hTERT/Smac/DIABLO group had the highest apoptosis-induced effect in groups of negative, mitomycin C, and rAAV-hTERT/Smac/ DIABLO (P<0.01). Animal experiment result indicated that tumor growth was inhibited and survival rate was improved significantly in mitomycin C combined with rAAV-hTERT/Smac/DIABLO group compared to rAAV-hTERT/Smac/DIABLO or mitomycin C aione. Conclusion Tumor-targeting rAAV-hTERT/Smac/DIABLO can improve sensitivity of tumor cells

  8. Mediatized Humanitarianism

    DEFF Research Database (Denmark)

    Vestergaard, Anne


    The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts to legiti......The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts...... legitimation by accountancy, legitimation by institutionalization, and legitimation by compensation. The analysis relates these changes to a problem of trust associated with mediatization through processes of mediation....

  9. Novel indole sulfides as potent HIV-1 NNRTIs. (United States)

    Brigg, Siobhan; Pribut, Nicole; Basson, Adriaan E; Avgenikos, Moscos; Venter, Reinhardt; Blackie, Margaret A; van Otterlo, Willem A L; Pelly, Stephen C


    In a previous communication we described a series of indole based NNRTIs which were potent inhibitors of HIV replication, both for the wild type and K103N strains of the virus. However, the methyl ether functionality on these compounds, which was crucial for potency, was susceptible to acid promoted indole assisted SN1 substitution. This particular problem did not bode well for an orally bioavailable drug. Here we describe bioisosteric replacement of this problematic functional group, leading to a series of compounds which are potent inhibitors of HIV replication, and are acid stable.

  10. Prelimbic prefrontal cortex mediates respiratory responses to mild and potent prolonged, but not brief, stressors. (United States)

    Bondarenko, E; Hodgson, D M; Nalivaiko, E


    The prefrontal cortex is one of the key areas of the central mechanism of cardiovascular and respiratory control. Disinhibition of the prelimbic medial prefrontal cortex elicits tachypnoeic responses in anesthetized rats (Hassan et al., J. Physiol. 591: 6069-6088, 2013). The current study examines the effects of inhibition of the prelimbic prefrontal cortex during presentation of stressors of various lengths and intensities in conscious unrestrained rats. 8 Wistar rats were implanted with bilateral guide cannulas targeting the prelimbic prefrontal cortex and received microinjections of either saline of GABAA agonist muscimol prior to recording sessions. Inhibition of the prelimbic prefrontal cortex significantly attenuated respiratory responses to a novel environment stress, 30s light stimulus and restraint stress. It did not affect respiratory responses to 500 ms acoustic stimuli of varying intensities (40-90 dB). We conclude that the prelimbic prefrontal cortex contributes to generation of tachypnoeic responses to prolonged stressors, but does not contribute to respiratory arousal in response to brief stressors.

  11. Intracerebroventricular administration of chicken glucagon-like peptide-2 potently suppresses food intake in chicks. (United States)

    Honda, Kazuhisa; Saneyasu, Takaoki; Shimatani, Tomohiko; Aoki, Koji; Yamaguchi, Takuya; Nakanishi, Kiwako; Kamisoyama, Hiroshi


    Glucagon-related peptides, such as glucagon-like peptide (GLP)-1, GLP-2 and oxyntomodulin (OXM), are processed from an identical precursor proglucagon. In mammals, all of these peptides are suggested to be involved in the central regulation of food intake. We previously showed that intracerebroventricular administration of chicken OXM and GLP-1 significantly suppressed food intake in chicks. Here, we show that central administration of chicken GLP-2 potently suppresses food intake in chicks. Male 8-day-old chicks (Gallus gallus domesticus) were used in all experiments. Intracerebroventricular administration of chicken GLP-2 significantly suppressed food intake in chicks. Plasma glucose concentration was significantly decreased by chicken GLP-2, whereas plasma nonesterified fatty acid concentration was significantly increased. Intracerebroventricular administration of chicken GLP-2 did not affect plasma corticosterone concentration. In addition, the anorexigenic effect of GLP-2 was not reversed by the corticotropin-releasing factor (CRF) receptor antagonist α-helical CRF, suggesting that CRF is not a downstream mediator of the anorexigenic pathway of GLP-2 in chicks. Intracerebroventricular administration of an equimolar amount of GLP-1 and GLP-2, but not OXM, significantly suppressed food intake in both broiler and layer chicks. All our findings suggest that GLP-2 functions as a potent anorexigenic peptide in the brain, as well as GLP-1, in chicks.

  12. Rice Bran Protein as a Potent Source of Antimelanogenic Peptides with Tyrosinase Inhibitory Activity. (United States)

    Ochiai, Akihito; Tanaka, Seiya; Tanaka, Takaaki; Taniguchi, Masayuki


    Rice (Oryza sativa) is consumed as a staple food globally, and rice bran, the byproduct, is an unused biomass that is ultimately discarded as waste. Thus, in the present study, a technique for producing tyrosinase inhibitory peptides from rice bran protein (RBP) was developed. Simultaneous treatment of RBP with chymotrypsin and trypsin produced numerous peptides. Subsequently, six tyrosinase inhibitory peptides were isolated from the hydrolysate fractions in a multistep purification protocol, and their amino acid sequences were determined. Three of these peptides had a C-terminal tyrosine residue and exhibited significant inhibitory effects against tyrosinase-mediated monophenolase reactions. Furthermore, peptide CT-2 (Leu-Gln-Pro-Ser-His-Tyr) potently inhibited melanogenesis in mouse B16 melanoma cells without causing cytotoxicity, suggesting the potential of CT-2 as an agent for melanin-related skin disorder treatment. The present data indicate that RBP is a potent source of tyrosinase inhibitory peptides and that simultaneous treatment of RBP with chymotrypsin and trypsin efficiently produces these peptides.

  13. Flavaglines: potent anticancer drugs that target prohibitins and the helicase eIF4A. (United States)

    Basmadjian, Christine; Thuaud, Frédéric; Ribeiro, Nigel; Désaubry, Laurent


    Flavaglines are complex natural products that are found in several medicinal plants of Southeast Asia in the genus Aglaia; these compounds have shown exceptional anticancer and cytoprotective activities. This review describes the significance of flavaglines as a new class of pharmacological agents and presents recent developments in their synthesis, structure-activity relationships, identification of their molecular targets and modes of action. Flavaglines display a unique profile of anticancer activities that are mediated by two classes of unrelated proteins: prohibitins and the translation initiation factor eIF4A. The identification of these molecular targets is expected to accelerate advancement toward clinical studies. The selectivity of cytotoxicity towards cancer cells has been shown to be due to an inhibition of the transcription factor HSF1 and an upregulation of the tumor suppressor TXNIP. In addition, flavaglines display potent anti-inflammatory, cardioprotective and neuroprotective activities; however, the mechanisms underlying these activities are yet to be elucidated.

  14. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh


    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...... that have helped to enrich our understanding of mediated work and the design of computer mediation for such work....

  15. Tricin from a malagasy connaraceous plant with potent antihistaminic activity. (United States)

    Kuwabara, Hidenori; Mouri, Kyoko; Otsuka, Hideaki; Kasai, Ryoji; Yamasaki, Kazuo


    The bioassay-guided separation of a Malagasy plant, Agelaea pentagyna, led to the isolation of a flavonoid, tricin (1), with potent inhibitory activity toward exocytosis from antigen-stimulated rat leukemia basophils (RBL-2H3). The structure-activity relationships among structurally related natural and synthetic flavonoids are also discussed.

  16. Total synthesis of the potent microtubule-stabilizing agent (+)-discodermolide. (United States)

    Harried, Scott S; Lee, Christopher P; Yang, Ge; Lee, Tony I H; Myles, David C


    The total synthesis of the potent microtubule-stabilizing, antimitotic agent (+)-discodermolide is described. The convergent synthetic strategy takes advantage of the diastereoselective alkylation of a ketone enolate to establish the key C15-C16 bond. The synthesis is amenable to preparation of gram-scale quantities of (+)-discodermolide and analogues.

  17. Identification of a potent endothelium-derived angiogenic factor

    DEFF Research Database (Denmark)

    Jankowski, Vera; Tölle, Markus; Tran, Thi Nguyet Anh


    The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelia...

  18. Extensive screening for herbal extracts with potent antioxidant properties. (United States)

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko


    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O(2) (•-)) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O(2) (•-) was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O(2) (•-). They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical ((•)OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H(2)O(2) induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge (•)OH. Furthermore, the scavenging activities against O(2) (•-) and (•)OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant.The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance.

  19. Lipid Mediators and Human Leukemic Blasts

    Directory of Open Access Journals (Sweden)

    Rémi Fiancette


    Full Text Available Some of the most potent inflammatory mediators share a lipid origin. They regulate a wide spectrum of cellular processes including cell proliferation and apoptosis. However, the precise roles and ways (if any in which these compounds impact the growth and apoptosis of leukemic blasts remain incompletely resolved. In spite of this, significant advances have been recently made. Here we briefly review the current knowledge about the production of lipid mediators (prostaglandins, leukotrienes, platelet-activating factor by leukemic blasts, the enzymatic activities (phospholipase A2, cyclooxygenases, lipoxygenases involved in their productions and their effects (through specific membrane bound receptors on the growth, and apoptosis of leukemic blasts.

  20. Discovery of potent, selective chymase inhibitors via fragment linking strategies. (United States)

    Taylor, Steven J; Padyana, Anil K; Abeywardane, Asitha; Liang, Shuang; Hao, Ming-Hong; De Lombaert, Stéphane; Proudfoot, John; Farmer, Bennett S; Li, Xiang; Collins, Brandon; Martin, Leslie; Albaugh, Daniel R; Hill-Drzewi, Melissa; Pullen, Steven S; Takahashi, Hidenori


    Chymase plays an important and diverse role in the homeostasis of a number of cardiovascular processes. Herein, we describe the identification of potent, selective chymase inhibitors, developed using fragment-based, structure-guided linking and optimization techniques. High-concentration biophysical screening methods followed by high-throughput crystallography identified an oxindole fragment bound to the S1 pocket of the protein exhibiting a novel interaction pattern hitherto not observed in chymase inhibitors. X-ray crystallographic structures were used to guide the elaboration/linking of the fragment, ultimately leading to a potent inhibitor that was >100-fold selective over cathepsin G and that mitigated a number of liabilities associated with poor physicochemical properties of the series it was derived from.

  1. Rat full term amniotic fluid harbors highly potent stem cells. (United States)

    Mun-Fun, Hoo; Ferdaos, Nurfarhana; Hamzah, Siti Nurusaadah; Ridzuan, Noridzzaida; Hisham, Nurul Afiqah; Abdullah, Syahril; Ramasamy, Rajesh; Cheah, Pike See; Thilakavathy, Karrupiah; Yazid, Mohd Nazri; Nordin, Norshariza


    Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.

  2. Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors. (United States)

    Brasca, Maria Gabriella; Nesi, Marcella; Avanzi, Nilla; Ballinari, Dario; Bandiera, Tiziano; Bertrand, Jay; Bindi, Simona; Canevari, Giulia; Carenzi, Davide; Casero, Daniele; Ceriani, Lucio; Ciomei, Marina; Cirla, Alessandra; Colombo, Maristella; Cribioli, Sabrina; Cristiani, Cinzia; Della Vedova, Franco; Fachin, Gabriele; Fasolini, Marina; Felder, Eduard R; Galvani, Arturo; Isacchi, Antonella; Mirizzi, Danilo; Motto, Ilaria; Panzeri, Achille; Pesenti, Enrico; Vianello, Paola; Gnocchi, Paola; Donati, Daniele


    We report herein the discovery, structure guided design, synthesis and biological evaluation of a novel class of JAK2 inhibitors. Optimization of the series led to the identification of the potent and orally bioavailable JAK2 inhibitor 28 (NMS-P953). Compound 28 displayed significant tumour growth inhibition in SET-2 xenograft tumour model, with a mechanism of action confirmed in vivo by typical modulation of known biomarkers, and with a favourable pharmacokinetic and safety profile.

  3. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.


    Keung, W M; Vallee, B L


    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  4. Tetrahydrohyperforin and octahydrohyperforin are two new potent inhibitors of angiogenesis.

    Directory of Open Access Journals (Sweden)

    Beatriz Martínez-Poveda

    Full Text Available BACKGROUND: We have previously shown that hyperforin, a phloroglucinol derivative found in St. John's wort, behaves as a potent anti-angiogenic compound. To identify the reactive group(s mainly involved in this anti-angiogenic effect, we have investigated the anti-angiogenic properties of a series of stable derivatives obtained by oxidative modification of the natural product. In addition, in the present work we have studied the role of the four carbonyl groups present in hyperforin by investigating the potential of some other chemically stable derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The experimental procedures included the analysis of the effects of treatment of endothelial cells with these compounds in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Our study with hyperforin and eight derivatives shows that the enolized beta-dicarbonyl system contained in the structure of hyperforin has a dominant role in its antiangiogenic activity. On the other hand, two of the tested hyperforin derivatives, namely, tetrahydrohyperforin and octahydrohyperforin, behave as potent inhibitors of angiogenesis. Additional characterization of these compounds included a cell specificity study of their effects on cell growth, as well as the in vivo Matrigel plug assay. CONCLUSIONS/SIGNIFICANCE: These observations could be useful for the rational design and chemical synthesis of more effective hyperforin derivatives as anti-angiogenic drugs. Altogether, the results indicate that octahydrohyperforin is a more specific and slightly more potent antiangiogenic compound than hyperforin.

  5. Heterogeneous nucleation on potent spherical substrates during solidification

    Energy Technology Data Exchange (ETDEWEB)

    Ma Qian [BCAST - Brunel Centre for Advanced Solidification Technology, Brunel University, West London UB8 3PH (United Kingdom)]. E-mail:


    For a spherical-cap nucleus to become a 'transformation nucleus', the linear dimension (d) of the flat substrate must exceed the critical nucleus size (2r *). This Turnbull criterion (d {>=} 2r *) defines a minimum undercooling for grain formation on, and effective inoculation with, flat nucleating substrates. However, for nucleation on potent substrates the spherical-cap model is no longer tenable. The free growth model has in general considered the growth of a two-dimensional nucleus on a potent flat substrate. Inspired by the particle-core structures observed in magnesium alloys after inoculation with nearly spherical zirconium particles, a model has been proposed, on the basis of an adsorption and surface diffusion mechanism, for heterogeneous nucleation and grain formation on potent spherical substrates of d {>=} 2r *. The critical undercooling required is found to be approximately the same as that defined by Turnbull's patch nucleation theory. The model shows excellent agreement with experiments compared from different perspectives.

  6. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. (United States)

    Keung, W M; Vallee, B L


    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  7. Axion Mediation

    CERN Document Server

    Baryakhtar, Masha; March-Russell, John


    We explore the possibility that supersymmetry breaking is mediated to the Standard Model sector through the interactions of a generalized axion multiplet that gains a F-term expectation value. Using an effective field theory framework we enumerate the most general possible set of axion couplings and compute the Standard Model sector soft-supersymmetry-breaking terms. Unusual, non-minimal spectra, such as those of both natural and split supersymmetry are easily implemented. We discuss example models and low-energy spectra, as well as implications of the particularly minimal case of mediation via the QCD axion multiplet. We argue that if the Peccei-Quinn solution to the strong-CP problem is realized in string theory then such axion-mediation is generic, while in a field theory model it is a natural possibility in both DFSZ- and KSVZ-like regimes. Axion mediation can parametrically dominate gravity-mediation and is also cosmologically beneficial as the constraints arising from axino and gravitino overproduction ...

  8. Mediatized Parenthood

    DEFF Research Database (Denmark)

    Sonne Damkjær, Maja


    to parenthood? The dissertation explores this question on the basis of a synchronous study within an overall mediatization perspective. The first part of the dissertation focuses on a conceptualization of the relationship between digital media and parenting as well as an exploration of theoretical perspectives...... and methods that make it possible to study the interactions between the two. Concretely, the dissertation builds on a number of key studies within audience research, which have contributed knowledge about the media’s role in the family and the home. This is done by including three approaches to mediatization......) a family-oriented, b) a peer-oriented, c) an oppositional, and d) non-use. Secondary contribution: Based on qualitative audience research and mediatization theory, the dissertation contributes a conceptualization of the relationship between media and parenthood. This is carried out in a study design...

  9. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  10. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts....... In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  11. Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. (United States)

    McCluskey, Adam; Daniel, James A; Hadzic, Gordana; Chau, Ngoc; Clayton, Emma L; Mariana, Anna; Whiting, Ainslie; Gorgani, Nick N; Lloyd, Jonathan; Quan, Annie; Moshkanbaryans, Lia; Krishnan, Sai; Perera, Swetha; Chircop, Megan; von Kleist, Lisa; McGeachie, Andrew B; Howes, Mark T; Parton, Robert G; Campbell, Michael; Sakoff, Jennette A; Wang, Xuefeng; Sun, Jian-Yuan; Robertson, Mark J; Deane, Fiona M; Nguyen, Tam H; Meunier, Frederic A; Cousin, Michael A; Robinson, Phillip J


    Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC₅₀ ~ 15 μM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC₅₀ = 479 μM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo™ compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37-fold improvement in potency over dynasore for liposome-stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36-fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin-dependent endocytosis of transferrin in multiple cell types (IC₅₀ of 5.7 and 5.8 μM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin-independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity-dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non-specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin-mediated endocytosis.

  12. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo.

    Directory of Open Access Journals (Sweden)

    Sheila Ranganath

    Full Text Available Interleukin-6 (IL-6 is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman's Disease (CD and rheumatoid arthritis (RA. Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA and C-reactive protein (CRP. This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology.

  13. Novel protein kinase D inhibitors cause potent arrest in prostate cancer cell growth and motility

    Directory of Open Access Journals (Sweden)

    Lazo John S


    Full Text Available Abstract Background Protein kinase D (PKD has been implicated in a wide range of cellular processes and pathological conditions including cancer. However, targeting PKD therapeutically and dissecting PKD-mediated cellular responses remains difficult due to lack of a potent and selective inhibitor. Previously, we identified a novel pan-PKD inhibitor, CID755673, with potency in the upper nanomolar range and high selectivity for PKD. In an effort to further enhance its selectivity and potency for potential in vivo application, small molecule analogs of CID755673 were generated by modifying both the core structure and side-chains. Results After initial activity screening, five analogs with equal or greater potencies as CID755673 were chosen for further analysis: kb-NB142-70, kb-NB165-09, kb-NB165-31, kb-NB165-92, and kb-NB184-02. Our data showed that modifications to the aromatic core structure in particular significantly increased potency while retaining high specificity for PKD. When tested in prostate cancer cells, all compounds inhibited PMA-induced autophosphorylation of PKD1, with kb-NB142-70 being most active. Importantly, these analogs caused a dramatic arrest in cell proliferation accompanying elevated cytotoxicity when applied to prostate cancer cells. Cell migration and invasion were also inhibited by these analogs with varying potencies that correlated to their cellular activity. Conclusions Throughout the battery of experiments, the compounds kb-NB142-70 and kb-NB165-09 emerged as the most potent and specific analogs in vitro and in cells. These compounds are undergoing further testing for their effectiveness as pharmacological tools for dissecting PKD function and as potential anti-cancer agents in the treatment of prostate cancer.

  14. Discovery and Characterization of a Potent Interleukin-6 Binding Peptide with Neutralizing Activity In Vivo (United States)

    Ranganath, Sheila; Bhandari, Ashok; Avitahl-Curtis, Nicole; McMahon, Jaimee; Wachtel, Derek; Zhang, Jenny; Leitheiser, Christopher; Bernier, Sylvie G.; Liu, Guang; Tran, Tran T.; Celino, Herodion; Tobin, Jenny; Jung, Joon; Zhao, Hong; Glen, Katie E.; Graul, Chris; Griffin, Aliesha; Schairer, Wayne C.; Higgins, Carolyn; Reza, Tammi L.; Mowe, Eva; Rivers, Sam; Scott, Sonya; Monreal, Alex; Shea, Courtney; Bourne, Greg; Coons, Casey; Smith, Adaline; Tang, Kim; Mandyam, Ramya A.; Masferrer, Jaime; Liu, David; Patel, Dinesh V.; Fretzen, Angelika; Murphy, Craig A.; Milne, G. Todd; Smythe, Mark L.; Carlson, Kenneth E.


    Interleukin-6 (IL-6) is an important member of the cytokine superfamily, exerting pleiotropic actions on many physiological processes. Over-production of IL-6 is a hallmark of immune-mediated inflammatory diseases such as Castleman’s Disease (CD) and rheumatoid arthritis (RA). Antagonism of the interleukin IL-6/IL-6 receptor (IL-6R)/gp130 signaling complex continues to show promise as a therapeutic target. Monoclonal antibodies (mAbs) directed against components of this complex have been approved as therapeutics for both CD and RA. To potentially provide an additional modality to antagonize IL-6 induced pathophysiology, a peptide-based antagonist approach was undertaken. Using a combination of molecular design, phage-display, and medicinal chemistry, disulfide-rich peptides (DRPs) directed against IL-6 were developed with low nanomolar potency in inhibiting IL-6-induced pSTAT3 in U937 monocytic cells. Targeted PEGylation of IL-6 binding peptides resulted in molecules that retained their potency against IL-6 and had a prolongation of their pharmacokinetic (PK) profiles in rodents and monkeys. One such peptide, PN-2921, contained a 40 kDa polyethylene glycol (PEG) moiety and inhibited IL-6-induced pSTAT3 in U937 cells with sub-nM potency and possessed 23, 36, and 59 h PK half-life values in mice, rats, and cynomolgus monkeys, respectively. Parenteral administration of PN-2921 to mice and cynomolgus monkeys potently inhibited IL-6-induced biomarker responses, with significant reductions in the acute inflammatory phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP). This potent, PEGylated IL-6 binding peptide offers a new approach to antagonize IL-6-induced signaling and associated pathophysiology. PMID:26555695

  15. Potent antioxidant and genoprotective effects of boeravinone G, a rotenoid isolated from Boerhaavia diffusa.

    Directory of Open Access Journals (Sweden)

    Gabriella Aviello

    Full Text Available BACKGROUND AND AIMS: Free radicals are implicated in the aetiology of some gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. In the present study we investigated the antioxidant and genoprotective activity of some rotenoids (i.e. boeravinones isolated from the roots of Boerhaavia diffusa, a plant used in the Ayurvedic medicine for the treatment of diseases affecting the gastrointestinal tract. METHODS/PRINCIPAL FINDINGS: Antioxidant activity has been evaluated using both chemical (Electron Spin Resonance spectroscopy, ESR and Caco-2 cells-based (TBARS and ROS assays. DNA damage was evaluated by Comet assay, while pERK(1/2 and phospho-NF-kB p65 levels were estimated by western blot. Boeravinones G, D and H significantly reduced the signal intensity of ESR induced by hydroxyl radicals, suggesting a scavenging activity. Among rotenoids tested, boeravinone G exerted the most potent effect. Boeravinone G inhibited both TBARS and ROS formation induced by Fenton's reagent, increased SOD activity and reduced H(2O(2-induced DNA damage. Finally, boeravinone G reduced the levels of pERK(1 and phospho-NF-kB p65 (but not of pERK(2 increased by Fenton's reagent. CONCLUSIONS: It is concluded that boeravinone G exhibits an extraordinary potent antioxidant activity (significant effect in the nanomolar range. The MAP kinase and NF-kB pathways seem to be involved in the antioxidant effect of boeravinone G. Boeravinone G might be considered as lead compound for the development of drugs potentially useful against those pathologies whose aetiology is related to ROS-mediated injuries.

  16. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes. (United States)

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung


    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  17. Identification and characterization of potent CYP3A4 inhibitors in Schisandra fruit extract. (United States)

    Iwata, Hiroshi; Tezuka, Yasuhiro; Kadota, Shigetoshi; Hiratsuka, Akira; Watabe, Tadashi


    Schisandra fruit, a Schisandraceae family herb, is used as a component in Kampo medicines (developed from Chinese medicines, but established in Japan). It can act as a sedative and antitussive, improve hepatic function, and give a general tonic effect. An extract of Schisandra fruit has been shown with a potent inhibitory effect on human liver microsomal erythromycin N-demethylation activity mediated by cytochrome P450 3A4 (CYP3A4). The present study was conducted to identify Schisandra fruit components having inhibitory effects on CYP3A4 by surveying the effect on human liver microsomal erythromycin N-demethylation activity. Known components of Schisandra fruit, gomisins B, C, G, and N and gamma-shizandrin, showed inhibitory effects on N-demethylation activity. Among these components, gomisin C displayed the most potent and competitive inhibitory effect, with a Ki value of 0.049 microM. Furthermore, the inhibitory effect of gomisin C was stronger than that of ketoconazole (Ki = 0.070 microM), a known potent CYP3A4 inhibitor. Gomisin C, however, inhibited CYP1A2-, CYP2C9-, CYP2C19-, and CYP2D6-dependent activities only to a limited extent (IC50 values >10 microM). Moreover, gomisin C inactivated human liver microsomal erythromycin N-demethylation activity in a time- and concentration-dependent manner. The inactivation kinetic parameters k(inact) and K(I) were 0.092 min(-1) and 0.399 microM, respectively. The human liver microsomal erythromycin N-demethylation activity inactivated by gomisin C did not recover on dialysis of the microsomes. Spectral scanning of CYP3A4 with gomisin C yielded an absorbance at 455 nm, suggesting that gomisin C inactivated the cytochrome P450 via the formation of a metabolite intermediate complex. This pattern is consistent with the metabolism of the methylenedioxy substituent in gomisin C. These results indicate that gomisin C is a mechanism-based inhibitor that not only competitively inhibits but irreversibly inactivates CYP3A4.

  18. New potent calcimimetics: II. Discovery of benzothiazole trisubstituted ureas. (United States)

    Deprez, Pierre; Temal, Taoues; Jary, Hélène; Auberval, Marielle; Lively, Sarah; Guédin, Denis; Vevert, Jean-Paul


    Following the identification of trisubstituted ureas as a promising new chemical series of allosteric modulators of the calcium sensing receptor (CaSR), we further explored the SAR around the urea substitution, leading to the discovery of benzothiazole urea compound 13. This compound is a potent calcimimetic with an EC50=20 nM (luciferase assay). Evaluated in an in vivo model of chronic renal failure (short term and long term in 5/6 nephrectomized rats), benzothiazole urea 13 significantly decreased PTH levels after oral administration while keeping calcemia within the normal range.

  19. Trigocherrierin A, a Potent Inhibitor of Chikungunya Virus Replication

    Directory of Open Access Journals (Sweden)

    Mélanie Bourjot


    Full Text Available Trigocherrierin A (1 and trigocherriolide E (2, two new daphnane diterpenoid orthoesters (DDOs, and six chlorinated analogues, trigocherrins A, B, F and trigocherriolides A–C, were isolated from the leaves of Trigonostemon cherrieri. Their structures were identified by mass spectrometry, extensive one- and two-dimensional NMR spectroscopy and through comparison with data reported in the literature. These compounds are potent and selective inhibitors of chikungunya virus (CHIKV replication. Among the DDOs isolated, compound 1 exhibited the strongest anti-CHIKV activity (EC50 = 0.6 ± 0.1 µM, SI = 71.7.

  20. Potent antimalarial 4-pyridones with improved physico-chemical properties. (United States)

    Bueno, José M; Manzano, Pilar; García, María C; Chicharro, Jesús; Puente, Margarita; Lorenzo, Milagros; García, Adolfo; Ferrer, Santiago; Gómez, Rubén M; Fraile, María T; Lavandera, José L; Fiandor, José M; Vidal, Jaume; Herreros, Esperanza; Gargallo-Viola, Domingo


    Antimalarial 4-pyridones are a novel class of inhibitors of the plasmodial mitochondrial electron transport chain targeting Cytochrome bc1 (complex III). In general, the most potent 4-pyridones are lipophilic molecules with poor solubility in aqueous media and low oral bioavailability in pre-clinical species from the solid dosage form. The strategy of introducing polar hydroxymethyl groups has enabled us to maintain the high levels of antimalarial potency observed for other more lipophilic analogues whilst improving the solubility and the oral bioavailability in pre-clinical species.

  1. Pyrazolopyridines as potent PDE4B inhibitors: 5-Heterocycle SAR

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Charlotte J.; Ballantine, Stuart P.; Coe, Diane M.; Cook, Caroline M.; Delves, Christopher J.; Dowle, Mike D.; Edlin, Chris D.; Hamblin, J. Nicole; Holman, Stuart; Johnson, Martin R.; Jones, Paul S.; Keeling, Sue E.; Kranz, Michael; Lindvall, Mika; Lucas, Fiona S.; Neu, Margarete; Solanke, Yemisi E.; Somers, Don O.; Trivedi, Naimisha A.; Wiseman, Joanne O. (GSK)


    Following the discovery of 4-(substituted amino)-1-alkyl-pyrazolo[3,4-b]pyridine-5-carboxamides as potent and selective phosphodiesterase 4B inhibitors, [Hamblin, J. N.; Angell, T.; Ballentine, S., et al. Bioorg. Med. Chem. Lett.2008, 18, 4237] the SAR of the 5-position was investigated further. A range of substituted heterocycles showed good potencies against PDE4. Optimisation using X-ray crystallography and computational modelling led to the discovery of 16, with sub-nM inhibition of LPS-induced TNF-{alpha} production from isolated human peripheral blood mononuclear cells.

  2. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid


    Haj, Christeene G.; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M.; Yektin, Zhana; Mechoulam,Raphael; Feldmann, Mark; Gallily, Ruth


    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ9-tetrahydrocannabinol (Δ9-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therape...

  3. Identification of a potent endothelium-derived angiogenic factor.

    Directory of Open Access Journals (Sweden)

    Vera Jankowski

    Full Text Available The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N=6 were sufficient to induce angiogenic and proliferative effects (1.34 ± 0.26 nmol L(-1. In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.

  4. The brain and potent ART: the final frontier?

    Directory of Open Access Journals (Sweden)

    Powderly W


    Full Text Available The current era of potent antiretroviral therapy, with the resultant dramatic improval in survival of HIV-infected patients, has focussed much attention on non-infectious complications of HIV infection. It has been recognized since the early days of the epidemic that the brain is an important target of viral infection, with both direct and indirect effects leading to brain disease, especially the most severe form, progressive HIV-associated dementia. Potent antiretroviral therapy has clearly decreased the incidence and prevalence of dementia, and even with an ageing population there is little evidence of a significant return of severe HIV-associated neurological disease. There has been some recent attention to the concept of a milder form of HIV-associated neurocognitive disease (HAND, with some cohorts reporting prevalence rates of 30% or more, even in patients with otherwise well-controlled infection. However, diagnosis of HAND is methodologically difficult and debatable, with confounders such as mood, mental health, age and lack of standards in testing technique complicating the issue. Co-infection with hepatitis C is an additional complicating factor. It is important that we do not overdiagnosis or misclassify patients as having a potentially progressive complication of HIV infection. Equally, it is premature to alter therapeutic decision-making on this basis; in particular there are insufficient data to support a conclusion that specific antiviral agents are more likely to prevent or slow the progression of HAND.

  5. Discovery of Potent, Selective and Reversible Caspase-3 Inhibitors

    Institute of Scientific and Technical Information of China (English)

    Han Yongxin; John Tam; Paul Tawa; Donald W. Nicholson; Robert J. Zamboni; André Giroux; John Colucci; Christopher I. Bayly; Daniel J. Mckay; Sophie Roy; Steve Xanthoudakis; John Vaillancourt; Dita M. Rasper


    Recent studies towards understanding the molecular mechanisms of apoptosis have revealed the importance of a group of cysteinyl aspartate specific proteases, the caspases, in the programmed cell death process (Hengartner, M.O. Nature 2000, 407, 770). Caspase-3, in particular,has been characterized as the dominant effector caspase involved in the proteolytic cleavage of a variety of protein substrates including cytoskeletal proteins, kinases and DNA repair enzymes during apoptosis (Nicholson, D. W. Cell Death Differ. 1999, 6, 1028). The development of potent and selective caspase-3 inhibitors has thus emerged as an attractive therapeutic target. In the presentation,the identification of a series of potent, selective and reversible non-peptidyl caspase-3 inhibitors containing a pyrazinone core (1) will be presented. SAR optimization at R1, R2, R3 and R4 led to the discovery of inhibitors such as 2 with excellent in vitro activities (IC50 against rh-caspase-3: 5 nM; IC50 against camptothecin induced apoptotic cell death in NT2 cells: 20 nM). Compounds such as 2 also displayed excellent in vivo activities in a number of animal models of acute injuries (see: Methot, N. et al, J. Exp. Med. 2004, 119, 199; Toulmond, S. et al, British J. Pharm. 2004, 141,689; Holtzman,D.M. et al, JBC, 2002, 277, 30128), and selected examples will be discussed during the presentation.

  6. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. (United States)

    Forbes, Louisa V; Sjögren, Tove; Auchère, Françoise; Jenkins, David W; Thong, Bob; Laughton, David; Hemsley, Paul; Pairaudeau, Garry; Turner, Rufus; Eriksson, Håkan; Unitt, John F; Kettle, Anthony J


    The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation.

  7. Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). (United States)

    Wang, X; Bunkers, G J


    Two novel antifungal proteins were purified and characterized from cheeseweed (Malva parviflora). Both proteins, designated CW-1 and CW-2, are composed of two different subunits of 5000 and 3000 Da, respectively. These proteins possess very potent antifungal activities, and more interestingly the inhibition is fungicidal instead of fungistatic. At low salt condition, the IC(50) of CW-1 and CW-2 against Fusarium graminearum (Fg) is 2.5 ppm. At high salt condition which diminishes the antifungal activity of many antifungal proteins, both CW-1 and CW-2 still maintain potent activity against Fg with IC(50) of 10 ppm. The two subunits could be separated by gel filtration in the presence of 6 M urea, but their antifungal activity cannot be recovered after the removal of urea. Amino acid sequence analysis indicates that both subunits of CW-1 show homology to 2S albumin, whereas the two subunits of CW-2 have homology to vicilin protein from cotton. To our knowledge, this is the first report of isolation and characterization of heterologous antifungal proteins from any source.

  8. Adrenomedullin - new perspectives of a potent peptide hormone. (United States)

    Schönauer, Ria; Els-Heindl, Sylvia; Beck-Sickinger, Annette G


    Adrenomedullin (ADM) is a 52-amino acid multifunctional peptide, which belongs to the calcitonin gene-related peptide (CGRP) superfamily of vasoactive peptide hormones. ADM exhibits a significant vasodilatory potential and plays a key role in various regulatory mechanisms, predominantly in the cardiovascular and lymphatic system. It exerts its effects by activation of the calcitonin receptor-like receptor associated with one of the receptor activity-modifying proteins 2 or 3. ADM was first isolated from human phaeochromocytoma in 1993. Numerous studies revealed a widespread distribution in various tissues and organs, which is reflected by its multiple physiological roles in health and disease. Because of its anti-inflammatory, anti-apoptotic and proliferative properties, ADM exhibits potent protective functions under diverse pathological conditions, but it is also critically involved in tumor progression. ADM has therefore raised great interest in therapeutic applications and several clinical trials already revealed promising results. However, because the receptor activation mode has not yet been fully elucidated, a rational design of potent and selective ligands is still challenging. Detailed information on the binding mode of ADM from a recently reported crystal structure as well as efforts to improve its plasma stability and bioavailability may help to overcome these limitations in the future. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  9. Potent D-Peptide Inhibitors of HIV-1 Entry

    Energy Technology Data Exchange (ETDEWEB)

    Welch,B.; VanDemark, A.; Heroux, A.; Hill, C.; Kay, M.


    During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS.

  10. Potent inhibition of HIV-1 replication by a Tat mutant. (United States)

    Meredith, Luke W; Sivakumaran, Haran; Major, Lee; Suhrbier, Andreas; Harrich, David


    Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.

  11. Potent inhibition of HIV-1 replication by a Tat mutant.

    Directory of Open Access Journals (Sweden)

    Luke W Meredith

    Full Text Available Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.

  12. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Sukanya Saha


    General significance: Mangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.

  13. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis.

    Directory of Open Access Journals (Sweden)

    Dipannita Dutta

    Full Text Available Clathrin independent endocytosis (CIE is a form of endocytosis present in all cells that mediates the entry of nutrients, macromolecules and membrane proteins into cells. When compared to clathrin-dependent endocytosis (CDE, however, much less is known about the machinery involved in forming CIE endosomes. One way to distinguish CIE from CDE has been to deplete cells of coat proteins involved in CDE such as clathrin or the dynamin GTPase, leading to a block of CDE but not CIE. A drawback of such genetic manipulations is that depletion of proteins important for mediating CDE over a period of days can have complex indirect effects on cellular function. The identification of chemical compounds that specifically and rapidly block CDE or CIE would facilitate the determination of whether a process involved CDE or CIE. To date, all of those compounds have targeted CDE. Dynasore and the dynoles specifically target and block dynamin activity thus inhibiting CDE but not most forms of CIE. Recently, a new compound called pitstop 2 was identified as an inhibitor of the interaction of amphiphysin with the amino terminal domain of clathrin, and shown to inhibit CDE in cells. Here we show that pitstop 2 is also a potent inhibitor of CIE. The effects of pitstop 2 are not restricted to inhibition of clathrin since knockdown of clathrin fails to rescue the inhibition of endocytosis of CIE proteins by the drug. Thus pitstop 2 has additional cellular targets besides the amino terminal domain of clathrin and thus cannot be used to distinguish CIE from CDE.

  14. Discovery of Phenylglycine Lactams as Potent Neutral Factor VIIa Inhibitors. (United States)

    Wurtz, Nicholas R; Parkhurst, Brandon L; Jiang, Wen; DeLucca, Indawati; Zhang, Xiaojun; Ladziata, Vladimir; Cheney, Daniel L; Bozarth, Jeffrey R; Rendina, Alan R; Wei, Anzhi; Luettgen, Joseph M; Wu, Yiming; Wong, Pancras C; Seiffert, Dietmar A; Wexler, Ruth R; Priestley, E Scott


    Inhibitors of Factor VIIa (FVIIa), a serine protease in the clotting cascade, have shown strong antithrombotic efficacy in preclinical thrombosis models with minimal bleeding liabilities. Discovery of potent, orally active FVIIa inhibitors has been largely unsuccessful because known chemotypes have required a highly basic group in the S1 binding pocket for high affinity. A recently reported fragment screening effort resulted in the discovery of a neutral heterocycle, 7-chloro-3,4-dihydroisoquinolin-1(2H)-one, that binds in the S1 pocket of FVIIa and can be incorporated into a phenylglycine FVIIa inhibitor. Optimization of this P1 binding group led to the first series of neutral, permeable FVIIa inhibitors with low nanomolar potency.

  15. New Conjugates of Quinoxaline as Potent Antitubercular and Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Ramalingam Peraman


    Full Text Available Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, 1HNMR, 13C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H37Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.

  16. New Conjugates of Quinoxaline as Potent Antitubercular and Antibacterial Agents. (United States)

    Peraman, Ramalingam; Kuppusamy, Rajendran; Killi, Sunil Kumar; Reddy, Y Padmanabha


    Considering quinoxaline as a privileged structure for the design of potent intercalating agents, some new sugar conjugates of quinoxaline were synthesized and characterized by IR, (1)HNMR, (13)C NMR, and mass spectral data. In vitro testing for antitubercular and antimicrobial activities was performed against Mycobacterium tuberculosis H 37 Rv and some pathogenic bacteria. Results revealed that conjugate containing ribose moiety demonstrated the most promising activity against Mycobacteria and bacteria with minimum inhibitory concentrations (MIC) of 0.65 and 2.07 μM, respectively. Other conjugates from xylose, glucose, and mannose were moderately active whilst disaccharides conjugates were found to be less active. In silico docking analysis of prototype compound revealed that ATP site of DNA gyrase B subunit could be a possible site for inhibitory action of these synthesized compounds.

  17. Potent Antiplasmodial Alkaloids and Flavonoids from Dasymaschalon acuminatum

    Directory of Open Access Journals (Sweden)

    Ratchanaporn Chokchaisiri


    Full Text Available A new aporphine alkaloid, 7-epi-duguetine (1 together with one known alkaloid, dicentrinone (2, and four known flavonoids, quercetin 3,7-dimethyl ether 3′ -O- α -L-rhamnopyranosyl-(1 g 2-β-D-glucopyranoside (3, galangin 5-methyl ether (4, 5,7-dimethoxy-3-hydroxyflavone (5, and 3,5,7-trimethoxyflavone (6, were isolated from the leaves of Dasymaschalon acuminatum , a new plant species which has not been investigated phytochemically before. The structures of the isolated compounds were elucidated through extensive NMR spectroscopic analysis. All isolates were evaluated for antiplasmodial activity against Plasmodium falciparum strain K1 and 7- epi -duguetine was found to exhibit potent activity with an IC 50 of 0.385 m g/ml .

  18. Epidemiological Studies of Potent Environmental Pathogen: Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Nazir A. Brohi


    Full Text Available A general survey for six months was undertaken for the prevalence of environmental bacterium Streptococcus pneumoniae among the different age groups (3-65 years including both sexes from various hospitals of Hyderabad city. Laboratory examinations revealed S. pneumoniae as most potent environmental pathogen from the sputum and throat swabs of old aged patients and children respectively. During observations, 39 specimens were growth positive; the biochemistry of isolates revealed that they were coagulase, catalase and oxidase negative, TSI, gel hydrolysis positive and were able to ferment glucose, lactose, maltose, galactose, fructose, sucrose, starch and raffinose. The results of antimicrobial activity showed that pneumococci were resistant to the cefspan, septran, cravit, pipemetic acid, azomax, bacitracin, and penicillin and a clear zone of inhibition was observed on clithromycin, optochin, cefizox, genatamycin, minocyclin, levoflaxacin, and vancomycin. There were intermediate zone of inhibition found on claforan, nalidixic acid, amoxycillin, fosfomycin, fortum, and erythromycin on Mueller Hinton’s agar after 24 hours incubation

  19. Anti-Angiogenic Therapy: Strategies to Develop Potent VEGFR-2 Tyrosine Kinase Inhibitors and Future Prospect. (United States)

    Shi, Leilei; Zhou, Jianfeng; Wu, Jifeng; Shen, Yuemao; Li, Xun


    Tumor angiogenesis has always been a major gap for effective cancer therapy. Interruption of aberrant angiogenesis by specific inhibitors targeting receptor tyrosine kinases (RTKs) has been of great interests to medicinal chemists. Among the factors that are involved in tumor angiogenesis, vascular endothelial growth factor receptor-2 (VEGFR-2) is validated as the most closely related factor which can drive angiogenesis through binding with its natural ligand VEGF. The well-validated VEGF-driven VEGFR-2 signaling pathway can stimulate many endothelial responses, including increasing vessel permeability and enhancing endothelial cell proliferation, migration and differentiation. Consequently, circumventing angiogenesis by VEGFR-2 inhibitors represents a promising strategy for counteracting various VEGFR-2-mediated disorders as well as drug resistance. Over the past decades, a considerable number of novel small molecular VEGFR-2 inhibitors have been exploited with diverse chemical scaffolds. Especially, recent frequently launched inhibitors have declared their research values and therapeutic potentials in oncology. Still, the antiangiogenesis based treatment remains an ongoing challenge. In this review, a comprehensive retrospective of newly emerged VEGFR-2 inhibitors have been summarized, with the emphasis on the structure-activity relationship (SAR) investigation, and also binding patterns of representative inhibitors with biotargets. On the basis of all of this information, varied strategies for developing potent VEGFR-2 inhibitors and the future prospect of the clinical application of antiangiogenic inhibitors are discussed hereby.

  20. GDNF-transfected macrophages produce potent neuroprotective effects in Parkinson's disease mouse model.

    Directory of Open Access Journals (Sweden)

    Yuling Zhao

    Full Text Available The pathobiology of Parkinson's disease (PD is associated with the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc projecting to the striatum. Currently, there are no treatments that can halt or reverse the course of PD; only palliative therapies, such as replacement strategies for missing neurotransmitters, exist. Thus, the successful brain delivery of neurotrophic factors that promote neuronal survival and reverse the disease progression is crucial. We demonstrated earlier systemically administered autologous macrophages can deliver nanoformulated antioxidant, catalase, to the SNpc providing potent anti-inflammatory effects in PD mouse models. Here we evaluated genetically-modified macrophages for active targeted brain delivery of glial cell-line derived neurotropic factor (GDNF. To capitalize on the beneficial properties afforded by alternatively activated macrophages, transfected with GDNF-encoded pDNA cells were further differentiated toward regenerative M2 phenotype. A systemic administration of GDNF-expressing macrophages significantly ameliorated neurodegeneration and neuroinflammation in PD mice. Behavioral studies confirmed neuroprotective effects of the macrophage-based drug delivery system. One of the suggested mechanisms of therapeutic effects is the release of exosomes containing the expressed neurotropic factor followed by the efficient GDNF transfer to target neurons. Such formulations can serve as a new technology based on cell-mediated active delivery of therapeutic proteins that attenuate and reverse progression of PD, and ultimately provide hope for those patients who are already significantly disabled by the disease.

  1. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    Directory of Open Access Journals (Sweden)

    Markus Helfer

    Full Text Available Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs.

  2. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor. (United States)

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth


    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs.

  3. Crystal Structure of HIV-1 Primary Receptor CD4 i Complex with a Potent Antiviral Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.M.; Hong, X.; Seaman, M.S.; Rits-Vollock, S.p Kao, C.Y.; Ho, D.D.; Chen, B.


    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 {angstrom} resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.

  4. Crystal structure of HIV-1 primary receptor CD4 in complex with a potent antiviral antibody. (United States)

    Freeman, Michael M; Seaman, Michael S; Rits-Volloch, Sophia; Hong, Xinguo; Kao, Chia-Ying; Ho, David D; Chen, Bing


    Ibalizumab is a humanized, anti-CD4 monoclonal antibody. It potently blocks HIV-1 infection and targets an epitope in the second domain of CD4 without interfering with immune functions mediated by interaction of CD4 with major histocompatibility complex (MHC) class II molecules. We report here the crystal structure of ibalizumab Fab fragment in complex with the first two domains (D1-D2) of CD4 at 2.2 Å resolution. Ibalizumab grips CD4 primarily by the BC-loop (residues 121-125) of D2, sitting on the opposite side of gp120 and MHC-II binding sites. No major conformational change in CD4 accompanies binding to ibalizumab. Both monovalent and bivalent forms of ibalizumab effectively block viral infection, suggesting that it does not need to crosslink CD4 to exert antiviral activity. While gp120-induced structural rearrangements in CD4 are probably minimal, CD4 structural rigidity is dispensable for ibalizumab inhibition. These results could guide CD4-based immunogen design and lead to a better understanding of HIV-1 entry.

