WorldWideScience

Sample records for cd-sensitive zn-porphyrin tweezer

  1. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality.

    Science.gov (United States)

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina

    2011-10-01

    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers. Copyright © 2011 Wiley-Liss, Inc.

  2. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers

    OpenAIRE

    Manera, M. G.; Ferreiro-Vila, E.; Garcia-Martin, J. M.; Cebollada, A.; Garcia-Martin, A.; Giancane, G.; Valli, L.; Rella, R.

    2013-01-01

    Ethane-bridged Zn porphyrins dimers (ZnPP) have been deposited by Langmuir-Schäfer (LS) deposition technique onto proper transducer layers for surface plasmon resonance (SPR) and magneto-optical surface plasmon resonance (MO-SPR) characterization techniques performed in controlled atmosphere. This last tool has emerged as a novel and very performing sensing technique using as transducer layers a combination of noble and magnetic layers deposited onto glass substrates. A magnetic actuation all...

  3. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Chennai-603110, Tamilnadu (India)

    2016-05-23

    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by {sup 1}H NMR, {sup 13}C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation of 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.

  4. Optical tweezers principles and applications

    CERN Document Server

    Jones, Philip; Volpe, Giovanni

    2015-01-01

    Combining state-of-the-art research with a strong pedagogic approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics. Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses, and an invaluable guide to practitioners wanting to enter the field of optical manipulation. The text is supplemented by www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable research-grade software (OTS) for calculation of optical forces, dig...

  5. an optical tweezer based study

    Indian Academy of Sciences (India)

    Shankar Ghosh

    2006-11-12

    Nov 12, 2006 ... Liquid-Solid interface. Liquid-liquid interface. Shankar Ghosh. Motion of a sphere in an .... Bare mass of a colloidal sphere ∼ 10^15Kg. Note : The effective mass scales with viscosity and not with the density. Shankar Ghosh. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based study ...

  6. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  7. Ultrafast charge transfer and radiationless relaxations from higher excited state (S2) of directly linked Zn-porphyrin (ZP)-acceptor dyads: investigations into fundamental problems of exciplex chemistry

    International Nuclear Information System (INIS)

    Mataga, Noboru; Taniguchi, Seiji; Chosrowjan, Haik; Osuka, Atsuhiro; Yoshida, Naoya

    2003-01-01

    We have investigated photoinduced electron transfer and related processes from the higher excited electronic state (S 2 ) of Zn-porphyrin-imide acceptor directly linked supramolecular systems (ZP-I) designed especially for the critical studies of the energy gap law (EGL) of the charge separation (CS) from the S 2 state and solvent effects upon EGL. We have confirmed the modification of the EGL by change of solvent polarity from acetonitrile (ACN), tetrahydrofuran (THF) to toluene (Tol) and methyl-cyclohexane (MCH), from rather typical bell-shaped one in ACN to that with less prominent normal region and prominent inverted region with moderate slope extending over wider range of -ΔG CS values in nonpolar solvent MCH. We have demonstrated that these solvent effects upon EGL affect delicately various radiationless relaxation processes from S 2 state. We have examined also effects of the hydrogen bonding solvent ethanol (EtOH) on the EGL for CS and found very specific effect controlling the CS reaction and related processes

  8. Characterizing conical refraction optical tweezers

    Science.gov (United States)

    McDonald, C.; McDougall, C.; Rafailov, E.; McGloin, D.

    2014-12-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focussing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focussing on the trap stiffness and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot but benefit from rotational control.

  9. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  10. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  11. Holographic Raman Tweezers Controlled by Hand Gestures and Voice Commands

    Czech Academy of Sciences Publication Activity Database

    Tomori, Z.; Antalík, M.; Kesa, P.; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Zemánek, Pavel

    2013-01-01

    Roč. 3, 2B (2013), s. 331-336 ISSN 2160-8881 Institutional support: RVO:68081731 Keywords : Holographic Optical Tweezers * Raman Tweezers * Natural User Interface * Leap Motion * Gesture Camera Subject RIV: BH - Optics, Masers, Lasers

  12. Theory of optical-tweezers forces near a plane interface

    DEFF Research Database (Denmark)

    Dutra, Rafael de Sousa; Neto, P. A. Maia; Nussenzveig, H. M.

    2016-01-01

    Optical-tweezers experiments in molecular and cell biology often take place near the surface of the microscope slide that defines the bottom of the sample chamber. There, as elsewhere, force measurements require forcecalibrated tweezers. In bulk, one can calculate the tweezers force from first pr...

  13. Optical tweezers and paradoxes in electromagnetism

    International Nuclear Information System (INIS)

    Pfeifer, Robert N C; Nieminen, Timo A; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina

    2011-01-01

    The widespread application of optical forces and torques has contributed to renewed interest in the fundamentals of the electromagnetic force and torque, including long-standing paradoxes such as the Abraham–Minkowski controversy and the angular momentum density of a circularly polarized plane wave. We discuss the relationship between these electromagnetic paradoxes and optical tweezers. In particular, consideration of possible optical tweezers experiments to attempt to resolve these paradoxes strongly suggests that they are beyond experimental resolution, yielding identical observable results in all cases

  14. Optical tweezers study life under tension.

    Science.gov (United States)

    Fazal, Furqan M; Block, Steven M

    2011-05-31

    Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.

  15. Quantum computation architecture using optical tweezers

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus

    2011-01-01

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....

  16. Soft magnetic tweezers: a proof of principle.

    Science.gov (United States)

    Mosconi, Francesco; Allemand, Jean François; Croquette, Vincent

    2011-03-01

    We present here the principle of soft magnetic tweezers which improve the traditional magnetic tweezers allowing the simultaneous application and measurement of an arbitrary torque to a deoxyribonucleic acid (DNA) molecule. They take advantage of a nonlinear coupling regime that appears when a fast rotating magnetic field is applied to a superparamagnetic bead immersed in a viscous fluid. In this work, we present the development of the technique and we compare it with other techniques capable of measuring the torque applied to the DNA molecule. In this proof of principle, we use standard electromagnets to achieve our experiments. Despite technical difficulties related to the present implementation of these electromagnets, the agreement of measurements with previous experiments is remarkable. Finally, we propose a simple way to modify the experimental design of electromagnets that should bring the performances of the device to a competitive level.

  17. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    Science.gov (United States)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  18. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    International Nuclear Information System (INIS)

    Courtney, Charles R. P.; Demore, Christine E. M.; Wu, Hongxiao; Cochran, Sandy; Grinenko, Alon; Wilcox, Paul D.; Drinkwater, Bruce W.

    2014-01-01

    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35 MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-μm-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers

  19. Optical tweezers for the micromanipulation of plant cytoplasm and organelles

    NARCIS (Netherlands)

    Hawes, C.; Osterrieder, A.; Sparkes, I.A.; Ketelaar, T.

    2010-01-01

    Laser tweezers, often known as optical tweezers or optical traps, permit the capturing and micromanipulation of microscopic particles along X, Y and Z axes using the radiation pressure generated by a focused laser beam, normally in the infrared region of the spectrum. For trapping to be successful,

  20. Potential-well model in acoustic tweezers.

    Science.gov (United States)

    Kang, Shih-Tsung; Yeh, Chih-Kuang

    2010-06-01

    Standing-wave acoustic tweezers are popularly used for non-invasive and non-contact particle manipulation. Because of their good penetration in biological tissue, they also show promising prospects for in vivo applications. According to the concept of an optical vortex, we propose an acoustics-vortex- based trapping model of acoustic tweezers. A four-element 1-MHz planar transducer was used to generate 1-MHz sine waves at 1 MPa, with adjacent elements being driven with a pi/2-rad phase difference. Each element was a square with a side length of 5.08 mm, with kerfs initially set at 0.51 mm. An acoustic vortex constituting the spiral motion of an acoustic wave around the beam axis was created, with an axial null. Applying Gor'kov's theory in the Rayleigh regime yielded the potential energy and radiation force for use in subsequent analysis. In the transverse direction, the vortex structure behaved as a series of potential wells that tended to drive a suspended particle toward the beam axis. They were highly fragmented in the near field that is very close to the transducer where there was spiral interference, and well-constructed in the far field. We found that the significant trapping effect was only present between these two regions in the transverse direction--particles were free to move along the beam axis, and a repulsive force was observed in the outer acoustic vortex. Because the steepness of the potential gradient near an axial null dominates the trapping effect, the far field of the acoustic vortex is inappropriate for trapping. Particles too close to the transducer are not sufficiently trapped because of the fragmented potential pattern. We suggest that the ideal distance from the transducer for trapping particles is in front of one-fourth of the Rayleigh distance, based on the superposition of the wavefronts. The maximum trapping force acting on a 13-mum polystyrene sphere in the produced acoustic vortex was 50.0 pN, and it was possible to trap

  1. LMM Holographic Optical Tweezers (HOT) Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to expand the capabilities of the LMM for colloidal and other research by developing a holographic optical tweezers (HOT) module, allowing solid-state...

  2. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo

    2014-07-30

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  3. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo; Cojoc, Gheorghe; Rajamanickam, Vijayakumar; Ferrara, Lorenzo; Bragheri, Francesca; Minzioni, Paolo; Perozziello, Gerardo; Candeloro, Patrizio; Cristiani, Ilaria; Di Fabrizio, Enzo M.

    2014-01-01

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  4. Molecular tweezers with varying anions: a comparative study.

    Science.gov (United States)

    Dutt, Som; Wilch, Constanze; Gersthagen, Thomas; Talbiersky, Peter; Bravo-Rodriguez, Kenny; Hanni, Matti; Sánchez-García, Elsa; Ochsenfeld, Christian; Klärner, Frank-Gerrit; Schrader, Thomas

    2013-07-05

    Selective binding of the phosphate-substituted molecular tweezer 1a to protein lysine residues was suggested to explain the inhibition of certain enzymes and the aberrant aggregation of amyloid petide Aβ42 or α-synuclein, which are assumed to be responsible for Alzheimer's and Parkinson's disease, respectively. In this work we systematically investigated the binding of four water-soluble tweezers 1a-d (substituted by phosphate, methanephosphonate, sulfate, or O-methylenecarboxylate groups) to amino acids and peptides containing lysine or arginine residues by using fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry (ITC). The comparison of the experimental results with theoretical data obtained by a combination of QM/MM and ab initio(1)H NMR shift calculations provides clear evidence that the tweezers 1a-c bind the amino acid or peptide guest molecules by threading the lysine or arginine side chain through the tweezers' cavity, whereas in the case of 1d the guest molecule is preferentially positioned outside the tweezer's cavity. Attractive ionic, CH-π, and hydrophobic interactions are here the major binding forces. The combination of experiment and theory provides deep insight into the host-guest binding modes, a prerequisite to understanding the exciting influence of these tweezers on the aggregation of proteins and the activity of enzymes.

  5. Optimal design of tweezer control for chimera states

    Science.gov (United States)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  6. Optical tweezers force measurements to study parasites chemotaxis

    Science.gov (United States)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  7. Control and manipulation of cold atoms in optical tweezers

    International Nuclear Information System (INIS)

    Muldoon, Cecilia; Brandt, Lukas; Dong Jian; Stuart, Dustin; Brainis, Edouard; Himsworth, Matthew; Kuhn, Axel

    2012-01-01

    Neutral atoms trapped by laser light are among the most promising candidates for storing and processing information in a quantum computer or simulator. The application certainly calls for a scalable and flexible scheme for addressing and manipulating the atoms. We have now made this a reality by implementing a fast and versatile method to dynamically control the position of neutral atoms trapped in optical tweezers. The tweezers result from a spatial light modulator (SLM) controlling and shaping a large number of optical dipole-force traps. Trapped atoms adapt to any change in the potential landscape, such that one can rearrange and randomly access individual sites within atom-trap arrays. (paper)

  8. Dynamic optical tweezers based assay for monitoring early drug resistance

    International Nuclear Information System (INIS)

    Wu, Xiaojing; Zhu, Siwei; Feng, Jie; Zhang, Yuquan; Min, Changjun; Yuan, X-C

    2013-01-01

    In this letter, a dynamic optical tweezers based assay is proposed and investigated for monitoring early drug resistance with Pemetrexed-resistant non-small cell lung cancer (NSCLC) cell lines. The validity and stability of the method are verified experimentally in terms of the physical parameters of the optical tweezers system. The results demonstrate that the proposed technique is more convenient and faster than traditional techniques when the capability of detecting small variations of the response of cells to a drug is maintained. (letter)

  9. Magneto-optical tweezers built around an inverted microscope

    International Nuclear Information System (INIS)

    Claudet, Cyril; Bednar, Jan

    2005-01-01

    We present a simple experimental setup of magneto-optical tweezers built around an inverted microscope. Two pairs of coils placed around the focal point of the objective generate a planar-rotating magnetic field that is perpendicular to the stretching direction. This configuration allows us to control the rotary movement of a paramagnetic bead trapped in the optical tweezers. The mechanical design is universal and can be simply adapted to any inverted microscope and objective. The mechanical configuration permits the use of a rather large experimental cell and the simple assembly and disassembly of the magnetic attachment

  10. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  11. Airy acoustical-sheet spinner tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  12. Spin dynamics and Kondo physics in optical tweezers

    Science.gov (United States)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  13. Scanning probe and optical tweezer investigations of biomolecular interactions

    International Nuclear Information System (INIS)

    Rigby-Singleton, Shellie

    2002-01-01

    A complex array of intermolecular forces controls the interactions between and within biological molecules. The desire to empirically explore the fundamental forces has led to the development of several biophysical techniques. Of these, the atomic force microscope (AFM) and the optical tweezers have been employed throughout this thesis to monitor the intermolecular forces involved in biomolecular interactions. The AFM is a well-established force sensing technique capable of measuring biomolecular interactions at a single molecule level. However, its versatility has not been extrapolated to the investigation of a drug-enzyme complex. The energy landscape for the force induced dissociation of the DHFR-methotrexate complex was studied. Revealing an energy barrier to dissociation located ∼0.3 nm from the bound state. Unfortunately, the AFM has a limited range of accessible loading rates and in order to profile the complete energy landscape alternative force sensing instrumentation should be considered, for example the BFP and optical tweezers. Thus, this thesis outlines the development and construction an optical trap capable of measuring intermolecular forces between biomolecules at the single molecule level. To demonstrate the force sensing abilities of the optical set up, proof of principle measurements were performed which investigate the interactions between proteins and polymer surfaces subjected to varying degrees of argon plasma treatment. Complementary data was gained from measurements performed independently by the AFM. Changes in polymer resistance to proteins as a response to changes in polymer surface chemistry were detected utilising both AFM and optical tweezers measurements. Finally, the AFM and optical tweezers were employed as ultrasensitive biosensors. Single molecule investigations of the antibody-antigen interaction between the cardiac troponin I marker and its complementary antibody, reveals the impact therapeutic concentrations of heparin have

  14. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  15. Photoacoustic tweezers with a pulsed laser: theory and experiments

    International Nuclear Information System (INIS)

    Zharov, V P; Malinsky, T V; Kurten, R C

    2005-01-01

    A novel noninvasive optical technique for manipulating particles and cells is presented that utilizes laser-generated forces in an absorbing medium surrounding the particles or cells. In this technique, a laser pulse creates near-object acoustic waves, which during interaction with the objects lead to then being moved or trapped. The main optical schemes are considered, and a theory is presented for this new optical tool, namely photoacoustic (PA) tweezer with pulsed laser. The magnitudes of forces acting on polystyrene particles suspended in water were estimated as a function of the particles' properties for circular and ring geometries of the laser beam. Results of our preliminary experiments demonstrated proof that the manipulation, trapping and even rotation of cells is possible with PA tweezers

  16. Probing DNA with micro- and nanocapillaries and optical tweezers

    International Nuclear Information System (INIS)

    Steinbock, L J; Otto, O; Skarstam, D R; Jahn, S; Chimerel, C; Gornall, J L; Keyser, U F

    2010-01-01

    We combine for the first time optical tweezer experiments with the resistive pulse technique based on capillaries. Quartz glass capillaries are pulled into a conical shape with tip diameters as small as 27 nm. Here, we discuss the translocation of λ-phage DNA which is driven by an electrophoretic force through the nanocapillary. The resulting change in ionic current indicates the folding state of single λ-phage DNA molecules. Our flow cell design allows for the straightforward incorporation of optical tweezers. We show that a DNA molecule attached to an optically trapped colloid is pulled into a capillary by electrophoretic forces. The detected electrophoretic force is in good agreement with measurements in solid-state nanopores.

  17. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  18. Dynamic array generation and pattern formation for optical tweezers

    DEFF Research Database (Denmark)

    Mogensen, P.C.; Glückstad, J.

    2000-01-01

    The generalised phase contrast approach is used for the generation of optical arrays of arbitrary beam shape, suitable for applications in optical tweezers for the manipulation of biological specimens. This approach offers numerous advantages over current techniques involving the use of computer......-generated holograms or diffractive optical elements. We demonstrate a low-loss system for generating intensity patterns suitable for the trapping and manipulation of small particles or specimens....

  19. Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Angel García-Cabañes

    2018-01-01

    Full Text Available This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical description of photovoltaic tweezers, detailed simulations of the electrophoretic and dielectrophoretic forces acting on different crystal configurations are discussed in relation to the structure of the obtained trapping patterns. As for the experimental work, we will pay attention to the manipulation and patterning of micro-and nanoparticles that has experimented an outstanding progress and relevant applications have been reported. An additional focus is now laid on recent work about micro-droplets, which is a central topic in microfluidics and optofluidics. New developments in biology and biomedicine also constitute a relevant part of the review. Finally, some topics partially related with photovoltaic tweezers and a discussion on future prospects and challenges are included.

  20. Transcriptome analysis by cDNA-AFLP of Suillus luteus Cd-tolerant and Cd-sensitive isolates.

    Science.gov (United States)

    Ruytinx, Joske; Craciun, Adrian R; Verstraelen, Karen; Vangronsveld, Jaco; Colpaert, Jan V; Verbruggen, Nathalie

    2011-04-01

    The ectomycorrhizal basidiomycete Suillus luteus (L.:Fr.), a typical pioneer species which associates with young pine trees colonizing disturbed sites, is a common root symbiont found at heavy metal contaminated sites. Three Cd-sensitive and three Cd-tolerant isolates of S. luteus, isolated respectively from non-polluted and a heavy metal-polluted site in Limburg (Belgium), were used for a transcriptomic analysis. We identified differentially expressed genes by cDNA-AFLP analysis. The possible roles of some of the encoded proteins in heavy metal (Cd) accumulation and tolerance are discussed. Despite the high conservation of coding sequences in S. luteus, a large intraspecific variation in the transcript profiles was observed. This variation was as large in Cd-tolerant as in sensitive isolates and may help this pioneer species to adapt to novel environments.

  1. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  2. Exact theory of optical tweezers and its application to absolute calibration

    DEFF Research Database (Denmark)

    Dutra, Rafael de Sousa; Viana, Nathan B.; Maia Neto, Paulo A.

    2017-01-01

    Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps tha...

  3. Measuring microscopic forces and torques using optical tweezers

    CSIR Research Space (South Africa)

    Mc

    2009-07-01

    Full Text Available stream_source_info McLaren_2009.pdf.txt stream_content_type text/plain stream_size 2976 Content-Encoding UTF-8 stream_name McLaren_2009.pdf.txt Content-Type text/plain; charset=UTF-8 Measuring microscopic forces... and torques using optical tweezers M.G. McLaren1,2, A. Forbes2,3,4 and E. Sideras-Haddad2 1 CSIR National Laser Centre 2 School of Physics, University of Witwatersrand 3 School of Physics, University of KwaZulu-Natal 4 School of Physics, University...

  4. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers.

    Science.gov (United States)

    Kriegel, Franziska; Ermann, Niklas; Lipfert, Jan

    2017-01-01

    Nucleic acids are central to the storage and transmission of genetic information. Mechanical properties, along with their sequence, both enable and fundamentally constrain the biological functions of DNA and RNA. For small deformations from the equilibrium conformations, nucleic acids are well described by an isotropic elastic rod model. However, external forces and torsional strains can induce conformational changes, giving rise to a complex force-torque phase diagram. This review focuses on magnetic tweezers as a powerful tool to precisely determine both the elastic parameters and conformational transitions of nucleic acids under external forces and torques at the single-molecule level. We review several variations of magnetic tweezers, in particular conventional magnetic tweezers, freely orbiting magnetic tweezers and magnetic torque tweezers, and discuss their characteristic capabilities. We then describe the elastic rod model for DNA and RNA and discuss conformational changes induced by mechanical stress. The focus lies on the responses to torque and twist, which are crucial in the mechanics and interactions of nucleic acids and can directly be measured using magnetic tweezers. We conclude by highlighting several recent studies of nucleic acid-protein and nucleic acid-small-molecule interactions as further applications of magnetic tweezers and give an outlook of some exciting developments to come. Copyright © 2016. Published by Elsevier Inc.

  5. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  6. Investigation of shape memory of red blood cells using optical tweezers and quantitative phase microscopy

    Science.gov (United States)

    Cardenas, Nelson; Mohanty, Samarendra K.

    2012-03-01

    RBC has been shown to possess shape memory subsequent to shear-induced shape transformation. However, this property of RBC may not be generalized to all kinds of stresses. Here, we report our observation on the action of radiation pressure forces on RBC's shape memory using optical manipulation and quantitative phase microscopy (OMQPM). QPM, based on Mach-Zehnder interferrometry, allowed measurement of dynamic changes of shape of RBC in optical tweezers at different trapping laser powers. In high power near-infrared optical tweezers (>200mW), the RBC was found to deform significantly due to optical forces. Upon removal of the tweezers, hysteresis in recovering its original resting shape was observed. In very high power tweezers or long-term stretching events, shape memory was almost erased. This irreversibility of the deformation may be due to temperature rise or stress-induced phase transformation of lipids in RBC membrane.

  7. Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments.

    Science.gov (United States)

    Chen, Haoyao; Wang, Can; Lou, Yunjiang

    2013-06-01

    This paper presents an efficient approach to achieve microparticles flocking with robotics and optical tweezers technologies. All particles trapped by optical tweezers can be automatically moved toward a predefined region without collision. The main contribution of this paper lies in the proposal of several solutions to the flocking manipulation of microparticles in microenvironments. First, a simple flocking controller is proposed to generate the desired positions and velocities for particles' movement. Second, a velocity saturation method is implemented to prevent the desired velocities from exceeding a safe limit. Third, a two-layer control architecture is proposed for the motion control of optical tweezers. This architecture can help make many robotic manipulations achievable under microenvironments. The proposed approach with these solutions can be applied to many bioapplications especially in cell engineering and biomedicine. Experiments on yeast cells with a robot-tweezers system are finally performed to verify the effectiveness of the proposed approach.

  8. Kinect the dots: 3D control of optical tweezers

    International Nuclear Information System (INIS)

    Shaw, Lucy; Preece, Daryl; Rubinsztein-Dunlop, Halina

    2013-01-01

    Holographically generated optical traps confine micron- and sub-micron sized particles close to the center of focused light beams. They also provide a way of trapping multiple particles and moving them in three dimensions. However, in many systems the user interface is not always advantageous or intuitive especially for collaborative work and when depth information is required. We discuss and evaluate a set of multi-beam optical tweezers that utilize off the shelf gaming technology to facilitate user interaction. We use the Microsoft Kinect sensor bar as a way of getting the user input required to generate arbitrary optical force fields and control optically trapped particles. We demonstrate that the system can also be used for dynamic light control. (paper)

  9. Combined holographic-mechanical optical tweezers: Construction, optimization, and calibration

    Science.gov (United States)

    Hanes, Richard D. L.; Jenkins, Matthew C.; Egelhaaf, Stefan U.

    2009-08-01

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45°, smaller angles give a full 2π phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method.

  10. Combined holographic-mechanical optical tweezers: Construction, optimization, and calibration

    International Nuclear Information System (INIS)

    Hanes, Richard D. L.; Jenkins, Matthew C.; Egelhaaf, Stefan U.

    2009-01-01

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 deg., smaller angles give a full 2π phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method.

  11. Design and construction of an optical compact and affordable tweezers

    International Nuclear Information System (INIS)

    Gonzalez, M.C.; Perez Moret, Y.; Arronte, M.; Ponce, L.

    2009-01-01

    The following paper presents a new design allowing a reduction on the amount of required optical elements for the construction of the optical tweezers, which results in a compact and affordable system. The latter is composed by a 40 mW Nd: YAG (532 nm) laser and commercially available optics and mounts. A virtual instrument, developed using Lab View 8.0, controls both a XYZ table and a web camera for visualizing. The quality of the laser beam at the end of optical system was characterized using the knife-edge method, resulting in a Gaussian shaped (TEM00) intensity profile. It is presented as well the necessary information to align and calibrate each optical element. (Author)

  12. Finding trap stiffness of optical tweezers using digital filters.

    Science.gov (United States)

    Almendarez-Rangel, Pedro; Morales-Cruzado, Beatriz; Sarmiento-Gómez, Erick; Pérez-Gutiérrez, Francisco G

    2018-02-01

    Obtaining trap stiffness and calibration of the position detection system is the basis of a force measurement using optical tweezers. Both calibration quantities can be calculated using several experimental methods available in the literature. In most cases, stiffness determination and detection system calibration are performed separately, often requiring procedures in very different conditions, and thus confidence of calibration methods is not assured due to possible changes in the environment. In this work, a new method to simultaneously obtain both the detection system calibration and trap stiffness is presented. The method is based on the calculation of the power spectral density of positions through digital filters to obtain the harmonic contributions of the position signal. This method has the advantage of calculating both trap stiffness and photodetector calibration factor from the same dataset in situ. It also provides a direct method to avoid unwanted frequencies that could greatly affect calibration procedure, such as electric noise, for example.

  13. Acoustical and optical radiation pressures and the development of single beam acoustical tweezers

    OpenAIRE

    Thomas , Jean-Louis; Marchiano , Régis; Baresch , Diego

    2017-01-01

    International audience; Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and positioned micron size particles, biological samples or even atoms with subnanometer accuracy in three dimens...

  14. iTweezers: optical micromanipulation controlled by an Apple iPad

    International Nuclear Information System (INIS)

    Bowman, R W; Gibson, G; Padgett, M J; Carberry, D; Picco, L; Miles, M

    2011-01-01

    The 3D interactive manipulation of multiple particles with holographic optical tweezers is often hampered by the control system. We use a multi-touch interface implemented on an Apple iPad to overcome many of the limitations of mouse-based control, and demonstrate an elegant and intuitive interface to multi-particle manipulation. This interface connects to the tweezers system hardware over a wireless network, allowing it to function as a remote monitor and control device. (technical note)

  15. Single and dual fiber nano-tip optical tweezers: trapping and analysis

    OpenAIRE

    Decombe , Jean-Baptiste; Huant , Serge; Fick , Jochen

    2013-01-01

    International audience; An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decre...

  16. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  17. Nano-funnels as electro-osmotic ``tweezers and pistons''

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Zhou, Jinsheng; Menard, Laurent D.; Ramsey, J. Michael; Rubinstien, Michael

    2014-03-01

    An electric field is used to force a DNA molecule into a nano-channel by compensating the free energy penalty that results from the reduced conformational entropy of the confined macromolecule. Narrow nano-channels require high critical electric fields to achieve DNA translocation, leading to short dwell times of DNA in these channels. We demonstrate that nano-funnels integrated with nano-channels reduce the free energy barrier and lower the critical electric field required for DNA translocation. A focused electric field within the funnel increases the electric force on the DNA, compresses the molecule, and increases the osmotic pressure at the nano-channel entrance. This ``electro-osmotic piston'' forces the molecule into the nano-channel at lower electric fields than those observed without the funnel. Appropirately designed nano-funnels can also function as tweezers that allow manipulation of the position of the DNA molecule. The predictions of our theory describing double-stranded DNA behavior in nano-funnel - nano-channel devices are consistent with experimental results. Thanks for the financial support from NSF (DMR-1309892, DMR-1121107, DMR-1122483), NIH (1-P50-HL107168, 1-P01-HL108808-01A1, R01HG02647), NHGRI and CF Foundation.

  18. Graphene-edge dielectrophoretic tweezers for trapping of biomolecules.

    Science.gov (United States)

    Barik, Avijit; Zhang, Yao; Grassi, Roberto; Nadappuram, Binoy Paulose; Edel, Joshua B; Low, Tony; Koester, Steven J; Oh, Sang-Hyun

    2017-11-30

    The many unique properties of graphene, such as the tunable optical, electrical, and plasmonic response make it ideally suited for applications such as biosensing. As with other surface-based biosensors, however, the performance is limited by the diffusive transport of target molecules to the surface. Here we show that atomically sharp edges of monolayer graphene can generate singular electrical field gradients for trapping biomolecules via dielectrophoresis. Graphene-edge dielectrophoresis pushes the physical limit of gradient-force-based trapping by creating atomically sharp tweezers. We have fabricated locally backgated devices with an 8-nm-thick HfO 2 dielectric layer and chemical-vapor-deposited graphene to generate 10× higher gradient forces as compared to metal electrodes. We further demonstrate near-100% position-controlled particle trapping at voltages as low as 0.45 V with nanodiamonds, nanobeads, and DNA from bulk solution within seconds. This trapping scheme can be seamlessly integrated with sensors utilizing graphene as well as other two-dimensional materials.

  19. Temperature control and measurement with tunable femtosecond optical tweezers

    Science.gov (United States)

    Mondal, Dipankar; Goswami, Debabrata

    2016-09-01

    We present the effects of wavelength dependent temperature rise in a femtosecond optical tweezers. Our experiments involve the femtosecond trapping laser tunable from 740-820 nm at low power 25 mW to cause heating in the trapped volume within a homogeneous solution of sub micro-molar concentration of IR dye. The 780 nm high repetition rate laser acts as a resonant excitation source which helps to create the local heating effortlessly within the trapping volume. We have used both position autocorrelation and equipartion theorem to evaluate temperature at different wavelength having different absorption coefficient. Fixing the pulse width in the temporal domain gives constant bandwidth at spatial domain, which makes our system behave as a tunable temperature rise device with high precision. This observation leads us to calculate temperature as well as viscosity within the vicinity of the trapping zone. A mutual energy transfer occurs between the trapped bead and solvents that leads to transfer the thermal energy of solvents into the kinetic energy of the trap bead and vice-versa. Thus hot solvated molecules resulting from resonant and near resonant excitation of trapping wavelength can continuously dissipate heat to the trapped bead which will be reflected on frequency spectrum of Brownian noise exhibited by the bead. Temperature rise near the trapping zone can significantly change the viscosity of the medium. We observe temperature rise profile according to its Gaussian shaped absorption spectrum with different wavelength.

  20. tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers

    DEFF Research Database (Denmark)

    Hansen, Poul Martin; Tolic-Nørrelykke, Iva Marija; Flyvbjerg, Henrik

    2006-01-01

    We present a vectorized version of the MatLab (MathWorks Inc) package tweezercalib for calibration of optical tweezers with precision. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number...

  1. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    Science.gov (United States)

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  2. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.

  3. A computational tool to characterize particle tracking measurements in optical tweezers

    International Nuclear Information System (INIS)

    Taylor, Michael A; Bowen, Warwick P

    2013-01-01

    Here, we present a computational tool for optical tweezers which calculates the particle tracking signal measured with a quadrant detector and the shot-noise limit to position resolution. The tool is a piece of Matlab code which functions within the freely available Optical Tweezers Toolbox. It allows the measurements performed in most optical tweezer experiments to be theoretically characterized in a fast and easy manner. The code supports particles with arbitrary size, any optical fields and any combination of objective and condenser, and performs a full vector calculation of the relevant fields. Example calculations are presented which show the tracking signals for different particles, and the shot-noise limit to position sensitivity as a function of the effective condenser NA. (paper)

  4. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment.

    Science.gov (United States)

    Gong, Yuan; Ye, Ai-Yan; Wu, Yu; Rao, Yun-Jiang; Yao, Yao; Xiao, Song

    2013-07-01

    Optical fiber tweezers based on a graded-index multimode fiber (GIMMF) tip is proposed. Light propagation characteristics and gradient force distribution near the GIMMF tip are numerically investigated, which are further compared with that of optical fiber tips based on conventional single mode fibers. The simulated results indicated that by selecting optimal GIMMF length, the gradient force of the GIMMF tip tweezers is about 4 times higher than that of the SMF tip tweezers with a same shape. To prove the feasibility of such a new concept, optical trapping of yeast cells with a diameter of ~5 μm using the chemically-etched GIMMF tip is experimentally demonstrated and the trapping force is also calculated.

  5. Manipulation of Nanoparticles Using Dark-Field-Illumination Optical Tweezers with Compensating Spherical Aberration

    International Nuclear Information System (INIS)

    Jin-Hua, Zhou; Run-Zhe, Tao; Zhi-Bin, Hu; Min-Cheng, Zhong; Zi-Qiang, Wang; Yin-Mei, Li; Jun, Cai

    2009-01-01

    Based on our previous investigation of optical tweezers with dark field illumination [Chin. Phys. Lett. 25(2008)329], nanoparticles at large trap depth are better viewed in wide field and real time for a long time, but with poor forces. Here we present the mismatched tube length to compensate for spherical aberration of an oil-immersion objective in a glass-water interface in an optical tweezers system for manipulating nanoparticles. In this way, the critical power of stable trapping particles is measured at different trap depths. It is found that trap depth is enlarged for trapping nanoparticles and trapping forces are enhanced at large trap depth. According to the measurement, 70-nm particles are manipulated in three dimensions and observed clearly at large appropriate depth. This will expand applications of optical tweezers in a nanometre-scale colloidal system. (cross-disciplinary physics and related areas of science and technology)

  6. Mechanical and electrical properties of red blood cells using optical tweezers

    International Nuclear Information System (INIS)

    Fontes, A; Castro, M L Barjas; Brandão, M M; Fernandes, H P; Huruta, R R; Costa, F F; Saad, S T O; Thomaz, A A; Pozzo, L Y; Barbosa, L C; Cesar, C L

    2011-01-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells

  7. Near-field enhanced optical tweezers utilizing femtosecond-laser nanostructured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kotsifaki, D. G., E-mail: dkotsif@eie.gr; Kandyla, M. [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vasileos Constantinou Avenue, 11635 Athens (Greece); Lagoudakis, P. G. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-11-23

    We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force and the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, indicative of evanescent plasmonic enhancement.

  8. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    Science.gov (United States)

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  9. Mechanical properties of stored red blood cells using optical tweezers

    Science.gov (United States)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  10. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  11. A Smart DNA Tweezer for Detection of Human Telomerase Activity.

    Science.gov (United States)

    Xu, Xiaowen; Wang, Lei; Li, Kan; Huang, Qihong; Jiang, Wei

    2018-03-06

    Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG) n . TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold-mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/μL for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and ≥5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.

  12. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers

    NARCIS (Netherlands)

    Honing, van der H.S.; Ruijter, de N.C.A.; Emons, A.M.C.; Ketelaar, T.

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm.

  13. Holographic Raman tweezers controlled by multi-modal natural user interface

    Czech Academy of Sciences Publication Activity Database

    Tomori, Z.; Keša, P.; Nikorovič, M.; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Valušová, E.; Antalík, M.; Zemánek, Pavel

    2016-01-01

    Roč. 18, č. 1 (2016), 015602:1-9 ISSN 2040-8978 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk(CZ) LD14069 Institutional support: RVO:68081731 Keywords : holographic optical tweezers * Raman microspectroscopy * human-computer interface Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.741, year: 2016

  14. Construction and actuation of a microscopic gear assembly formed using optical tweezers

    International Nuclear Information System (INIS)

    Kim, Jung-Dae; Lee, Yong-Gu

    2013-01-01

    The assembly of micrometer-sized parts is an important manufacturing process; any development in it could potentially change the current manufacturing practices for micrometer-scale devices. Due to the lack of reliable microassembly techniques, these devices are often manufactured using silicon, which includes etching and depositions with little use of assembly processes. The result is the requirement of specialized manufacturing conditions with hazardous byproducts and limited applications where only simple mechanisms are allowed. Optical tweezers are non-contact type manipulators that are very suitable for assembling microparts and solve one of the most difficult problems for microassembly, which is the sticking of the physical manipulator to the micropart. Although contact type manipulators can be surface modified to be non-sticky, this involves extra preprocessing—optical tweezers do not require such additional efforts. The weakness of using optical tweezers is that the permanent assembly of parts is not possible as only very small forces can be applied. We introduce an advanced microassembly environment with the combined use of optical tweezers and a motorized microtip, where the former is used to position two parts and the latter is used to introduce deformation in the parts so that they form a strongly fitted assembly. (paper)

  15. Uncharged water-soluble porphyrin tweezers as a supramolecular sensor for α-amino acids

    International Nuclear Information System (INIS)

    Villari, Valentina; Mineo, Placido; Micali, Norberto; Angelini, Nicola; Vitalini, Daniele; Scamporrino, Emilio

    2007-01-01

    The binding between uncharged cobalt porphyrin tweezers and L-amino acids in aqueous solutions is studied by means of UV-vis and circular dichroism spectroscopy. By varying the length of the aliphatic bridge between the two porphyrin units, the number of cobalt ions in the porphyrin cores and the pH of the solution, the chirality induction phenomenon has been investigated. The binding of the amino acid to the porphyrin seems to occur via a coordination mechanism between the metal and the nitrogen of the amino group; the steric, hydrophobic and π-π interactions operate to stabilize the complexes. The chirogenesis displays an opposite behaviour in the presence of aromatic guests with respect to the non-aromatic ones. Moreover, the UV-vis and the induced circular dichroism spectral changes suggest that the amino acid arrangement in the tweezers is determined by many factors, so that, unlike in organic solvent, the porphyrin tweezers in aqueous solution allow for two different arrangements of the same aromatic amino acid. The experimental findings indicate that the porphyrins tweezers reported in the paper are promising in opening perspectives toward their application as a selective molecular sensor in aqueous solutions directly

  16. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study

    Czech Academy of Sciences Publication Activity Database

    Trojek, Jan; Chvátal, Lukáš; Zemánek, Pavel

    2012-01-01

    Roč. 29, č. 7 (2012), s. 1224-1236 ISSN 1084-7529 R&D Projects: GA ČR GA202/09/0348; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : ellipsoidal nanorod * optical tweezers * Rayleigh approximation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.665, year: 2012

  17. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    Science.gov (United States)

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  18. Optical tweezers in concentrated colloidal dispersions : Manipulating and imaging individual particles

    NARCIS (Netherlands)

    Vossen, Dirk Leo Joep

    2004-01-01

    Using a laser beam that is focused down to a diffraction-limited spot, particles with a size ranging from several nanometers up to tens of micrometers can be trapped and manipulated. This technique, known as "optical tweezers" or "optical trapping", has been used in a wide variety of

  19. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  20. Synthesis and Guest Recognition of Switchable Pt-Salphen Based Molecular Tweezers

    Directory of Open Access Journals (Sweden)

    Lorien Benda

    2018-04-01

    Full Text Available Molecular tweezers are artificial receptors that have an open cavity generated by two recognition units pre-organized by a spacer. Switchable molecular tweezers, using a stimuli-responsive spacer, are particularly appealing as prototypes of the molecular machines that combine mechanical motion and allosteric recognition properties. In this present study, the synthesis of switchable molecular tweezers composed of a central terpyridine unit substituted in 4,4″ positions by two Pt(II-salphen complexes is reported. The terpyridine ligand can be reversibly converted upon Zn(II coordination from a free ‘U’-shaped closed form to a coordinated ‘W’ open form. This new substitution pattern enables a reverse control of the mechanical motion compared to the previously reported 6,6″ substituted terpyridine-based tweezers. Guest binding studies with aromatic guests showed an intercalation of coronene in the cavity created by the Pt-salphen moieties in the closed conformation. The formation of 1:1 host-guest complex was investigated by a combination of NMR studies and DFT calculations.

  1. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    NARCIS (Netherlands)

    van Oene, M.M.; Dickinson, L.E.; Cross, B.; Pedaci, F.; Lipfert, J.; Dekker, N.H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in

  2. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...

  3. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.

    Science.gov (United States)

    Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa

    2017-11-01

    This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Neural Network for Image-to-Image Control of Optical Tweezers

    Science.gov (United States)

    Decker, Arthur J.; Anderson, Robert C.; Weiland, Kenneth E.; Wrbanek, Susan Y.

    2004-01-01

    A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480 by 480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100 by 100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480 by 480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.

  5. A feasibility study of in vivo applications of single beam acoustic tweezers

    International Nuclear Information System (INIS)

    Li, Ying; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  6. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  7. A feasibility study of in vivo applications of single beam acoustic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying, E-mail: yli582@usc.edu; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk [NIH Transducer Resource Center and Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089-1111 (United States)

    2014-10-27

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  8. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

    Science.gov (United States)

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-07-05

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development.

  9. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmír; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, V.; Růžička, F.

    2015-01-01

    Roč. 20, č. 5 (2015), 051038:1-6 ISSN 1083-3668 R&D Projects: GA ČR GAP205/11/1687; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman tweezers * Staphylococcus epidermidis * biofilm Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.556, year: 2015

  10. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Directory of Open Access Journals (Sweden)

    Marijn T J van Loenhout

    Full Text Available The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  11. Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines.

    Science.gov (United States)

    Yue, Liang; Wang, Shan; Cecconello, Alessandro; Lehn, Jean-Marie; Willner, Itamar

    2017-12-26

    Overexpression or down-regulation of cellular processes are often controlled by dynamic chemical networks. Bioinspired by nature, we introduce constitutional dynamic networks (CDNs) as systems that emulate the principle of the nature processes. The CDNs comprise dynamically interconvertible equilibrated constituents that respond to external triggers by adapting the composition of the dynamic mixture to the energetic stabilization of the constituents. We introduce a nucleic acid-based CDN that includes four interconvertible and mechanically triggered tweezers, AA', BB', AB' and BA', existing in closed, closed, open, and open configurations, respectively. By subjecting the CDN to auxiliary triggers, the guided stabilization of one of the network constituents dictates the dynamic reconfiguration of the structures of the tweezers constituents. The orthogonal and reversible operations of the CDN DNA tweezers are demonstrated, using T-A·T triplex or K + -stabilized G-quadruplex as structural motifs that control the stabilities of the constituents. The implications of the study rest on the possible applications of input-guided CDN assemblies for sensing, logic gate operations, and programmed activation of molecular machines.

  12. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  13. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    Energy Technology Data Exchange (ETDEWEB)

    Zacchia, Nicholas A.; Valentine, Megan T. [Department of Mechanical Engineering and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States)

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  14. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications.

    Science.gov (United States)

    Zacchia, Nicholas A; Valentine, Megan T

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  15. Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2008-12-01

    Full Text Available This review presents the development of a Raman Tweezers system for detecting hemoglobin-related blood disorders at a single cell level. The study demonstrates that the molecular fingerprint insight provided by Raman analysis holds great promise for distinguishing between healthy and diseased cells in the field of biomedicine. Herein a Raman Tweezers system has been applied to investigate the effects of thalassemia, a blood disease quite diffuse in the Mediterranean Sea region. By resonant excitation of hemoglobin Raman bands, we examined the oxygenation capability of normal, alpha- and beta-thalassemic erythrocytes. A reduction of this fundamental red blood cell function, particularly severe for beta-thalassemia, has been found. Raman spectroscopy was also used to draw hemoglobin distribution inside single erythrocytes; the results confirmed the characteristic anomaly (target shape, occurring in thalassemia and some other blood disorders. The success of resonance Raman spectroscopy for thalassemia detection reported in this review provide an interesting starting point to explore the application of a Raman Tweezers system in the analysis of several blood disorders.

  16. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    Science.gov (United States)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  17. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems

    Science.gov (United States)

    Selvaggi, L.; Pasakarnis, L.; Brunner, D.; Aegerter, C. M.

    2018-04-01

    Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.

  18. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    Science.gov (United States)

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The Use of Raman Tweezers and Chemometric Analysis to Discriminate the Urological Cell Lines, PC-3, LNCaP, BPH and MGH-U1

    Science.gov (United States)

    Harvey, T. J.; Hughes, C.; Ward, A. D.; Gazi, E.; Faria, E. Correia; Clarke, N. W.; Brown, M.; Snook, R.; Gardner, P.

    2008-11-01

    Here we report on investigations into using Raman optical tweezers to analyse both live and chemically fixed prostate and bladder cells. Spectra were subjected to chemometric analysis to discriminate and classify the cell types based on their spectra. Subsequent results revealed the potential of Raman tweezers as a potential clinical diagnostic tool.

  20. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    Energy Technology Data Exchange (ETDEWEB)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim [Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  1. Optical macro-tweezers: trapping of highly motile micro-organisms

    International Nuclear Information System (INIS)

    Thalhammer, G; Steiger, R; Bernet, S; Ritsch-Marte, M

    2011-01-01

    Optical micromanipulation stands for contact-free handling of microscopic particles by light. Optical forces can manipulate non-absorbing objects in a large range of sizes, e.g., from biological cells down to cold atoms. Recently much progress has been made going from the micro- down to the nanoscale. Less attention has been paid to going the other way, trapping increasingly large particles. Optical tweezers typically employ a single laser beam tightly focused by a microscope objective of high numerical aperture to stably trap a particle in three dimensions (3D). As the particle size increases, stable 3D trapping in a single-beam trap requires scaling up the optical power, which eventually induces adverse biological effects. Moreover, the restricted field of view of standard optical tweezers, dictated by the use of high NA objectives, is particularly unfavorable for catching actively moving specimens. Both problems can be overcome by traps with counter-propagating beams. Our 'macro-tweezers' are especially designed to trap highly motile organisms, as they enable three-dimensional all-optical trapping and guiding in a volume of 2 × 1 × 2 mm 3 . Here we report for the first time the optical trapping of large actively swimming organisms, such as for instance Euglena protists and dinoflagellates of up to 70 µm length. Adverse bio-effects are kept low since trapping occurs outside high intensity regions, e.g., focal spots. We expect our approach to open various possibilities in the contact-free handling of 50–100 µm sized objects that could hitherto not be envisaged, for instance all-optical holding of individual micro-organisms for taxonomic identification, selective collecting or tagging

  2. Single-atom trapping and transport in DMD-controlled optical tweezers

    Science.gov (United States)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  3. Calibration of optical tweezers with positional detection in the back focal plane

    DEFF Research Database (Denmark)

    Tolic-Nørrelykke, S.F.; Schäffer, E.; Howard, J.

    2006-01-01

    We explain and demonstrate a new method of force and position calibrations for optical tweezers with back-focal-plane photodetection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use...... and precise: true values are returned, with small error bars. We tested this experimentally, near and far from surfaces in the lateral directions. Both position and force calibrations were accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but the laser beam could...

  4. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  5. Fabrication of quartz microcylinders by laser interference lithography for angular optical tweezers

    Science.gov (United States)

    Santybayeva, Zhanna; Meghit, Afaf; Desgarceaux, Rudy; Teissier, Roland; Pichot, Frederic; de Marin, Charles; Charlot, Benoit; Pedaci, Francesco

    2016-07-01

    The use of optical tweezers (OTs) and spin angular momentum transfer to birefringent particles allows new mechanical measurements in systems where torque and rotation are relevant parameters at the single-molecule level. There is a growing interest in developing simple, fast, and inexpensive protocols to produce a large number of submicron scale cylinders of quartz, a positive uniaxial birefringent crystal, to be employed for such angular measurements in OTs. Here, we show that laser interference lithography, a method well known for its simplicity, fulfills these requirements and produces quartz cylindrical particles that we successfully use to apply and measure optical torque in the piconewton nm range in an optical torque wrench.

  6. Anion-π aromatic neutral tweezers complexes: are they stable in polar solvents?

    Science.gov (United States)

    Sánchez-Lozano, Marta; Otero, Nicolás; Hermida-Ramón, Jose M; Estévez, Carlos M; Mandado, Marcos

    2011-03-17

    The impact of the solvent environment on the stabilization of the complexes formed by fluorine (T-F) and cyanide (T-CN) substituted tweezers with halide anions has been investigated theoretically. The study was carried out using computational methodologies based on density functional theory (DFT) and symmetry adapted perturbation theory (SAPT). Interaction energies were obtained at the M05-2X/6-31+G* level. The obtained results show a large stability of the complexes in solvents with large dielectric constant and prove the suitability of these molecular tweezers as potential hosts for anion recognition in solution. A detailed analysis of the effects of the solvent on the electron withdrawing ability of the substituents and its influence on the complex stability has been performed. In particular, the interaction energy in solution was split up into intermonomer and solvent-complex terms. In turn, the intermonomer interaction energy was partitioned into electrostatic, exchange, and polarization terms. Polar resonance structures in T-CN complexes are favored by polar solvents, giving rise to a stabilization of the intermonomer interaction, the opposite is found for T-F complexes. The solvent-complex energy increases with the polarity of the solvent in T-CN complexes, nonetheless the energy reaches a maximum and then decreases slowly in T-F complexes. An electron density analysis was also performed before and after complexation, providing an explanation to the trends followed by the interaction energies and their different components in solution.

  7. New approaches in the design of magnetic tweezers–current magnetic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bessalova, Valentina [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Perov, Nikolai [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); Rodionova, Valeria [Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); National University of Science and Technology ' MISiS' , Leninsky Prospect 4, 119049 Moscow (Russian Federation)

    2016-10-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10{sup −11} A m{sup 2} at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  8. Using electrical and optical tweezers to facilitate studies of molecular motors†

    Science.gov (United States)

    Arsenault, Mark E.; Sun, Yujie; Bau, Haim H.; Goldman, Yale E.

    2013-01-01

    Dielectrophoresis was used to stretch and suspend actin filaments across a trench etched between two electrodes patterned on a glass slide. Optical tweezers were used to bring a motor protein-coated bead into close proximity to a pre-selected, suspended actin filament, facilitating the attachment of the myosin-coated bead to the filament. The clearance beneath the filament allowed the bead to move freely along and around its filamentous track, unhindered by solid surfaces. Using defocused images, the three-dimensional position of the bead was tracked as a function of time to obtain its trajectory. Experiments were carried out with myosin V and myosin X. Both motor proteins followed left-handed helical paths with the myosin X motor exhibiting a shorter pitch than the myosin V. The combined use of electrostatic and optical tweezers facilitates the preparation of motility assays with suspended tracks. Variants of this technique will enable higher complexity experiments in vitro to better understand the behavior of motors in cells. PMID:19506758

  9. Using electrical and optical tweezers to facilitate studies of molecular motors.

    Science.gov (United States)

    Arsenault, Mark E; Sun, Yujie; Bau, Haim H; Goldman, Yale E

    2009-06-28

    Dielectrophoresis was used to stretch and suspend actin filaments across a trench etched between two electrodes patterned on a glass slide. Optical tweezers were used to bring a motor protein-coated bead into close proximity to a pre-selected, suspended actin filament, facilitating the attachment of the myosin-coated bead to the filament. The clearance beneath the filament allowed the bead to move freely along and around its filamentous track, unhindered by solid surfaces. Using defocused images, the three-dimensional position of the bead was tracked as a function of time to obtain its trajectory. Experiments were carried out with myosin V and myosin X. Both motor proteins followed left-handed helical paths with the myosin X motor exhibiting a shorter pitch than the myosin V. The combined use of electrostatic and optical tweezers facilitates the preparation of motility assays with suspended tracks. Variants of this technique will enable higher complexity experiments in vitro to better understand the behavior of motors in cells.

  10. New approaches in the design of magnetic tweezers–current magnetic tweezers

    International Nuclear Information System (INIS)

    Bessalova, Valentina; Perov, Nikolai; Rodionova, Valeria

    2016-01-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10 −11 A m 2 at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  11. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    International Nuclear Information System (INIS)

    Chen, Timothy; Shi, Linda Z; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W

    2011-01-01

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC 6 (3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC 6 (3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC 6 (3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC 6 (3) is an effective way to study sperm motility and energetics

  12. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    International Nuclear Information System (INIS)

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-01-01

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts

  13. Application of optical tweezers and excimer laser to study protoplast fusion

    Science.gov (United States)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  14. Manipulation of Nano-/Micro Particles Using Light-Actuated Marangoni Tweezers

    Science.gov (United States)

    Lu, Cunjing; Varanakkottu, Subramanyan; Hardt, Steffen; Nano-; Microfluidics, Center of Smart Interfaces, TU Darmstadt Team

    2015-11-01

    The ability to manipulate and produce patterns of nano-/micro objects has been of great interest from both a fundamental and an application point of view. Here we demonstrate particle patterning using an optical landscape and optical nanoparticle manipulation based on light-actuated Marangoni tweezers. A liquid film with a photosurfactant which exists in two isomeric states (cis and trans) is employed for that purpose. Under multiple laser spots created by diffractive optical elements from a He-Cd laser, cis-rich regions with higher surface tension than unexposed trans-rich regions are created, resulting in converging Marangoni flows directing particles attached to the liquid surface toward the irradiated area. 10 μm polystyrene particles and 600 nm λ-DNA molecules distributed over the liquid surface move to the nearest laser spot and can be arranged in specific patterns. Furthermore, 100 nm polystyrene particles and 20 nm quantum dots can also be trapped, and the 100 nm particles can be driven along quite complex trajectories. Compared to conventional optical tweezers, the corresponding power requirements are much lower.

  15. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli

    Science.gov (United States)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.

    2012-06-01

    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  16. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  17. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    Science.gov (United States)

    Chen, Timothy; Shi, Linda Z.; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W.

    2011-04-01

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC6(3) is an effective way to study sperm motility and energetics.

  18. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases

    Science.gov (United States)

    Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk

    2018-01-01

    The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563

  19. A study of red blood cell deformability in diabetic retinopathy using optical tweezers

    Science.gov (United States)

    Smart, Thomas J.; Richards, Christopher J.; Bhatnagar, Rhythm; Pavesio, Carlos; Agrawal, Rupesh; Jones, Philip H.

    2015-08-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) in which high blood sugar levels cause swelling, leaking and occlusions in the blood vessels of the retina, often resulting in a loss of sight. The microvascular system requires red blood cells (RBCs) to undergo significant cellular deformation in order to pass through vessels whose diameters are significantly smaller than their own. There is evidence to suggest that DM impairs the deformability of RBCs, and this loss of deformability has been associated with diabetic kidney disease (or nephropathy) - another microvascular complication of DM. However, it remains unclear whether reduced deformability of RBCs correlates with the presence of DR. Here we present an investigation into the deformability of RBCs in patients with diabetic retinopathy using optical tweezers. To extract a value for the deformability of RBCs we use a dual-trap optical tweezers set-up to stretch individual RBCs. RBCs are trapped directly (i.e. without micro-bead handles), so rotate to assume a `side-on' orientation. Video microscopy is used to record the deformation events, and shape analysis software is used to determine parameters such as initial and maximum RBC length, allowing us to calculate the deformability for each RBC. A small decrease in deformability of diabetes cells subject to this stretching protocol is observed when compared to control cells. We also report on initial results on three dimensional imaging of individual RBCs using defocussing microscopy.

  20. Auto- and cross-power spectral analysis of dual trap optical tweezer experiments using Bayesian inference.

    Science.gov (United States)

    von Hansen, Yann; Mehlich, Alexander; Pelz, Benjamin; Rief, Matthias; Netz, Roland R

    2012-09-01

    The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and-if present-macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.

  1. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    International Nuclear Information System (INIS)

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    2013-01-01

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  2. Natural user interface as a supplement of the holographic Raman tweezers

    Science.gov (United States)

    Tomori, Zoltan; Kanka, Jan; Kesa, Peter; Jakl, Petr; Sery, Mojmir; Bernatova, Silvie; Antalik, Marian; Zemánek, Pavel

    2014-09-01

    Holographic Raman tweezers (HRT) manipulates with microobjects by controlling the positions of multiple optical traps via the mouse or joystick. Several attempts have appeared recently to exploit touch tablets, 2D cameras or Kinect game console instead. We proposed a multimodal "Natural User Interface" (NUI) approach integrating hands tracking, gestures recognition, eye tracking and speech recognition. For this purpose we exploited "Leap Motion" and "MyGaze" low-cost sensors and a simple speech recognition program "Tazti". We developed own NUI software which processes signals from the sensors and sends the control commands to HRT which subsequently controls the positions of trapping beams, micropositioning stage and the acquisition system of Raman spectra. System allows various modes of operation proper for specific tasks. Virtual tools (called "pin" and "tweezers") serving for the manipulation with particles are displayed on the transparent "overlay" window above the live camera image. Eye tracker identifies the position of the observed particle and uses it for the autofocus. Laser trap manipulation navigated by the dominant hand can be combined with the gestures recognition of the secondary hand. Speech commands recognition is useful if both hands are busy. Proposed methods make manual control of HRT more efficient and they are also a good platform for its future semi-automated and fully automated work.

  3. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  4. Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells

    International Nuclear Information System (INIS)

    Chang Yiren; Hsu Long; Chi Sien

    2006-01-01

    Since their invention in 1986, optical tweezers have become a popular manipulation and force measurement tool in cellular and molecular biology. However, until recently there has not been a sophisticated model for optical tweezers on trapping cells in the ray-optics regime. We present a model for optical tweezers to calculate the optical force upon a spherically symmetric multilayer sphere representing a common biological cell. A numerical simulation of this model shows that not only is the magnitude of the optical force upon a Chinese hamster ovary cell significantly three times smaller than that upon a polystyrene bead of the same size, but the distribution of the optical force upon a cell is also much different from that upon a uniform particle, and there is a 30% difference in the optical trapping stiffness of these two cases. Furthermore, under a small variant condition for the refractive indices of any adjacent layers of the sphere, this model provides a simple approximation to calculate the optical force and the stiffness of an optical tweezers system

  5. The Simulation of the stabilizing process of glass nanoparticle in optical tweezer using series of laser pulses

    International Nuclear Information System (INIS)

    Ho Quang Quy; Hoang Dinh Hai

    2012-01-01

    In this article the stable region and stabilizing process of dielectric particle in fluid by the optical tweezer using the series of laser pulses are investigated. The influence of the repetition period and number of laser pulses on the radial variance of particle and the so-called stable space-time pillar is simulated and discussed. (author)

  6. Holographic optical tweezers for object manipulations at an air-liquid surface.

    Science.gov (United States)

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-06-26

    We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".

  7. Micro-rheology on (polymer-grafted) colloids using optical tweezers

    International Nuclear Information System (INIS)

    Gutsche, C; Elmahdy, M M; Kegler, K; Semenov, I; Stangner, T; Otto, O; Ueberschaer, O; Kremer, F; Keyser, U F; Krueger, M; Rauscher, M; Weeber, R; Harting, J; Kim, Y W; Lobaskin, V; Netz, R R

    2011-01-01

    Optical tweezers are experimental tools with extraordinary resolution in positioning (± 1 nm) a micron-sized colloid and in the measurement of forces (± 50 fN) acting on it-without any mechanical contact. This enables one to carry out a multitude of novel experiments in nano- and microfluidics, of which the following will be presented in this review: (i) forces within single pairs of colloids in media of varying concentration and valency of the surrounding ionic solution, (ii) measurements of the electrophoretic mobility of single colloids in different solvents (concentration, valency of the ionic solution and pH), (iii) similar experiments as in (i) with DNA-grafted colloids, (iv) the nonlinear response of single DNA-grafted colloids in shear flow and (v) the drag force on single colloids pulled through a polymer solution. The experiments will be described in detail and their analysis discussed.

  8. Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size

    International Nuclear Information System (INIS)

    Matarrubia, J; García-Cabañes, A; Plaza, J L; Agulló-López, F; Carrascosa, M

    2014-01-01

    The role of light modulation m and particle size on the morphology and spatial resolution of nano-particle patterns obtained by photovoltaic tweezers on Fe : LiNbO 3 has been investigated. The impact of m when using spherical as well as non-spherical (anisotropic) nano-particles deposited on the sample surface has been elucidated. Light modulation is a key parameter determining the particle profile contrast that is optimum for spherical particles and high-m values (m ∼ 1). The minimum particle periodicities reachable are also investigated obtaining periodic patterns up to 3.5 µm. This is a value at least one order of magnitude shorter than those obtained in previous reported experiments. Results are successfully explained and discussed in light of the previous reported models for photorefraction including nonlinear carrier transport and dielectrophoretic trapping. From the results, a number of rules for particle patterning optimization are derived. (paper)

  9. In Situ Raman Spectroscopy of COOH-Functionalized SWCNTs Trapped with Optoelectronic Tweezers

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2012-01-01

    Full Text Available Optoelectronic tweezers (OETs were used to trap and deposit aqueous dispersions of carboxylic-acid-functionalized single-walled carbon nanotube bundles. Dark-field video microscopy was used to visualize the dynamics of the bundles both with and without virtual electrodes, showing rapid accumulation of carbon nanotubes when optical virtual electrodes are actuated. Raman microscopy was used to probe SWCNT materials following deposition onto metallic fiducial markers as well as during trapping. The local carbon nanotube concentration was observed to increase rapidly during trapping by more than an order of magnitude in less than one second due to localized optical dielectrophoresis forces. This combination of enrichment and spectroscopy with a single laser spot suggests a broad range of applications in physical, chemical, and biological sciences.

  10. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    International Nuclear Information System (INIS)

    Nino, Daniel; Wang, Haowei; N Milstein, Joshua

    2014-01-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices. (paper)

  11. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  12. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.

    Science.gov (United States)

    Lin, Jun; Valentine, Megan T

    2012-05-01

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to ∼4.5 μm paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as ∼1 kPa.

  13. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jun [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States); Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106 (United States); Valentine, Megan T. [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States)

    2012-05-15

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to {approx}4.5 {mu}m paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as {approx}1 kPa.

  14. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film.

    Science.gov (United States)

    Zhu, Benpeng; Xu, Jiong; Li, Ying; Wang, Tian; Xiong, Ke; Lee, Changyang; Yang, Xiaofei; Shiiba, Michihisa; Takeuchi, Shinichi; Zhou, Qifa; Shung, K Kirk

    2016-03-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d 33 = 270pC/N and k t = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  15. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Directory of Open Access Journals (Sweden)

    Benpeng Zhu

    2016-03-01

    Full Text Available Single-beam acoustic tweezers (SBAT, used in laboratory-on-a-chip (LOC device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d33 = 270pC/N and kt = 0.51 was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50MHz, a low f-number (∼0.9, demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  16. Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.

    Science.gov (United States)

    Baclayon, Marian; Kalisch, Svenja-Marei; Hendel, Ed; Laan, Liedewij; Husson, Julien; Munteanu, E Laura; Dogterom, Marileen

    2017-01-01

    Microtubules are dynamic cytoskeletal polymers that polymerize and depolymerize while interacting with different proteins and structures within the cell. The highly regulated dynamic properties as well as the pushing and pulling forces generated by dynamic microtubule ends play important roles in processes such as in cell division. For instance, microtubule end-binding proteins are known to affect dramatically the dynamic properties of microtubules, and cortical dyneins are known to mediate pulling forces on microtubule ends. We discuss in this chapter our efforts to reconstitute these systems in vitro and mimic their interactions with structures within the cell using micro-fabricated barriers. Using an optical tweezers setup, we investigate the dynamics and forces of microtubules growing against functionalized barriers in the absence and presence of end-binding proteins and barrier-attached motor proteins. This setup allows high-speed as well as nanometer and piconewton resolution measurements on dynamic microtubules.

  17. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Benpeng, E-mail: benpengzhu@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiong; Yang, Xiaofei [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk [Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089-1111 (United States); Wang, Tian; Xiong, Ke [Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan 430072 (China); Shiiba, Michihisa; Takeuchi, Shinichi [Medical Engineering Course, Graduate School of Engineering, Toin University of Yokohama, Yokohama 225-8501 (Japan)

    2016-03-15

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d{sub 33} = 270 pC/N and k{sub t} = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  18. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Daniel; Wang, Haowei; N Milstein, Joshua, E-mail: josh.milstein@utoronto.ca [Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6 (Canada)

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices. (paper)

  19. An active one-particle microrheometer: incorporating magnetic tweezers to total internal reflection microscopy.

    Science.gov (United States)

    Gong, Xiangjun; Hua, Li; Wu, Chi; Ngai, To

    2013-03-01

    We present a novel microrheometer by incorporating magnetic tweezers in the total internal reflection microscopy (TIRM) that enables measuring of viscoelastic properties of materials near solid surface. An evanescent wave generated by a solid∕liquid interface in the TIRM is used as the incident light source in the microrheometer. When a probe particle (of a few micrometers diameter) moves near the interface, it can interact with the evanescent field and reflect its position with respect to the interface by the scattered light intensity. The exponential distance dependence of the evanescent field, on the one hand, makes this technique extremely sensitive to small changes from z-fluctuations of the probe (with a resolution of several nanometers), and on the other, it does not require imaging of the probe with high lateral resolution. Another distinct advantage is the high sensitivity in determining the z position of the probe in the absence of any labeling. The incorporated magnetic tweezers enable us to effectively manipulate the distance of the embedded particle from the interface either by a constant or an oscillatory force. The force ramp is easy to implement through a coil current ramp. In this way, the local viscous and elastic properties of a given system under different confinements can therefore be measured by resolving the near-surface particle motion. To test the feasibility of applying this microrheology to soft materials, we measured the viscoelastic properties of sucrose and poly(ethylene glycol) solutions and compared the results to bulk rheometry. In addition, we applied this technique in monitoring the structure and properties of deformable microgel particles near the flat surface.

  20. Ion pair recognition by Zn-porphyrin/crown ether conjugates: visible sensing of sodium cyanide.

    Science.gov (United States)

    Kim, Yeon-Hwan; Hong, Jong-In

    2002-03-07

    Synthesis and complexation behavior of ditopic neutral receptors composed of both a Lewis-acidic binding site (zinc porphyrin moiety) and a Lewis-basic binding site (crown ether moiety) are reported; the receptors bound only NaCN in a ditopic fashion with a color change, and in contrast other sodium salts bound to the receptors in a monotopic fashion without a color change.

  1. A Zn-porphyrin complex contributes to bright red color in Parma ham.

    Science.gov (United States)

    Wakamatsu, J; Nishimura, T; Hattori, A

    2004-05-01

    The Italian traditional dry-cured ham (Parma ham) shows a stable bright red color that is achieved without the use of nitrite and/or nitrate. In this study we examined the pigment spectroscopically, fluoroscopically and by using HPLC and ESI-HR-MASS analysis. Porphyrin derivative other than acid hematin were contained in the HCl-containing acetone extract from Parma ham. A strong fluorescence peak at 588 nm and a weak fluorescence peak at 641 nm were observed. By HPLC analysis the acetone extract of Parma ham was observed at the single peak, which eluted at the same time as Zn-protoporphyrin IX and emitted fluorescence. The results of ESI-HR-MS analysis showed both agreement with the molecular weight of Zn-protoporphyrin IX and the characteristic isotope pattern caused by Zn isotopes. These results suggest that the bright red color in Parma ham is caused by Zn-protoporphyrin IX.

  2. A Zn-porphyrin complex contributes to bright red color in Parma ham

    OpenAIRE

    Wakamatsu, J.; Nishimura, T.; Hattori, A.

    2004-01-01

    The Italian traditional dry-cured ham (Parma ham) shows a stable bright red color that is achieved without the use of nitrite and/or nitrate. In this study we examined the pigment spectroscopically, fluoroscopically and by using HPLC and ESI-HR-MASS analysis. Porphyrin derivative other than acid hematin were contained in the HCl-containing acetone extract from Parma ham. A strong fluorescence peak at 588 nm and a weak fluorescence peak at 641 nm were observed. By HPLC analysis the acetone ext...

  3. Real-time observation of ultrafast electron injection at graphene–Zn porphyrin interfaces

    KAUST Repository

    Masih, Dilshad

    2015-02-25

    We report on the ultrafast interfacial electron transfer ( ET) between zinc( II) porphyrin ( ZnTMPyP) and negatively charged graphene carboxylate ( GC) using state- of- the- art femtosecond laser spectroscopy with broadband capabilities. The steady- state interaction between GC and ZnTMPyP results in a red- shifted absorption spectrum, providing a clear indication for the binding affinity between ZnTMPyP and GC via electrostatic and p- p stacking interactions. Ultrafast transient absorption ( TA) spectra in the absence and presence of three different GC concentrations reveal ( i) the ultrafast formation of singlet excited ZnTMPyP*, which partially relaxes into a long- lived triplet state, and ( ii) ET from the singlet excited ZnTMPyP* to GC, forming ZnTMPyP + and GC , as indicated by a spectral feature at 650- 750 nm, which is attributed to a ZnTMPyP radical cation resulting from the ET process.

  4. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis

    Science.gov (United States)

    Otto, Oliver; Gutsche, Christof; Kremer, Friedrich; Keyser, Ulrich F.

    2008-02-01

    We developed an optical tweezers setup to study the electrophoretic motion of colloids in an external electric field. The setup is based on standard components for illumination and video detection. Our video based optical tracking of the colloid motion has a time resolution of 0.2ms, resulting in a bandwidth of 2.5kHz. This enables calibration of the optical tweezers by Brownian motion without applying a quadrant photodetector. We demonstrate that our system has a spatial resolution of 0.5nm and a force sensitivity of 20fN using a Fourier algorithm to detect periodic oscillations of the trapped colloid caused by an external ac field. The electrophoretic mobility and zeta potential of a single colloid can be extracted in aqueous solution avoiding screening effects common for usual bulk measurements.

  5. Normal and system lupus erythematosus red blood cell interactions studied by double trap optical tweezers: direct measurements of aggregation forces

    Science.gov (United States)

    Khokhlova, Maria D.; Lyubin, Eugeny V.; Zhdanov, Alexander G.; Rykova, Sophia Yu.; Sokolova, Irina A.; Fedyanin, Andrey A.

    2012-02-01

    Direct measurements of aggregation forces in piconewton range between two red blood cells in pair rouleau are performed under physiological conditions using double trap optical tweezers. Aggregation and disaggregation properties of healthy and pathologic (system lupus erythematosis) blood samples are analyzed. Strong difference in aggregation speed and behavior is revealed using the offered method which is proposed to be a promising tool for SLE monitoring at single cell level.

  6. Supramolecular Properties of Triazole-containing Two Armed Peptidomimetics: From Organogelators to Nucleotide-binding Tweezers

    Science.gov (United States)

    Chui, Tin Ki

    obtain a clearer picture on the mode of association of these two series of branched peptidomimetics, the length of the tripeptidomimetic arms was truncated to a dipeptide, and the amino acid, valine, was used for further studies. Both the two new candidates, 88-K-V2 and 89-B-V2, were shown to dimerize in chloroform as shown from vapor pressure osmometry (VPO) studies. 1H NMR titration experiments indicated a better dimerization strength for the latter candidate due to the intermolecular pi-pi interactions offered by its benzene ring in addition to the intermolecular hydrogen bonding by the amides and triazole units. H/D exchange and 2D NMR experiments, and molecular modeling revealed that 88-K-V2 dimerized through the formation of antiparallel beta-strands whereas formation of parallel beta-strands took place in 89-B-V2. Compound 88-K-V2 was found to form 1:1 complexes with chloride (Ka 640 M-1) and monobasic diethyl phosphate (DEP) ion (Ka 810 M-1) in chloroform. Interestingly, 89-B-V 2 was shown to form the usual 1:1 complex with the former ion (Ka 970 M-1) while forming an unexpected 2:1 complex with the latter with positive cooperativity. It was observed that both the amides and triazole protons were involved in anion-binding. In the 88-K-V2-DEP complex, the host formed a helix-like structure that wrapped around the anion located at the center of the complex as determined by 2D NMR and molecular modeling studies. Finally, further structural modification of 88-K-V2 gave a water-soluble nucleotide-binding tweezer 93-K-R2·4TFA . This tweezer consisted of four arginines (R), two triazole units, two pyrene probes and a small hydrophilic ethanolamine tail. Fluorescence study showed that this tweezer was able to form 1:1 complexes with different nucleotides in water with similar binding strength regardless of the number of phosphate groups present in the nucleotides. Moleular modeling suggested that such a charge-independent binding behavior was due to the similar number

  7. Probing the micro-rheological properties of aerosol particles using optical tweezers

    International Nuclear Information System (INIS)

    Power, Rory M; Reid, Jonathan P

    2014-01-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >10 12

  8. Probing the micro-rheological properties of aerosol particles using optical tweezers

    Science.gov (United States)

    Power, Rory M.; Reid, Jonathan P.

    2014-07-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >1012 Pa s, whilst

  9. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    Science.gov (United States)

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  10. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers

    International Nuclear Information System (INIS)

    Bzdek, Bryan R.; Reid, Jonathan P.; Collard, Liam; Sprittles, James E.; Hudson, Andrew J.

    2016-01-01

    We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.

  11. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  12. Holographic Raman tweezers controlled by multi-modal natural user interface

    International Nuclear Information System (INIS)

    Tomori, Zoltán; Keša, Peter; Nikorovič, Matej; Valušová, Eva; Antalík, Marián; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Zemánek, Pavel

    2016-01-01

    Holographic optical tweezers provide a contactless way to trap and manipulate several microobjects independently in space using focused laser beams. Although the methods of fast and efficient generation of optical traps are well developed, their user friendly control still lags behind. Even though several attempts have appeared recently to exploit touch tablets, 2D cameras, or Kinect game consoles, they have not yet reached the level of natural human interface. Here we demonstrate a multi-modal ‘natural user interface’ approach that combines finger and gaze tracking with gesture and speech recognition. This allows us to select objects with an operator’s gaze and voice, to trap the objects and control their positions via tracking of finger movement in space and to run semi-automatic procedures such as acquisition of Raman spectra from preselected objects. This approach takes advantage of the power of human processing of images together with smooth control of human fingertips and downscales these skills to control remotely the motion of microobjects at microscale in a natural way for the human operator. (paper)

  13. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bzdek, Bryan R.; Reid, Jonathan P., E-mail: j.p.reid@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Collard, Liam [Department of Mathematics, University of Leicester, Leicester LE1 7RH (United Kingdom); Sprittles, James E. [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Hudson, Andrew J. [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2016-08-07

    We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.