  5. Anti-topoisomerase drugs as potent inducers of chromosomal aberrations

    Directory of Open Access Journals (Sweden)

    Loredana Bassi


    Full Text Available DNA topoisomerases catalyze topological changes in DNA that are essential for normal cell cycle progression and therefore they are a preferential target for the development of anticancer drugs. Anti-topoisomerase drugs can be divided into two main classes: "cleavable complex" poisons and catalytic inhibitors. The "cleavable complex" poisons are very effective as anticancer drugs but are also potent inducers of chromosome aberrations so they can cause secondary malignancies. Catalytic inhibitors are cytotoxic but they do not induce chromosome aberrations. Knowledge about the mechanism of action of topoisomerase inhibitors is important to determine the best anti-topoisomerase combinations, with a reduced risk of induction of secondary malignancies.As topoisomerases de DNA catalisam alterações topológicas no DNA que são essenciais para a progressão do ciclo celular normal e, portanto, são um alvo preferencial para o desenvolvimento de drogas anticâncer. Drogas anti-topoisomerases podem ser divididas em duas classes principais: drogas anti-"complexos cliváveis" e inibidores catalíticos. As drogas anti-"complexos cliváveis" são muito eficazes como drogas anticancerígenas, mas são também potentes indutores de aberrações cromossômicas, podendo causar neoplasias malignas secundárias. Inibidores catalíticos são citotóxicos mas não induzem aberrações cromossômicas. Conhecimento a respeito do mecanismo de ação de inibidores de topoisomerases é importante para determinar as melhores combinações anti-topoisomerases, com um reduzido risco de indução de neoplasias malignas secundárias.

  6. Discovery of a potent and selective GPR120 agonist

    DEFF Research Database (Denmark)

    Shimpukade, Bharat; Hudson, Brian D; Hovgaard, Christine Kiel;


    GPR120 is a receptor of unsaturated long-chain fatty acids reported to mediate GLP-1 secretion, insulin sensitization, anti-inflammatory, and anti-obesity effects and is therefore emerging as a new potential target for treatment of type 2 diabetes and metabolic diseases. Further investigation is ...

  7. Pharmacological Characterization of a Potent Inhibitor of Autotaxin in Animal Models of Inflammatory Bowel Disease and Multiple Sclerosis. (United States)

    Thirunavukkarasu, Kannan; Tan, Bailin; Swearingen, Craig A; Rocha, Guilherme; Bui, Hai H; McCann, Denis J; Jones, Spencer B; Norman, Bryan H; Pfeifer, Lance A; Saha, Joy K


    Autotaxin is a secreted enzyme that catalyzes the conversion of lysophosphatidyl choline into the bioactive lipid mediator lysophosphatidic acid (LPA). It is the primary enzyme responsible for LPA production in plasma. It is upregulated in inflammatory conditions and inhibition of autotaxin may have anti-inflammatory activity in a variety of inflammatory diseases. To determine the role of autotaxin and LPA in the pathophysiology of inflammatory disease states, we used a potent and orally bioavailable inhibitor of autotaxin that we have recently identified, and characterized it in mouse models of inflammation, inflammatory bowel disease (IBD), multiple sclerosis (MS), and visceral pain. Compound-1, a potent inhibitor of autotaxin with an IC50 of ∼2 nM, has good oral pharmacokinetic properties in mice and results in a substantial inhibition of plasma LPA that correlates with drug exposure levels. Treatment with the inhibitor resulted in significant anti-inflammatory and analgesic effects in the carrageenan-induced paw inflammation and acetic acid-induced visceral pain tests, respectively. Compound-1 also significantly inhibited disease activity score in the dextran sodium sulfate-induced model of IBD, and in the experimental autoimmune encephalomyelitis model of MS. In conclusion, the present study demonstrates the anti-inflammatory and analgesic properties of a novel inhibitor of autotaxin that may serve as a therapeutic option for IBD, MS, and pain associated with inflammatory states.

  8. Potent antitumor effect elicited by gp96-peptide complexes pulsed by dendritic cell on mice of H22 liver cancer

    Institute of Scientific and Technical Information of China (English)

    YANG Wei; CAO Chun-xia; CHU Yong-lie; LIU Qing-guang; YU Liang; PAN Cheng-en


    Objective: To improve DC-based tumor vaccination, we studied whether dendritic cells (DCs) which cocultured with H22 liver cancer cells-derived heat shock protein (HSP) glycoprotein 96(gp96) affect the T cell-activating potential in vitro and the induction of tumor immunity in vivo. Methods: Maturation of murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which mimiced the immunostimulatory effect of DC. Cocultured DC and gp96-peptide complexes were used to vaccine H22liver cancer cells of mice. Using murine models we compared the immunogenecity of DC modified by gp96-peptides complexes derived from murine liver cancer cells alone or inactive tumor cells. To verify the specificity of the vaccine, in vitro assays were executed. Serum cytokine levels were quantified to explore the supposed pathway of DC modified by gp96 peptide complexes and its effect on antitumor immune response.Results: DC modified by gp96-peptide complexes can activate spleen lymphocyte and the latter can specifically kill H22 cells but not Ehrilich ascites carcinoma cells. Modified DC can induce potent tumor-antigenspecific immune response, augment the proliferation of Th1 cells, and inhibit tumor growth. Conclusion:In this study, we have developed a novel DC-mediated tumor vaccine by combing the gp96 antigenic peptides complexes and inducing immune response against specific tumor cells. gp96 can be identified as a potent DC activator.

  9. Esters of Bendamustine Are by Far More Potent Cytotoxic Agents than the Parent Compound against Human Sarcoma and Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Stefan Huber

    Full Text Available The alkylating agent bendamustine is approved for the treatment of hematopoietic malignancies such as non-Hodgkin lymphoma, chronic lymphocytic leukemia and multiple myeloma. As preliminary data on recently disclosed bendamustine esters suggested increased cytotoxicity, we investigated representative derivatives in more detail. Especially basic esters, which are positively charged under physiological conditions, were in the crystal violet and the MTT assay up to approximately 100 times more effective than bendamustine, paralleled by a higher fraction of early apoptotic cancer cells and increased expression of p53. Analytical studies performed with bendamustine and representative esters revealed pronounced cellular accumulation of the derivatives compared to the parent compound. In particular, the pyrrolidinoethyl ester showed a high enrichment in tumor cells and inhibition of OCT1- and OCT3-mediated transport processes, suggesting organic cation transporters to be involved. However, this hypothesis was not supported by the differential expression of OCT1 (SLC22A1 and OCT3 (SLC22A3, comparing a panel of human cancer cells. Bendamustine esters proved to be considerably more potent cytotoxic agents than the parent compound against a broad panel of human cancer cell types, including hematologic and solid malignancies (e.g. malignant melanoma, colorectal carcinoma and lung cancer, which are resistant to bendamustine. Interestingly, spontaneously immortalized human keratinocytes, as a model of "normal" cells, were by far less sensitive than tumor cells against the most potent bendamustine esters.

  10. Pseudosaccharin amines as potent and selective KV1.5 blockers. (United States)

    Lloyd, John; Finlay, Heather J; Kover, Alexander; Johnson, James; Pi, Zulan; Jiang, Ji; Neels, James; Cavallaro, Cullen; Wexler, Ruth; Conder, Mary Lee; Shi, Hong; Li, Danshi; Sun, Huabin; Chimalakonda, Anjaneya; Huang, Christine; Salvati, Mark; Levesque, Paul


    Phenethyl aminoheterocycles like compound 1 were known to be potent I(Kur) blockers although they lacked potency in vivo. Modification of the heterocycle led to the design and synthesis of pseudosaccharin amines. Compounds such as 14, 17d and 21c were found to be potent K(V)1.5 blockers and selective over other cardiac ion channels. These compounds had potent pharmacodynamic activity, however, they also showed off-target activities such as hemodynamic effects.

  11. Photocatalytic Cellulosic Electrospun Fibers for the Degradation of Potent Cyanobacteria Toxin Microcystin-LR (United States)


    Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR† Nicholas M. Bedford,ab Miguel Pelaez,c...photocatalytic decomposition of the potent cyanobacteria toxin microcystin-LR (MC-LR). Electrospun fibers of cellulose acetate were converted to succinylated...00-2012 4. TITLE AND SUBTITLE Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR 5a

  12. Effect of PSC 833, a potent inhibitor of P-glycoprotein, on the growth of astrocytoma cells in vitro. (United States)

    Sadanand, V; Kankesan, J; Yusuf, A; Stewart, C; Rutka, J T; Thiessen, J J; Ling, V; Rao, P M; Rajalakshmi, S; Sarma, D S R


    Malignant astrocytomas have been found to express P-glycoprotein (Pgp, mdr1 gene product). It was hypothesized that in addition to conferring multidrug resistance, Pgp is intimately associated with the development of astrocytomas. Accordingly, we studied the effect of PSC 833 (PSC, Novartis), a potent inhibitor of Pgp, on the growth of Pgp-expressing astrocytoma cells. The results showed that in all the cell lines tested, PSC (10-60 microM) inhibited the growth as well as induced cell death. Cells exposed to PSC exhibited DNA ladder characteristic of apoptosis. PSC-induced cell death could be reversed by Z-VAD-fmk, a general caspase inhibitor, indicating that PSC-induced cell death was characteristic of caspase-mediated apoptosis. These results suggest a novel therapeutic strategy in the treatment of malignant astrocytomas by inhibitors of Pgp.

  13. Affinity-purified respiratory syncytial virus antibodies from intravenous immunoglobulin exert potent antibody-dependent cellular cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Nimesh Gupta

    Full Text Available Mixed infections are one of the major therapeutic challenges, as the current strategies have had limited success. One of the most common and widespread conditions of mixed infection is respiratory syncytial virus-mediated pathology of the respiratory tract in children. There is a dire need for the development of novel therapeutic approaches during mixed infections. Therapeutic intravenous immunoglobulin preparations, obtained from plasma pools of healthy donors have been used in immune deficiencies. This study was thus designed to characterize the functional efficacy of RSV-specific antibodies in IVIg. To explore the functional ability of these affinity-purified RSV-specific antibodies, the antibody-dependent and complement dependent cytotoxicity was determined using peripheral cells of healthy donors. This study demonstrates the existence of highly potent RSV-specific antibodies in IVIg preparations and provides the basis for the use of IVIg as broad-spectrum protective shield to RSV-infected children during mixed infections.

  14. Discovery of potent imidazole and cyanophenyl containing farnesyltransferase inhibitors with improved oral bioavailability. (United States)

    Tong, Yunsong; Lin, Nan-Horng; Wang, Le; Hasvold, Lisa; Wang, Weibo; Leonard, Nicholas; Li, Tongmei; Li, Qun; Cohen, Jerry; Gu, Wen-Zhen; Zhang, Haiying; Stoll, Vincent; Bauch, Joy; Marsh, Kennan; Rosenberg, Saul H; Sham, Hing L


    A pyridyl moiety was introduced into a previously developed series of farnesyltransferase inhibitors containing imidazole and cyanophenyl (such as 4), resulting in potent inhibitors with improved pharmacokinetics.

  15. Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics. (United States)

    Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim


    Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000

  16. Iota-Carrageenan is a potent inhibitor of rhinovirus infection

    Directory of Open Access Journals (Sweden)

    Meier Christiane


    Full Text Available Abstract Background Human rhinoviruses (HRVs are the predominant cause of common cold. In addition, HRVs are implicated in the worsening of COPD and asthma, as well as the loss of lung transplants. Despite significant efforts, no anti-viral agent is approved for the prevention or treatment of HRV-infection. Results In this study we demonstrate that Iota-Carrageenan, a sulphated polysaccharide derived from red seaweed, is a potent anti-rhinoviral substance in-vitro. Iota-Carrageenan reduces HRV growth and inhibits the virus induced cythopathic effect of infected HeLa cells. In addition, Iota-Carrageenan effectively prevents the replication of HRV1A, HRV2, HRV8, HRV14, HRV16, HRV83 and HRV84 in primary human nasal epithelial cells in culture. The data suggest that Iota-Carrageenan acts primarily by preventing the binding or the entry of virions into the cells. Conclusion Since HRV infections predominately occur in the nasal cavity and the upper respiratory tract, a targeted treatment with a product containing Iota-Carrageenan is conceivable. Clinical trials are needed to determine whether Iota-Carrageenan-based products are effective in the treatment or prophylaxis of HRV infections.

  17. Bioisosteric phentolamine analogs as potent alpha-adrenergic antagonists. (United States)

    Hong, Seoung-Soo; Bavadekar, Supriya A; Lee, Sang-Il; Patil, Popat N; Lalchandani, S G; Feller, Dennis R; Miller, Duane D


    The synthesis and biological evaluation of a new series of bioisosteric phentolamine analogs are described. Replacement of the carbon next to the imidazoline ring of phentolamine with a nitrogen atom provides compounds (2, 3) that are about 1.6 times and 4.1 times more potent functionally than phentolamine on rat alpha1-adrenergic receptors, respectively. In receptor binding assays, the affinities of phentolamine and its bioisosteric analogs were determined on the human embryonic kidney (HEK) and Chinese Hamster ovary (CHO) cell lines expressing the human alpha1- and alpha2-AR subtypes, respectively. Analogs 2 and 3, both, displayed higher binding affinities at the alpha2- versus the alpha1-ARs, affinities being the least at the alpha1B-AR. Binding affinities of the methoxy ether analog 2 were greater than those of the phenolic analog 3 at all six alpha-AR subtypes. One of the nitrogen atoms in the imidazoline ring of phentolamine was replaced with an oxygen atom to give compounds 4 and 5, resulting in a 2-substituted oxazoline ring. The low functional antagonist activity on rat aorta, and binding potencies of these two compounds on human alpha1A- and alpha2A-AR subtypes indicate that a basic functional group is important for optimum binding to the alpha1- and alpha2A-adrenergic receptors.

  18. Desmodium gangeticum: a potent anti-ulcer agent. (United States)

    Dharmani, Poonam; Mishra, Pushpesh Kumar; Maurya, Rakesh; Chauhan, Vinay Singh; Palit, Gautam


    The present study was designed to investigate anti-ulcerogenic property of ethanolic extract of Desmodium gangeticum (DG) against cold restraint (CRU, 2 hr cold restraint stress), aspirin (ASP, 150 mg/kg orally), alcohol (AL, absolute alcohol 1 ml/200gm) and pyloric ligation (PL, 4 hr pylorus ligation) induced gastric ulcer models in Sprague Dawley rats, and histamine (HST, 0.25 mg/kg) induced duodenal ulcer in guinea pigs. We found that DG at a dose of 200mg/kg, (orally), markedly decreased the incidence of ulcers in all the above models. DG showed significant protection against CRU (68.37%), AL (88.87%), ASP (38.2%), PL (40.63%) and HST (63.15%) induced ulcer models, whereas standard drug omeprazole (OMZ) showed protection index of 83.86, 56.35, 70.31 and 84.21%, respectively in CRU, ASP, PL and HST models. Sucralfate as standard drug showed 92.64% protection in AL model. DG significantly reduced acid secretion 41.61%, whereas OMZ produced 43.13% reduction. Treatment with DG showed increase in mucin secretion by 56.17%, whereas OMZ showed 12.45% increase. Anti-ulcer effect of DG may be due to its cytoprotective effect along with antisecretory activity and could act as a potent therapeutic agent against peptic ulcer disease.

  19. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors

    Directory of Open Access Journals (Sweden)

    Legoabe LJ


    Full Text Available Lesetja J Legoabe,1 Anél Petzer,1 Jacobus P Petzer1,21Centre of Excellence for Pharmaceutical Sciences, 2Department of Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South AfricaAbstract: Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO inhibitors, a series of C5-substituted 2-acetylphenol analogs (15 and related compounds (two were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson’s disease.Keywords: monoamine oxidase, MAO, inhibition, 2-acetylphenol, structure–activity relationship

  20. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  1. Carvacrol as a potent natural acaricide against Dermanyssus gallinae. (United States)

    Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Barimani, Alireza; Araghi, Atefeh


    Resistance to conventional synthetic pesticides has been widely reported in Dermanyssus gallinae in poultry production systems. Introducing novel acaricides to poultry industry today is more urgent than ever. Research in this field recently focused on plants and plant-derived compounds as acaricides. In the present study, acaricidal activity of three plant bioactive components, carvacrol, thymol, and farnesol, was assessed against D. gallinae and compared with synthetic pesticide permethrin. Mode of acaricidal action was determined by contact toxicity and fumigant toxicity bioassays. Except farnesol which did not cause any mortality, carvacrol and thymol were found to be toxic to D. gallinae with LD50 values of 1 and 3.15 μg/cm(3), respectively. Permethrin gave the LD50 value of 31.95 μg/cm(3) which was less efficient than carvacrol and thymol. In fumigant toxicity bioassay, mortality rate in carvacrol- and thymol-treated groups in closed method was significantly higher than the open one. On the other hand, permethrin exhibited poor fumigant toxicity as there was no statistically significant difference between mortality rate in open and closed methods. These findings revealed that mechanism of acaricidal activity of carvacrol and thymol but not permethrin was mainly due to fumigant action. Results of the present study suggested that carvacrol and thymol, especially carvacrol, can be developed as a novel potent bioacaricide against D. gallinae.

  2. Synthetic galactomannans with potent anti-HIV activity. (United States)

    Budragchaa, Davaanyam; Bai, Shiming; Kanamoto, Taisei; Nakashima, Hideki; Han, Shuqin; Yoshida, Takashi


    Ring-opening polymerization of a new 1,6-anhydro disaccharide monomer, 1, 6-anhydro-2, 3-di-O-benzyl-4-O-(2', 3', 4', 6'-tetra-O-benzyl-α-d-galactopyranosyl)-α-d-mannopyranose, was carried out using PF5 as a catalyst under high vacuum at -60°C to give galactose branched mannopyranan (synthetic galactomannan), 4-O-α-d-galactopyranosyl-(1→6)-α-d-mannopyranan, after debenzylation with Na in liquid NH3. The ring-opening copolymerization with 1, 6-anhydro-tri-O-benzyl-α-d-mannopyranose in various feeds was also performed to give synthetic galactomannans with various proportions of galactose branches. After sulfation, sulfated synthetic galactomannans were found to have anti-HIV activity and cytotoxicity as high and low as those of standard curdlan and dextran sulfates, respectively, which are potent anti-HIV sulfated polysaccharides with low cytotoxicity. The anti-HIV mechanism of sulfated synthetic galactomannans used by poly-l-lysine as a model peptide of the HIV surface protein was estimated by using SPR, DSL, and zeta potential measurements, revealing the electrostatic interaction between negatively charged sulfate groups and positively charged amino groups.

  3. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid. (United States)

    Haj, Christeene G; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M; Yektin, Zhana; Mechoulam, Raphael; Feldmann, Mark; Gallily, Ruth


    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ(9)-tetrahydrocannabinol (Δ(9)-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therapeutic in murine collagen-induced arthritis in vivo. However, in acidic media, it can cyclize to the psychoactive Δ(9)-THC. We report the synthesis of a novel CBD derivative, HU-444, which cannot be converted by acid cyclization into a Δ(9)-THC-like compound. In vitro HU-444 had anti-inflammatory activity (decrease of reactive oxygen intermediates and inhibition of TNF-α production by macrophages); in vivo it led to suppression of production of TNF-α and amelioration of liver damage as well as lowering of mouse collagen-induced arthritis. HU-444 did not cause Δ(9)-THC-like effects in mice. We believe that HU-444 represents a potential novel drug for rheumatoid arthritis and other inflammatory diseases.

  4. Highly potent silver-organoalkoxysilane antimicrobial porous nanomembrane (United States)

    Umar, Sirajo; Liu, Yuanfeng; Wu, Yiguang; Li, Guangtao; Ding, Jiabo; Xiong, Runsong; Chen, Jinchun


    We used a simple electrospinning technique to fabricate a highly potent silver-organoalkoxysilane antimicrobial composite from AgNO3-polyvinylpyrrolidone (PVP)/3-aminopropyltrimethoxysilane (APTMS)/tetraethoxysilane (TEOS) solution. Spectroscopic and microscopic analyses of the composite showed that the fibers contain an organoalkoxysilane `skeleton,' 0.18 molecules/nm2 surface amino groups, and highly dispersed and uniformly distributed silver nanoparticles (5 nm in size). Incorporation of organoalkoxysilanes is highly beneficial to the antimicrobial mat as (1) amino groups of APTMS are adhesive and biocidal to microorganisms, (2) polycondensation of APTMS and TEOS increases the membrane's surface area by forming silicon bonds that stabilize fibers and form a composite mat with membranous structure and high porosity, and (3) the organoalkoxysilanes are also instrumental to the synthesis of the very small-sized and highly dispersed silver metal particles in the fiber mat. Antimicrobial property of the composite was evaluated by disk diffusion, minimum inhibition concentration (MIC), kinetic, and extended use assays on bacteria (Escherichia coli, Bacillus anthracis, Staphylococcus aureus, and Brucella suis), a fungus (Aspergillus niger), and the Newcastle disease virus. The membrane shows quick and sustained broad-spectrum antimicrobial activity. Only 0.3 mg of fibers is required to achieve MIC against all the test organisms. Bacteria are inhibited within 30 min of contact, and the fibers can be used repeatedly. The composite is silver efficient and environment friendly, and its membranous structure is suitable for many practical applications as in air filters, antimicrobial linen, coatings, bioadhesives, and biofilms.

  5. Hemin as a generic and potent protein misfolding inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanqin [School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005 (Australia); Carver, John A. [Discipline of Pharmacology, The University of Adelaide, Adelaide, SA 5005 (Australia); Ho, Lam H.; Elias, Abigail K. [School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005 (Australia); Musgrave, Ian F. [Research School of Chemistry, The Australian National University, Canberra, ACT 0200 (Australia); Pukala, Tara L., E-mail: [School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005 (Australia)


    Highlights: • Hemin prevents Aβ42, α-synuclein and RCM-κ-casein forming amyloid fibrils. • Hemin inhibits the β-sheet structure formation of Aβ42. • Hemin reduces the cell toxicity caused by fibrillar Aβ42. • Hemin dissociates partially formed Aβ42 fibrils. • Hemin prevents amorphous aggregation by ADH, catalase and γs-crystallin. - Abstract: Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.

  6. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle. (United States)

    Murata, Kazuya; Nakao, Kikuyo; Hirata, Noriko; Namba, Kensuke; Nomi, Takao; Kitamura, Yoshihisa; Moriyama, Kenzo; Shintani, Takahiro; Iinuma, Munekazu; Matsuda, Hideaki


    The screening of Piperaceous plants for xanthine oxidase inhibitory activity revealed that the extract of the leaves of Piper betle possesses potent activity. Activity-guided purification led us to obtain hydroxychavicol as an active principle. Hydroxychavicol is a more potent xanthine oxidase inhibitor than allopurinol, which is clinically used for the treatment of hyperuricemia.

  7. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.


    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evalua

  8. Synthesis of potent, substituted carbazoles as selective androgen receptor modulators (SARMs). (United States)

    Miller, Chris P; Bhaket, Pushpal; Muthukaman, Nagarajan; Lyttle, C Richard; Shomali, Maysoun; Gallacher, Kyla; Slocum, Connie; Hattersley, Gary


    The synthesis and in vitro binding affinity for a novel series of potent androgen receptor modulators is described. One of the more potent compounds (17, RAD35010) was further characterized in vivo where it restored levator ani weight in castrated male rats to near sham level while having no significant effect on prostate weight.

  9. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available BACKGROUND: Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules of innate immunity, which are firstly found in mammalians. Recently, several cathelicidins have also been found from chickens and fishes. No cathelicidins from other non-mammalian vertebrates have been reported. PRINCIPAL FINDINGS: In this work, a cathelicidin-like antimicrobial peptide named cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and its cDNA sequence was cloned from the cDNA library, which confirm the presence of cathelicidin in reptiles. As other cathelicidins, the precursor of cathelicidin-BF has cathelin-like domain at the N terminus and carry the mature cathelicidin-BF at the C terminus, but it has an atypical acidic fragment insertion between the cathelin-like domain and the C-terminus. The acidic fragment is similar to acidic domains of amphibian antimicrobial precursors. Phylogenetic analysis revealed that the snake cathelicidin had the nearest evolution relationship with platypus cathelicidin. The secondary structure of cathelicidin-BF investigated by CD and NMR spectroscopy in the presence of the helicogenic solvent TFE is an amphipathic alpha-helical conformation as many other cathelicidins. The antimicrobial activities of cathelicidin BF against forty strains of microorganisms were tested. Cathelicidin-BF efficiently killed bacteria and some fungal species including clinically isolated drug-resistance microorganisms. It was especially active against Gram-negative bacteria. Furthermore, it could exert antimicrobial activity against some saprophytic fungus. No hemolytic and cytotoxic activity was observed at the dose of up to 400 microg/ml. Cathelicidin-BF could exist stably in the mice plasma for at least 2.5 hours. CONCLUSION: Discovery of snake cathelicidin with atypical structural and functional characterization offers new insights on the evolution of cathelicidins. Potent, broad

  10. The analgesic activity of Bestatin as a potent APN inhibitor

    Directory of Open Access Journals (Sweden)

    Mei-Rong Jia


    Full Text Available Bestatin, a small molecular weight dipeptide, is a potent inhibitor of various aminopeptidases as well as LTA4 hydrolase. Various physiological functions of Bestatin have been identified, viz.: (1 an immunomodifier for enhancing the proliferation of normal human bone marrow granulocyte–macrophage progenitor cells to form CFU-GM colonies; Bestatin exerts a direct stimulating effect on lymphocytes via its fixation on the cell surface and an indirect effect on monocytes via aminopeptidase B inhibition of tuftsin catabolism; (2 an immunorestorator and curative or preventive agent for spontaneous tumor; Bestatin alone or its combination with chemicals can prolongate the disease-free interval and survival period in adult acute or chronic leukemia, therefore, it was primarily marketed in 1987 in Japan as an anticancer drug and servers as the only marketed inhibitor of Aminopeptidase N (APN/CD13 to cure leukemia to date; (3 a pan-hematopoietic stimulator and restorator; Bestatin promotes granulocytopoiesis and thrombocytopoiesis in vitro and restores them in myelo-hypoplastic men; (4 an inhibitor of several natural opioid peptides. Based on the knowledge that APN can cleave several bioactive neuropeptides such as Met-enkaphalins, Leu-enkaphalins, β-Endorphin, and so on, the antiaminopeptidase action of Bestatin also allows it to protect endopeptides against their catabolism, exhibiting analgesic activity. Although many scientific studies and great accomplishments have been achieved in this field, a large amount of problems are unsolved. This article reviews the promising results obtained for future development of the analgesic activity of Bestatin that can be of vital interest in a number of severe and chronic pain syndromes.

  11. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels. (United States)

    Schuwald, Anita M; Nöldner, Michael; Wilmes, Thomas; Klugbauer, Norbert; Leuner, Kristina; Müller, Walter E


    Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs) as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, biochemical, and electrophysiological experiments were investigated in physiological concentrations in the nanomolar range, which correlate to a single dosage of 80 mg/d in humans that was used in clinical trials. We show for the first time that lavender oil bears some similarities with the established anxiolytic pregabalin. Lavender oil inhibits VOCCs in synaptosomes, primary hippocampal neurons and stably overexpressing cell lines in the same range such as pregabalin. Interestingly, Silexan does not primarily bind to P/Q type calcium channels such as pregabalin and does not interact with the binding site of pregabalin, the α2δ subunit of VOCCs. Lavender oil reduces non-selectively the calcium influx through several different types of VOCCs such as the N-type, P/Q-type and T-type VOCCs. In the hippocampus, one brain region important for anxiety disorders, we show that inhibition by lavender oil is mainly mediated via N-type and P/Q-type VOCCs. Taken together, we provide a pharmacological and molecular rationale for the clinical use of the oral application of lavender oil in patients suffering from anxiety.

  12. Lavender oil-potent anxiolytic properties via modulating voltage dependent calcium channels.

    Directory of Open Access Journals (Sweden)

    Anita M Schuwald

    Full Text Available Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, biochemical, and electrophysiological experiments were investigated in physiological concentrations in the nanomolar range, which correlate to a single dosage of 80 mg/d in humans that was used in clinical trials. We show for the first time that lavender oil bears some similarities with the established anxiolytic pregabalin. Lavender oil inhibits VOCCs in synaptosomes, primary hippocampal neurons and stably overexpressing cell lines in the same range such as pregabalin. Interestingly, Silexan does not primarily bind to P/Q type calcium channels such as pregabalin and does not interact with the binding site of pregabalin, the α2δ subunit of VOCCs. Lavender oil reduces non-selectively the calcium influx through several different types of VOCCs such as the N-type, P/Q-type and T-type VOCCs. In the hippocampus, one brain region important for anxiety disorders, we show that inhibition by lavender oil is mainly mediated via N-type and P/Q-type VOCCs. Taken together, we provide a pharmacological and molecular rationale for the clinical use of the oral application of lavender oil in patients suffering from anxiety.

  13. Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity (United States)

    Gupta, Achla; Gomes, Ivone; Bobeck, Erin N.; Fakira, Amanda K.; Massaro, Nicholas P.; Sharma, Indrajeet; Cavé, Adrien; Hamm, Heidi E.; Parello, Joseph


    Among the opioid receptors, the κ-opioid receptor (κOR) has been gaining considerable attention as a potential therapeutic target for the treatment of complex CNS disorders including depression, visceral pain, and cocaine addiction. With an interest in discovering novel ligands targeting κOR, we searched natural products for unusual scaffolds and identified collybolide (Colly), a nonnitrogenous sesquiterpene from the mushroom Collybia maculata. This compound has a furyl-δ-lactone core similar to that of Salvinorin A (Sal A), another natural product from the plant Salvia divinorum. Characterization of the molecular pharmacological properties reveals that Colly, like Sal A, is a highly potent and selective κOR agonist. However, the two compounds differ in certain signaling and behavioral properties. Colly exhibits 10- to 50-fold higher potency in activating the mitogen-activated protein kinase pathway compared with Sal A. Taken with the fact that the two compounds are equipotent for inhibiting adenylyl cyclase activity, these results suggest that Colly behaves as a biased agonist of κOR. Behavioral studies also support the biased agonistic activity of Colly in that it exhibits ∼10-fold higher potency in blocking non–histamine-mediated itch compared with Sal A, and this difference is not seen in pain attenuation by these two compounds. These results represent a rare example of functional selectivity by two natural products that act on the same receptor. The biased agonistic activity, along with an easily modifiable structure compared with Sal A, makes Colly an ideal candidate for the development of novel therapeutics targeting κOR with reduced side effects. PMID:27162327

  14. Potent Dmt-Tic pharmacophoric delta- and mu-opioid receptor antagonists. (United States)

    Li, Tingyou; Fujita, Yoshio; Shiotani, Kimitaka; Miyazaki, Anna; Tsuda, Yuko; Ambo, Akihiro; Sasaki, Yusuke; Jinsmaa, Yunden; Marczak, Ewa; Bryant, Sharon D; Salvadori, Severo; Lazarus, Lawrence H; Okada, Yoshio


    A series of dimeric Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) analogues (8-14, 18-22) were covalently linked through diaminoalkane and symmetric or asymmetric 3,6-diaminoalkyl-2(1H)-pyrazinone moieties. All the compounds exhibited high affinity for both delta-opioid receptors [Ki(delta) = 0.06-1.53 nM] and mu-opioid receptors [Ki(mu) = 1.37-5.72 nM], resulting in moderate delta-receptor selectivity [Ki(mu)/Ki(delta) = 3-46]. Regardless of the type of linker between the Dmt-Tic pharmacophores, delta-opioid-mediated antagonism was extraordinarily high in all analogues (pA2 = 10.42-11.28), while in vitro agonism (MVD and GPI bioassays) was essentially absent (ca. 3 to >10 microM). While an unmodified N-terminus (9, 13, 18) revealed weak mu-opioid antagonism (pA2 = 6.78-6.99), N,N'-dimethylation (21, 22), which negatively impacts on mu-opioid-associated agonism (Balboni et al., Bioorg. Med. Chem. 2003, 11, 5435-5441), markedly enhanced mu-opioid antagonism (pA2 = 8.34 and 7.71 for 21 and 22, respectively) without affecting delta-opioid activity. These data are the first evidence that a single dimeric opioid ligand containing the Dmt-Tic pharmacophore exhibits highly potent delta- and mu-opioid antagonist activities.

  15. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation. (United States)

    Neubauer, Regina; Neubauer, Andrea; Wölkart, Gerald; Schwarzenegger, Christine; Lang, Barbara; Schmidt, Kurt; Russwurm, Michael; Koesling, Doris; Gorren, Antonius C F; Schrammel, Astrid; Mayer, Bernd


    Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.

  16. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir. (United States)

    Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc


    There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K(+) efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K(+) efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies.

  17. A novel, potent, oral active and safe antinociceptive pyrazole targeting kappa opioid receptors. (United States)

    Trevisan, Gabriela; Rossato, Mateus F; Walker, Cristiani I B; Oliveira, Sara M; Rosa, Fernanda; Tonello, Raquel; Silva, Cássia R; Machado, Pablo; Boligon, Aline A; Martins, Marcos A P; Zanatta, Nilo; Bonacorso, Hélio G; Athayde, Margareth L; Rubin, Maribel A; Calixto, João B; Ferreira, Juliano


    Pyrazole compounds are an intriguing class of compounds with potential analgesic activity; however, their mechanism of action remains unknown. Thus, the goal of this study was to explore the antinociceptive potential, safety and mechanism of action of novel 1-pyrazole methyl ester derivatives, which were designed by molecular simplification, using in vivo and in vitro methods in mice. First, tree 1-pyrazole methyl ester derivatives (DMPE, MPFE, and MPCIE) were tested in the capsaicin test and all presented antinociceptive effect; however the MPClE (methyl 5-trichloromethyl-3-methyl-1H-pyrazole-1-carboxylate) was the most effective. Thus, we selected this compound to assess the effects and mechanisms in subsequent pain models. MPCIE produced antinociception when administered by oral, intraperitoneal, intrathecal and intraplantar routes and was effective in the capsaicin and the acetic acid-induced nociception tests. Moreover, this compound reduced the hyperalgesia in diverse clinically-relevant pain models, including postoperative, inflammatory, and neuropathic nociception in mice. The antinociception produced by orally administered MPClE was mediated by κ-opioid receptors, since these effects were prevented by systemically pre-treatment with naloxone and the κ-opioid receptor antagonist nor-binaltorphimine. Moreover, MPCIE prevented binding of the κ-opioid ligand [(3)H]-CI-977 in vitro (IC₅₀ of 0.68 (0.32-1.4) μM), but not the TRPV1 ([(3)H]-resiniferatoxin) or the α₂-adrenoreceptor ([(3)H]-idazoxan) binding. Regarding the drug-induced side effects, oral administration of MPClE did not produce sedation, constipation or motor impairment at its active dose. In addition, MPCIE was readily absorbed after oral administration. Taken together, these results demonstrate that MPClE is a novel, potent, orally active and safe analgesic drug that targets κ-opioid receptors.

  18. Neuroprotective Activity of (--Epigallocatechin Gallate against Lipopolysaccharide-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Jin-Biao Liu


    Full Text Available Lipopolysaccharide- (LPS- mediated systemic inflammation plays a critical role in neurodegenerative diseases. The present study was conducted to evaluate the protective effects of epigallocatechin gallate (EGCG, the major component in green tea, on LPS-mediated inflammation and neurotoxicity. LPS treatment of macrophages induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6. However, EGCG pretreatment of macrophages significantly inhibited LPS-mediated induction of these cytokines. In addition, EGCG significantly diminished LPS-induced inflammatory cytokines in the peripheral mononuclear blood cells (PBMCs. Supernatant from EGCG-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-EGCG-pretreated and LPS-activated macrophage cultures. Furthermore, EGCG treatment of neurons could inhibit LPS-induced production of reactive oxygen species (ROS. Thus EGCG represents a potent and useful neuroprotective agent for inflammation-mediated neurological disorders.

  19. Discovery of novel P-glycoprotein-mediated multidrug resistance inhibitors bearing triazole core via click chemistry. (United States)

    Liu, Baomin; Qiu, Qianqian; Zhao, Tianxiao; Jiao, Lei; Hou, Jianyu; Li, Yunman; Qian, Hai; Huang, Wenlong


    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors bearing a triazol-phenethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 5 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity (IC50s > 100 μm). Compared with VRP, compound 5 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 5 persisted longer chemo-sensitizing effect (>24 h) than VRP (<6 h) with reversibility. Given the low intrinsic cytotoxicity and the potent reversal activity, compound 5 may represent a promising candidate for developing P-gp-mediated MDR inhibitor.

  20. Advanced Glycation End Products (AGE) Potently Induce Autophagy through Activation of RAF Protein Kinase and Nuclear Factor κB (NF-κB). (United States)

    Verma, Neeharika; Manna, Sunil K


    Advanced glycation end products (AGE) accumulate in diabetic patients and aging people because of high amounts of three- or four-carbon sugars derived from glucose, thereby causing multiple consequences, including inflammation, apoptosis, obesity, and age-related disorders. It is important to understand the mechanism of AGE-mediated signaling leading to the activation of autophagy (self-eating) that might result in obesity. We detected AGE as one of the potent inducers of autophagy compared with doxorubicin and TNF. AGE-mediated autophagy is inhibited by suppression of PI3K and potentiated by the autophagosome maturation blocker bafilomycin. It increases autophagy in different cell types, and that correlates with the expression of its receptor, receptor for AGE. LC3B, the marker for autophagosomes, is shown to increase upon AGE stimulation. AGE-mediated autophagy is partially suppressed by inhibitor of NF-κB, PKC, or ERK alone and significantly in combination. AGE increases sterol regulatory element binding protein activity, which leads to an increase in lipogenesis. Although AGE-mediated lipogenesis is affected by autophagy inhibitors, AGE-mediated autophagy is not influenced by lipogenesis inhibitors, suggesting that the turnover of lipid droplets overcomes the autophagic clearance. For the first time, we provide data showing that AGE induces several cell signaling cascades, like NF-κB, PKC, ERK, and MAPK, that are involved in autophagy and simultaneously help with the accumulation of lipid droplets that are not cleared effectively by autophagy, therefore causing obesity.

  1. Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. (United States)

    Janus, Łukasz; Milczarek, Grzegorz; Arasimowicz-Jelonek, Magdalena; Abramowski, Dariusz; Billert, Hanna; Floryszak-Wieczorek, Jolanta


    In our experimental approach we examined how potato leaves exposed to a chemical agent might induce nitric oxide (NO) dependent biochemical modifications for future mobilization of an effective resistance to Phytophthora infestans. After potato leaf treatment with one of the following SAR inducers, i.e. β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA) or Laminarin, we observed enhanced NO generation concomitant with biochemical changes related to a slight superoxide anion (O2(-)) and hydrogen peroxide (H2O2) accumulation dependent on minimal NADPH oxidase and peroxidase activities, respectively. These rather normoergic changes, linked to the NO message, were mediated by the temporary down-regulation of S-nitrosoglutathione reductase (GSNOR). In turn, after challenge inoculation signal amplification promoted potato resistance manifested in the up-regulation of GSNOR activity tuned with the depletion of the SNO pool, which was observed by our team earlier (Floryszak-Wieczorek et al., 2012). Moreover, hyperergic defense responses related to an early and rapid O2(-)and H2O2 overproduction together with a temporary increase in NADPH oxidase and peroxidase activities were noted. BABA treatment was the most effective against P. infestans resulting in the enhanced activity of β-1,3-glucanase and callose deposition. Our results indicate that NO-mediated biochemical modifications might play an important role in creating more potent defense responses of potato to a subsequent P. infestans attack.

  2. Novel oxime-bearing coumarin derivatives act as potent Nrf2/ARE activators in vitro and in mouse model. (United States)

    Chang, Ken-Ming; Chen, Huang-Hui; Wang, Tai-Chi; Chen, I-Li; Chen, Yu-Tsen; Yang, Shyh-Chyun; Chen, Yeh-Long; Chang, Hsin-Huei; Huang, Chih-Hsiang; Chang, Jang-Yang; Shih, Chuan; Kuo, Ching-Chuan; Tzeng, Cherng-Chyi


    We have designed and synthesized certain novel oxime- and amide-bearing coumarin derivatives as nuclear factor erythroid 2 p45-related factor 2 (Nrf2) activators. The potency of these compounds was measured by antioxidant responsive element (ARE)-driven luciferase activity, level of Nrf2-related cytoprotective genes and proteins, and antioxidant activity. Among them, (Z)-3-(2-(hydroxyimino)-2-phenylethoxy)-2H-chromen-2-one (17a) was the most active, and more potent than the positive t-BHQ in the induction of ARE-driven luciferase activity. Exposure of HSC-3 cells to various concentrations of 17a strongly increased Nrf2 nuclear translocation and the expression level of Nrf2-mediated cytoprotective proteins in a concentration-dependent manner. HSC-3 cells pretreated with 17a significantly reduced t-BOOH-induced oxidative stress. In the animal experiment, Nrf2-mediated cytoprotective proteins, such as aldo-keto reductase 1 subunit C-1 (AKR1C1), glutathione reductase (GR), and heme oxygenase (HO-1), were obviously elevated in the liver of 17a-treated mice than that of control. These results suggested that novel oxime-bearing coumarin 17a is able to activate Nrf2/ARE pathway in vivo and are therefore seen as a promising candidate for further investigation.

  3. Potent cytotoxic effects of Calomeria amaranthoides on ovarian cancers

    Directory of Open Access Journals (Sweden)

    van Haard Paul MM


    different, P = 0.13. Conclusions For the first time both crude plant extract from Calomeria amaranthoides and EPD have been shown to have potent anti-cancer effects against ovarian cancer.

  4. Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear Dorsal levels during Drosophila embryogenesis

    DEFF Research Database (Denmark)

    DeLotto, Robert; DeLotto, Yvonne; Steward, Ruth


    , including nuclei on the dorsal side. Nuclear export is blocked by leptomycin B, a potent inhibitor of Exportin 1 (CRM1)-mediated nuclear export. We have developed a novel in vivo assay revealing the presence of a functional leucine-rich nuclear export signal within the carboxyterminal 44 amino acids...

  5. Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA)

    DEFF Research Database (Denmark)

    Vollmer, Jörg; Jepsen, Jan Stenvang; Uhlmann, Eugen


    Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have...

  6. Nanomedicine as a potent strategy in melanoma tumor microenvironment. (United States)

    Pautu, Vincent; Leonetti, Daniela; Lepeltier, Elise; Clere, Nicolas; Passirani, Catherine


    Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.

  7. Interleukin-27 is a potent inhibitor of cis HIV-1 replication in monocyte-derived dendritic cells via a type I interferon-independent pathway.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available IL-27, a member of the IL-12 family of cytokines, plays an important and diverse role in the function of the immune system. Whilst generally recognized as an anti-inflammatory cytokine, in addition IL-27 has been found to have broad anti-viral effects. Recently, IL-27 has been shown to be a potent inhibitor of HIV-1 infection in CD4+ T cells and macrophages. The main objective of this study was to see whether IL-27 has a similar inhibitory effect on HIV-1 replication in dendritic cells (DCs. Monocytes were differentiated into immature DCs (iDCs and mature DCs (mDCs with standard techniques using a combination of GM-CSF, IL-4 and LPS. Following differentiation, iDCs were infected with HIV-1 and co-cultured in the presence or absence of IL-27. IL-27 treated DCs were shown to be highly potent inhibitors of cis HIV-1, particularly of CCR5 tropic strains. Of note, other IL-12 family members (IL-12, IL-23 and IL-35 had no effect on HIV-1 replication. Microarray studies of IL-27 treated DCs showed no up-regulation of Type I (IFN gene expression. Neutralization of the Type-I IFN receptor had no impact on the HIV inhibition. Lastly, IL-27 mediated inhibition was shown to act post-viral entry and prior to completion of reverse transcription. These results show for the first time that IL-27 is a potent inhibitor of cis HIV-1 infection in DCs by a Type I IFN independent mechanism. IL-27 has previously been reported to inhibit HIV-1 replication in CD4+ T cells and macrophages, thus taken together, this cytokine is a potent anti-HIV agent against all major cell types targeted by the HIV-1 virus and may have a therapeutic role in the future.

  8. VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune disease. (United States)

    Mahajan, Sudipta; Hogan, James K; Shlyakhter, Dina; Oh, Luke; Salituro, Francesco G; Farmer, Luc; Hoock, Thomas C


    Cytokines, growth factors, and other chemical messengers rely on a class of intracellular nonreceptor tyrosine kinases known as Janus kinases (JAKs) to rapidly transduce intracellular signals. A number of these cytokines are critical for lymphocyte development and mediating immune responses. JAK3 is of particular interest due to its importance in immune function and its expression, which is largely confined to lymphocytes, thus limiting the potential impact of JAK3 inhibition on nonimmune physiology. The aim of this study was to evaluate the potency and selectivity of the investigational JAK3 inhibitor VX-509 (decernotinib) [(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide] against JAK3 kinase activity and inhibition of JAK3-mediated signaling in vitro and JAK3-dependent physiologic processes in vivo. These results demonstrate that VX-509 potently inhibits JAK3 in enzyme assays (Ki = 2.5 nM + 0.7 nM) and cellular assays dependent on JAK3 activity (IC50 range, 50-170 nM), with limited or no measurable potency against other JAK isotypes or non-JAK kinases. VX-509 also showed activity in two animal models of aberrant immune function. VX-509 treatment resulted in dose-dependent reduction in ankle swelling and paw weight and improved paw histopathology scores in the rat collagen-induced arthritis model. In a mouse model of oxazolone-induced delayed-type hypersensitivity, VX-509 reduced the T cell-mediated inflammatory response in skin. These findings demonstrate that VX-509 is a selective and potent inhibitor of JAK3 in vitro and modulates proinflammatory response in models of immune-mediated diseases, such as collagen-induced arthritis and delayed-type hypersensitivity. The data support evaluation of VX-509 for treatment of patients with autoimmune and inflammatory diseases such as rheumatoid arthritis.

  9. Rational Design of Benzylidenehydrazinyl-Substituted Thiazole Derivatives as Potent Inhibitors of Human Dihydroorotate Dehydrogenase with in Vivo Anti-arthritic Activity (United States)

    Li, Shiliang; Luan, Guoqin; Ren, Xiaoli; Song, Wenlin; Xu, Liuxin; Xu, Minghao; Zhu, Junsheng; Dong, Dong; Diao, Yanyan; Liu, Xiaofeng; Zhu, Lili; Wang, Rui; Zhao, Zhenjiang; Xu, Yufang; Li, Honglin


    Human dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 were the most potent with IC50 values in the double-digit nanomolar range. Moreover, compound 19 displayed significant anti-arthritic effects and favorable pharmacokinetic profiles in vivo. Further X-ray structure and SAR analyses revealed that the potencies of the designed inhibitors were partly attributable to additional water-mediated hydrogen bond networks formed by an unexpected buried water between hDHODH and the 2-(2-methylenehydrazinyl)thiazole scaffold. This work not only elucidates promising scaffolds targeting hDHODH for the treatment of rheumatoid arthritis, but also demonstrates that the water-mediated hydrogen bond interaction is an important factor in molecular design and optimization. PMID:26443076

  10. Mediating the potent ROS toxicity of acrolein in neurons with silica nanoparticles and a natural product approach (United States)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.