  14. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  15. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Gou, Xue; Chen, Shuxun; Yan, Xiao; Sun, Dong

    2013-01-01

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented. (paper)

  16. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

    Science.gov (United States)

    Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

    2018-01-01

    Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

  17. AFM picking-up manipulation of the metaphase chromosome fragment by using the tweezers-type probe

    International Nuclear Information System (INIS)

    Yamanaka, Keiichiro; Saito, Masato; Shichiri, Motoharu; Sugiyama, Sigeru; Takamura, Yuzuru; Hashiguchi, Gen; Tamiya, Eiichi

    2008-01-01

    We have studied the development of a new procedure based on atomic force microscopy (AFM) for the analysis of metaphase chromosome. The aim of this study was to obtain detailed information about the specific locations of genes on the metaphase chromosome. In this research, we performed the manipulation of the metaphase chromosome by using novel AFM probes to obtain chromosome fragments of a smaller size than the ones obtained using the conventional methods, such as glass microneedles. We could pick up the fragment of the metaphase chromosome dissected by the knife-edged probe by using our tweezers-type probe

  18. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers.

    Science.gov (United States)

    Zhang, Yongli

    2017-07-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.

  19. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  20. Optical tweezers for measuring the interaction of the two single red blood cells in flow condition

    Science.gov (United States)

    Lee, Kisung; Muravyov, Alexei; Semenov, Alexei; Wagner, Christian; Priezzhev, Alexander

    2017-03-01

    Aggregation of red blood cells (RBCs) is an intrinsic property of blood, which has direct effect on the blood viscosity and therefore affects overall the blood circulation throughout the body. It is attracting interest for the research in both fundamental science and clinical application. Despite of the intensive research, the aggregation mechanism is remaining not fully clear. Recent advances in methods allowed measuring the interaction between single RBCs in a well-defined configuration leading the better understanding of the mechanism of the process. However the most of the studies were made on the static cells. Thus, the measurements in flow mimicking conditions are missing. In this work, we aim to study the interaction of two RBCs in the flow conditions. We demonstrate the characterization of the cells interaction strength (or flow tolerance) by measuring the flow velocity to be applied to separate two aggregated cells trapped by double channel optical tweezers in a desired configuration. The age-separated cells were used for this study. The obtained values for the minimum flow velocities needed to separate the two cells were found to be 78.9 +/- 6.1 μm/s and 110 +/- 13 μm/s for old and young cells respectively. The data obtained is in agreement with the observations reported by other authors. The significance of our results is in ability for obtaining a comprehensible and absolute physical value characterizing the cells interaction in flow conditions (not like the Aggregation Index measured in whole blood suspensions by other techniques, which is some abstract parameter)

  1. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.

    Science.gov (United States)

    Coceano, G; Yousafzai, M S; Ma, W; Ndoye, F; Venturelli, L; Hussain, I; Bonin, S; Niemela, J; Scoles, G; Cojoc, D; Ferrari, E

    2016-02-12

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  2. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2014-01-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves

  3. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  4. Single-cell adhesion probed in-situ using optical tweezers: A case study with Saccharomyces cerevisiae

    Science.gov (United States)

    Castelain, Mickaël; Rouxhet, Paul G.; Pignon, Frédéric; Magnin, Albert; Piau, Jean-Michel

    2012-06-01

    A facile method of using optical trapping to measure cell adhesion forces is presented and applied to the adhesion of Saccharomyces cerevisiae on glass, in contact with solutions of different compositions. Trapping yeast cells with optical tweezers (OT) is not perturbed by cell wall deformation or cell deviation from a spherical shape. The trapping force calibration requires correction not only for the hydrodynamic effect of the neighboring wall but also for spherical aberrations affecting the focal volume and the trap stiffness. Yeast cells trapped for up to 5 h were still able to undergo budding but showed an increase of doubling time. The proportion of adhering cells showed the expected variation according to the solution composition. The detachment force varied in the same way. This observation and the fact that the detachment stress was exerted parallel to the substrate surface point to the role of interactions involving solvated macromolecules. Both the proportion of adhering cells and the removal force showed a distribution which, in our experimental conditions, must be attributed to a heterogeneity of surface properties at the cell level or at the subcellular scale. As compared with magnetic tweezers, atomic force microscopy, and more conventional ways of studying cell adhesion (shear-flow cells), OT present several advantages that are emphasized in this paper.

  5. Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis

    Science.gov (United States)

    Seol, Yeonee; Strub, Marie-Paule; Neuman, Keir C.

    2016-01-01

    Magnetic tweezers is a versatile and easy to implement single-molecule technique that has become increasingly prevalent in the study of nucleic acid based molecular motors. Here, we provide a description of the magnetic tweezers instrument and guidelines for measuring and analyzing DNA helicase activity. Along with experimental methods, we describe a robust method of single-molecule trajectory analysis based on the Student’s t-test that accommodates continuous transitions in addition to the discrete transitions assumed in most widely employed analysis routines. To illustrate the single-molecule unwinding assay and the analysis routine, we provide DNA unwinding measurements of Escherichia coli RecQ helicase under a variety of conditions (Na+, ATP, temperature, and DNA substrate geometry). These examples reveal that DNA unwinding measurements under various conditions can aid in elucidating the unwinding mechanism of DNA helicase but also emphasize that environmental effects on DNA helicase activity must be considered in relation to in vivo activity and mechanism. PMID:27131595

  6. Label-free detection of HIV-1 infected cells via integration of optical tweezers and photoluminescence spectroscopy

    Science.gov (United States)

    Lugongolo, Masixole Yvonne; Ombinda-Lemboumba, Saturnin; Noto, Luyanda Lunga; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    The human immunodeficiency virus-1 (HIV-1) is currently detected using conventional qualitative and quantitative tests to determine the presence or absence of HIV in blood samples. However, the approach of these tests detects the presence of either viral antibodies or viral RNA that require labelling which may be costly, sophisticated and time consuming. A label-free approach of detecting the presence of HIV is therefore desirable. Of note optical tweezers can be coupled with other technologies including spectroscopy, which also investigates light-matter interactions. For example, coupling of optical tweezers with luminescence spectroscopy techniques has emerged as a powerful tool in biology for micro-manipulation, detection and analysis of individual cells. Integration of optical techniques has enabled studying biological particles in a label-free manner, whilst detecting functional groups and other essential molecules within mixed populations of cells. In the current study, an optical trapping system coupled to luminescence spectroscopy was utilised to detect the presence of HIV infection in TZM-bl cells in vitro. This was performed by infecting TZM-bl cells with the ZM53 HIV-1 pseudovirus, and incubating them for 48 hours prior analysis. The differences between infected and uninfected cells were thereafter displayed as shown by the spectrographs obtained. Combination of these two techniques has a potential in the field of infectious disease diagnostics.

  7. Single-Molecule Manipulation of Double-Stranded DNA Using Optical Tweezers: Interaction Studies of DNA with RecA and YOYO-1

    NARCIS (Netherlands)

    Bennink, Martin L.; Scharer, Orlando D.; Kanaar, Ronald; Sakata-Sogawa, Kumiko; Schins, J.M.; Kanger, Johannes S.; de Grooth, B.G.; Greve, Jan

    1999-01-01

    By using optical tweezers and a specially designed flow cell with an integrated glass micropipette, we constructed a setup similar to that of Smith et al. (Science 271:795-799, 1996) in which an individual double-stranded DNA (dsDNA) molecule can be captured between two polystyrene beads. The first

  8. Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers

    DEFF Research Database (Denmark)

    Nørlykke, Simon F.; Flyvbjerg, Henrik

    2010-01-01

    of the characteristic frequency and the diffusion coefficient. We give analytical results for the weight-dependent bias for the wide class of systems whose dynamics is described by a linear (integro)differential equation with additive noise, white or colored. Examples are optical tweezers with hydrodynamic self...

  9. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    Science.gov (United States)

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  10. Multimodal in vivo blood flow sensing combining particle image velocimetry and optical tweezers-based blood steering

    Science.gov (United States)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2018-02-01

    All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.

  11. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    International Nuclear Information System (INIS)

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  12. Cationic Zn-Porphyrin Polymer Coated onto CNTs as a Cooperative Catalyst for the Synthesis of Cyclic Carbonates.

    Science.gov (United States)

    Jayakumar, Sanjeevi; Li, He; Chen, Jian; Yang, Qihua

    2018-01-24

    The development of solid catalysts containing multiple active sites that work cooperatively is very attractive for biomimetic catalysis. Herein, we report the synthesis of bifunctional catalysts by supporting cationic porphyrin-based polymers on carbon nanotubes (CNTs) using the direct reaction of 5,10,15,20-tetrakis(4-pyridyl)porphyrin zinc(II), di(1H-imidazol-1-yl)methane, and 1,4-bis(bromomethyl)benzene in the presence of CNTs. The bifunctional catalysts could efficiently catalyze the cycloaddition reaction of epoxides and CO 2 under solvent-free conditions with porphyrin zinc(II) as the Lewis acid site and a bromine anion as a nucleophilic agent working in a cooperative way. Furthermore, a relative amount of porphyrin zinc(II) and quaternary ammonium bromide could be facilely adjusted for facilitating cooperative behavior. The bifunctional catalyst with a TOF up to 2602 h -1 is much more active than the corresponding homogeneous counterpart and is one of the most active heterogeneous catalysts ever reported under cocatalyst-free conditions. The high activity is mainly attributed to the enhanced cooperation effect of the bifunctional catalyst. With a wide substrate scope, the bifunctional catalyst could be stably recycled. This work demonstrates a new approach for the generation of a cooperative activation effect for solid catalysts.

  13. Fixed distance photoinduced electron transfer between Fe and Zn porphyrins encapsulated within the Zn HKUST-1 metal organic framework.

    Science.gov (United States)

    Larsen, Randy W; Wojtas, Lukasz

    2015-02-21

    An attractive strategy for the development of photocatalytic metal organic framework (MOF) materials is to co-encapsulate a photoactive electron donor with a catalytic electron acceptor within the MOF. Here we report the co-encapsulation of both Zn(ii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Zn4SP) and Fe(iii) tetrakis(tetra 4-sulphonatophenyl)porphyrin (Fe4SP) into an HKUST-1 (Zn) MOF and demonstrate photoinduced electron transfer (ET) between the co-encapsulated guest. Photo-excitation of the Zn4SP results in fixed-distance inter-molecular ET between the encapsulated (3)Zn4SP and the Fe(iii)4SP as evident by the reduction in the encapsulated (3)Zn4SP lifetime from 890 μs (kobs = 1.1 × 10(3) s(-1)) to 83 μs (kobs = 1.2 × 10(4) s(-1)) in the presence of Fe4SP giving a kET ∼ 1.1 × 10(4) s(-1). The data are consistent with ET taking place between encapsulated porphyrins that are two cages apart in distance with a reorganizational energy of ∼1.65 eV, β = 1.25 and ΔG° = -0.97 eV (within a semi-classical Marcus theory framework).

  14. Optical tweezers for the measurement of binding forces: system description and application for the study of E. coli adhesion

    Science.gov (United States)

    Fallman, Erik G.; Schedin, Staffan; Andersson, Magnus J.; Jass, Jana; Axner, Ove

    2003-06-01

    Optical tweezers together with a position sensitive detection system allows measurements of forces in the pN range between micro-sized biological objects. A prototype force measurement system has been constructed around in inverted microscope with an argon-ion pumped Ti:sapphire laser as light source for optical trapping. A trapped particle in the focus of the high numerical aperture microscope-objective behaves like an omni-directional mechanical spring if an external force displaces it. The displacement from the equilibrium position is a measure of the exerted force. For position detection of the trapped particle (polystyrene beads), a He-Ne laser beam is focused a small distance below the trapping focus. An image of the bead appears as a distinct spot in the far field, monitored by a photosensitive detector. The position data is converted to a force measurement by a calibration procedure. The system has been used for measuring the binding forces between E-coli bacterial adhesin and their receptor sugars.

  15. Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers

    Science.gov (United States)

    Paul, Shuvojit; Kumar, Randhir; Banerjee, Ayan

    2018-04-01

    Two-point microrheology measurements from widely separated colloidal particles approach the bulk viscosity of the host medium more reliably than corresponding single-point measurements. In addition, active microrheology offers the advantage of enhanced signal to noise over passive techniques. Recently, we reported the observation of a motional resonance induced in a probe particle in dual-trap optical tweezers when the control particle was driven externally [Paul et al., Phys. Rev. E 96, 050102(R) (2017), 10.1103/PhysRevE.96.050102]. We now demonstrate that the amplitude and phase characteristics of the motional resonance can be used as a sensitive tool for active two-point microrheology to measure the viscosity of a viscous fluid. Thus, we measure the viscosity of viscous liquids from both the amplitude and phase response of the resonance, and demonstrate that the zero crossing of the phase response of the probe particle with respect to the external drive is superior compared to the amplitude response in measuring viscosity at large particle separations. We compare our viscosity measurements with those using a commercial rheometer and obtain an agreement ˜1 % . The method can be extended to viscoelastic material where the frequency dependence of the resonance may provide further accuracy for active microrheological measurements.

  16. Laser microbeams for DNA damage induction, optical tweezers for the search on blood pressure relaxing drugs: contributions to ageing research

    Science.gov (United States)

    Grigaravicius, P.; Monajembashi, S.; Hoffmann, M.; Altenberg, B.; Greulich, K. O.

    2009-08-01

    One essential cause of human ageing is the accumulation of DNA damages during lifetime. Experimental studies require quantitative induction of damages and techniques to visualize the subsequent DNA repair. A new technique, the "immuno fluorescent comet assay", is used to directly visualize DNA damages in the microscope. Using DNA repair proteins fluorescently labeled with green fluorescent protein, it could be shown that the repair of the most dangerous DNA double strand breaks starts with the inaccurate "non homologous end joining" pathway and only after 1 - 1 ½ minutes may switch to the more accurate "homologous recombination repair". One might suggest investigating whether centenarians use "homologous recombination repair" differently from those ageing at earlier years and speculate whether it is possible, for example by nutrition, to shift DNA repair to a better use of the error free pathway and thus promote healthy ageing. As a complementary technique optical tweezers, and particularly its variant "erythrocyte mediated force application", is used to simulate the effects of blood pressure on HUVEC cells representing the inner lining of human blood vessels. Stimulating one cell induces in the whole neighbourhood waves of calcium and nitric oxide, known to relax blood vessels. NIFEDIPINE and AMLODIPINE, both used as drugs in the therapy of high blood pressure, primarily a disease of the elderly, prolong the availability of nitric oxide. This partially explains their mode of action. In contrast, VERAPAMILE, also a blood pressure reducing drug, does not show this effect, indicating that obviously an alternative mechanism must be responsible for vessel relaxation.

  17. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.

    Directory of Open Access Journals (Sweden)

    Fatemeh Moayed

    Full Text Available Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN and the peptide StrepTag II (ST. We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST. In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV linkage. It can be used in conjunction with Neutravidin (NTV-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications.

  18. Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2008-01-01

    Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments

  19. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  20. Developing a New Biophysical Tool to Combine Magneto-Optical Tweezers with Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Zhaokun Zhou

    2015-06-01

    Full Text Available We present a novel experimental setup in which magnetic and optical tweezers are combined for torque and force transduction onto single filamentous molecules in a transverse configuration to allow simultaneous mechanical measurement and manipulation. Previously we have developed a super-resolution imaging module which, in conjunction with advanced imaging techniques such as Blinking assisted Localisation Microscopy (BaLM, achieves localisation precision of single fluorescent dye molecules bound to DNA of ~30 nm along the contour of the molecule; our work here describes developments in producing a system which combines tweezing and super-resolution fluorescence imaging. The instrument also features an acousto-optic deflector that temporally divides the laser beam to form multiple traps for high throughput statistics collection. Our motivation for developing the new tool is to enable direct observation of detailed molecular topological transformation and protein binding event localisation in a stretching/twisting mechanical assay that previously could hitherto only be deduced indirectly from the end-to-end length variation of DNA. Our approach is simple and robust enough for reproduction in the lab without the requirement of precise hardware engineering, yet is capable of unveiling the elastic and dynamic properties of filamentous molecules that have been hidden using traditional tools.

  1. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers.

    Science.gov (United States)

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-05

    Hygroscopicity and volatility of single magnesium acetate (MgAc 2 ) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc 2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH magnesium hydroxide (Mg(OH) 2 ) inclusions are formed in MgAc 2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc 2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Observing dynamics of chromatin fibers in Xenopus egg extracts by single DNA manipulation using a transverse magnetic tweezer setup

    Science.gov (United States)

    Yan, Jie; Skoko, Dunja; Marko, John; Maresca, Tom; Heald, Rebecca

    2005-03-01

    We have studied assembly of chromatin on single DNAs using Xenopus egg extracts and a specially designed magnetic tweezer setup which generates controlled force in the focal plane of the objective, allowing us to visualize and measure DNA extension under a wide range of constant tensions. We found, in the absence of ATP, interphase extracts assembled nucleosomes against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations indicating our experiments were in mechano-chemical equilibrium. We found that the ATP-depleted reaction can do mechanical work of 27 kcal/mol per nucleosome, providing a measurement of the free energy difference between core histone octamers on and off DNA. Addition of ATP leads to highly dynamic behavior: time courses show processive runs of assembly and disassembly of not observed in the -ATP case, with forces of 2 pN leading to nearly complete fiber disassembly. Our study shows that ATP hydrolysis plays a major role in nucleosome rearrangement and removal, and suggests that chromatin in vivo may be subject to continual assembly and disassembly.

  3. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models.

    Science.gov (United States)

    Attar, Aida; Bitan, Gal

    2014-01-01

    Despite decades of research, therapy for diseases caused by abnormal protein folding and aggregation (amyloidoses) is limited to treatment of symptoms and provides only temporary and moderate relief to sufferers. The failure in developing successful disease-modifying drugs for amyloidoses stems from the nature of the targets for such drugs - primarily oligomers of amyloidogenic proteins, which are distinct from traditional targets, such as enzymes or receptors. The oligomers are metastable, do not have well-defined structures, and exist in dynamically changing mixtures. Therefore, inhibiting the formation and toxicity of these oligomers likely will require out-of-the-box thinking and novel strategies. We review here the development of a strategy based on targeting the combination of hydrophobic and electrostatic interactions that are key to the assembly and toxicity of amyloidogenic proteins using lysine (K)-specific "molecular tweezers" (MTs). Our discussion includes a survey of the literature demonstrating the important role of K residues in the assembly and toxicity of amyloidogenic proteins and the development of a lead MT derivative called CLR01, from an inhibitor of protein aggregation in vitro to a drug candidate showing effective amelioration of disease symptoms in animal models of Alzheimer's and Parkinson's diseases.

  4. Leishmania amazonensis chemotaxis under glucose gradient studied by the strength and directionality of forces measured with optical tweezers

    Science.gov (United States)

    de Ysasa Pozzo, Liliana; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz Carlos; Ayres, Diana Copi; Giorgio, Selma; Cesar, Carlos Lenz

    2007-02-01

    Chemotaxis is the mechanism microorganisms use to sense the environment surrounding them and to direct their movement towards attractive, or away from the repellent, chemicals. The biochemical sensing is almost the only way for communication between unicellular organisms. Prokaryote and Eukaryote chemotaxis has been mechanically studied mainly by observing the directionality and timing of the microorganisms movements subjected to a chemical gradient, but not through the directionality and strength of the forces it generates. To observe the vector force of microorganisms under a chemical gradient we developed a system composed of two large chambers connected by a tiny duct capable to keep the chemical gradient constant for more than ten hours. We also used the displacements of a microsphere trapped in an Optical Tweezers as the force transducer to measure the direction and the strength of the propulsion forces of flagellum of the microorganism under several gradient conditions. A 9μm diameter microsphere particle was trapped with a Nd:YAG laser and its movement was measured through the light scattered focused on a quadrant detector. We observed the behavior of the protozoa Leishmania amazonensis (eukaryote) under several glucose gradients. This protozoa senses the gradient around it by swimming in circles for three to five times following by tumbling, and not by the typical straight swimming/tumbling of bacteria. Our results also suggest that force direction and strength are also used to control its movement, not only the timing of swimming/tumbling, because we observed a higher force strength clearly directed towards the glucose gradient.

  5. Studies of viral DNA packaging motors with optical tweezers: a comparison of motor function in bacteriophages φ29, λ, and T4

    Science.gov (United States)

    Smith, Douglas E.; Fuller, Derek N.; Raymer, Dorian M.; Rickgauer, Peter; Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight L.; Catalano, Carlos E.; Kottadiel, Vishal; Rao, Venigalla B.

    2007-09-01

    A key step in the assembly of many viruses is the packaging of double-stranded DNA into a viral procapsid (an empty protein shell) by the action of an ATP-powered portal motor complex. We have developed methods to measure the packaging of single DNA molecules into single viral proheads in real time using optical tweezers. We can measure DNA binding and initiation of translocation, the DNA translocation dynamics, and the filling of the capsid against resisting forces. In addition to studying bacteriophage φ29, we have recently extended these methods to study the E. coli bacteriophages λ and T4, two important model systems in molecular biology. The three systems have different capsid sizes/shapes, genome lengths, and biochemical and structural differences in their packaging motors. Here, we compare and contrast these three systems. We find that all three motors translocate DNA processively and generate very large forces, each exceeding 50 piconewtons, ~20x higher force than generated by the skeletal muscle myosin 2 motor. This high force generation is required to overcome the forces resisting the confinement of the stiff, highly charged DNA at high density within the viral capsids. However, there are also striking differences between the three motors: they exhibit different DNA translocation rates, degrees of static and dynamic disorder, responses to load, and pausing and slipping dynamics.

  6. Force determination in lateral magnetic tweezers combined with TIRF microscopy† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7nr07344e

    Science.gov (United States)

    Madariaga-Marcos, J.; Hormeño, S.; Pastrana, C. L.; Fisher, G. L. M.; Dillingham, M. S.

    2018-01-01

    Combining single-molecule techniques with fluorescence microscopy has attracted much interest because it allows the correlation of mechanical measurements with directly visualized DNA : protein interactions. In particular, its combination with total internal reflection fluorescence microscopy (TIRF) is advantageous because of the high signal-to-noise ratio this technique achieves. This, however, requires stretching long DNA molecules across the surface of a flow cell to maximize polymer exposure to the excitation light. In this work, we develop a module to laterally stretch DNA molecules at a constant force, which can be easily implemented in regular or combined magnetic tweezers (MT)–TIRF setups. The pulling module is further characterized in standard flow cells of different thicknesses and glass capillaries, using two types of micrometer size superparamagnetic beads, long DNA molecules, and a home-built device to rotate capillaries with mrad precision. The force range achieved by the magnetic pulling module was between 0.1 and 30 pN. A formalism for estimating forces in flow-stretched tethered beads is also proposed, and the results compared with those of lateral MT, demonstrating that lateral MT achieve higher forces with lower dispersion. Finally, we show the compatibility with TIRF microscopy and the parallelization of measurements by characterizing DNA binding by the centromere-binding protein ParB from Bacillus subtilis. Simultaneous MT pulling and fluorescence imaging demonstrate the non-specific binding of BsParB on DNA under conditions restrictive to condensation. PMID:29461549

  7. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: induction and rationalization of supramolecular chirality.

    Science.gov (United States)

    Brahma, Sanfaori; Ikbal, Sk Asif; Rath, Sankar Prasad

    2014-01-06

    We report here the synthesis, structure, and spectroscopic properties of a series of supramolecular chiral 1:1 tweezer-diamine complexes consisting of an achiral Zn(II) bisporphyrin (Zn2DPO) host and five different chiral diamine guests, namely, (R)-diaminopropane (DAP), (1S,2S)-diaminocyclohexane (CHDA), (S)-phenylpropane diamine (PPDA), (S)-phenyl ethylenediamine (PEDA), and (1R,2R)-diphenylethylene diamine (DPEA). The solid-state structures are preserved in solution, as reflected in their (1)H NMR spectra, which also revealed the remarkably large upfield shifts of the NH2 guest protons with the order Zn2DPO·DAP > Zn2DPO·CHDA > Zn2DPO·PPDA> Zn2DPO·PEDA ≫ Zn2DPO·DPEA, which happens to be the order of binding constants of the respective diamines with Zn2DPO. As the bulk of the substituent at the chiral center of the guest ligand increases, the Zn-Nax distance of the tweezer-diamine complex also increases, which eventually lowers the binding of the guest ligand toward the host. Also, the angle between the two porphyrin rings gradually increases with increasing bulk of the guest in order to accommodate the guest within the bisporphyrin cavity with minimal steric clash. The notably high amplitude bisignate CD signal response by Zn2DPO·DAP, Zn2DPO·CHDA, and Zn2DPO·PPDA can be ascribed to the complex's high stability and the formation of a unidirectional screw as observed in the X-ray structures of the complexes. A relatively lower value of CD amplitude shown by Zn2DPO·PEDA is due to the lower stability of the complex. The projection of the diamine binding sites of the chiral guest would make the two porphyrin macrocycles oriented in either a clockwise or anticlockwise direction in order to minimize host-guest steric clash. In sharp contrast, Zn2DPO·DPEA shows a very low amplitude bisignate CD signal due to the presence of both left- (dictated by the pre-existing chirality of (1R,2R)-DPEA) and right-handed screws (dictated by the steric differentiation at

  8. Microrheology with optical tweezers: data analysis

    International Nuclear Information System (INIS)

    Tassieri, Manlio; Warren, Rebecca L; Cooper, Jonathan M; Evans, R M L; Bailey, Nicholas J

    2012-01-01

    We present a data analysis procedure that provides the solution to a long-standing issue in microrheology studies, i.e. the evaluation of the fluids' linear viscoelastic properties from the analysis of a finite set of experimental data, describing (for instance) the time-dependent mean-square displacement of suspended probe particles experiencing Brownian fluctuations. We report, for the first time in the literature, the linear viscoelastic response of an optically trapped bead suspended in a Newtonian fluid, over the entire range of experimentally accessible frequencies. The general validity of the proposed method makes it transferable to the majority of microrheology and rheology techniques. (paper)

  9. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K.M.; Livett, M.K.; Nugent, K.W. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  10. Calixarene-based metalloporphyrins: molecular tweezers for complexation of DABCO

    Czech Academy of Sciences Publication Activity Database

    Dudič, M.; Lhoták, P.; Petříčková, H.; Stibor, I.; Lang, Kamil; Sýkora, Jan

    2003-01-01

    Roč. 59, č. 14 (2003), s. 2409-2415 ISSN 0040-4020 R&D Projects: GA ČR GA203/03/0926; GA ČR GA203/01/0634 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918 Keywords : porphyrins * calixarenes * DABCO Subject RIV: CA - Inorganic Chemistry Impact factor: 2.641, year: 2003

  11. Accurate measurement of microscopic forces and torques using optical tweezers

    CSIR Research Space (South Africa)

    McLaren, M

    2011-09-01

    Full Text Available and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article the authors outline the design and construction of an optical trapping and tweezing system, and show how...

  12. Tunable Optical Tweezers for Wavelength-dependent Measurements

    Science.gov (United States)

    2012-04-23

    have been studied in an optical levitation scheme over short laser wavelength ranges20 and for dye-loaded di- electric particles.21 In the first case...M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996). 7K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, I. Andreev, P. Mthunzi, C. T. A...Brown, R. F. Marchington, and A. C. Riches, IEEE J. Sel. Top. Quantum Electron. 13, 1646 (2007). 8K. Dholakia, M. P. MacDonald, P. Zemanek, and T

  13. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K M; Livett, M K; Nugent, K W [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  14. Photodiode Based Detection for Multiple Trap Optical Tweezers

    DEFF Research Database (Denmark)

    Ott, Dino

    This thesis is concerned with the position tracking of microscopic, optically trapped particles and the quantification of the forces acting on them. A new detection method for simultaneous, three-dimensional tracking of multiple particles is presented, its performance is evaluated, and its...... usefulness is illustrated in specific application examples. Optical traps enable contact-less, all-optical manipulation of microscopic objects. Over the last decades, this laser-based micro-manipulation tool has facilitated numerous exciting discoveries within biology and physics, and it is today regarded...

  15. Microrheology of concentrated DNA solutions using optical tweezers

    Indian Academy of Sciences (India)

    . In this work, we report the determination of microrheological properties of concentrated, double-stranded calf thymus DNA (CT-DNA) solutions using passive, laser-scattering based particle-tracking methodology. From power spectral analysis, ...

  16. MAGNETIC TWEEZERS FOR THE STUDY OF DNA TRACKING MOTORS

    Science.gov (United States)

    Manosas, Maria; Meglio, Adrien; Spiering, Michelle M.; Ding, Fangyuan; Benkovic, Stephen J.; Barre, François-Xavier; Saleh, Omar A.; Allemand, Jean François; Bensimon, David; Croquette, Vincent

    2011-01-01

    Single-molecule manipulation methods have opened a new vista on the study of molecular motors. Here we describe the use of magnetic traps for the investigation of the mechanism of DNA based motors, in particular helicases and translocases. PMID:20627163

  17. Direct observation of processive exoribonuclease motion using optical tweezers.

    Science.gov (United States)

    Fazal, Furqan M; Koslover, Daniel J; Luisi, Ben F; Block, Steven M

    2015-12-08

    Bacterial RNases catalyze the turnover of RNA and are essential for gene expression and quality surveillance of transcripts. In Escherichia coli, the exoribonucleases RNase R and polynucleotide phosphorylase (PNPase) play critical roles in degrading RNA. Here, we developed an optical-trapping assay to monitor the translocation of individual enzymes along RNA-based substrates. Single-molecule records of motion reveal RNase R to be highly processive: one molecule can unwind over 500 bp of a structured substrate. However, enzyme progress is interrupted by pausing and stalling events that can slow degradation in a sequence-dependent fashion. We found that the distance traveled by PNPase through structured RNA is dependent on the A+U content of the substrate and that removal of its KH and S1 RNA-binding domains can reduce enzyme processivity without affecting the velocity. By a periodogram analysis of single-molecule records, we establish that PNPase takes discrete steps of six or seven nucleotides. These findings, in combination with previous structural and biochemical data, support an asymmetric inchworm mechanism for PNPase motion. The assay developed here for RNase R and PNPase is well suited to studies of other exonucleases and helicases.

  18. Improved axial position detection in optical tweezers measurements

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kisbye; Berg-Sørensen, Kirstine; Oddershede, Lene

    2004-01-01

    We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial...... position displays complex behavior with regions of positive and negative interference. By analyzing the scattered light intensity as a function of the axial position of the trapped sphere, we propose a simple method to increase the sensitivity and control the linear range of axial position detection....

  19. Construction of an optical tweezer for nanometer scale rheology

    Indian Academy of Sciences (India)

    at a distance from a second lens (L2), to achieve slight overfilling of the laser beam at the entrance ... by IR radiation. To achieve stable and ... polymer solutions such as polyethylene oxide in water or suspension of silica parti- cles in ethylene ...

  20. An optical tweezer in asymmetrical vortex Bessel-Gaussian beams

    Energy Technology Data Exchange (ETDEWEB)

    Kotlyar, V. V.; Kovalev, A. A., E-mail: alexeysmr@mail.ru; Porfirev, A. P. [Image Processing Systems Institute, 151 Molodogvardeiskaya St., 443001 Samara (Russian Federation); Department of Technical cybernetics, Samara State Aerospace University, Samara 443086 (Russian Federation)

    2016-07-14

    We study an optical micromanipulation that comprises trapping, rotating, and transporting 5-μm polystyrene microbeads in asymmetric Bessel-Gaussian (BG) laser beams. The beams that carry orbital angular momentum are generated by means of a liquid crystal microdisplay and focused by a microobjective with a numerical aperture of NA = 0.85. We experimentally show that given a constant topological charge, the rate of microparticle motion increases near linearly with increasing asymmetry of the BG beam. Asymmetric BG beams can be used instead of conventional Gaussian beam for trapping and transferring live cells without thermal damage.

  1. 拉曼镊子结合多元统计方法分析两种人体滴虫的差异性%Investigation of Biochemical Diversity of Two Species of Trichomonads Based on Raman Tweezers Combined with Multistatistical Analysis

    Institute of Scientific and Technical Information of China (English)

    黄庶识; 赖钧灼; 梁裕芬; 韦俊彬

    2011-01-01

    应用单细胞激光拉曼光谱分析技术,对不同来源的阴道毛滴虫和口腔毛滴虫的拉曼光谱数据进行减背景、平滑、基线校正、归一化等处理后做主成分分析(PCA)和辨别函数分析(DFA)等多元统计分析.平均光谱和PCA分析结果表明,阴道毛滴虫和口腔毛滴虫差异最为明显是 1002 cm峰,其次,差异相关性最大的还有9个拉曼谱峰785,888,979,1127,1287,1317,1364,1446和1465 cm,其中4个峰来自核酸,6个峰归属于蛋白质信号峰,反映两种滴虫的蛋白质、核酸的相对含量差异较大,可以通过PCA方法鉴别两种毛滴虫的差异.由于口腔毛滴虫或阴道毛滴虫虫株间差异并不明显,应用PCA结合DFA多元统计学方法,在保留原有数据信息基础上,通过扩大组间差异,缩小组内差距,同种毛滴虫虫株间在一定程度得到区分.口腔毛滴虫4个虫株之间有12个峰是差异最大的谱峰,阴道毛滴虫4个虫株之间有14个峰是差异最大,反映了两种毛滴虫虫株之间核酸、蛋白质、脂类及糖类等生物大分子组成相对含量差异.此外,根据DFA中虫株间欧氏距离聚类,可以确知虫株之间的差异.%To investigate the biochemical components and structure between two species of trichomonads, a Raman tweezers was used to collect Raman spectra of single Trichomonas tenax and Trichomonas vaginalis cells taken from different patients, in which multiple statistical analysis, principal component analyses(PCA) and discriminant function analysis(DFA), were applied to distinguish the biological diversity between tow species of trichomonads and among their strains statistically. A laser beam was introduced into a sample pool on the stage of an inverted microscopy to form an optical trap, a uniform trichomonad with vitality was trapped randomly in water and the Raman scatter was collected, subsequently, Raman data were background-subtracted smoothed, baselined, normalized, PCA, DFA and hierarchical

  2. High-conductance surface-anchoring of a mechanically flexible platform-based porphyrin complex

    International Nuclear Information System (INIS)

    Hauptmann, Nadine; Buchmann, Kristof; Scheil, Katharina; Berndt, Richard; Groß, Lynn; Herrmann, Carmen; Schütt, Christian; Otte, Franziska L; Herges, Rainer

    2015-01-01

    The conductances of molecular model junctions comprising a triazatriangulenium platform with or without an ethynyl spacer and an upright Zn-porphyrin are probed with a low-temperature scanning probe microscope. The platform alone is found to be highly conductive. The ethynyl-linked Zn-porphyrin moiety reduces the conductance by three orders of magnitude and leads to an unexpected, non-monotonous variation of the force that was measured simultaneously at the tip of the microscope. Density functional theory calculations show that this variation results from an induced tilting of the porphyrin. (paper)

  3. Mega-pixel PQR laser chips for interconnect, display ITS, and biocell-tweezers OEIC

    Science.gov (United States)

    Kwon, O'Dae; Yoon, J. H.; Kim, D. K.; Kim, Y. C.; Lee, S. E.; Kim, S. S.

    2008-02-01

    We describe a photonic quantum ring (PQR) laser device of three dimensional toroidal whispering gallery cavity. We have succeeded in fabricating the first genuine mega-pixel laser chips via regular semiconductor technology. This has been realized since the present injection laser emitting surface-normal dominant 3D whispering gallery modes (WGMs) can be operated CW with extremely low operating currents (μA-nA per pixel), together with the lasing temperature stabilities well above 140 deg C with minimal redshifts, which solves the well-known integration problems facing the conventional VCSEL. Such properties unusual for quantum well lasers become usual because the active region, involving vertically confining DBR structure in addition to the 2D concave WGM geometry, induces a 'photonic quantum ring (PQR)-like' carrier distribution through a photonic quantum corral effect. A few applications of such mega-pixel PQR chips are explained as follows: (A) Next-generation 3D semiconductor technologies demand a strategy on the inter-chip and intra-chip optical interconnect schemes with a key to the high-density emitter array. (B) Due to mounting traffic problems and fatalities ITS technology today is looking for a revolutionary change in the technology. We will thus outline how 'SLEEP-ITS' can emerge with the PQR's position-sensing capability. (C) We describe a recent PQR 'hole' laser of convex WGM: Mega-pixel PQR 'hole' laser chips are even easier to fabricate than PQR 'mesa' lasers. Genuine Laguerre-Gaussian (LG) beam patterns of PQR holes are very promising for biocell manipulations like sorting mouse myeloid leukemia (M1s) cells. (D) Energy saving and 3D speckle-free POR laser can outdo LEDs in view of red GaAs and blue GaN devices fabricated recently.

  4. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers

    NARCIS (Netherlands)

    Ketelaar, T.; Honing, van der H.S.; Emons, A.M.C.

    2010-01-01

    In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be

  5. Scanning Probe Optical Tweezers: a new tool to study DNA-protein interactions

    NARCIS (Netherlands)

    Huisstede, J.H.G.

    2006-01-01

    The main goal of the work described in this thesis is to construct a microscope in which OT and scanning probe microscopy (SPM) are combined, to be able to localize proteins while simultaneously controlling the tension within the DNA molecule. This apparatus enables the study of the effect of

  6. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.

    Science.gov (United States)

    Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan

    2017-07-26

    The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.

  7. Cooperative effects between color centers in diamond: applications to optical tweezers and optomechanics

    Science.gov (United States)

    Bradac, Carlo; Prasanna Venkatesh, B.; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas; Juan, Mathieu L.