    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDAapproved hypotensive drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica particles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The current work exposes the potential of using silica nanoparticles as a delivery vehicle and EGCG's antioxidant capabilities in B35 neuroblastoma cells exposed to acrolein. We also measure nanotoxicity to individual rat neurons using high-throughput image scanning cytometry.

  11. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. (United States)

    Jaganathan, Anitha; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Dinesh, Devakumar; Vadivalagan, Chithravel; Aziz, Al Thabiani; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Subramaniam, Jayapal; Nicoletti, Marcello; Higuchi, Akon; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh; Benelli, Giovanni


    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.

  12. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice. (United States)

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru


    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice.

  13. A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor expressing tumor cells. (United States)

    Wykosky, Jill; Gibo, Denise M; Debinski, Waldemar


    We have previously shown that the EphA2 receptor tyrosine kinase is overexpressed in glioblastoma multiforme (GBM) and represents a novel, attractive therapeutic target for the treatment of brain tumors. Here, we have developed an EphA2-targeted agent, ephrinA1-PE38QQR, a novel cytotoxin composed of ephrinA1, a ligand for EphA2, and PE38QQR, a mutated form of Pseudomonas aeruginosa exotoxin A. EphrinA1-PE38QQR showed potent and dose-dependent killing of GBM cells overexpressing the EphA2 receptor in cell viability and clonogenic survival assays, with an average IC(50) of approximately 10(-11) mol/L. The conjugate was also highly effective in killing breast and prostate cancer cells overexpressing EphA2. The cytotoxic effect of ephrinA1-PE38QQR was specific, as it was neutralized by an excess of EphA2 ligands. Moreover, normal human endothelial cells and breast cancer cells that do not overexpress EphA2, as well as GBM cells that have down-regulated EphA2, were not susceptible to the cytotoxin. EphrinA1-PE38QQR-mediated cytotoxicity induced caspase-dependent apoptosis, which was, however, not responsible for cell death in response to the conjugate. In addition, the conjugate elicited no changes in the activity of survival pathways such as phosphoinositide 3-kinase, measured by AKT phosphorylation. This is the first attempt to create a cytotoxic therapy using any of the ephrin ligands of either class (A or B) conjugated to a bacterial toxin. EphrinA1-PE38QQR is very potent and specific, produces cell death that is caspase independent, and forms the basis for the further development of clinically applicable EphA2-targeted cytotoxins.

  14. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. (United States)

    Lefrançais, Emma; Duval, Anais; Mirey, Emilie; Roga, Stéphane; Espinosa, Eric; Cayrol, Corinne; Girard, Jean-Philippe


    Interleukin-33 (IL-33) is an alarmin cytokine from the IL-1 family. IL-33 activates many immune cell types expressing the interleukin 1 receptor-like 1 (IL1RL1) receptor ST2, including group-2 innate lymphoid cells (ILC2s, natural helper cells, nuocytes), the major producers of IL-5 and IL-13 during type-2 innate immune responses and allergic airway inflammation. IL-33 is likely to play a critical role in asthma because the IL33 and ST2/IL1RL1 genes have been reproducibly identified as major susceptibility loci in large-scale genome-wide association studies. A better understanding of the mechanisms regulating IL-33 activity is thus urgently needed. Here, we investigated the role of mast cells, critical effector cells in allergic disorders, known to interact with ILC2s in vivo. We found that serine proteases secreted by activated mast cells (chymase and tryptase) generate mature forms of IL-33 with potent activity on ILC2s. The major forms produced by mast cell proteases, IL-33(95-270), IL-33(107-270), and IL-33(109-270), were 30-fold more potent than full-length human IL-33(1-270) for activation of ILC2s ex vivo. They induced a strong expansion of ILC2s and eosinophils in vivo, associated with elevated concentrations of IL-5 and IL-13. Murine IL-33 is also cleaved by mast cell tryptase, and a tryptase inhibitor reduced IL-33-dependent allergic airway inflammation in vivo. Our study identifies the central cleavage/activation domain of IL-33 (amino acids 66-111) as an important functional domain of the protein and suggests that interference with IL-33 cleavage and activation by mast cell and other inflammatory proteases could be useful to reduce IL-33-mediated responses in allergic asthma and other inflammatory diseases.

  15. Total synthesis of a potent hybrid of the anticancer natural products dictyostatin and discodermolide. (United States)

    Paterson, Ian; Naylor, Guy J; Wright, Amy E


    A potent dictyostatin-discodermolide hybrid was designed and synthesised; it showed enhanced cell growth inhibitory activity relative to discodermolide in four human cancer cell lines including the Taxol-resistant NCI/ADR-Res cell line.

  16. A concise total synthesis of (R)-fluoxetine, a potent and selective serotonin reuptake inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fatima, Angelo de; Lapis, Alexandre Augusto M.; Pilli, Ronaldo A. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail:


    (R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka's catalyst. (author)

  17. Structure-based virtual screening campaigns on curcuminoids as potent ligands for histone deacetylase-2

    Directory of Open Access Journals (Sweden)

    Enade Perdana Istyastono


    Full Text Available Curcumin was reported to reverse the decrease in histone deacetylase-2 (HDAC2 protein expression in inflammatory diseases of the lung, including chronic obstructive pulmonary disease (COPD, severe asthma, and asthma in smokers. This indicates that curcumin is a potent ligand for HDAC2. The construction and retrospective validation of a structure-based virtual screening (SBVS protocol to identify potent ligands for HDAC2 are presented in this article. The validated protocol was subsequently employed to screen curcumin and other curcuminoids found in Curcuma longa, i.e. demethoxy curcumin and bis-demethoxy curcumin, and to examine their interactions to HDAC2 in the atomic level. The results show that curcumin, demethoxy curcumin and bis-demethoxy curcumin are potent HDAC2 ligands. The insights from their interactions to HDAC2 resulted from the molecular docking simulations presented in this article could be employed further in the design and discovery potent HDAC2 ligands.

  18. Fungal mediator tail subunits contain classical transcriptional activation domains. (United States)

    Liu, Zhongle; Myers, Lawrence C


    Classical activation domains within DNA-bound eukaryotic transcription factors make weak interactions with coactivator complexes, such as Mediator, to stimulate transcription. How these interactions stimulate transcription, however, is unknown. The activation of reporter genes by artificial fusion of Mediator subunits to DNA binding domains that bind to their promoters has been cited as evidence that the primary role of activators is simply to recruit Mediator. We have identified potent classical transcriptional activation domains in the C termini of several tail module subunits of Saccharomyces cerevisiae, Candida albicans, and Candida dubliniensis Mediator, while their N-terminal domains are necessary and sufficient for their incorporation into Mediator but do not possess the ability to activate transcription when fused to a DNA binding domain. This suggests that Mediator fusion proteins actually are functioning in a manner similar to that of a classical DNA-bound activator rather than just recruiting Mediator. Our finding that deletion of the activation domains of S. cerevisiae Med2 and Med3, as well as C. dubliniensis Tlo1 (a Med2 ortholog), impairs the induction of certain genes shows these domains function at native promoters. Activation domains within coactivators are likely an important feature of these complexes and one that may have been uniquely leveraged by a common fungal pathogen.

  19. Effects of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. (United States)

    Soriano, Francisco Garcia; Lorigados, Clara Batista; Pacher, Pal; Szabó, Csaba


    Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether)pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-α, IL-1β, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological

  20. Cellular redox status determines sensitivity to BNIP3-mediated cell death in cardiac myocytes


    Lee, Youngil; Kubli, Dieter A.; Hanna, Rita A.; Cortez, Melissa Q.; Lee, Hwa-Youn; Miyamoto, Shigeki; Gustafsson, Åsa B.


    The atypical BH3-only protein Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is an important regulator of hypoxia-mediated cell death. Interestingly, the susceptibility to BNIP3-mediated cell death differs between cells. In this study we examined whether there are mechanistic differences in BNIP3-mediated cell death between neonatal and adult cardiac myocytes. We discovered that BNIP3 is a potent inducer of cell death in neonatal myocytes, whereas adult myocytes are remarkably resi...

  1. mediation: R Package for Causal Mediation Analysis

    Directory of Open Access Journals (Sweden)

    Dustin Tingley


    Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.

  2. Bayesian Mediation Analysis (United States)

    Yuan, Ying; MacKinnon, David P.


    In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…

  3. Mediation as Signal

    NARCIS (Netherlands)

    Holler, M.J.; Lindner, I.


    This paper analyzes mediation as a signal. Starting from a stylized case, a game theoretical model of one-sided incomplete information, taken from Cho and Kreps (1987), is applied to discuss strategic effects of mediation. It turns out that to reject mediation can be interpreted as a ”negative signa

  4. S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and L-type calcium channel-dependent mechanism. (United States)

    Liu, Taiming; Schroeder, Hobe J; Zhang, Meijuan; Wilson, Sean M; Terry, Michael H; Longo, Lawrence D; Power, Gordon G; Blood, Arlin B


    S-nitrosothiols (SNOs) are metabolites of NO with potent vasodilatory activity. Our previous studies in sheep indicated that intra-arterially infused SNOs dilate the mesenteric vasculature more than the femoral vasculature. We hypothesized that the mesenteric artery is more responsive to SNO-mediated vasodilation, and investigated various steps along the NO/cGMP pathway to determine the mechanism for this difference. In anesthetized adult sheep, we monitored the conductance of mesenteric and femoral arteries during infusion of S-nitroso-l-cysteine (L-cysNO), and found mesenteric vascular conductance increased (137 ± 3%) significantly more than femoral conductance (26 ± 25%). Similar results were found in wire myography studies of isolated sheep mesenteric and femoral arteries. Vasodilation by SNOs was attenuated in both vessel types by the presence of ODQ (sGC inhibitor), and both YC-1 (sGC agonist) and 8-Br-cGMP (cGMP analog) mediated more potent relaxation in mesenteric arteries than femoral arteries. The vasodilatory difference between mesenteric and femoral arteries was eliminated by antagonists of either protein kinase G or L-type Ca(2+) channels. Western immunoblots showed a larger L-type Ca(2+)/sGC abundance ratio in mesenteric arteries than in femoral arteries. Fetal sheep mesenteric arteries were more responsive to SNOs than adult mesenteric arteries, and had a greater L-Ca(2+)/sGC ratio (p = 0.047 and r = -0.906 for correlation between Emax and L-Ca(2+)/sGC). These results suggest that mesenteric arteries, especially those in fetus, are more responsive to SNO-mediated vasodilation than femoral arteries due to a greater role of the L-type calcium channel in the NO/cGMP pathway.

  5. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. (United States)

    Zhao, Genshi; Li, Wei-Ying; Chen, Daohong; Henry, James R; Li, Hong-Yu; Chen, Zhaogen; Zia-Ebrahimi, Mohammad; Bloem, Laura; Zhai, Yan; Huss, Karen; Peng, Sheng-Bin; McCann, Denis J


    The fibroblast growth factor receptors (FGFR) are tyrosine kinases that are present in many types of endothelial and tumor cells and play an important role in tumor cell growth, survival, and migration as well as in maintaining tumor angiogenesis. Overexpression of FGFRs or aberrant regulation of their activities has been implicated in many forms of human malignancies. Therefore, targeting FGFRs represents an attractive strategy for development of cancer treatment options by simultaneously inhibiting tumor cell growth, survival, and migration as well as tumor angiogenesis. Here, we describe a potent, selective, small-molecule FGFR inhibitor, (R)-(E)-2-(4-(2-(5-(1-(3,5-Dichloropyridin-4-yl)ethoxy)-1H-indazol-3yl)vinyl)-1H-pyrazol-1-yl)ethanol, designated as LY2874455. This molecule is active against all 4 FGFRs, with a similar potency in biochemical assays. It exhibits a potent activity against FGF/FGFR-mediated signaling in several cancer cell lines and shows an excellent broad spectrum of antitumor activity in several tumor xenograft models representing the major FGF/FGFR relevant tumor histologies including lung, gastric, and bladder cancers and multiple myeloma, and with a well-defined pharmacokinetic/pharmacodynamic relationship. LY2874455 also exhibits a 6- to 9-fold in vitro and in vivo selectivity on inhibition of FGF- over VEGF-mediated target signaling in mice. Furthermore, LY2874455 did not show VEGF receptor 2-mediated toxicities such as hypertension at efficacious doses. Currently, this molecule is being evaluated for its potential use in the clinic.

  6. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. (United States)

    Balboni, Gianfranco; Guerrini, Remo; Salvadori, Severo; Bianchi, Clementina; Rizzi, Daniela; Bryant, Sharon D; Lazarus, Lawrence H


    Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.

  7. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Runming Li

    Full Text Available The influenza glycoprotein hemagglutinin (HA plays crucial roles in the early stage of virus infection, including receptor binding and membrane fusion. Therefore, HA is a potential target for developing anti-influenza drugs. Recently, we characterized a novel inhibitor of highly pathogenic H5N1 influenza virus, CL-385319, which specifically inhibits HA-mediated viral entry. Studies presented here identified the critical binding residues for CL-385319, which clustered in the stem region of the HA trimer by site-directed mutagenesis. Extensive computational simulations, including molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM_GBSA calculations, charge density and Laplacian calculations, have been carried out to uncover the detailed molecular mechanism that underlies the binding of CL-385319 to H5N1 influenza virus HA. It was found that the recognition and binding of CL-385319 to HA proceeds by a process of "induced fit" whereby the binding pocket is formed during their interaction. Occupation of this pocket by CL-385319 stabilizes the neutral pH structure of hemagglutinin, thus inhibiting the conformational rearrangements required for membrane fusion. This "induced fit" pocket may be a target for structure-based design of more potent influenza fusion inhibitors.

  8. Identification of green tea catechins as potent inhibitors of the polo-box domain of polo-like kinase 1. (United States)

    Shan, Hong-Mei; Shi, Yanxia; Quan, Junmin


    Polo-like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N-terminal kinase domain and C-terminal polo-box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (-)-epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein-labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose-dependent inhibition of the PBD and preliminary structure-activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell-cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.

  9. Bioactivity-guided fractionation identifies amygdalin as a potent neurotrophic agent from herbal medicine Semen Persicae extract. (United States)

    Yang, Chuanbin; Zhao, Jia; Cheng, Yuanyuan; Li, Xuechen; Rong, Jianhui


    Herbal medicine Semen Persicae is widely used to treat blood stasis in Chinese medicine and other oriental folk medicines. Although little is known about the effects of Semen Persicae and its active compounds on neuron differentiation, our pilot study showed that Semen Persicae extract promoted neurite outgrowth in rat dopaminergic PC12 cells. In the present study, we developed a bioactivity-guided fractionation procedure for the characterization of the neurotrophic activity of Semen Persicae extract. The resultant fractions were assayed for neurite outgrowth in PC12 cells based on microscopic assessment. Through liquid-liquid extraction and reverse phase HPLC separation, a botanical glycoside amygdalin was isolated as the active compound responsible for the neurotrophic activity of Semen Persicae extract. Moreover, we found that amygdalin rapidly induced the activation of extracellular-signal-regulated kinase 1/2 (ERK1/2). A specific ERK1/2 inhibitor PD98059 attenuated the stimulatory effect of amygdalin on neurite outgrowth. Taken together, amygdalin was identified as a potent neurotrophic agent from Semen Persicae extract through a bioactivity-guided fractional procedure. The neurotrophic activity of amygdalin may be mediated by the activation of ERK1/2 pathway.

  10. Bioactivity-Guided Fractionation Identifies Amygdalin as a Potent Neurotrophic Agent from Herbal Medicine Semen Persicae Extract

    Directory of Open Access Journals (Sweden)

    Chuanbin Yang


    Full Text Available Herbal medicine Semen Persicae is widely used to treat blood stasis in Chinese medicine and other oriental folk medicines. Although little is known about the effects of Semen Persicae and its active compounds on neuron differentiation, our pilot study showed that Semen Persicae extract promoted neurite outgrowth in rat dopaminergic PC12 cells. In the present study, we developed a bioactivity-guided fractionation procedure for the characterization of the neurotrophic activity of Semen Persicae extract. The resultant fractions were assayed for neurite outgrowth in PC12 cells based on microscopic assessment. Through liquid-liquid extraction and reverse phase HPLC separation, a botanical glycoside amygdalin was isolated as the active compound responsible for the neurotrophic activity of Semen Persicae extract. Moreover, we found that amygdalin rapidly induced the activation of extracellular-signal-regulated kinase 1/2 (ERK1/2. A specific ERK1/2 inhibitor PD98059 attenuated the stimulatory effect of amygdalin on neurite outgrowth. Taken together, amygdalin was identified as a potent neurotrophic agent from Semen Persicae extract through a bioactivity-guided fractional procedure. The neurotrophic activity of amygdalin may be mediated by the activation of ERK1/2 pathway.

  11. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. (United States)

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N


    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent.

  12. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity (United States)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei


    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency. PMID:26508306

  13. Drosophila Bruce can potently suppress Rpr- and Grim-dependent but not Hid-dependent cell death. (United States)

    Vernooy, Stephanie Y; Chow, Vivian; Su, Julius; Verbrugghe, Koen; Yang, Jennifer; Cole, Susannah; Olson, Michael R; Hay, Bruce A


    Bruce is a large protein (530 kDa) that contains an N-terminal baculovirus IAP repeat (BIR) and a C-terminal ubiquitin conjugation domain (E2). BRUCE upregulation occurs in some cancers and contributes to the resistance of these cells to DNA-damaging chemotherapeutic drugs. However, it is still unknown whether Bruce inhibits apoptosis directly or instead plays some other more indirect role in mediating chemoresistance, perhaps by promoting drug export, decreasing the efficacy of DNA damage-dependent cell death signaling, or by promoting DNA repair. Here, we demonstrate, using gain-of-function and deletion alleles, that Drosophila Bruce (dBruce) can potently inhibit cell death induced by the essential Drosophila cell death activators Reaper (Rpr) and Grim but not Head involution defective (Hid). The dBruce BIR domain is not sufficient for this activity, and the E2 domain is likely required. dBruce does not promote Rpr or Grim degradation directly, but its antiapoptotic actions do require that their N termini, required for interaction with DIAP1 BIR2, be intact. dBruce does not block the activity of the apical cell death caspase Dronc or the proapoptotic Bcl-2 family member Debcl/Drob-1/dBorg-1/Dbok. Together, these results argue that dBruce can regulate cell death at a novel point.

  14. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma. (United States)

    Molavi, Ommoleila; Samadi, Nasser; Wu, Chengsheng; Lavasanifar, Afsaneh; Lai, Raymond


    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.

  15. Carbon Nanofibers Have IgE Adjuvant Capacity but Are Less Potent Than Nanotubes in Promoting Allergic Airway Responses

    Directory of Open Access Journals (Sweden)

    Unni Cecilie Nygaard


    Full Text Available There is a growing concern for the possible health impact of nanoparticles. The main objective of this study was to investigate the allergy-promoting capacity of four different carbon nanofiber (CNF samples in an injection and an airway mouse model of allergy. Secondly, the potency of the CNF was compared to the previously reported allergy-promoting capacity of carbon nanotubes (CNT in the airway model. Ultrafine carbon black particles (ufCBP were used as a positive control. Particles were given together with the allergen ovalbumin (OVA either by subcutaneous injection into the footpad or intranasally to BALB/cA mice. After allergen booster, OVA-specific IgE, IgG1, and IgG2a in serum were measured. In the airway model, inflammation was determined as influx of inflammatory cells (eosinophils, neutrophils, lymphocytes, and macrophages and by mediators (MCP-1 and TNF-α present in bronchoalveolar fluid (BALF. CNF and CNT both increased OVA-specific IgE levels in the two models, but in the airway model, the CNT gave a significantly stronger IgE response than the CNF. Furthermore, the CNT and not the CNF promoted eosinophil lung inflammation. Our data therefore suggest that nanotube-associated properties are particularly potent in promoting allergic responses.

  16. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation (United States)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.


    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  17. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib. (United States)

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S


    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8(+) T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  18. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2

    NARCIS (Netherlands)

    Zanden, J.J. van; Wortelboer, H.M.; Bijlsma, S.; Punt, A.; Usta, M.; Bladeren, P.J.V.; Rietjens, I.M.C.M.; Cnubben, N.H.P.


    In the present study, the effects of a large series of flavonoids on multidrug resistance proteins (MRPs) were studied in MRP1 and MRP2 transfected MDCKII cells. The results were used to define the structural requirements of flavonoids necessary for potent inhibition of MRP1- and MRP2-mediated calce

  19. Type and location of fluorescent probes incorporated into the potent mu-opioid peptide [Dmt]DALDA affect potency, receptor selectivity and intrinsic efficacy. (United States)

    Schiller, P W; Berezowska, I; Weltrowska, G; Chen, H; Lemieux, C; Chung, N N


    The dermorphin-derived tetrapeptide H-Dmt-d-Arg-Phe-Lys-NH(2) (Dmt = 2',6'-dimethyltyrosine) ([Dmt(1)]DALDA) is a highly potent and selective mu-opioid agonist capable of crossing the blood-brain barrier and producing a potent, centrally mediated analgesic effect when given systemically. For the purpose of biodistribution studies by fluorescence techniques, [Dmt(1)]DALDA analogues containing various fluorescent labels [dansyl, anthraniloyl (atn), fluorescein, or 6-dimethylamino-2'-naphthoyl] in several different locations of the peptide were synthesized and characterized in vitro in the guinea-pig ileum and mouse vas deferens assays, and in mu-, delta- and kappa-opioid receptor-binding assays. The analogues showed various degrees of mu receptor-binding selectivity, but all of them were less mu-selective than the [Dmt(1)]DALDA parent peptide. Most analogues retained potent, full mu-agonist activity, except for one with fluorescein attached at the C-terminus (3a) (partial mu-agonist) and one containing beta-(6'-dimethylamino-2'-naphthoyl)alanine (aladan) in place of Phe(3) (4) (mu- and kappa-antagonist). The obtained data indicate that the receptor-binding affinity, receptor selectivity and intrinsic efficacy of the prepared analogues vary very significantly, depending on the type of fluorescent label used and on its location in the peptide. The results suggest that the biological activity profile of fluorescence-labeled peptide analogues should always be carefully determined prior to their use in biodistribution studies or other studies. One of the analogues containing the atn group (2a) proved highly useful in a study of cellular uptake and intracellular distribution by confocal laser scanning microscopy.

  20. Potent antigen-specific immune response induced by infusion of spleen cells coupled with succinimidyl-4-(N-maleimidomethyl cyclohexane)-1-carboxylate (SMCC) conjugated antigens. (United States)

    Guo, Yixian; Werbel, Tyler; Wan, Suigui; Wu, Haitao; Li, Yaohua; Clare-Salzler, Michael; Xia, Chang-Qing


    In the present study, we report our recently developed new approach to inducing antigen-specific immune response. We use two nucleophilic substitution "click" chemistry processes to successfully couple protein antigens or peptides to mouse spleen cells or T cells by a heterobifunctional crosslinker, succinimidyl-4-(N-maleimidomethyl cyclohexane)-1-carboxylate (SMCC) or sulfo-SMCC. SMCC and its water-soluble analog sulfo-SMCC contain N-hydroxysuccinimide (NHS) ester and maleimide groups, which allow stable covalent conjugation of amine- and sulfhydryl-containing molecules in trans. Protein coupling to cells relies on the free sulfhydryls (thiols) on cell surfaces and the free amines on protein antigens. Although the amount of protein coupled to cells is limited due to the limited number of cell surface thiols, the injection of spleen cells coupled with antigenic proteins, such as keyhole limpet hemocyanin (KLH) or ovalbumin (OVA), induces a potent antigen-specific immune response in vivo, which is even stronger than that induced by the injection of a large dose of protein plus adjuvants. In addition, short peptides coupled to purified splenic T cells also potently elicit peptide-specific T cell proliferation in vivo after injection. Further studies show that antigen-coupled spleen cell treatment leads to augmented IFN-γ-producing T cells. Our study provides a unique antigen delivery method that efficiently distributes antigen to the entire immune system, subsequently eliciting a potent antigen-specific immune response with enhanced IFN-γ production. The findings in the present study suggest that this antigen-cell coupling strategy could be employed in immunotherapy for cancers, infectious diseases as well as immune-mediated disorders.

  1. Thioester derivatives of the natural product psammaplin A as potent histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Matthias G. J. Baud


    Full Text Available There has been significant interest in the bioactivity of the natural product psammaplin A, most recently as a potent and isoform selective HDAC inhibitor. Here we report our preliminary studies on thioester HDAC inhibitors derived from the active monomeric (thiol form of psammaplin A, as a means to improve compound delivery into cells. We have discovered that such compounds exhibit both potent cytotoxicity and enzymatic inhibitory activity against recombinant HDAC1. The latter effect is surprising since previous SAR suggested that modification of the thiol functionality should detrimentally affect HDAC potency. We therefore also report our preliminary studies on the mechanism of action of this observed effect.

  2. Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity. (United States)

    Tao, Zhi-Fu; Hasvold, Lisa; Wang, Le; Wang, Xilu; Petros, Andrew M; Park, Chang H; Boghaert, Erwin R; Catron, Nathaniel D; Chen, Jun; Colman, Peter M; Czabotar, Peter E; Deshayes, Kurt; Fairbrother, Wayne J; Flygare, John A; Hymowitz, Sarah G; Jin, Sha; Judge, Russell A; Koehler, Michael F T; Kovar, Peter J; Lessene, Guillaume; Mitten, Michael J; Ndubaku, Chudi O; Nimmer, Paul; Purkey, Hans E; Oleksijew, Anatol; Phillips, Darren C; Sleebs, Brad E; Smith, Brian J; Smith, Morey L; Tahir, Stephen K; Watson, Keith G; Xiao, Yu; Xue, John; Zhang, Haichao; Zobel, Kerry; Rosenberg, Saul H; Tse, Chris; Leverson, Joel D; Elmore, Steven W; Souers, Andrew J


    A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses. A-1155463 thus represents an excellent tool molecule for studying BCL-XL biology as well as a productive lead structure for further optimization.

  3. Synthesis and structure-activity relationships of potent 4-fluoro-2-cyanopyrrolidine dipeptidyl peptidase IV inhibitors. (United States)

    Fukushima, Hiroshi; Hiratate, Akira; Takahashi, Masato; Mikami, Ayako; Saito-Hori, Masako; Munetomo, Eiji; Kitano, Kiyokazu; Chonan, Sumi; Saito, Hidetaka; Suzuki, Akio; Takaoka, Yuji; Yamamoto, Koji


    Dipeptidyl peptidase IV (DPP-IV) inhibitors are promising antidiabetic drugs, and several drugs are in the developmental stage. We previously reported that the introduction of fluorine to the 4-position of 2-cyanopyrrolidine enhanced the DPP-IV inhibitory effect. In the present report, we examined the structure-activity relationship (SAR) of 2-cyano-4-fluoropyrrolidine with N-substituted glycine at the 1-position. We report the identification of a potent and stable DPP-IV inhibitor (TS-021) with a long-term persistent plasma drug concentration and a potent antihyperglycemic activity.

  4. Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity. (United States)

    Naureen, Sadia; Chaudhry, Faryal; Asif, Nadia; Munawar, Munawar Ali; Ashraf, Muhammad; Nasim, Faizul Hassan; Arshad, Humera; Khan, Misbahul Ain


    A series of tetraarylimidazoles (5A-5O) were prepared by one pot four component condensation reactions of 2-arylindole-3-carbaldehydes, substituted anilines, benzil and ammonium acetate in acetic acid. The synthesized compounds exhibited potent antiurease activity with IC50 values ranging from 0.12 ± 0.06 μM to 29.12 ± 0.18 μM as compared with thiourea. However, low inhibition profiles were observed for lipoxygenase. The data show that tetraarylimidazoles containing a substituted 2-penylindole have emerged as a new class of potent inhibitors of urease enzyme.

  5. Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dai-Shi; Lim, John J.; Tinney, Elizabeth; Wan, Bang-Lin; Young, Mary Beth; Anderson, Kenneth D.; Rudd, Deanne; Munshi, Vandna; Bahnck, Carolyn; Felock, Peter J.; Lu, Meiqing; Lai, Ming-Tain; Touch, Sinoeun; Moyer, Gregory; DiStefano, Daniel J.; Flynn, Jessica A.; Liang, Yuexia; Sanchez, Rosa; Prasad, Sridhar; Yan, Youwei; Perlow-Poehnelt, Rebecca; Torrent, Maricel; Miller, Mike; Vacca, Joe P.; Williams, Theresa M.; Anthony, Neville J.; Merck


    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.

  6. Technology-Use Mediation

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.


    This study analyzes how a group of ‘mediators’ in a large, multinational company adapted a computer-mediated communication technology (a ‘virtual workspace’) to the organizational context (and vice versa) by modifying features of the technology, providing ongoing support for users, and promoting...... of technology-use mediation is more complex and indeterminate than earlier literature suggests. In particular, we want to draw attention to the fact that advanced computer-mediated communication technologies are equivocal and that technology-use mediation consequently requires ongoing sensemaking (Weick 1995)....... appropriate conventions of use. Our findings corroborate earlier research on technology-use mediation, which suggests that such mediators can exert considerable influence on how a particular technology will be established and used in an organization. However, this study also indicates that the process...

  7. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis. (United States)

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong


    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.

  8. Pyrrocidine A, a metabolite of endophytic fungi, has a potent apoptosis-inducing activity against HL60 cells through caspase activation via the Michael addition. (United States)

    Uesugi, Shota; Fujisawa, Nozomi; Yoshida, Jun; Watanabe, Mitsuru; Dan, Shingo; Yamori, Takao; Shiono, Yoshihito; Kimura, Ken-ichi


    Pyrrocidine A is a known antimicrobial compound produced by endophytic fungi and has a unique 13-membered macrocyclic alkaloid structure with an α,β-unsaturated carbonyl group. We have previously reported that pyrrocidine A shows potent cytotoxicity against human acute promyelocytic leukemia HL60 cells, and the activity is 70-fold higher than that of pyrrocidine B which is the analog lacking the α,β-unsaturated carbonyl group. Pyrrocidine A induced nuclear condensation, DNA fragmentation and caspase activation in HL60 cells. Since the DNA fragmentation was suppressed by pretreatment with the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-fmk), caspase-mediated apoptosis contributes to pyrrocidine A-induced cytotoxicity. JFCR39 human cancer cells panel indicated that the mechanism of action of pyrrocidine A is different from other clinical anticancer drugs, and this compound broadly inhibited the growth of various cancer cell lines. The apoptosis induction by pyrrocidine A was suppressed by both N-acetyl-l-cysteine (NAC) and glutathione, both of which are thiol-containing antioxidants. Furthermore, pyrrocidine A directly bound to N-acetyl-l-cysteine methyl ester (NACM) through the Michael-type addition at the α,β-unsaturated carbonyl group and was detected by HPLC and liquid chromatography-ESI-tandem MS (LC-ESI-MS/MS) analyses. This indicates that this moiety is crucial for the potent apoptosis-inducing activity of pyrrocidine A.

  9. Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish. (United States)

    Jin, Seori; Cho, Kyung-Hyun


    Advanced glycation end products contribute to the pathogenesis of diabetic complications and atherosclerosis. Aqueous extracts of ground pepper, cinnamon, rosemary, ginger, and clove were analyzed and tested for anti-atherosclerotic activity in vitro and in vivo using hypercholesterolemic zebrafish. Cinnamon and clove extracts (at final 10 μg/mL) had the strongest anti-glycation and antioxidant activity in this study. Cinnamon and clove had the strongest inhibition of activity against copper-mediated low-density lipoprotein (LDL) oxidation and LDL phagocytosis by macrophages. Cinnamon or clove extracts had potent cholesteryl ester transfer protein (CETP) inhibitory activity in a concentration-dependent manner. They exhibited hypolipidemic activity in a hypercholesterolemic zebrafish model; the clove extract-treated group had a 68% and 80% decrease in serum cholesterol and TG levels, respectively. The clove extract-fed group had the smallest increase in body weight and height and the strongest antioxidant activity following a 5-week high cholesterol diet. Hydrophilic ingredients of cinnamon and clove showed potent activities to suppress the incidence of atherosclerosis and diabetes via strong antioxidant potential, prevention of apoA-I glycation and LDL-phagocytosis, inhibition of CETP, and hypolipidemic activity. These results suggest the potential to develop a new functional dietary agent to treat chronic metabolic diseases, such as hyperlipidemia and diabetes.

  10. Discovery of (R)-2-(6-Methoxynaphthalen-2-yl)butanoic Acid as a Potent and Selective Aldo-keto Reductase 1C3 Inhibitor. (United States)

    Adeniji, Adegoke; Uddin, Md Jashim; Zang, Tianzhu; Tamae, Daniel; Wangtrakuldee, Phumvadee; Marnett, Lawrence J; Penning, Trevor M


    Type 5 17β-hydroxysteroid dehydrogenase, aldo-keto reductase 1C3 (AKR1C3) converts Δ(4)-androstene-3,17-dione and 5α-androstane-3,17-dione to testosterone (T) and 5α-dihydrotestosterone, respectively, in castration resistant prostate cancer (CRPC). In CRPC, AKR1C3 is implicated in drug resistance, and enzalutamide drug resistance can be surmounted by indomethacin a potent inhibitor of AKR1C3. We examined a series of naproxen analogues and find that (R)-2-(6-methoxynaphthalen-2-yl)butanoic acid (in which the methyl group of R-naproxen was replaced by an ethyl group) acts as a potent AKR1C3 inhibitor that displays selectivity for AKR1C3 over other AKR1C enzymes. This compound was devoid of inhibitory activity on COX isozymes and blocked AKR1C3 mediated production of T and induction of PSA in LNCaP-AKR1C3 cells as a model of a CRPC cell line. R-Profens are substrate selective COX-2 inhibitors and block the oxygenation of endocannabinoids and in the context of advanced prostate cancer R-profens could inhibit intratumoral androgen synthesis and act as analgesics for metastatic disease.

  11. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549. (United States)

    Yamauchi, Rieko; Sasaki, Kaori; Yoshida, Kenichi


    The effects of green tea polyphenols on cultured cancer cells have been well characterized, especially the effects of epigallocatechin-3-gallate (EGCg), since EGCg suppresses oncogenic signaling pathways and induces cell cycle arrest or apoptosis by regulating cell cycle-associated proteins. In the present study, we attempted to identify signaling pathways or target molecules regulated by each of or a mixture of green tea polyphenols, including epicatechin (EC), epicatechin-3-gallate (ECg), epigallocatechin (EGC), and EGCg, in the human lung cancer cell line A549. ECg, EGC, and a catechin mixture, in addition to EGCg, significantly decreased cell viability. In contrast, caspase 3/7 activity, an apoptosis indicator, was specifically induced by EGCg. By conducting a series of luciferase-based reporter assays, we revealed that the catechin mixture only up-regulates the p53 reporter. EGCg was a more potent inducer of p53-dependent transcription, and this induction was further supported by the induced level of p53 protein. RNA interference (RNAi)-mediated p53 knockdown completely abolished EGCg-induced apoptosis. Finally, a proteome and western blot analysis using approximately 70 different antibodies failed to detect up-regulated proteins in catechin mixture-treated A549 cells. Taken together, these results indicate that EGCg, among several green tea polyphenols, is a potent apoptosis inducer that functions exclusively through a p53-dependent pathway in A549 cells.

  12. Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A. (United States)

    Corea, Gabriella; Fattorusso, Ernesto; Lanzotti, Virginia; Motti, Riccardo; Simon, Pierre-Noël; Dumontet, Charles; Di Pietro, Attilio


    From the whole plant of Euphorbia peplus L., five new diterpenes based on a jatrophane skeleton (pepluanins A-E, 1-5) were isolated, together with two known analogues (6 and 7), which served to divulge in detail the structure-activity relationships within this class of P-glycoprotein inhibitors. The results revealed the importance of substitutions on the medium-sized ring (carbons 8, 9, 14, and 15). In particular, the activity is collapsed by the presence of a free hydroxyl at C-8, while it increases with a carbonyl at C-14, an acetoxyl at C-9, and a free hydroxyl at C-15. The most potent compound of the series, pepluanin A, showed a very high activity for a jatrophane diterpene, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport.

  13. Synthetic Studies of Neoclerodane Diterpenes from Salvia divinorum: Identification of a Potent and Centrally Acting μ Opioid Analgesic with Reduced Abuse Liability. (United States)

    Crowley, Rachel Saylor; Riley, Andrew P; Sherwood, Alexander M; Groer, Chad E; Shivaperumal, Nirajmohan; Biscaia, Miguel; Paton, Kelly; Schneider, Sebastian; Provasi, Davide; Kivell, Bronwyn M; Filizola, Marta; Prisinzano, Thomas E


    Opioids are widely used to treat millions suffering from pain, but their analgesic utility is limited due to associated side effects. Herein we report the development and evaluation of a chemical probe exhibiting analgesia and reduced opioid-induced side effects. This compound, kurkinorin (5), is a potent and selective μ-opioid receptor (MOR) agonist (EC50 = 1.2 nM, >8000 μ/κ selectivity). 5 is a biased activator of MOR-induced G-protein signaling over β-arrestin-2 recruitment. Metadynamics simulations of 5's binding to a MOR crystal structure suggest energetically preferred binding modes that differ from crystallographic ligands. In vivo studies with 5 demonstrate centrally mediated antinociception, significantly reduced rewarding effects, tolerance, and sedation. We propose that this novel MOR agonist may represent a valuable tool in distinguishing the pathways involved in MOR-induced analgesia from its side effects.

  14. The latex sap of the 'Old World Plant' Lagenaria siceraria with potent lectin activity mitigates neoplastic malignancy targeting neovasculature and cell death. (United States)

    Vigneshwaran, V; Thirusangu, Prabhu; Madhusudana, S; Krishna, V; Pramod, Siddanakoppalu N; Prabhakar, B T


    Lifestyle and dietary modifications have contributed much to somatic genetic alteration which has concomitantly led to increase in malignant diseases. Henceforth, plant based and dietary interventions to mitigate and impede oncogenic transformation are in great demand. We investigated the latex sap (LSL) of the dietary Lagenaria siceraria vegetable, the first domesticated plant species with the potent lectin activity for its functional role against the tumor progression and its mechanism. LSL has markedly stimulated proliferation of lymphocytes and displayed strong cytotoxic activity against cancer both in-vitro and in-vivo. The tumor regression was paralleled with drastic reduction in tumoral neovasculature as evidenced from angiogenic parameters and abrogated related gene expressions. LSL has also triggered apoptotic signaling cascade in cancer cells through activation of caspase-3 mediated activation of endonuclease and inducing apoptotic cellular events. Collectively our study provides tangible evidences that latex sap from L. siceraria with immunopotentiating ability significantly regresses the tumor progression by targeting angiogenesis and inducing cell death.

  15. Tumor-stroma interaction: Revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. (United States)

    Luga, Valbona; Wrana, Jeffrey L


    Cancer-associated fibroblasts (CAF) regulate tumor progression, but their role in cancer metastasis remains largely unexplored. Exosomes are secreted microvesicles that are emerging as potent mediators of cell-cell communication that are of particular importance in tumor-stroma interactions. The Wnt-planar cell polarity (PCP) pathway is the primary regulator of convergent extension cell movements during vertebrate development, but the role of this signaling pathway in cancer cell migration and metastasis has been unclear. Recently, we revealed that fibroblasts secrete exosomes that promote breast cancer cell (BCC) protrusive activity, motility, and metastasis by activating autocrine Wnt-PCP signaling in BCCs. Moreover, we showed that Wnt ligands produced by BCCs tether to fibroblast exosomes upon trafficking of exosomes in BCCs. These findings have several implications that motivate promising future research in the fields of tumor-stroma communication, exosome function, and Wnt-PCP signaling in cancer metastasis.

  16. The Curcumin Analog C-150, Influencing NF-κB, UPR and Akt/Notch Pathways Has Potent Anticancer Activity In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    László Hackler

    Full Text Available C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma.

  17. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A


    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  18. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans. (United States)

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav


    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  19. Psymberin, a potent sponge-derived cytotoxin from Psammocinia distantly related to the pederin family. (United States)

    Cichewicz, Robert H; Valeriote, Frederick A; Crews, Phillip


    [structure: see text] Bioassay-guided fractionation of the sponge Psammocinia sp. afforded psymberin (1) possessing 5S,8S,9S,11R,13R,15S,16R,17R stereochemistry. Psymberin exhibits structural similarities to the pederin family metabolites. The potent cytotoxicty and unique structural features of 1 make it a promising lead for therapeutic development.

  20. Synthesis and biological evaluation of andrographolide derivatives as potent anti-HIV agents

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Jing Li; Wen Long Huang; Hui Bin Zhang; Hai Qian; Yong Tang Zheng


    A series of Andro derivatives were described and evaluated for their anti-HIV activity in vitro. Compound 10 and 16b, of which TI were >10, had some anti-HTV-1 activity in vitro. Therein, compound 10 which was the best potent compound, could serve as a new lead for further development of anti-AIDS agents.

  1. Potent Systemic Anticancer Activity of Adenovirally Expressed EGFR-Selective TRAIL Fusion Protein

    NARCIS (Netherlands)

    Bremer, Edwin; van Dam, Gooitzen M.; de Bruyn, Marco; van Riezen, Manon; Dijkstra, Marike; Kamps, Gera; Helfrich, Wijnand; Haisma, Hidde


    Previously, we demonstrated potent tumor cell-selective pro-apoptotic activity of scFv425:sTRAIL, a recombinant fusion protein comprised of EGFR-directed antibody fragment (scFv425) genetically fused to human soluble TNF-related apoptosis-inducing ligand (sTRAIL). Here, we report on the promising th

  2. Design, Synthesis, Molecular Docking, and Antibacterial Evaluation of Some Novel Flouroquinolone Derivatives as Potent Antibacterial Agent

    Directory of Open Access Journals (Sweden)

    Mehul M. Patel


    Full Text Available Objective. Quinolone moiety is an important class of nitrogen containing heterocycles widely used as key building blocks for medicinal agents. It exhibits a wide spectrum of pharmacophores and has bactericidal, antiviral, antimalarial, and anticancer activities. In view of the reported antimicrobial activity of various fluoroquinolones, the importance of the C-7 substituents is that they exhibit potent antimicrobial activities. Our objective was to synthesize newer quinolone analogues with increasing bulk at C-7 position of the main 6-fluoroquinolone scaffold to produce the target compounds which have potent antimicrobial activity. Methods. A novel series of 1-ethyl-6-fluoro-4-oxo-7-{4-[2-(4-substituted phenyl-2-(substituted-ethyl]-1-piperazinyl}-1,4-dihydroquinoline-3-carboxylic acid derivatives were synthesized. To understand the interaction of binding sites with bacterial protein receptor, the docking study was performed using topoisomerase II DNA gyrase enzymes (PDB ID: 2XCT by Schrodinger’s Maestro program. In vitro antibacterial activity of the synthesized compounds was studied and the MIC value was calculated by the broth dilution method. Results. Among all the synthesized compounds, some compounds showed potent antimicrobial activity. The compound 8g exhibited good antibacterial activity. Conclusion. This investigation identified the potent antibacterial agents against certain infections.

  3. Understanding the Biosynthesis SF2575: A Potent Antitumor Compound With Novel Modes of Action (United States)


    NOTES 14. ABSTRACT: SF2575 is a tetracycline polyketide produced by Streptomyces sp. SF2575 and displays exceptionally potent anticancer activity...engineered biosynthesis of SF2575 analogs. 15. SUBJECT TERMS Anticancer , chemotherapy, Natural product, topoisomerase 16. SECURITY CLASSIFICATION OF...17 4 Introduction Natural products produced by bacteria and fungi encompass a broad range of bioactivity and are an important

  4. Pharmacokinetics and tolerability of cediranib, a potent VEGF signalling inhibitor, in cancer patients with hepatic impairment

    DEFF Research Database (Denmark)

    van Herpen, Carla M L; Lassen, Ulrik; Desar, Ingrid M E


    Vascular endothelial growth factor (VEGF) signalling plays a key role in tumour angiogenesis. Cediranib (AZD2171) is a small-molecule VEGF signalling inhibitor with potent activity against all three VEGF receptors. In this phase I, open-label, parallel-group study, adults with advanced solid tumo...

  5. Development and Characterization of a Potent Free Fatty Acid Receptor 1 (FFA1) Fluorescent Tracer

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Hudson, Brian D; Hansen, Anders Højgaard;


    The free fatty acid receptor 1 (FFA1/GPR40) is a potential target for treatment of type 2 diabetes. Although several potent agonists have been described, there remains a strong need for suitable tracers to interrogate ligand binding to this receptor. We address this by exploring fluorophore-tethe...

  6. Pharmacokinetics and tolerability of cediranib, a potent VEGF signalling inhibitor, in cancer patients with hepatic impairment

    NARCIS (Netherlands)

    Herpen, C.M.L. van; Lassen, U.; Desar, I.M.E.; Brown, K.H.; Marotti, M.; Jonge, M.J. de


    Vascular endothelial growth factor (VEGF) signalling plays a key role in tumour angiogenesis. Cediranib (AZD2171) is a small-molecule VEGF signalling inhibitor with potent activity against all three VEGF receptors. In this phase I, open-label, parallel-group study, adults with advanced solid tumours

  7. Novel, potent, selective, and orally bioavailable human betaII-tryptase inhibitors. (United States)

    Sperandio, David; Tai, Vincent W-F; Lohman, Julia; Hirschbein, Bernie; Mendonca, Rohan; Lee, Chang-Sun; Spencer, Jeffrey R; Janc, James; Nguyen, Margaret; Beltman, Jerlyn; Sprengeler, Paul; Scheerens, Heleen; Lin, Tong; Liu, Liang; Gadre, Ashwini; Kellogg, Alisha; Green, Michael J; McGrath, Mary E


    The synthesis of novel [1,2,4]oxadiazoles and their structure-activity relationship (SAR) for the inhibition of tryptase and related serine proteases is presented. Elaboration of the P'-side afforded potent, selective, and orally bioavailable tryptase inhibitors.

  8. Synthesis and evaluation of heteroarylalanine diacids as potent and selective neutral endopeptidase inhibitors. (United States)

    Glossop, Melanie S; Bazin, Richard J; Dack, Kevin N; Fox, David N A; MacDonald, Graeme A; Mills, Mark; Owen, Dafydd R; Phillips, Chris; Reeves, Keith A; Ringer, Tracy J; Strang, Ross S; Watson, Christine A L


    Heteroarylalanine derivatives 4 were designed as potential inhibitors of neutral endopeptidase (NEP EC Selectivity over other zinc metalloproteinases was explored through occupation of the S2' subsite within NEP. Structural optimisation led to the identification of 5-phenyl oxazole 4f, a potent and selective NEP inhibitor. A crystal structure of the inhibitor bound complex is reported.

  9. Pyrrolidin-3-yl-N-methylbenzamides as potent histamine 3 receptor antagonists. (United States)

    Zhou, Dahui; Gross, Jonathan L; Sze, Jean Y; Adedoyin, Adedayo B; Bowlby, Mark; Di, Li; Platt, Brian J; Zhang, Guoming; Brandon, Nicholas; Comery, Thomas A; Robichaud, Albert J


    On the basis of the previously reported benzimidazole 1,3'-bipyrrolidine benzamides (1), a series of related pyrrolidin-3-yl-N-methylbenzamides were synthesized and evaluated as H(3) receptor antagonists. In particular, compound 32 exhibits potent H(3) receptor binding affinity, improved pharmaceutical properties and a favorable in vivo profile.