    2017-08-01

    Since the early work by Ashkin in 1970,1 optical trapping has become one of the most powerful tools for manipulating small particles, such as micron sized beads2 or single atoms.3 Interestingly, both an atom and a lump of dielectric material can be manipulated through the same mechanism: the interaction energy of a dipole and the electric field of the laser light. In the case of atom trapping, the dominant contribution typically comes from the allowed optical transition closest to the laser wavelength while it is given by the bulk polarisability for mesoscopic particles. This difference lead to two very different contexts of applications: one being the trapping of small objects mainly in biological settings,4 the other one being dipole traps for individual neutral atoms5 in the field of quantum optics. In this context, solid state artificial atoms present the interesting opportunity to combine these two aspects of optical manipulation. We are particularly interested in nanodiamonds as they constitute a bulk dielectric object by themselves, but also contain artificial atoms such as nitrogen-vacancy (NV) or silicon-vacancy (SiV) colour centers. With this system, both regimes of optical trapping can be observed at the same time even at room temperature. In this work, we demonstrate that the resonant force from the optical transition of NV centres at 637 nm can be measured in a nanodiamond trapped in water. This additional contribution to the total force is significant, reaching up to 10%. In addition, due to the very large density of NV centres in a sub-wavelength crystal, collective effects between centres have an important effect on the magnitude of the resonant force.6 The possibility to observe such cooperatively enhanced optical force at room temperature is also theoretically confirmed.7 This approach may enable the study of cooperativity in various nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation and opto-mechanics.

  8. Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system

    International Nuclear Information System (INIS)

    Jones, Steven; Al Balushi, Ahmed A; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal was observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparticle isolation and manipulation with unique identification. (fast track communication)

  9. Raman Spectroscopy of Single Nanoparticles in a Double-Nanohole Optical Tweezer System

    OpenAIRE

    Jones, Steven; Balushi, Ahmed A. Al; Gordon, Reuven

    2015-01-01

    A double nanohole in a metal film was used to trap nanoparticles (20 nm diameter) and simultaneously record their Raman spectrum using the trapping laser as the excitation source. This allowed for the identification of characteristic Stokes lines for titania and polystyrene nanoparticles, showing the capability for material identification of nanoparticles once trapped. Increased Raman signal is observed for the trapping of multiple nanoparticles. This system combines the benefits of nanoparti...

  10. Counting Unfolding Events in Stretched Helices with Induced Oscillation by Optical Tweezers

    Science.gov (United States)

    Bacabac, Rommel Gaud; Otadoy, Roland

    Correlation measures based on embedded probe fluctuations, single or paired, are now widely used for characterizing the viscoelastic properties of biological samples. However, more robust applications using this technique are still lacking. Considering that the study of living matter routinely demonstrates new and complex phenomena, mathematical and experimental tools for analysis have to catch up in order to arrive at newer insights. Therefore, we derive ways of probing non-equilibrium events in helical biopolymers provided by stretching beyond thermal forces. We generalize, for the first time, calculations for winding turn probabilities to account for unfolding events in single fibrous biopolymers and globular proteins under tensile stretching using twin optical traps. The approach is based on approximating the ensuing probe fluctuations as originating from a damped harmonic oscillator under oscillatory forcing.

  11. [6]Helicene as a novel molecular tweezer for the univalent silver cation: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Klepetářová, B.; Makrlík, E.; Jaklová Dytrtová, Jana; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 1097, Oct 5 (2015), s. 124-128 ISSN 0022-2860 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : univalent silver cation * [6]helicene * cation-pi interaction * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.780, year: 2015

  12. An optical tweezer-based study of antimicrobial activity of silver ...

    Indian Academy of Sciences (India)

    This is achieved by monitoring the fluctuations of an optically trapped polystyrene bead immersed in it. Examining the changes in the fluctuation pattern of the bead with time provides an accurate characterization of the reduction in the microbial activity. Here, we report on the effect of addition of silver nanoparticles on ...

  13. Raman tweezers in microfluidic systems for analysis and sorting of living cells

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel

    2014-12-01

    We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, dedicated to identification and sorting of biological objects, such as living cells of various unicellular organisms. Our main goal was to create a robust and universal platform for non-destructive and non-contact sorting of micro-objects based on their Raman spectral properties. This approach allowed us to collect spectra containing information about the chemical composition of the objects, such as the presence and composition of pigments, lipids, proteins, or nucleic acids, avoiding artificial chemical probes such as fluorescent markers. The non-destructive nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used a mixture of polystyrene micro-particles and algal cells to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.

  14. Laser Tweezer Controlled Solid Immersion Lens for High Resolution Imaging in Microfluidic and Biological Samples

    National Research Council Canada - National Science Library

    Birkbeck, Aaron L; Zlatanovic, Sanja; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    ...). Up to now, solid immersion lens imaging systems have relied upon cantilever-mounted SILs that are difficult to integrate into microfluidic systems and require an extra alignment step with external optics...

  15. Non-spherical gold nanoparticles trapped in optical tweezers: Shape matters

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Šiler, Martin; Trojek, Jan; Chvátal, Lukáš; Karásek, Vítězslav; Zemánek, Pavel

    2015-01-01

    Roč. 23, č. 7 (2015), s. 8179-8189 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA14-16195S; GA TA ČR TE01020233; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : discrete-dipole approximation * anisotropic particles * plasmon-resonance * gaussian beams * microparticles * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.148, year: 2015

  16. Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Šiler, Martin; Trojek, Jan; Chvátal, Lukáš; Karásek, Vítězslav; Paták, Aleš; Pokorná, Zuzana; Mika, Filip; Zemánek, Pavel

    2015-01-01

    Roč. 5, JAN 29 (2015), 08106:1-9 ISSN 2045-2322 R&D Projects: GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : discrete-dipole approximation * gold nanoparticles * radiation forces * spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  17. Magnetic tweezers based force spectroscopy studies of the structure and dynamics of nucleosomes and chromatin

    NARCIS (Netherlands)

    Kruithof, Maarten Christiaan

    2009-01-01

    Animals and plants are build from a large number of cells. These cells continuously respond to signals from outside and inside the cell by producing various kinds of proteins. The blueprints of these proteins are stored in genes. The genes, in cells with a nucleus, are carried in chromosomes:

  18. Calibration of trapping force and response function of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Berg-Sørensen, Kirstine

    2007-01-01

    , 594) is not possible as the viscoelastic properties of the bio-active medium are a priori unknown. Here, we present an approach that neither requires explicit assumptions about the size of the trapped particle nor about the viscoelastic properties of the medium. Instead, the interaction between...... the medium and the trapped particle is described in a general manner, through velocity and acceleration memory. Our method is applicable to general, at least locally homogeneous, viscoelastic media. The procedure combines active and passive approaches by the application of Onsager's regression hypothesis...

  19. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    Science.gov (United States)

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  20. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.

    Science.gov (United States)

    Bernassau, A L; Glynne-Jones, P; Gesellchen, F; Riehle, M; Hill, M; Cumming, D R S

    2014-01-01

    Acoustic radiation force has been demonstrated as a method for manipulating micron-scale particles, but is frequently affected by unwanted streaming. In this paper the streaming in a multi-transducer quasi-standing wave acoustic particle manipulation device is assessed, and found to be dominated by a form of Eckart streaming. The experimentally observed streaming takes the form of two main vortices that have their highest velocity in the region where the standing wave is established. A finite element model is developed that agrees well with experimental results, and shows that the Reynolds stresses that give rise to the fluid motion are strongest in the high velocity region. A technical solution to reduce the streaming is explored that entails the introduction of a biocompatible agar gel layer at the bottom of the chamber so as to reduce the fluid depth and volume. By this means, we reduce the region of fluid that experiences the Reynolds stresses; the viscous drag per unit volume of fluid is also increased. Particle Image Velocimetry data is used to observe the streaming as a function of agar-modified cavity depth. It was found that, in an optimised structure, Eckart streaming could be reduced to negligible levels so that we could make a sonotweezers device with a large working area of up to 13 mm × 13 mm. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.

    Science.gov (United States)

    Steffen, Walter; Sleep, John

    2004-12-29

    In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosphate.phosphate (M.ADP.Pi) binds to actin and moves it by ca. 5 nm on average before the formation of the end product, the rigor actomyosin state. All the other product-like intermediate states tested were found to give no net movement indicating that M.ADP.Pi alone binds in a pre-force state. Myosin states with bound, unhydrolysed nucleoside triphosphates also give no net movement, indicating that these must also bind in a post-force conformation and that the repriming, post- to pre-transition during the forward cycle must take place while the myosin is dissociated from actin. These observations fit in well with the structural model in which the working stroke is aligned to the opening of the switch 2 element of the ATPase site.

  2. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.

    OpenAIRE

    Steffen, Walter; Sleep, John

    2004-01-01

    In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosph...

  3. Studying effect of carrier fluid viscosity in magnetite based ferrofluids using optical tweezers

    Science.gov (United States)

    Savitha, S.; Iyengar, Shruthi S.; Ananthamurthy, Sharath; Bhattacharya, Sarbari

    2018-02-01

    Ferrofluids with varying viscosities of carrier fluids have been prepared with magnetite (Fe3O4) nanoparticles. The nanoparticles were synthesized by chemical co-precipitation and characterized using X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). They were found to be nearly spherical in shape with an almost uniform size of 13nm. The superparamagnetic nature of the water based ferrofluids at room temperature was established by SQUID magnetometry. Dynamic light scattering (DLS) was carried out to establish the size of the nanoparticle clusters in the ferrofluids synthesized. The results indicate an increase in cluster size with increase in carrier fluid viscosity. This is supported by results from Raman Spectroscopy. A further attempt to characterise these ferrofluids was made by studying the behaviour of well characterised non-magnetic micron sized probes that are optically trapped while suspended in the ferrofluid. An increase in carrier fluid viscosity results in a decrease in corner frequency when only the carrier fluid is used as the suspending medium. When the magnetic component is also present the corner frequency is higher than with just the carrier fluid. This relative increase happens at all laser powers at the trapping plane. This trend is also found to be independent of the size and material of the probe particle. Comparisons of various parameters that influence optical trapping lead us to believe that the enhancement could be due to a directed motion of the magnetic clusters in the presence of an optical trap.

  4. Metal-Cation Recognition in Water by a Tetrapyrazinoporphyrazine-Based Tweezer Receptor

    Czech Academy of Sciences Publication Activity Database

    Lochman, L.; Švec, J.; Roh, J.; Kirakci, Kaplan; Lang, Kamil; Zimčík, P.; Nováková, V.

    2016-01-01

    Roč. 22, č. 7 (2016), s. 2417-2426 ISSN 0947-6539 Institutional support: RVO:61388980 Keywords : cation s * crown compounds * fluorescent probes * phthalocyanines * sensors Subject RIV: CA - Inorganic Chemistry Impact factor: 5.317, year: 2016

  5. Interaction of particles with fluid-fluid interfaces quantified using magnetic tweezers

    NARCIS (Netherlands)

    Cappelli, S.; Jong, de A.M.; Prins, M.W.J.

    2014-01-01

    A key challenge in point-of-care diagnostics is the miniaturization and integration of assay processes in lab-on-chip devices. Assay processes based on magnetic particles are particularly suited for miniaturization and integration, because the particles can be actively controlled using external

  6. In situ single-atom array synthesis using dynamic holographic optical tweezers

    Science.gov (United States)

    Kim, Hyosub; Lee, Woojun; Lee, Han-gyeol; Jo, Hanlae; Song, Yunheung; Ahn, Jaewook

    2016-01-01

    Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures. PMID:27796372

  7. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  8. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers

    OpenAIRE

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung-Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-01-01

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed ...

  9. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    International Nuclear Information System (INIS)

    Kotlarchyk, M A; Botvinick, E L; Putnam, A J

    2010-01-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  10. Dynamic wetting of single particles at fluid-fluid interfaces quantified using magnetic tweezers

    NARCIS (Netherlands)

    Cappelli, S.; Jong, de A.M.; Prins, M.W.J.

    2014-01-01

    The miniaturization and integration of assay processes in lab-on-chip devices is a key challenge for point-of-care diagnostics. Assay processes based on magnetic particles are particularly suited for miniaturization and integration, because the particles can be actively controlled using external

  11. Induction and Rationalization of Supramolecular Chirality in the Tweezer-Diamine Complexes: Insights from Experimental and DFT Studies.

    Science.gov (United States)

    Dhamija, Avinash; Ikbal, Sk Asif; Rath, Sankar Prasad

    2016-12-19

    A series of supramolecular chiral 1:1 sandwich complexes (1 M ·L and 2 M ·L) consisting of diphenylether/ethane bridged metallobisporphyrin host (1 M and 2 M ; M: Zn/Mg) and chiral diamine guest (L) have been presented. The host-guest complexes are compared just upon changing the metal ion (Mg vs Zn) or the bridge (highly flexible ethane vs rigid diphenylether) keeping other factors similar. The factors that would influence the chirality induction process along with their contributions toward the sign and intensity of the CD couplet of the overall complex have been analyzed. Larger CD amplitude was observed in the host-guest complex with the more flexible ethane bridge as compared to the rigid diphenylether bridged one, irrespective of the metal ion used. Also, Zn complexes have displayed larger CD amplitude because of their stronger binding with the chiral diamines. A fairly linear dependence between the binding constant (K) and CD amplitude has been observed. Moreover, the amplitude of the CD couplet has been correlated with the relative steric bulk of the substituent at the stereogenic center: with increasing the bulk, CD intensity gradually increases. However, large increase of steric hindrance, after a threshold value, has diminished the intensity. The observation of a weak positive CD couplet between (1R,2R)-DPEA guest and Zn-bisporphyrin hosts indicates that the clockwise-twisted (steric-controlled) conformer is more populated as compared to the anticlockwise (chirality-controlled) one. In contrast, amplitude of the positive CD couplets is larger with Mg-bisporphyrin hosts, suggesting almost exclusive contribution of the clockwise-twisted conformer guided solely by sterics. DFT calculations support the experimental observations and have displayed the possible interconversion between clockwise and anticlockwise twisted conformers just upon changing the bulk of the substituent irrespective of the nature of chirality at the stereogenic center.

  12. A Polypeptide-DNA Hybrid with Selective Linking Capability Applied to Single Molecule Nano-Mechanical Measurements Using Optical Tweezers

    NARCIS (Netherlands)

    Moayed, F.; Mashaghi, A.; Tans, S.J.

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an

  13. Gradient forces on double-negative particles in optical tweezers using Bessel beams in the ray optics regime.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2010-11-08

    Gradient forces on double negative (DNG) spherical dielectric particles are theoretically evaluated for v-th Bessel beams supposing geometrical optics approximations based on momentum transfer. For the first time in the literature, comparisons between these forces for double positive (DPS) and DNG particles are reported. We conclude that, contrary to the conventional case of positive refractive index, the gradient forces acting on a DNG particle may not reverse sign when the relative refractive index n goes from |n|>1 to |n|<1, thus revealing new and interesting trapping properties.

  14. Dendrimeric tweezers for recognition of fluorogenic Co{sup 2+}, Mg{sup 2+} and chromogenic Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Chandana B.; Meshram, Jyotsna S., E-mail: drjsmeshram@gmail.com

    2016-03-15

    Dendrimers are the attractive candidature for the formation of metal complexes capable of performing varied application, owing to the presence of multiple terminal groups on the exterior of the molecule has received tremendous attention. Herein, we have synthesized novel dendritic macromolecule (N′E,N‴E,N″‴E,N‴‴′E)-3,3′,3″,3‴-(ethane-1,2-diylbis(azanetriyle)) tetrakis(N'-(2-hydroxybenzyllidene)propanehydrazide) chemosensor L and its metal complexes. In the present study the application in the optical sensing for chromogenic Fe{sup 2+} and fluorogenic Co{sup 2+} and Mg{sup 2+}cation is reported. The dendrimeric chemosensor L and its metal complexes are investigated with the help of FTIR spectroscopy, Nuclear magnetic resonance ({sup 1}H NMR and {sup 13}C NMR), FT Raman Microspectroscopy, fluorescence and UV–visible spectroscopy. Thermal properties are studied using thermal gravimetric analysis. - Highlights: • Dual effect – Chromogenic and fluorogenic. Chemosensor shows chromogenic effect towards Fe{sup 2+} as well as fluorogenic effect towards Co{sup 2+}and Mg{sup 2+} cation. • From Linear fitting calibration plot for computing LOD and LOQ, it was detected that – LOD=32.3 nM, LOQ=97.8 nM. • Jobs Plot – A graph plotted [HG]={(ΔF/Fo)[H]} Vs {[H]v/([H]v+[G]v)} has maxima at 0.33 which corresponds to 1:2 stoichiometry of chemosensor L:Co{sup 2+}.

  15. Excitation energy deactivation funnel in 3-substituted BODIPY-porphyrin conjugate

    International Nuclear Information System (INIS)

    Nguyen, Nguyen Tran; Verbelen, Bram; Leen, Volker; Waelkens, Etienne; Dehaen, Wim; Kruk, Mikalai

    2016-01-01

    BODIPYs absorb in the visible region which is complementary to that of porphyrins and therefore can be suggested as promising antenna groups to improve the light-harvesting potential of porphyrins. A boron-dipyrromethene dye was combined at the 3-position with a Zn-porphyrin to afford a conjugate. The fluorescence of the conjugate was found to originate from the BODIPY moiety independently of the excitation wavelength due to an unique set of energy transfer rates between the BODIPY and Zn-porphyrin moieties. The fluorescence intensity was shown to be tunable over a wide range using the solvent properties. This feature makes the studied BODIPY-porphyrin conjugate a promising compound for the design of new photochromic devices.

  16. Excitation energy deactivation funnel in 3-substituted BODIPY-porphyrin conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Nguyen Tran [Chemistry Department, University of Education, The University of DaNang, Ton Duc Thang 459, Da Nang (Viet Nam); Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Verbelen, Bram; Leen, Volker [Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Waelkens, Etienne [Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Box 901, 3000 Leuven (Belgium); Dehaen, Wim, E-mail: wim.dehaen@kuleuven.be [Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Kruk, Mikalai, E-mail: m.kruk@belstu.by [Belarusian State Technological University, Physics Department, Sverdlov Str., 13a, Minsk 220006 (Belarus)

    2016-11-15

    BODIPYs absorb in the visible region which is complementary to that of porphyrins and therefore can be suggested as promising antenna groups to improve the light-harvesting potential of porphyrins. A boron-dipyrromethene dye was combined at the 3-position with a Zn-porphyrin to afford a conjugate. The fluorescence of the conjugate was found to originate from the BODIPY moiety independently of the excitation wavelength due to an unique set of energy transfer rates between the BODIPY and Zn-porphyrin moieties. The fluorescence intensity was shown to be tunable over a wide range using the solvent properties. This feature makes the studied BODIPY-porphyrin conjugate a promising compound for the design of new photochromic devices.

  17. Long-distance photoinitiated electron transfer through polyene molecular wires

    International Nuclear Information System (INIS)

    Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.; Kersey, K.M.; Cragg, D.E.; Minsek, D.W.

    1989-01-01

    Long-chain polyenes can be used as molecular wires to facilitate electron transfer between a photo-excited donor and an acceptor in an artificial photosynthetic system. The authors present data here on two Zn-porphyrin-polyene-anthraquinone molecules possessing either 5 or 9 all trans double bonds between the donor and acceptor, 1 and 2. The center-to-center distances between the porphyrin and the quinone in these relatively rigid molecules are 25 angstrom for 1 and 35 angstrom for 2. Selective picosecond laser excitation of the Zn-porphyrin and 1 and 2 results in the very rapid transfer of an electron to the anthraquinone in <2 ps and 10 ps, respectively. The resultant radical ion pairs recombine with τ = 10 ps for 1 and τ = 25 ps for 2. The electron transfer rates remain remarkably rapid over these long distances. The involvement of polyene radical cations in the mechanism of the radical ion pair recombination reaction is clear from the transient absorption spectra of 1 and 2, which show strong absorbances in the near-infrared. The strong electronic coupling between the Zn-porphyrin n the anthraquinone provided by low-lying states of the polyene make it possible to transfer an electron rapidly over very long distances

  18. SU-G-TeP3-07: On the Development of Mechano-Biological Assessment of Leukemia Cells Using Optical Tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Brost, E; Brooks, J; Piepenburg, J; Watanabe, Y; Hui, S [Therapeutic Radiology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Chakraborty, S; Das, T [Max Planck Institute for Intelligent Systems Department of New Materials and Biosystems Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur (India); Green, A [Department of Physics, University of Saint Thomas, Saint Paul, MN (United States)

    2016-06-15

    Purpose: Patients with BCR-ABL (Ph +ve) acute lymphoblastic leukemia are at very high risk of relapse and mortality. In line with the NIH mission to understand the physical and biological processes, we seek to report mechano-biological method to assessment and distinguish treated/untreated leukemia cells. Methods: BCR-ABL leukemia cell populations and silica microspheres were trapped in a 100x magnification optical trapping system (λ=660 nm, 70 mW). Light refracted through the trapped sample was collected in the back focal plane by a quadrant detector to measure the positions of individual cells. The sample was driven at a known frequency and amplitude with a flexure translation stage, and the target’s response was recorded. The measured response was calibrated using the known driving parameters, and information about cell movements due to mechano-biological effects was extracted. Two leukemia cell populations were tested: a control group and a group treated with 2 Gy. Results: The mechano-biological movements of 10 microspheres, control cells, and treated cells were tracked over a ∼30 minute window at 1 minute intervals. The microsphere population did not see significant change in mechano-biological movements over the testing interval and remained constant. The control cell population saw a two-fold rise in activity that peaked around 1200 seconds, then dropped off sharply. The treated cell population saw a two-fold rise in activity that peaked at 400 seconds, and dropped off slowly. Conclusion: The investigated technique allows for direct measurement the movements of a trapped object due to mechano-biological effects such as thermal and extracellular motion. When testing microspheres, the mechano-biological activity remained constant over time due to the lack of biological factors. In both the control and treated cell populations, the mechano-biological activity was increased, possibly due to mitochondrial activation. This extra activity decreased over time, possibly due to cellular damage from trapping radiation.

  19. A hybrid total internal reflection fluorescence and optical tweezers microscope to study cell adhesion and membrane protein dynamics of single living cells

    NARCIS (Netherlands)

    Snijder-van As, M.I.; Rieger, B.; Joosten, B.; Subramaniam, Vinod; Figdor, Carl; Kanger, Johannes S.

    2009-01-01

    The dynamics of cell surface membrane proteins plays an important role in cell–cell interactions. The onset of the interaction is typically not precisely controlled by current techniques, making especially difficult the visualization of early-stage dynamics. We have developed a novel method where

  20. Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

    Directory of Open Access Journals (Sweden)

    R. H. Shepherd

    2018-04-01

    Full Text Available Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London and remote (Antarctica locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A  =  1.467 and B  =  1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A  =  1.465  ±  0.005 and B  =  4625  ±  1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A  =  1.505 and B  =  600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A  =  1.541  ±  0.03 and B  =  14 800  ±  2900 nm2, resulting in a real refractive index of 1.584  ±  0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere containing a 3 km thick layer of aerosol comprising pure water, pure insoluble organic aerosol, or an aerosol consisting of an aqueous core with an insoluble organic shell. The calculation demonstrated that the top-of-the-atmosphere albedo increases by 0.01 to 0.04 for pure organic particles relative to water particles of the same size and that the top-of-the-atmosphere albedo increases by 0.03 for aqueous core-shell particles as volume fraction of the shell material increases to 25 %.

  1. Theoretical study on junctions in porphyrin oligomers for nano scale devices

    International Nuclear Information System (INIS)

    Mizuseki, Hiroshi; Belosludov, Rodion V.; Farajian, Amir A.; Igarashi, Nobuaki; Kawazoe, Yoshiyuki

    2005-01-01

    A unimolecular rectifier could be built by combining two molecular sub-units that contain acceptor or donor groups. Porphyrin possesses good electron-donating properties due to its large, easily ionized, π-conjugated system. In this study, we propose that a rectifier diode could be created by combining two metal porphyrin molecules containing different metal atoms. This function would realize an effect similar to a p-n junction in a solid-state device. A Zn porphyrin-Ni porphyrin junction in a non-conjugated porphyrin system displays a localization of frontier orbitals that is similar to a rectifier function

  2. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    Science.gov (United States)

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Daria, Vincent Ricardo Mancao; Glückstad, Jesper

    2010-01-01

    years ago. Bringing together many landmark papers on the field, Optical Tweezers: Methods and Applications covers the techniques and uses of optical tweezers. Each section is introduced by a brief commentary, setting the papers into their historical and contemporary contexts. The first two sections...... of the best in the field, this compendium presents important historical and current developments of optical tweezers in a range of scientific areas, from the manipulation of bacteria to the treatment of DNA....

  4. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.

    Science.gov (United States)

    Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T

    2014-01-01

    Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.

  5. Radiological Survey of Seneca Army Depot

    Science.gov (United States)

    1986-01-01

    NUCON Smears 6. 1 ea Eberline AC-4 with planchettes and tweezers 7. 1 ea Eberline BC-4 with planchettes and tweezers 8. 1 foot locker with 4 air sampling...each detected isotope. c. sample Preparation. The smears were transferred to planchettes for counting. Approximately 500 grams of soil from each sample

  6. Protein folding and translocation : single-molecule investigations

    NARCIS (Netherlands)

    Leeuwen, Rudolphus Gerardus Henricus van

    2006-01-01

    This thesis describes experiments, in which we used an optical-tweezers setup to study a number of biological systems. We studied the interaction between the E. coli molecular chaperone SecB and a protein that was being unfolded and refolded using our optical tweezers setup. Our measurements clearly

  7. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  8. Mindre inventar og personlige ejendele

    DEFF Research Database (Denmark)

    Madsen, Hans Jørgen; Pedersen, Unn; Roesdahl, Else

    2014-01-01

    Groups of finds from Aggersborg: keys and locks, casket-hasps, ornamental mount and nail, combs, tweezers, bone pins and bodkins, gamin-pieces, pierced metatarsus, small axe-head, weight......Groups of finds from Aggersborg: keys and locks, casket-hasps, ornamental mount and nail, combs, tweezers, bone pins and bodkins, gamin-pieces, pierced metatarsus, small axe-head, weight...

  9. Intracellular manipulation of chromatin using magnetic nanoparticles

    NARCIS (Netherlands)

    Kanger, Johannes S.; Subramaniam, Vinod; van Driel, Roel

    2008-01-01

    Magnetic tweezers are widely used for manipulating small magnetic beads inside the cell cytoplasm in order to gain insight into the structural and mechanical properties of the cytoskeleton. Here we discuss the use of magnetic tweezers for the study of nuclear architecture and the mechanical

  10. A revolution in optical manipulation

    International Nuclear Information System (INIS)

    Grier, D. G.

    2004-01-01

    Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical trap offers revolutionary new opportunities for fundamental and applied research. (author)

  11. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  12. International Travel: Tips for Staying Healthy

    Science.gov (United States)

    ... sickness (promethazine and acetazolamide). Scissors, tweezers, nail clippers, pocket knife, thermometer, and a mirror. Hand wipes and ... counter Products Procedures & Devices Prescription Medicines Health Tools Dictionary Symptom Checker BMI Calculator myhealthfinder Immunization Schedules Nutrient ...

  13. Functionalisation of the hinge region in receptor molecules for explosive detection

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2003-01-01

    The functionalisation of the hinge region in a molecular tweezer molecule showing a strong binding to explosives is presented. Two versatile functional groups are introduced, a carboxylic acid and a bromine atom. (C) 2003 Elsevier Ltd. All rights reserved....

  14. Nucleosome Assembly Dynamics Involve Spontaneous Fluctuations in the Handedness of Tetrasomes

    NARCIS (Netherlands)

    Vlijm, R.; Lee, M.; Lipfert, J.; Lusser, A.; Dekker, C.; Dekker, N.H.

    2015-01-01

    DNA wrapping around histone octamers generates nucleosomes, the basic compaction unit of eukaryotic chromatin. Nucleosome stability is carefully tuned to maintain DNA accessibility in transcription, replication, and repair. Using freely orbiting magnetic tweezers, which measure the twist and length

  15. Molluscum Contagiosum (For Parents)

    Science.gov (United States)

    ... scalpel or tweezers removing growths by freezing them (cryotherapy) or scraping them off with a sharp instrument ( ... still go to school or daycare, participate in sports, and play with other children. They can even ...

  16. PATTERNS OF SEVEN AND COMPLICATED MALARIA IN CHILDREN

    African Journals Online (AJOL)

    GB

    2013-11-03

    Nov 3, 2013 ... flaring increased, the plaque scores also increased in the Old Brush Group. .... tweezers, and Shepherd's Crook Explorer. Plaque ... manipulated for image quality using the Adobe ..... Daly C, Marshall R. Attitudes to toothbrush.

  17. Lyme Disease

    Science.gov (United States)

    ... Don’t panic. Use fine-tipped tweezers to grasp the tick as close to the skin’s surface ... your symptoms. Keep a diary of your sleep patterns, eating habits, exercise routines, and how you’re ...

  18. Radial modes in phase-only twisted light beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2017-08-01

    Full Text Available Beams carrying orbital angular momentum (OAM) are ubiquitous in many experiments carried out today and cover a wide range of research, from surface microstructure processing to optical tweezers and communications. It follows that these beams are a...

  19. Light at work: The use of optical forces for particle manipulation, sorting, and analysis

    Czech Academy of Sciences Publication Activity Database

    Jonáš, Alexandr; Zemánek, Pavel

    2008-01-01

    Roč. 29, č. 24 (2008), s. 4813-4851 ISSN 0173-0835 R&D Projects: GA MŠk(CZ) LC06007; GA MŠk OC08034 Institutional research plan: CEZ:AV0Z20650511 Keywords : microfluidics * optical chromatography and sorting * optical force and torque * optical tweezers and micro-manipulation / Optical tweezers and micro-manipulation / Raman microspectroscopy * Raman microspectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.509, year: 2008

  20. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.

    Science.gov (United States)

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun

    2012-07-10

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.

  1. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  2. Piezoelectricity of chiral polymeric fiber and its application in biomedical engineering.

    Science.gov (United States)

    Tajitsu, Y

    2008-05-01

    Poly-L-lactic acid (PLLA), which is a type of chiral polymer, exhibits a high shear piezoelectric constant. To realize a higher shear piezoelectric constant, we spun PLLA resin into fibers. We succeeded in controlling the piezoelectric motion of a PLLA fiber by applying a dc voltage and ac voltage, similar to the control of a piezoelectric actuator. On the basis of this experimental result, we designed a catheter using a PLLA fiber (PLLA fiber catheter) and tweezers using a pair of PLLA fibers (PLLA fiber tweezers), controlled by adjusting the applied voltage. Then, using the PLLA fiber tweezers or catheter, we successfully picked up and removed small samples, such as a thrombosis in a blood vessel.

  3. The Motion of a Single Molecule, the Lambda-Receptor, in the Bacterial Outer Membrane

    DEFF Research Database (Denmark)

    Oddershede, Lene; Dreyer, Jakob Kisbye; Grego, Sonia

    2002-01-01

    Using optical tweezers and single particle tracking, we have revealed the motion of a single protein, the lambda-receptor, in the outer membrane of living Escherichia coli bacteria. We genetically modified the lambda-receptor placing a biotin on an extracellular site of the receptor in vivo....... The efficiency of this in vivo biotinylation is very low, thus enabling the attachment of a streptavidin-coated bead binding specifically to a single biotinylated lambda-receptor. The bead was used as a handle for the optical tweezers and as a marker for the single particle tracking routine. We propose a model...

  4. HoloHands: games console interface for controlling holographic optical manipulation

    Science.gov (United States)

    McDonald, C.; McPherson, M.; McDougall, C.; McGloin, D.

    2013-03-01

    The increasing number of applications for holographic manipulation techniques has sparked the development of more accessible control interfaces. Here, we describe a holographic optical tweezers experiment which is controlled by gestures that are detected by a Microsoft Kinect. We demonstrate that this technique can be used to calibrate the tweezers using the Stokes drag method and compare this to automated calibrations. We also show that multiple particle manipulation can be handled. This is a promising new line of research for gesture-based control which could find applications in a wide variety of experimental situations.

  5. HoloHands: games console interface for controlling holographic optical manipulation

    International Nuclear Information System (INIS)

    McDonald, C; McPherson, M; McDougall, C; McGloin, D

    2013-01-01

    The increasing number of applications for holographic manipulation techniques has sparked the development of more accessible control interfaces. Here, we describe a holographic optical tweezers experiment which is controlled by gestures that are detected by a Microsoft Kinect. We demonstrate that this technique can be used to calibrate the tweezers using the Stokes drag method and compare this to automated calibrations. We also show that multiple particle manipulation can be handled. This is a promising new line of research for gesture-based control which could find applications in a wide variety of experimental situations. (paper)

  6. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.

    Science.gov (United States)

    Harsono, Marcellinus S; Zhu, Qingyuan; Shi, Linda Z; Duquette, Michelle; Berns, Michael W

    2013-02-01

    A multi-joystick robotic laser microscope system used to control two optical traps (tweezers) and one laser scissors has been developed for subcellular organelle manipulation. The use of joysticks has provided a "user-friendly" method for both trapping and cutting of organelles such as chromosomes in live cells. This innovative design has enabled the clean severing of chromosome arms using the laser scissors as well as the ability to easily hold and pull the severed arm using the laser tweezers. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Manipulation and Motion of Organelles and Single Molecules in Living Cells

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Metzler, Ralf; Ritter, Christine M.

    2017-01-01

    used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation...... driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function...

  8. NIR dual luminescence from an extended porphyrin. Spectroscopy, photophysics and theory.

    Science.gov (United States)

    Gourlaouen, Christophe; Daniel, Chantal; Durola, Fabien; Frey, Julien; Heitz, Valérie; Sauvage, Jean-Pierre; Ventura, Barbara; Flamigni, Lucia

    2014-05-22

    Spectroscopic and photophysical properties of an extended Zn porphyrin with fused bis(tetraazaanthracene) arms including a 2,9-diphenyl-1,10-phenanthroline incorporated in a polyether macrocycle are investigated in solvents of different polarity pointing to the presence of two emitting singlet excited states. The absorption and emission features are identified and ascribed, on the basis of solvent polarity dependence, to a π-π* and to a charge transfer (CT) state, respectively. Whereas the intraligand π-π* transition is assigned to the intense absorption observed at 442-455 nm, the CT states contribute to the bands at 521-525 nm and 472-481 nm. The theoretical analysis of the absorption spectrum confirms the presence of two strong bands centered at 536 and 437 nm corresponding to CT and π-π* states, respectively. Weak CT transitions are calculated at 657 and 486 nm. Two emission maxima are observed in toluene at 724 nm from a (1)π-π* state and at 800 nm from a (1)CT state, respectively. (1)CT bands shift bathochromically by increasing the solvent polarity whereas the energy of the (1)π-π band is less affected. Likewise, the emission yield and lifetime associated with the low energy (1)CT band are strongly affected by solvent polarity. This is rationalized by a (1)π-π* → (1)CT internal conversion driven by solvent polarity, this process being competitive with the (1)π-π* to ground state deactivation channel. Time resolved absorption spectra indicate the presence of two triplet states, a short-lived one (nanoseconds range) and a longer lived one (hundreds of microsecond range) ascribed to a (3)π-π* and a (3)CT, respectively. For them, a conversion mechanism similar to that of the singlet excited states is suggested.

  9. Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing.

    Science.gov (United States)

    Abraham, Baxter; Fan, Hao; Galoppini, Elena; Gundlach, Lars

    2018-03-01

    Molecular sensitization of semiconductor films is an important technology for energy and environmental applications including solar energy conversion, photocatalytic hydrogen production, and water purification. Dye-sensitized films are also scientifically complex and interesting systems with a long history of research. In most applications, photoinduced heterogeneous electron transfer (HET) at the molecule/semiconductor interface is of critical importance, and while great progress has been made in understanding HET, many open questions remain. Of particular interest is the role of combined electronic and vibrational effects and coherence of the dye during HET. The ultrafast nature of the process, the rapid intramolecular vibrational energy redistribution, and vibrational cooling present complications in the study of vibronic coupling in HET. We present the application of a time domain vibrational spectroscopy-pump-degenerate four-wave mixing (pump-DFWM)-to dye-sensitized solid-state semiconductor films. Pump-DFWM can measure Raman-active vibrational modes that are triggered by excitation of the sample with an actinic pump pulse. Modifications to the instrument for solid-state samples and its application to an anatase TiO 2 film sensitized by a Zn-porphyrin dye are discussed. We show an effective combination of experimental techniques to overcome typical challenges in measuring solid-state samples with laser spectroscopy and observe molecular vibrations following HET in a picosecond time window. The cation spectrum of the dye shows modes that can be assigned to the linker group and a mode that is localized on the Zn-phorphyrin chromophore and that is connected to photoexcitation.