  10. Radiosynthesis and characterisation of a potent and selective GPR139 agonist radioligand

    DEFF Research Database (Denmark)

    Kuhne, Sebastiaan; Nøhr, Anne Cathrine; Marek, AleŠ;


    Compound 1 is a selective and potent agonist of the G protein-coupled receptor GPR139 (EC50 = 39 nM). In this study, we describe the synthesis, radiolabelling and in vitro evaluation of [3H]-1 for the characterisation of GPR139 and its spatial expression in the brain using autoradiography. Two di...

  11. Urolithins, Intestinal Microbial Metabolites of Pomegranate Ellagitannins, Exhibit Potent Antioxidant Activity in Cell-Based Assay (United States)

    Many health benefits of pomegranate products have been attributed to the potent antioxidant action of their tannin components, mainly punicalagins and ellagic acid. While moving through the intestines, ellagitannins are metabolized by gut bacteria into urolithins that readily enter systemic circulat...

  12. Molecular engineered super-nanodevices: smart and safe delivery of potent drugs into tumors. (United States)

    Ding, Mingming; Li, Jiehua; He, Xueling; Song, Nijia; Tan, Hong; Zhang, Yi; Zhou, Lijuan; Gu, Qun; Deng, Hua; Fu, Qiang


    A super-nanodevice engineered at molecular level integrates various desired properties in a smart and coordinated way, and can "switch on" or "turn off" certain functionalities as required. Importantly, it can break through complex physiological barriers, and then precisely ferry potent toxic triptolide into tumor cells in vivo, thus significantly maximizing the therapeutic efficacy and reducing the drug toxicity.

  13. An Amphotericin B Derivative Equally Potent to Amphotericin B and with Increased Safety

    NARCIS (Netherlands)

    Antillón, Armando; De Vries, Alexander H.; Espinosa-caballero, Marcel; Falcón-gonzález, José Marcos; Flores Romero, David; González–damián, Javier; Jiménez-montejo, Fabiola Eloísa; León-buitimea, Angel; López-ortiz, Manuel; Magaña, Ricardo; Marrink, Siewert J.; Morales-nava, Rosmarbel; Periole, Xavier; Reyes-esparza, Jorge; Rodríguez Lozada, Josué; Santiago-angelino, Tania Minerva; Vargas González, María Cristina; Regla, Ignacio; Carrillo-tripp, Mauricio; Fernández-zertuche, Mario; Rodríguez-fragoso, Lourdes; Ortega-blake, Iván; Johnson, Christopher James


    Amphotericin B is the most potent antimycotic known to date. However due to its large col- lateral toxicity, its use, although long standing, had been limited. Many attempts have been made to produce derivatives with reduced collateral damage. The molecular mechanism of polyene has also been closely

  14. Teratogenicity studies of a new potent tetanus vaccine in rabbit (Oryctolagus cuniculus). (United States)

    Sethi, N; Srivastava, R K; Singh, R K


    Glaxo Laboratories, Bombay, have prepared a potent tetanus vaccine of 250 Lf as a substitute of the previous 5 Lf tetanus vaccine. The safety evaluation of the vaccine has been reported, but the teratogenic potential was not studied. In the experiment reported herein we have studied the teratogenic action of the vaccine in the progeny of rabbits. No congenital anomalies were observed.

  15. Dynamic public service mediation

    NARCIS (Netherlands)

    Hofman, W.; Staalduinen, M. van


    This paper presents an approach to dynamic public service mediation. It is based on a conceptual model and the use of search and ranking algorithms. The conceptual model is based on Abstract State Machine theory. Requirements for dynamic service mediation were derived from a real-world case. The con

  16. Teaching Mediated Public Relations. (United States)

    Kent, Michael L.


    Discusses approaches to teaching a mediated public relations course, emphasizing the World Wide Web. Outlines five course objectives, assignments and activities, evaluation, texts, and lecture topics. Argues that students mastering these course objectives will understand ethical issues relating to media use, using mediated technology in public…

  17. Ruimte voor mediation

    NARCIS (Netherlands)

    Combrink-Kuiters, L.; Niemeijer, E.; Voert, M. ter


    Dit onderzoek is samen met ADR en mediation Rechterlijke macht gepubliceerd. Het doel was enerzijds na te gaan of, en onder welke condities, mediation in de Nederlandse context een effectief en efficiënt alternatief is voor de gerechtelijke geschillenbeslechting. Anderzijds inzicht te verwerven in d

  18. Music, Radio, and Mediatization

    DEFF Research Database (Denmark)

    Krogh, Mads; Michelsen, Morten


    Mediatization has become a key concept for understanding the relations between media and other cultural and social fields. Contributing to the discussions related to the concept of mediatization, this article discusses how practices of radio and music(al life) influence each other. We follow Deacon......’s and Stanyer’s advice to supplement the concept of mediatization with ‘a series of additional concepts at lower levels of abstraction’ and suggest, in this respect, the notion of heterogeneous milieus of music– radio. Hereby, we turn away from the all-encompassing perspectives related to the concept...... of mediatization where media as such seem to be ascribed agency. Instead, we consider historical accounts of music–radio in order to address the complex non- linearity of concrete processes of mediatization as they take place in the multiple meetings between a decentred notion of radio and musical life....

  19. The Schizosaccharomyces pombe Mediator

    DEFF Research Database (Denmark)

    Venturi, Michela

    In the past several years great attention has been dedicated to the characterization of the Mediator complex in a different range of model organisms. Mediator is a conserved co-activator complex involved in transcriptional regulation and it conveys signals from regulatory transcription factors......+ is a nonessential gene, while deletion of med11+ resulted in unviable cells. These results are in line with those obtained in S. cerevisiae. Isolation of S. pombe Mediator by the tandem affinity purification method and Co-IP experiments lead to the conclusion that Med9 and Med11 might not belong to the Mediator...... complex, but our results did not exclude it completely either. Our attempts to demonstrate the presence of these two subunits in the Mediator complex remain inconclusive primarily due to the lack of proper expression of the tagged versions of the proteins. However, we have paved a way to further...

  20. Potent Cells (United States)

    Liu, Dennis


    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  1. Effects of a newly developed potent orexin-2 receptor-selective antagonist Compound1m on sleep/wake states in mice

    Directory of Open Access Journals (Sweden)

    Keishi eEtori


    Full Text Available Orexins (also known as hypocretins, which are hypothalamic neuropeptides, play critical roles in the regulation of sleep/wakefulness states by activating two G-protein coupled receptors (GPCRs, orexin 1 (OX1R and orexin 2 receptors (OX2R. In order to know the difference between effects of OX2R-selective antagonists (2-SORA and dual orexin receptor antagonists (DORA, and to understand the mechanisms underlying orexin-mediated regulation of sleep/wakefulness states, we examined the effects of a newly developed 2-SORA, Compound 1m (C1m, and a DORA, suvorexant, on sleep/wakefulness states in C57BL/6J mice. After oral administration in the dark period, both C1m and suvorexant exhibited potent sleep-promoting properties with similar efficacy in a dose-dependent manner. While C1m did not increase NREM and REM sleep episode durations, suvorexant induced longer episode durations of NREM and REM sleep as compared with both the vehicle- and C1m-administered groups. When compounds were injected during light period, C1m did not show a significant change in sleep/wakefulness states in the light period, whereas suvorexant slightly but significantly increased the sleep time. We also found that C1m did not affect the time of REM sleep, while suvorexant markedly increased it. This suggests that although OX1R-mediated pathway plays a pivotal role in promoting wakefulness, OX1R-mediated pathway also plays an additional role. OX1R-mediated pathway also plays a role in suppression of REM sleep. Fos-immunostaining showed that both compounds affected the activity of arousal-related neurons with different patterns. These results suggest partly overlapping and partly distinct roles of orexin receptors in the regulation of sleep/wakefulness states.

  2. Sustained Small Interfering RNA-Mediated Human Immunodeficiency Virus Type 1 Inhibition in Primary Macrophages



    Small interfering RNAs (siRNAs) can induce potent gene silencing by degradation of cognate mRNA. However, in dividing cells, the silencing lasts only 3 to 7 days, presumably because of siRNA dilution with cell division. Here, we investigated if sustained siRNA-mediated silencing of human immunodeficiency virus type 1 (HIV-1) is possible in terminally differentiated macrophages, which constitute an important reservoir of HIV in vivo. CCR5, the major HIV-1 coreceptor...

  3. [Mediation in health]. (United States)

    Decastello, Alice


    The author presents mediation as an alternative dispute resolution method. Mediation is a process where the parties are ready to settle their dispute out of court, by way of negotiation and with the involvement of an independent third person as mediator. In the mediation process the mediator shall not decide the dispute, nor examine the default or give legal advice or express his/her opinion - the mediator's duty is to help the parties bring their positions closer and come to a settlement agreement within a short time (120 days). The author gives a summary of the applications of the Hungarian Act on Mediation in Public Health and draws conclusions from the practical experience since entry into force of the legislation and illustrates the advantages of mediation over the court procedure (which may drag on for years). The primary advantages of mediation are that both the mediators and the parties are bound by the obligation of secrecy, the procedure is cheaper than the court proceedings, and the parties can "save their faces" because in mediation the winner-winner formula asserts itself - against lawsuits where the winner-loser positions are confronted. The author also analyses the specific data and information available so far. As for the future, the legislation needs to be amended at several points. It is particularly expedient to regulate the legal relationship between the insurance companies and the health service providers because the liability insurance may not cover the damages the courts adjudicate. And so some of the service providers may go bankrupt as the difference in excess of the upper limit of coverage - it might as well be up to HUF 5 million per case - shall be paid from own budget, to the charge of the upkeep costs. It is also required to review and amend the regulations on expert activities, just as it is inevitable to make data supply compulsory - otherwise it will be impossible to monitor the number of mediation procedures in health. At present

  4. General resonance mediation

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz


    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for {sigma}(visible {yields} hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  5. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M


    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  6. Combination of Id2 Knockdown Whole Tumor Cells and Checkpoint Blockade: A Potent Vaccine Strategy in a Mouse Neuroblastoma Model.

    Directory of Open Access Journals (Sweden)

    Lina Chakrabarti

    Full Text Available Tumor vaccines have held much promise, but to date have demonstrated little clinical success. This lack of success is conceivably due to poor tumor antigen presentation combined with immuno-suppressive mechanisms exploited by the tumor itself. Knock down of Inhibitor of differentiation protein 2 (Id2-kd in mouse neuroblastoma whole tumor cells rendered these cells immunogenic. Id2-kd neuroblastoma (Neuro2a cells (Id2-kd N2a failed to grow in most immune competent mice and these mice subsequently developed immunity against further wild-type Neuro2a tumor cell challenge. Id2-kd N2a cells grew aggressively in immune-compromised hosts, thereby establishing the immunogenicity of these cells. Therapeutic vaccination with Id2-kd N2a cells alone suppressed tumor growth even in established neuroblastoma tumors and when used in combination with immune checkpoint blockade eradicated large established tumors. Mechanistically, immune cell depletion studies demonstrated that while CD8+ T cells are critical for antitumor immunity, CD4+ T cells are also required to induce a sustained long-lasting helper effect. An increase in number of CD8+ T-cells and enhanced production of interferon gamma (IFNγ was observed in tumor antigen stimulated splenocytes of vaccinated mice. More importantly, a massive influx of cytotoxic CD8+ T-cells infiltrated the shrinking tumor following combined immunotherapy. These findings show that down regulation of Id2 induced tumor cell immunity and in combination with checkpoint blockade produced a novel, potent, T-cell mediated tumor vaccine strategy.

  7. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition. (United States)

    Al-Qasem, Abeer; Al-Howail, Huda A; Al-Swailem, Mashael; Al-Mazrou, Amer; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Khalaf, Huda H; Aboussekhra, Abdelilah


    Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Although response rates and overall survival have been improved in recent years, resistance to multiple drug combinations is inevitable. Therefore, the development of more efficient drugs, with fewer side effects is urgently needed. To this end, we have investigated in the present report the effect of PAC, a novel cucumin analogue, on CRC cells both in vitro and in vivo. We have shown that PAC induces apoptosis, mainly via the internal mitochondrial route, and inhibits cell proliferation through delaying the cell cycle at G2/M phase. Interestingly, the pro-apoptotic effect was mediated through STAT3-dependent down-regulation of cyclin D1 and its downstream target survivin. Indeed, change in the expression level of cyclin D1 modulated the expression of survivin and the response of CRC cells to PAC. Furthermore, using the ChIP assay, we have shown PAC-dependent reduction in the binding of STAT3 to the cyclin D1 promoter in vivo. Additionally, PAC suppressed the epithelial-to-mesenchymal process through down-regulating the mesenchymal markers (N-cadherin, vimentin and Twist1) and inhibiting the invasion/migration abilities of the CRC cells via repressing the pro-migration/invasion protein kinases AKT and ERK1/2. In addition, PAC inhibited tumor growth and repressed the JAK2/STAT3, AKT/mTOR and MEK/ERK pathways as well as their common downstream effectors cyclin D1 and survivin in humanized CRC xenografts. Collectively, these results indicate that PAC has potent anti-CRC effects, and therefore could constitute an effective alternative chemotherapeutic agent, which may consolidate the adjuvant treatment of colon cancer.

  8. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)


    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  9. Design, synthesis and biological evaluation of di-substituted noscapine analogs as potent and microtubule-targeted anticancer agents. (United States)

    Mishra, Ram C; Gundala, Sushma R; Karna, Prasanthi; Lopus, Manu; Gupta, Kamlesh K; Nagaraju, Mulpuri; Hamelberg, Donald; Tandon, Vibha; Panda, Dulal; Reid, Michelle D; Aneja, Ritu


    Noscapine is an opium-derived kinder-gentler microtubule-modulating drug, currently in Phase I/II clinical trials for cancer chemotherapy. Here, we report the synthesis of four more potent di-substituted brominated derivatives of noscapine, 9-Br-7-OH-NOS (2), 9-Br-7-OCONHEt-NOS (3), 9-Br-7-OCONHBn-NOS (4), and 9-Br-7-OAc-NOS (5) and their chemotherapeutic efficacy on PC-3 and MDA-MB-231 cells. The four derivatives were observed to have higher tubulin binding activity than noscapine and significantly affect tubulin polymerization. The equilibrium dissociation constant (KD) for the interaction between tubulin and 2, 3, 4, 5 was found to be, 55±6μM, 44±6μM, 26±3μM, and 21±1μM respectively, which is comparable to parent analog. The effects of these di-substituted noscapine analogs on cell cycle parameters indicate that the cells enter a quiescent phase without undergoing further cell division. The varying biological activity of these analogs and bulk of substituent at position-7 of the benzofuranone ring system of the parent molecule was rationalized utilizing predictive in silico molecular modeling. Furthermore, the immunoblot analysis of protein lysates from cells treated with 4 and 5, revealed the induction of apoptosis and down-regulation of survivin levels. This result was further supported by the enhanced activity of caspase-3/7 enzymes in treated samples compared to the controls. Hence, these compounds showed a great potential for studying microtubule-mediated processes and as chemotherapeutic agents for the management of human cancers.

  10. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Emília R Vaz

    Full Text Available The transforming growth factor beta 1 (TGF-β1 is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils' chemoattraction.

  11. The CB2-preferring agonist JWH015 also potently and efficaciously activates CB1 in autaptic hippocampal neurons. (United States)

    Murataeva, N; Mackie, K; Straiker, A


    The G protein coupled receptors CB(1) and CB(2) are targets for the psychoactive constituents of cannabis, chief among them Δ(9)-THC. They are also key components of the multifunctional endogenous cannabinoid signaling system. CB(1) and CB(2) receptors modulate a wide variety of physiological systems including analgesia, memory, mood, reward, appetite and immunity. Identification and characterization of selective CB(1) and CB(2) receptor agonists and antagonists will facilitate understanding the precise physiological and pathophysiological roles of cannabinoid receptors in these systems. This is particularly necessary in the case of CB(2) because these receptors are sparsely expressed and problematic to detect using traditional immunocytochemical approaches. 1-Propyl-2-methyl-3-(1-naphthoyl)indole (JWH015) is an aminoalkylindole that has been employed as a "CB(2)-selective" agonist in more than 40 published papers. However, we have found that JWH015 potently and efficaciously activates CB(1) receptors in neurons. Using murine autaptic hippocampal neurons, which express CB(1), but not CB(2) receptors, we find that JWH015 inhibits excitatory postsynaptic currents with an EC50 of 216nM. JWH015 inhibition is absent in neurons from CB(1)(-/-) cultures and is reversed by the CB(1) antagonist, SR141716 [200nM]. Furthermore, JWH015 partially occludes CB(1)-mediated DSE (∼35% remaining), an action reversed by the CB(2) antagonist, AM630 [1 and 3μM], suggesting that high concentrations of AM630 also antagonize CB(1) receptors. We conclude that while JWH015 is a CB(2)-preferring agonist, it also activates CB(1) receptors at experimentally encountered concentrations. Thus, CB(1) agonism of JWH015 needs to be considered in the design and interpretation of experiments that use JWH015 to probe CB(2)-signaling.

  12. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    Energy Technology Data Exchange (ETDEWEB)

    Burris, K.D.; Breeding, M.; Sanders-Bush, E. (Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (United States))


    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD.

  13. Technology-Use Mediation

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.


    Implementation of new computer-mediated communication (CMC) systems in organizations is a complex socio-technical endeavour, involving the mutual adaptation of technology and organization over time. Drawing on the analytic concept of sensemaking, this paper provides a theoretical perspective...... that deepens our understanding of how organizations appropriate new electronic communication media. The paper analyzes how a group of mediators in a large, multinational company adapted a new web-based CMC technology (a virtual workspace) to the local organizational context (and vice versa) by modifying...... features of the technology, providing ongoing support for users, and promoting appropriate conventions of use. We found that these mediators exerted considerable influence on how the technology was established and used in the organization. The mediators were not neutral facilitators of a well...

  14. Natural generalized mirage mediation

    CERN Document Server

    Baer, Howard; Serce, Hasan; Tata, Xerxes


    In the supersymmetric scenario known as mirage mediation (MM), the soft SUSY breaking terms receive comparable anomaly-mediation and moduli-mediation contributions leading to the phenomenon of mirage unification. The simplest MM SUSY breaking models which are consistent with the measured Higgs mass and sparticle mass constraints are strongly disfavoured by fine-tuning considerations. However, while MM makes robust predictions for gaugino masses, the scalar sector is quite sensitive to specific mechanisms for moduli stabilization and potential uplifting. We suggest here a broader setup of generalized mirage mediation (GMM), where heretofore discrete parameters are allowed as continuous to better parametrize these other schemes. We find that natural SUSY spectra consistent with both the measured value of m(h). as well as LHC lower bounds on superpartner masses are then possible. We explicitly show that models generated from natural GMM may be beyond the reach of even high-luminosity LHC searches. In such a case...

  15. "Appearance potent"? A content analysis of UK gay and straight men's magazines. (United States)

    Jankowski, Glen S; Fawkner, Helen; Slater, Amy; Tiggemann, Marika


    With little actual appraisal, a more 'appearance potent' (i.e., a reverence for appearance ideals) subculture has been used to explain gay men's greater body dissatisfaction in comparison to straight men's. This study sought to assess the respective appearance potency of each subculture by a content analysis of 32 issues of the most read gay (Attitude, Gay Times) and straight men's magazines (Men's Health, FHM) in the UK. Images of men and women were coded for their physical characteristics, objectification and nudity, as were the number of appearance adverts and articles. The gay men's magazines featured more images of men that were appearance ideal, nude and sexualized than the straight men's magazines. The converse was true for the images of women and appearance adverts. Although more research is needed to understand the effect of this content on the viewer, the findings are consistent with a more appearance potent gay male subculture.

  16. Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus (United States)

    Vijayakumar, R.; Devi, V.; Adavallan, K.; Saranya, D.


    In the present study, we have explored anti-tumor potent Crocus sativus (saffron) as a reducing agent for one pot size controlled green synthesis of gold nanoparticles (AuNps) at ambient conditions. The nanoparticles were characterized using UV-vis, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and FTIR analysis. The prepared AuNPs showed surface Plasmon resonance centered at 549 nm with average particle size of 15±5 nm. Stable, spherical and triangular crystalline AuNPs with well-defined dimensions were synthesized using anti-tumor potent Crocus sativus (saffron). Crystalline nature of the nanoparticles is confirmed from the HR-TEM, SAED and SEM images, and XRD patterns. From the FTIR spectra it is found that the biomolecules are responsible for capping in gold nanoparticles.

  17. Synthesis and Biological Evaluation of Substituted Desloratadines as Potent Arginine Vasopressin V2 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Shuai Mu


    Full Text Available Twenty-one non-peptide substituted desloratadine class compounds were synthesized as novel arginine vasopressin receptor antagonists from desloratadine via successive acylation, reduction and acylation reactions. Their structures were characterized by 1H-NMR and HRMS, their biological activity was evaluated by in vitro and in vivo studies. The in vitro binding assay and cAMP accumulation assay indicated that these compounds are potent selective V2 receptor antagonists. Among them compounds 1n, 1t and 1v exhibited both high affinity and promising selectivity for V2 receptors. The in vivo diuretic assay demonstrated that 1t presented remarkable diuretic activity. In conclusion, 1t is a potent novel AVP V2 receptor antagonist candidate.

  18. Tranylcypromine substituted cis-hydroxycyclobutylnaphthamides as potent and selective dopamine D₃ receptor antagonists. (United States)

    Chen, Jianyong; Levant, Beth; Jiang, Cheng; Keck, Thomas M; Newman, Amy Hauck; Wang, Shaomeng


    We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (K(i) = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has K(i) values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor.

  19. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. (United States)

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong


    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts.

  20. Biological evaluation of potent antioxidant, lipoxygenase inhibitor and antibacterial: A comparative study

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam


    Full Text Available Three biologically active new Schiff bases, 2-[(3-hydroxybenzylideneamino]phenol 5, 2-[(4-hydroxybenzylideneamino]phenol 6 and 4-[(2-hydroxyphenyliminomethyl]benzene-1,3-diol 7, were synthesized by the reaction of 2-aminophenol 1 with three different hydroxyl-benzaldehydes 2–4. They were characterized by spectroscopic analysis (IR, 1H NMR, EI-MS along with elemental analyses. The products were biological screened out for antioxidant, lipoxygenase inhibition, antibacterial and urease inhibition activities. The compounds 5 and 6 showed potent while 7 showed moderate antioxidant activity. Compound 6 showed potent whereas 5 and 7 showed significant lipoxygenase inhibition activity. All the target compounds showed excellent activities against Staphylococcus intermedius, Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhi bacteria. All the compounds showed non-significant activity against urease enzyme.

  1. Discovery of adamantyl heterocyclic ketones as potent 11β-hydroxysteroid dehydrogenase type 1 inhibitors. (United States)

    Su, Xiangdong; Vicker, Nigel; Thomas, Mark P; Pradaux-Caggiano, Fabienne; Halem, Heather; Culler, Michael D; Potter, Barry V L


    11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a key role in converting intracellular cortisone to physiologically active cortisol, which is implicated in the development of several phenotypes of metabolic syndrome. Inhibition of 11β-HSD1 activity with selective inhibitors has beneficial effects on various conditions, including diabetes, dyslipidemia and obesity, and therefore constitutes a promising strategy to discover novel therapies for metabolic and cardiovascular diseases. A series of novel adamantyl heterocyclic ketones provides potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective with no activity against 11β-HSD2 and 17β-HSD1. Selected potent 11β-HSD1 inhibitors show moderate metabolic stability upon incubation with human liver microsomes and weak inhibition of human CYP450 enzymes.

  2. Discovery of Adamantyl Heterocyclic Ketones as Potent 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors (United States)

    Su, Xiangdong; Vicker, Nigel; Thomas, Mark P; Pradaux-Caggiano, Fabienne; Halem, Heather; Culler, Michael D; Potter, Barry V L


    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a key role in converting intracellular cortisone to physiologically active cortisol, which is implicated in the development of several phenotypes of metabolic syndrome. Inhibition of 11β-HSD1 activity with selective inhibitors has beneficial effects on various conditions, including diabetes, dyslipidemia and obesity, and therefore constitutes a promising strategy to discover novel therapies for metabolic and cardiovascular diseases. A series of novel adamantyl heterocyclic ketones provides potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective with no activity against 11β-HSD2 and 17β-HSD1. Selected potent 11β-HSD1 inhibitors show moderate metabolic stability upon incubation with human liver microsomes and weak inhibition of human CYP450 enzymes. PMID:21608132

  3. Structural basis of potent Zika-dengue virus antibody cross-neutralization. (United States)

    Barba-Spaeth, Giovanna; Dejnirattisai, Wanwisa; Rouvinski, Alexander; Vaney, Marie-Christine; Medits, Iris; Sharma, Arvind; Simon-Lorière, Etienne; Sakuntabhai, Anavaj; Cao-Lormeau, Van-Mai; Haouz, Ahmed; England, Patrick; Stiasny, Karin; Mongkolsapaya, Juthathip; Heinz, Franz X; Screaton, Gavin R; Rey, Félix A


    Zika virus is a member of the Flavivirus genus that had not been associated with severe disease in humans until the recent outbreaks, when it was linked to microcephaly in newborns in Brazil and to Guillain-Barré syndrome in adults in French Polynesia. Zika virus is related to dengue virus, and here we report that a subset of antibodies targeting a conformational epitope isolated from patients with dengue virus also potently neutralize Zika virus. The crystal structure of two of these antibodies in complex with the envelope protein of Zika virus reveals the details of a conserved epitope, which is also the site of interaction of the envelope protein dimer with the precursor membrane (prM) protein during virus maturation. Comparison of the Zika and dengue virus immunocomplexes provides a lead for rational, epitope-focused design of a universal vaccine capable of eliciting potent cross-neutralizing antibodies to protect simultaneously against both Zika and dengue virus infections.

  4. Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine Cyanobacterium Symploca sp. (United States)

    Linington, Roger G; Edwards, Daniel J; Shuman, Cynthia F; McPhail, Kerry L; Matainaho, Teatulohi; Gerwick, William H


    Investigation of a Symploca sp. from Papua New Guinea has led to the isolation of symplocamide A (1), a potent cancer cell cytotoxin, which also inhibits serine proteases with a 200-fold greater inhibition of chymotrypsin over trypsin. The complete stereostructure of symplocamide A was determined by detailed NMR and MS analysis as well as chiral HPLC analysis of the component amino acid residues. The presence of several unusual structural features in symplocamide A provides new insights into the pharmacophore model for protease selectivity in this drug class and may underlie the potent cytotoxicity of this compound to H-460 lung cancer cells (IC50=40 nM) as well as neuro-2a neuroblastoma cells (IC50=29 nM).

  5. Total Synthesis of a Highly Potent Anticancer Natural Product OSW-1

    Institute of Scientific and Technical Information of China (English)

    Zhendong; Jin


    OSW-1 (1) and its four natural analogs (2-5) are five highly potent anticancer natural products that were recently isolated from the bulbs of Ornithogalum saundersiae, a perennial grown in southern Africa (Figure 1).1 The IC50 values of these compounds against human promyelocytic leukemia HL-60 cells range from between 0.1 to 0.3 nM.2 Their anticancer activities are from 10 to 100 times more potent than other well-known anticancer agents in clinical use, including mitomycin C, adriamycin, cisplatin, camptothecin, and taxol. OSW-1 (1), the main constituent of Ornithogalum saundersiae bulbs, is highly cytostatic in the NCI 60-cell in vitro screen, with a mean IC50 of 0.78 nM. It also looks promising from in vivo tests against mouse P388 leukemia (increased life span 59%) by a one-time administration of 0.01 mg/kg.  ……

  6. Chloroatranol, an extremely potent allergen hidden in perfumes: a dose-response elicitation study

    DEFF Research Database (Denmark)

    Johansen, Jeanne Duus; Andersen, Klaus Ejner; Svedman, Cecilia;


    Oak moss absolute is a long-known, popular natural extract widely used in perfumes. It is reported as the cause of allergic reactions in a significant number of those with perfume allergy. Oak moss absolute has been the target of recent research to identify its allergenic components. Recently......, chloroatranol, a hitherto unknown fragrance allergen, was identified in oak moss absolute. The objective was to assess the clinical importance of chloroatranol as a fragrance allergen by characterizing its elicitation profile. 13 patients previously showing a positive patch test to oak moss absolute....... The dose eliciting a reaction in 50% of the test subjects at patch testing was 0.2 p.p.m. In conclusion, the hidden exposure to a potent allergen widely used in perfumes has caused a highly sensitized cohort of individuals. Judged from the elicitation profile, chloroatranol is the most potent allergen...

  7. Pyrrolo[2,3-b]pyridine derivatives as potent Bruton's tyrosine kinase inhibitors. (United States)

    Zhao, Xinge; Huang, Wei; Wang, Yazhou; Xin, Minhang; Jin, Qiu; Cai, Jianfeng; Tang, Feng; Zhao, Yong; Xiang, Hua


    A series of pyrrolo[2,3-b]pyridine-based derivatives were designed as potent Bruton's tyrosine kinase (BTK) inhibitors by using a scaffold-hopping strategy. Structure-activity relationship studies identified five compounds (3n, 3p, 3q, 3r, and 3s) with IC50 of less than 10nM in BTK enzyme assay and five compounds (3m, 3n, 3o, 3p, and 3t) with IC50 of less than 20 nM in Ramos cell assay. As one of the most potent inhibitors, compound 3p exhibited superior activity to that of compound 1 (RN486) and pyrrolo[2,3-d]pyrimidine derivative 2 in both BTK enzymatic (IC50=6.0 nM) and cellular inhibition (IC50=14 nM) assays. In addition, 3p displayed favorable overall pharmacokinetic profiles compared with 1 and 2.

  8. Total Synthesis of a Highly Potent Anticancer Natural Product OSW-1

    Institute of Scientific and Technical Information of China (English)

    Zhendong Jin; Wensheng Yu


    @@ OSW-1 (1) and its four natural analogs (2-5) are five highly potent anticancer natural products that were recently isolated from the bulbs of Ornithogalum saundersiae, a perennial grown in southern Africa (Figure 1).1 The IC50 values of these compounds against human promyelocytic leukemia HL-60 cells range from between 0.1 to 0.3 nM.2 Their anticancer activities are from 10 to 100 times more potent than other well-known anticancer agents in clinical use, including mitomycin C, adriamycin, cisplatin, camptothecin, and taxol. OSW-1 (1), the main constituent of Ornithogalum saundersiae bulbs, is highly cytostatic in the NCI 60-cell in vitro screen, with a mean IC50 of 0.78 nM. It also looks promising from in vivo tests against mouse P388 leukemia (increased life span 59%) by a one-time administration of 0.01 mg/kg.

  9. DREDed Anomaly Mediation

    CERN Document Server

    Boyda, E; Pierce, A T; Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron


    We offer a guide to dimensional reduction (DRED) in theories with anomaly mediated supersymmetry breaking. Evanescent operators proportional to epsilon arise in the bare Lagrangian when it is reduced from d=4 to d= (4-2 epsilon) dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.

  10. A mechanism-based potent sirtuin inhibitor containing Nε-thiocarbamoyl-lysine (TuAcK)



    In the current study, we have identified Nε-thiocarbamoyl-lysine (TuAcK) as a general sirtuin inhibitory warhead which was shown to be able to confer potent sirtuin inhibition. This inhibition was also shown to be mechanism-based in that the TuAck residue was able to be processed by a sirtuin enzyme with the formation of a stalled S-alkylamidate intermediate.

  11. Saururus cernuus Lignans - Potent Small Molecule Inhibitors of Hypoxia-Inducible Factor-1


    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R; Zhang, Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou, Yu-Dong


    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related in...

  12. Remote functionalization of SCH 39166: discovery of potent and selective benzazepine dopamine D1 receptor antagonists. (United States)

    Sasikumar, T K; Burnett, Duane A; Greenlee, William J; Smith, Michelle; Fawzi, Ahmad; Zhang, Hongtao; Lachowicz, Jean E


    A series of novel benzazepine derived dopamine D(1) antagonists have been discovered. These compounds are highly potent at D(1) and showed excellent selectivity over D(2) and D(4) receptors. SAR studies revealed that a variety of functional groups are tolerated on the D-ring of known tetracyclic benzazepine analog 2, SCH 39166, leading to compounds with nanomolar potency at D(1) and good selectivity over D(2)-like receptors.

  13. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells



    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazo...

  14. Lavender Oil-Potent Anxiolytic Properties via Modulating Voltage Dependent Calcium Channels



    Recent clinical data support the clinical use of oral lavender oil in patients suffering from subsyndromal anxiety. We identified the molecular mechanism of action that will alter the perception of lavender oil as a nonspecific ingredient of aromatherapy to a potent anxiolytic inhibiting voltage dependent calcium channels (VOCCs) as highly selective drug target. In contrast to previous publications where exorbitant high concentrations were used, the effects of lavender oil in behavioral, bioc...

  15. Is Globalisation A Potent Driver of Economic Growth? Investigating the Nigerian Non-Oil Exports


    Godwin Ukaiji Okpokpo; Innocent Abanum Ifelunini; Fidelis Osuyali


    Many countries have gained from integrating into the global economy while some have not been as much fortunate. Some have come to see globalisation as a weapon for improved economic growth. With the progressive increase in the poverty level in Nigeria, there is the doubt as to whether globalisation has improved the fortune of Nigeria. More so as there have been contradictory studies on the impact of globalisation in Nigeria. This study interrogated globalisation as a potent driver of economic...

  16. Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp. as a potent cytotoxin. (United States)

    Ueoka, Reiko; Ito, Akihiro; Izumikawa, Miho; Maeda, Satoko; Takagi, Motoki; Shin-ya, Kazuo; Yoshida, Minoru; van Soest, Rob W M; Matsunaga, Shigeki


    Azaspiracid-2 was isolated from a marine sponge Echinoclathria sp. collected off Amami-Oshima as the predominant cytotoxic constituent. A combination of HPLC using ODS, GS320, and Phenylhexyl stationary phases permitted the purification without using acid or inorganic additives in the mobile phase. Azaspiracid-2 exhibited potent cytotoxicity against P388 cells with an IC50 value of 0.72 ng/mL and caused S phase arrest on the cell cycle.

  17. Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis. (United States)

    Borrero, Nicholas V; Bai, Fang; Perez, Cristian; Duong, Benjamin Q; Rocca, James R; Jin, Shouguang; Huigens, Robert W


    Nearly all clinically used antibiotics have been (1) discovered from microorganisms (2) using phenotype screens to identify inhibitors of bacterial growth. The effectiveness of these antibiotics is attributed to their endogenous roles as bacterial warfare agents against competing microorganisms. Unfortunately, every class of clinically used antibiotic has been met with drug resistant bacteria. In fact, the emergence of resistant bacterial infections coupled to the dismal pipeline of new antibacterial agents has resulted in a global health care crisis. There is an urgent need for innovative antibacterial strategies and treatment options to effectively combat drug resistant bacterial pathogens. Here, we describe the implementation of a Pseudomonas competition strategy, using redox-active phenazines, to identify novel antibacterial leads against Staphylococcus aureus and Staphylococcus epidermidis. In this report, we describe the chemical synthesis and evaluation of a diverse 27-membered phenazine library. Using this microbial warfare inspired approach, we have identified several bromophenazines with potent antibacterial activities against S. aureus and S. epidermidis. The most potent bromophenazine analogue from this focused library demonstrated a minimum inhibitory concentration (MIC) of 0.78-1.56 μM, or 0.31-0.62 μg mL(-1), against S. aureus and S. epidermidis and proved to be 32- to 64-fold more potent than the phenazine antibiotic pyocyanin in head-to-head MIC experiments. In addition to the discovery of potent antibacterial agents against S. aureus and S. epidermidis, we also report a detailed structure-activity relationship for this class of bromophenazine small molecules.

  18. Stereoselective total synthesis of the potent anti-asthmatic compound CMI-977 (LDP-977)

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luiz Carlos; Farina, Lui Strambi; Ferreira, Marco Antonio Barbosa, E-mail: [Universidade de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica


    A short and efficient stereoselective total synthesis of CMI-977 (LDP-977), a potent and orally active anti-asthmatic compound, was developed. The key steps involve a highly diastereoselective Mukaiyama oxidative cyclization, which provides the trans-THF (tetrahydrofuran) unit and a Seyferth-Gilbert homologation to construct the triple bond in the target molecule. The synthesis of the key chiral building block was performed using Jacobsen hydrolytic kinetic resolution. (author)

  19. Studies Toward the Pharmacophore of Salvinorin A, a Potent Kappa Opioid Receptor Agonist


    Munro, Thomas A.; Mark A. Rizzacasa; Roth, Bryan L.; Toth, Beth A.; Yan, Feng


    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity, but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors.

  20. Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist. (United States)

    Munro, Thomas A; Rizzacasa, Mark A; Roth, Bryan L; Toth, Beth A; Yan, Feng


    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors.

  1. Potent Antioxidative Activity of Lycopene: A Potential Role in Scavenging Hypochlorous Acid †


    Pennathur, Subramaniam; Maitra, Dhiman; Byun, Jaeman; Sliskovic, Inga; Abdulhamid, Ibrahim; Saed, Ghassan M.; DIAMOND, MICHAEL P.; Abu-Soud, Husam M.


    Lycopene, a carotenoid found in tomatoes, is a proven anti-oxidant that may lower the risk of certain disorders including heart disease and cancer. Hypochlorous acid (HOCl) is an oxidant linked to tissue oxidation in cardiovascular disease and other inflammatory disorders through its ability to modify proteins, deoxyribonucleic acid, ribonucleic acid and lipids. Here we show that lycopene can function as a potent scavenger of HOCl at a wide range of concentrations that span various pathophysi...

  2. Receptor mechanisms of PAF mediated lymphatic constriction in the canine forelimb

    Directory of Open Access Journals (Sweden)

    D. E. Dobbins


    Full Text Available Platelet activating factor (PAF is a potent inflammatory lipid. In this study we assessed the ability of PAF to impact lymphatic vessel function by altering prenodal lymphatic resistance. Intralymphatic PAF (7.47 × 10−6, 7.47 × 10−5 and 7.47 × 10−4 M increased lymphatic perfusion pressure at the two highest infusion rates. PAF mediated lymphatic constriction was not altered by the intra-arterial infusion of phentolamine but was blocked by the intra-arterial infusion of the PAF receptor antagonist WEB 2170. These data indicate that in addition to PAF's effects on microvascular permeability, this agent may also impact the ability of the lymphatics to transport fluid through alterations in lymphatic smooth muscle tone. PAF mediated lymphatic constriction is not mediated by α-receptors but rather through PAF receptor mediated mechanism.

  3. Synthesis, biological evaluation and molecular docking study of N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide derivatives as potent HIV-1 Vif antagonists. (United States)

    Zhou, Meng; Luo, Rong-Hua; Hou, Xue-Yan; Wang, Rui-Rui; Yan, Guo-Yi; Chen, Huan; Zhang, Rong-Hong; Shi, Jian-You; Zheng, Yong-Tang; Li, Rui; Wei, Yu-Quan


    Viral infectivity factor (Vif) is protective against APOBEC3G (A3G)-mediated viral cDNA hypermutations, and development of molecules that inhibit Vif mediated A3G degradation is a novel strategy for blocking HIV-1 replication. Through optimizations of the central ring of N-(2-methoxyphenyl)-2-((4-nitrophenyl)thio)benzamide (RN-18), we found a potent compound 12c with EC50 value of 1.54 μM, enhancing the antiviral activity more than 150-fold compared with RN-18 in nonpermissive H9 cells. 12c protected A3G from degradation by inhibiting Vif function. Besides, 12c suppressed different HIV-1 clinical strains (HIV-1KM018, HIV-1TC-1 and HIV-1WAN) and drug-resistant strains (NRTI, NNRTI, PI, and FI) with relatively high activities. Amidation of 12c with glycine gave a prodrug 13a, improving the water solubility about 2600-fold compared with 12c. Moreover, 13a inhibited the virus replication efficiently with an EC50 value of 0.228 μM. These results suggested that the prodrug 13a is a promising candidate agent for the treatment of AIDS.

  4. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. (United States)

    Matthews, D A; Dragovich, P S; Webber, S E; Fuhrman, S A; Patick, A K; Zalman, L S; Hendrickson, T F; Love, R A; Prins, T J; Marakovits, J T; Zhou, R; Tikhe, J; Ford, C E; Meador, J W; Ferre, R A; Brown, E L; Binford, S L; Brothers, M A; DeLisle, D M; Worland, S T


    Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having alpha,beta-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme's catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.

  5. Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. (United States)

    Rödl, Carmen B; Vogt, Dominik; Kretschmer, Simon B M; Ihlefeld, Katja; Barzen, Sebastian; Brüggerhoff, Astrid; Achenbach, Janosch; Proschak, Ewgenij; Steinhilber, Dieter; Stark, Holger; Hofmann, Bettina


    Eicosanoids like leukotrienes and prostaglandins play a considerable role in inflammation. Produced within the arachidonic acid (AA) cascade, these lipid mediators are involved in the pathogenesis of pain as well as acute and chronic inflammatory diseases like rheumatoid arthritis and asthma. With regard to the lipid cross-talk within the AA pathway, a promising approach for an effective anti-inflammatory therapy is the development of inhibitors targeting more than one enzyme of this cascade. Within this study, thirty N-4-diaryl-1,3-thiazole-2-amine based compounds with different substitution patterns were synthesized and tested in various cell-based assays to investigate their activity and selectivity profile concerning five key enzymes involved in eicosanoid metabolism (5-, 12-, 15-lipoxygenase (LO), cyclooxygenase-1 and -2 (COX-1/-2)). With compound 7, 2-(4-phenyl)thiazol-2-ylamino)phenol (ST-1355), a multi-target ligand targeting all tested enzymes is presented, whereas compound 9, 2-(4-(4-chlorophenyl)thiazol-2-ylamino)phenol (ST-1705), represents a potent and selective 5-LO and COX-2 inhibitor with an IC50 value of 0.9 ± 0.2 μM (5-LO) and a residual activity of 9.1 ± 1.1% at 10 μM (COX-2 product formation). The promising characteristics and the additional non-cytotoxic profile of both compounds reveal new lead structures for the treatment of eicosanoid-mediated diseases.

  6. Total synthesis and biological evaluation of pederin, psymberin, and highly potent analogs. (United States)

    Wan, Shuangyi; Wu, Fanghui; Rech, Jason C; Green, Michael E; Balachandran, Raghavan; Horne, W Seth; Day, Billy W; Floreancig, Paul E


    The potent cytotoxins pederin and psymberin have been prepared through concise synthetic routes (10 and 14 steps in the longest linear sequences, respectively) that proceed via a late-stage multicomponent approach to construct the N-acyl aminal linkages. This route allowed for the facile preparation of a number of analogs that were designed to explore the importance of the alkoxy group in the N-acyl aminal and functional groups in the two major subunits on biological activity. These analogs, including a pederin/psymberin chimera, were analyzed for their growth inhibitory effects, revealing several new potent cytotoxins and leading to postulates regarding the molecular conformational and hydrogen bonding patterns that are required for biological activity. Second generation analogs have been prepared based on the results of the initial assays and a structure-based model for the binding of these compounds to the ribosome. The growth inhibitory properties of these compounds are reported. These studies show the profound role that organic chemistry in general and specifically late-stage multicomponent reactions can play in the development of unique and potent effectors for biological responses.

  7. Pyrazolo Derivatives as Potent Adenosine Receptor Antagonists: An Overview on the Structure-Activity Relationships

    Directory of Open Access Journals (Sweden)

    Siew Lee Cheong


    Full Text Available In the past few decades, medicinal chemistry research towards potent and selective antagonists of human adenosine receptors (namely, A1, A2A, A2B, and A3 has been evolving rapidly. These antagonists are deemed therapeutically beneficial in several pathological conditions including neurological and renal disorders, cancer, inflammation, and glaucoma. Up to this point, many classes of compounds have been successfully synthesized and identified as potent human adenosine receptor antagonists. In this paper, an overview of the structure-activity relationship (SAR profiles of promising nonxanthine pyrazolo derivatives is reported and discussed. We have emphasized the SAR for some representative structures such as pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]pyrimidines; pyrazolo-[3,4-c] or -[4,3-c]quinolines; pyrazolo-[4,3-d]pyrimidinones; pyrazolo-[3,4-d]pyrimidines and pyrazolo-[1,5-a]pyridines. This overview not only clarifies the structural requirements deemed essential for affinity towards individual adenosine receptor subtypes, but it also sheds light on the rational design and optimization of existing structural templates to allow us to conceive new, more potent adenosine receptor antagonists.

  8. Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation (United States)

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Prencipe, Filippo; Lopez-Cara, Carlota; Rondanin, Riccardo; Simoni, Daniele; Hamel, Ernest; Grimaudo, Stefania; Pipitone, Rosaria Maria; Meli, Maria; Tolomeo, Manlio


    Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3′,4′,5′-trimethoxybenzoyl)-3-iodoacetamido-6-methoxybenzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3′,4′,5′-trimethoxybenzoyl moiety at the 2-position of different benzoheterocycles such as benzo[b]furan, benzo[b]thiophene, indole and N-methylindole. Effects on biological activity of the iodoacetamido group and of different moieties (methyl and methoxy) at the C-3 to C-7 positions were examined. In the series of benzo[b]furan derivatives, moving the iodoacetylamino group from the C-4 to the C-5 or C-6 positions did not significantly affect antiproliferative activity. Compounds 4, 15, 20 and 23 blocked STAT5 signals and induced apoptosis of K562 BCR–ABL positive cells. For compound 23, the trimethoxybenzoyl moiety at the 2-position of the benzo[b]furan core was not essential for potent inhibition of STAT5 activation. PMID:26629859

  9. Potential antipsoriatic agents: lapacho compounds as potent inhibitors of HaCaT cell growth. (United States)

    Müller, K; Sellmer, A; Wiegrebe, W


    A number of lapacho compounds, representing the most common constituents of the inner bark of Tabebuia impetiginosa, together with some synthetic analogues, were evaluated in vitro against the growth of the human keratinocyte cell line HaCaT. With an IC(50) value of 0.7 microM, beta-lapachone (4) displayed activity comparable to that of the antipsoriatic drug anthralin. 2-Acetyl-8-hydroxynaphtho[2,3-b]furan-4,9-dione (7), which was prepared in a four-step synthesis from 2,8-dihydroxy-1, 4-naphthoquinone, was the most potent inhibitor among the known lapacho-derived compounds and inhibited cell growth with an IC(50) value of 0.35 microM. Furthermore, other active constituents of lapacho inhibited keratinocyte growth, with IC(50) values in the range of 0.5-3.0 microM. However, as already observed with anthralin, treatment of HaCaT cells with these potent lapacho compounds also caused remarkable damage to the plasma membrane. This was documented by leakage of lactate dehydrogenase into the culture medium, which significantly exceeded that of the vehicle control. Because of their potent activity against the growth of human keratinocytes, some lapacho-derived compounds appear to be promising as effective antipsoriatic agents.