  10. N -annulated perylene as an efficient electron donor for porphyrin-based dyes: Enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells

    KAUST Repository

    Luo, Jie

    2014-01-08

    Porphyrin-based dyes recently have become good candidates for dye-sensitized solar cells (DSCs). However, the bottleneck is how to further improve their light-harvesting ability. In this work, N-annulated perylene (NP) was used to functionalize the Zn-porphyrin, and four "push-pull"-type NP-substituted and fused porphyrin dyes with intense absorption in the visible and even in the near-infrared (NIR) region were synthesized. Co(II/III)-based DSC device characterizations revealed that dyes WW-5 and WW-6, in which an ethynylene spacer is incorporated between the NP and porphyrin core, showed pantochromatic photon-to-current conversion efficiency action spectra in the visible and NIR region, with a further red-shift of about 90 and 60 nm, respectively, compared to the benchmark molecule YD2-o-C8. As a result, the short-circuit current density was largely increased, and the devices displayed power conversion efficiencies as high as 10.3% and 10.5%, respectively, which is comparable to that of the YD2-o-C8 cell (η = 10.5%) under the same conditions. On the other hand, the dye WW-3 in which the NP unit is directly attached to the porphyrin core showed a moderate power conversion efficiency (η = 5.6%) due to the inefficient π-conjugation, and the NP-fused dye WW-4 exhibited even poorer performance due to its low-lying LUMO energy level and nondisjointed HOMO/LUMO profile. Our detailed physical measurements (optical and electrochemical), density functional theory calculations, and photovoltaic characterizations disclosed that the energy level alignment, the molecular orbital profile, and dye aggregation all played very important roles on the interface electron transfer and charge recombination kinetics. © 2013 American Chemical Society.

  11. Dualism of Sensitivity and Selectivity of Porphyrin Dimers in Electroanalysis.

    Science.gov (United States)

    Lisak, Grzegorz; Tamaki, Takashi; Ogawa, Takuji

    2017-04-04

    This work uncovers the application of porphyrin dimers for the use in electroanalysis, such as potentiometric determination of ions. It also puts in question a current perception of an occurrence of the super-Nernstian response, as a result of the possible dimerization of single porphyrins within an ion-selective membrane. To study that, four various porphyrin dimers were used as ionophores, namely, freebase-freebase, Zn-Zn, Zn-freebase, and freebase-Zn. Since the Zn-freebase and freebase-Zn porphyrin dimers carried both anion- and cation-sensitive porphyrin units, their application in ISEs was utilized in both anion- and cation-sensitive sensors. With respect to the lipophilic salt added, both porphyrins dimers were found anion- and cation-sensitive. This allowed using a single molecule as novel type of versatile ionophore (anion- and cation-selective), simply by varying the membrane composition. All anion-sensitive sensors were perchlorate-sensitive, while the cation-selective sensors were silver-sensitive. The selectivity of the sensors depended primarily on the porphyrin dimers in the ion-selective membrane. Furthermore, the selectivity of cation-sensitive dimer based sensors was found significantly superior to the ones measured for the single porphyrin unit based sensors (precursors of the porphyrin dimers). Thus, the dimerization of single porphyrins may actually be a factor to increase or modulate porphyrin selectivity. Moreover, in the case of cation-sensitive sensors, the selectivity vastly depended on the order of porphyrin units in the dimer. This opens a new approach of regulating and adjusting sensitivity and selectivity of the sensor through the application of complex porphyrin systems with more than one porphyrin units with mix sensitive porphyrins.

  12. Kompaktní optická pinzeta

    Czech Academy of Sciences Publication Activity Database

    Šerý, Mojmír; Lošťák, Z.; Kalman, M.; Jákl, Petr; Zemánek, Pavel

    2006-01-01

    Roč. 51, 11-12 (2006), s. 316-319 ISSN 0447-6441 R&D Projects: GA MPO FT-TA2/059 Institutional research plan: CEZ:AV0Z20650511 Keywords : laser diode * optical tweezers Subject RIV: BH - Optics, Masers, Lasers

  13. Direct measurement of the temperature profile close to an optically trapped absorbing particle

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Ježek, Jan; Jákl, Petr; Pilát, Zdeněk; Zemánek, Pavel

    2016-01-01

    Roč. 41, č. 5 (2016), s. 870-873 ISSN 0146-9592 R&D Projects: GA ČR GPP205/12/P868 Institutional support: RVO:68081731 Keywords : gold nanoparticles * fluorescence * spectroscopy * tweezers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.416, year: 2016

  14. Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively

    NARCIS (Netherlands)

    Burnham, D.R.; Nijholt, B.; de Vlaminck, I.; Quan, Jinhua; Yusufzai, Timur; Dekker, C.

    2017-01-01

    We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing

  15. Sharath Ananthamurthy

    Indian Academy of Sciences (India)

    Volume 35 Issue 4 August 2012 pp 529-532. An optical tweezer-based study of antimicrobial activity of silver nanoparticles · Yogesha Sarbari Bhattacharya M K Rabinal Sharath Ananthamurthy · More Details Abstract Fulltext PDF. Understanding and characterizing microbial activity reduction in the presence of antimicrobial ...

  16. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Volume 82 Issue 2 February 2014 pp 243-248 Contributed Papers. Versatile laser microfabrication techniques for lab-on-chip devices in general and uranium analysis in particular ... 82 Issue 2 February 2014 pp 433-437 Contributed Papers. Manipulation of microparticles and red blood cells using optoelectronic tweezers.

  17. Manipulation of microparticles and red blood cells using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Abstract. We report the development of an optoelectronic tweezers set-up which works by light- induced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photo- conductive layer ...

  18. Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Gargiulo, J.; Violi, I.L.; Cerrota, S.; Chvátal, Lukáš; Cortés, E.; Perassi, E.M.; Diaz, F.; Zemánek, Pavel; Stefani, D.

    2017-01-01

    Roč. 11, č. 10 (2017), s. 9678-9688 ISSN 1936-0851 R&D Projects: GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : colloidal patterning * nanofabrication * optical forces * optical tweezers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 13.942, year: 2016

  19. Effects of Practical Life Materials on Kindergartners' Fine Motor Skills.

    Science.gov (United States)

    Rule, Audrey C.; Stewart, Roger A.

    2002-01-01

    A pretest-posttest control group design was used to measure the effect of practical life materials (e.g., tweezers, tongs, spoons) on kindergarten children's fine motor skill development. Experimental and control group teachers reported equal amounts of fine motor activity in their classrooms; however, significant interaction effects were found…

  20. Integrated microfluidic device for single-cell trapping and spectroscopy

    KAUST Repository

    Liberale, Carlo

    2013-02-13

    Optofluidic microsystems are key components towards lab-on-a-chip devices for manipulation and analysis of biological specimens. In particular, the integration of optical tweezers (OT) in these devices allows stable sample trapping, while making available mechanical, chemical and spectroscopic analyses.

  1. Evaluation method for acoustic trapping performance by tracking motion of trapped microparticle

    Science.gov (United States)

    Lim, Hae Gyun; Ham Kim, Hyung; Yoon, Changhan

    2018-05-01

    We report a method to evaluate the performances of a single-beam acoustic tweezer using a high-frequency ultrasound transducer. The motion of a microparticle trapped by a 45-MHz single-element transducer was captured and analyzed to deduce the magnitude of trapping force. In the proposed method, the motion of a trapped microparticle was analyzed from a series of microscopy images to compute trapping force; thus, no additional equipment such as microfluidics is required. The method could be used to estimate the effective trapping force in an acoustic tweezer experiment to assess cell membrane deformability by attaching a microbead to the surface of a cell and tracking the motion of the trapped bead, which is similar to a bead-based assay that uses optical tweezers. The results showed that the trapping force increased with increasing acoustic intensity and duty factor, but the force eventually reached a plateau at a higher acoustic intensity. They demonstrated that this method could be used as a simple tool to evaluate the performance and to optimize the operating conditions of acoustic tweezers.

  2. Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires

    Czech Academy of Sciences Publication Activity Database

    Irrera, A.; Maggazu, A.; Artoni, P.; Simpson, Stephen Hugh; Hanna, S.; Jones, P.H.; Priolo, F.; Gucciardi, P. G.; Marago, O.M.

    2016-01-01

    Roč. 16, č. 7 (2016), s. 4181-4188 ISSN 1530-6984 R&D Projects: GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : optical tweezers * silicon nanowires * nonequilibrium dynamics * Brownian motion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 12.712, year: 2016

  3. Automation of microfactories: towards using small industrial robots

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Mazzola, Stefano

    2005-01-01

    with tweezers under a microscope. This is tedious work for the operators and it is very hard to keep an even quality. This process would be excellent to automate, for example by using small industrial robots. There are mainly two properties that are significant for selecting a robot for micro...

  4. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. M K Rabinal. Articles written in Bulletin of Materials Science. Volume 35 Issue 4 August 2012 pp 529-532. An optical tweezer-based study of antimicrobial activity of silver nanoparticles · Yogesha Sarbari Bhattacharya M K Rabinal Sharath Ananthamurthy · More Details Abstract ...

  5. A plasmonic spanner for metal particle manipulation

    NARCIS (Netherlands)

    Zhang, Y.; Shi, W.; Shen, Z.; Man, Z.; Min, C.; Shen, J.; Zhu, S.; Urbach, H.P.; Yuan, X.

    2015-01-01

    Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and

  6. 2D Dirac electrons in 3D materials

    NARCIS (Netherlands)

    Ramankutty, S.V.

    2018-01-01

    Quantum materials pack the spooky properties of quantum mechanics into real-life materials you can make, pick up with tweezers and study in the lab. Those of interest to us show special electronic properties of great fundamental interest and have applications potential for future computer and

  7. C60 Recognition from Extended Tetrathiafulvalene Bis-acetylide Platinum(II) Complexes.

    Science.gov (United States)

    Bastien, Guillaume; Dron, Paul I; Vincent, Manon; Canevet, David; Allain, Magali; Goeb, Sébastien; Sallé, Marc

    2016-11-18

    The favorable spatial organization imposed by the square planar 4,4'-di(tert-butyl)-2,2'-bipyridine (dbbpy) platinum(II) complex associated with the electronic and shape complementarity of π-extended tetrathiafulvalene derivatives (exTTF) toward fullerenes is usefully exploited to construct molecular tweezers, which display good affinities for C 60 .

  8. Effective and efficient method of calculating Bessel beam fields

    CSIR Research Space (South Africa)

    Litvin, IA

    2005-01-01

    Full Text Available Bessel beams have gathered much interest of late due to their properties of near diffraction free propagation and self reconstruction after obstacles. Such laser beams have already found applications in fields such as optical tweezers and as pump...

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A modular design of a molecular tweezer is presented that integrates a multipolar D--A [D: Donor, A: Acceptor] scaffold, 1-aminopyrene-based fluorophore units and L-alanine-based linkers. The synthesis of the molecule is based on two-fold aromatic nucleophilic reactions (ArSN) and coupling reactions of the acid and ...

  10. Detecting sequential bond formation using three-dimensional thermal fluctuation analysis

    Czech Academy of Sciences Publication Activity Database

    Bartsch, T.; Fisinger, S.; Kochanczyk, M.D.; Huang, R.; Jonáš, Alexandr; Florin, E. L.

    2009-01-01

    Roč. 10, 9-10 (2009), s. 1541-1547 ISSN 1439-4235 Institutional research plan: CEZ:AV0Z20650511 Keywords : biophysics * mechanical properties * optical tweezers * single-molecule studies * thermal fluctuations Subject RIV: BO - Biophysics Impact factor: 3.453, year: 2009

  11. Microfluidic devices for analysis and active optical sorting of individual cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; Pilát, Zdeněk; Šerý, Mojmír; Kaňka, Jan; Samek, Ota; Bernatová, Silvie; Zemánek, Pavel

    2013-01-01

    Roč. 58, č. 2 (2013), s. 55-59 ISSN 0447-6441 R&D Projects: GA MPO FR-TI1/433; GA MŠk ED0017/01/01; GA ČR GAP205/11/1687 Institutional support: RVO:68081731 Keywords : microfluidic * cell sorting * optical tweezers * Raman spectroscopy Subject RIV: EI - Biotechnology ; Bionics

  12. Využití více opticky zachycených sond pro měření profilů nepřístupných průhledných povrchů

    Czech Academy of Sciences Publication Activity Database

    Šerý, Mojmír; Jákl, Petr; Ježek, Jan; Liška, M.; Zemánek, Pavel

    2003-01-01

    Roč. 48, č. 6 (2003), s. 170 - 173 ISSN 0447-6441 R&D Projects: GA ČR GA101/00/0974; GA AV ČR IAA1065203 Institutional research plan: CEZ:AV0Z2065902 Keywords : optical tweezers * microparticles * nanoparticles Subject RIV: BH - Optics, Masers, Lasers

  13. Thermally induced passage and current of particles in a highly unstable optical potential

    Czech Academy of Sciences Publication Activity Database

    Ryabov, A.; Zemánek, Pavel; Filip, R.

    2016-01-01

    Roč. 94, č. 4 (2016), 042108:1-9 ISSN 2470-0045 R&D Projects: GA ČR GB14-36681G Institutional support: RVO:68081731 Keywords : Brownian movement * Electron transitions * Optical tweezers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.366, year: 2016

  14. Brownian motion after Einstein and Smoluchowski: Some new applications and new experiments

    DEFF Research Database (Denmark)

    Dávid, Selmeczi; Tolic-Nørrelykke, S.F.; Schäffer, E.

    2007-01-01

    The first half of this review describes the development in mathematical models of Brownian motion after Einstein's and Smoluchowski's seminal papers and current applications to optical tweezers. This instrument of choice among single-molecule biophysicists is also an instrument of such precision ...

  15. Integrated microfluidic device for single-cell trapping and spectroscopy

    KAUST Repository

    Liberale, Carlo; Cojoc, G.; Bragheri, F.; Minzioni, P.; Perozziello, G.; La Rocca, R.; Ferrara, L.; Rajamanickam, V.; Di Fabrizio, Enzo M.; Cristiani, I.

    2013-01-01

    Optofluidic microsystems are key components towards lab-on-a-chip devices for manipulation and analysis of biological specimens. In particular, the integration of optical tweezers (OT) in these devices allows stable sample trapping, while making available mechanical, chemical and spectroscopic analyses.

  16. Nonspherical oscilllations of ultrasound contrast agent microbubbles

    NARCIS (Netherlands)

    Dollet, B.; van der Meer, S.M.; Garbin, V.; Garbin, Valeria; de Jong, N.; Lohse, Detlef; Versluis, Michel

    2008-01-01

    The occurrence of nonspherical oscillations (or surface modes) of coated microbubbles, used as ultrasound contrast agents in medical imaging, is investigated using ultra–high-speed optical imaging. Optical tweezers designed to micromanipulate single bubbles in 3-D are used to trap the bubbles far

  17. Self-Assembly Characteristics of a Multipolar Donor-Acceptor ...

    Indian Academy of Sciences (India)

    PC

    Integrated Molecular Tweezer. Deepak Asthana, Geeta Hundal and Pritam Mukhopadhyay*. Supramolecular & Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi. 110067, India. e-mail: m_pritam@ jnu.ac.in. Contents. S. No. Topic. Page No. 1. Synthesis and characterization of 1.

  18. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles

    Czech Academy of Sciences Publication Activity Database

    Arzola, Alejandro V.; Jákl, Petr; Chvátal, Lukáš; Zemánek, Pavel

    2014-01-01

    Roč. 22, č. 13 (2014), s. 16207-1621 ISSN 1094-4087 R&D Projects: GA MŠk LH12018 Institutional support: RVO:68081731 Keywords : orbital angular-momentum * lineary polarized-light * ellipsoidal molecules * microscopic particles * Gaussian beams * tweezers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  19. Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties.

    Science.gov (United States)

    Shahroosvand, Hashem; Zakavi, Saeed; Sousaraei, Ahmad; Eskandari, Mortaza

    2015-03-07

    We report on the theoretical and experimental studies of the new dye-sensitized solar cells functionalized with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin zinc(II) complexes bearing 2- and 8-bromo substituents at the β positions. In agreement with the results of TD-DFT calculations, the absorption maxima of di- and octa-brominated Zn(II) complexes, ZnTCPPBr2 and ZnTCPPBr8, exhibited large red-shift compared to that of the non-brominated free base porphyrin (H2TCPP). Furthermore, DFT calculations showed that the higher stabilization of the LUMO levels relative to the HOMO ones makes the HOMO-LUMO gap of the brominated Zn-porphyrins models smaller compared to that of the nonbrominated counterparts, which explains the red shifts of the Soret and Q bands of the brominated compounds. Solar cells containing the new saddle-shaped Zn(II) porphyrins were subjected to analysis in a photovoltaic calibration laboratory to determine their solar to electric energy conversion. In this regard, we found that the overall conversion efficiency of ZnTCPPBr8 adsorbed on TiO2 nanocrystalline films was 5 times as large as that of ZnTCPPBr2 adsorbed on the same films. The effect of the increasing number of Br groups on the photovoltaic performance of the complexes was compared to the results of computational methods using ab initio DFT molecular dynamics simulations and quantum dynamics calculations of electronic relaxation to investigate the interfacial electron transfer (IET) in TCPPBrx/TiO2-anatase nanostructures. Better IET in ZnTCPPBr8 compared to ZnTCPPBr2, and in H2TCPP was evaluated from interfacial electron transfer (IET) simulations. The IET results indicate that electron injection in ZnTCPPBr8-TiO2 (τ = 25 fs) can be up to 5 orders of magnitude faster than ZnTCPPBr2-TiO2 (τ = 125 fs). Both experimental and theoretical results demonstrate that the increase of the number of bromo-substituents at the β-pyrrole positions of the porphyrin macrocycle created a new class of

  20. Customizable nanotweezers for manipulation of free-standing nanostructures

    DEFF Research Database (Denmark)

    Bøggild, Peter; Hansen, Torben Mikael; Mølhave, Kristian

    2001-01-01

    We present a novel nanotweezer device for manipulation and measurement of free-standing nanostructures, where the shape of the tweezer tips can be customized for the application. Electrostatic actuators with submicron interelectrode spacings are fabricated on a batch level using silicon microfabr......We present a novel nanotweezer device for manipulation and measurement of free-standing nanostructures, where the shape of the tweezer tips can be customized for the application. Electrostatic actuators with submicron interelectrode spacings are fabricated on a batch level using silicon...... microfabrication techniques. The actuators are capable of opening and closing with respect to the neutral position, and the full range of actuation exceeds 330 nm. The nanotweezer tips are fabricated using electron beam induced deposition; an electron beam of a scanning electron microscope is focused at the ends...

  1. Manipulation and Motion of Organelles and Single Molecules in Living Cells

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Metzler, Ralf; Ritter, Christine M.

    2017-01-01

    used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation...... driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function....... In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly...

  2. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    Science.gov (United States)

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  3. Optimized systems for energy efficient optical tweezing

    Science.gov (United States)

    Kampmann, R.; Kleindienst, R.; Grewe, A.; Bürger, Elisabeth; Oeder, A.; Sinzinger, S.

    2013-03-01

    Compared to conventional optics like singlet lenses or even microscope objectives advanced optical designs help to develop properties specifically useful for efficient optical tweezers. We present an optical setup providing a customized intensity distribution optimized with respect to large trapping forces. The optical design concept combines a refractive double axicon with a reflective parabolic focusing mirror. The axicon arrangement creates an annular field distribution and thus clears space for additional integrated observation optics in the center of the system. Finally the beam is focused to the desired intensity distribution by a parabolic ring mirror. The compact realization of the system potentially opens new fields of applications for optical tweezers such as in production industries and micro-nano assembly.

  4. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  5. Analysis of single-cell differences by use of an on-chip microculture system and optical trapping.

    Science.gov (United States)

    Wakamoto, Y; Inoue, I; Moriguchi, H; Yasuda, K

    2001-09-01

    A method is described for continuous observation of isolated single cells that enables genetically identical cells to be compared; it uses an on-chip microculture system and optical tweezers. Photolithography is used to construct microchambers with 5-microm-high walls made of thick photoresist (SU-8) on the surface of a glass slide. These microchambers are connected by a channel through which cells are transported, by means of optical tweezers, from a cultivation microchamber to an analysis microchamber, or from the analysis microchamber to a waste microchamber. The microchambers are covered with a semi-permeable membrane to separate them from nutrient medium circulating through a "cover chamber" above. Differential analysis of isolated direct descendants of single cells showed that this system could be used to compare genetically identical cells under contamination-free conditions. It should thus help in the clarification of heterogeneous phenomena, for example unequal cell division and cell differentiation.

  6. Quantitative studies of subdiffusion in living cells and actin networks

    DEFF Research Database (Denmark)

    Munteanu, Emilia-Laura; Olsen, Anja Lea; Tolic-Nørrelykke, Iva Marija

    2006-01-01

    Optical tweezers are a versatile tool in biophysics and have matured from a tool of manipulation to a tool of precise measurements. We argue here that the data analysis with advantage can be developed to a level of sophistication that matches that of the instrument. We review methods of analysis...... of optical tweezers data, primarily baed on the power spectra of time series of postions for trapped spherical objects. The majority of precise studies in the literature are performed on in vitro systems, whereas in the present work, an example of an in vivo system is presented for which precise power...... spectral analysis is both useful and necessary. The biological system is the cytoplasm of fission yeast, S. pombe, in which we observe subdiffusion of lipid granuli. in a search for the cause of subdiffusion, we chemically disrupt the actin network in the cytoplasm and further consider in vitro networks...

  7. Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications

    Science.gov (United States)

    Simpson, S. H.

    2014-10-01

    Beyond the ubiquitous colloidal sphere, optical tweezers are capable of trapping myriad exotic particles with wildly varying geometries and compositions. This simple fact opens up numerous opportunities for micro-manipulation, directed assembly and characterization of novel nanostructures. Furthermore, the mechanical properties of optical tweezers are transformed by their contents. For example, traps capable of measuring, or applying, femto-Newton scale forces with nanometric spatial resolution can be designed. Analogous, if not superior, angular sensitivity can be achieved, enabling the creation of exquisitely sensitive torque wrenches. These capacities, and others, lead to a multitude of novel applications in the meso- and nanosciences. In this article we review experimental and theoretical work on the relationship between particle geometry, composition and trap properties. A range of associated metrological techniques are discussed.

  8. A New Probe for Mechanical Testing of Nanostructures in Soft Materials

    International Nuclear Information System (INIS)

    Hough, L.A.; Ou-Yang, H.D.

    1999-01-01

    We report a new application of the optical tweezers, where a harmonically driven oscillating tweezer is combined with the forward light scattering and lock-in amplification techniques, for probing the mechanics of nanostructures in soft materials in a broad frequency range. Model independent dynamic moduli G' and G'' of the material at a localized, sub-micron area can be measured directly from the displacement and the phase shift of the particle in the oscillating trap. The probe particles can be as small as 200 nm and the displacement of the particle was in the range of a few nanometers. To illustrate the new methodology, we show the microscopic viscoelastic properties of a transient polymer network in the vicinity of a silica bead

  9. Optical trapping of carbon nanotubes and graphene

    Directory of Open Access Journals (Sweden)

    S. Vasi

    2011-09-01

    Full Text Available We study optical trapping of nanotubes and graphene. We extract the distribution of both centre-of-mass and angular fluctuations from three-dimensional tracking of these optically trapped carbon nanostructures. The optical force and torque constants are measured from auto and cross-correlation of the tracking signals. We demonstrate that nanotubes enable nanometer spatial, and femto-Newton force resolution in photonic force microscopy by accurately measuring the radiation pressure in a double frequency optical tweezers. Finally, we integrate optical trapping with Raman and photoluminescence spectroscopy demonstrating the use of a Raman and photoluminescence tweezers by investigating the spectroscopy of nanotubes and graphene flakes in solution. Experimental results are compared with calculations based on electromagnetic scattering theory.

  10. Yoga in stroke rehabilitation: a systematic review and results of a pilot study.

    Science.gov (United States)

    Lynton, Holly; Kligler, Benjamin; Shiflett, Samuel

    2007-01-01

    This article presents a systematic review of the literature pertaining to the use of yoga in stroke rehabilitation. In addition, we present the results of a small pilot study designed to explore the hypothesis that a Kundalini yoga practice of 12 weeks would lead to an improvement in aphasia as well as in fine motor coordination in stroke patients. The 3 participants attended yoga classes twice a week for 12 weeks, before and after which they were tested on the O'Connor Tweezer Dexterity test, a timed test where the participant places pins in a Peg-Board with tweezers, and the Boston Aphasia Exam for speech. All 3 participants showed improvement on both measures. The small sample size makes it impossible to draw definite conclusions, but the positive trends in this study suggest that further research should be done to examine the effects of Kundalini yoga on specific illnesses or medical conditions.

  11. Experimental demonstration of optical transport, sorting and self-arrangement using a “tractor beam"

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Karásek, Vítězslav; Šiler, Martin; Chvátal, Lukáš; Čižmár, T.; Zemánek, Pavel

    2013-01-01

    Roč. 7, č. 2 (2013), s. 123-127 ISSN 1749-4885 R&D Projects: GA ČR GA202/09/0348; GA ČR GPP205/11/P294; GA MŠk LH12018; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : theoretical determination * radiation force * tweezers * binding Subject RIV: BH - Optics, Masers, Lasers Impact factor: 29.958, year: 2013

  12. Optical manipulation of aerosol droplets using a holographic dual and single beam trap

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Šiler, Martin; Ježek, Jan; Jákl, Petr; Zemánek, Pavel

    2013-01-01

    Roč. 38, č. 22 (2013), s. 4601-4604 ISSN 0146-9592 R&D Projects: GA ČR GPP205/11/P294; GA ČR GPP205/12/P868; GA MŠk LH12018; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical tweezers * optical manipulation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  13. Particle jumps between optical traps in a one-dimensional (1D) optical lattice

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Zemánek, Pavel

    2010-01-01

    Roč. 12, Aug 2 (2010), 083001:1-20 ISSN 1367-2630 R&D Projects: GA MŠk(CZ) LC06007; GA MŠk OC08034 Institutional research plan: CEZ:AV0Z20650511 Keywords : stochastic resonance * brownian-motion * tweezers * forces * manipulation * calibration * separation * interface * diffusion * tracking Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.849, year: 2010

  14. Closure report for CAU No. 450: Historical UST release sites, Nevada Test Site. Volume 2

    International Nuclear Information System (INIS)

    1997-09-01

    This report addresses the closure of 11 historical underground storage tank release sites within various areas of the Nevada Test Site. This report contains remedial verification of the soil sample analytical results for the following: Area 11 Tweezer facility; Area 12 boiler house; Area 12 service station; Area 23 bypass yard; Area 23 service station; Area 25 power house; Area 25 tech. services building; Area 25 tech. operations building; Area 26 power house; and Area 27 boiler house

  15. Optical forces induced behavior of a particle in a non-diffracting vortex beam

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Jákl, Petr; Brzobohatý, Oto; Zemánek, Pavel

    2012-01-01

    Roč. 20, č. 22 (2012), s. 24304-24319 ISSN 1094-4087 R&D Projects: GA ČR GPP205/11/P294; GA MŠk ED0017/01/01; GA MŠk LH12018 Institutional support: RVO:68081731 Keywords : optical vortex beam * tweezers * optical forces Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.546, year: 2012

  16. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage phi29

    OpenAIRE

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J.; Smith, Douglas E.

    2014-01-01

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine3+ causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interacti...

  17. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29.

    Science.gov (United States)

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2014-06-20

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.

  18. Chiral particles in the dual-beam optical trap

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Hernández, R.J.; Simpson, Stephen Hugh; Mazzulla, A.; Cipparrone, G.; Zemánek, Pavel

    2016-01-01

    Roč. 24, č. 23 (2016), 26382:1-10 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA ČR(CZ) GA14-16195S; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical tweezers * optical manipulation * liquid crystals * chiral media Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.307, year: 2016

  19. Using Magnets and Magnetic Beads to Dissect Signaling Pathways Activated by Mechanical Tension Applied to Cells

    Science.gov (United States)

    Marjoram, R.J.; Guilluy, C; Burridge, K.

    2015-01-01

    Cellular tension has implications in normal biology and pathology. Membrane adhesion receptors serve as conduits for mechanotransduction that lead to cellular responses. Ligand-conjugated magnetic beads are a useful tool in the study of how cells sense and respond to tension. Here we detail methods for their use in applying tension to cells and strategies for analyzing the results. We demonstrate the methods by analyzing mechanotransduction through VE-cadherin on endothelial cells using both permanent magnets and magnetic tweezers. PMID:26427549

  20. Can math beat gamers in Quantum Moves?

    OpenAIRE

    Sels, Dries

    2017-01-01

    Abstract: In a recent work on quantum state preparation, Sørensen and co-workers [Nature (London) 532, 210 (2016)] explore the possibility of using video games to help design quantum control protocols. The authors present a game called Quantum Moves (https://www.scienceathome.org/games/quantum-moves/) in which gamers have to move an atom from A to B by means of optical tweezers. They report that, players succeed where purely numerical optimization fails. Moreover, by harnessing the player str...

  1. Optical trapping of colloidal particles and measurement of the defect line tension and colloidal forces in a thermotropic nematic liquid crystal

    International Nuclear Information System (INIS)

    Smalyukh, I.I.; Kuzmin, A.N.; Kachynski, A.V.; Prasad, P.N.; Lavrentovich, O.D.

    2005-01-01

    We demonstrate optical trapping and manipulation of transparent microparticles suspended in a thermotropic nematic liquid crystal with low birefringence. We employ the particle manipulation to measure line tension of a topologically stable disclination line and to determine colloidal interaction of particles with perpendicular surface anchoring of the director. The three-dimensional director fields and positions of the particles manipulated by laser tweezers are visualized by fluorescence confocal polarizing microscopy

  2. Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching

    Czech Academy of Sciences Publication Activity Database

    Aas, M.; Jonáš, A.; Kiraz, A.; Ježek, Jan; Brzobohatý, Oto; Pilát, Zdeněk; Zemánek, Pavel

    2013-01-01

    Roč. 21, č. 18 (2013), s. 21380-21394 ISSN 1094-4087 R&D Projects: GA ČR GPP205/11/P294; GA MŠk ED0017/01/01; GA TA ČR TA03010642 Institutional support: RVO:68081731 Keywords : Microcavities * Dye lasers * Optical tweezers * Optical manipulation * Fluorescence, laser-induced Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  3. Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators

    Czech Academy of Sciences Publication Activity Database

    Jonáš, A.; Pilát, Zdeněk; Ježek, Jan; Bernatová, Silvie; Fořt, Tomáš; Zemánek, Pavel; Aas, M.; Kiraz, A.

    2017-01-01

    Roč. 34, č. 9 (2017), s. 1855-1864 ISSN 0740-3224 R&D Projects: GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : emission spectroscopy * drops * optical tweezers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.843, year: 2016

  4. Nonvolatile and Cryogenic-compatible Quantum Memory Devices (QuMEM)

    Science.gov (United States)

    2016-06-01

    construction including: • 4” SiO2 /Si substrates and wafer/sample holders • Tweezers and wafer scribe • Safety glasses , gloves, and fab wipes • Probe tips...Cleaving of NbSe2 with Scotch™ Tape method ............................................................ 56 59. Transfer of NbSe2 atomic crystals to SiO2 ...O2 plasma + optional CF4 5 Top superconductor electrode evaporation Thermal Evaporation at SDSU MEMS Lab P+ Si Handle Wafer SiO2 (Oxide

  5. The Role of Osteoblast-Derived Inflammatory Cytokines in Bone Metastatic Breast Cancer

    Science.gov (United States)

    2008-03-01

    tweezers were utilized to remove an eye from the eye socket, and mouse blood was obtained via an eye bleed. The mouse carcass was gently massaged from...and gently massaging the inverted, freshly euthanized carcass from tail to head to obtain fresh blood. Blood was refrigerated overnight to obtain...resorption is disturbed in several pathological conditions, including osteoporosis , rheumatoid arthritis, and skeletal metastases, resulting in osteoclast

  6. Transverse particle dynamics in a Bessel beam

    Czech Academy of Sciences Publication Activity Database

    Milne, G.; Dholakia, K.; McGloin, D.; Volke-Sepulveda, K.; Zemánek, Pavel

    2007-01-01

    Roč. 15, č. 21 (2007), s. 13972-13987 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LC06007; GA MPO(CZ) FT-TA2/059 EU Projects: European Commission(XE) 508952 - ATOM3D Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers or optical manipulation * laser trapping * laser beam shaping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007

  7. Optical sorting of nonspherical and living microobjects in moving interference structures

    Czech Academy of Sciences Publication Activity Database

    Jákl, Petr; Arzola, A. V.; Šiler, Martin; Chvátal, Lukáš; Volke-Sepulveda, K.; Zemánek, Pavel

    2014-01-01

    Roč. 22, č. 24 (2014), s. 29746-29760 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LD14069; GA MŠk LH12018; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : standing-wave * forces * microparticles * tweezers * chromatography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  8. Genotype-Dependent Effect of Exogenous Nitric Oxide on Cd-induced Changes in Antioxidative Metabolism, Ultrastructure, and Photosynthetic Performance in Barley Seedlings (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Chen, Fei; Wang, Fang; Sun, Hongyan

    2010-01-01

    M Cd increased the accumulation of O2•-, H2O2, and malondialdehyde (MDA) but reduced plant height, chlorophyll content, net photosynthetic rate (P n), and biomass, with a much more severe response in the Cd-sensitive genotype. Antioxidant enzyme activities increased significantly under Cd stress......A greenhouse hydroponic experiment was performed using Cd-sensitive (cv. Dong 17) and Cd-tolerant (Weisuobuzhi) barley seedlings to evaluate how different genotypes responded to cadmium (Cd) toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that 5 μ...... in the roots of the tolerant genotype, whereas in leaves of the sensitive genotype, superoxide dismutase (SOD) and ascorbate peroxide (APX), especially cytosol ascorbate peroxidase (cAPX), decreased after 5-15 days Cd exposure. Moreover, Cd induces NO synthesis by stimulating nitrate reductase and nitric oxide...

  9. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.

    Science.gov (United States)

    Landry, Markita P; McCall, Patrick M; Qi, Zhi; Chemla, Yann R

    2009-10-21

    Optical traps or "tweezers" use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments-the most common biological application of optical tweezers-and may guide the development of more robust experimental protocols.

  10. Three-dimensional manipulation of single cells using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  11. Experimental comparison of particle interaction measurement techniques using optical traps

    International Nuclear Information System (INIS)

    Koehler, Timothy P.; Grillet, Anne Mary; Brotherton, Christopher M.; Molecke, Ryan A.

    2008-01-01

    Optical tweezers has become a powerful and common tool for sensitive determination of electrostatic interactions between colloidal particles. Recently, two techniques, 'blinking' tweezers and direct force measurements, have become increasingly prevalent in investigations of inter-particle potentials. The 'blinking' tweezers method acquires physical statistics of particle trajectories to determine drift velocities, diffusion coefficients, and ultimately colloidal forces as a function of the center-center separation of two particles. Direct force measurements monitor the position of a particle relative to the center of an optical trap as the separation distance between two continuously trapped particles is gradually decreased. As the particles near each other, the displacement from the trap center for each particle increases proportional to the inter-particle force. Although commonly employed in the investigation of interactions of colloidal particles, there exists no direct comparison of these experimental methods in the literature. In this study, an experimental apparatus was developed capable of performing both methods and is used to quantify electrostatic potentials between particles in several particle/solvent systems. Comparisons are drawn between the experiments conducted using the two measurement techniques, theory, and existing literature. Forces are quantified on the femto-Newton scale and results agree well with literature values

  12. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active–Passive Calibrated Optical Trap

    DEFF Research Database (Denmark)

    Ritter, Christine M.; Maes, Josep; Oddershede, Lene

    2017-01-01

    As described in the previous chapters, optical tweezers have become a tool of precision for in vitro single-molecule investigations, where the single molecule of interest most often is studied in purified form in an experimental assay with a well-controlled fluidic environment. A well-controlled ...... is that the size and refractive properties of the trapped object and the viscoelastic properties of its environment need not be known. We explain the protocol and demonstrate its use with experiments of trapped granules inside live S.pombe cells.......As described in the previous chapters, optical tweezers have become a tool of precision for in vitro single-molecule investigations, where the single molecule of interest most often is studied in purified form in an experimental assay with a well-controlled fluidic environment. A well......-controlled fluidic environment implies that the physical properties of the liquid, most notably the viscosity, are known and the fluidic environment can, for calibrational purposes, be treated as a simple liquid. In vivo, however, optical tweezers have primarily been used as a tool of manipulation and not so often...

  13. Photonic Interrogation and Control of Nano Processes

    Science.gov (United States)

    Jassemnejad, Baha

    2003-01-01

    My research activities for the summer of 2003 consisted of two projects: One project was concerned with determining a method for predicting the static and dynamic assembly properties of nano-structures using laser tweezers. The other project was to investigate the generation of Laguerre-Gaussian modes using a spatial light modulator incorporated into an optical tweezers system. Concerning the first project, I initially pursued the approach suggested by my NASA colleague Dr. Art Decker. This approach involved mimicking the model of the structure of atomic nucleus for the assembly of 1 to 100 atoms using allowed quadruple transitions induced by orbital angular momentums of a Laguerre- Gaussian (Doughnut) laser mode. After realizing the inaptness of the nuclear model with the nanostructure model as far as the binding forces and transitions were concerned, I focused on using quantum dot modei. This model was not attuned also for the host lattice influences the electronic structure of the quantum dot. Thus one other option that I decided to pursue was the approach of molecular quantum mechanics. In this approach the nanostructure is treated as a large (10-100 nm) molecule constructed from single element or multi-elements. Subsequent to consultation with Dr. Fred Morales, a chemical engineer at NASA GRC, and Dr. David Ball, a computational chemist at Cleveland State University, I acquired a molecular-quantum computation software, Hyperchem 7.0. This software allows simulation of different molecular structures as far as their static and dynamic behaviors are concerned. The time that I spent on this project was about eight weeks. Once this suitable approach was identified, I realized the need to collaborate with a computational quantum chemist to pursue searching for stable nanostructures in the range of 10-100 nm that we can be assembled using laser tweezers. The second project was about generating laser tweezers that possess orbital angular momentum. As shown, we were

  14. Evolution of colloidal dispersions in novel time-varying optical potentials

    Science.gov (United States)

    Koss, Brian Alan

    Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of

  15. Static and dynamic behavior of two optically bound microparticles in a standing wave

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Karásek, Vítězslav; Šiler, Martin; Trojek, Jan; Zemánek, Pavel

    2011-01-01

    Roč. 19, č. 20 (2011), s. 19613-19626 ISSN 1094-4087 R&D Projects: GA ČR GA202/09/0348; GA ČR GPP205/11/P294; GA MŠk ED0017/01/01; GA MŠk(CZ) LC06007 Institutional research plan: CEZ:AV0Z20650511 Keywords : single-beam * binding * particles * nanoparticles * tweezers * matter * forces * light * micromanipulation * manipulation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.587, year: 2011

  16. Simulation of optical soliton control in micro- and nanoring resonator systems

    CERN Document Server

    Daud, Suzairi; Ali, Jalil

    2015-01-01

    This book introduces optical soliton control in micro- and nanoring resonator systems. It describes how the ring resonator systems can be optimized as optical tweezers for photodetection by controlling the input power, ring radii and coupling coefficients of the systems. Numerous arrangements and configurations of micro and nanoring resonator systems are explained. The analytical formulation and optical transfer function for each model and the interaction of the optical signals in the systems are discussed. This book shows that the models designed are able to control the dynamical behaviour of generated signals.

  17. Refractometry of organosilica microspheres

    International Nuclear Information System (INIS)

    Seet, Katrina Y. T.; Vogel, Robert; Nieminen, Timo A.; Knoener, Gregor; Rubinsztein-Dunlop, Halina; Trau, Matt; Zvyagin, Andrei V.

    2007-01-01

    The refractive index of novel organosilica (nano/micro) material is determined using two methods. The first method is based on analysis of optical extinction efficiency of organosilica beads versus wavelength, which is obtained by a standard laboratory spectrometer. The second method relies on the measurable trapping potential of these beads in the focused light beam (laser tweezers). Polystyrene beads were used to test these methods, and the determined dispersion curves of refractive-index values have been found accurate. The refractive index of organosilica beads has been determined to range from 1.60 to 1.51 over the wavelength range of300-1100 nm

  18. Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

    Directory of Open Access Journals (Sweden)

    Żelechowska Kamila

    2016-12-01

    Full Text Available Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers and reusability.

  19. A rate-jump method for characterization of soft tissues using nanoindentation techniques

    KAUST Repository

    Tang, Bin

    2012-01-01

    The biomechanical properties of soft tissues play an important role in their normal physiological and physical function, and may possibly relate to certain diseases. The advent of nanomechanical testing techniques, such as atomic force microscopy (AFM), nano-indentation and optical tweezers, enables the nano/micro-mechanical properties of soft tissues to be investigated, but in spite of the fact that biological tissues are highly viscoelastic, traditional elastic contact theory has been routinely used to analyze experimental data. In this article, a novel rate-jump protocol for treating viscoelasticity in nanomechanical data analysis is described. © 2012 The Royal Society of Chemistry.

  20. Electromagnetic forces and torques in nanoparticles irradiated by plane waves

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.

    2004-01-01

    Optical tweezers and optical lattices are making it possible to control small particles by means of electromagnetic forces and torques. In this context, a method is presented in this work to calculate electromagnetic forces and torques for arbitrarily-shaped objects in the presence of other objects illuminated by a plane wave. The method is based upon an expansion of the electromagnetic field in terms of multipoles around each object, which are in turn used to derive forces and torques analytically. The calculation of multipole coefficients are obtained numerically by means of the boundary element method. Results are presented for both spherical and non-spherical objects

  1. DNA-psoralen interaction: a single molecule experiment.

    Science.gov (United States)

    Rocha, M S; Viana, N B; Mesquita, O N

    2004-11-15

    By attaching one end of a single lambda-DNA molecule to a microscope coverslip and the other end to a polystyrene microsphere trapped by an optical tweezers, we can study the entropic elasticity of the lambda-DNA by measuring force versus extension as we stretch the molecule. This powerful method permits single molecule studies. We are particularly interested in the effects of the photosensitive drug psoralen on the elasticity of the DNA molecule. We have illuminated the sample with different light sources, studying how the different wavelengths affect the psoralen-DNA linkage. To do this, we measure the persistence length of individual DNA-psoralen complexes.

  2. Thermally induced micro-motion by inflection in optical potential

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Jákl, Petr; Brzobohatý, Oto; Ryabov, A.; Filip, R.; Zemánek, Pavel

    2017-01-01

    Roč. 7, MAY (2017), s. 1-8, č. článku 1697. ISSN 2045-2322 R&D Projects: GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : molecular motors * brownian-motion * manipulation * efficiency * tweezers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016

  3. Interference of Multiple Surface Plasmon Polaritons

    International Nuclear Information System (INIS)

    Wang, Dapeng; Yuan, Xiaocong; Lin, Jiao

    2017-01-01

    Benefiting from strongly electromagnetic confinement and enhancement effects, surface plasmon polaritons (SPPs) hold great promises for tailoring light on micro and nanoscale. By contrast with previous efforts which massively concentrate on localized SPP mode, we investigated the propagating SPPs in this paper. A number of symmetrical gratings on metal surface are employed to excite multiple SPPs. Interestingly, the exotic interfering phenomena have been observed. They show good agreement with free-space interferences and take advantage of precise controllability. These findings will be promising in the applications of optical tweezers and SPP lithography. (paper)

  4. Proceedings of the Annual Precise Time and Time Interval (PTTI) applications and Planning Meeting (9th), Held at NASA Goddard Space Flight Center, November 29 - December 1, 1977

    Science.gov (United States)

    1978-03-01

    receiver. 7te rrinzinal caracteristics of such a device are its n.m- sass: srt, r.edir, and lcng term stability. The spectral nuri ty ca "- l .aser is...imperfection of a plastic , inhomogeneous, poorly-understood Earth, then problems begin to arise.The rotation axis of the crust is no longer fixed with...at NRL, the sample was manipulated with cleaned tweezers and placed on fresh, clean aluminum foil; plastic gloves were used also in the-handling of

  5. Orbital angular momentum of a high-order Bessel light beam

    International Nuclear Information System (INIS)

    Volke-Sepulveda, K; Garces-Chavez, V; Chavez-Cerda, S; Arlt, J; Dholakia, K

    2002-01-01

    The orbital angular momentum density of Bessel beams is calculated explicitly within a rigorous vectorial treatment. This allows us to investigate some aspects that have not been analysed previously, such as the angular momentum content of azimuthally and radially polarized beams. Furthermore, we demonstrate experimentally the mechanical transfer of orbital angular momentum to trapped particles in optical tweezers using a high-order Bessel beam. We set transparent particles of known dimensions into rotation, where the sense of rotation can be reversed by changing the sign of the singularity. Quantitative results are obtained for rotation rates. This paper's animations are available from the Multimedia Enhancements page

  6. Application of reverse engineering in the medical industry.

    Science.gov (United States)

    Kaleev, A. A.; Kashapov, L. N.; Kashapov, N. F.; Kashapov, R. N.

    2017-09-01

    The purpose of this research is to develop on the basis of existing analogs new design of ophthalmologic microsurgical tweezers by using reverse engineering techniques. Virtual model was obtained by using a three-dimensional scanning system Solutionix Rexcan 450 MP. Geomagic Studio program was used to remove defects and inaccuracies of the obtained parametric model. A prototype of the finished model was made on the installation of laser stereolithography Projet 6000. Total time of the creation was 16 hours from the reverse engineering procedure to 3D-printing of the prototype.

  7. Controlling Active Liquid Crystal Droplets with Temperature and Surfactant Concentration

    Science.gov (United States)

    Shechter, Jake; Milas, Peker; Ross, Jennifer

    Active matter is the study of driven many-body systems that span length scales from flocking birds to molecular motors. A previously described self-propelled particle system was made from liquid crystal (LC) droplets in water with high surfactant concentration to move particles via asymmetric surface instabilities. Using a similar system, we investigate the driving activity as a function of SDS surfactant concentration and temperature. We then use an optical tweezer to trap and locally heat the droplets to cause hydrodynamic flow and coupling between multiple droplets. This system will be the basis for a triggerable assembly system to build and couple LC droplets. DOD AROMURI 67455-CH-MUR.

  8. Measurement of elastic light scattering from two optically trapped microspheres and red blood cells in a transparent medium.

    Science.gov (United States)

    Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto

    2011-09-15

    Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.

  9. DNA-cisplatin binding mechanism peculiarities studied with single molecule stretching experiments

    Science.gov (United States)

    Crisafuli, F. A. P.; Cesconetto, E. C.; Ramos, E. B.; Rocha, M. S.

    2012-02-01

    We propose a method to determine the DNA-cisplatin binding mechanism peculiarities by monitoring the mechanical properties of these complexes. To accomplish this task, we have performed single molecule stretching experiments by using optical tweezers, from which the persistence and contour lengths of the complexes can be promptly measured. The persistence length of the complexes as a function of the drug total concentration in the sample was used to deduce the binding data, from which we show that cisplatin binds cooperatively to the DNA molecule, a point which so far has not been stressed in binding equilibrium studies of this ligand.

  10. Buckling of Actin-Coated Membranes under Application of a Local Force

    International Nuclear Information System (INIS)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; MacKintosh, F. C.; Chatenay, D.

    2001-01-01

    The mechanical properties of composite membranes obtained by self-assembly of actin filaments with giant fluid vesicles are studied by micromanipulation with optical tweezers. These complexes exhibit typical mechanical features of a solid shell, including a finite in-plane shear elastic modulus (∼10 -6 N /m). A buckling instability is observed when a localized force of the order of 0.5pN is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability

  11. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  12. Experimental and theoretical determination of optical binding forces

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Čižmár, T.; Karásek, Vítězslav; Šiler, Martin; Dholakia, K.; Zemánek, Pavel

    2010-01-01

    Roč. 18, č. 24 (2010), s. 25389-25402 ISSN 1094-4087 R&D Projects: GA ČR GA202/09/0348; GA MŠk OC08034; GA MŠk(CZ) LC06007; GA MŠk ED0017/01/01 Institutional research plan: CEZ:AV0Z20650511 Keywords : optical binding forces * micro-particles * inter-particle effects * optical manipulation * optical tweezers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.749, year: 2010

  13. Three-dimensional mapping of fluorescent nanoparticles using incoherent digital holography.

    Science.gov (United States)

    Yanagawa, Takumi; Abe, Ryosuke; Hayasaki, Yoshio

    2015-07-15

    Three-dimensional mapping of fluorescent nanoparticles was performed by using incoherent digital holography. The positions of the nanoparticles were quantitatively determined by using Gaussian fitting of the axial- and lateral-diffraction distributions through position calibration from the observation space to the sample space. It was found that the axial magnification was constant whereas the lateral magnification linearly depended on the axial position of the fluorescent nanoparticles. The mapping of multiple fluorescent nanoparticles fixed in gelatin and a single fluorescent nanoparticle manipulated with optical tweezers in water were demonstrated.

  14. Local probing and stimulation of neuronal cells by optical manipulation

    Science.gov (United States)

    Cojoc, Dan

    2014-09-01

    During development and in the adult brain, neurons continuously explore the environment searching for guidance cues, leading to the appropriate connections. Elucidating these mechanisms represents a gold goal in neurobiology. Here, I discuss our recent achievements developing new approaches to locally probe the growth cones and stimulate neuronal cell compartments with high spatial and temporal resolution. Optical tweezers force spectroscopy applied in conjunction with metabolic inhibitors reveals new properties of the cytoskeleton dynamics. On the other hand, using optically manipulated microvectors as functionalized beads or filled liposomes, we demonstrate focal stimulation of neurons by small number of signaling molecules.

  15. Quantitative approach to small-scale nonequilibrium systems

    DEFF Research Database (Denmark)

    Dreyer, Jakob K; Berg-Sørensen, Kirstine; Oddershede, Lene B

    2006-01-01

    In a nano-scale system out of thermodynamic equilibrium, it is important to account for thermal fluctuations. Typically, the thermal noise contributes fluctuations, e.g., of distances that are substantial in comparison to the size of the system and typical distances measured. If the thermal...... propose an approximate but quantitative way of dealing with such an out-of-equilibrium system. The limits of this approximate description of the escape process are determined through optical tweezers experiments and comparison to simulations. Also, this serves as a recipe for how to use the proposed...

  16. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Alin [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li Zhaojun [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Zhang Jie [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Xue Gaofeng; Fan Fenliang [Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Liang Yongchao, E-mail: ycliang@caas.ac.cn [College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003 (China)

    2009-12-15

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L{sup -1} Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H{sub 2}O{sub 2} concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  17. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity

    International Nuclear Information System (INIS)

    Song Alin; Li Zhaojun; Zhang Jie; Xue Gaofeng; Fan Fenliang; Liang Yongchao

    2009-01-01

    A series of hydroponics experiments were performed to investigate roles of silicon (Si) in enhancing cadmium (Cd) tolerance in two pakchoi (Brassica chinensis L.) cultivars: i.e. cv. Shanghaiqing, a Cd-sensitive cultivar, and cv. Hangyoudong, a Cd-tolerant cultivar. Plants were grown under 0.5 and 5 mg Cd L -1 Cd stress without or with 1.5 mM Si. Plant growth of the Cd-tolerant cultivar was stimulated at the lower Cd level, but was decreased at the higher Cd level when plants were treated with Cd for one week. However, Plant growth was severely inhibited at both Cd levels as stress duration lasted for up to three weeks. Plant growth of the Cd-sensitive cultivar was severely inhibited at both Cd levels irrespective of Cd stress duration. Addition of Si increased shoot and root biomass of both cultivars at both Cd levels and decreased Cd uptake and root-to-shoot transport. Superoxide dismutase, catalase and ascorbate peroxidase activities decreased, but malondialdehyde and H 2 O 2 concentrations increased at the higher Cd level, which were counteracted by Si added. Ascorbic acid, glutathione and non-protein thiols concentrations increased at the higher Cd level, which were further intensified by addition of Si. The effects of Si and Cd on the antioxidant enzyme activity were further verified by isoenzyme analysis. Silicon was more effective in enhancing Cd tolerance in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. It can be concluded that Si-enhanced Cd tolerance in B. chinensis is attributed mainly to Si-suppressed Cd uptake and root-to-shoot Cd transport and Si-enhanced antioxidant defense activity.

  18. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  19. Optically Driven Mobile Integrated Micro-Tools for a Lab-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Yi-Jui Liu

    2013-04-01

    Full Text Available This study proposes an optically driven complex micromachine with an Archimedes microscrew as the mechanical power, a sphere as a coupler, and three knives as the mechanical tools. The micromachine is fabricated by two-photon polymerization and is portably driven by optical tweezers. Because the microscrew can be optically trapped and rotates spontaneously, it provides driving power for the complex micro-tools. In other words, when a laser beam focuses on the micromachine, the microscrew is trapped toward the focus point and simultaneously rotates. A demonstration showed that the integrated micromachines are grasped by the optical tweezers and rotated by the Archimedes screw. The rotation efficiencies of the microrotors with and without knives are 1.9 rpm/mW and 13.5 rpm/mW, respectively. The micromachine can also be portably dragged along planed routes. Such Archimedes screw-based optically driven complex mechanical micro-tools enable rotation similar to moving machines or mixers, which could contribute to applications for a biological microfluidic chip or a lab-on-a-chip.

  20. Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques.

    Science.gov (United States)

    Corsetti, Stella; Miles, Rachael E H; McDonald, Craig; Belotti, Yuri; Reid, Jonathan P; Kiefer, Johannes; McGloin, David

    2015-12-24

    Using blends of bioethanol and gasoline as automotive fuel leads to a net decrease in the production of harmful emission compared to the use of pure fossil fuel. However, fuel droplet evaporation dynamics change depending on the mixing ratio. Here we use single particle manipulation techniques to study the evaporation dynamics of ethanol/gasoline blend microdroplets. The use of an electrodynamic balance enables measurements of the evaporation of individual droplets in a controlled environment, while optical tweezers facilitate studies of the behavior of droplets inside a spray. Hence, the combination of both methods is perfectly suited to obtain a complete picture of the evaporation process. The influence of adding varied amounts of ethanol to gasoline is investigated, and we observe that droplets with a greater fraction of ethanol take longer to evaporate. Furthermore, we find that our methods are sensitive enough to observe the presence of trace amounts of water in the droplets. A theoretical model, predicting the evaporation of ethanol and gasoline droplets in dry nitrogen gas, is used to explain the experimental results. Also a theoretical estimation of the saturation of the environment, with other aerosols, in the tweezers is carried out.

  1. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation.

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-08-10

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules.

  2. The use of supramolecular chemistry in dye delivery systems

    International Nuclear Information System (INIS)

    Merckel, Daniel Andrew Sturton

    2002-01-01

    This thesis reports an investigation into supramolecular recognition of the sulfate/ sulfonate oxoanionic group, a moiety present in the majority of reactive dyes. In the first section the problems associated with the use of reactive dyes in dyeing cotton fabrics together with a literature review of supramolecular approaches to anion recognition are discussed. Drawing on the current literature concerning anion recognition (in particular the recognition of phosphates), the main body of the thesis concerns the design and synthesis of several series ofC-shaped (tweezer) and tripodal potential sulfate/ sulfonate receptors. These receptors incorporate the H-bond donor groups guanidine and thiourea and to a lesser extent urea and amide functionalities. In addition the behaviour of potential tweezer-like receptor molecules based on s-triazine (derived from cyanuric chloride) has also been investigated. The sulfate/ sulfonate and related phosphonate association properties of these potential receptors have been studied. Particular emphasis has been placed on the solid-state supramolecular structures formed by these complexes as determined by single crystal X-ray structural studies, and several novel and revealing examples have been analysed in detail. NMR titration binding studies have also been undertaken in order to investigate the complexation behaviour of several receptors with ''model dye'' phosphonates and sulfonates in solution. In addition a number of single crystal X-ray crystallographic studies were undertaken for other members of the Grossel research group during the course of this work, and the results of these structural studies are also reported. (author)

  3. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation

    Science.gov (United States)

    Varney, Michael C. M.; Jenness, Nathan J.; Smalyukh, Ivan I.

    2014-02-01

    Despite the recent progress in physical control and manipulation of various condensed matter, atomic, and particle systems, including individual atoms and photons, our ability to control topological defects remains limited. Recently, controlled generation, spatial translation, and stretching of topological point and line defects have been achieved using laser tweezers and liquid crystals as model defect-hosting systems. However, many modes of manipulation remain hindered by limitations inherent to optical trapping. To overcome some of these limitations, we integrate holographic optical tweezers with a magnetic manipulation system, which enables fully holonomic manipulation of defects by means of optically and magnetically controllable colloids used as "handles" to transfer forces and torques to various liquid crystal defects. These colloidal handles are magnetically rotated around determined axes and are optically translated along three-dimensional pathways while mechanically attached to defects, which, combined with inducing spatially localized nematic-isotropic phase transitions, allow for geometrically unrestricted control of defects, including previously unrealized modes of noncontact manipulation, such as the twisting of disclination clusters. These manipulation capabilities may allow for probing topological constraints and the nature of defects in unprecedented ways, providing the foundation for a tabletop laboratory to expand our understanding of the role defects play in fields ranging from subatomic particle physics to early-universe cosmology.

  4. Propagation-invariant vectorial Bessel beams by use of sub wavelength quantized Pancharatnam-Berry phase optics

    International Nuclear Information System (INIS)

    Niv, A.; Biener, G.; Kleiner, V.; Hasman, E.

    2004-01-01

    Full Text:Propagation-invariant scalar fields have been extensively studied both theoretically and experimentally, since they were proposed by Durnin et al. These fields were employed in applications such as optical tweezers and for transport and guiding of microspheres. Although there has recently been considerable theoretical interest in propagation-invariant vectorial beams, experimental studies of such beams have remained somewhat limited. One of the most interesting types of propagation-invariant vectorial beam is the linearly polarized axially symmetric beam (LPASB) [l]. Recently, we introduced and experimentally demonstrated propagation-invariant vectorial Bessel beams with linearly polarized axial symmetry based on quantized Pancharatnam-Berry phase optical elements (QPBOEs) [21 and an axicon. QP-BOEs utilize the geometric phase that accompanies space-variant polarization manipulations to achieve a desired phase modification [31. To test our approach we formed QPBOEs with different polarization orders as computer-generated space-variant sub wavelength gratings upon GaAs wafers for use with 10.6 micron laser radiation. The resultant beams were also transmitted through a polarizer that produced a unique propagation-invariant scalar beam. This beam has a propeller-shaped intensity pattern that can be rotated by simple rotation of the polarizer. We therefore have demonstrated the formation of a vectorial Bessel beam by using simple, lightweight thin elements and exploited that beam to perform a controlled rotation of a propeller-shaped intensity pattern that can be suitable for optical tweezers

  5. Improved Laser Manipulation for On-chip Fabricated Microstructures Based on Solution Replacement and Its Application in Single Cell Analysis

    Directory of Open Access Journals (Sweden)

    Tao Yue

    2014-02-01

    Full Text Available In this paper, we present the fabrication and assembly of microstructures inside a microfluidic device based on a photocrosslinkable resin and optical tweezers. We also report a method of solution replacement inside the microfluidic channel in order to improve the manipulation performance and apply the assembled microstructures for single cell cultivation. By the illumination of patterned ultraviolet (UV through a microscope, microstructures of arbitrary shape were fabricated by the photocrosslinkable resin inside a microfluidic channel. Based on the microfluidic channel with both glass and polydimethylsiloxane (PDMS surfaces, immovable and movable microstructures were fabricated and manipulated. The microstructures were fabricated at the desired places and manipulated by the optical tweezers. A rotational microstructure including a microgear and a rotation axis was assembled and rotated in demonstrating this technique. The improved laser manipulation of microstructures was achieved based on the on-chip solution replacement method. The manipulation speed of the microstructures increased when the viscosity of the solvent decreased. The movement efficiency of the fabricated microstructures inside the lower viscosity solvent was evaluated and compared with those microstructures inside the former high viscosity solvent. A novel cell cage was fabricated and the cultivation of a single yeast cell (w303 was demonstrated in the cell cage, inside the microfluidic device.

  6. Optofluidic control of axonal guidance

    Science.gov (United States)

    Gu, Ling; Ordonez, Simon; Black, Bryan; Mohanty, Samarendra K.

    2013-03-01

    Significant efforts are being made for control on axonal guidance due to its importance in nerve regeneration and in the formation of functional neuronal circuitry in-vitro. These include several physical (topographic modification, optical force, and electric field), chemical (surface functionalization cues) and hybrid (electro-chemical, photochemical etc) methods. Here, we report comparison of the effect of linear flow versus microfluidic flow produced by an opticallydriven micromotor in guiding retinal ganglion axons. A circularly polarized laser tweezers was used to hold, position and spin birefringent calcite particle near growth cone, which in turn resulted in microfluidic flow. The flow rate and resulting shear-force on axons could be controlled by a varying the power of the laser tweezers beam. The calcite particles were placed separately in one chamber and single particle was transported through microfluidic channel to another chamber containing the retina explant. In presence of flow, the turning of axons was found to strongly correlate with the direction of flow. Turning angle as high as 90° was achieved. Optofluidic-manipulation can be applied to other types of mammalian neurons and also can be extended to stimulate mechano-sensing neurons.

  7. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    International Nuclear Information System (INIS)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single-beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell's nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell's nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely non-destructive fashion that permits discerning differences between cell types and cellular activity

  8. Experiment study and FEM simulation on erythrocytes under linear stretching of optical micromanipulation

    Science.gov (United States)

    Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi

    2017-08-01

    The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.

  9. Force-dependent melting of supercoiled DNA at thermophilic temperatures.

    Science.gov (United States)

    Galburt, E A; Tomko, E J; Stump, W T; Ruiz Manzano, A

    2014-01-01

    Local DNA opening plays an important role in DNA metabolism as the double-helix must be melted before the information contained within may be accessed. Cells finely tune the torsional state of their genomes to strike a balance between stability and accessibility. For example, while mesophilic life forms maintain negatively superhelical genomes, thermophilic life forms use unique mechanisms to maintain relaxed or even positively supercoiled genomes. Here, we use a single-molecule magnetic tweezers approach to quantify the force-dependent equilibrium between DNA melting and supercoiling at high temperatures populated by Thermophiles. We show that negatively supercoiled DNA denatures at 0.5 pN lower tension at thermophilic vs. mesophilic temperatures. This work demonstrates the ability to monitor DNA supercoiling at high temperature and opens the possibility to perform magnetic tweezers assays on thermophilic systems. The data allow for an estimation of the relative energies of base-pairing and DNA bending as a function of temperature and support speculation as to different general mechanisms of DNA opening in different environments. Lastly, our results imply that average in vivo DNA tensions range between 0.3 and 1.1 pN. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment.

    Science.gov (United States)

    Zhou, Zhuo Long; Ma, Jing; Tong, Ming-Hui; Chan, Barbara Pui; Wong, Alice Sze Tsai; Ngan, Alfonso Hing Wan

    The adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy. The effects of PMA on K562 and THP1 leukemia cells were studied, and the results showed that PMA treatment significantly increased cell adhesion with extracellular matrix proteins, bone marrow stromal cells, and human fibroblasts. PMA treatment also significantly increased the traction of THP1 cells on bovine serum albumin proteins, although the effect on K562 cells was insignificant. Western blots showed an increased expression of E-cadherin and vimentin proteins after the leukemia cells were treated with PMA. The study suggests that PMA upregulates adhesion and thus suppresses the migration of both K562 and THP1 cells in their microenvironment. The ability of optical tweezers and traction-force microscopy to measure directly pN-level cell-protein or cell-cell contact was also demonstrated.

  11. Motor skills in Czech children with attention-deficit/hyperactivity disorder and their neurotypical counterparts.

    Science.gov (United States)

    Scharoun, S M; Bryden, P J; Otipkova, Z; Musalek, M; Lejcarova, A

    2013-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed neurobehavioural disorder. Characterized by recurring problems with impulsiveness and inattention in combination with hyperactivity, motor impairments have also been well documented in the literature. The aim of this study was to compare the fine and gross motor skills of male and female children with ADHD and their neurotypical counterparts within seven skill assessments. This included three fine motor tasks: (1) spiral tracing, (2) dot filling, (3) tweezers and beads; and four gross motor tasks: (1) twistbox, (2) foot tapping, (3) small plate finger tapping, and (4) large plate finger tapping. It was hypothesized that children with ADHD would display poorer motor skills in comparison to neurotypical controls in both fine and gross motor assessments. However, statistically significant differences between the groups only emerged in four of the seven tasks (spiral tracing, dot filling, tweezers and beads and foot tapping). In line with previous findings, the complexity underlying upper limb tasks solidified the divide in performance between children with ADHD and their neurotypical counterparts. In light of similar research, impairments in lower limb motor skill were also observed. Future research is required to further delineate trends in motor difficulties in ADHD, while further investigating the underlying mechanisms of impairment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effect of infrared light on live blood cells: Role of β-carotene.

    Science.gov (United States)

    Barkur, Surekha; Bankapur, Aseefhali; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    We have utilized Raman tweezers to measure and assign micro-Raman spectra of optically trapped, live red blood cells (RBCs), white blood cells (WBCs) and platelets. Various types of WBCs- both granulocytes, lymphocytes, and their different types have been studied. The Raman bands are assigned to different biomolecules of blood cells. The Raman spectra thus obtained has been enabled detection of β-carotene in these blood cells, the spectral features of which act as a signature that facilitates experimental probing of the effect of 785nm laser light on different blood cells as a function of incident laser power in the mW range. The spectral changes that we obtain upon laser irradiation indicate that, both haemoglobin as well as the cell membrane sustains damage. In case of lymphocytes and platelets the peaks corresponding to β-carotene showed drastic changes. Thorough analysis of the spectral changes indicates possibility of free radical induced damage of β-carotene in lymphocytes and platelets. Among different blood cells, RBCs have a power threshold of only 10mW. The power threshold for other types of blood cells is somewhat higher, but always below about 30mW. These values are likely to serve as useful guides for Raman tweezers based experiments on live cells. Copyright © 2017. Published by Elsevier B.V.

  13. Effects of glovebox gloves on grip and key pinch strength and contact forces for simulated manual operations with three commonly used hand tools.

    Science.gov (United States)

    Sung, Peng-Cheng

    2014-01-01

    This study examined the effects of glovebox gloves for 11 females on maximum grip and key pinch strength and on contact forces generated from simulated tasks of a roller, a pair of tweezers and a crescent wrench. The independent variables were gloves fabricated of butyl, CSM/hypalon and neoprene materials; two glove thicknesses; and layers of gloves worn including single, double and triple gloving. CSM/hypalon and butyl gloves produced greater grip strength than the neoprene gloves. CSM/hypalon gloves also lowered contact forces for roller and wrench tasks. Single gloving and thin gloves improved hand strength performances. However, triple layers lowered contact forces for all tasks. Based on the evaluating results, selection and design recommendations of gloves for three hand tools were provided to minimise the effects on hand strength and optimise protection of the palmar hand in glovebox environments. To improve safety and health in the glovebox environments where gloves usage is a necessity, this study provides recommendations for selection and design of glovebox gloves for three hand tools including a roller, a pair of tweezers and a crescent wrench based on the results discovered in the experiments.

  14. Combining optical trapping in a microfluidic channel with simultaneous micro-Raman spectroscopy and motion detection

    Science.gov (United States)

    Lawton, Penelope F.; Saunter, Christopher D.; Girkin, John M.

    2014-03-01

    Since their invention by Ashkin optical tweezers have demonstrated their ability and versatility as a non-invasive tool for micromanipulation. One of the most useful additions to the basic optical tweezers system is micro-Raman spectroscopy, which permits highly sensitive analysis of single cells or particles. We report on the development of a dual laser system combining two spatial light modulators to holographically manipulate multiple traps (at 1064nm) whilst undertaking Raman spectroscopy using a 532nm laser. We can thus simultaneously trap multiple particles and record their Raman spectra, without perturbing the trapping system. The dual beam system is built around micro-fluidic channels where crystallisation of calcium carbonate occurs on polymethylmethacrylate (PMMA) beads. The setup is designed to simulate at a microscopic level the reactions that occur on items in a dishwasher, where permanent filming of calcium carbonate on drinking glasses is a problem. Our system allows us to monitor crystal growth on trapped particles in which the Raman spectrum and changes in movement of the bead are recorded. Due to the expected low level of crystallisation on the bead surfaces this allows us to obtain results quickly and with high sensitivity. The long term goal is to study the development of filming on samples in-situ with the microfl.uidic system acting as a model dishwasher.

  15. Appraisal of psychomotor skills of dental students at University Complutense of Madrid.

    Science.gov (United States)

    de Andrés, Alfonso García; Sánchez, Esperanza; Hidalgo, Juan J; Díaz, María J

    2004-02-01

    The aim of this study was to evaluate the psychomotor skills of the dental students at University Complutense of Madrid (UCM), using a battery of psychometric tests. The sample comprised 306 students of the 1st, 2nd, 3rd and 4th years of Odontology, who, during the last month of the academic term, took the test on rotation of solid shapes, the Embedded Figures test in its group form (GEFT), the O'Connor Tweezer test, the MacQuarrie test for mechanical ability and the indirect vision test. Before these tests began, some personal data of all students were collected. The results showed some statistically significant correlation between several personal variables (sex, manual dominance and previous skills) and performance in the psychometric tests, although no significant relation was found between these variables and the students' academic qualifications. When comparisons were made between the psychomotor tests and the academic results of the students, significant differences appeared in the tracing and dotting subtests of the MacQuarrie test, whereby those students with higher practical qualifications reached the best punctuation. In the O'Connor Tweezer test, the students who obtained the worst results were those with lower qualifications. These data could serve to detect at an early stage those students who need greater educational support. No relation was found between the GEFT and the indirect vision test.

  16. Investigation on cytoskeleton dynamics for no-adherent cells subjected to point-like stimuli by digital holographic microscopy and holographic optical trapping

    Science.gov (United States)

    Miccio, Lisa; Merola, Francesco; Memmolo, Pasquale; Mugnano, Martina; Fusco, Sabato; Netti, Paolo A.; Ferraro, Pietro

    2014-05-01

    Guiding, controlling and studying cellular functions are challenging themes in the biomedical field, as they are fundamental prerequisites for new therapeutic strategies from tissue regeneration to controlled drug delivery. In recent years, multidisciplinary studies in nanotechnology offer new tools to investigate important biophysical phenomena in response to the local physical characteristics of the extracellular environment, some examples are the mechanisms of cell adhesion, migration, communication and differentiation. Indeed for reproducing the features of the extracellular matrix in vitro, it is essential to develop active devices that evoke as much as possible the natural cellular environment. Our investigation is in the framework of studying and clarifying the biophysical mechanisms of the interaction between cells and the microenvironment in which they exist. We implement an optical tweezers setup to investigate cell material interaction and we use Digital Holography as non-invasive imaging technique in microscopy. We exploit Holographic Optical Tweezers arrangement in order to trap and manage functionalized micrometric latex beads to induce mechanical deformation in suspended cells. A lot of papers in literature examine the dynamics of the cytoskeleton when cells adhere on substrates and nowadays well established cell models are based on such research activities. Actually, the natural cell environment is made of a complex extracellular matrix and the single cell behavior is due to intricate interactions with the environment and are strongly correlated to the cell-cell interactions. Our investigation is devoted to understand the inner cell mechanism when it is mechanically stressed by point-like stimulus without the substrate influence.

  17. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.

    Science.gov (United States)

    Wang, Chenlu; Chowdhury, Sagar; Gupta, Satyandra K; Losert, Wolfgang

    2013-04-01

    The challenge to wide application of optical tweezers in biological micromanipulation is the photodamage caused by high-intensity laser exposure to the manipulated living systems. While direct exposure to infrared lasers is less likely to kill cells, it can affect cell behavior and signaling. Pushing cells with optically trapped objects has been introduced as a less invasive alternative, but the technique includes some exposure of the biological object to parts of the optical tweezer beam. To keep the cells farther away from the laser, we introduce an indirect pushing-based technique for noninvasive manipulation of sensitive cells. We compare how cells respond to three manipulation approaches: direct manipulation, pushing, and indirect pushing. We find that indirect manipulation techniques lessen the impact of manipulation on cell behavior. Cell survival increases, as does the ability of cells to maintain shape and wiggle. Our experiments also demonstrate that indirect pushing allows cell-cell contacts to be formed in a controllable way, while retaining the ability of cells to change shape and move.

  18. Use of an optical trap for study of host-pathogen interactions for dynamic live cell imaging.

    Science.gov (United States)

    Tam, Jenny M; Castro, Carlos E; Heath, Robert J W; Mansour, Michael K; Cardenas, Michael L; Xavier, Ramnik J; Lang, Matthew J; Vyas, Jatin M

    2011-07-28

    Dynamic live cell imaging allows direct visualization of real-time interactions between cells of the immune system(1, 2); however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. Historically, intercellular contact events such as phagocytosis(3) have been imaged by mixing two cell types, and then continuously scanning the field-of-view to find serendipitous intercellular contacts at the appropriate stage of interaction. The stochastic nature of these events renders this process tedious, and it is difficult to observe early or fleeting events in cell-cell contact by this approach. This method requires finding cell pairs that are on the verge of contact, and observing them until they consummate their contact, or do not. To address these limitations, we use optical trapping as a non-invasive, non-destructive, but fast and effective method to position cells in culture. Optical traps, or optical tweezers, are increasingly utilized in biological research to capture and physically manipulate cells and other micron-sized particles in three dimensions(4). Radiation pressure was first observed and applied to optical tweezer systems in 1970(5, 6), and was first used to control biological specimens in 1987(7). Since then, optical tweezers have matured into a technology to probe a variety of biological phenomena(8-13). We describe a method(14) that advances live cell imaging by integrating an optical trap with spinning disk confocal microscopy with temperature and humidity control to provide exquisite spatial and temporal control of pathogenic organisms in a physiological environment to facilitate interactions with host cells, as determined by the operator. Live, pathogenic organisms like Candida albicans and Aspergillus fumigatus, which can cause potentially lethal, invasive infections in immunocompromised individuals(15, 16) (e.g. AIDS

  19. EDITORIAL: Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems

    Science.gov (United States)

    Denz, Cornelia; Simoni, Francesco

    2009-03-01

    Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are

  20. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    Energy Technology Data Exchange (ETDEWEB)

    Adamic, M.L., E-mail: Mary.Adamic@inl.gov [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States); Vockenhuber, C. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Watrous, M.G. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83402 (United States)

    2015-10-15

    This paper presents an evaluation of an alternate method for preparing environmental samples for {sup 129}I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  1. Software Architecture for a Virtual Environment for Nano Scale Assembly (VENSA).