  10. Conformation-Dependent High-Affinity Potent Ricin-Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Wei-Gang Hu


    Full Text Available Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB with high affinity (KD values from 2.55 to 36.27 nM. RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p. administration of D9, at a dose of 5 μg, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes.

  11. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae

    Directory of Open Access Journals (Sweden)

    Seif-Eldin N Ayyad


    Full Text Available Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990. Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer. Materials and Methods: Plant material was shady air dried, extracted with equal volume of chloroform/methanol, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques employing 1D ( 1 H and 13 C and 2D (COSY, HMQC and HMBC NMR (Nuclear Magnetic Resonance Spectrometry and ESI-MS (Eelectrospray Ionization Mass Spectrometry spectroscopy. The pure isolates were tested towards human cancer cell lines, mouse embryonic fibroblast (NIH3T3 and virally transformed form (KA3IT. Results: Two cucurbitacins derivatives, dihydocucurbitacin B (1 and cucurbitacin B (2, had been obtained. Compounds 1 and 2 showed potent inhibitory activities toward NIH3T3 and KA31T with IC 50 0.2, 0.15, 2.5 and 2.0 μg/ml, respectively. Conclusion: The naturally cucurbitacin derivatives (dihydocucurbitacin B and cucurbitacin B showed potent activities towards NIH3T3 and KA31T, could be considered as a lead of discovering a new anticancer natural drug.

  12. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors. (United States)

    Wang, Qi-Qin; Cheng, Ning; Zheng, Xiao-Wei; Peng, Sheng-Ming; Zou, Xiao-Qing


    Aldose reductase (AR) plays an important role in the design of drugs that prevent and treat diabetic complications. Aldose reductase inhibitors (ARIs) have received significant attentions as potent therapeutic drugs. Based on combination principles, three series of luteolin derivatives were synthesised and evaluated for their AR inhibitory activity and nitric oxide (NO)-releasing capacity in vitro. Eighteen compounds were found to be potent ARIs with IC50 values ranging from (0.099±0.008) μM to (2.833±0.102) μM. O(7)-Nitrooxyethyl-O(3'),O(4')-ethylidene luteolin (La1) showed the most potent AR inhibitory activity [IC50=(0.099±0.008) μM]. All organic nitrate derivatives released low concentrations of NO in the presence of l-cysteine. Structure-activity relationship studies suggested that introduction of an NO donor, protection of the catechol structure, and the ether chain of a 2-carbon spacer as a coupling chain on the luteolin scaffold all help increase the AR inhibitory activity of the resulting compound. This class of NO-donor luteolin derivatives as efficient ARIs offer a new concept for the development and design of new drug for preventive and therapeutic drugs for diabetic complications.

  13. Allyl m-Trifluoromethyldiazirine Mephobarbital: An Unusually Potent Enantioselective and Photoreactive Barbiturate General Anesthetic

    Energy Technology Data Exchange (ETDEWEB)

    Savechenkov, Pavel Y.; Zhang, Xi; Chiara, David C.; Stewart, Deirdre S.; Ge, Rile; Zhou, Xiaojuan; Raines, Douglas E.; Cohen, Jonathan B.; Forman, Stuart A.; Miller, Keith W.; Bruzik, Karol S. (Harvard-Med); (Mass. Gen. Hosp.); (UIC)


    We synthesized 5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (14), a trifluoromethyldiazirine-containing derivative of general anesthetic mephobarbital, separated the racemic mixture into enantiomers by chiral chromatography, and determined the configuration of the (+)-enantiomer as S by X-ray crystallography. Additionally, we obtained the {sup 3}H-labeled ligand with high specific radioactivity. R-(-)-14 is an order of magnitude more potent than the most potent clinically used barbiturate, thiopental, and its general anesthetic EC{sub 50} approaches those for propofol and etomidate, whereas S-(+)-14 is 10-fold less potent. Furthermore, at concentrations close to its anesthetic potency, R-(-)-14 both potentiated GABA-induced currents and increased the affinity for the agonist muscimol in human {alpha}1{beta}2/3{gamma}2L GABA{sub A} receptors. Finally, R-(-)-14 was found to be an exceptionally efficient photolabeling reagent, incorporating into both {alpha}1 and {beta}3 subunits of human {alpha}1{beta}3 GABAA receptors. These results indicate R-(-)-14 is a functional general anesthetic that is well-suited for identifying barbiturate binding sites on Cys-loop receptors.

  14. From the potent and selective mu opioid receptor agonist H-Dmt-d-Arg-Phe-Lys-NH(2) to the potent delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH. (United States)

    Balboni, Gianfranco; Cocco, Maria Teresa; Salvadori, Severo; Romagnoli, Romeo; Sasaki, Yusuke; Okada, Yoshio; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H


    H-Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA) binds with high affinity and selectivity to the mu opioid receptor and is a potent and long-acting analgesic. Substitution of d-Arg in position 2 with Tic and masking of the lysine amine side chain by Z protection and of the C-terminal carboxylic function instead of the amide function transform a potent and selective mu agonist into a potent and selective delta antagonist H-Dmt-Tic-Phe-Lys(Z)-OH. Such a delta antagonist could be used as a pharmacological tool.

  15. Metadata based mediator generation

    Energy Technology Data Exchange (ETDEWEB)

    Critchlow, T


    Mediators are a critical component of any data warehouse, particularly one utilizing partially materialized views; they transform data from its source format to the warehouse representation while resolving semantic and syntactic conflicts. The close relationship between mediators and databases, requires a mediator to be updated whenever an associated schema is modified. This maintenance may be a significant undertaking if a warehouse integrates several dynamic data sources. However, failure to quickly perform these updates significantly reduces the reliability of the warehouse because queries do not have access to the m current data. This may result in incorrect or misleading responses, and reduce user confidence in the warehouse. This paper describes a metadata framework, and associated software designed to automate a significant portion of the mediator generation task and thereby reduce the effort involved in adapting the schema changes. By allowing the DBA to concentrate on identifying the modifications at a high level, instead of reprogramming the mediator, turnaround time is reduced and warehouse reliability is improved.

  16. Potent functional antibody responses elicited by HIV-I DNA priming and boosting with heterologous HIV-1 recombinant MVA in healthy Tanzanian adults.

    Directory of Open Access Journals (Sweden)

    Agricola Joachim

    Full Text Available Vaccine-induced HIV antibodies were evaluated in serum samples collected from healthy Tanzanian volunteers participating in a phase I/II placebo-controlled double blind trial using multi-clade, multigene HIV-DNA priming and recombinant modified vaccinia Ankara (HIV-MVA virus boosting (HIVIS03. The HIV-DNA vaccine contained plasmids expressing HIV-1 gp160 subtypes A, B, C, Rev B, Gag A, B and RTmut B, and the recombinant HIV-MVA boost expressed CRF01_AE HIV-1 Env subtype E and Gag-Pol subtype A. While no neutralizing antibodies were detected using pseudoviruses in the TZM-bl cell assay, this prime-boost vaccination induced neutralizing antibodies in 83% of HIVIS03 vaccinees when a peripheral blood mononuclear cell (PBMC assay using luciferase reporter-infectious molecular clones (LucR-IMC was employed. The serum neutralizing activity was significantly (but not completely reduced upon depletion of natural killer (NK cells from PBMC (p=0.006, indicating a role for antibody-mediated Fcγ-receptor function. High levels of antibody-dependent cellular cytotoxicity (ADCC-mediating antibodies against CRF01_AE and/or subtype B were subsequently demonstrated in 97% of the sera of vaccinees. The magnitude of ADCC-mediating antibodies against CM235 CRF01_AE IMC-infected cells correlated with neutralizing antibodies against CM235 in the IMC/PBMC assay. In conclusion, HIV-DNA priming, followed by two HIV-MVA boosts elicited potent ADCC responses in a high proportion of Tanzanian vaccinees. Our findings highlight the potential of HIV-DNA prime HIV-MVA boost vaccines for induction of functional antibody responses and suggest this vaccine regimen and ADCC studies as potentially important new avenues in HIV vaccine development.Controlled-Trials ISRCTN90053831 The Pan African Clinical Trials Registry ATMR2009040001075080 (currently PACTR2009040001075080.

  17. A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus (United States)

    Oon, Shereen; Huynh, Huy; Tai, Tsin Yee; Ng, Milica; Monaghan, Katherine; Biondo, Mark; Maraskovsky, Eugene; Nash, Andrew D.; Wicks, Ian P.; Wilson, Nicholas J.


    To date, the major target of biologic therapeutics in systemic lupus erythematosus (SLE) has been the B cell, which produces pathogenic autoantibodies. Recently, targeting type I IFN, which is elaborated by plasmacytoid dendritic cells (pDCs) in response to endosomal TLR7 and TLR9 stimulation by SLE immune complexes, has shown promising results. pDCs express high levels of the IL-3Rα chain (CD123), suggesting an alternative potential targeting strategy. We have developed an anti-CD123 monoclonal antibody, CSL362, and show here that it affects key cell types and cytokines that contribute to SLE. CSL362 potently depletes pDCs via antibody-dependent cell-mediated cytotoxicity, markedly reducing TLR7, TLR9, and SLE serum-induced IFN-α production and IFN-α-upregulated gene expression. The antibody also inhibits TLR7- and TLR9-induced plasmablast expansion by reducing IFN-α and IL-6 production. These effects are more pronounced than with IFN-α blockade alone, possibly because pDC depletion reduces production of other IFN subtypes, such as type III, as well as non-IFN proinflammatory cytokines, such as IL-6. In addition, CSL362 depletes basophils and inhibits IL-3 signaling. These effects were confirmed in cells derived from a heterogeneous population of SLE donors, various IFN-dependent autoimmune diseases, and healthy controls. We also demonstrate in vivo activity of CSL362 following its s.c. administration to cynomolgus monkeys. This spectrum of effects provides a preclinical rationale for the therapeutic evaluation of CSL362 in SLE. PMID:27699260

  18. Fashion, Mediations & Method Assemblages

    DEFF Research Database (Denmark)

    Sommerlund, Julie; Jespersen, Astrid Pernille

    of handling multiple, fluid realities with multiple, fluid methods. Empirically, the paper works with mediation in fashion - that is efforts the active shaping of relations between producer and consumer through communication, marketing and PR. Fashion mediation is by no means simple, but organise complex...... Modern. New York, Harvester-Wheatsheaf. Law, J. (2004). After Method - mess in social science research. London and New York, Routledge......., it is an important ambition of this paper to go into a methodological discussion of how "that which effectively happens" can be approached. To this end, the paper will combine Hennion's term of the "mediator" with John Laws methodological term of "method assemblages". Method assemblages is a suggested as a way...

  19. The Strategic Mediator

    DEFF Research Database (Denmark)

    Rossignoli, Cecilia; Carugati, Andrea; Mola, Lapo


    The last 10 years have witnessed the emergence of electronic marketplaces as players that leverage new technologies to facilitate B2B internet-mediated collaborative business. Nowadays these players are augmenting their services from simple intermediation to include new inter-organizational relat......The last 10 years have witnessed the emergence of electronic marketplaces as players that leverage new technologies to facilitate B2B internet-mediated collaborative business. Nowadays these players are augmenting their services from simple intermediation to include new inter......-marketplace assumes the paradoxical role of strategic mediator: an agent who upholds and heightens the fences of the transactions instead of leveling them. The results have implication in shaping how we see the role of technology as strategic or commoditized....

  20. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available BACKGROUND: Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses. METHODS AND FINDINGS: BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo. CONCLUSION: Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can

  1. A Chimeric Cetuximab-Functionalized Corona as a Potent Delivery System for Microtubule-Destabilizing Nanocomplexes to Hepatocellular Carcinoma Cells: A Focus on EGFR and Tubulin Intracellular Dynamics. (United States)

    Poojari, Radhika; Kini, Sudarshan; Srivastava, Rohit; Panda, Dulal


    In this study, we have developed microtubule destabilizing agents combretastatin A4 (CA4) or 2-methoxyestradiol (2ME) encapsulated poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol) (PLGA-b-PEG) nanocomplexes for targeted delivery to human hepatocellular carcinoma (HCC) cells. An epidermal growth factor receptor (EGFR) is known to be overexpressed in HCC cells. Therefore, the targeting moiety cetuximab (Cet), an anti-EGFR chimeric monoclonal antibody, is functionalized on the surface of these diblock copolymeric coronas. Cetuximab is associated with the extracellular domain of the EGFR; therefore, the uptake of the cetuximab conjugated nanocomplexes occurred efficiently in EGFR overexpressing HCC cells indicating potent internalization of the complex. The cetuximab targeted-PLGA-b-PEG nanocomplexes encapsulating CA4 or 2ME strongly inhibited phospho-EGFR expression, depolymerized microtubules, produced spindle abnormalities, stalled mitosis, and induced apoptosis in Huh7 cells compared to the free drugs, CA4 or 2ME. Further, the combinatorial strategy of targeted nanocomplexes, Cet-PLGA-b-PEG-CA4 NP and Cet-PLGA-b-PEG-2ME NP, significantly reduced the migration of Huh7 cells, and markedly enhanced the anticancer effects of the microtubule-targeted drugs in Huh7 cells compared to the free drugs, CA4 or 2ME. The results indicated that EGFR receptor-mediated internalization via cetuximab facilitated enhanced uptake of the nanocomplexes leading to potent anticancer efficacy in Huh7 cells. Cetuximab-functionalized PLGA-b-PEG nanocomplexes possess a strong potential for the targeted delivery of CA4 or 2ME in EGFR overexpressed HCC cells, and the strategy may be useful for selectively targeting microtubules in these cells.

  2. Pharmacological characterization of EN-9, a novel chimeric peptide of endomorphin-2 and neuropeptide FF that produces potent antinociceptive activity and limited tolerance. (United States)

    Wang, Zi-Long; Li, Ning; Wang, Pei; Tang, Hong-Hai; Han, Zheng-Lan; Song, Jing-Jing; Li, Xu-Hui; Yu, Hong-Ping; Zhang, Ting; Zhang, Run; Xu, Biao; Zhang, Meng-Na; Fang, Quan; Wang, Rui


    Mounting evidences indicate the functional interactions between neuropeptide FF (NPFF) and opioids, including the endogenous opioids. In the present work, EN-9, a chimeric peptide containing the functional domains of the endogenous opioid endomorphin-2 (EM-2) and NPFF, was synthesized and pharmacologically characterized. In vitro cAMP assay demonstrated that EN-9 was a multifunctional agonist of κ-opioid, NPFF1 and NPFF2 receptors. In the mouse tail-flick test, intracerebroventricularly (i.c.v.) administration of EN-9 produced significant antinociception with an ED50 value of 13.44 nmol, which lasted longer than that of EM-2. In addition, EN-9 induced potent antinociception after both intravenous (i.v.) and subcutaneous (s.c.) injection. Furthermore, the experiments using the antagonists of opioid and NPFF receptors indicated that the central antinociception of EN-9 was mainly mediated by κ-opioid receptor, independently on NPFF receptors. Notably, the central antinociception of EN-9 was not reduced over a period of 6 days repeated i.c.v. injection. Repeated i.c.v. administration of EN-9 with the NPFF1 and NPFF2 receptors antagonist RF9 resulted in a progressive loss of analgesic potency, consistent with the development of tolerance. Moreover, central administration of EN-9 induced the place conditioning aversion only at a high dose of 60 nmol, but not at low doses. At supraspinal level, only high dose of EN-9 (60 nmol, i.c.v.) inhibited gastrointestinal transit via NPFF receptors. Similarly, systemic administration of EN-9 also inhibited gastrointestinal transit at high doses (10 and 30 mg/kg, i.v.). Taken together, the multifunctional agonist of κ-opioid and NPFF receptors EN-9 produced a potent, non-tolerance forming antinociception with limited side effects.

  3. Potent inhibition of angiotensin AT1 receptor signaling by RGS8: importance of the C-terminal third exon part of its RGS domain. (United States)

    Song, Dan; Nishiyama, Mariko; Kimura, Sadao


    R4/B subfamily RGS (regulator of G protein signaling) proteins play roles in regulation of many GPCR-mediated responses. Multiple RGS proteins are usually expressed in a cell, and it is difficult to point out which RGS protein species are functionally important in the cell. To evaluate intrinsic potency of these RGS proteins, we compared inhibitory effects of RGS1, RGS2, RGS3, RGS4, RGS5, RGS8 and RGS16 on AT1 receptor signaling. Intracellular Ca(2+) responses to angiotensin II were markedly attenuated by transiently expressed RGS2, RGS3 and RGS8, compared to weak inhibition by RGS1, RGS4, RGS5 and RGS16. N-terminally deleted RGS2 (RGS2 domain) lost this potent inhibitory effect, whereas RGS domains of RGS3 and RGS8 showed strong inhibition similar to those of the full-length proteins. To investigate key determinants that specify the differences in potency, we constructed chimeric domains by replacing one or two of three exon parts of RGS8 domain with the corresponding part of RGS5. The chimeric RGS8 domains containing the first or the second exon part of RGS5 showed strong inhibitory effects similar to that of wild type RGS8, but the chimeric domain with the third exon part of RGS5 lost its activity. On the contrary, replacement of the third exon part of RGS5 with the corresponding residues of RGS8 increased the inhibitory effect. The role of the third exon part of RGS8 domain was further confirmed with the chimeric RGS8/RGS4 domains. These results indicate the potent inhibitory activity of RGS8 among R4/B subfamily proteins and importance of the third exon.

  4. [Dmt(1)]DALDA is highly selective and potent at mu opioid receptors, but is not cross-tolerant with systemic morphine. (United States)

    Riba, Pal; Ben, Yong; Nguyen, Thi M-D; Furst, Susanna; Schiller, Peter W; Lee, Nancy M


    The clinical effectiveness of morphine is limited by several side effects, including the development of tolerance and dependence. Most of these side effects are believed to be mediated by central opioid receptors; therefore, hydrophilic opioids, which don't cross the blood-brain barrier, may have advantages over morphine in some clinical applications. We recently synthesized several analogues of DALDA (Tyr-D-Arg-Phe-Lys-NH2), a highly hydrophilic peptide derived from the endogenous opioid peptide dermorphin; all of them, particularly [Dmt(1)] DALDA (Dmt - 2',6'-dimethyl tyrosine), had high potency and selectivity at mu receptors, the target of morphine, in activity assays. Here we report the pharmacological characterization of [Dmt(1)] DALDA in the whole animal. [Dmt(1)]DALDA was 40 times more potent than morphine in inducing antinociception in mice when both drugs were given s.c., and 6-14 times more potent than DAMGO, a selective m agonist, when both drugs were given it. However, [Dmt(1)]DALDA showed poor cross-tolerance to morphine; thus chronic morphine treatment of animals increased the antinociceptive AD(50) of systemic [Dmt(1)]DALDA two fold or less, as compared to an 8-9-fold increase for morphine and a 4-5-fold increase for DAMGO. The antinociceptive activity of [Dmt(1)]DALDA (i.t) was blocked by CTAP, a selective mu antagonist, but not by TIPP psi, a selective delta antagonist, nor by nor-BNI, a selective kappa antagonist. [Dmt(1)]DALDA-induced antinociception was also blocked by naloxone methiodide, an antagonist that does not cross the blood-brain barrier, when agonist and antagonist were given i.t. or i.c.v., but not when they were given s.c. We conclude that [Dmt(1)] DALDA is a highly potent analgesic acting at mu receptors. Though it appears to penetrate the blood-brain barrier, it exhibits low cross-tolerance to morphine, suggesting that it may have advantages over the latter in certain clinical applications.

  5. Models as Mediators

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    from laboratory studies, (Latour 1979; Lynch 1985; Sommerlund 2004 (2007); Sommerlund 2006) and is complemented by the attention paid to the "mediator" by Hennion (1989; 1997; 2005). The empirical focus will be on a central - but overlooked - actor of branding and advertising; the model. The model has...... solely been theorized within cultural studies (Craik 1994) as feminine spectacle, but has been neglected as mediator and actor. This paper will argue that models are co-producers of brands, and vice versa. Empirically, the paper will present interviews with models, model-scouts, agents, and advertisers...

  6. Mediated intimacy in families

    DEFF Research Database (Denmark)

    Stougaard, Malthe Kirkhoff


    Mediating intimacy between children and their parents is still limited investigated and at the same time, we find that, emerging technologies are about to change and affect the way we interact with each other. In this paper, we report from an empirical study where we investigated the social...... with other types of intimate relations such as strong-tie intimacy (couples cohabiting). However, we also identified several issues of intimacy unique to the special relation between children and their parents. These unique acts of intimacy propose challenges when designing technologies for mediated intimacy...

  7. Biaryl ethers as potent allosteric inhibitors of reverse transcriptase and its key mutant viruses: aryl substituted pyrazole as a surrogate for the pyrazolopyridine motif. (United States)

    Su, Dai-Shi; Lim, John J; Tinney, Elizabeth; Tucker, Thomas J; Saggar, Sandeep; Sisko, John T; Wan, Bang-Lin; Young, Mary Beth; Anderson, Kenneth D; Rudd, Deanne; Munshi, Vandna; Bahnck, Carolyn; Felock, Peter J; Lu, Meiquing; Lai, Ming-Tain; Touch, Sinoeun; Moyer, Gregory; Distefano, Daniel J; Flynn, Jessica A; Liang, Yuexia; Sanchez, Rosa; Perlow-Poehnelt, Rebecca; Miller, Mike; Vacca, Joe P; Williams, Theresa M; Anthony, Neville J


    Biaryl ethers were recently reported as potent NNRTIs. Herein, we disclose a detailed effort to modify the previously reported compound 1. We have designed and synthesized a series of novel pyrazole derivatives as a surrogate for pyrazolopyridine motif that were potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells.

  8. GBR-12909 and fluspirilene potently inhibited binding of ( sup 3 H) (+) 3-PPP to sigma receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, P.C.; Bremer, M.E.; Rao, T.S. (G. D. Searle Co., Chesterfield, MO (USA))


    Fluspirilene and GBR-12909, two compounds structurally similar to BMY-14802 and haloperidol, were assessed for their ability to interact with sigma receptors. Fluspirilene, an antipsychotic agent that interacts potently with dopamine receptors, inhibited the binding of ({sup 3}H)-(+)3-PPP (IC{sub 50} = 380 nM) more potently than rimcazole, a putative sigma antagonist that was tested clinically for antipsychotic activity. GBR-12909, a potent dopamine uptake blocker, also inhibited the binding of ({sup 3}H)-(+)3-PPP with an IC{sub 50} of 48 nM. However, other compounds that block the re-uptake of catecholamines, such as nomifensine, desipramine, imipramine, xylamine, benztropine and cocaine, were much weaker than GBR-12909as sigma ligands. Thus, GBR-12909 and fluspirilene, compounds structurally similar to BMY-14802, are potent sigma ligands.

  9. Safe interruption of maintenance therapy against previous infection with four common HIV-associated opportunistic pathogens during potent antiretroviral therapy

    DEFF Research Database (Denmark)

    Kirk, Ole; Reiss, Peter; Uberti-Foppa, Caterina;


    BACKGROUND: The safety of interrupting maintenance therapy for previous opportunistic infections other than Pneumocystis carinii pneumonia among patients with HIV infection who respond to potent antiretroviral therapy has not been well documented. OBJECTIVE: To assess the safety of interrupting m...

  10. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.


    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  11. Potent delta-opioid receptor agonists containing the Dmt-Tic pharmacophore. (United States)

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Jinsmaa, Yunden; Bryant, Sharon D; Lazarus, Lawrence H


    Conversion of delta-opioid receptor antagonists containing the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore into potent delta-agonists required a third heteroaromatic nucleus, such as 1H-benzimidazole-2-yl (Bid) and a linker of specified length both located C-terminally to Tic in the general formula H-Dmt-Tic-NH-CH(R)-R'. The distance between Tic and Bid is a determining factor responsible for the acquisition of delta agonism (2, 2', 3, 4, 6) or delta antagonism (8). Compounds containing a C-terminal Ala (1, 1'), Asp (5), or Asn (7) with an amide (1, 1', 5) or free acid group (7) served as delta-antagonist controls lacking the third heteroaromatic ring. A change in chirality of the spacer (2, 2') or inclusion of a negative charge via derivatives of Asp (4, 6) resulted in potent delta agonism and moderate mu agonism, although delta-receptor affinity decreased about 10-fold for 4 while mu affinity fell by over 2 orders of magnitude. Repositioning of the negative charge in the linker altered activity: H-Dmt-Tic-NH-CH(CH(2)-Bid)COOH (6) maintained high delta affinity (K(i) = 0.042 nM) and delta agonism (IC(50) = 0.015 nM), but attachment of the free acid group to Bid [H-Dmt-Tic-NH-CH(2)-Bid(CH(2)-COOH) (9)] reconstituted delta antagonism (K(e) = 0.27 nM). The data demonstrate that a linker separating the Dmt-Tic pharmacophore and Bid, regardless of the presence of a negative charge, is important in the acquisition of opioids exhibiting potent delta agonism and weak mu agonism from a parent delta antagonist.

  12. Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus. (United States)

    Ranasinghe, Shiwanthi L; Fischer, Katja; Zhang, Wenbao; Gobert, Geoffrey N; McManus, Donald P


    The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic.

  13. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells. (United States)

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T C; Imren, Suzan; Lam, Vivian; Poon, Grace F T; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William; Krystal, Gerald


    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light-inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation-dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell-depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML.

  14. Masitinib (AB1010, a potent and selective tyrosine kinase inhibitor targeting KIT.

    Directory of Open Access Journals (Sweden)

    Patrice Dubreuil

    Full Text Available BACKGROUND: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010, a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. METHODOLOGY/PRINCIPAL FINDINGS: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC(50 of 200+/-40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC(50 of 150+/-80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. CONCLUSIONS: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity.

  15. 3,5-Bis(3-alkylaminomethyl-4-hydroxybenzylidene)-4-piperidones: A Novel Class of Potent Tumor-Selective Cytotoxins. (United States)

    Karki, Subhas S; Das, Umashankar; Umemura, Naoki; Sakagami, Hiroshi; Iwamoto, Shoko; Kawase, Masami; Balzarini, Jan; De Clercq, Erik; Dimmock, Stephen G; Dimmock, Jonathan R


    Novel 4-piperidone derivatives 2a-f are disclosed as potent cytotoxins. Many of these compounds are more potent than the reference drug melphalan. The compounds in series 2, 4-7 display selective toxicities toward various neoplasms compared to some normal cells. 2a is one of the promising lead molecules that display >11-fold higher growth inhibiting potency than 5-fluorouracil against human colon cancer cells. 2a induces apoptosis, DNA fragmentation, and cleavage of poly ADP-ribose polymerase.

  16. Structural Basis for the Potent and Selective Inhibition of Casein Kinase 1 Epsilon

    Energy Technology Data Exchange (ETDEWEB)

    Long, Alexander M. [Amgen Inc., Cambridge, MA (United States); Zhao, Huilin [Amgen Inc., Cambridge, MA (United States); Huang, Xin [Amgen Inc., Cambridge, MA (United States)


    Casein kinase 1 epsilon (CK1ε) and its closest homologue CK1δ are key regulators of diverse cellular processes. We report two crystal structures of PF4800567, a potent and selective inhibitor of CK1ε, bound to the kinase domains of human CK1ε and CK1δ as well as one apo CK1ε crystal structure. These structures provide a molecular basis for the strong and specific inhibitor interactions with CK1ε and suggest clues for further development of CK1δ inhibitors.

  17. Biological evaluation of some uracil derivatives as potent glutathione reductase inhibitors (United States)

    Güney, Murat; Ekinci, Deniz; Ćavdar, Huseyin; Şentürk, Murat; Zilbeyaz, Kani


    Discovery of glutathione reductase (GR) inhibitors has become very popular recently due to antimalarial and anticancer activities. In this study, GR inhibitory capacities of some uracil derivatives (UDCs) (1-4) were reported. Some commercially available molecules (5-6) were also tested for comparison reasons. The novel UDCs were obtained in high yields using simple chemical procedures and exhibited much potent inhibitory activities against GR at low nanomolar concentrations with IC50 values ranging from 2.68 to 166.6 nM as compared with well-known agents.

  18. In Situ Click Chemistry for the Identification of a Potent D-Amino Acid Oxidase Inhibitor. (United States)

    Toguchi, Shohei; Hirose, Tomoyasu; Yorita, Kazuko; Fukui, Kiyoshi; Sharpless, K Barry; Ōmura, Satoshi; Sunazuka, Toshiaki


    In situ click chemistry is a target-guided synthesis approach for discovering novel lead compounds by assembling organic azides and alkynes into triazoles inside the affinity site of target biogenic molecules such as proteins. We report in situ click chemistry screening with human D-amino acid oxidase (hDAO), which led to the identification of a more potent hDAO inhibitor. The hDAO inhibitors have chemotherapeutic potential as antipsychotic agents. The new inhibitor displayed competitive inhibition of hDAO and showed significantly increased inhibitory activity against hDAO compared with that of an anchor molecule of in situ click chemistry.

  19. Rational design and asymmetric synthesis of potent and neurotrophic ligands for FK506-binding proteins (FKBPs). (United States)

    Pomplun, Sebastian; Wang, Yansong; Kirschner, Alexander; Kozany, Christian; Bracher, Andreas; Hausch, Felix


    To create highly efficient inhibitors for FK506-binding proteins, a new asymmetric synthesis for pro-(S)-C(5) -branched [4.3.1] aza-amide bicycles was developed. The key step of the synthesis is an HF-driven N-acyliminium cyclization. Functionalization of the C(5)  moiety resulted in novel protein contacts with the psychiatric risk factor FKBP51, which led to a more than 280-fold enhancement in affinity. The most potent ligands facilitated the differentiation of N2a neuroblastoma cells with low nanomolar potency.

  20. Discovery of new SCH 39166 analogs as potent and selective dopamine D1 receptor antagonists. (United States)

    Qiang, Li; Sasikumar, T K; Burnett, Duane A; Su, Jing; Tang, Haiqun; Ye, Yuanzan; Mazzola, Robert D; Zhu, Zhaoning; McKittrick, Brian A; Greenlee, William J; Fawzi, Ahmad; Smith, Michelle; Zhang, Hongtao; Lachowicz, Jean E


    A series of novel dopamine D(1) antagonists derived from functionalization of the D-ring of SCH 39166 were prepared. A number of these compounds displayed subnanomolar D(1) activity and more than 1000-fold selectivity over D(2). We found C-3 derivatization afforded compounds with superior overall profile in comparison to the C-2 and C-4 derivatization. A number of highly potent D(1) antagonists were discovered which have excellent selectivity over other dopamine receptors and improved PK profile compared to SCH 39166.

  1. Swinholide J, a Potent Cytotoxin from the Marine Sponge Theonella swinhoei

    Directory of Open Access Journals (Sweden)

    Angela Zampella


    Full Text Available In our ongoing search for new pharmacologically active leads from Solomon organisms, we have examined the sponge Theonella swinhoei. Herein we report the isolation and structure elucidation of swinholide A (1 and one new macrolide, swinholide J (2. Swinholide J is an unprecedented asymmetric 44-membered dilactone with an epoxide functionality in half of the molecule. The structural determination was based on extensive interpretation of high-field NMR spectra and HRESIMS data. Swinholide J displayed potent in vitro cytotoxicity against KB cells (human nasopharynx cancer with an IC50 value of 6 nM.

  2. Aryl Pyrazoles as Potent Inhibitors of Arginine Methyltransferases: Identification of the First PRMT6 Tool Compound. (United States)

    Mitchell, Lorna H; Drew, Allison E; Ribich, Scott A; Rioux, Nathalie; Swinger, Kerren K; Jacques, Suzanne L; Lingaraj, Trupti; Boriack-Sjodin, P Ann; Waters, Nigel J; Wigle, Tim J; Moradei, Oscar; Jin, Lei; Riera, Tom; Porter-Scott, Margaret; Moyer, Mikel P; Smith, Jesse J; Chesworth, Richard; Copeland, Robert A


    A novel aryl pyrazole series of arginine methyltransferase inhibitors has been identified. Synthesis of analogues within this series yielded the first potent, selective, small molecule PRMT6 inhibitor tool compound, EPZ020411. PRMT6 overexpression has been reported in several cancer types suggesting that inhibition of PRMT6 activity may have therapeutic utility. Identification of EPZ020411 provides the field with the first small molecule tool compound for target validation studies. EPZ020411 shows good bioavailability following subcutaneous dosing in rats making it a suitable tool for in vivo studies.

  3. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics. (United States)

    Le, V H; Inai, M; Williams, R M; Kan, T


    The ecteinascidin family comprises a number of biologically active compounds, containing two to three tetrahydroisoquinoline subunits. Although isolated from marine tunicates, these compounds share a common pentacyclic core with several antimicrobial compounds found in terrestrial bacteria. Among the tetrahydroisoquinoline natural products, ecteinascidin 743 (Et-743) stands out as the most potent antitumor antibiotics that it is recently approved for treatment of a number of soft tissue sarcomas. In this article, we will review the backgrounds, the mechanism of action, the biosynthesis, and the synthetic studies of Et-743. Also, the development of Et-743 as an antitumor drug is discussed.

  4. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. (United States)

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen


    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  5. Discovery and crystallography of bicyclic arylaminoazines as potent inhibitors of HIV-1 reverse transcriptase. (United States)

    Lee, Won-Gil; Frey, Kathleen M; Gallardo-Macias, Ricardo; Spasov, Krasimir A; Chan, Albert H; Anderson, Karen S; Jorgensen, William L


    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (HIV-RT) are reported that incorporate a 7-indolizinylamino or 2-naphthylamino substituent on a pyrimidine or 1,3,5-triazine core. The most potent compounds show below 10 nanomolar activity towards wild-type HIV-1 and variants bearing Tyr181Cys and Lys103Asn/Tyr181Cys resistance mutations. The compounds also feature good aqueous solubility. Crystal structures for two complexes enhance the analysis of the structure-activity data.

  6. Swinholide J, a potent cytotoxin from the marine sponge Theonella swinhoei. (United States)

    De Marino, Simona; Festa, Carmen; D'Auria, Maria Valeria; Cresteil, Thierry; Debitus, Cecile; Zampella, Angela


    In our ongoing search for new pharmacologically active leads from Solomon organisms, we have examined the sponge Theonella swinhoei. Herein we report the isolation and structure elucidation of swinholide A (1) and one new macrolide, swinholide J (2). Swinholide J is an unprecedented asymmetric 44-membered dilactone with an epoxide functionality in half of the molecule. The structural determination was based on extensive interpretation of high-field NMR spectra and HRESIMS data. Swinholide J displayed potent in vitro cytotoxicity against KB cells (human nasopharynx cancer) with an IC(50) value of 6 nM.

  7. 5-Amino-pyrazoles as potent and selective p38[alpha] inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jagabandhu; Moquin, Robert V.; Dyckman, Alaric J.; Li, Tianle; Pitt, Sidney; Zhang, Rosemary; Shen, Ding Ren; McIntyre, Kim W.; Gillooly, Kathleen; Doweyko, Arthur M.; Newitt, John A.; Sack, John S.; Zhang, Hongjian; Kiefer, Susan E.; Kish, Kevin; McKinnon, Murray; Barrish, Joel C.; Dodd, John H.; Schieven, Gary L.; Leftheris, Katerina (BMS)


    The synthesis and structure-activity relationships (SAR) of p38{alpha} MAP kinase inhibitors based on a 5-amino-pyrazole scaffold are described. These studies led to the identification of compound 2j as a potent and selective inhibitor of p38{alpha} MAP kinase with excellent cellular potency toward the inhibition of TNF{alpha} production. Compound 2j was highly efficacious in vivo in inhibiting TNF{alpha} production in an acute murine model of TNF{alpha} production. X-ray co-crystallography of a 5-amino-pyrazole analog 2f bound to unphosphorylated p38{alpha} is also disclosed.

  8. Evaluation of the analgesic effects of ammoxetine, a novel potent serotonin and norepinephrine reuptake inhibitor


    Zhang, Ting-Ting; Xue, Rui; Zhu, Lei; Li, Juan; Fan, Qiong-yin; Zhong, Bo-hua; Li, Yun-Feng; Ye, Cai-ying; Zhang, You-zhi


    Aim: The selective serotonin (5-HT) and norepinephrine (NE) reuptake inhibitors (SNRIs) are commonly used for the treatment of neuropathic pain and fibromyalgia. Ammoxetine ((±)-3-(benzo[d] [1,3]dioxol-4-yloxy)-N-methyl-3-(thiophen-2-yl)propan-1-amine) has been identified as a novel potent SNRI. In this study, we evaluated the acute analgesic properties of ammoxetine in different animal models of pain, and examined the involvement of monoamines in its analgesic actions. Methods: The analgesic...

  9. Discovery of S-444823, a potent CB1/CB2 dual agonist as an antipruritic agent. (United States)

    Odan, Masahide; Ishizuka, Natsuki; Hiramatsu, Yoshiharu; Inagaki, Masanao; Hashizume, Hiroshi; Fujii, Yasuhiko; Mitsumori, Susumu; Morioka, Yasuhide; Soga, Masahiko; Deguchi, Masashi; Yasui, Kiyoshi; Arimura, Akinori


    The optimization of a series of 3-carbamoyl 2-pyridone derivatives as CB agonists is reported. These efforts resulted in the discovery of 3-(2-(1-(cyclohexylmethyl)-2-oxo-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carboxamido)thiazol-4-yl)propanoic acid (21), a potent dual CB1/CB2 agonist without CNS side effects induced by CB1 receptor activation. It exhibited strong inhibition of scratching as a 1.0% acetone solution in the pruritic model.

  10. Model for Osteosarcoma-9 as a potent factor in cell survival and resistance to apoptosis (United States)

    Vourvouhaki, Ekaterini; Carvalho, Carla; Aguiar, Paulo


    In this paper we use a simple model to explore the function of the gene Osteosarcoma-9 (OS-9). We are particularly interested in understanding the role of this gene as a potent anti-apoptotic factor. The theoretical description is constrained by experimental data from induction of apoptosis in cells where OS-9 is overexpressed. The data available suggest that OS-9 promotes cell viability and confers resistance to apoptosis, potentially implicating OS-9 in the survival of cancer cells. Three different apoptosis-inducing mechanisms were tested and are modeled here. A more complex and realistic model is also discussed.

  11. Prophylactic treatment with a potent corticosteroid cream ameliorates radiodermatitis, independent of radiation schedule

    DEFF Research Database (Denmark)

    Ulff, Eva; Maroti, Marianne; Serup, Jörgen;


    schedules as well as for anatomical sites, skin type, breast size and BMI. Patients treated the irradiated area during the radiation period and two weeks following cessation of radiation. RESULTS: Patients receiving hypofraction RT developed less skin reactions than those treated with conventional RT...... in patients with breast cancer receiving adjuvant radiotherapy (RT) after surgery. In total, 202 patients were randomized to betamethasone-17-valerate cream or Essex® cream, a moisturizer. Treatment was assessed by RTOG clinical scoring. Patients' symptoms were recorded. The analyses were stratified for RT....... Treatment with a potent steroid resulted in clinically and statistically significantly less skin reactions (p

  12. N,O-diacylated-N-hydroxyarylsulfonamides: nitroxyl precursors with potent smooth muscle relaxant properties

    Energy Technology Data Exchange (ETDEWEB)

    Fukuto, J.M.; Hszieh, R.; Gulati, P.; Chiang, K.T.; Nagasawa, H.T. (Department of Pharmacology, UCLA School of Medicine, Los Angeles, CA (United States))


    N,O-Diacylated-N-hydroxyarylsulfonamides are capable of slowly releasing nitroxyl (HNO) by simple, non-enzymatic hydrolysis in Krebs solution at 37 degrees C. Release of nitric oxide (NO) was not seen. These compounds were also found to elicit vasorelaxation in rabbit thoracic aorta in vitro, presumably as a result of their ability to release HNO. This effect was enhanced by the addition of superoxide dismutase (SOD). Thus, these results are consistent with previous work indicating that HNO is a potent vasorelaxant.

  13. Potent airway smooth muscle relaxant effect of cynatratoside B, a steroidal glycoside isolated from Cynanchum stauntonii. (United States)

    Yue, Grace Gar-Lee; Chan, Kar-Man; To, Ming-Ho; Cheng, Ling; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San


    The dried roots of Cynanchum stauntonii in having cough-relieving efficacy are commonly included in traditional antitussive formulas. The active components in a C. stauntonii root extract responsible for airway relaxation were isolated using an ex vivo bioassay-guided fractionation method, in which subfractions were evaluated for their inhibitory effects on the contraction of isolated rat tracheal rings by isometric tension measurements. A steroidal glycoside, cynatratoside B (1), identified by LC-MS and NMR spectroscopic analysis, was shown to have potent inhibition on acetylcholine- and carbachol-induced tracheal contractions. The present data provide scientific evidence to support the traditional use of C. stauntonii as an antitussive herbal medicine.

  14. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents

    DEFF Research Database (Denmark)

    Thanh Tung, Truong; Oanh, Dao Thi Kim; Dung, Phan Thi Phuong;


    Results from clinical studies have demonstrated that inhibitors of histone deacetylase (HDAC) enzymes possess promise for the treatment of several types of cancer. Zolinza(®) (widely known as SAHA) has been approved by the FDA for the treatment of T-cell lymphoma. As a continuity of our ongoing...... research to find novel small molecules to target these important enzymes, we synthesized a series of benzothiazole-containing analogues of SAHA and found several compounds with very potent anticancer cytotoxicity. In this study, three more compounds of this type, including N(1)-(6-chlorobenzo[d]thiazol-2...

  15. Statins attenuate polymethylmethacrylate-mediated monocyte activation.

    LENUS (Irish Health Repository)

    Laing, Alan J


    BACKGROUND: Periprosthetic osteolysis precipitates aseptic loosening of components, increases the risk of periprosthetic fracture and, through massive bone loss, complicates revision surgery and ultimately is the primary cause for failure of joint arthroplasty. The anti-inflammatory properties of HMG-CoA reductase inhibitors belonging to the statin family are well recognized. We investigated a possible role for status in initiating the first stage of the osteolytic cycle, namely monocytic activation. METHODS: We used an in vitro model of the human monocyte\\/macrophage inflammatory response to poly-methylmethacrylate (PMMA) particles after pretreat-ing cells with cerivastatin, a potent member of the statin family. Cell activation based upon production of TNF-alpha and MCP-1 cytokines was analyzed and the intracellular Raf-MEK-ERK signal transduction pathway was evaluated using western blot analysis, to identify its role in cell activation and in any cerivastatin effects observed. RESULTS: We found that pretreatment with cerivastatin significantly abrogates the production of inflammatory cytokines TNF-alpha and MCP-1 by human monocytes in response to polymethylmethacrylate particle activation. This inflammatory activation and attenuation appear to be mediated through the intracellular Raf-MEK-ERK pathway. INTERPRETATION: We propose that by intervening at the upstream activation stage, subsequent osteoclast activation and osteolysis can be suppressed. We believe that the anti-inflammatory properties of statins may potentially play a prophylactic role in the setting of aseptic loosening, and in so doing increase implant longevity.

  16. Teachers as mediators

    DEFF Research Database (Denmark)

    Dorf, Hans; Kelly, Peter; Hohmann, Ulrike


    Within the context of lower secondary English teaching in South West England, this study identifies in broad terms the competing goals between which English teachers mediate and the explicit and hidden tensions that result. To understand the interactions of competing goals, teachers’ goal...

  17. Mediatization and Government Communication

    DEFF Research Database (Denmark)

    Laursen, Bo; Valentini, Chiara


    in the light of mediatization and government communication theories. Without one pan-European public sphere, the European Parliament, like the other European Union (EU) institutions, competes with national actors for the news media’s attention in the EU’s twenty-eight national public spheres, where EU affairs...

  18. Expanding mediation theory

    NARCIS (Netherlands)

    Verbeek, P.P.C.C.


    In his article In Between Us, Yoni van den Eede expands existing theories of mediation into the realm of the social and the political, focusing on the notions of opacity and transparency. His approach is rich and promising, but two pitfalls should be avoided. First, his concept of ‘in-between’ runs

  19. Mediation and Automatization. (United States)

    Hutchins, Edwin

    This paper discusses the relationship between the mediation of task performance by some structure that is not inherent in the task domain itself and the phenomenon of automatization, in which skilled performance becomes effortless or phenomenologically "automatic" after extensive practice. The use of a common simple explicit mediating…

  20. Thermally favourable gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Dalianis, Ioannis, E-mail: [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland); Lalak, Zygmunt, E-mail: [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Hoza 69, Warsaw (Poland)


    We discuss the thermal evolution of the spurion and messenger fields of ordinary gauge mediation models taking into account the Standard Model degrees of freedom. It is shown that for thermalized messengers the metastable susy breaking vacuum becomes thermally selected provided that the susy breaking sector is sufficiently weakly coupled to messengers or to any other observable field.

  1. Natural generalized mirage mediation (United States)

    Baer, Howard; Barger, Vernon; Serce, Hasan; Tata, Xerxes


    In the supersymmetric scenario known as mirage mediation (MM), the soft supersymmetry (SUSY) breaking terms receive comparable anomaly-mediation and moduli-mediation contributions leading to the phenomenon of mirage unification. The simplest MM SUSY breaking models which are consistent with the measured Higgs mass and sparticle mass constraints are strongly disfavored by fine-tuning considerations. However, while MM makes robust predictions for gaugino masses, the scalar sector is quite sensitive to specific mechanisms for moduli stabilization and potential uplifting. We suggest here a broader setup of generalized mirage mediation (GMM), where heretofore discrete parameters are allowed as continuous to better parametrize these other schemes. We find that natural SUSY spectra consistent with both the measured value of mh as well as LHC lower bounds on superpartner masses are then possible. We explicitly show that models generated from natural GMM may be beyond the reach of even high-luminosity LHC searches. In such a case, the proposed International Linear e+e- Collider will be required for natural SUSY discovery via higgsino pair production reactions. We also outline prospects for detection of higgsino-like WIMPs from natural GMM.

  2. Design of new and potent diethyl thiobarbiturates as urease inhibitors: a computational approach. (United States)

    Wadood, Abdul; Riaz, Muhammad; Mulk, Amir Ul; Khan, Momin; Haleem, Sobia Ahsan; Shams, Sulaiman; Gul, Sahib; Ahmed, Ayaz; Qasim, Muhammad; Ali, Farman; Ul-Haq, Zaheer


    Urease is an important enzyme both in agriculture and medicine research. Strategies based on urease inhibition is critically considered as the first line treatment of infections caused by urease producing bacteria. Since, urease possess agro-chemical and medicinal importance, thus, it is necessary to search for the novel compounds capable of inhibiting this enzyme. Several computational methods were employed to design novel and potent urease inhibitors in this work. First docking simulations of known compounds consists of a set of arylidine barbiturates (termed as reference) were performed on the Bacillus pasteurii (BP) urease. Subsequently, two fold strategies were used to design new compounds against urease. Stage 1 comprised of the energy minimization of enzyme-ligand complexes of reference compounds and the accurate prediction of the molecular mechanics generalized born (MMGB) interaction energies. In the second stage, new urease inhibitors were then designed by the substitution of different groups consecutively in the aryl ring of the thiobarbiturates and N, N-diethyl thiobarbiturates of the reference ligands.. The enzyme-ligand complexes with lowest interaction energies or energies close to the calculated interaction energies of the reference molecules, were selected for the consequent chemical manipulation. This was followed by the substitution of different groups on the 2 and 5 positions of the aryl ring. As a result, several new and potent diethyl thiobarbiturates were predicted as urease inhibitors. This approach reflects a logical progression for early stage drug discovery that can be exploited to successfully identify potential drug candidates.

  3. New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents. (United States)

    Tung, Truong Thanh; Oanh, Dao Thi Kim; Dung, Phan Thi Phuong; Hue, Van Thi My; Park, Sang Ho; Han, Byung Woo; Kim, Youngsoo; Hong, Jin-Tae; Han, Sang-Bae; Nam, Nguyen-Hai


    Results from clinical studies have demonstrated that inhibitors of histone deacetylase (HDAC) enzymes possess promise for the treatment of several types of cancer. Zolinza(®) (widely known as SAHA) has been approved by the FDA for the treatment of T-cell lymphoma. As a continuity of our ongoing research to find novel small molecules to target these important enzymes, we synthesized a series of benzothiazole-containing analogues of SAHA and found several compounds with very potent anticancer cytotoxicity. In this study, three more compounds of this type, including N(1)-(6-chlorobenzo[d]thiazol-2-yl)-N(8)-hydroxyoctanediamide (3a), N(1)-[6-(trifluoromethyl)benzo[d]thiazol-2-yl]-N(8)-hydroxyoctanediamide (3b) and N(1)-(thiazol-2-yl)-N(8)-hydroxyoctanediamide (6) were synthesized and evaluated for HDAC inhibition and cytotoxic activities. All three compounds showed very potent HDAC inhibitory effects. Docking revealed that both two compounds 3a, 3b showed higher affinities towards HDAC(8) compared to SAHA. In vitro, compound 3a exhibited cytotoxicity equipotent to SAHA against five human cancer cell lines. In term of in vivo activity, compound 3a demonstrated equivalent efficacy to SAHA in mouse xenograft model.

  4. Human pituitary tissue secretes a potent growth factor for chondrocyte proliferation. (United States)

    Kasper, S; Friesen, H G


    We report the secretion from human pituitary tumor fragments in organ culture of a potent mitogen for chondrocyte proliferation. Primary human pituitary cell and organ cultures were established from pituitary fragments obtained from patients with acromegaly, prolactinomas, and nonfunctional adenomas. The conditioned culture medium contained a mitogenic factor(s) that stimulated rabbit fetal chondrocyte proliferation, causing up to an 8-fold increase in cell number when added to Ham's F-10 medium in the presence of 10% fetal bovine serum. Blood leaking into the surgical field after the adenomectomy is known to contain very high concentrations of pituitary hormones. Serum samples, obtained from this venous "ooze" collected at the site of pituitary surgery, also were found to contain chondrocyte growth-promoting activity. Some venous serum samples stimulated chondrocyte proliferation in a dose-dependent manner down to a 1:10 dilution of 1 microliter serum, indicating that the material being secreted was very potent indeed. Gel filtration on Sephadex G-100 and analytical gel isoelectric focusing of culture media or serum samples from the pituitary fossa demonstrated that the growth factor secreted from the pituitary tumor fragments as well as from the venous serum is similar, if not identical, to chondrocyte growth factor (mol wt, 43,000; pI 7.6-7.9) purified from human pituitaries collected at autopsy. These results suggest that the chondrocyte growth-promoting factor(s) may not only be secreted by pituitary tumor fragments but by normal human pituitary tissue as well.

  5. Potent macrocyclic inhibitors of insulin-regulated aminopeptidase (IRAP) by olefin ring-closing metathesis. (United States)

    Andersson, Hanna; Demaegdt, Heidi; Johnsson, Anders; Vauquelin, Georges; Lindeberg, Gunnar; Hallberg, Mathias; Erdelyi, Mate; Karlen, Anders; Hallberg, Anders


    Macrocyclic analogues of angiotensin IV (Ang IV, Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) targeting the insulin-regulated aminopeptidase (IRAP) have been designed, synthesized, and evaluated biologically. Replacement of His(4)-Pro(5)-Phe(6) by a 2-(aminomethyl)phenylacetic acid (AMPAA) moiety and of Val(1) and Ile(3) by amino acids bearing olefinic side chains followed by macrocyclization provided potent IRAP inhibitors. The impact of the ring size and the type (saturated versus unsaturated), configuration, and position of the carbon-carbon bridge was assessed. The ring size generally affects the potency more than the carbon-carbon bond characteristics. Replacing Tyr(2) by β(3)hTyr or Phe is accepted, while N-methylation of Tyr(2) is deleterious for activity. Removal of the carboxyl group in the C-terminal slightly reduced the potency. Inhibitors 7 (K(i) = 4.1 nM) and 19 (K(i) = 1.8 nM), both encompassing 14-membered ring systems connected to AMPAA, are 10-fold more potent than Ang IV and are also more selective over aminopeptidase N (AP-N). Both compounds displayed high stability against proteolysis by metallopeptidases.

  6. Potent antimicrobial peptides against Legionella pneumophila and its environmental host, Acanthamoeba castellanii. (United States)

    Schlusselhuber, Margot; Humblot, Vincent; Casale, Sandra; Méthivier, Christophe; Verdon, Julien; Leippe, Matthias; Berjeaud, Jean-Marc


    Legionella pneumophila, the major causative agent of Legionnaires' disease, is most often found in the environment in close association with free-living amoebae, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. In the present study, we evaluated the anti-Legionella and anti-Acanthamoeba activities of three alpha-helical antimicrobial peptides (AMPs), namely, NK-2, Ci-MAM-A24, and Ci-PAP-A22, already known for the extraordinary efficacy against other microbes. Our data represent the first demonstration of the activity of a particular AMP against both the human facultative intracellular pathogen L. pneumophila and its pathogenic host, Acanthamoeba castellanii. Interestingly, the most effective peptide, Ci-MAM-A24, was also found to reduce the Legionella cell number within amoebae. Accordingly, this peptide was immobilized on gold surfaces to assess its antimicrobial activity. Surfaces were characterized, and activity studies revealed that the potent bactericidal activity of the peptide was conserved after its immobilization. In the frame of elaborating anti-Legionella surfaces, Ci-MAM-A24 represents, by its direct and indirect activity against Legionella, a potent peptide template for biological control of the bacterium in plumbings.

  7. Synthesis and characterization of phosphocitric acid, a potent inhibitor of hydroxylapatite crystal growth. (United States)

    Tew, W P; Mahle, C; Benavides, J; Howard, J E; Lehninger, A L


    Human urine and extracts of rat liver mitochondria contain apparently identical agents capable of inhibiting the precipitation or crystallization of calcium phosphate. Its general properties, as well as 1H NMR and mass spectra, have suggested that the agent is phosphocitric acid. This paper reports the synthesis of phosphocitric acid via the phosphorylation of triethyl citrate with o-phenylene phosphochloridate, hydrogenolysis of the product to yield triethyl phosphocitrate, hydrolytic removal of the blocking ethyl groups and also chromatographic purification. An enzymatic assay of phosphocitrate is described. Synthetic phosphocitrate was found to be an exceedingly potent inhibitor of the growth of hydroxylapatite seed crystals in a medium supersaturated with respect to Ca2+ and phosphate. Comparative assays showed phosphocitrate to be much more potent than the most active precipitation-crystallization inhibitors previously reported, which include pyrophosphate and ATP. 14C-Labeled phosphocitrate was bound very tightly to hydroxylapatite crystals. Such binding appeared to be essential for its inhibitory activity on crystal growth. Citrate added before but not after, phosphocitrate greatly enhanced the inhibitory potency of the latter. This enhancement effect was not given by other tricarboxylic acids. The monoethyl ester of phosphocitrate had no inhibitory effect on hydroxylapatite crystal growth.

  8. JB-9322, a new selective histamine H2-receptor antagonist with potent gastric mucosal protective properties. (United States)

    Palacios, B; Montero, M J; Sevilla, M A; Román, L S


    1. JB-9322 is a selective histamine H2-receptor antagonist with gastric antisecretory activity and mucosal protective properties. 2. The affinity of JB-9322 for the guinea-pig atria histamine H2-receptor was approximately 2 times greater than that of ranitidine. 3. In vivo, the ID50 value for the inhibition of gastric acid secretion in pylorus-ligated rats was 5.28 mg kg-1 intraperitoneally. JB-9322 also dose-dependently inhibited gastric juice volume and pepsin secretion. In gastric lumen-perfused rats, intravenous injection of JB-9322 dose-dependently reduced histamine-, pentagastrin- and carbachol-stimulated gastric acid secretion. 4. JB-9322 showed antiulcer activity against aspirin and indomethacin-induced gastric lesions and was more potent than ranitidine. 5. JB-9322 effectively inhibited macroscopic gastric haemorrhagic lesions induced by ethanol. Intraperitoneal injection was effective in preventing the lesions as well as oral treatment. The oral ID50 value for these lesions was 1.33 mg kg-1. By contrast, ranitidine (50 mg kg-1) failed to reduce these lesions. In addition, the protective effect of JB-9322 was independent of prostaglandin synthesis. 6. These results indicate that JB-9322 is a new antiulcer drug that exerts a potent cytoprotective effect in addition to its gastric antisecretory activity.

  9. Identification of a potent immunostimulatory oligodeoxynucleotide from Streptococcus thermophilus lacZ. (United States)

    Shimosato, Takeshi; Tohno, Masanori; Sato, Takashi; Nishimura, Junko; Kawai, Yasushi; Saito, Tadao; Kitazawa, Haruki


    Immunostimulatory sequences of oligodeoxynucleotides (ODNs), such as CpG ODNs, are potent stimulators of innate immunity. Here, we identified a strong immunostimulatory CpG ODN, which we named MsST, from the lac Z gene of Streptococcus (S.) thermophilus ATCC19258, and we evaluated its immune functions. In in vitro studies, MsST had a similar ability as the murine prototype CpG ODN 1555 to induce inflammatory cytokine production and cell proliferation. In mouse splenocytes, MsST increased the number of CD80+CD11c+and CD86+CD11c+ dendritic cells and CD4+CD25+ regulatory T cells. We also analyzed the effects of MsST on the expression of regulatory cytokines by real-time quantitative PCR. MsST was more potent at inducing interleukin-10 expression than the ODN control 1612, indicating that MsST can augment the regulatory T cell response via Toll-like receptor 9, which plays an important role in suppressing T helper type 2 responses. These results suggest that S. thermophilus, whose genes include a strong Immunostimulatory sequence-ODN, is a good candidate for a starter culture to develop new physiologically functional foods and feeds.

  10. An Amphotericin B Derivative Equally Potent to Amphotericin B and with Increased Safety (United States)

    Antillón, Armando; de Vries, Alexander H.; Espinosa-Caballero, Marcel; Falcón-González, José Marcos; Flores Romero, David; González–Damián, Javier; Jiménez-Montejo, Fabiola Eloísa; León-Buitimea, Angel; López-Ortiz, Manuel; Magaña, Ricardo; Marrink, Siewert J.; Morales-Nava, Rosmarbel; Periole, Xavier; Reyes-Esparza, Jorge; Rodríguez Lozada, Josué; Santiago-Angelino, Tania Minerva; Vargas González, María Cristina; Regla, Ignacio; Carrillo-Tripp, Mauricio; Fernández-Zertuche, Mario; Rodríguez-Fragoso, Lourdes; Ortega-Blake, Iván


    Amphotericin B is the most potent antimycotic known to date. However due to its large collateral toxicity, its use, although long standing, had been limited. Many attempts have been made to produce derivatives with reduced collateral damage. The molecular mechanism of polyene has also been closely studied for this purpose and understanding it would contribute to the development of safe derivatives. Our study examined polyene action, including chemical synthesis, electrophysiology, pharmacology, toxicology and molecular dynamics. The results were used to support a novel Amphotericin B derivative with increased selectivity: L-histidine methyl ester of Amphotericin B. We found that this derivative has the same form of action as Amphotericin B, i.e. pore formation in the cell membrane. Its reduced dimerization in solution, when compared to Amphotericin B, is at least partially responsible for its increased selectivity. Here we also present the results of preclinical tests, which show that the derivative is just as potent as Amphotericin B and has increased safety. PMID:27683101

  11. Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro (United States)

    Elosta, Abdulhakim; Slevin, Mark; Rahman, Khalid; Ahmed, Nessar


    Protein glycation involves formation of early (Amadori) and late advanced glycation endproducts (AGEs) together with free radicals via autoxidation of glucose and Amadori products. Glycation and increased free radical activity underlie the pathogenesis of diabetic complications. This study investigated whether aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro in a cell-free system. Proteins were glycated by incubation with sugars (glucose, methylglyoxal or ribose) ±5–15 mg/mL of aged and fresh garlic extracts. Advanced glycation endproducts were measured using SDS-PAGE gels and by ELISA whereas Amadori products were assessed by the fructosamine method. Colorimetric methods were used to assess antioxidant activity, free radical scavenging capacity, protein-bound carbonyl groups, thiol groups and metal chelation activities in addition to phenolic, total flavonoid and flavonol content of aged and fresh garlic extracts. Aged garlic inhibited AGEs by 56.4% compared to 33.5% for an equivalent concentration of fresh garlic extract. Similarly, aged garlic had a higher total phenolic content (129 ± 1.8 mg/g) compared to fresh garlic extract (56 ± 1.2 mg/g). Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract and is more suitable for use in future in vivo studies. PMID:28051097

  12. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. (United States)

    Richon, V M; Webb, Y; Merger, R; Sheppard, T; Jursic, B; Ngo, L; Civoli, F; Breslow, R; Rifkind, R A; Marks, P A


    Hybrid polar compounds, of which hexamethylenebisacetamide (HMBA) is the prototype, are potent inducers of differentiation of murine erythroleukemia (MEL) cells and a wide variety of other transformed cells. HMBA has been shown to induce differentiation of neoplastic cells in patients, but is not an adequate therapeutic agent because of dose-limiting toxicity. We report on a group of three potent second generation hybrid polar compounds, diethyl bis-(pentamethylene-N,N-dimethylcarboxamide) malonate (EMBA), suberoylanilide hydroxamic acid (SAHA), and m-carboxycinnamic acid bis-hydroxamide (CBHA) with optimal concentrations for inducing MEL cells of 0.4 mM, 2 microM, and 4 microM, respectively, compared to 5 mM for HMBA. All three agents induce accumulation of underphosphorylated pRB; increased levels of p2l protein, a prolongation of the initial G1 phase of the cell cycle; and accumulation of hemoglobin. However, based upon their effective concentrations, the cross-resistance or sensitivity of an HMBA-resistant MEL cell variant, and differences in c-myb expression during induction, these differentiation-inducing hybrid polar compounds can be grouped into two subsets, HMBA/EMBA and SAHA/CBHA. This classification may prove of value in selecting and planning prospective preclinical and clinical studies toward the treatment of cancer by differentiation therapy.

  13. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    Energy Technology Data Exchange (ETDEWEB)

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.


    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  14. Fluconazole is a potent inhibitor of antipyrine metabolism in vivo in mice

    Energy Technology Data Exchange (ETDEWEB)

    La Delfa, I.; Zhu, Q.M.; Mo, Z.; Blaschke, T.F.


    Fluconazole, a bis-triazole antifungal, is distinguished from imidazole antifungals (e.g. ketoconazole) by its potency and pharmacokinetic characteristics. Imidazole-containing compounds are well documented to inhibit the hepatic cytochrome P-450-dependent enzyme system; whether this effect occurs with a bis-triazole agent is unknown. The (/sup 14/C)antipyrine breath test was employed to investigate the effects of fluconazole on this enzyme system in CD-1 male mice. Control, ketoconazole (100 mg/kg), and fluconazole (1 and 10 mg/kg) were studied in single- and multiple-dose experiments. Fluconazole had potent inhibitory effects on the total (mean = -73% +/- 2%), demethylase (mean = -90% +/- 2%), and nondemethylase (mean = -60% +/- 4%) elimination rate constants (all p less than 0.001). The fraction of the administered radioactivity excreted as /sup 14/CO/sub 2/ was decreased by 50-80% in the fluconazole groups (p less than 0.001). These effects were seen after single- and multiple-dose studies; however, return to baseline occurred more quickly in the multiple-dose group. These effects were significantly more pronounced than those observed with equipotent doses of ketoconazole. These results provide evidence that fluconazole is a potent, partially selective, and reversible inhibitor of the cytochrome P-450-dependent enzyme system in mice. Future studies will be required to assess this property and possible interactions with drugs metabolized by this enzyme system in humans.

  15. Effect of Potent Ethyl Acetate Fraction of Stereospermum suaveolens Extract in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian


    Full Text Available To evaluate the antihyperglycemic effect of ethyl acetate fraction of ethanol extract of Stereospermum suaveolens in streptozotocin-(STZ- induced diabetic rats by acute and subacute models. In this paper, various fractions of ethanol extract of Stereospermum suaveolens were prepared and their effects on blood glucose levels in STZ-induced diabetic rats were studied after a single oral administration (200?mg/kg. Administration of the ethyl acetate fraction at 200?mg/kg once daily for 14 days to STZ-induced diabetic rats was also carried out. The parameters such as the fasting blood glucose, hepatic glycogen content, and pancreatic antioxidant levels were monitored. In the acute study, the ethyl acetate fraction is the most potent in reducing the fasting serum glucose levels of the STZ-induced diabetic rats. The 14-day repeated oral administration of the ethyl acetate fraction significantly reduced the fasting blood glucose and pancreatic TBARS level and significantly increased the liver glycogen, pancreatic superoxide dismutase, and catalase activities as well as reduced glutathione levels. The histopathological studies during the subacute treatment have been shown to ameliorate the STZ-induced histological damage of pancreas. This paper concludes that the ethyl acetate fraction from ethanol extract of Stereospermum suaveolens possesses potent antihyperglycemic and antioxidant properties, thereby substantiating the use of plant in the indigenous system of medicine.

  16. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review. (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong


    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.

  17. Potent T cell Responses Induced by Single DNA Vaccine Boosted with Recombinant Vaccinia Vaccine

    Institute of Scientific and Technical Information of China (English)

    Lianxing Liu; Chao Qiu; Yang Huang; Jianqing Xu; Yiming Shao


    Plasmid DNA,an effective vaccine vector,can induce both cellular and humoral immune responses.However,plasmid DNA raises issues concerning potential genomic integration after injection.This issue should be considered in preclinical studies.Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China.This virus has also been considered as a successful vaccine vector against a few infectious diseases.Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine.To develop a safer immunization strategy,a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice.Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity,preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation.No differences in T cell responses were observed among one,two or three DNA prime/rTV boost regimens.This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.

  18. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Srilatha Badaboina


    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  19. Rational Design of Potent and Selective Inhibitors of an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa. (United States)

    Kitamura, Seiya; Hvorecny, Kelli L; Niu, Jun; Hammock, Bruce D; Madden, Dean R; Morisseau, Christophe


    The virulence factor cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is secreted by Pseudomonas aeruginosa and is the founding member of a distinct class of epoxide hydrolases (EHs) that triggers the catalysis-dependent degradation of the CFTR. We describe here the development of a series of potent and selective Cif inhibitors by structure-based drug design. Initial screening revealed 1a (KB2115), a thyroid hormone analog, as a lead compound with low micromolar potency. Structural requirements for potency were systematically probed, and interactions between Cif and 1a were characterized by X-ray crystallography. On the basis of these data, new compounds were designed to yield additional hydrogen bonding with residues of the Cif active site. From this effort, three compounds were identified that are 10-fold more potent toward Cif than our first-generation inhibitors and have no detectable thyroid hormone-like activity. These inhibitors will be useful tools to study the pathological role of Cif and have the potential for clinical application.

  20. Nanofluids mediating surface forces. (United States)

    Pilkington, Georgia A; Briscoe, Wuge H


    Fluids containing nanostructures, known as nanofluids, are increasingly found in a wide array of applications due to their unique physical properties as compared with their base fluids and larger colloidal suspensions. With several tuneable parameters such as the size, shape and surface chemistry of nanostructures, as well as numerous base fluids available, nanofluids also offer a new paradigm for mediating surface forces. Other properties such as local surface plasmon resonance and size dependent magnetism of nanostructures also present novel mechanisms for imparting tuneable surface interactions. However, our fundamental understanding, experimentally and theoretically, of how these parameters might affect surface forces remains incomplete. Here we review recent results on equilibrium and dynamic surface forces between macroscopic surfaces in nanofluids, highlighting the overriding trends in the correlation between the physical parameters that characterise nanofluids and the surface forces they mediate. We also discuss the challenges that confront existing surface force knowledge as a result of this new paradigm.

  1. The mediatization of journalism

    Directory of Open Access Journals (Sweden)

    Aske Kammer


    Full Text Available Proposing an explanation of current macro-sociological changes and institutional transformations in journalism, this article argues that journalism is currently undergoing a process of mediatization. Drawing upon the international research literature as well as statements from interviews with news workers working on Danish news websites, the article examines four current trends in journalism that are closely connected to the rise of news on the web, namely the use of the affordances of news websites, radical commercialization, increased audience participation in news production, and the increased multi-skilling and simultaneous de-skilling of journalists. Taken together, these trends reflect a process through which journalism increasingly subsumes itself to the logic of the media, suggesting mediatization as an adequate explanatory framework. One implication of such a process is that journalism seems to be transforming from an occupational profession into an organizational one.

  2. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. (United States)

    Andree, Maria; Seeger, Jens M; Schüll, Stephan; Coutelle, Oliver; Wagner-Stippich, Diana; Wiegmann, Katja; Wunderlich, Claudia M; Brinkmann, Kerstin; Broxtermann, Pia; Witt, Axel; Fritsch, Melanie; Martinelli, Paola; Bielig, Harald; Lamkemeyer, Tobias; Rugarli, Elena I; Kaufmann, Thomas; Sterner-Kock, Anja; Wunderlich, F Thomas; Villunger, Andreas; Martins, L Miguel; Krönke, Martin; Kufer, Thomas A; Utermöhlen, Olaf; Kashkar, Hamid


    The X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti-apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase-mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP-mediated immune response by inducing the BID-dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain-dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.

  3. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. (United States)

    Sawant, Kirti V; Poluri, Krishna Mohan; Dutta, Amit K; Sepuru, Krishna Mohan; Troshkina, Anna; Garofalo, Roberto P; Rajarathnam, Krishna


    The chemokine CXCL1/MGSA plays a pivotal role in the host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. CXCL1 exists reversibly as monomers and dimers, and mediates its function by binding glycosaminoglycans (GAG) and CXCR2 receptor. We recently showed that both monomers and dimers are potent CXCR2 agonists, the dimer is the high-affinity GAG ligand, lysine and arginine residues located in two non-overlapping domains mediate GAG interactions, and there is extensive overlap between GAG and receptor-binding domains. To understand how these structural properties influence in vivo function, we characterized peritoneal neutrophil recruitment of a trapped monomer and trapped dimer and a panel of WT lysine/arginine to alanine mutants. Monomers and dimers were active, but WT was more active indicating synergistic interactions promote recruitment. Mutants from both domains showed reduced GAG heparin binding affinities and reduced neutrophil recruitment, providing compelling evidence that both GAG-binding domains mediate in vivo trafficking. Further, mutant of a residue that is involved in both GAG binding and receptor signaling showed the highest reduction in recruitment. We conclude that GAG interactions and receptor activity of CXCL1 monomers and dimers are fine-tuned to regulate neutrophil trafficking for successful resolution of tissue injury.

  4. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis. (United States)

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y


    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  5. [Healthcare mediation model for nerologists]. (United States)

    Ando, Tetsuo


    Mediation offers a process by which two parties work towards an agreement with the aid of a neutral third party. Physicians and nurses can apply healthcare mediation model to ordinary medical practice for preventing conflict. Communication using mediation skills improves patient-physician relationship, and prevents medical malpractice and conflict.

  6. Surface Mediated Photocatalysis. (United States)


    Bipolar Photoelectrodes," M.A. Fox, Nouv. J. Chim. 1987, II, 129. 4. "Effect of Cosolvent Additives on Relative Rates of Photooxidation on...Semiconductor Surfaces," D.D. Sackett, M.A. Fox, J. Phys. Org. Chem, 19_8, in press. 5. "Selectivity in the Semiconductor-Mediated Photooxidation of Polyols ...surfaced properties of the heteropolytungstates were varied. The conceptual mechanistic picture involved in the heteropolyoxo induced photooxidations

  7. Microneedle-mediated vaccine delivery

    NARCIS (Netherlands)

    Maaden, Koen van der


    Conventional vaccines are administered intramuscularly or subcutaneously via hypodermic needles, causing pain and stress. Since the skin is a powerful immune organ, it is not surprising that intradermal injections result in potent immune responses. However, they are relatively difficult to perform a

  8. Novel Potent Hepatitis C Virus NS3 Serine Protease Inhibitors Derived from Proline-Based Macrocycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin X.; Njoroge, F. George; Arasappan, Ashok; Venkatraman, Srikanth; Vibulbhan, Bancha; Yang, Weiying; Parekh, Tejal N.; Pichardo, John; Prongay, Andrew; Cheng, Kuo-Chi; Butkiewicz, Nancy; Yao, Nanhua; Madison, Vincent; Girijavallabhan, Viyyoor (SPRI)


    The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket. Thus, a number of P2 proline-based macrocyclic {alpha}-ketoamide inhibitors were prepared and investigated in an HCV NS3 serine protease continuous assay (K*{sub i}). The biological activity varied substantially depending on factors such as the ring size, number of amino acid residues, number of methyl substituents, type of heteroatom in the linker, P3 residue, and configuration at the proline C-4 center. The pentapeptide inhibitors were very potent, with the C-terminal acids and amides being the most active ones (24, K*{sub i} = 8 nM). The tetrapeptides and tripeptides were less potent. Sixteen- and seventeen-membered macrocyclic compounds were equally potent, while fifteen-membered analogues were slightly less active. gem-Dimethyl substituents at the linker improved the potency of all inhibitors (the best compound was 45, K*{sub i} = 6 nM). The combination of tert-leucine at P3 and dimethyl substituents at the linker in compound 47 realized a selectivity of 307 against human neutrophil elastase. Compound 45 had an IC{sub 50} of 130 nM in a cellular replicon assay, while IC{sub 50} for 24 was 400 nM. Several compounds had excellent subcutaneous AUC and bioavailability in rats. Although tripeptide compound 40 was 97% orally bioavailable, larger pentapeptides generally had low oral bioavailability. The X-ray crystal structure of compounds 24 and 45 bound to the protease demonstrated the close interaction of the macrocycle with the Ala156 methyl group and S4 pocket. The strategy of macrocyclization has been proved to be successful in improving potency (>20-fold greater than that of 1) and in structural depeptization.

  9. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz


    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  10. MEK Inhibitors Reverse cAMP-Mediated Anxiety in Zebrafish

    DEFF Research Database (Denmark)

    Lundegaard, Pia R.; Anastasaki, Corina; Grant, Nicola J.;


    Altered phosphodiesterase (PDE)-cyclic AMP (cAMP) activity is frequently associated with anxiety disorders, but current therapies act by reducing neuronal excitability rather than targeting PDE-cAMP-mediated signaling pathways. Here, we report the novel repositioning of anti-cancer MEK inhibitors...... as anxiolytics in a zebrafish model of anxiety-like behaviors. PDE inhibitors or activators of adenylate cyclase cause behaviors consistent with anxiety in larvae and adult zebrafish. Small-molecule screening identifies MEK inhibitors as potent suppressors of cAMP anxiety behaviors in both larvae and adult...... zebrafish, while causing no anxiolytic behavioral effects on their own. The mechanism underlying cAMP-induced anxiety is via crosstalk to activation of the RAS-MAPK signaling pathway. We propose that targeting crosstalk signaling pathways can be an effective strategy for mental health disorders, and advance...

  11. Targeting Two Coagulation Cascade Proteases with a Bivalent Aptamer Yields a Potent and Antidote-Controllable Anticoagulant. (United States)

    Soule, Erin E; Bompiani, Kristin M; Woodruff, Rebecca S; Sullenger, Bruce A


    Potent and rapid-onset anticoagulation is required for several clinical settings, including cardiopulmonary bypass surgery. In addition, because anticoagulation is associated with increased bleeding following surgery, the ability to rapidly reverse such robust anticoagulation is also important. Previously, we observed that no single aptamer was as potent as heparin for anticoagulating blood. However, we discovered that combinations of two aptamers were as potent as heparin. Herein, we sought to combine two individual anticoagulant aptamers into a single bivalent RNA molecule in an effort to generate a single molecule that retained the potent anticoagulant activity of the combination of individual aptamers. We created four bivalent aptamers that can inhibit Factor X/Xa and prothrombin/thrombin and anticoagulate plasma, as well as the combination of individual aptamers. Detailed characterization of the shortest bivalent aptamer indicates that each aptamer retains full binding and functional activity when presented in the bivalent context. Finally, reversal of this bivalent aptamer with a single antidote was explored, and anticoagulant activity could be rapidly turned off in a dose-dependent manner. These studies demonstrate that bivalent anticoagulant aptamers represent a novel and potent approach to actively and reversibly control coagulation.

  12. 2-(Hetero(aryl)methylene)hydrazine-1-carbothioamides as potent urease inhibitors. (United States)

    Saeed, Aamer; Imran, Aqeel; Channar, Pervaiz A; Shahid, Mohammad; Mahmood, Wajahat; Iqbal, Jamshed


    A small series of 2-(hetero(aryl)methylene) hydrazine-1-carbothioamides including two aryl derivatives was synthesized and tested for their inhibitory activity against urease. Compound (E)-2-(Furan-2-ylmethylene) hydrazine-1-carbothioamide (3f), having a furan ring, was the most potent inhibitor of urease with an IC50 value of 0.58 μM. Molecular modeling was carried out through docking the designed compounds into the urease binding site to predict whether these derivatives have analogous binding mode to the urease inhibitors. The study revealed that all of the tested compounds bind with both metal atoms at the active site of the enzyme. The aromatic ring of the compounds forms ionic interactions with the residues, Ala(440), Asp(494), Ala(636), and Met(637).

  13. Synthesis, molecular docking and biological evaluation of metronidazole derivatives as potent Helicobacter pylori urease inhibitors. (United States)

    Mao, Wen-Jun; Lv, Peng-Cheng; Shi, Lei; Li, Huan-Qiu; Zhu, Hai-Liang


    Fourteen metronidazole derivatives (compounds 3a-f and 4b-h) have been synthesized by coupling of metronidazole and salicylic acid derivatives. All of them are reported for the first time. Their chemical structures are characterized by (1)H NMR, MS, and elemental analysis. The inhibitory activities against Helicobacter pylori urease have been investigated in vitro and many compounds have showed promising potential inhibitory activities of H. pylori urease. The effect of compounds 4b (IC(50)=26 microM) and 4 g (IC(50)=12 microM) was comparable with that of acetohydroxamic acid, a well known H. pylori urease inhibitor used as a positive control. The experimental values of IC(50) showed that inhibitor was potent urease inhibitor. A docking analysis using the autodock 4.0 program could explain the inhibitory activities of compound 4 g against H. pylori urease.

  14. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;


    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site......P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used...... as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among...

  15. Alkamides from the fruits of Piper longum and Piper nigrum displaying potent cell adhesion inhibition. (United States)

    Lee, Seung Woong; Kim, Young Kook; Kim, Koanhoi; Lee, Hyun Sun; Choi, Jung Ho; Lee, Woo Song; Jun, Chang-Duk; Park, Jee Hun; Lee, Jeong Min; Rho, Mun-Chual


    Eight alkamides 1-8 were isolated by bioassay-guided isolation of EtOH extracts of the fruits of Piper longum and Piper nigum (Piperaceae). Their structures were elucidated by spectroscopic analysis ((1)H, (13)C NMR, and ESI-MS) as follows: guineensine (1), retrofracamide C (2), (2E,4Z,8E)-N-[9-(3,4-methylenedioxyphenyl)-2,4,8-nonatrienoyl]piperidine (3), pipernonaline (4), piperrolein B (5), piperchabamide D (6), pellitorin (7), and dehydropipernonaline (8). Their compounds 3-5, 7, and 8 inhibited potently the direct binding between sICAM-1 and LFA-1 of THP-1 cells in a dose-dependent manner, with IC(50) values of 10.7, 8.8, 13.4, 13.5, and 6.0 microg/mL, respectively.

  16. Substituted fused bicyclic pyrrolizinones as potent, orally bioavailable hNK1 antagonists. (United States)

    Morriello, Gregori J; Mills, Sander G; Johnson, Tricia; Reibarkh, Mikhail; Chicchi, Gary; DeMartino, Julie; Kurtz, Marc; Davies, P; Tsao, K L C; Zheng, Song; Tong, Xinchun; Carlson, Emma; Townson, Karen; Tattersall, F D; Wheeldon, Alan; Boyce, Susan; Collinson, Neil; Rupniak, Nadia; Moore, Stephen; DeVita, Robert J


    Previous work on human NK(1) (hNK(1)) antagonists in which the core of the structure is a 5,5-fused pyrrolizinone has been disclosed. The structural-activity-relationship studies on simple alpha- and beta-substituted compounds of this series provided several potent and bioavailable hNK(1) antagonists that displayed excellent brain penetration as observed by their good efficacy in the gerbil foot-tapping (GFT) model assay. Several of these compounds exhibited 100% inhibition of the foot-tapping response at 0.1 and 24h with ID(50)'s of less than 1 mpk. One particular alpha-substituted compound (2b) had an excellent pharmacokinetic profile across preclinical species with reasonable in vivo functional activity and minimal ancillary activity.

  17. Potent DGAT1 Inhibitors in the Benzimidazole Class with a Pyridyl-oxy-cyclohexanecarboxylic Acid Moiety. (United States)

    He, Shuwen; Hong, Qingmei; Lai, Zhong; Wu, Zhicai; Yu, Yang; Kim, David W; Ting, Pauline C; Kuethe, Jeffrey T; Yang, Ginger X; Jian, Tianying; Liu, Jian; Guiadeen, Deodial; Krikorian, Arto D; Sperbeck, Donald M; Sonatore, Lisa M; Wiltsie, Judyann; Chung, Christine C; Gibson, Jack T; Lisnock, JeanMarie; Murphy, Beth A; Gorski, Judith N; Liu, Jinqi; Chen, Dunlu; Chen, Xiaoli; Wolff, Michael; Tong, Sharon X; Madeira, Maria; Karanam, Bindhu V; Shen, Dong-Ming; Balkovec, James M; Pinto, Shirly; Nargund, Ravi P; DeVita, Robert J


    We report the design and synthesis of a series of novel DGAT1 inhibitors in the benzimidazole class with a pyridyl-oxy-cyclohexanecarboxylic acid moiety. In particular, compound 11A is a potent DGAT1 inhibitor with excellent selectivity against ACAT1. Compound 11A significantly reduces triglyceride excursion in lipid tolerance tests (LTT) in both mice and dogs at low plasma exposure. An in vivo study in mice with des-fluoro analogue 10A indicates that this series of compounds appears to distribute in intestine preferentially over plasma. The propensity to target intestine over plasma could be advantageous in reducing potential side effects since lower circulating levels of drug are required for efficacy. However, in the preclinical species, compound 11A undergoes cis/trans epimerization in vivo, which could complicate further development due to the presence of an active metabolite.

  18. Microwave Assisted Synthesis of Novel Imidazolopyridinyl Indoles as Potent Antioxidant and Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Jaiprakash S. Biradar


    Full Text Available We describe herein the design, synthesis, and pharmacological evaluation of novel series of imidazolopyridinyl indole analogues as potent antioxidants and antimicrobials. These novel compounds (3a–i were synthesized by reacting 3,5-disubstituted-indole-2-carboxylic acid (1a–i with 2,3-diamino pyridine (2 in excellent yield. The novel products were confirmed by their IR, 1H NMR, 13C NMR, mass spectral, and analytical data. These compounds were screened for their antioxidant and antimicrobial activities. Among the compounds tested, 3a–d showed the highest total antioxidant capacity, scavenging, and antimicrobial activities. Compounds 3c-d and 3g-h have shown excellent ferric reducing activity.

  19. Identification of potent Yes1 kinase inhibitors using a library screening approach. (United States)

    Patel, Paresma R; Sun, Hongmao; Li, Samuel Q; Shen, Min; Khan, Javed; Thomas, Craig J; Davis, Mindy I


    Yes1 kinase has been implicated as a potential therapeutic target in a number of cancers including melanomas, breast cancers, and rhabdomyosarcomas. Described here is the development of a robust and miniaturized biochemical assay for Yes1 kinase that was applied in a high throughput screen (HTS) of kinase-focused small molecule libraries. The HTS provided 144 (17% hit rate) small molecule compounds with IC₅₀ values in the sub-micromolar range. Three of the most potent Yes1 inhibitors were then examined in a cell-based assay for inhibition of cell survival in rhabdomyosarcoma cell lines. Homology models of Yes1 were generated in active and inactive conformations, and docking of inhibitors supports binding to the active conformation (DFG-in) of Yes1. This is the first report of a large high throughput enzymatic activity screen for identification of Yes1 kinase inhibitors, thereby elucidating the polypharmacology of a variety of small molecules and clinical candidates.

  20. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets. (United States)

    Dos Santos Fernandes, Guilherme Felipe; Jornada, Daniela Hartmann; de Souza, Paula Carolina; Chin, Chung Man; Pavan, Fernando Rogerio; Dos Santos, Jean Leandro


    Tuberculosis (TB) is an infectious disease caused by bacterium of the Mycobacterium genus, mainly by Mycobacterium tuberculosis (MTB). The World Health Organization aims to substantially reduce the number of cases in the coming years; however, the increased number of multidrug-resistant (MDR) and extremely drug-resistant (XDR) forms of the bacterium and the lack of treatment for latent tuberculosis are challenges to be overcome. In this review, we have identified the most potent compounds described in the literature during recent years with MIC values < 7 µM, low toxicity and a high selective index. In addition, emerging targets in MTB are presented to provide new perspectives for the discovery of new antitubercular drugs. This review aims to summarize the current advances in and promote insights into antitubercular drug discovery.

  1. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state (United States)

    Rossey, Iebe; Gilman, Morgan S. A.; Kabeche, Stephanie C.; Sedeyn, Koen; Wrapp, Daniel; Kanekiyo, Masaru; Chen, Man; Mas, Vicente; Spitaels, Jan; Melero, José A.; Graham, Barney S.; Schepens, Bert; McLellan, Jason S.; Saelens, Xavier


    Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV. PMID:28194013

  2. Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak. (United States)

    Bornholdt, Zachary A; Turner, Hannah L; Murin, Charles D; Li, Wen; Sok, Devin; Souders, Colby A; Piper, Ashley E; Goff, Arthur; Shamblin, Joshua D; Wollen, Suzanne E; Sprague, Thomas R; Fusco, Marnie L; Pommert, Kathleen B J; Cavacini, Lisa A; Smith, Heidi L; Klempner, Mark; Reimann, Keith A; Krauland, Eric; Gerngross, Tillman U; Wittrup, Karl D; Saphire, Erica Ollmann; Burton, Dennis R; Glass, Pamela J; Ward, Andrew B; Walker, Laura M


    Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies.

  3. High-speed helicopter rotor noise - Shock waves as a potent source of sound (United States)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.


    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  4. Echinacea—A Source of Potent Antivirals for Respiratory Virus Infections

    Directory of Open Access Journals (Sweden)

    Selvarani Vimalanathan


    Full Text Available Extracts of Echinacea species have been used traditionally in North America for the control of symptoms of colds, influenza, and other diseases, and some of them have become very popular as “herbal medicines”. Recent studies have revealed that preparations derived from certain species and plant parts, but not all of them, possess potent antiviral activities, at non-cytotoxic concentrations, particularly against membrane-containing viruses. Thus all strains of human and avian influenza viruses tested (including a Tamiflu-resistant strain, as well as herpes simplex virus, respiratory syncytial virus, and rhinoviruses, were very sensitive to a standardized Echinacea purpurea preparation. In mechanistic studies the influenza virus-specific hemagglutinin and neuraminidase were inhibited. In addition some extracts displayed anti-inflammatory activity in virus-infected cells, and numerous other effects on the expression of cellular genes. Multiple components, either discrete compounds or mixtures, appeared to be responsible for the various antiviral activities.

  5. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. (United States)

    Kumar, V Ganesh; Gokavarapu, S Dinesh; Rajeswari, A; Dhas, T Stalin; Karthick, V; Kapadia, Zainab; Shrestha, Tripti; Barathy, I A; Roy, Anindita; Sinha, Sweta


    A simple biological method for the synthesis of gold nanoparticles (AuNPs) using Cassia auriculata aqueous leaf extract has been carried out in the present study. The reduction of auric chloride led to the formation of AuNPs within 10 min at room temperature (28°C), suggesting a higher reaction rate than chemical methods involved in the synthesis. The size, shape and elemental analysis were carried out using X-ray diffraction, TEM, SEM-EDAX, FT-IR and visible absorption spectroscopy. Stable, triangular and spherical crystalline AuNPs with well-defined dimensions of average size of 15-25 nm were synthesized using C. auriculata. Effect of pH was also studied to check the stability of AuNPs. The main aim of the investigation is to synthesize AuNPs using antidiabetic potent medicinal plant. The stabilizing and reducing molecules of nanoparticles may promote anti-hyperglycemic if tested further.

  6. Synthetic N-Alkyl/aralkyl-4-methyl-N-(naphthalen-1-ylbenzenesulfonamides as Potent Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    *M. A. Abbasi


    Full Text Available The current research effort involved the reaction of napthalen-1-amine (1 with 4-methylbenzenesulfonyl chloride (2 under dynamic pH control at 9-10, maintained with 10% aqueous Na2CO3 to obtain 4-methyl-N-(naphthalen-1-yl benzenesulfonamide (3. The parent molecule 3 was further substituted at N-atom with alkyl/aralkyl halides (4a-f in polar aprotic solvent; N,N-dimethylformamide, and lithium hydride which acts as a base, to achieve N-alkyl/aralkyl-4-methyl-N-(naphthalen-1-ylbenzenesulfonamides (5a-f. All the synthesized compounds were structurally elucidated by IR, 1H-NMR and EIMS spectral techniques. All the derivatives were further screened for antibacterial and anti-enzymatic potential against various bacterial strains and enzymes, respectively, and were found to be potent antibacterial agents and moderate to weak enzyme inhibitors.

  7. Discovery of Potent and Highly Selective A2B Adenosine Receptor Antagonist Chemotypes. (United States)

    El Maatougui, Abdelaziz; Azuaje, Jhonny; González-Gómez, Manuel; Miguez, Gabriel; Crespo, Abel; Carbajales, Carlos; Escalante, Luz; García-Mera, Xerardo; Gutiérrez-de-Terán, Hugo; Sotelo, Eddy


    Three novel families of A2B adenosine receptor antagonists were identified in the context of the structural exploration of the 3,4-dihydropyrimidin-2(1H)-one chemotype. The most appealing series contain imidazole, 1,2,4-triazole, or benzimidazole rings fused to the 2,3-positions of the parent diazinone core. The optimization process enabled identification of a highly potent (3.49 nM) A2B ligand that exhibits complete selectivity toward A1, A2A, and A3 receptors. The results of functional cAMP experiments confirmed the antagonistic behavior of representative ligands. The main SAR trends identified within the series were substantiated by a molecular modeling study based on a receptor-driven docking model constructed on the basis of the crystal structure of the human A2A receptor.

  8. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro (United States)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.


    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  9. Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor. (United States)

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Wadood, Abdul; Rahim, Fazal; Al Muqarrabin, Laode Muhammad Ramadhan; Zaki, Hamizah Mohd; Ahmat, Norizan; Nasir, Abdul; Khan, Fahad


    Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.

  10. A novel bispecific antibody, S-Fab, induces potent cancer cell killing. (United States)

    Li, Li; He, Ping; Zhou, Changhua; Jing, Li; Dong, Bin; Chen, Siqi; Zhang, Ning; Liu, Yawei; Miao, Ji; Wang, Zhong; Li, Qing


    Bispecific antibodies that engage immune cells to kill cancer cells have been actively studied in cancer immunotherapy. In this study, we present a novel bispecific format, S-Fab, fabricated by linking a single-domain anti-carcinoembryonic antigen VHH to a conventional anti-CD3 Fab. In contrast to most bispecific antibodies, the S-Fab bispecific antibody can be efficiently expressed and purified from bacteria. The purified S-Fab is stable in serum and is able to recruit T cells to drive potent cancer cell killing. In xenograft models, the S-Fab antibody suppresses tumor growth in the presence of human immune cells. Our study suggested that the bispecific S-Fab format can be applied to a wide range of immunotherapies.

  11. Novel highly potent serotonin 5-HT7 receptor ligands: structural modifications to improve pharmacokinetic properties. (United States)

    Lacivita, Enza; Di Pilato, Pantaleo; Stama, Madia Letizia; Colabufo, Nicola Antonio; Berardi, Francesco; Perrone, Roberto; De Filippis, Bianca; Laviola, Giovanni; Adriani, Walter; Niso, Mauro; Leopoldo, Marcello


    Here we report the synthesis, pharmacological and pharmacokinetic evaluation of a pilot set of compounds structurally related to the potent and selective 5-HT7 ligand LP-211. Among the studied compounds, N-pyridin-3-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (4b) showed high affinity for 5-HT7 receptors (K(i)=23.8 nM), selectivity over 5-HT1A receptors (>50-fold), in vitro metabolic stability (82%) and weak interaction with P-glycoprotein (BA/AB=3.3). Compound 4b was injected ip in mice to preliminarily evaluate its distribution between blood and brain.

  12. A clinical observation of early short-term use of potent antibiotics in severely burned patients

    Institute of Scientific and Technical Information of China (English)

    RONG Xin-zhou; ZHANG Wen-zhen; REN Jia-liang; ZHOU Wei-ming


    Objective: To evaluate the effect of early and short-term use of potent antibiotics following extensive severe burn injury. Methods: Seventeen severely burned patients hospitalized in the same period (Nov.,1998 to Oct., 2000) wer esame treatment in Group 2 (n=8) was discontinued until day 15 postburn. The survival rate, blood bacterial culture, body temperature and white blood cell and platelet counts were compared between the 2 groups. Results: All the 17 patients survived and all blood bacterial cultures were negative. No significant difference of body temperature and white blood cell and platelet counts between the 2 groups was observed (P>0.05). Conclusion: Early use of high-potency antibiotics at short treatment course after extensive severe burn is effective to prevent infection and reduce the cost.

  13. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist.