    Science.gov (United States)

    Lee, Yong-Gu; Lyons, Kevin W; Feng, Shaw C

    2004-01-01

    A Virtual Environment (VE) uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. The information flow between the user and the VE is bidirectional and the user can influence the environment. The software development of a VE requires orchestrating multiple peripherals and computers in a synchronized way in real time. Although a multitude of useful software components for VEs exists, many of these are packaged within a complex framework and can not be used separately. In this paper, an architecture is presented which is designed to let multiple frameworks work together while being shielded from the application program. This architecture, which is called the Virtual Environment for Nano Scale Assembly (VENSA), has been constructed for interfacing with an optical tweezers instrument for nanotechnology development. However, this approach can be generalized for most virtual environments. Through the use of VENSA, the programmer can rely on existing solutions and concentrate more on the application software design.

  2. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  3. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    Science.gov (United States)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  4. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    Science.gov (United States)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  5. An approach to spin-resolved molecular gas microscopy

    Science.gov (United States)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  6. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy.

    Science.gov (United States)

    Spyratou, E; Makropoulou, M; Mourelatou, E A; Demetzos, C

    2012-12-31

    Reactive oxygen species (ROS) are usually involved in two opposite procedures related to cancer: initiation, progression and metastasis of cancer, as well as in all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy. This review is concentrated in new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. Novel biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy are discussed, including optical tweezers and atomic force microscopy. This review highlights how these techniques are playing a critical role in recent and future cancer fighting applications. We can conclude that Biophotonics and nanomedicine are the future for cancer biology and disease management, possessing unique potential for early detection, accurate diagnosis, dosimetry and personalized treatment of biomedical applications targeting cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    Science.gov (United States)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  8. Non-Protein Coding RNAs

    CERN Document Server

    Walter, Nils G; Batey, Robert T

    2009-01-01

    This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and ot...

  9. Protein friction limits diffusive and directed movements of kinesin motors on microtubules.

    Science.gov (United States)

    Bormuth, Volker; Varga, Vladimir; Howard, Jonathon; Schäffer, Erik

    2009-08-14

    Friction limits the operation of macroscopic engines and is critical to the performance of micromechanical devices. We report measurements of friction in a biological nanomachine. Using optical tweezers, we characterized the frictional drag force of individual kinesin-8 motor proteins interacting with their microtubule tracks. At low speeds and with no energy source, the frictional drag was related to the diffusion coefficient by the Einstein relation. At higher speeds, the frictional drag force increased nonlinearly, consistent with the motor jumping 8 nanometers between adjacent tubulin dimers along the microtubule, and was asymmetric, reflecting the structural polarity of the microtubule. We argue that these frictional forces arise from breaking bonds between the motor domains and the microtubule, and they limit the speed and efficiency of kinesin.

  10. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    International Nuclear Information System (INIS)

    Adamic, M.L.; Lister, T.E.; Dufek, E.J.; Jenson, D.D.; Olson, J.E.; Vockenhuber, C.; Watrous, M.G.

    2015-01-01

    This paper presents an evaluation of an alternate method for preparing environmental samples for "1"2"9I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  11. The self-orientation of mammalian cells in optical tweezers—the importance of the nucleus

    International Nuclear Information System (INIS)

    Perney, Nicolas M B; Horak, Peter; Melvin, Tracy; Hanley, Neil A

    2012-01-01

    Here we present the first evidence showing that eukaryotic cells can be stably trapped in a single focused Gaussian beam with an orientation that is defined by the nucleus. A mammalian eukaryotic cell (in suspension) is trapped and is re-oriented in the focus of a linearly polarized Gaussian beam with a waist of dimension smaller than the radius of the nucleus. The cell reaches a position relative to the focus that is dictated by the nucleus and nuclear components. Our studies illustrate that the force exerted by the optical tweezers at locations within the cell can be predicted theoretically; the data obtained in this way is consistent with the experimental observations. (communication)

  12. Automated aberration correction of arbitrary laser modes in high numerical aperture systems.

    Science.gov (United States)

    Hering, Julian; Waller, Erik H; Von Freymann, Georg

    2016-12-12

    Controlling the point-spread-function in three-dimensional laser lithography is crucial for fabricating structures with highest definition and resolution. In contrast to microscopy, aberrations have to be physically corrected prior to writing, to create well defined doughnut modes, bottlebeams or multi foci modes. We report on a modified Gerchberg-Saxton algorithm for spatial-light-modulator based automated aberration compensation to optimize arbitrary laser-modes in a high numerical aperture system. Using circularly polarized light for the measurement and first-guess initial conditions for amplitude and phase of the pupil function our scalar approach outperforms recent algorithms with vectorial corrections. Besides laser lithography also applications like optical tweezers and microscopy might benefit from the method presented.

  13. The Effect of a Helix-Coil Transition on the Extension Elasticity

    Science.gov (United States)

    Buhot, Arnaud; Halperin, Avi

    2000-03-01

    The secondary structure of a polymer affects its deformation behavior in accordance with the Le Chatelier principle. An important example of such secondary structure is the alpha helix encountered in polypeptides. Similar structure was recently proposed for PEO in aqueous media. Our discussion concerns the coupling of the cooperative helix-coil transition and the extension elasticity. In particular, we analyze the extension of a long single chain by use of optical tweezers or AFM. We consider chains that exist in the coil-state when unperturbed. The transition nevertheless occurs because the extension favors the low entropy helical state. As a result, the corresponding force law exhibits a plateau. The analysis of this situation involves two ingredients: (I) the stretching free energy penalty for a rod-coil mutiblock copolymer (II) the entropy associated with the possible placements of the rod and coil blocks.

  14. A highly compliant protein native state with a spontaneous-like mechanical unfolding pathway

    DEFF Research Database (Denmark)

    Heiðarsson, Pétur Orri; Valpapuram, Immanuel; Camilloni, Carlo

    2012-01-01

    The mechanical properties of proteins and their force-induced structural changes play key roles in many biological processes. Previous studies have shown that natively folded proteins are brittle under tension, unfolding after small mechanical deformations, while partially folded intermediate...... states, such as molten globules, are compliant and can deform elastically a great amount before crossing the transition state barrier. Moreover, under tension proteins appear to unfold through a different sequence of events than during spontaneous unfolding. Here, we describe the response to force...... of the four-α-helix acyl-CoA binding protein (ACBP) in the low-force regime using optical tweezers and ratcheted molecular dynamics simulations. The results of our studies reveal an unprecedented mechanical behavior of a natively folded protein. ACBP displays an atypical compliance along two nearly orthogonal...

  15. The colour of thermal noise in classical Brownian motion: a feasibility study of direct experimental observation

    International Nuclear Information System (INIS)

    Berg-Soerensen, Kirstine; Flyvbjerg, Henrik

    2005-01-01

    One hundred years after Einstein modelled Brownian motion, a central aspect of this motion in incompressible fluids has not been verified experimentally: the thermal noise that drives the Brownian particle, is not white, as in Einstein's simple theory. It is slightly coloured, due to hydrodynamics and the fluctuation-dissipation theorem. This theoretical result from the 1970s was prompted by computer simulation results in apparent violation of Einstein's theory. We discuss how a direct experimental observation of this colour might be carried out by using optical tweezers to separate the thermal noise from the particle's dynamic response to it. Since the thermal noise is almost white, very good statistics is necessary to resolve its colour. That requires stable equipment and long recording times, possibly making this experiment one for the future only. We give results for experimental requirements and for stochastic errors as functions of experimental window and measurement time, and discuss some potential sources of systematic errors

  16. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  17. Mechanistic basis of otolith formation during teleost inner ear development.

    Science.gov (United States)

    Wu, David; Freund, Jonathan B; Fraser, Scott E; Vermot, Julien

    2011-02-15

    Otoliths, which are connected to stereociliary bundles in the inner ear, serve as inertial sensors for balance. In teleostei, otolith development is critically dependent on flow forces generated by beating cilia; however, the mechanism by which flow controls otolith formation remains unclear. Here, we have developed a noninvasive flow probe using optical tweezers and a viscous flow model in order to demonstrate how the observed hydrodynamics influence otolith assembly. We show that rotational flow stirs and suppresses precursor agglomeration in the core of the cilia-driven vortex. The velocity field correlates with the shape of the otolith and we provide evidence that hydrodynamics is actively involved in controlling otolith morphogenesis. An implication of this hydrodynamic effect is that otolith self-assembly is mediated by the balance between Brownian motion and cilia-driven flow. More generally, this flow feature highlights an alternative biological strategy for controlling particle localization in solution. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Vectorial optical fields fundamentals and applications

    CERN Document Server

    2014-01-01

    Polarization is a vector nature of light that plays an important role in optical science and engineering. While existing textbook treatments of light assume beams with spatially homogeneous polarization, there is an increasing interest in vectorial optical fields with spatially engineered states of polarization. New effects and phenomena have been predicted and observed for light beams with these unconventional polarization states. This edited review volume aims to provide a comprehensive overview and summarize the latest developments in this important emerging field of optics. This book will cover the fundamentals including mathematical and physical descriptions, experimental generation, manipulation, focusing, propagation, and the applications of the engineered vectorial optical fields in focal field engineering, plasmonic focusing and optical antenna, single molecular imaging, optical tweezers/trapping, as well as optical measurements and instrumentations. Readership: Students, professionals, post-graduat...

  19. Nonparaxial Bessel and Bessel-Gauss pincers light-sheets

    Science.gov (United States)

    Mitri, F. G.

    2017-01-01

    Nonparaxial optical Bessel and Bessel-Gauss pincers optical-sheets are introduced based upon the angular spectrum decomposition in plane waves. The angular spectrum function and the beam-shape coefficients are expressed by means of improper integrals computed numerically. The radiated component of the electric field is also evaluated, displaying unique features of the nonparaxial Bessel pincers light-sheets. This new type of auto-focusing light-sheets finds potential applications in the development of novel methods in optical light-sheet tweezers for particle manipulation in opto-fluidics, particle sizing and imaging. Numerical predictions for the scattering, radiation force and torque, and particle dynamics also benefit from the developed beam solution.

  20. New records of three hippoboscid species on newly captured birds from nature in Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Frederico Fontanelli Vaz

    Full Text Available Abstract The aims of this study was to provide new records of hippoboscid flies collected over an one-year period on newly captured birds from nature in the state of Paraná, Brazil. The birds were received by a wildlife center in Tijucas do Sul and the hippoboscid flies were collect by hand or by tweezers, generating a prevalence of 0.7% (16/2232 of parasitized birds. New information about distribution of hippoboscid flies on Asio clamator, Rupornis magnirostris and Athene cunicularia was reported in the state of Paraná. The Caracara plancus, Falco peregrinus and Penelope obscura are new host species for Ornithoctona erythrocephala in the state of Paraná, and the Asio stygius for Icosta rufiventris and Ornithoica vicina in Brazil. This study provided new information about hosts and distribution of hippoboscid flies in Brazilian birds.

  1. α-Actinin/titin interaction: A dynamic and mechanically stable cluster of bonds in the muscle Z-disk.

    Science.gov (United States)

    Grison, Marco; Merkel, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina; Rief, Matthias

    2017-01-31

    Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically.

  2. DNA: Polymer and molecular code

    Science.gov (United States)

    Shivashankar, G. V.

    1999-10-01

    The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes

  3. Chiral Rayleigh particles discrimination in dynamic dual optical traps

    International Nuclear Information System (INIS)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2017-01-01

    Highlights: • A chiral optical conveyor belt for enantiomeric separation of nanopar-ticles is numerically demonstrated. • Chiral resolution has been theoretically analyzed for chiral spheres immersed in water. • Electromagnetic fields have been designed for obtaining Chiral selective optical tweezers to separate enantiomers in different spatial regions. - Abstract: A chiral optical conveyor belt for enantiomeric separation of nanoparticles is numerically demonstrated by using different types of counter propagating elliptical Laguerre Gaussian beams with different beam waist and topological charge. The analysis of chiral resolution has been made for particles immersed in water demonstrating that in the analyzed conditions one type of enantiomer is trapped in a deep potential and the others are transported by the chiral conveyor toward another trap located in a different geometrical region.

  4. Transfer of non-Gaussian quantum states of mechanical oscillator to light

    Science.gov (United States)

    Filip, Radim; Rakhubovsky, Andrey A.

    2015-11-01

    Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.

  5. Mechanisms of Cellular Proteostasis: Insights from Single-Molecule Approaches

    Science.gov (United States)

    Bustamante, Carlos J.; Kaiser, Christian M.; Maillard, Rodrigo A.; Goldman, Daniel H.; Wilson, Christian A.M.

    2015-01-01

    Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins. PMID:24895851

  6. Orthogonal trapping and sensing with long working distance optics [invited

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2010-01-01

    We are developing a next generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials. The workstation......Photonics Workstation that allows the user to directly control and simultaneously measure a portfolio of important chemical and biological processes. We arc currently able to generate up to 100 powerful optical traps using well-separated objectives, which eliminates the need for high numerical aperture oil or water...... immersion objectives required in conventional optical tweezers. This generates a large field of view and leaves vital space for integrating other enabling tools for probing the trapped particles, such as linear and nonlinear microscopy or micro-spectroscopy. Together with chcmists at another Danish...

  7. Building one molecule from a reservoir of two atoms.

    Science.gov (United States)

    Liu, L R; Hood, J D; Yu, Y; Zhang, J T; Hutzler, N R; Rosenband, T; Ni, K-K

    2018-05-25

    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Photorefractive Axicon: Study of Light-induced Effect by Bessel Beam in Photorefractive Crystal

    International Nuclear Information System (INIS)

    Vieira, T A; Gesualdi, M R R; Zamboni-Rached, M; Muramatsu, M

    2011-01-01

    In this work, we present the theoretical and computational study of the original analysis of the light-induced effects by Bessel beams in photorefractive crystals. Modern applications of these beams as: metrological, alignment of optical systems, optical tweezers, non linear optics, optical communication, and others, becoming a very interesting substitute for a Gaussian beam when this is subject to diffraction and dispersion effects to large distance propagation. On the other hand, the photorefractive crystals are very important materials for applications in non-linear optics, holographic storage, interferometry and optical information processing. We perform an analysis of the index refraction modulation generated by Bessel beam in photorefractive medium discussing the possibility this optical material to control and generation of Bessel beam properties.

  9. Motility, Force Generation, and Energy Consumption of Unicellular Parasites.

    Science.gov (United States)

    Hochstetter, Axel; Pfohl, Thomas

    2016-07-01

    Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Polymer translocation under a pulling force: Scaling arguments and threshold forces

    Science.gov (United States)

    Menais, Timothée

    2018-02-01

    DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .

  11. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements......This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... compression factors of two, which is not achievable with binary phase encoding, have been successfully demonstrated. In addition, the GPC method has been miniaturized and implemented in a planar optical platform and shown to work acceptably, with relatively high visibility. Furthermore, the GPC method has...

  12. A dark hollow beam from a selectively liquid-filled photonic crystal fibre

    International Nuclear Information System (INIS)

    Mei-Yan, Zhang; Shu-Guang, Li; Yan-Yan, Yao; Bo, Fu; Lei, Zhang

    2010-01-01

    This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality

    Directory of Open Access Journals (Sweden)

    Michael Bugiel

    2015-11-01

    Full Text Available Microspheres are often used as handles for protein purification or force spectroscopy. For example, optical tweezers apply forces on trapped particles to which motor proteins are attached. However, even though many attachment strategies exist, procedures are often limited to a particular biomolecule and prone to non-specific protein or surface attachment. Such interactions may lead to loss of protein functionality or microsphere clustering. Here, we describe a versatile coupling procedure for GFP-tagged proteins via a polyethylene glycol linker preserving the functionality of the coupled proteins. The procedure combines well-established protocols, is highly reproducible, reliable, and can be used for a large variety of proteins. The coupling is efficient and can be tuned to the desired microsphere-to-protein ratio. Moreover, microspheres hardly cluster or adhere to surfaces. Furthermore, the procedure can be adapted to different tags providing flexibility and a promising attachment strategy for any tagged protein.

  14. Essentials of single-cell analysis concepts, applications and future prospects

    CERN Document Server

    Santra, Tuhin

    2016-01-01

    This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in acad...

  15. Hair removal in adolescence

    Directory of Open Access Journals (Sweden)

    Sandra Pereira

    2015-06-01

    Full Text Available Introduction: Due to hormonal stimulation during puberty, changes occur in hair type and distribution. In both sexes, body and facial unwanted hair may have a negative psychological impact on the teenager. There are several available methods of hair removal, but the choice of the most suitable one for each individual can raise doubts. Objective: To review the main methods of hair removal and clarify their indications, advantages and disadvantages. Development: There are several removal methods currently available. Shaving and depilation with chemicals products are temporary methods, that need frequent repetition, because hair removal is next to the cutaneous surface. The epilating methods in which there is full hair extraction include: epilation with wax, thread, tweezers, epilating machines, laser, intense pulsed light, and electrolysis. Conclusions: The age of beginning hair removal and the method choice must be individualized and take into consideration the skin and hair type, location, dermatological and endocrine problems, removal frequency, cost and personal preferences.

  16. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit

    International Nuclear Information System (INIS)

    Schmidt, Matthias; Fortini, Andrea; Dijkstra, Marjolein

    2004-01-01

    Using density functional theory and Monte Carlo simulations we investigate the Asakura-Oosawa-Vrij mixture of hard sphere colloids and non-adsorbing ideal polymers under selective confinement of the colloids to a planar slab geometry. This is a model for confinement of colloid-polymer mixtures by either two parallel walls with a semi-permeable polymer coating or through the use of laser tweezers. We find that such a pore favours the colloidal gas over the colloidal liquid phase and induces capillary evaporation. A treatment based on the Kelvin equation gives a good account of the location of the capillary binodal for large slit widths. The colloid density profile is found to exhibit a minimum (maximum) at contact with the wall for large (small) slit widths

  17. Lectures on light nonlinear and quantum optics using the density matrix

    CERN Document Server

    Rand, Stephen C.

    2016-01-01

    This book bridges the gap between introductory quantum mechanics and the research front of modern optics and scientific fields that make use of light. While suitable as a reference for the specialist in quantum optics, it also targets non-specialists from other disciplines who need to understand light and its uses in research. It introduces a single analytic tool, the density matrix, to analyze complex optical phenomena encountered in traditional as well as cross-disciplinary research. It moves swiftly in a tight sequence from elementary to sophisticated topics in quantum optics, including optical tweezers, laser cooling, coherent population transfer, optical magnetism, electromagnetically induced transparency, squeezed light, and cavity quantum electrodynamics. A systematic approach starts with the simplest systems—stationary two-level atoms—then introduces atomic motion, adds more energy levels, and moves on to discuss first-, second-, and third-order coherence effects that are the basis for analyzing n...

  18. First record of Philornis glaucinis Dodge & Aitken, 1968 (Diptera: Muscidae in Thalurania glaucopis Gmelin, 1788 (Aves: Trochilidae

    Directory of Open Access Journals (Sweden)

    Hermes Ribeiro Luz

    2010-09-01

    Full Text Available From the groups causing myiasis, the genus Philornis Meinert, 1890 appears as the only representative of the family Muscidae, obligatorily associated with birds. Thus, the aim of this work was to report the occurrence of Philornis in Thalurania glaucopis (Trochilidae. Two parasitized nestlings of T. glaucopis were encountered in May of 2008, in an area with a high degree of degradation in the municipal district of Petrópolis, Rio de Janeiro. A total of 11 larvae were located intradermically in the regions of the head and neck. The larvae were removed using tweezers and placed in a plastic container with sawdust, in order to await the emergence of the adult. Only seven larvae completed metamorphosis and reached the adult stage, being identified as Philornis glaucinis. This study presented the first record of P. glaucinis in the state of Rio de Janeiro and also the first occurrence of this parasite in nestlings of T. glaucopis.

  19. Efficiency of Dinucleosides as the Backbone to Pre-Organize Multi-Porphyrins and Enhance Their Stability as Sandwich Type Complexes with DABCO

    Directory of Open Access Journals (Sweden)

    Sonja Merkaš

    2017-07-01

    Full Text Available Flexible linkers such as uridine or 2′-deoxyuridine pre-organize bis-porphyrins in a face-to-face conformation, thus forming stable sandwich complexes with a bidentate base such as 1,4-diazabicyclo[2.2.2]octane (DABCO. Increased stability can be even greater when a dinucleotide linker is used. Such pre-organization increases the association constant by one to two orders of magnitude when compared to the association constant of DABCO with a reference porphyrin. Comparison with rigid tweezers shows a better efficiency of nucleosidic dimers. Thus, the choice of rigid spacers is not the only way to pre-organize bis-porphyrins, and well-chosen nucleosidic linkers offer an interesting option for the synthesis of such devices.

  20. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding

    Science.gov (United States)

    Zeng, Tingting; Chang, Chenliang; Chen, Zhaozhong; Wang, Hui-Tian; Ding, Jianping

    2018-06-01

    Multifocal arrays have been attracting considerable attention recently owing to their potential applications in parallel optical tweezers, parallel single-molecule orientation determination, parallel recording and multifocal multiphoton microscopy. However, the generation of vectorial multifocal arrays with a tailorable structure and polarization state remains a great challenge, and reports on multifocal arrays have hitherto been restricted either to scalar focal spots without polarization versatility or to regular arrays with fixed spacing. In this work, we propose a specific pseudo-period encoding technique to create three-dimensional (3D) vectorial multifocal arrays with the ability to manipulate the position, polarization state and intensity of each focal spot. We experimentally validated the flexibility of our approach in the generation of 3D vectorial multiple spots with polarization multiplicity and position tunability.

  1. Near-Field, On-Chip Optical Brownian Ratchets.

    Science.gov (United States)

    Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L

    2016-08-10

    Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.

  2. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis.

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Yang, Wenguang; Wen, Yangdong; Wang, Zhidong; Li, Wen Jung; Liu, Lianqing

    2017-05-17

    In this article, we present a novel method of spatial manipulation and assembly of nanoparticles via atomic force microscopy tip-induced dielectrophoresis (AFM-DEP). This method combines the high-accuracy positioning of AFM with the parallel manipulation of DEP. A spatially nonuniform electric field is induced by applying an alternating current (AC) voltage between the conductive AFM probe and an indium tin oxide glass substrate. The AFM probe acted as a movable DEP tweezer for nanomanipulation and assembly of nanoparticles. The mechanism of AFM-DEP was analyzed by numerical simulation. The effects of solution depth, gap distance, AC voltage, solution concentration, and duration time were experimentally studied and optimized. Arrays of 200 nm polystyrene nanoparticles were assembled into various nanostructures, including lines, ellipsoids, and arrays of dots. The sizes and shapes of the assembled structures were controllable. It was thus demonstrated that AFM-DEP is a flexible and powerful tool for nanomanipulation.

  3. Signal processing for molecular and cellular biological physics: an emerging field.

    Science.gov (United States)

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  4. Numerical and Experimental Study of Optoelectronic Trapping on Iron-Doped Lithium Niobate Substrate

    Directory of Open Access Journals (Sweden)

    Michela Gazzetto

    2016-09-01

    Full Text Available Optoelectronic tweezers (OET are a promising technique for the realization of reconfigurable systems suitable to trap and manipulate microparticles. In particular, dielectrophoretic (DEP forces produced by OET represent a valid alternative to micro-fabricated metal electrodes, as strong and spatially reconfigurable electrical fields can be induced in a photoconductive layer by means of light-driven phenomena. In this paper we report, and compare with the experimental data, the results obtained by analyzing the spatial configurations of the DEP-forces produced by a 532 nm laser beam, with Gaussian intensity distribution, impinging on a Fe-doped Lithium Niobate substrate. Furthermore, we also present a promising preliminary result for water-droplets trapping, which could open the way to the application of this technique to biological samples manipulation.

  5. Biophysics an introduction

    CERN Document Server

    Cotteril, Rodney

    2002-01-01

    Biophysics: An Introduction, is a concise balanced introduction to this subject. Written in an accessible and readable style, the book takes a fresh, modern approach with the author successfully combining key concepts and theory with relevant applications and examples drawn from the field as a whole. Beginning with a brief introduction to the origins of biophysics, the book takes the reader through successive levels of complexity, from atoms to molecules, structures, systems and ultimately to the behaviour of organisms. The book also includes extensive coverage of biopolymers, biomembranes, biological energy, and nervous systems. The text not only explores basic ideas, but also discusses recent developments, such as protein folding, DNA/RNA conformations, molecular motors, optical tweezers and the biological origins of consciousness and intelligence.

  6. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H-S; Ahn, Jaewook

    2018-05-04

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  7. Evanescent wave assisted nanomaterial coating.

    Science.gov (United States)

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness optical fiber probes and other plasmonic circuits.

  8. A Penning trap for advanced studies with particles in extreme laser fields

    Science.gov (United States)

    Vogel, M.; Quint, W.; Paulus, G. G.; Stöhlker, Th.

    2012-08-01

    We present a Penning trap as a tool for advanced studies of particles in extreme laser fields. Particularly, trap-specific manipulation techniques allow control over the confined particles' localization and spatial density by use of trap electrodes as 'electrostatic tweezers' and by application of a 'rotating wall', respectively. It is thereby possible to select and prepare well-defined ion ensembles and to optimize the laser-particle interaction. Non-destructive detection of reaction educts and products with up to single-ion sensitivity supports advanced studies by maintaining the products for further studies at extended confinement times of minutes and above. The trap features endcaps with conical openings for applications with strongly focused lasers. We show that such a modification of a cylindrical trap is possible while harmonicity and tunability are maintained.

  9. Quantitative determination of optical trapping strength and viscoelastic moduli inside living cells

    DEFF Research Database (Denmark)

    Mas, Josep; Richardson, Andrew Callum; Reihani, S. Nader S.

    2013-01-01

    is viscoelastic, it would be incorrect to use a calibration procedure relying on a viscous environment. Here we demonstrate a method to perform a correct force calibration inside a living cell. This method (theoretically proposed in Fischer and Berg-Sørensen (2007 J. Opt. A: Pure Appl. Opt. 9 S239)) takes......With the success of in vitro single-molecule force measurements obtained in recent years, the next step is to perform quantitative force measurements inside a living cell. Optical traps have proven excellent tools for manipulation, also in vivo, where they can be essentially non-invasive under...... correct wavelength and exposure conditions. It is a pre-requisite for in vivo quantitative force measurements that a precise and reliable force calibration of the tweezers is performed. There are well-established calibration protocols in purely viscous environments; however, as the cellular cytoplasm...

  10. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  11. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  12. Tuning the structural and optical properties of gold/silver nanoalloys prepared by laser ablation in liquids for ultra-sensitive spectroscopy and optical trapping

    Directory of Open Access Journals (Sweden)

    F. Neri

    2011-09-01

    Full Text Available The plasmon resonance of metallic Au/Ag alloys in the colloidal state was tuned from 400 nm to 500 nm using a laser irradiated technique, performed directly in the liquid state. Interesting optical nonlinearities, trapping effects and spectroscopic enhancements were detected as function of gold concentration in the nanoalloys. In particular a reduction of the limiting threshold was observed by increasing the gold amount. The SERS activity of the Au/Ag alloys was tested in liquid and in solid state in presence of linear carbon chains as probe molecules. The dependence of the increased Raman signals on the nanoparticle Au/Ag atomic ratio is presented and discussed. Finally preliminary studies and prospects for optical and Raman tweezers experiments are discussed.

  13. Molecules cooled below the Doppler limit

    Science.gov (United States)

    Truppe, S.; Williams, H. J.; Hambach, M.; Caldwell, L.; Fitch, N. J.; Hinds, E. A.; Sauer, B. E.; Tarbutt, M. R.

    2017-12-01

    Magneto-optical trapping and sub-Doppler cooling have been essential to most experiments with quantum degenerate gases, optical lattices, atomic fountains and many other applications. A broad set of new applications await ultracold molecules, and the extension of laser cooling to molecules has begun. A magneto-optical trap (MOT) has been demonstrated for a single molecular species, SrF, but the sub-Doppler temperatures required for many applications have not yet been reached. Here we demonstrate a MOT of a second species, CaF, and we show how to cool these molecules to 50 μK, well below the Doppler limit, using a three-dimensional optical molasses. These ultracold molecules could be loaded into optical tweezers to trap arbitrary arrays for quantum simulation, launched into a molecular fountain for testing fundamental physics, and used to study collisions and chemistry between atoms and molecules at ultracold temperatures.

  14. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Science.gov (United States)

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  15. Photoclickable dendritic molecular glue: noncovalent-to-covalent photochemical transformation of protein hybrids.

    Science.gov (United States)

    Uchida, Noriyuki; Okuro, Kou; Niitani, Yamato; Ling, Xiao; Ariga, Takayuki; Tomishige, Michio; Aida, Takuzo

    2013-03-27

    A water-soluble dendron with a fluorescein isothiocyanate (FITC) fluorescent label and bearing nine pendant guanidinium ion (Gu(+))/benzophenone (BP) pairs at its periphery (Glue(BP)-FITC) serves as a "photoclickable molecular glue". By multivalent salt-bridge formation between Gu(+) ions and oxyanions, Glue(BP)-FITC temporarily adheres to a kinesin/microtubule hybrid. Upon subsequent exposure to UV light, this noncovalent binding is made permanent via a cross-linking reaction mediated by carbon radicals derived from the photoexcited BP units. This temporal-to-permanent transformation by light occurs quickly and efficiently in this preorganized state, allowing the movements of microtubules on a kinesin-coated glass plate to be photochemically controlled. A fundamental difference between such temporal and permanent bindings was visualized by the use of "optical tweezers".

  16. Selected Topics in MicroNano-robotics for Biomedical Applications

    CERN Document Server

    2013-01-01

    Selected Topics in Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials and cutting-edge research results in micro/nanorobotics for biomedical applications. The book presents new sensing technology on nanofibers, new power supply techniques including miniature fuel cells and energy harvesting devices, and manipulation techniques including AFM-based nano-robotic manipulation, robot-aided optical tweezers, and robot-assisted catheter surgery systems. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Each chapter covers a different topic of the highly interdisciplinary area. Bring together the selected topics into ...

  17. Stretching of red blood cells using an electro-optics trap.

    Science.gov (United States)

    Haque, Md Mozzammel; Moisescu, Mihaela G; Valkai, Sándor; Dér, András; Savopol, Tudor

    2015-01-01

    The stretching stiffness of Red Blood Cells (RBCs) was investigated using a combination of an AC dielectrophoretic apparatus and a single-beam optical tweezer. The experiments were performed at 10 MHz, a frequency high enough to avoid conductivity losses, but below the second turnover point between positive and negative dielectrophoresis. By measuring the geometrical parameters of single healthy human RBCs as a function of the applied voltage, the elastic modulus of RBCs was determined (µ = 1.80 ± 0.5 µN/m) and compared with similar values of the literature got by other techniques. The method is expected to be an easy-to-use, alternative tool to determine the mechano-elastic properties of living cells, and, on this basis, to distinguish healthy and diseased cells.

  18. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators....

  19. Variety in intracellular diffusion during the cell cycle

    DEFF Research Database (Denmark)

    Selhuber-Unkel, C.; Yde, P.; Berg-Sørensen, Kirstine

    2009-01-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast...... Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent...... a that is also linked to the viscoelastic moduli of the cytoplasm. The exponent a was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences...

  20. Catch bonding in the forced dissociation of a polymer endpoint

    Science.gov (United States)

    Vrusch, Cyril; Storm, Cornelis

    2018-04-01

    Applying a force to certain supramolecular bonds may initially stabilize them, manifested by a lower dissociation rate. We show that this behavior, known as catch bonding and by now broadly reported in numerous biophysics bonds, is generically expected when either or both the trapping potential and the force applied to the bond possess some degree of nonlinearity. We enumerate possible scenarios and for each identify the possibility and, if applicable, the criterion for catch bonding to occur. The effect is robustly predicted by Kramers theory and Mean First Passage Time theory and confirmed in direct molecular dynamics simulation. Among the catch scenarios, one plays out essentially any time the force on the bond originates in a polymeric object, implying that some degree of catch bond behavior is to be expected in many settings relevant to polymer network mechanics or optical tweezer experiments.

  1. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H.-S.; Ahn, Jaewook

    2018-05-01

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  2. Viscoelastic and dynamic properties of embryonic stem cells

    DEFF Research Database (Denmark)

    Ritter, Christine

    Stem cells are often referred to as the ‘holy grail’ of regenerative medicine, because they possessthe ability to develop into any cell type. The use of stem cells within medicine is currently limited bythe effectivity of differentiation and cell reprogramming protocols, making it therefore...... imperative tounderstand stem cells’ differentiation mechanisms better. Studies have shown that mechanical cuescan have an influence on stem cell fate decision. However, in order to understand the reaction of stemcells to mechanical input, one should first investigate and understand the mechanical properties...... ofthe cells themselves. In this thesis, the viscoelastic properties of mouse embryonic stem cells primedeither toward the epiblast (Epi) or the primitive endoderm (PrE) lineage were investigated.Optical tweezers were used to measure the fluctuations of endogenous lipid granules and therebydraw...

  3. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    , at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...

  4. First record of Philornis glaucinis Dodge & Aitken, 1968 (Diptera: Muscidae in Thalurania glaucopis Gmelin, 1788 (Aves: Trochilidae

    Directory of Open Access Journals (Sweden)

    Hermes Ribeiro Luz

    2010-01-01

    Full Text Available From the groups causing myiasis, the genus Philornis Meinert, 1890 appears as the only representative of the family Muscidae, obligatorily associated with birds. Thus, the aim of this work was to report the occurrence of Philornis in Thalurania glaucopis (Trochilidae. Two parasitized nestlings of T. glaucopis were encountered in May of 2008, in an area with a high degree of degradation in the municipal district of Petrópolis, Rio de Janeiro. A total of 11 larvae were located intradermically in the regions of the head and neck. The larvae were removed using tweezers and placed in a plastic container with sawdust, in order to await the emergence of the adult. Only seven larvae completed metamorphosis and reached the adult stage, being identified as Philornis glaucinis. This study presented the first record of P. glaucinis in the state of Rio de Janeiro and also the first occurrence of this parasite in nestlings of T. glaucopis.

  5. Determination of pitch rotation in a spherical birefringent microparticle

    Science.gov (United States)

    Roy, Basudev; Ramaiya, Avin; Schäffer, Erik

    2018-03-01

    Rotational motion of a three dimensional spherical microscopic object can happen either in pitch, yaw or roll fashion. Among these, the yaw motion has been conventionally studied using the intensity of scattered light from birefringent microspheres through crossed polarizers. Up until now, however, there is no way to study the pitch motion in spherical microspheres. Here, we suggest a new method to study the pitch motion of birefringent microspheres under crossed polarizers by measuring the 2-fold asymmetry in the scattered signal either using video microscopy or with optical tweezers. We show a couple of simple examples of pitch rotation determination using video microscopy for a microsphere attached with a kinesin molecule while moving along a microtubule and of a particle diffusing freely in water.

  6. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Science.gov (United States)

    Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.

    2012-01-01

    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706

  7. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  8. Energy flow characteristics of vector X-Waves

    KAUST Repository

    Salem, Mohamed; Bagci, Hakan

    2011-01-01

    The vector form of X-Waves is obtained as a superposition of transverse electric and transverse magnetic polarized field components. It is shown that the signs of all components of the Poynting vector can be locally changed using carefully chosen complex amplitudes of the transverse electric and transverse magnetic polarization components. Negative energy flux density in the longitudinal direction can be observed in a bounded region around the centroid; in this region the local behavior of the wave field is similar to that of wave field with negative energy flow. This peculiar energy flux phenomenon is of essential importance for electromagnetic and optical traps and tweezers, where the location and momenta of microand nanoparticles are manipulated by changing the Poynting vector, and in detection of invisibility cloaks. © 2011 Optical Society of America.

  9. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    Science.gov (United States)

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  10. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  11. TOPICAL REVIEW: Single-molecule experiments in biological physics: methods and applications

    Science.gov (United States)

    Ritort, F.

    2006-08-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  12. Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review

    Science.gov (United States)

    Zhang, Shujun; Li, Fei; Jiang, Xiaoning; Kim, Jinwook; Luo, Jun; Geng, Xuecang

    2014-01-01

    Relaxor-PbTiO3 (PT) based ferroelectric crystals with the perovskite structure have been investigated over the last few decades due to their ultrahigh piezoelectric coefficients (d33 > 1500 pC/N) and electromechanical coupling factors (k33 > 90%), far outperforming state-of-the-art ferroelectric polycrystalline Pb(Zr,Ti)O3 ceramics, and are at the forefront of advanced electroacoustic applications. In this review, the performance merits of relaxor-PT crystals in various electroacoustic devices are presented from a piezoelectric material viewpoint. Opportunities come from not only the ultrahigh properties, specifically coupling and piezoelectric coefficients, but through novel vibration modes and crystallographic/domain engineering. Figure of merits (FOMs) of crystals with various compositions and phases were established for various applications, including medical ultrasonic transducers, underwater transducers, acoustic sensors and tweezers. For each device application, recent developments in relaxor-PT ferroelectric crystals were surveyed and compared with state-of-the-art polycrystalline piezoelectrics, with an emphasis on their strong anisotropic features and crystallographic uniqueness, including engineered domain - property relationships. This review starts with an introduction on electroacoustic transducers and the history of piezoelectric materials. The development of the high performance relaxor-PT single crystals, with a focus on their uniqueness in transducer applications, is then discussed. In the third part, various FOMs of piezoelectric materials for a wide range of ultrasound applications, including diagnostic ultrasound, therapeutic ultrasound, underwater acoustic and passive sensors, tactile sensors and acoustic tweezers, are evaluated to provide a thorough understanding of the materials’ behavior under operational conditions. Structure-property-performance relationships are then established. Finally, the impacts and challenges of relaxor

  13. Single-molecule experiments in biological physics: methods and applications

    International Nuclear Information System (INIS)

    Ritort, F

    2006-01-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives. (topical review)

  14. Development of an Educational Game to Set Up Surgical Instruments on the Mayo Stand or Back Table: Applied Research in Production Technology.