    Directory of Open Access Journals (Sweden)

    Qinghua Wang

    Full Text Available GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2168 h. Intraperitoneal glucose tolerance test (IPGTT in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.

  14. Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin. (United States)

    Zobel-Thropp, Pamela A; Kerins, Alec E; Binford, Greta J


    Spider venoms have evolved over hundreds of millions of years with a primary role of immobilizing prey. Sphingomyelinase D (SMase D) and homologs in the SicTox gene family are the most abundantly expressed toxic protein in venoms of Loxosceles and Sicarius spiders (Sicariidae). While SMase D is well known to cause dermonecrotic lesions in mammals, little work has investigated the bioactivity of this enzyme in its presumed natural role of immobilizing insect prey. We expressed and purified recombinant SMase D from Loxosceles arizonica (Laz-SMase D) and compared its enzymatic and insecticidal activity to that of crude venom. SMase D enzymatic activities of purified protein and crude venom from the same species were indistinguishable. In addition, SMase D and crude venom have comparable and high potency in immobilization assays on crickets. These data indicate that SMase D is a potent insecticidal toxin, the role for which it presumably evolved.

  15. Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor. (United States)

    Ferreira de Freitas, Renato; Eram, Mohammad S; Szewczyk, Magdalena M; Steuber, Holger; Smil, David; Wu, Hong; Li, Fengling; Senisterra, Guillermo; Dong, Aiping; Brown, Peter J; Hitchcock, Marion; Moosmayer, Dieter; Stegmann, Christian M; Egner, Ursula; Arrowsmith, Cheryl; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Schapira, Matthieu


    Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.

  16. Activin is a potent growth suppressor of epithelial ovarian cancer cells. (United States)

    Ramachandran, Anassuya; Marshall, Elaine S; Love, Donald R; Baguley, Bruce C; Shelling, Andrew N


    Although activin is a major cytokine produced by the ovary, its role in epithelial ovarian cancer is poorly defined. Here, we demonstrate a novel role for activin as a growth inhibitor of some (8/16) epithelial ovarian cancer cell lines. Unresponsive cell lines displayed transcriptional downregulation of the activin receptors ACTRIIA and ACTRIB, suggesting resistance to activin signalling. In response to activin, growth inhibited cell lines demonstrated activation of the canonical SMAD2/3/4, transcriptional induction of the CDK inhibitor p15INK4B, suppression of C-MYC levels and a G1 phase cell cycle arrest. Thus, activin is a potent inhibitor of proliferation of some epithelial ovarian cancer cell lines and its role in the pathogenesis of this disease needs to be re-evaluated.

  17. Synthesis and biological evaluation of fluconazole analogs with triazole-modified scaffold as potent antifungal agents. (United States)

    Hashemi, Seyedeh Mahdieh; Badali, Hamid; Irannejad, Hamid; Shokrzadeh, Mohammad; Emami, Saeed


    In order to find new azole antifungals, we have recently designed a series of triazole alcohols in which one of the 1,2,4-triazol-1-yl group in fluconazole structure has been replaced with 4-amino-5-aryl-3-mercapto-1,2,4-triazole motif. In this paper, we focused on the structural refinement of the primary lead, by removing the amino group from the structure to achieve 5-aryl-3-mercapto-1,2,4-triazole derivatives 10a-i and 11a-i. The in vitro antifungal susceptibility testing of title compounds demonstrated that most compounds had potent inhibitory activity against Candida species. Among them, 5-(2,4-dichlorophenyl)triazole analogs 10h and 11h with MIC values of fluconazole against Candida species.

  18. Potent Human α-Amylase Inhibition by the β-Defensin-like Protein Helianthamide. (United States)

    Tysoe, Christina; Williams, Leslie K; Keyzers, Robert; Nguyen, Nham T; Tarling, Chris; Wicki, Jacqueline; Goddard-Borger, Ethan D; Aguda, Adeleke H; Perry, Suzanne; Foster, Leonard J; Andersen, Raymond J; Brayer, Gary D; Withers, Stephen G


    Selective inhibitors of human pancreatic α-amylase (HPA) are an effective means of controlling blood sugar levels in the management of diabetes. A high-throughput screen of marine natural product extracts led to the identification of a potent (Ki = 10 pM) peptidic HPA inhibitor, helianthamide, from the Caribbean sea anemone Stichodactyla helianthus. Active helianthamide was produced in Escherichia coli via secretion as a barnase fusion protein. X-ray crystallographic analysis of the complex of helianthamide with porcine pancreatic α-amylase revealed that helianthamide adopts a β-defensin fold and binds into and across the amylase active site, utilizing a contiguous YIYH inhibitory motif. Helianthamide represents the first of a novel class of glycosidase inhibitors and provides an unusual example of functional malleability of the β-defensin fold, which is rarely seen outside of its traditional role in antimicrobial peptides.

  19. Chemoproteomics-Enabled Discovery of a Potent and Selective Inhibitor of the DNA Repair Protein MGMT. (United States)

    Wang, Chao; Abegg, Daniel; Hoch, Dominic G; Adibekian, Alexander


    We present a novel chemical scaffold for cysteine-reactive covalent inhibitors. Chloromethyl triazoles (CMTs) are readily accessed in only two chemical steps, thus enabling the rapid optimization of the pharmacological properties of these inhibitors. We demonstrate the tunability of the CMTs towards a specific biological target by synthesizing AA-CW236 as the first potent non-pseudosubstrate inhibitor of the O(6) -alkylguanine DNA methyltransferase (MGMT), a protein of major clinical significance for the treatment of several severe cancer forms. Using quantitative proteomics profiling techniques, we show that AA-CW236 exhibits a high degree of selectivity towards MGMT. Finally, we validate the effectiveness of our MGMT inhibitor in combination with the DNA alkylating drug temozolomide in breast and colon cancer cells by fluorescence imaging and a cell-viability assay. Our results may open a new avenue towards the development of a clinically approved MGMT inhibitor.

  20. Effects of aminoguanidine, a potent nitric oxide synthase inhibitor, on myocardial and organ structure in a rat model of hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Mona M Soliman


    Full Text Available Background: Nitric oxide (NO has been shown to increase following hemorrhagic shock (HS. Peroxynitrite is produced by the reaction of NO with reactive oxygen species, leads to nitrosative stress mediated organ injury. We examined the protective effects of a potent inhibitor of NO synthase, aminoguanidine (AG, on myocardial and multiple organ structure in a rat model of HS. Materials and Methods: Male Sprague Dawley rats (300-350 g were assigned to 3 experimental groups (n = 6 per group: (1 Normotensive rats (N, (2 HS rats and (3 HS rats treated with AG (HS-AG. Rats were hemorrhaged over 60 min to reach a mean arterial blood pressure of 40 mmHg. Rats were treated with 1 ml of 60 mg/kg AG intra-arterially after 60 min HS. Resuscitation was performed in vivo by the reinfusion of the shed blood for 30 min to restore normo-tension. Biopsy samples were taken for light and electron microscopy. Results: Histological examination of hemorrhagic shocked untreated rats revealed structural damage. Less histological damage was observed in multiple organs in AG-treated rats. AG-treatment decreased the number of inflammatory cells and mitochondrial swollen in myocardial cells. Conclusion: AG treatment reduced microscopic damage and injury in multiple organs in a HS model in rats.

  1. PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2 (United States)

    Schröder, Ralf; Xue, Luzheng; Konya, Viktoria; Martini, Lene; Kampitsch, Nora; Whistler, Jennifer L.; Ulven, Trond; Heinemann, Akos; Pettipher, Roy; Kostenis, Evi


    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase. PMID:22442685

  2. PGH1, the precursor for the anti-inflammatory prostaglandins of the 1-series, is a potent activator of the pro-inflammatory receptor CRTH2/DP2.

    Directory of Open Access Journals (Sweden)

    Ralf Schröder

    Full Text Available Prostaglandin H(1 (PGH(1 is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA and the precursor for the 1-series of prostaglandins which are often viewed as "anti-inflammatory". Herein we present evidence that PGH(1 is a potent activator of the pro-inflammatory PGD(2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca(2+ flux studies reveal that PGH(1 activates CRTH2 as PGH(2, PGD(2 or PGD(1 do. The PGH(1 precursor DGLA and the other PGH(1 metabolites did not display such effect. PGH(1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH(1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH(1 mediates migration of and Ca(2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH(1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase.

  3. DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors. (United States)

    Harris, Philip A; King, Bryan W; Bandyopadhyay, Deepak; Berger, Scott B; Campobasso, Nino; Capriotti, Carol A; Cox, Julie A; Dare, Lauren; Dong, Xiaoyang; Finger, Joshua N; Grady, LaShadric C; Hoffman, Sandra J; Jeong, Jae U; Kang, James; Kasparcova, Viera; Lakdawala, Ami S; Lehr, Ruth; McNulty, Dean E; Nagilla, Rakesh; Ouellette, Michael T; Pao, Christina S; Rendina, Alan R; Schaeffer, Michelle C; Summerfield, Jennifer D; Swift, Barbara A; Totoritis, Rachel D; Ward, Paris; Zhang, Aming; Zhang, Daohua; Marquis, Robert W; Bertin, John; Gough, Peter J


    The recent discovery of the role of receptor interacting protein 1 (RIP1) kinase in tumor necrosis factor (TNF)-mediated inflammation has led to its emergence as a highly promising target for the treatment of multiple inflammatory diseases. We screened RIP1 against GSK's DNA-encoded small-molecule libraries and identified a novel highly potent benzoxazepinone inhibitor series. We demonstrate that this template possesses complete monokinase selectivity for RIP1 plus unique species selectivity for primate versus nonprimate RIP1. We elucidate the conformation of RIP1 bound to this benzoxazepinone inhibitor driving its high kinase selectivity and design specific mutations in murine RIP1 to restore potency to levels similar to primate RIP1. This series differentiates itself from known RIP1 inhibitors in combining high potency and kinase selectivity with good pharmacokinetic profiles in rodents. The favorable developability profile of this benzoxazepinone template, as exemplified by compound 14 (GSK'481), makes it an excellent starting point for further optimization into a RIP1 clinical candidate.

  4. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway. (United States)

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen


    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  5. A Schiff Base-Derived Copper (II Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway

    Directory of Open Access Journals (Sweden)

    Maryam Hajrezaie


    Full Text Available Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II complex on HT-29 colon cancer cells. The Cu(BrHAP2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  6. A Herbal Composition of Scutellaria baicalensis and Eleutherococcus senticosus Shows Potent Anti-Inflammatory Effects in an Ex Vivo Human Mucosal Tissue Model

    Directory of Open Access Journals (Sweden)

    Nan Zhang


    Full Text Available Background. Patients seek an effective alternative to pharmacotherapy including herbal treatment options for allergic rhinitis and rhinosinusitis. Material and Methods. Nasal mucosal tissue was obtained from 12 patients, fragmented, preincubated with tissue culture medium, S. baicalensis and/or E. senticosus and/or vitamin C (each compound 0.2 μg/mL and 2 μg/mL for 1 hour at 37°C/5% CO2, and stimulated with anti-IgE for 30 minutes and 6 hours to imitate the allergic early and late phases. Furthermore, Staphylococcus aureus superantigen B (SEB stimulation for 6 hours was used to imitate T-cell activation. Results. The combination of S. baicalensis and E. senticosus had a more potent suppressive effect on the release of PGD2, histamine, and IL-5 than S. baicalensis alone. The combination also resulted in a significant inhibition of SEB-induced cytokines comparable or superior to an established topical corticosteroid, fluticasone propionate. Vitamin C increased ciliary beat frequency, but had no anti-inflammatory effects. Discussion. The combination of S. baicalensis and E. senticosus may be able to significantly block allergic early-and late-phase mediators and substantially suppress the release of proinflammatory, and Th1-, Th2-, and Th17—derived cytokines.

  7. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. (United States)

    Nathan, Pradeep J; Watson, Jeannette; Lund, Jesper; Davies, Ceri H; Peters, Gary; Dodds, Chris M; Swirski, Bridget; Lawrence, Philip; Bentley, Graham D; O'Neill, Barry V; Robertson, Jon; Watson, Stephen; Jones, Gareth A; Maruff, Paul; Croft, Rodney J; Laruelle, Marc; Bullmore, Edward T


    Episodic memory deficits are a core feature of neurodegenerative disorders. Muscarinic M(1) receptors play a critical role in modulating learning and memory and are highly expressed in the hippocampus. We examined the effect of GSK1034702, a potent M(1) receptor allosteric agonist, on cognitive function, and in particular episodic memory, in healthy smokers using the nicotine abstinence model of cognitive dysfunction. The study utilized a randomized, double-blind, placebo-controlled, cross-over design in which 20 male nicotine abstained smokers were tested following single doses of placebo, 4 and 8 mg GSK1034702. Compared to the baseline (nicotine on-state), nicotine abstinence showed statistical significance in reducing immediate (p=0.019) and delayed (p=0.02) recall. GSK1034702 (8 mg) significantly attenuated (i.e. improved) immediate recall (p=0.014) but not delayed recall. None of the other cognitive domains was modulated by either nicotine abstinence or GSK1034702. These findings suggest that stimulating M(1) receptor mediated neurotransmission in humans with GSK1034702 improves memory encoding potentially by modulating hippocampal function. Hence, selective M(1) receptor allosteric agonists may have therapeutic benefits in disorders of impaired learning including Alzheimer's disease.

  8. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, is a potent antifungal agent that inhibits the growth of Cryptococcus neoformans by regulating gene expression. (United States)

    Bang, Soohyun; Kwon, Hyojeong; Hwang, Hyun Sook; Park, Ki Duk; Kim, Sung Uk; Bahn, Yong-Sun


    In this study we explored the mode of action of KR-72, a 9-O-butyl-13-(4-isopropylbenzyl)berberine derivative previously shown to exhibit potent antifungal activity against a variety of human fungal pathogens. The DNA microarray data revealed that KR-72 treatment significantly changed the transcription profiles of C. neoformans, affecting the expression of more than 2,000 genes. Genes involved in translation and transcription were mostly upregulated, whereas those involved in the cytoskeleton, intracellular trafficking, and lipid metabolism were downregulated. KR-72 also exhibited a strong synergistic effect with the antifungal agent FK506. KR-72 treatment regulated the expression of several essential genes, including ECM16, NOP14, HSP10 and MGE1, which are required for C. neoformans growth. The KR-72-mediated induction of MGE1 also likely reduced the viability of C. neoformans by impairing cell cycle or the DNA repair system. In conclusion, KR-72 showed antifungal activity by modulating diverse biological processes through a mode of action distinct from those of clinically available antifungal drugs such as polyene and azole drugs.

  9. Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension. (United States)

    Zhu, Gui-Dong; Gandhi, Viraj B; Gong, Jianchun; Thomas, Sheela; Woods, Keith W; Song, Xiaohong; Li, Tongmei; Diebold, R Bruce; Luo, Yan; Liu, Xuesong; Guan, Ran; Klinghofer, Vered; Johnson, Eric F; Bouska, Jennifer; Olson, Amanda; Marsh, Kennan C; Stoll, Vincent S; Mamo, Mulugeta; Polakowski, James; Campbell, Thomas J; Martin, Ruth L; Gintant, Gary A; Penning, Thomas D; Li, Qun; Rosenberg, Saul H; Giranda, Vincent L


    Compound 7 was identified as a potent (IC50 = 14 nM), selective, and orally bioavailable (F = 70% in mouse) inhibitor of protein kinase B/Akt. While promising efficacy was observed in vivo, this compound showed effects on depolarization of Purkinje fibers in an in vitro assay and CV hypotension in vivo. Guided by an X-ray structure of 7 bound to protein kinase A, which has 80% homology with Akt in the kinase domain, our efforts have focused on structure-activity relationship (SAR) studies of the phenyl moiety, in an attempt to address the cardiovascular liability and further improve the Akt potency. A novel and efficient synthetic route toward diversely substituted phenyl derivatives of 7 was developed utilizing a copper-mediated aziridine ring-opening reaction as the key step. To improve the selectivity of these Akt inhibitors over other protein kinases, a nitrogen atom was incorporated into selected phenyl analogues of 7 at the C-6 position of the methyl indazole scaffold. These modifications resulted in the discovery of inhibitor 37c with greater potency (IC50 = 0.6 nM vs Akt), selectivity, and improved cardiovascular safety profile. The SARs, pharmacokinetic profile, and CV safety of selected Akt inhibitors will be discussed.

  10. 1-(2-Hydroxy-2-methyl-3-phenoxypropanoyl)indoline-4-carbonitrile derivatives as potent and tissue selective androgen receptor modulators. (United States)

    Piatnitski Chekler, Eugene L; Unwalla, Rayomond; Khan, Taukeer A; Tangirala, Raghuram S; Johnson, Mark; St Andre, Michael; Anderson, James T; Kenney, Thomas; Chiparri, Sue; McNally, Chris; Kilbourne, Edward; Thompson, Catherine; Nagpal, Sunil; Weber, Gregory; Schelling, Scott; Owens, Jane; Morris, Carl A; Powell, Dennis; Verhoest, Patrick R; Gilbert, Adam M


    We present a novel series of selective androgen receptor modulators (SARMs) which shows excellent biological activity and physical properties. 1-(2-Hydroxy-2-methyl-3-phenoxypropanoyl)-indoline-4-carbonitriles showed potent binding to the androgen receptor (AR) and activated AR-mediated transcription in vitro. Representative compounds demonstrated diminished activity in promoting the intramolecular interaction between the AR carboxyl (C) and amino (N) termini. This N/C-termini interaction is a biomarker assay for the undesired androgenic responses in vivo. In orchidectomized rats, daily administration of a lead compound from this series showed anabolic activity by increasing levator ani muscle weight. Importantly, minimal androgenic effects (increased tissue weights) were observed in the prostate and seminal vesicles, along with minimal repression of circulating luteinizing hormone (LH) levels and no change in the lipid and triglyceride levels. This lead compound completed a two week rat toxicology study, and was well tolerated at doses up to 100 mg/kg/day, the highest dose tested, for 14 consecutive days.

  11. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus. (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying


    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  12. Aurintricarboxylic acid is a potent inhibitor of influenza A and B virus neuraminidases.

    Directory of Open Access Journals (Sweden)

    Anwar M Hashem

    Full Text Available BACKGROUND: Influenza viruses cause serious infections that can be prevented or treated using vaccines or antiviral agents, respectively. While vaccines are effective, they have a number of limitations, and influenza strains resistant to currently available anti-influenza drugs are increasingly isolated. This necessitates the exploration of novel anti-influenza therapies. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the potential of aurintricarboxylic acid (ATA, a potent inhibitor of nucleic acid processing enzymes, to protect Madin-Darby canine kidney cells from influenza infection. We found, by neutral red assay, that ATA was protective, and by RT-PCR and ELISA, respectively, confirmed that ATA reduced viral replication and release. Furthermore, while pre-treating cells with ATA failed to inhibit viral replication, pre-incubation of virus with ATA effectively reduced viral titers, suggesting that ATA may elicit its inhibitory effects by directly interacting with the virus. Electron microscopy revealed that ATA induced viral aggregation at the cell surface, prompting us to determine if ATA could inhibit neuraminidase. ATA was found to compromise the activities of virus-derived and recombinant neuraminidase. Moreover, an oseltamivir-resistant H1N1 strain with H274Y was also found to be sensitive to ATA. Finally, we observed additive protective value when infected cells were simultaneously treated with ATA and amantadine hydrochloride, an anti-influenza drug that inhibits M2-ion channels of influenza A virus. CONCLUSIONS/SIGNIFICANCE: Collectively, these data suggest that ATA is a potent anti-influenza agent by directly inhibiting the neuraminidase and could be a more effective antiviral compound when used in combination with amantadine hydrochloride.

  13. Discovery of Potent VEGFR-2 Inhibitors based on Furopyrimidine and Thienopyrimidne Scaffolds as Cancer Targeting Agents (United States)

    Aziz, Marwa A.; Serya, Rabah A. T.; Lasheen, Deena S.; Abdel-Aziz, Amal Kamal; Esmat, Ahmed; Mansour, Ahmed M.; Singab, Abdel Nasser B.; Abouzid, Khaled A. M.


    Vascular endothelial growth factor receptor-2 (VEGFR-2) plays a crucial role in cancer angiogenesis. In this study, a series of novel furo[2,3-d]pyrimidine and thieno[2,3-d]pyrimidine based-derivatives were designed and synthesized as VEGFR-2 inhibitors, in accordance to the structure activity relationship (SAR) studies of known type II VEGFR-2 inhibitors. The synthesized compounds were evaluated for their ability to in vitro inhibit VEGFR-2 kinase enzyme. Seven compounds (15b, 16c, 16e, 21a, 21b, 21c and 21e) demonstrated highly potent dose-related VEGFR-2 inhibition with IC50 values in nanomolar range, of which the thieno[2,3-d]pyrimidine based-derivatives (21b, 21c and 21e) exhibited IC50 values of 33.4, 47.0 and 21 nM respectively. Moreover, furo[2,3-d]pyrimidine-based derivative (15b) showed the strongest inhibition of human umbilical vein endothelial cells (HUVEC) proliferation with 99.5% inhibition at 10 μM concentration. Consistent with our in vitro findings, compounds (21b and 21e) orally administered at 5 and 10 mg/kg/day for 8 consecutive days demonstrated potent anticancer activity in Erhlich ascites carcinoma (EAC) solid tumor murine model. Such compounds blunted angiogenesis in EAC as evidenced by reduced percent microvessel via decreasing VEGFR-2 phosphorylation with subsequent induction of apoptotic machinery. Furthermore, Miles vascular permeability assay confirmed their antiangiogenic effects in vivo. Intriguingly, such compounds showed no obvious toxicity.

  14. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs

    Directory of Open Access Journals (Sweden)

    Guangshun Wang


    Full Text Available Antimicrobial peptides (AMPs, small host defense proteins, are indispensable for the protection of multicellular organisms such as plants and animals from infection. The number of AMPs discovered per year increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been registered into the antimicrobial peptide database (APD. The majority of these AMPs (>86% possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This article summarizes peptide discovery on the basis of the APD. The major methods are the linguistic model, database screening, de novo design, and template-based design. Using these methods, we identified various potent peptides against human immunodeficiency virus type 1 (HIV-1 or methicillin-resistant Staphylococcus aureus (MRSA. While the stepwise designed anti-HIV peptide is disulfide-linked and rich in arginines, the ab initio designed anti-MRSA peptide is linear and rich in leucines. Thus, there are different requirements for antiviral and antibacterial peptides, which could kill pathogens via different molecular targets. The biased amino acid composition in the database-designed peptides, or natural peptides such as θ-defensins, requires the use of the improved two-dimensional NMR method for structural determination to avoid the publication of misleading structure and dynamics. In the case of human cathelicidin LL-37, structural determination requires 3D NMR techniques. The high-quality structure of LL-37 provides a solid basis for understanding its interactions with membranes of bacteria and other pathogens. In conclusion, the APD database is a comprehensive platform for storing, classifying, searching, predicting, and designing potent peptides against pathogenic bacteria, viruses, fungi, parasites, and cancer cells.

  15. The natural product magnolol as a lead structure for the development of potent cannabinoid receptor agonists.

    Directory of Open Access Journals (Sweden)

    Alexander Fuchs

    Full Text Available Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenylphenol, the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB receptors. We now investigated the structure-activity relationships of (tetrahydromagnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl-4-hexylphenol (61a, K(i CB1:0.00957 µM; K(i CB2:0.0238 µM, and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl-4-pentylphenol (60, K(i CB1:0.362 µM; K(i CB2:0.0371 µM, which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 µM but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies.

  16. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.; (Einstein); (TAM); (Jacobus)


    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  17. Binding ability of impromidine, a potent H2 agonist of histamine (United States)

    Anouar, A.; Lhadi, E.; Decock, P.; Kozlowskyinst4, H.


    Impromidine (fig.1) is a potent and selective histamine H2 receptor agonist and its structure comprises a strongly basic guanidine group containing two different imidazole-containing side chains. The present work deals with the study of coordination equilibria between impromidine and Cu(II) and Ni(II) in aqueous solution at 25 circC. Potentiometric, UV-Visible and EPR studies on Cu(II) complexes with impromidine have shown that this anti-ulcerogenic drug is a very potent chelating agent. This drug is found to be a very effective ligand for Ni(II) ions also. The effective coordination of impromidine to metal ions may have significant biological implications. L'impromidine est un agoniste H2 de l'histamine, sa structure possède un groupement guanidinique de forte basicité et dont l'environne ment des deux groupements imidazoliques est différent. Le présent travail consiste en l'étude de la coordination de l'impromidine avec le Cu(II) et le Ni(II) en milieu aqueux à 25 circC. La potentiométrie, LíUV-Visible et la RPE montrent que le cuivre se coordine très fortement avec l'impromidine. Nous avons trouvé que ce médicament se coordine aussi fortement avec le nickel(II). La coordination de l'impromidine avec les métaux pourrait avoir des applications importantes en médecine.

  18. TCIQ: An identification by intensity and frequency of potent testing cues in science (United States)

    Kermis, William J.

    Everyone experiences some anxiety while taking an examination. High-test-anxious (HTA) and low-test-anxious (LTA) students are described by two characteristic differences: frequency and intensity of anxious responses and attentional direction to testing cues. The purposes of this study were threefold: (1) to report potent testing cues (i.e., 90% response agreement for both intensity and frequency) that were identified by HTA and LTA students; (2) to report differences between HTA and LTA students for frequencies and intensities of responses to testing cues; and (3) to report differences between HTA and LTA students of attentional direction to testing cues. A pool of 396 males and females who were enrolled in physical geology completed the State-Trait Anxiety Inventory. A random sample consisting of 93 HTA and 40 LTA subjects completed the Test Cues Identification Questionnaire (TCIQ). The TCIQ consists of 28 disruptive items and 27 helpful items. Subjects responded with both frequency and intensity ratings for all of the 55 items in the TCIQ. Results revealed that 22 items were viewed by subjects as potent testing cues. Empirical evidence obtained did not support previous theoretical reports of differences between HTA and LTA students for either frequency and intensity of anxious responses or attentional direction to the set of disruptive and helpful testing cues. Although test anxiousness did not appear to be associated with those two characteristics differences, a discriminant analysis revealed 24 items in the TCIQ which significantly, 2 (24) = 47.59, p separated HTA and LTA subjects responses. Apparently, HTA and LTA students differ in their responses to specific disruptive and helpful cues but not in their responses to the set of testing cues as was previously postulated.

  19. The Second-Generation Exportin-1 Inhibitor KPT-8602 Demonstrates Potent Activity against Acute Lymphoblastic Leukemia. (United States)

    Vercruysse, Thomas; De Bie, Jolien; Neggers, Jasper E; Jacquemyn, Maarten; Vanstreels, Els; Schmid-Burgk, Jonathan L; Hornung, Veit; Baloglu, Erkan; Landesman, Yosef; Senapedis, William; Shacham, Sharon; Dagklis, Antonis; Cools, Jan; Daelemans, Dirk


    Purpose: Human exportin-1 (XPO1) is the key nuclear-cytoplasmic transport protein that exports different cargo proteins out of the nucleus. Inducing nuclear accumulation of these proteins by inhibiting XPO1 causes cancer cell death. First clinical validation of pharmacological inhibition of XPO1 was obtained with the Selective Inhibitor of Nuclear Export (SINE) compound selinexor (KPT-330) demonstrating activity in phase-II/IIb clinical trials when dosed 1 to 3 times weekly. The second-generation SINE compound KPT-8602 shows improved tolerability and can be dosed daily. Here, we investigate and validate the drug-target interaction of KPT-8602 and explore its activity against acute lymphoblastic leukemia (ALL).Experimental Design: We examined the effect of KPT-8602 on XPO1 function and XPO1-cargo as well as on a panel of leukemia cell lines. Mutant XPO1 leukemia cells were designed to validate KPT-8602's drug-target interaction. In vivo, anti-ALL activity was measured in a mouse ALL model and patient-derived ALL xenograft models.Results: KPT-8602 induced caspase-dependent apoptosis in a panel of leukemic cell lines in vitro Using CRISPR/Cas9 genome editing, we demonstrated the specificity of KPT-8602 for cysteine 528 in the cargo-binding groove of XPO1 and validated the drug target interaction. In vivo, KPT-8602 showed potent anti-leukemia activity in a mouse ALL model as well as in patient-derived T- and B-ALL xenograft models without affecting normal hematopoiesis.Conclusions: KPT-8602 is highly specific for XPO1 inhibition and demonstrates potent anti-leukemic activity supporting clinical application of the second-generation SINE compound for the treatment of ALL. Clin Cancer Res; 1-14. ©2016 AACR.

  20. 7-Chloroarctinone-b as a new selective PPARγ antagonist potently blocks adipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    Yong-tao LI; Li LI; Jing CHEN; Tian-cen HU; Jin HUANG; Yue-wei GUO; Hua-liang JIANG; Xu SHEN


    Aim: Peroxisome proliferator-activated receptor gamma (PPARy) is a therapeutic target for obesity, cancer and diabetes mellitus. In order to develop potent lead compounds for obesity treatment, we screened a natural product library for novel PPARy antagonists with inhibitory effects on adipocyte differentiation. Methods: Surface plasmon resonance (SPR) technology and cell-based transactivation assay were used to screen for PPARy antago-nists. To investigate the antagonistic mechanism of the active compound, we measured its effect on PPARy/RXRα heterodimerization and PPARy co-activator recruitment using yeast two-hybrid assay, Gal4/UAS cell-based assay and SPR based assay. The 3T3-L1 cell differentiation assay was used to evaluate the effect of the active compound on adipocyte differentiation. Results: A new thiophene-acetylene type of natural product, 7-chloroarctinone-b (CAB), isolated from the roots of Rhaponticum uniflo-rum, was discovered as a novel PPARγ antagonist capable of inhibiting rosiglitazone-induced PPARγ transcriptional activity. SPR analy-sis suggested that CAB bound tightly to PPARγ and considerably antagonized the potent PPARy agonist rosigtitazone-stimulated PPARγ-LBD/RXRα-LBD binding. Gal4/UAS and yeast two-hybrid assays were used to evaluate the antagonistic activity of CAB on rosiglitazone-induced recruitment of the coactivator for PPARy. CAB could efficiently antagonize both hormone and rosiglitazone-induced adipocyte differentiation in cell culture. Conclusion: CAB shows antagonistic activity to PPARγ and can block the adipocyte differentiation, indicating it may be of potential use as a lead therapeutic compound for obesity.

  1. Potent innate immune response to pathogenic leptospira in human whole blood.

    Directory of Open Access Journals (Sweden)

    Marga G A Goris

    Full Text Available BACKGROUND: Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. The bacteria enter the human body via abraded skin or mucous membranes and may disseminate throughout. In general the clinical picture is mild but some patients develop rapidly progressive, severe disease with a high case fatality rate. Not much is known about the innate immune response to leptospires during haematogenous dissemination. Previous work showed that a human THP-1 cell line recognized heat-killed leptospires and leptospiral LPS through TLR2 instead of TLR4. The LPS of virulent leptospires displayed a lower potency to trigger TNF production by THP-1 cells compared to LPS of non-virulent leptospires. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the host response and killing of virulent and non-virulent Leptospira of different serovars by human THP-1 cells, human PBMC's and human whole blood. Virulence of each leptospiral strain was tested in a well accepted standard guinea pig model. Virulent leptospires displayed complement resistance in human serum and whole blood while in-vitro attenuated non-virulent leptospires were rapidly killed in a complement dependent manner. In vitro stimulation of THP-1 and PBMC's with heat-killed and living leptospires showed differential serovar and cell type dependence of cytokine induction. However, at low, physiological, leptospiral dose, living virulent complement resistant strains were consistently more potent in whole blood stimulations than the corresponding non-virulent complement sensitive strains. At higher dose living virulent and non-virulent leptospires were equipotent in whole blood. Inhibition of different TLRs indicated that both TLR2 and TLR4 as well as TLR5 play a role in the whole blood cytokine response to living leptospires. CONCLUSIONS/SIGNIFICANCE: Thus, in a minimally altered system as human whole blood, highly virulent Leptospira are potent inducers of the cytokine response.

  2. What carries a mediation process? Configural analysis of mediation. (United States)

    von Eye, Alexander; Mun, Eun Young; Mair, Patrick


    Mediation is a process that links a predictor and a criterion via a mediator variable. Mediation can be full or partial. This well-established definition operates at the level of variables even if they are categorical. In this article, two new approaches to the analysis of mediation are proposed. Both of these approaches focus on the analysis of categorical variables. The first involves mediation analysis at the level of configurations instead of variables. Thus, mediation can be incorporated into the arsenal of methods of analysis for person-oriented research. Second, it is proposed that Configural Frequency Analysis (CFA) can be used for both exploration and confirmation of mediation relationships among categorical variables. The implications of using CFA are first that mediation hypotheses can be tested at the level of individual configurations instead of variables. Second, this approach leaves the door open for different types of mediation processes to exist within the same set. Using a data example, it is illustrated that aggregate-level analysis can overlook mediation processes that operate at the level of individual configurations.

  3. Discovery and Optimization of Macrocyclic Quinoxaline-pyrrolo-dihydropiperidinones as Potent Pim-1/2 Kinase Inhibitors. (United States)

    Cee, Victor J; Chavez, Frank; Herberich, Bradley; Lanman, Brian A; Pettus, Liping H; Reed, Anthony B; Wu, Bin; Wurz, Ryan P; Andrews, Kristin L; Chen, Jie; Hickman, Dean; Laszlo, Jimmy; Lee, Matthew R; Guerrero, Nadia; Mattson, Bethany K; Nguyen, Yen; Mohr, Christopher; Rex, Karen; Sastri, Christine E; Wang, Paul; Wu, Qiong; Wu, Tian; Xu, Yang; Zhou, Yihong; Winston, Jeffrey T; Lipford, J Russell; Tasker, Andrew S; Wang, Hui-Ling


    The identification of Pim-1/2 kinase overexpression in B-cell malignancies suggests that Pim kinase inhibitors will have utility in the treatment of lymphoma, leukemia, and multiple myeloma. Starting from a moderately potent quinoxaline-dihydropyrrolopiperidinone lead, we recognized the potential for macrocyclization and developed a series of 13-membered macrocycles. The structure-activity relationships of the macrocyclic linker were systematically explored, leading to the identification of 9c as a potent, subnanomolar inhibitor of Pim-1 and -2. This molecule also potently inhibited Pim kinase activity in KMS-12-BM, a multiple myeloma cell line with relatively high endogenous levels of Pim-1/2, both in vitro (pBAD IC50 = 25 nM) and in vivo (pBAD EC50 = 30 nM, unbound), and a 100 mg/kg daily dose was found to completely arrest the growth of KMS-12-BM xenografts in mice.

  4. Urban Songlines as Mediator

    DEFF Research Database (Denmark)

    Corlin, Anne


    The aim of this paper is to present an investigation of the method The Urban Songlines Book and how it works as a mediator for mapping the experienced space. The method contains a combination of aerial maps, photographs, and interviews as a way to understand the respondent´s use, relations...... and experiences of their neighborhood and the city. Through a presentation of the origin of the method, a description of the conducted study, and an analysis of the process in relation to theories about participatory design, social design, ANT and architectural sociology, the paper reveals how this method...

  5. Sociocultural mediators of remembering

    DEFF Research Database (Denmark)

    Wagoner, Brady; Gillespie, Alex


    , questioning and deferring contribute to the transformation and conventionalization of the material. These diverse sociocultural mediators are integrated into a partially coherent recollection by participants self-reflecting, or as Bartlett termed it, turning around upon their schemas. We demonstrate...... that this self-reflection is both a social and a psychological process, occurring because participants are responding to their own utterances in the same way that they respond to the utterances of other people. These empirical findings are used to make a case for using discursive data to look not only...

  6. Mediatization and Government Communication

    DEFF Research Database (Denmark)

    Laursen, Bo; Valentini, Chiara


    in the light of mediatization and government communication theories. Without one pan-European public sphere, the European Parliament, like the other European Union (EU) institutions, competes with national actors for the news media’s attention in the EU’s twenty-eight national public spheres, where EU affairs......, and particularly into the thinking that guides the efforts of these European Parliament officials to increase European citizens’ awareness of, and support for, the European Parliament that is meant to voice the citizens’ concerns in political processes at the EU level....

  7. Computer Mediated Communication (United States)

    Fano, Robert M.


    The use of computers in organizations is discussed in terms of its present and potential role in facilitating and mediating communication between people. This approach clarifies the impact that computers may have on the operation of organizations and on the individuals comprising them. Communication, which is essential to collaborative activities, must be properly controlled to protect individual and group privacy, which is equally essential. Our understanding of the human and organizational aspects of controlling communication and access to information presently lags behind our technical ability to implement the controls that may be needed.

  8. Holographic Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study


    We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.

  9. Surface-Mediated Photocatalysis (United States)


    Photocatalysis 6. AUTHOR(S) DIMarye Anne Fox E -LECTE ’ / 7. PERFORMING ORGANIZATION NAME(S) AND AD ES). 8. PERFORMING ORGANIZATION REPORT NUMBER University of...Form 298 (Rev 2-89) Prescr d bv ANJ std Z39.1s 291-102 j Final Report on Surface-Mediated Photocatalysis "a,. . ARO Proposal No. 28298-CH u - Work from...Produced by Anodic Oxidation and by Photoelectrochemical Activation of TiO2 ," Marye Anne Fox and Karl L. Worthen, Chem. Mater. 1991, 3, 253. "Surface

  10. 45 CFR 16.18 - Mediation. (United States)


    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Mediation. 16.18 Section 16.18 Public Welfare... BOARD § 16.18 Mediation. (a) In cases pending before the Board. If the Board decides that mediation... mediation techniques and will provide or assist in selecting a mediator. The mediator may take any...

  11. MART-10, a New Generation of Vitamin D Analog, Is More Potent than 1α,25-Dihydroxyvitamin D3 in Inhibiting Cell Proliferation and Inducing Apoptosis in ER+ MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kun-Chun Chiang


    Full Text Available Hormone antagonist therapy for estrogen receptor positive (ER+ breast cancer patients post radical surgery and radiation therapy has a poor prognosis and also causes bone loss. 1α,25-dihydroxyvitamin D3 [1α,25(OH2D3] is a potent antitumor agent in pre-clinical studies, but caused hypercalcemia when its effective antitumor doses were used. Therefore, we investigated the effects of a less-calcemic 1α,25(OH2D3 analog, 19-nor-2α-(3-hydroxypropyl-1α,25-dihydroxyvitamin D3 (MART-10, on ER+MCF-7 cells. We demonstrate that MART-10 is 500- to 1000-fold more potent than 1α,25(OH2D3 in inhibiting cell growth in a dose- and time-dependent manner. MART-10 is also much more potent in arresting MCF-7cell cycle progression at G0/G1 phase as compared to 1α,25(OH2D3, possibly mediated by a greater induction of p21 and p27 expression. Moreover, MART-10 is more active than 1α,25(OH2D3 in causing cell apoptosis, likely through a higher BAX/Bcl expression ratio and the subsequent cytochrome C release from mitochondria to cytosol. Based on our in vitro findings, MART-10 could be a promising vitamin D analog for the potential treatment of breast cancer, for example, ER+ patients, to decrease the tumor relapse rate and the side effect on bone caused by antihormone regimens. Thus, further in vivo animal study is warranted.

  12. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine.

    NARCIS (Netherlands)

    Hangalapura, B.N.; Oosterhoff, D.; Groot, J. de; Boon, L.; Tuting, T.; Eertwegh, A.J. van den; Gerritsen, W.R.; Beusechem, V.W. van; Pereboev, A.; Curiel, D.T.; Scheper, R.J.; Gruijl, T.D. de


    In situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of express

  13. The discovery of potent antitumor agent C11-deoxypsymberin/irciniastatin A: total synthesis and biology of advanced psymberin analogs. (United States)

    Huang, Xianhai; Shao, Ning; Huryk, Robert; Palani, Anandan; Aslanian, Robert; Seidel-Dugan, Cynthia


    Structure-activity relationship (SAR) studies by modification of the unsaturated side chain of potent anticancer marine natural product psymberin/irciniastatin A (1) suggest that substitution at C4 and C5 is important for the cytotoxicity of psymberin, but the terminal double bond is not essential for activity. An aryl group is a good replacement for the olefin. The total synthesis of structurally simplified C11-deoxypsymberin (29) was completed, and its activity is consistently more potent than the natural product which provides a unique opportunity for further SAR studies in the psymberin and pederin family. Preliminary mechanism studies suggest the mode of action of psymberin is through cell apoptosis.

  14. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors. (United States)

    Wang, Hui-Ling; Cee, Victor J; Chavez, Frank; Lanman, Brian A; Reed, Anthony B; Wu, Bin; Guerrero, Nadia; Lipford, J Russell; Sastri, Christine; Winston, Jeff; Andrews, Kristin L; Huang, Xin; Lee, Matthew R; Mohr, Christopher; Xu, Yang; Zhou, Yihong; Tasker, Andrew S


    The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to tumorigenesis. As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Herein, we describe our efforts toward the development of a potent, pan-Pim inhibitor. The synthesis and hit-to-lead SAR development from a 3-(pyrazin-2-yl)-1H-indazole derived hit 2 to the identification of a series of potent, pan-Pim inhibitors such as 13o are described.

  15. Novel 3-Oxazolidinedione-6-aryl-pyridinones as Potent, Selective, and Orally Active EP3 Receptor Antagonists. (United States)

    Jin, Jian; Morales-Ramos, Angel; Eidam, Patrick; Mecom, John; Li, Yue; Brooks, Carl; Hilfiker, Mark; Zhang, David; Wang, Ning; Shi, Dongchuan; Tseng, Pei-San; Wheless, Karen; Budzik, Brian; Evans, Karen; Jaworski, Jon-Paul; Jugus, Jack; Leon, Lisa; Wu, Charlene; Pullen, Mark; Karamshi, Bhumika; Rao, Parvathi; Ward, Emma; Laping, Nicholas; Evans, Christopher; Leach, Colin; Holt, Dennis; Su, Xin; Morrow, Dwight; Fries, Harvey; Thorneloe, Kevin; Edwards, Richard


    High-throughput screening and subsequent optimization led to the discovery of novel 3-oxazolidinedione-6-aryl-pyridinones exemplified by compound 2 as potent and selective EP3 antagonists with excellent pharmacokinetic properties. Compound 2 was orally active and showed robust in vivo activities in overactive bladder models. To address potential bioactivation liabilities of compound 2, further optimization resulted in compounds 9 and 10, which maintained excellent potency, selectivity, and pharmacokinetic properties and showed no bioactivation liability in glutathione trapping studies. These highly potent, selective, and orally active EP3 antagonists are excellent tool compounds for investigating and validating potential therapeutic benefits from selectively inhibiting the EP3 receptor.

  16. Quinoxaline N-oxide containing potent angiotensin II receptor antagonists: synthesis, biological properties, and structure-activity relationships. (United States)

    Kim, K S; Qian, L; Bird, J E; Dickinson, K E; Moreland, S; Schaeffer, T R; Waldron, T L; Delaney, C L; Weller, H N; Miller, A V


    A series of novel quinoxaline heterocycle containing angiotensin II receptor antagonist analogs were prepared. This heterocycle was coupled to the biphenyl moiety via an oxygen atom linker instead of a carbon atom. Many of these analogs exhibit very potent activity and long duration of effect. Interestingly, the N-oxide quinoxaline analog was more potent than the nonoxidized quinoxaline as in the comparison of compounds 5 vs 30. In order to improve oral activity, the carboxylic acid function of these compounds was converted to the double ester. This change did result in an improvement in oral activity as represented by compound 44.

  17. Structure-activity relationships of 1,3-benzoxazole-4-carbonitriles as novel antifungal agents with potent in vivo efficacy. (United States)

    Kuroyanagi, Jun-ichi; Kanai, Kazuo; Horiuchi, Takao; Takeshita, Hiroshi; Kobayashi, Shozo; Achiwa, Issei; Yoshida, Kumi; Nakamura, Koichi; Kawakami, Katsuhiro


    A series of 1,3-benzoxazole-4-carbonitriles was synthesized and evaluated for its antifungal activity, solubility, and metabolic stability. Among those compounds, 4-cyano-N,N,5-trimethyl-7-[(3S)-3-methyl-3-(methylamino)pyrrolidin-1-yl]-6-phenyl-1,3-benzoxazole-2-carboxamide (16b) exhibited potent in vitro activity against Candida species, higher water solubility, and improved metabolic stability compared to lead compound 1. Compound 16b showed potent in vivo efficacy against mice Candida infection models and good bioavailability in rats.

  18. Synthesis and Biological Evaluation of Novel Aryl-2H-pyrazole Derivatives as Potent Non-purine Xanthine Oxidase Inhibitors. (United States)

    Sun, Zhi-Gang; Zhou, Xiao-Jing; Zhu, Ming-Li; Ding, Wen-Ze; Li, Zhen; Zhu, Hai-Liang


    A series of aryl-2H-pyrazole derivatives were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro as potent xanthine oxidase inhibitors. Among them, 2 aryl-2H-pyrazole derivatives showed significant inhibitory activities against xanthine oxidase. Compound 19 emerged as the most potent xanthine oxidase inhibitor (IC50=9.8 µM) in comparison with allopurinol (IC50=9.5 µM). The docking study revealed that compound 19 might have strong interactions with the active site of xanthine oxidase. This compound is thus a new candidate for further development for the treatment of gout.

  19. Mediation Revisited: The Interactive Organization of Mediation in Learning Environments


    Pekarek Doehler, Simona


    This article is concerned with the social organization of mediation in learning environments. It seeks to further articulate the sociocultural notion of mediation in sociointeractional terms, combining insights from the sociocultural approach to cognition and the microinteractionist, especially ethnomethodological approach to social activities. A microanalysis of mediation in communicative 2nd-language classroom activities where the task at hand is the management of interaction itself is pres...

  20. Biocompatible chitosan nanoparticles as an efficient delivery vehicle for Mycobacterium tuberculosis lipids to induce potent cytokines and antibody response through activation of γδ T cells in mice (United States)

    Das, Ishani; Padhi, Avinash; Mukherjee, Sitabja; Dash, Debi P.; Kar, Santosh; Sonawane, Avinash


    The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.

  1. Magnetically mediated thermoacoustic imaging (United States)

    Feng, Xiaohua; Gao, Fei; Zheng, Yuanjin


    In this paper, alternating magnetic field is explored for inducing thermoacoustic effect on dielectric objects. Termed as magnetically mediated thermo-acoustic (MMTA) effect that provides a contrast in conductivity, this approach employs magnetic resonance for delivering energy to a desired location by applying a large transient current at radio frequency below 50MHz to a compact magnetically resonant coil. The alternating magnetic field induces large electric field inside conductive objects, which then undergoes joule heating and emanates acoustic signal thermo-elastically. The magnetic mediation approach with low radio frequency can potentially provide deeper penetration than microwave radiation due to the non-magnetic nature of human body and therefore extend thermoacoustic imaging to deep laid organs. Both incoherent time domain method that applies a pulsed radio frequency current and coherent frequency domain approach that employs a linear chirp signal to modulate the envelop of the current are discussed. Owing to the coherent processing nature, the latter approach is capable of achieving much better signal to noise ratio and therefore potential for portable imaging system. Phantom experiments are carried out to demonstrate the signal generation together with some preliminary imaging results. Ex-vivo tissue studies are also investigated.

  2. Newly synthesized 'hidabeni' chalcone derivatives potently suppress LPS-induced NO production via inhibition of STAT1, but not NF-κB, JNK, and p38, pathways in microglia. (United States)

    Hara, Hirokazu; Ikeda, Ryoko; Ninomiya, Masayuki; Kamiya, Tetsuro; Koketsu, Mamoru; Adachi, Tetsuo


    Chalcones are open-chain flavonoids that are biosynthesized in various plants. Some of them possess anti-inflammatory activity. We previously found that chalcone glycosides from Brassica rapa L. 'hidabeni' suppress lipopolysaccharide (LPS)-induced nitric oxide (NO) production in rat microglia highly aggressively proliferating immortalized (HAPI) cells. In this study, to explore chalcone derivatives with potent NO inhibitory activity, we synthesized ten compounds based on 'hidabeni' chalcone and examined their effects on LPS-triggered inducible NO synthase (iNOS) expression and NO production. Compounds C4 and C10 potently inhibited NO production (IC50: 4.19, 2.88 µM, respectively). C4 and C10 suppressed LPS-induced iNOS expression via the inhibition of the signal transduction and activator of transcription 1 (STAT1), but not nuclear factor-kappa B (NF-κB), c-Jun N terminal kinase (JNK), and p38, pathways. C10, but not C4, inhibited activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. C4 and C10 also suppressed LPS-induced expression of interferon regulatory factor 1 (IRF-1), which is an important transcription factor involved in iNOS expression. Our findings indicate that these chalcone derivatives are candidate compounds for preventing microglia-mediated neuroinflammation.

  3. A New Efficient Synthetic Method for 3-1odothyronamine and Its Potent Hypothermic Efficacy%A New Efficient Synthetic Method for 3-1odothyronamine and Its Potent Hypothermic Efficacy

    Institute of Scientific and Technical Information of China (English)

    Kim, Joong-Gon; Song, Young-Kyu; Jeon, Su-Yeon; Lim, Ye-Ji; Ju, Hyunwo; Choi, Inho; Chung, Chan-Moon


    We developed a new efficient synthetic method for a 3-iodothyronamine (TjAM) that has advantages of less synthetic steps and much higher overall yield compared to those in the conventional method. Our animal study showed that TTAM synthesized by the method exerted a potent hypothermic effect in non-hibernator mice.

  4. Biological principles of microRNA-mediated regulation: shared themes amid diversity. (United States)

    Flynt, Alex S; Lai, Eric C


    Regulation of gene activity by microRNAs is critical to myriad aspects of eukaryotic development and physiology. Amidst an extensive regulatory web that is predicted to involve thousands of transcripts, emergent themes are now beginning to illustrate how microRNAs have been incorporated into diverse settings. These include potent inhibition of individual key targets, fine-tuning of target activity, the coordinated regulation of target batteries, and the reversibility of some aspects of microRNA-mediated repression. Such themes may reflect some of the inherent advantages of exploiting microRNA control in biological circuits, and provide insight into the consequences of microRNA dysfunction in disease.

  5. Mediating Trust in Terrorism Coverage

    DEFF Research Database (Denmark)

    Mogensen, Kirsten

    crisis. While the framework is presented in the context of television coverage of a terror-related crisis situation, it can equally be used in connection with all other forms of mediated trust. Key words: National crisis, risk communication, crisis management, television coverage, mediated trust.......Mass mediated risk communication can contribute to perceptions of threats and fear of “others” and/or to perceptions of trust in fellow citizens and society to overcome problems. This paper outlines a cross-disciplinary holistic framework for research in mediated trust building during an acute...

  6. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours

    Energy Technology Data Exchange (ETDEWEB)

    Mansi, Rosalba; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); University of Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Wang, Xuejuan [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Forrer, Flavio [University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Erasmus Medical Centre, Nuclear Medicine, Rotterdam (Netherlands); Waser, Beatrice; Cescato, Renzo; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, Berne (Switzerland); Graham, Keith; Borkowski, Sandra [Bayer Schering Pharma AG, Global Drug Discovery, Berlin (Germany)


    Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH{sub 2} via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as {sup 111}In and {sup 68}Ga. RM2 was synthesized on a solid support and evaluated in vitro in PC-3 cells. IC{sub 50} and K{sub d} values were determined. The antagonist potency was evaluated by immunofluorescence-based internalization and Ca{sup 2+} mobilization assays. Biodistribution studies were performed in PC-3 and LNCaP tumour-bearing mice with {sup 111}In-RM2 and {sup 68}Ga-RM2, respectively. PET/CT studies were performed on PC-3 and LNCaP tumour-bearing nude mice with {sup 68}Ga-RM2. RM2 and {sup 111}In-RM2 are high-affinity and selective ligands for the GRP receptor (7.7{+-}3.3 nmol/l for RM2; 9.3{+-}3.3 nmol/l for {sup nat}In-RM2). The potent antagonistic properties were confirmed by an immunofluorescence-based internalization and Ca{sup 2+} mobilization assays. {sup 68}Ga- and {sup 111}In-RM2 showed high and specific uptake in both the tumour and the pancreas. Uptake in the tumour remained high (15.2{+-}4.8%IA/g at 1 h; 11.7{+-}2.4%IA/g at 4 h), whereas a relatively fast washout from the pancreas and the other abdominal organs was observed. Uptake in the pancreas decreased rapidly from 22.6{+-}4.7%IA/g at 1 h to 1.5{+-}0.5%IA/g at 4 h. RM2 was shown to be a potent GRPr antagonist. Pharmacokinetics and imaging studies indicate that {sup 111}In-RM2 and {sup 68}Ga-RM2 are ideal candidates for clinical SPECT and PET studies. (orig.)

  7. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Douillet, Christelle [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Currier, Jenna [Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Saunders, Jesse [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Bodnar, Wanda M. [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States); Matoušek, Tomáš [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); Stýblo, Miroslav, E-mail: [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States)


    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  8. Curcumin is a potent modulator of microglial gene expression and migration

    Directory of Open Access Journals (Sweden)

    Aslanidis Alexander


    Full Text Available Abstract Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and

  9. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems (United States)

    Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu


    Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied

  10. When Memories are Mediated

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette


    and political contexts and media platforms take place and become contexts for audience reception. This paper explores two examples of narratives that construct memories of acts of mass violence: “Gzim Rewind” (Sweden, 2011, director Knutte Wester) about 1990’s Kosovo, and “The Act of Killing” (Denmark, 2012......Acts of mass violence, including murder on civilians, genocide, oppression and wars, can mobilize memories of the involved persons and following generations in a certain historical situation. Acts of mass violence can also create a sort of looking glass of culturally dominant memories...... that are mediated through stories: told and retold as oral stories through generations, as myths or sagas, or remediated as contemporary documentary film accounts or more fictional film accounts. In these processes of retelling acts of violence, transformations of meanings across time, cultural, social...

  11. Neutrino assisted gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Do; Mo, Doh Young; Seo, Min-Seok [Seoul National University, Department of Physics and Astronomy and Center for Theoretical Physics, Seoul (Korea, Republic of)


    Recent observation shows that the Higgs mass is at around 125 GeV while the prediction of the minimal supersymmetric standard model is below 120 GeV for stop mass lighter than 2 TeV unless the top squark has a maximal mixing. We consider the right-handed neutrino supermultiplets as messengers in addition to the usual gauge mediation to obtain sizeable trilinear soft parameters A{sub t} needed for the maximal stop mixing. Neutrino messengers can explain the observed Higgs mass for stop mass around 1 TeV. Neutrino assistance can also generate charged lepton flavor violation including {mu}{yields}e {gamma} as a possible signature of the neutrino messengers. We consider the S{sub 4} discrete flavor model and show the relation of the charged lepton flavor violation, {theta} {sub 13} of neutrino oscillation and the muon's g-2. (orig.)

  12. Stereochemistry and molecular pharmacology of (S)-thio-ATPA, a new potent and selective GluR5 agonist

    DEFF Research Database (Denmark)

    Stensbøl, T B; Jensen, H S; Nielsen, B


    )-Glu) receptors (EC(50)=14 microM), comparable in potency with ATPA (EC(50)=34 microM). Recent findings, that (S)-ATPA is a potent (EC(50)=0.48 microM) and selective agonist at homomerically expressed ionotropic GluR5, prompted us to resolve thio-ATPA using chiral chromatography and pharmacologically characterize...

  13. Rational Development of a Potent 15-Lipoxygenase-1 Inhibitor with in Vitro and ex Vivo Anti-inflammatory Properties

    NARCIS (Netherlands)

    Eleftheriadis, Nikolaos; Neochoritis, Dinos; Leus, Niek G. J.; van der Wouden, Petra E.; Dömling, Alex; Dekker, Frank J.


    Human 15-lipoxygenase-1 (h-1S-LOX-1) is a mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD, and chronic bronchitis. Novel potent inhibitors of h-1S-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery

  14. In vitro and mouse in vivo characterization of the potent free fatty acid 1 receptor agonist TUG-469

    DEFF Research Database (Denmark)

    Urban, C; Hamacher, A; Partke, H J;


    Activation of the G protein-coupled free fatty acid receptor 1 (FFA1; formerly known as GPR40) leads to an enhancement of glucose-stimulated insulin secretion from pancreatic β-cells. TUG-469 has previously been reported as a potent FFA1 agonist. This study was performed to confirm the higher in ...

  15. Design and synthesis of 4-substituted quinazolines as potent EGFR inhibitors with anti-breast cancer activity. (United States)

    Ahmed, Marwa; Magdy, Naja


    Cancer is a major health problem to human beings around the world. Many quinazoline derivatives were reported to have potent cytotoxic activity. Our aim in this work is the discovery of potent epidermal growth factor receptor (EGFR) inhibitors with anti-breast cancer activity containing 4-substituted quinazoline pharmacophore. Novel series of 4-substituted 6,8-dibromo-2-(4-chlorophenyl)-quinazoline derivatives have been designed and synthesized. New derivatives were tested against MCF-7 (human breast carcinoma cell line) and screened for their inhibition activity against epidermal growth factor receptor tyrosine kinase (EGFR-TK). Most of the tested compounds show potent antiproliferative activity and EGFR-TK inhibitory activity. Compounds VIIIc and VIIIb exerted powerful cytotoxic activity (IC50 3.1 and 6.3 µM) with potent inhibitory percent (91.1 and 88.4%) against EGFR-TK. Compounds IX, VIIa, X, VIIb, VIc, V, IV, VIa and VIb showed promising cytotoxic effects with IC50 range (12-79 µM) with good activity against EGFR-TK with the inhibitory percent (85.4-60.8%). On the other hand, compounds VIIc, VIIIa exerted low cytotoxic effects as revealed from their IC50 value (124 and 144 µM) with low activity against EGFR-TK with inhibitory percent 30.6 and 29.1% respectively.

  16. [Experience of the development special medical technical laboratory for studies of effects caused by potent electromagnetic radiation in biologic objects]. (United States)

    Gorodetsky, B N; Kalyada, T V; Petrov, S V


    This article covers topics of creating special medical technical laboratory for medial and biologic studies concerning influence of potent high-frequency elecromagnetic radiation on various biologic objects. The authors gave example of such laboratory, described its construction features, purpose and main characteristics of the included devices.

  17. Preclinical Metabolism and Pharmacokinetics of SB1317 (TG02), a Potent CDK/JAK2/FLT3 Inhibitor

    NARCIS (Netherlands)

    Pasha, Mohammed Khalid; Jayaraman, Ramesh; Reddy, Venkatesh Pilla; Yeo, Pauline; Goh, Evelyn; Williams, Anthony; Goh, Kee Chuan; Kantharaj, Ethirajulu


    SB1317 (TG02) is a novel small molecule potent CDK/JAK2/FLT3 inhibitor. To evaluate full potential of this development candidate, we conducted drug metabolism and pharmacokinetic studies of this novel anti-cancer agent. SB1317 was soluble, highly permeable in Caco-2 cells, and showed >99% binding to

  18. Draft Genome Sequence of Pseudomonas sp. Strain In5 Isolated from a Greenlandic Disease Suppressive Soil with Potent Antimicrobial Activity

    DEFF Research Database (Denmark)

    Hennessy, Rosanna C.; Glaring, Mikkel Andreas; Frydenlund Michelsen, Charlotte;


    Pseudomonas sp. In5 is an isolate of disease suppressive soil with potent activity against pathogens. Its antifungal activity has been linked to a gene cluster encoding nonribosomal peptide synthetases producing the peptides nunamycin and nunapeptin. The genome sequence will provide insight...... into the genetics behind the antimicrobial activity of this strain....

  19. Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction

    NARCIS (Netherlands)

    Surmiak, Ewa; Neochoritis, Constantinos G; Musielak, Bogdan; Twarda-Clapa, Aleksandra; Kurpiewska, Katarzyna; Dubin, Grzegorz; Camacho, Carlos; Holak, Tad A; Dömling, Alexander


    Using the computational pharmacophore-based ANCHOR.QUERY platform a new scaffold was discovered. Potent compounds evolved inhibiting the protein-protein interaction p53-MDM2. An extensive SAR study was performed based on our four-point pharmacophore model, yielding derivatives with affinity to MDM2

  20. 3-Amido-3-aryl-piperidines: A Novel Class of Potent, Selective, and Orally Active GlyT1 Inhibitors. (United States)

    Pinard, Emmanuel; Alberati, Daniela; Alvarez-Sanchez, Ruben; Brom, Virginie; Burner, Serge; Fischer, Holger; Hauser, Nicole; Kolczewski, Sabine; Lengyel, Judith; Mory, Roland; Saladin, Christian; Schulz-Gasch, Tanja; Stalder, Henri


    3-Amido-3-aryl-piperidines were discovered as a novel structural class of GlyT1 inhibitors. The structure-activity relationship, which was developed, led to the identification of highly potent compounds exhibiting excellent selectivity against the GlyT2 isoform, drug-like properties, and in vivo activity after oral administration.

  1. Absorption, distribution, and biliary excretion of cafestol, a potent cholesterol-elevating compound in unfiltered coffees, in mice

    NARCIS (Netherlands)

    Cruchten, S.T.J. van; Waart, D.R. de; Kunne, C.; Hooiveld, G.J.E.J.; Boekschoten, M.V.; Katan, M.B.; Oude Elferink, R.P.J.; Witkamp, R.F.


    Cafestol is a diterpene present in unfiltered coffees. It is the most potent cholesterol-elevating compound present in the human diet. However, the precise mechanisms underlying this effect are still unclear. In contrast, cafestol is also known as a hepatoprotective compound, which is likely to be r

  2. The bispyridinium-dioxime HLö-7. A potent reactivator for acetylcholinesterase inhibited by the stereoisomers of tabun and soman

    NARCIS (Netherlands)

    Jong,; Verhagen, M.A.A.; Langenberg, J.P.; Hagedorn, I.; Löffler, M.


    Purification of (+)-tabun was accomplished by treatment with electric eel acetylcholinesterase (AChE) in order to bind contaminating (-)-tabun, the more potent enantiomer with respect of AChE inhibition. Electric eel AChE inhibited with (-)-tabun and with purified (+)-tabun show similar properties i

  3. Development of potent fluorescent polyamine toxins and application in labeling of ionotropic glutamate receptors in hippocampal neurons

    DEFF Research Database (Denmark)

    Nørager, Niels Grøn; Jensen, Christel Barker; Rathje, Mette;


    The natural product argiotoxin-636 (ArgTX-636) found in the venom of the Argiope lobata spider is a potent open-channel blocker of ionotropic glutamate (iGlu) receptors, and recently, two analogues, ArgTX-75 and ArgTX-48, were identified with increased potency and selectivity for iGlu receptor...

  4. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi. (United States)

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami


    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.

  5. Synthesis and evaluation of novel azetidine analogs as potent inhibitors of vesicular [3H]dopamine uptake. (United States)

    Ding, Derong; Nickell, Justin R; Deaciuc, Agripina G; Penthala, Narsimha Reddy; Dwoskin, Linda P; Crooks, Peter A


    Lobelane analogs that incorporate a central piperidine or pyrrolidine moiety have previously been reported by our group as potent inhibitors of VMAT2 function. Further central ring size reduction of the piperidine moiety in lobelane to a four-membered heterocyclic ring has been carried out in the current study to afford novel cis-and trans-azetidine analogs. These azetidine analogs (15a-15c and 22a-22c) potently inhibited [(3)H]dopamine (DA) uptake into isolated synaptic vesicles (Ki⩽66nM). The cis-4-methoxy analog 22b was the most potent inhibitor (Ki=24nM), and was twofold more potent that either lobelane (2a, Ki=45nM) or norlobelane (2b, Ki=43nM). The trans-methylenedioxy analog, 15c (Ki=31nM), was equipotent with the cis-analog, 22b, in this assay. Thus, cis- and trans-azetidine analogs 22b and 15c represent potential leads in the discovery of new clinical candidates for the treatment of methamphetamine abuse.

  6. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. (United States)

    Corti, Davide; Misasi, John; Mulangu, Sabue; Stanley, Daphne A; Kanekiyo, Masaru; Wollen, Suzanne; Ploquin, Aurélie; Doria-Rose, Nicole A; Staupe, Ryan P; Bailey, Michael; Shi, Wei; Choe, Misook; Marcus, Hadar; Thompson, Emily A; Cagigi, Alberto; Silacci, Chiara; Fernandez-Rodriguez, Blanca; Perez, Laurent; Sallusto, Federica; Vanzetta, Fabrizia; Agatic, Gloria; Cameroni, Elisabetta; Kisalu, Neville; Gordon, Ingelise; Ledgerwood, Julie E; Mascola, John R; Graham, Barney S; Muyembe-Tamfun, Jean-Jacques; Trefry, John C; Lanzavecchia, Antonio; Sullivan, Nancy J


    Ebola virus disease in humans is highly lethal, with case fatality rates ranging from 25 to 90%. There is no licensed treatment or vaccine against the virus, underscoring the need for efficacious countermeasures. We ascertained that a human survivor of the 1995 Kikwit Ebola virus disease outbreak maintained circulating antibodies against the Ebola virus surface glycoprotein for more than a decade after infection. From this survivor we isolated monoclonal antibodies (mAbs) that neutralize recent and previous outbreak variants of Ebola virus and mediate antibody-dependent cell-mediated cytotoxicity in vitro. Strikingly, monotherapy with mAb114 protected macaques when given as late as 5 days after challenge. Treatment with a single human mAb suggests that a simplified therapeutic strategy for human Ebola infection may be possible.

  7. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination


    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian


    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, iso...

  8. Potent Neutralization of Staphylococcal Enterotoxin B by Synergistic Action of Chimeric Antibodies▿



    Staphylococcal enterotoxin B (SEB), a shock-inducing exotoxin synthesized by Staphylococcus aureus, is an important cause of food poisoning and is a class B bioterrorism agent. SEB mediates antigen-independent activation of a major subset of the T-cell population by cross-linking T-cell receptors (TCRs) with class II major histocompatibility complex (MHC-II) molecules of antigen-presenting cells, resulting in the induction of antigen independent proliferation and cytokine secretion by a signi...

  9. The mediation procedure in Romania

    Directory of Open Access Journals (Sweden)

    Alexandrina Zaharia


    Full Text Available The mediation activity as an alternative way of solving conflicts occupies an important place in modernsociety. Currently, the mediation reached its maturity worldwide being adopted without reservations.The future of solving conflicts is undoubtedly closely related to mediation. XXth century is the century of solvingconflicts amiably outside the court room. In Romania and the mediation profession were regulated by the Law no.192/2006, on the basis of the idea that mediation is one of the major themes of the reform strategy of the judicialsystem 2005-2007. By adopting the mentioned law it was followed the idea of reducing the volume of activitycourts, and therefore, relieve them of as many cases, with the direct effect on the quality of justice. Mediation is avoluntary process in which the parties with a neutral and impartial third party, without power of decision - themediator - who is qualified to assist the parties to negotiate, facilitating the communication between them andhelping them to reach a unanimous effective and sustainable agreement. The parties may resort to mediation beforeor after triggering a trial. Mediation can be applied, in principle, on any type of conflict. However, theRomanian legislator has established special stipulations on conflict mediation in criminal, civil and familylaw. Although not expressly provided, the stipulations regarding the civil conflicts and also apply to commercialconflicts. Therefore, the mediation is applicable to most types of lawsuits, except those relating to personalrights. As a "win- win" principle, the mediation does not convert any of the parties defeated or victorious; allthose involved have gained by applying this procedure.

  10. Low Molecular Weight Amidoximes that Act as Potent Inhibitors of Lysine-Specific Demethylase 1 (United States)

    Hazeldine, Stuart; Pachaiyappan, Boobalan; Steinbergs, Nora; Nowotarski, Shannon; Hanson, Allison S.; Casero, Robert A.; Woster, Patrick M.


    The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 dysregulation is thought to contribute to the development of cancer. We reported that (bis)guanidines, (bis)biguanides and their urea- and thiourea isosteres are potent inhibitors of LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of small molecule amidoximes that are moderate inhibitors of recombinant LSD1, but that produce dramatic changes in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related protein (SFRP) 2, H-cadherin (HCAD) and transcription factor GATA4. These compounds represent leads for an important new series of drug-like epigenetic modulators with the potential for use as antitumor agents. PMID:22876979

  11. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement.

    Directory of Open Access Journals (Sweden)

    Melissa A Edeling


    Full Text Available We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1 infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII of DENV-1 envelope (E protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.

  12. A QSAR study and molecular design of benzothiazole derivatives as potent anticancer agents

    Institute of Scientific and Technical Information of China (English)

    CHEN JinCan; QIAN Li; SHEN Yong; CHEN LanMei; ZHENG KangCheng


    A quantitative structure-activity relationship (QSAR) of a series of benzothiazole derivatives showing a potent and selective cytotoxicity against a tumorigenic cell line has been studied by using the density functional theory (DFT), molecular mechanics (MM+) and statistical methods, and the QSAR equation was established via a correlation analysis and a stepwise regression analysis.A new scheme deter-mining outliers by "leave-one-out" (LOO) cross-validation coefficient (q2n-1) was suggested and suc-cessfully used.In the established optimal equation (excluding two outliers), the steric parameter (MRR) and the net charge (QFR) of the first atom of the substituent (R), as well as the square of hydrophobic parameter (IgP)2 of the whole molecule, are the main independent factors contributing to the anticancer activities of the compounds.The fitting correlation coefficient (R2) and the cross-validation coefficient (q2) values are 0.883 and 0.797, respectively.It indicates that this model has a significantly statistical quality and an excellent prediction ability.Based on the QSAR studies, 4 new compounds with high predicted anticancer activities have been theoretically designed and they are expected to be confirmed experimentally.

  13. A QSAR study and molecular design of benzothiazole derivatives as potent anticancer agents

    Institute of Scientific and Technical Information of China (English)


    A quantitative structure-activity relationship (QSAR) of a series of benzothiazole derivatives showing a potent and selective cytotoxicity against a tumorigenic cell line has been studied by using the density functional theory (DFT), molecular mechanics (MM+) and statistical methods, and the QSAR equation was established via a correlation analysis and a stepwise regression analysis. A new scheme determining outliers by "leave-one-out" (LOO) cross-validation coefficient (q2n-i) was suggested and successfully used. In the established optimal equation (excluding two outliers), the steric parameter (MRR) and the net charge (QFR) of the first atom of the substituent (R), as well as the square of hydrophobic parameter (lgP)2 of the whole molecule, are the main independent factors contributing to the anticancer activities of the compounds. The fitting correlation coefficient (R2) and the cross-validation coefficient (q2) values are 0.883 and 0.797, respectively. It indicates that this model has a significantly statistical quality and an excellent prediction ability. Based on the QSAR studies, 4 new compounds with high predicted anticancer activities have been theoretically designed and they are expected to be confirmed experimentally.

  14. Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease. (United States)

    Chang, Jaewon; Rimando, Agnes; Pallas, Merce; Camins, Antoni; Porquet, David; Reeves, Jennifer; Shukitt-Hale, Barbara; Smith, Mark A; Joseph, James A; Casadesus, Gemma


    Recent studies have implicated resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD). However, the mechanism for the favorable effects of resveratrol in the brain remains unclear and information about direct cross-comparisons between these analogs is rare. As such, the purpose of this study was to compare the effectiveness of diet-achievable supplementation of resveratrol to that of pterostilbene at improving functional deficits and AD pathology in the SAMP8 mouse, a model of accelerated aging that is increasingly being validated as a model of sporadic and age-related AD. Furthermore we sought to determine the mechanism of action responsible for functional improvements observed by studying cellular stress, inflammation, and pathology markers known to be altered in AD. Two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression. Taken together our findings indicate that at equivalent and diet-achievable doses pterostilbene is a more potent modulator of cognition and cellular stress than resveratrol, likely driven by increased peroxisome proliferator-activated receptor alpha expression and increased lipophilicity due to substitution of hydroxy with methoxy group in pterostilbene.

  15. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life. (United States)

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger; Fuglsang, Anja Thoe


    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material.

  16. A ceramic drug delivery vehicle for oral administration of highly potent opioids. (United States)

    Forsgren, Johan; Jämstorp, Erik; Bredenberg, Susanne; Engqvist, Håkan; Strømme, Maria


    Pellets composed of the ceramic material Halloysite and microcrystalline cellulose were synthesized with the aim of producing a drug delivery vehicle for sustained release of the opioid Fentanyl with low risk for dose dumping at oral intake of the highly potent drug. Drug release profiles of intact and crushed pellets, to simulate swallowing without or with chewing, in pH 6.8, pH 1, and in 48% ethanol were recorded in order to replicate the conditions in the small intestines, in the stomach, as well as cointake of the drug with alcohol. The drug release was analyzed by employing the Weibull equation, which showed that the release profiles were either governed by fickian diffusion (intact pellets in pH 6.8 and in ethanol) or by diffusion in a fractal or disordered pore network (intact pellets in pH 1 and crushed pellets in all solutions). A sustained release for approximately 3-4 h was obtained in all studied solutions from intact pellets, whereas crushed pellets released the drug content during approximately 2-3 h. The finding that a sustained release profile could be obtained both in alcohol and after crushing of the pellets, shows that the ceramic carrier under investigation, at least to some extent, hampers dose dumping, and may thus be a promising material in future developments of new opioid containing oral dosage forms.

  17. The indolylcoumarin COUFIN exhibits potent activity against renal carcinoma cells without affecting hematopoietic system. (United States)

    Champelovier, Pierre; Barbier, Pascale; Daras, Etienne; Douillard, Soazig; Toussaint, Bertrand; Persoon, Virginie; Curri, Veronique; Peyrot, Vincent; Combes, Sebastien


    The present work describes the anticancer activity of a new indolylcoumarin named COUFIN and more specifically, its efficiency against clear cell renal carcinoma (CCRC). COUFIN inhibited microtubule formation and bound on tubulin to or near the colchicine site. In vitro, COUFIN showed potent anticancer activity on renal carcinoma cells (RCC) both in monolayer (2D culture) (IC50 of 88 ± 8 nM) and multicellular tumor spheroid (3D culture) (IC50 of 180 ± 20 nM). The compound blocked cell cycle transition at G2/M phase, induced a subsequent apoptotic process but did not modulate clonal growth of CFU-GM. On the other hand, the coumarin derivative decreased the activity of P-gp and BCRP but was not substrate for these ABC pumps. In vivo, the indolylcoumarin increased the survival rate after 3 weeks of treatment. Based on the present study, COUFIN was identified as a bifunctional molecule able to inhibit renal carcinoma cells proliferation without being effluxed by ABC proteins. Thus COUFIN could be a promising chemotherapeutic agent for treating tumor cells over-expressing efflux pumps and tumor cells irrigated by vessels lined with endothelial cells responsible of poor distribution of conventional anticancer agents.

  18. Potent, metabolically stable benzopyrimido-pyrrolo-oxazine-dione (BPO) CFTR inhibitors for polycystic kidney disease. (United States)

    Snyder, David S; Tradtrantip, Lukmanee; Yao, Chenjuan; Kurth, Mark J; Verkman, A S


    We previously reported the discovery of pyrimido-pyrrolo-quinoxalinedione (PPQ) inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and showed their efficacy in an organ culture model of polycystic kidney disease (PKD) (J. Med. Chem. 2009, 52, 6447-6455). Here, we report related benzopyrimido-pyrrolo-oxazinedione (BPO) CFTR inhibitors. To establish structure-activity relationships and select lead compound(s) with improved potency, metabolic stability, and aqueous solubility compared to the most potent prior compound 8 (PPQ-102, IC(50) ∼ 90 nM), we synthesized 16 PPQ analogues and 11 BPO analogues. The analogues were efficiently synthesized in 5-6 steps and 11-61% overall yield. Modification of 8 by bromine substitution at the 5-position of the furan ring, replacement of the secondary amine with an ether bridge, and carboxylation, gave 6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid 42 (BPO-27), which fully inhibited CFTR with IC(50) ∼ 8 nM and, compared to 8, had >10-fold greater metabolic stability and much greater polarity/aqueous solubility. In an embryonic kidney culture model of PKD, 42 prevented cyst growth with IC(50) ∼ 100 nM. Benzopyrimido-pyrrolo-oxazinediones such as 42 are potential development candidates for antisecretory therapy of PKD.

  19. Saururus cernuus lignans--potent small molecule inhibitors of hypoxia-inducible factor-1. (United States)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R; Zhang, Lei; Bruick, Richard K; Mohammed, Kaleem A; Agarwal, Ameeta K; Nagle, Dale G; Zhou, Yu-Dong


    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1alpha protein accumulation without affecting HIF-1alpha mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors.

  20. Saururus cernuus Lignans - Potent Small Molecule Inhibitors of Hypoxia-Inducible Factor-1 (United States)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang, Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou, Yu-Dong


    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors. PMID:15967416

  1. Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives. (United States)

    Li, Ying; Lu, Liping; Zhu, Miaoli; Wang, Qingming; Yuan, Caixia; Xing, Shu; Fu, Xueqi; Mei, Yuhua


    A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV-Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC(50) at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 10(6) and 1.87 × 10(6) M(-1) at 310 K for 2 and 4, respectively.

  2. Mirror-image organometallic osmium arene iminopyridine halido complexes exhibit similar potent anticancer activity. (United States)

    Fu, Ying; Soni, Rina; Romero, María J; Pizarro, Ana M; Salassa, Luca; Clarkson, Guy J; Hearn, Jessica M; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J


    Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.

  3. Potent inhibition of Junín virus infection by interferon in murine cells. (United States)

    Huang, Cheng; Walker, Aida G; Grant, Ashley M; Kolokoltsova, Olga A; Yun, Nadezhda E; Seregin, Alexey V; Paessler, Slobodan


    The new world arenavirus Junín virus (JUNV) is the causative agent of Argentine hemorrhagic fever, a lethal human infectious disease. Adult laboratory mice are generally resistant to peripheral infection by JUNV. The mechanism underlying the mouse resistance to JUNV infection is largely unknown. We have reported that interferon receptor knockout mice succumb to JUNV infection, indicating the critical role of interferon in restricting JUNV infection in mice. Here we report that the pathogenic and vaccine strains of JUNV were highly sensitive to interferon in murine primary cells. Treatment with low concentrations of interferon abrogated viral NP protein expression in murine cells. The replication of both JUNVs was enhanced in IRF3/IRF7 deficient cells. In addition, the vaccine strain of JUNV displayed impaired growth in primary murine cells. Our data suggested a direct and potent role of host interferon response in restricting JUNV replication in mice. The defect in viral growth for vaccine JUNV might also partially explain its attenuation in mice.

  4. Potent Antioxidative and UVB Protective Effect of Water Extract of Eclipta prostrata L.

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan


    Full Text Available Oxidative stress, including Ultraviolet (UV irradiation-induced skin damage, is involved in numerous diseases. This study demonstrates that water extract of Eclipta prostrata L. (WEP has a potent effect in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide radicals, and chelating ferrous ion, exhibiting IC50 values of 0.23 mg/mL, 0.48 mg/mL, and 1.25 mg/mL, respectively. The WEP total phenol content was 176.45 mg gallic acid equivalents (GAE/g sample. Chlorogenic acid, a component of the plant's active ingredients, was determined by HPLC and antioxidative assay. However, no caffeic acid, stigmasterol, or wedelolactone was present in WEP. WEP absorbs both UVA and UVB irradiation, and furthermore, the extract shows a dose-dependent response in the protection of HaCaT human keratinocytes and mouse fibroblasts 3T3 cells against UVB-induced cytotoxicity, which may result from a synergistic effect between chlorogenic acid and other active components present in WEP.

  5. Synthesis and biological assessment of simplified analogues of the potent microtubule stabilizer (+)-discodermolide. (United States)

    Mínguez, José M; Kim, Sun-Young; Giuliano, Kenneth A; Balachandran, Raghavan; Madiraju, Charitha; Day, Billy W; Curran, Dennis P


    An efficient, convergent and stereocontrolled synthesis of simplified analogues of the potent antimitotic agent (+)-discodermolide has been achieved and several small libraries have been prepared. In all the libraries, the discodermolide methyl groups at C14 and C16 and the C7 hydroxy group were removed and the lactone was replaced by simple esters. Other modifications introduced in each series of analogues were related to C11, C17 and C19 of the natural product. Key elements of the synthetic strategy included (a) elaboration of the main subunits from a common intermediate and (b) fragment couplings using Wittig reactions to install the (Z)-olefins. Library components were analyzed for microtubule-stabilizing actions in vitro, for displacement of [3H]paclitaxel from its binding site on tubulin, for antiproliferative activity against human carcinoma cells, and for cell signaling and mitotic spindle alterations by a multiparameter fluorescence cell-based screening technique. The results show that even significant structural simplification can lead to analogues with actions related to microtubule targeting.

  6. A potent anti-complementary acylated sterol glucoside from Orostachys japonicus. (United States)

    Yoon, Na Young; Min, Byung Sun; Lee, Hyeong Kyu; Park, Jong Cheol; Choi, Jae Sue


    In order to isolate substances that inhibit the hemolytic activity of human serum against erythrocytes, we have evaluated whole plants of the Orostachys japonicus species with regard to its anti-complement activity, and have identified its active principles following activity-guided isolation. A methanol extract of the O. japonicus, as well as its n-hexane soluble fraction, exhibited significant anti-complement activity on the complement system, which was expressed as total hemolytic activity. A bioassay-guided chromatographic separation of the constituents resulted in the isolation of three known compounds 1-3 from the active n-hexane fraction. The structure of these compounds were analyzed, and they were identified as hydroxyhopanone (1), beta-sitosteryl-3-O-beta-D-glucopyranosyl-6'-O-palmitate (2), and beta-sitosteryl-3-O-beta-D-glucopyranoside (3), respectively. Of these compounds, compound 2 exhibited potent anti-complement activity (IC50= 1.0 +/- 0.1 microM) on the classical pathway of the complement, as compared to tiliroside (IC50= 76.5 +/- 1.1 microM), which was used as a positive control. However, compounds 1 and 3 exhibited no activity in this system.

  7. Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. (United States)

    Chen, Qiang


    The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV.

  8. C3-halogenation of cytisine generates potent and efficacious nicotinic receptor agonists. (United States)

    Abin-Carriquiry, J Andrés; Voutilainen, Merja H; Barik, Jacques; Cassels, Bruce K; Iturriaga-Vásquez, Patricio; Bermudez, Isabel; Durand, Claudia; Dajas, Federico; Wonnacott, Susan


    Neuronal nicotinic acetylcholine receptors subserve predominantly modulatory roles in the brain, making them attractive therapeutic targets. Natural products provide key leads in the quest for nicotinic receptor subtype-selective compounds. Cytisine, found in Leguminosae spp., binds with high affinity to alpha4beta2* nicotinic receptors. We have compared the effect of C3 and C5 halogenation of cytisine and methylcytisine (MCy) on their interaction with native rat nicotinic receptors. 3-Bromocytisine (3-BrCy) and 3-iodocytisine (3-ICy) exhibited increased binding affinity (especially at alpha7 nicotinic receptors; Ki approximately 0.1 microM) and functional potency, whereas C5-halogenation was detrimental. 3-BrCy and 3-ICy were more potent than cytisine at evoking [3H]dopamine release from striatal slices (EC50 approximately 11 nM), [3H]noradrenaline release from hippocampal slices (EC50 approximately 250 nM), increases in intracellular Ca2+ in PC12 cells and inward currents in Xenopus oocytes expressing human alpha3beta4 nicotinic receptor (EC50 approximately 2 microM). These compounds were also more efficacious than cytisine. C3-halogenation of cytisine is proposed to stabilize the open conformation of the nicotinic receptor but does not enhance subtype selectivity.

  9. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. (United States)

    Ronan, Baptiste; Flamand, Odile; Vescovi, Lionel; Dureuil, Christine; Durand, Laurence; Fassy, Florence; Bachelot, Marie-France; Lamberton, Annabelle; Mathieu, Magali; Bertrand, Thomas; Marquette, Jean-Pierre; El-Ahmad, Youssef; Filoche-Romme, Bruno; Schio, Laurent; Garcia-Echeverria, Carlos; Goulaouic, Hélène; Pasquier, Benoit


    Vps34 is a phosphoinositide 3-kinase (PI3K) class III isoform that has attracted major attention over the recent years because of its role in autophagy. Herein we describe the biological characterization of SAR405, which is a low-molecular-mass kinase inhibitor of Vps34 (KD 1.5 nM). This compound has an exquisite protein and lipid kinase selectivity profile that is explained by its unique binding mode and molecular interactions within the ATP binding cleft of human Vps34. To the best of our knowledge, this is the first potent and specific Vps34 inhibitor described so far. Our results demonstrate that inhibition of Vps34 kinase activity by SAR405 affects both late endosome-lysosome compartments and prevents autophagy. Moreover, we show that the concomitant inhibition of Vps34 and mTOR, with SAR405 and the US Food and Drug Administration-approved mTOR inhibitor everolimus, results in synergistic antiproliferative activity in renal tumor cell lines, indicating a potential clinical application in cancer.

  10. Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells.

    Directory of Open Access Journals (Sweden)

    Katie Matthews

    Full Text Available CD14(+ dermal DCs (CD14(+ DDCs have a natural capacity to activate naïve B-cells. Targeting CD14(+ DDCs is therefore a rational approach for vaccination strategies aimed at improving humoral responses towards poorly immunogenic antigens, for example, HIV-1 envelope glycoproteins (Env. Here, we show that two clinically relevant TLR ligand combinations, Hiltonol plus Resiquimod and Glucopyranosyl lipid A plus Resiquimod, potently activate CD14(+ DDCs, as shown by enhanced expression of multiple cytokines (IL-6, IL-10, IL-12p40 and TNF-α. Furthermore, the responses of CD14(+ DDCs to these TLR ligands were not compromised by the presence of HIV-1 gp120, which can drive immunosuppressive effects in vitro and in vivo. The above TLR ligand pairs were better than the individual agents at boosting the inherent capacity of CD14(+ DDCs to induce naïve B-cells to proliferate and differentiate into CD27(+ CD38(+ B-cells that secrete high levels of immunoglobulins. CD14(+ DDCs stimulated by these TLR ligand combinations also promoted the differentiation of Th1 (IFN-γ-secreting, but not Th17, CD4(+ T-cells. These observations may help to identify adjuvant strategies aimed at inducing better antibody responses to vaccine antigens, including, but not limited to HIV-1 Env.

  11. Aspartic acid based nucleoside phosphoramidate prodrugs as potent inhibitors of hepatitis C virus replication. (United States)

    Maiti, Munmun; Maiti, Mohitosh; Rozenski, Jef; De Jonghe, Steven; Herdewijn, Piet


    In view of a persistent threat to mankind, the development of nucleotide-based prodrugs against hepatitis C virus (HCV) is considered as a constant effort in many medicinal chemistry groups. In an attempt to identify novel nucleoside phosphoramidate analogues for improving the anti-HCV activity, we have explored, for the first time, aspartic acid (Asp) and iminodiacetic acid (IDA) esters as amidate counterparts by considering three 2'-C-methyl containing nucleosides, 2'-C-Me-cytidine, 2'-C-Me-uridine and 2'-C-Me-2'-fluoro-uridine. Synthesis of these analogues required protection for the vicinal diol functionality of the sugar moiety and the amino group of the cytidine nucleoside to regioselectively perform phosphorylation reaction at the 5'-hydroxyl group. Anti-HCV data demonstrate that the Asp-based phosphoramidates are ∼550 fold more potent than the parent nucleosides. The inhibitory activity of the Asp-ProTides was higher than the Ala-ProTides, suggesting that Asp would be a potential amino acid candidate to be considered for developing novel antiviral prodrugs.

  12. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor (United States)

    Flinspach, M.; Xu, Q.; Piekarz, A. D.; Fellows, R.; Hagan, R.; Gibbs, A.; Liu, Y.; Neff, R. A.; Freedman, J.; Eckert, W. A.; Zhou, M.; Bonesteel, R.; Pennington, M. W.; Eddinger, K. A.; Yaksh, T. L.; Hunter, M.; Swanson, R. V.; Wickenden, A. D.


    Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain. PMID:28045073

  13. Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses

    Directory of Open Access Journals (Sweden)

    Jorge Lago


    Full Text Available Tetrodotoxin (TTX is a potent neurotoxin responsible for many human intoxications and fatalities each year. The origin of TTX is unknown, but in the pufferfish, it seems to be produced by endosymbiotic bacteria that often seem to be passed down the food chain. The ingestion of contaminated pufferfish, considered the most delicious fish in Japan, is the usual route of toxicity. This neurotoxin, reported as a threat to human health in Asian countries, has spread to the Pacific and Mediterranean, due to the increase of temperature waters worldwide. TTX, for which there is no known antidote, inhibits sodium channel producing heart failure in many cases and consequently death. In Japan, a regulatory limit of 2 mg eq TTX/kg was established, although the restaurant preparation of “fugu” is strictly controlled by law and only chefs qualified are allowed to prepare the fish. Due to its paralysis effect, this neurotoxin could be used in the medical field as an analgesic to treat some cancer pains.

  14. Development of a recombinant antithrombin variant as a potent antidote to fondaparinux and other heparin derivatives. (United States)

    Bianchini, Elsa P; Fazavana, Judicael; Picard, Veronique; Borgel, Delphine


    Heparin derivative-based therapy has evolved from unfractionated heparin (UFH) to low-molecular-weight heparins (LMWHs) and now fondaparinux, a synthetic pentasaccharide. Contrary to UFH or LMWHs, fondaparinux is not neutralized by protamine sulfate, and no antidote is available to counteract bleeding disorders associated with overdosing. To make the use of fondaparinux safer, we developed an antithrombin (AT) variant as a potent antidote to heparin derivatives. This variant (AT-N135Q-Pro394) combines 2 mutations: substitution of Asn135 by a Gln to remove a glycosylation site and increase affinity for heparins, and the insertion of a Pro between Arg393 and Ser394 to abolish its anticoagulant activity. As expected, AT-N135Q-Pro394 anticoagulant activity was almost abolished, and it exhibited a 3-fold increase in fondaparinux affinity. AT-N135Q-Pro394 was shown to reverse fondaparinux overdosing in vitro in a dose-dependent manner through a competitive process with plasma AT for fondaparinux binding. This antidote effect was also observed in vivo: administration of AT-N135Q-Pro394 in 2.5-fold molar excess versus plasma AT neutralized 86% of the anti-Xa activity within 5 minutes in mice treated with fondaparinux. These results clearly demonstrate that AT-N135Q-Pro394 can reverse the anticoagulant activity of fondaparinux and thus could be used as an antidote for this drug.

  15. Adamantyl carboxamides and acetamides as potent human 11β-hydroxysteroid dehydrogenase type 1 inhibitors. (United States)

    Su, Xiangdong; Halem, Heather A; Thomas, Mark P; Moutrille, Cecile; Culler, Michael D; Vicker, Nigel; Potter, Barry V L


    The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC(50) values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC(50)=114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC(50)=280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.

  16. Water Kefir grain as a source of potent dextran producing lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Davidović Slađana Z.


    Full Text Available Water kefir is abeverage fermented by a microbial consortium captured in kefir grains. The kefir grains matrix is composed of polysaccharide, primarily dextran, whichis produced by members of the microbial consortium. In this study, we have isolated lactic acid bacteria (LAB from non-commercial water kefir grains (from Belgrade, Serbia and screened for dextran production. Among twelve Lisolates threeproduced slime colonies on modified MRS (mMRS agar containing sucrose instead of glucoseand were presumed to produce dextran. Three LABwere identified based on morphological, physiological and biochemical characteristics and 16S rRNA sequencing as Leuconostoc mesenteroides(strains T1 and T3 and Lactobacillus hilgardii (strain T5. The isolated strains were able to synthesize a substantial amount of dextran in mMRS broth containing 5% sucrose. Maximal yields (11.56, 18.00 and 18.46 g/l were obtained after 16h, 20h and 32h for T1, T3 and T5, respectively. Optimal temperature for dextran production was 23oC for two Leuconostoc mesenteroides strains and 30oC for Lactobacillus hilgardii strain. The produced dextrans were identified based on paper chromatography while the main structure characteristics of purified dextranwere observed by FT-IR spectroscopy. Our study shows that water kefir grains are a natural source of potent dextranproducing LAB. [Projekat Ministarstva nauke Republike Srbije, br. TR 31035

  17. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil. (United States)

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik


    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils.

  18. An armed oncolytic adenovirus system,ZD55-gene,demonstrating potent antitumoral efficacy

    Institute of Scientific and Technical Information of China (English)



    ONYXONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them.To date,clinicaltrials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone.In this paper,we put forward a novel concept of Gene-Viro Therapy strategy and in this way,we constructed an armed therapeutic onco1ytic adenovirus system,ZD55-gene,whichis not only deleted of E1B 55-kD gene similar to ONYX-015,but also armed with foreign antitumor gene.ZD55-gene exhibited similar cytopathic effects and replication Kinetics to that of ONYX-015 in vitro.Importantly,the carried gene 1s expressed and the expression level can increase with the replication of virus.Consequently,a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer.Our data demonstratedthat ZD55-gene,which utilizingthe Gene-ViroTherapy strategy,is more efficacious than each individual component in vivo.

  19. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors. (United States)

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P


    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  20. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain. (United States)

    Odolczyk, Norbert; Fritsch, Janine; Norez, Caroline; Servel, Nathalie; da Cunha, Melanie Faria; Bitam, Sara; Kupniewska, Anna; Wiszniewski, Ludovic; Colas, Julien; Tarnowski, Krzysztof; Tondelier, Danielle; Roldan, Ariel; Saussereau, Emilie L; Melin-Heschel, Patricia; Wieczorek, Grzegorz; Lukacs, Gergely L; Dadlez, Michal; Faure, Grazyna; Herrmann, Harald; Ollero, Mario; Becq, Frédéric; Zielenkiewicz, Piotr; Edelman, Aleksander


    The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein-protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.