    Science.gov (United States)

    Paim, Crislaine Pires Padilha; Goldmeier, Silvia

    2017-01-10

    Existing research suggests that digital games can be used effectively for educational purposes at any level of training. Perioperative nursing educators can use games to complement curricula, in guidance and staff development programs, to foster team collaboration, and to give support to critical thinking in nursing practice because it is a complex environment. To describe the process of developing an educational game to set up surgical instruments on the Mayo stand or back table as a resource to assist the instructor in surgical instrumentation training for students and nursing health professionals in continued education. The study was characterized by applied research in production technology. It included the phases of analysis and design, development, and evaluation. The objectives of the educational game were developed through Bloom's taxonomy. Parallel to the physical development of the educational game, a proposed model for the use of digital elements in educational game activities was applied to develop the game content. The development of the game called "Playing with Tweezers" was carried out in 3 phases and was evaluated by 15 participants, comprising students and professional experts in various areas of knowledge such as nursing, information technology, and education. An environment was created with an initial screen, menu buttons containing the rules of the game, and virtual tour modes for learning and assessment. The "digital" nursing student needs engagement, stimulation, reality, and entertainment, not just readings. "Playing with Tweezers" is an example of educational gaming as an innovative teaching strategy in nursing that encourages the strategy of involving the use of educational games to support theoretical or practical classroom teaching. Thus, the teacher does not work with only 1 type of teaching methodology, but with a combination of different methodologies. In addition, we cannot forget that skill training in an educational game does not

  15. A novel single virus infection system reveals that influenza virus preferentially infects cells in g1 phase.

    Directory of Open Access Journals (Sweden)

    Ryuta Ueda

    Full Text Available BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA, a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1 the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins than the membranes of cells in S/G2/M-phase; 2 the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3 S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.

  16. Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Simon, R.; Polosky, M.; Christenson, T.

    1999-04-01

    This report summarizes a three year effort to develop an automated microassembly workcell for the assembly of LIGA (Lithography Galvonoforming Abforming) parts. Over the last several years, Sandia has developed processes for producing surface machined silicon and LIGA parts for use in weapons surety devices. Some of these parts have outside dimensions as small as 100 micron, and most all have submicron tolerances. Parts this small and precise are extremely difficult to assembly by hand. Therefore, in this project, we investigated the technologies required to develop a robotic workcell to assembly these parts. In particular, we concentrated on micro-grippers, visual servoing, micro-assembly planning, and parallel assembly. Three different micro-grippers were tested: a pneumatic probe, a thermally actuated polysilicon tweezer, and a LIGA fabricated tweezer. Visual servoing was used to accuracy position two parts relative to one another. Fourier optics methods were used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field. They also provide reference image features which are used to visually servo the part to the desired position. We also investigated a new aspect of fine motion planning for the micro-domain. As parts approach 1-10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. We developed the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool. Finally, we implemented and tested the ability to assemble an array of LIGA parts attached to two 3 inch diameter wafers. In this way, hundreds of parts can be assembled in parallel rather than assembling each part individually.

  17. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.

    Science.gov (United States)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H L; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V

    2009-05-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.

  18. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Recovery from cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mengjiao [State Key Laboratory in Marine Pollution, Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [State Key Laboratory in Marine Pollution, Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-01-25

    Studies in the recovery from metal stress and the tolerance development to metal exposure of aquatic organisms are important for the understanding of epidemic pollution. In this study, the responses of a marine diatom, Thalassiosira nordenskioeldii, following recovery from environmental cadmium (Cd) stress were investigated. The diatoms were exposed to different concentrations of Cd for 7 days, and were then allowed different periods of time to recover. The Cd sensitivity increased after recovery from Cd stress, followed by a gradual restoration. The extent of restoration depended on both the recovery time and the environmental Cd stress during the exposure period. A complete restoration of Cd tolerance proved to be impossible for cells pre-exposed to High-Cd. The Cd cellular burden and subcellular Cd concentration decreased to the control level within the first day of recovery, indicating that the elevated sensitivity may have been due to the accumulation of functional damage caused by Cd exposure instead of a result of physical Cd accumulation. The rapid change in phytochelatins (PC) to both the increase in and the withdrawal of environmental Cd stress made it a good quantitative bioindicator of environmental Cd contamination. However, the relationships between Cd distribution in the metal sensitive fraction (MSF-Cd) or intracellular Cd to thiol ratio (intra-Cd/PC-SH) and the relative change in the median inhibition [Cd{sup 2+}] ([Cd{sup 2+}]-based-IC{sub 50}, i.e., Cd sensitivity) differed for the various exposure and recovery periods tested. Our study suggests that more attention should be given to the recovery of aquatic organisms from episodic metal exposure.

  19. New tools to study biophysical properties of single molecules and single cells

    Directory of Open Access Journals (Sweden)

    Márcio S. Rocha

    2007-03-01

    Full Text Available We present a review on two new tools to study biophysical properties of single molecules and single cells. A laser incident through a high numerical aperture microscope objective can trap small dielectric particles near the focus. This arrangement is named optical tweezers. This technique has the advantage to permit manipulation of a single individual object. We use optical tweezers to measure the entropic elasticity of a single DNA molecule and its interaction with the drug Psoralen. Optical tweezers are also used to hold a kidney cell MDCK away from the substrate to allow precise volume measurements of this single cell during an osmotic shock. This procedure allows us to obtain information about membrane water permeability and regulatory volume increase. Defocusing microscopy is a recent technique invented in our laboratory, which allows the observation of transparent objects, by simply defocusing the microscope in a controlled way. Our physical model of a defocused microscope shows that the image contrast observed in this case is proportional to the defocus distance and to the curvature of the transparent object. Defocusing microscopy is very useful to study motility and mechanical properties of cells. We show here the application of defocusing microscopy to measurements of macrophage surface fluctuations and their influence on phagocytosis.Apresentamos uma revisão de duas novas técnicas para estudar propriedades biofísicas de moléculas únicas e células únicas. Um laser incidindo em uma objetiva de microscópio de grande abertura numérica é capaz de aprisionar pequenas partículas dielétricas na região próxima ao foco. Este aparato é chamado de pinça óptica. Esta técnica tem a grande vantagem de permitir a manipulação de um objeto individual. Usamos a pinça óptica para medir a elasticidade entrópica de uma molécula única de DNA em sua interação com o fármaco Psoralen. A pinça óptica também é usada para segurar

  20. On the shape memory of red blood cells

    Science.gov (United States)

    Cordasco, Daniel; Bagchi, Prosenjit

    2017-04-01

    Red blood cells (RBCs) undergo remarkably large deformations when subjected to external forces but return to their biconcave discoid resting shape as the forces are withdrawn. In many experiments, such as when RBCs are subjected to a shear flow and undergo the tank-treading motion, the membrane elements are also displaced from their original (resting) locations along the cell surface with respect to the cell axis, in addition to the cell being deformed. A shape memory is said to exist if after the flow is stopped the RBC regains its biconcave shape and the membrane elements also return to their original locations. The shape memory of RBCs was demonstrated by Fischer ["Shape memory of human red blood cells," Biophys. J. 86, 3304-3313 (2004)] using shear flow go-and-stop experiments. Optical tweezer and micropipette based stretch-relaxation experiments do not reveal the complete shape memory because while the RBC may be deformed, the membrane elements are not significantly displaced from their original locations with respect to the cell axis. Here we present the first three-dimensional computational study predicting the complete shape memory of RBCs using shear flow go-and-stop simulations. The influence of different parameters, namely, membrane shear elasticity and bending rigidity, membrane viscosity, cytoplasmic and suspending fluid viscosity, as well as different stress-free states of the RBC is studied. For all cases, the RBCs always exhibit shape memory. The complete recovery of the RBC in shear flow go-and-stop simulations occurs over a time that is orders of magnitude longer than that for optical tweezer and micropipette based relaxations. The response is also observed to be more complex and composed of widely disparate time scales as opposed to only one time scale that characterizes the optical tweezer and micropipette based relaxations. We observe that the recovery occurs in three phases: a rapid compression of the RBC immediately after the flow is stopped

  1. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    Science.gov (United States)

    Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš

    2018-01-01

    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

  2. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  3. Probing the Kinetic Anabolism of Poly-Beta-Hydroxybutyrate in Cupriavidus necator H16 Using Single-Cell Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhanhua Tao

    2016-08-01

    Full Text Available Poly-beta-hydroxybutyrate (PHB can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS was used to characterize dynamic changes in PHB content—as well as in the contents of other common biomolecule—in C. necator during batch growth at both the population and single-cell levels. PHB accumulation began in the early stages of bacterial growth, and the maximum PHB production rate occurred in the early and middle exponential phases. The active biosynthesis of DNA, RNA, and proteins occurred in the lag and early exponential phases, whereas the levels of these molecules decreased continuously during the remaining fermentation process until the minimum values were reached. The PHB content inside single cells was relatively homogenous in the middle stage of fermentation; during the late growth stage, the variation in PHB levels between cells increased. In addition, bacterial cells in various growth phases could be clearly discriminated when principle component analysis was performed on the spectral data. These results suggest that LTRS is a valuable single-cell analysis tool that can provide more comprehensive information about the physiological state of a growing microbial population.

  4. Roadmap on biosensing and photonics with advanced nano-optical methods

    KAUST Repository

    Di Fabrizio, Enzo M.

    2016-05-10

    This roadmap, through the contributions of ten groups worldwide, contains different techniques, methods and materials devoted to sensing in nanomedicine. Optics is used in different ways in the detection schemes. Raman, fluorescence and infrared spectroscopies, plasmonics, second harmonic generation and optical tweezers are all used in applications from single molecule detection (both in highly diluted and in highly concentrated solutions) to single cell manipulation. In general, each optical scheme, through device miniaturization and electromagnetic field localization, exploits an intrinsic optical enhancement mechanism in order to increase the sensitivity and selectivity of the device with respect to the complex molecular construct. The materials used for detection include nanoparticles and nanostructures fabricated with different 2D and 3D lithographic methods. It is shown that sensitivity to a single molecule is already accessible whether the system under study is a single cell or a multitude of cells in a molecular mixture. Throughout the roadmap there is an attempt to foresee and to suggest future directions in this interdisciplinary field. © 2016 IOP Publishing Ltd.

  5. Wave front engineering by means of diffractive optical elements for applications in microscopy

    Science.gov (United States)

    Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo

    2006-05-01

    We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.

  6. Adaptive Generation and Diagnostics of Linear Few-Cycle Light Bullets

    Directory of Open Access Journals (Sweden)

    Martin Bock

    2013-02-01

    Full Text Available Recently we introduced the class of highly localized wavepackets (HLWs as a generalization of optical Bessel-like needle beams. Here we report on the progress in this field. In contrast to pulsed Bessel beams and Airy beams, ultrashort-pulsed HLWs propagate with high stability in both spatial and temporal domain, are nearly paraxial (supercollimated, have fringe-less spatial profiles and thus represent the best possible approximation to linear “light bullets”. Like Bessel beams and Airy beams, HLWs show self-reconstructing behavior. Adaptive HLWs can be shaped by ultraflat three-dimensional phase profiles (generalized axicons which are programmed via calibrated grayscale maps of liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs. Light bullets of even higher complexity can either be freely formed from quasi-continuous phase maps or discretely composed from addressable arrays of identical nondiffracting beams. The characterization of few-cycle light bullets requires spatially resolved measuring techniques. In our experiments, wavefront, pulse and phase were detected with a Shack-Hartmann wavefront sensor, 2D-autocorrelation and spectral phase interferometry for direct electric-field reconstruction (SPIDER. The combination of the unique propagation properties of light bullets with the flexibility of adaptive optics opens new prospects for applications of structured light like optical tweezers, microscopy, data transfer and storage, laser fusion, plasmon control or nonlinear spectroscopy.

  7. Routes to DNA accessibility: alternative pathways for nucleosome unwinding.

    Science.gov (United States)

    Schlingman, Daniel J; Mack, Andrew H; Kamenetska, Masha; Mochrie, Simon G J; Regan, Lynne

    2014-07-15

    The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Mobile quantum sensing with spins in optically trapped nanodiamonds

    Science.gov (United States)

    Awschalom, David D.

    2013-03-01

    The nitrogen-vacancy (NV) color center in diamond has emerged as a powerful, optically addressable, spin-based probe of electromagnetic fields and temperature. For nanoscale sensing applications, the NV center's atom-like nature enables the close-range interactions necessary for both high spatial resolution and the detection of fields generated by proximal nuclei, electrons, or molecules. Using a custom-designed optical tweezers apparatus, we demonstrate three-dimensional position control of nanodiamonds in solution with simultaneous optical measurement of electron spin resonance (ESR)[3]. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the ESR spectra from the ground-state spin transitions. Accounting for the random dynamics of the trapped nanodiamonds, we model the ESR spectra observed in an applied magnetic field and estimate the dc magnetic sensitivity based on the ESR line shapes to be 50 μT/√{ Hz }. We utilize the optically trapped nanodiamonds to characterize the magnetic field generated by current-carrying wires and ferromagnetic structures in microfluidic circuits. These measurements provide a pathway to spin-based sensing in fluidic environments and biophysical systems that are inaccessible to existing scanning probe techniques, such as the interiors of living cells. This work is supported by AFOSR and DARPA.

  9. Stochastic interactions of two Brownian hard spheres in the presence of depletants

    International Nuclear Information System (INIS)

    Karzar-Jeddi, Mehdi; Fan, Tai-Hsi; Tuinier, Remco; Taniguchi, Takashi

    2014-01-01

    A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamics as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions

  10. Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.

    Science.gov (United States)

    Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin

    2014-04-22

    The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.

  11. Undergraduate Labs for Biological Physics: Brownian Motion and Optical Trapping

    Science.gov (United States)

    Chu, Kelvin; Laughney, A.; Williams, J.

    2006-12-01

    We describe a set of case-study driven labs for an upper-division biological physics course. These labs are motivated by case-studies and consist of inquiry-driven investigations of Brownian motion and optical-trapping experiments. Each lab incorporates two innovative educational techniques to drive the process and application aspects of scientific learning. Case studies are used to encourage students to think independently and apply the scientific method to a novel lab situation. Student input from this case study is then used to decide how to best do the measurement, guide the project and ultimately evaluate the success of the program. Where appropriate, visualization and simulation using VPython is used. Direct visualization of Brownian motion allows students to directly calculate Avogadro's number or the Boltzmann constant. Following case-study driven discussion, students use video microscopy to measure the motion of latex spheres in different viscosity fluids arrive at a good approximation of NA or kB. Optical trapping (laser tweezer) experiments allow students to investigate the consequences of 100-pN forces on small particles. The case study consists of a discussion of the Boltzmann distribution and equipartition theorem followed by a consideration of the shape of the potential. Students can then use video capture to measure the distribution of bead positions to determine the shape and depth of the trap. This work supported by NSF DUE-0536773.

  12. Force regulated dynamics of RPA on a DNA fork.

    Science.gov (United States)

    Kemmerich, Felix E; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-07-08

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg(2+) concentrations, such that human RPA can melt DNA in absence of force. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively.

    Science.gov (United States)

    Burnham, Daniel R; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur; Dekker, Cees

    2017-05-05

    We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Role of Bending Energy and Knot Chirality in Knot Distribution and Their Effective Interaction along Stretched Semiflexible Polymers

    Directory of Open Access Journals (Sweden)

    Saeed Najafi

    2016-09-01

    Full Text Available Knots appear frequently in semiflexible (biopolymers, including double-stranded DNA, and their presence can affect the polymer’s physical and functional properties. In particular, it is possible and indeed often the case that multiple knots appear on a single chain, with effects which have only come under scrutiny in the last few years. In this manuscript, we study the interaction of two knots on a stretched semiflexible polymer, expanding some recent results on the topic. Specifically, we consider an idealization of a typical optical tweezers experiment and show how the bending rigidity of the chain—And consequently its persistence length—Influences the distribution of the entanglements; possibly more importantly, we observe and report how the relative chirality of the otherwise identical knots substantially modifies their interaction. We analyze the free energy of the chain and extract the effective interactions between embedded knots, rationalizing some of their pertinent features by means of simple effective models. We believe the salient aspect of the knot–knot interactions emerging from our study will be present in a large number of semiflexible polymers under tension, with important consequences for the characterization and manipulation of these systems—Be they artificial or biologica in origin—And for their technological application.

  15. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  16. A polarized view on DNA under tension

    Science.gov (United States)

    van Mameren, Joost; Vermeulen, Karen; Wuite, Gijs J. L.; Peterman, Erwin J. G.

    2018-03-01

    In the past decades, sensitive fluorescence microscopy techniques have contributed significantly to our understanding of the dynamics of DNA. The specific labeling of DNA using intercalating dyes has allowed for quantitative measurement of the thermal fluctuations the polymers undergo. On the other hand, recent advances in single-molecule manipulation techniques have unraveled the mechanical and elastic properties of this intricate polymer. Here, we have combined these two approaches to study the conformational dynamics of DNA under a wide range of tensions. Using polarized fluorescence microscopy in conjunction with optical-tweezers-based manipulation of YOYO-intercalated DNA, we controllably align the YOYO dyes using DNA tension, enabling us to disentangle the rapid dynamics of the dyes from that of the DNA itself. With unprecedented control of the DNA alignment, we resolve an inconsistency in reports about the tilted orientation of intercalated dyes. We find that intercalated dyes are on average oriented perpendicular to the long axis of the DNA, yet undergo fast dynamics on the time scale of absorption and fluorescence emission. In the overstretching transition of double-stranded DNA, we do not observe changes in orientation or orientational dynamics of the dyes. Only beyond the overstretching transition, a considerable depolarization is observed, presumably caused by an average tilting of the DNA base pairs. Our combined approach thus contributes to the elucidation of unique features of the molecular dynamics of DNA.

  17. LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects

    International Nuclear Information System (INIS)

    Carrascosa, M.; García-Cabañes, A.; Jubera, M.; Ramiro, J. B.; Agulló-López, F.

    2015-01-01

    The application of evanescent photovoltaic (PV) fields, generated by visible illumination of Fe:LiNbO 3 substrates, for parallel massive trapping and manipulation of micro- and nano-objects is critically reviewed. The technique has been often referred to as photovoltaic or photorefractive tweezers. The main advantage of the new method is that the involved electrophoretic and/or dielectrophoretic forces do not require any electrodes and large scale manipulation of nano-objects can be easily achieved using the patterning capabilities of light. The paper describes the experimental techniques for particle trapping and the main reported experimental results obtained with a variety of micro- and nano-particles (dielectric and conductive) and different illumination configurations (single beam, holographic geometry, and spatial light modulator projection). The report also pays attention to the physical basis of the method, namely, the coupling of the evanescent photorefractive fields to the dielectric response of the nano-particles. The role of a number of physical parameters such as the contrast and spatial periodicities of the illumination pattern or the particle deposition method is discussed. Moreover, the main properties of the obtained particle patterns in relation to potential applications are summarized, and first demonstrations reviewed. Finally, the PV method is discussed in comparison to other patterning strategies, such as those based on the pyroelectric response and the electric fields associated to domain poling of ferroelectric materials

  18. Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles

    Science.gov (United States)

    Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.

    2017-12-01

    Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.

  19. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  20. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  1. Energetics and Kinetics of trans-SNARE Zippering

    Science.gov (United States)

    Rebane, Aleksander A.; Shu, Tong; Krishnakumar, Shyam; Rothman, James E.; Zhang, Yongli

    Synaptic exocytosis relies on assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins into a four-helix bundle to drive membrane fusion. Complementary SNAREs anchored to the synaptic vesicle (v-SNARE) and the plasma membrane (t-SNARE) associate from their N-termini, transiting a half-assembled intermediate (trans-SNARE), and ending at their C-termini with a rapid power stroke that leads to membrane fusion. Although cytosolic SNARE assembly has been characterized, it remains unknown how membranes modulate the energetics and kinetics of SNARE assembly. Here, we present optical tweezers measurements on folding of single membrane proteins in phospholipid bilayers. To our knowledge, this is the first such report. We measured the energetics, kinetics, and assembly intermediates of trans-SNAREs formed between a t-SNARE inserted into a bead-supported bilayer and a v-SNARE in a nanodisc. We found that the repulsive force of the apposed membranes increases the lifetime of the half-assembled intermediate. Our findings provide a single-molecule platform to study the regulation of trans-SNARE assembly by proteins that act on the half-assembled state, and thus reveal the mechanistic basis of the speed and high fidelity of synaptic transmission. This work was supported by US National Institutes of Health Grants F31 GM119312-01 (to A.A.R) and R01 GM093341 (to Y.Z.).

  2. Monitoring sperm mitochondrial respiration response in a laser trap using ratiometric fluorescence

    Science.gov (United States)

    Mei, Adrian; Botvinick, Elliot; Berns, Michael

    2005-08-01

    Sperm motility is an important area in understanding male infertility. Various techniques, such as the Computer Assisted Sperm Analysis (CASA), have been used to understand sperm motility. Sperm motility is related to the energy (ATP) production of sperm. ATP is produced by the depolarization of the membrane potential of the inner membrane of the mitochondria. In this study, a mitochondrial dye, JC-1, has been used to monitor the energetics of the mitochondria. This fluorescent dye can emit at two different wavelengths, depending on the membrane potential of the mitochondria. It can fluoresce green at low membrane potential and red at high membrane potential. The ratio of the two colors (red/green) allows for an accurate measurement of the change of membrane potential. Various experiments were conducted to quantify the behavior of the dye within the sperm and the reaction of the sperm to trap. Sperm were trapped using laser tweezers. Results have shown that the ratio drops dramatically when sperm are trapped, indicating a depolarization of the membrane. The physiological response to this depolarization is yet to be determined, but the studies indicate that the sperm could have been slightly damaged by the laser. However, knowing that sperm depolarizes their membrane when trapped can help understand how sperm react to their environment and consequently help treat male infertility.

  3. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis.

    Science.gov (United States)

    Huber, R; Burggraf, S; Mayer, T; Barns, S M; Rossnagel, P; Stetter, K O

    1995-07-06

    A variety of hyperthermophilic bacteria and archaea have been isolated from high-temperature environments by plating and serial dilutions. However, these techniques allow only the small percentage of organisms able to form colonies, or those that are predominant within environmental samples, to be obtained in pure culture. Recently, in situ 16S ribosomal RNA analyses of samples from the Obsidian hot pool at Yellowstone National Park, Wyoming, revealed a variety of archaeal sequences, which were all different from those of previously isolated species. This suggests substantial diversity of archaea with so far unknown morphological, physiological and biochemical features, which may play an important part within high-temperature ecosystems. Here we describe a procedure to obtain pure cultures of unknown organisms harbouring specific 16S rRNA sequences identified previously within the environment. It combines visual recognition of single cells by phylogenetic staining and cloning by 'optical tweezers'. Our result validates polymerase chain reaction data on the existence of large archael communities.

  4. Quantitative optical trapping and optical manipulation of micro-sized objects

    Directory of Open Access Journals (Sweden)

    Rania Sayed

    2017-10-01

    Full Text Available An optical tweezers technique is used for ultraprecise micromanipulation to measure positions of micrometer scale objects with a precision down to the nanometer scale. It consists of a high performance research microscope with motorized scanning stage and sensitive position detection system. Up to 10 traps can be used quasi-simultaneously. Non photodamage optical trapping of Escherichia coli (E. coli bacteria cells of 2 µm in length, as an example of motile bacteria, has been shown in this paper. Also, efficient optical trapping and rotation of polystyrene latex particles of 3 µm in diameter have been studied, as an optical handle for the pick and place of other tiny objects. A fast galvoscanner is used to produce multiple optical traps for manipulation of micro-sized objects and optical forces of these trapped objects quantified and measured according to explanation of ray optics regime. The diameter of trapped particle is bigger than the wavelength of the trapping laser light. The force constant (k has been determined in real time from the positional time series recorded from the trapped object that is monitored by a CCD camera through a personal computer.

  5. Gold nanoparticle trapping and delivery for therapeutic applications

    Directory of Open Access Journals (Sweden)

    Aziz MS

    2011-12-01

    Full Text Available MS Aziz1, Nathaporn Suwanpayak3,4, Muhammad Arif Jalil2, R Jomtarak4, T Saktioto2, Jalil Ali1, PP Yupapin41Institute of Advanced Photonics Science, 2Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3King Mongkut's Institute of Technology Ladkrabang, Chump on Campus, Chumphon, 4Nanoscale Science and Engineering Research Alliance (N'SERA, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, ThailandAbstract: A new optical trapping design to transport gold nanoparticles using a PANDA ring resonator system is proposed. Intense optical fields in the form of dark solitons controlled by Gaussian pulses are used to trap and transport nanoscopic volumes of matter to the desired destination via an optical waveguide. Theoretically, the gradient and scattering forces are responsible for this trapping phenomenon, where in practice such systems can be fabricated and a thin-film device formed on the specific artificial medical materials, for instance, an artificial bone. The dynamic behavior of the tweezers can be tuned by controlling the optical pulse input power and parameters of the ring resonator system. Different trap sizes can be generated to trap different gold nanoparticles sizes, which is useful for gold nanoparticle therapy. In this paper, we have shown the utility of gold nanoparticle trapping and delivery for therapy, which may be useful for cosmetic therapy and related applications.Keywords: gold nanoparticle trapping, particle trapping, therapy, transport

  6. Framework for teleoperated microassembly systems

    Science.gov (United States)

    Reinhart, Gunther; Anton, Oliver; Ehrenstrasser, Michael; Patron, Christian; Petzold, Bernd

    2002-02-01

    Manual assembly of minute parts is currently done using simple devices such as tweezers or magnifying glasses. The operator therefore requires a great deal of concentration for successful assembly. Teleoperated micro-assembly systems are a promising method for overcoming the scaling barrier. However, most of today's telepresence systems are based on proprietary and one-of-a-kind solutions. Frameworks which supply the basic functions of a telepresence system, e.g. to establish flexible communication links that depend on bandwidth requirements or to synchronize distributed components, are not currently available. Large amounts of time and money have to be invested in order to create task-specific teleoperated micro-assembly systems from scratch. For this reason, an object-oriented framework for telepresence systems that is based on CORBA as a common middleware was developed at the Institute for Machine Tools and Industrial Management (iwb). The framework is based on a distributed architectural concept and is realized in C++. External hardware components such as haptic, video or sensor devices are coupled to the system by means of defined software interfaces. In this case, the special requirements of teleoperation systems have to be considered, e.g. dynamic parameter settings for sensors during operation. Consequently, an architectural concept based on logical sensors has been developed to achieve maximum flexibility and to enable a task-oriented integration of hardware components.

  7. Generation of J_0-Bessel-Gauss beam by a heterogeneous refractive index map

    KAUST Repository

    San Roman Alerigi, Damian; Alsunaidi, Mohammad; Ben Slimane, Ahmed; Ng, Tien Khee; Ooi, Boon S.; Zhang, Yaping

    2012-01-01

    In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to a J0-Bessel-Gauss convertor. We theoretically demonstrate the viability of a device that could be fabricated on a Si/Si1-yOy/Si1-x-yGexCy platform or by photo-refractive media. The proposed device is 200 ?m in length and 25 ?m in width, and its refractive index varies in controllable steps across the light propagation and transversal directions. The computed conversion efficiency and loss are 90%, and -0.457 dB, respectively. The theoretical results, obtained from the beam conversion efficiency, self-regeneration, and propagation through an opaque obstruction, demonstrate that a two-dimensional (2D) graded index map of the refractive index can be used to transform a Gauss beam into a J0-Bessel-Gauss beam. To the best of our knowledge, this is the first demonstration of such beam transformation by means of a 2D index-mapping that is fully integrable in silicon photonics based planar lightwave circuits (PLCs). The concept device is significant for the eventual development of a new array of technologies, such as micro optical tweezers, optical traps, beam reshaping and nonlinear beam diode lasers. © 2012 Optical Society of America.

  8. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system

    International Nuclear Information System (INIS)

    Ayano, Satoru; Wakamoto, Yuichi; Yamashita, Shinobu; Yasuda, Kenji

    2006-01-01

    We quantitatively examined the possible damage to the growth and cell division ability of Escherichia coli caused by 1064-nm optical trapping. Using the synchronous behavior of two sister E. coli cells, the growth and interdivision times between those two cells, one of which was trapped by optical tweezers, the other was not irradiated, were compared using an on-chip single cell cultivation system. Cell growth stopped during the optical trapping period, even with the smallest irradiated power on the trapped cells. Moreover, the damage to the cell's growth and interdivision period was proportional to the total irradiated energy (work) on the cell, i.e., irradiation time multiplied by irradiation power. The division ability was more easily affected by a smaller energy, 0.36 J, which was 30% smaller than the energy that adversely affected growth, 0.54 J. The results indicate that the damage caused by optical trapping can be estimated from the total energy applied to cells, and furthermore, that the use of optical trapping for manipulating cells might cause damage to cell division and growth mechanisms, even at wavelengths under 1064 nm, if the total irradiation energy is excessive

  9. Comparison of microtweezers based on three lateral thermal actuator configurations

    Science.gov (United States)

    Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.

    2005-06-01

    Thermal actuator-based microtweezers with three different driving configurations have been designed, fabricated and characterized. Finite element analysis has been used to model the device performance. It was found that one configuration of microtweezer, based on two lateral bimorph thermal actuators, has a small displacement (tip opening of the tweezers) and a very limited operating power range. An alternative configuration consisting of two horizontal hot bars with separated beams as the arms can deliver a larger displacement with a much-extended operating power range. This structure can withstand a higher temperature due to the wider beams used, and has flexible arms for increased displacement. Microtweezers driven by a number of chevron structures in parallel have similar maximum displacements but at a cost of higher power consumption. The measured temperature of the devices confirms that the device with the chevron structure can deliver the largest displacement for a given working temperature, while the bimorph thermal actuator design has the highest operating temperature at the same power due to its thin hot arm, and is prone to structural failure.

  10. Collective synchronization states in arrays of driven colloidal oscillators

    International Nuclear Information System (INIS)

    Lhermerout, Romain; Bruot, Nicolas; Kotar, Jurij; Cicuta, Pietro; Cicuta, Giovanni M

    2012-01-01

    The phenomenon of metachronal waves in cilia carpets has been well known for decades; these waves are widespread in biology, and have fundamental physiological importance. While it is accepted that in many cases cilia are mainly coupled together by the hydrodynamic velocity field, a clear understanding of which aspects determine the collective wave properties is lacking. It is a difficult problem, because both the behavior of the individual cilia and their coupling together are nonlinear. In this work, we coarse-grain the degrees of freedom of each cilium into a minimal description in terms of a configuration-based phase oscillator. Driving colloidal particles with optical tweezers, we then experimentally investigate the coupling through hydrodynamics in systems of many oscillators, showing that a collective dynamics emerges. This work generalizes to a wider class of systems our recent finding that the non-equilibrium steady state can be understood based on the equilibrium properties of the system, i.e. the positions and orientations of the active oscillators. In this model system, it is possible to design configurations of oscillators with the desired collective dynamics. The other face of this problem is to relate the collective patterns found in biology to the architecture and behavior of individual active elements. (paper)

  11. Single Particle Differentiation through 2D Optical Fiber Trapping and Back-Scattered Signal Statistical Analysis: An Exploratory Approach.

    Science.gov (United States)

    Paiva, Joana S; Ribeiro, Rita S R; Cunha, João P S; Rosa, Carla C; Jorge, Pedro A S

    2018-02-27

    Recent trends on microbiology point out the urge to develop optical micro-tools with multifunctionalities such as simultaneous manipulation and sensing. Considering that miniaturization has been recognized as one of the most important paradigms of emerging sensing biotechnologies, optical fiber tools, including Optical Fiber Tweezers (OFTs), are suitable candidates for developing multifunctional small sensors for Medicine and Biology. OFTs are flexible and versatile optotools based on fibers with one extremity patterned to form a micro-lens. These are able to focus laser beams and exert forces onto microparticles strong enough (piconewtons) to trap and manipulate them. In this paper, through an exploratory analysis of a 45 features set, including time and frequency-domain parameters of the back-scattered signal of particles trapped by a polymeric lens, we created a novel single feature able to differentiate synthetic particles (PMMA and Polystyrene) from living yeasts cells. This single statistical feature can be useful for the development of label-free hybrid optical fiber sensors with applications in infectious diseases detection or cells sorting. It can also contribute, by revealing the most significant information that can be extracted from the scattered signal, to the development of a simpler method for particles characterization (in terms of composition, heterogeneity degree) than existent technologies.

  12. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  13. The Statistical Segment Length of DNA: Opportunities for Biomechanical Modeling in Polymer Physics and Next-Generation Genomics.

    Science.gov (United States)

    Dorfman, Kevin D

    2018-02-01

    The development of bright bisintercalating dyes for deoxyribonucleic acid (DNA) in the 1990s, most notably YOYO-1, revolutionized the field of polymer physics in the ensuing years. These dyes, in conjunction with modern molecular biology techniques, permit the facile observation of polymer dynamics via fluorescence microscopy and thus direct tests of different theories of polymer dynamics. At the same time, they have played a key role in advancing an emerging next-generation method known as genome mapping in nanochannels. The effect of intercalation on the bending energy of DNA as embodied by a change in its statistical segment length (or, alternatively, its persistence length) has been the subject of significant controversy. The precise value of the statistical segment length is critical for the proper interpretation of polymer physics experiments and controls the phenomena underlying the aforementioned genomics technology. In this perspective, we briefly review the model of DNA as a wormlike chain and a trio of methods (light scattering, optical or magnetic tweezers, and atomic force microscopy (AFM)) that have been used to determine the statistical segment length of DNA. We then outline the disagreement in the literature over the role of bisintercalation on the bending energy of DNA, and how a multiscale biomechanical approach could provide an important model for this scientifically and technologically relevant problem.

  14. Kinesin and Dynein Mechanics: Measurement Methods and Research Applications.

    Science.gov (United States)

    Abraham, Zachary; Hawley, Emma; Hayosh, Daniel; Webster-Wood, Victoria A; Akkus, Ozan

    2018-02-01

    Motor proteins play critical roles in the normal function of cells and proper development of organisms. Among motor proteins, failings in the normal function of two types of proteins, kinesin and dynein, have been shown to lead many pathologies, including neurodegenerative diseases and cancers. As such, it is critical to researchers to understand the underlying mechanics and behaviors of these proteins, not only to shed light on how failures may lead to disease, but also to guide research toward novel treatment and nano-engineering solutions. To this end, many experimental techniques have been developed to measure the force and motility capabilities of these proteins. This review will (a) discuss such techniques, specifically microscopy, atomic force microscopy (AFM), optical trapping, and magnetic tweezers, and (b) the resulting nanomechanical properties of motor protein functions such as stalling force, velocity, and dependence on adenosine triphosophate (ATP) concentrations will be comparatively discussed. Additionally, this review will highlight the clinical importance of these proteins. Furthermore, as the understanding of the structure and function of motor proteins improves, novel applications are emerging in the field. Specifically, researchers have begun to modify the structure of existing proteins, thereby engineering novel elements to alter and improve native motor protein function, or even allow the motor proteins to perform entirely new tasks as parts of nanomachines. Kinesin and dynein are vital elements for the proper function of cells. While many exciting experiments have shed light on their function, mechanics, and applications, additional research is needed to completely understand their behavior.

  15. Proposal for Alzheimer’s diagnosis using molecular buffer and bus network

    Directory of Open Access Journals (Sweden)

    Mitatha S

    2011-06-01

    Full Text Available S Mitatha1, N Moongfangklang1, MA Jalil2, N Suwanpayak3, T Saktioto4, J Ali4, PP Yupapin31Hybrid Computing Research Laboratory, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand; 2Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 4Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: A novel design of an optical trapping tool for tangle protein (tau tangles, ß-amyloid plaques and molecular motor storage and delivery using a PANDA ring resonator is proposed. The optical vortices can be generated and controlled to form the trapping tools in the same way as the optical tweezers. In theory, the trapping force is formed by the combination between the gradient field and scattering photons, and is reviewed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecular volumes can be trapped and moved dynamically within the molecular buffer and bus network. The tangle protein and molecular motor can transport and connect to the required destinations, enabling availability for Alzheimer’s diagnosis.Keywords: Alzheimer’s disease, molecular diagnosis, optical trapping tool, molecular networks

  16. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan); Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)

    2011-06-15

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  17. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    Science.gov (United States)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M. A.; Akhter, J. I.

    2011-06-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  18. Novel microstructural growth in the surface of Inconel 625 by the addition of SiC under electron beam melting

    International Nuclear Information System (INIS)

    Ahmad, M.; Ali, G.; Ahmed, Ejaz; Haq, M.A.; Akhter, J.I.

    2011-01-01

    Electron beam melting is being used to modify the microstructure of the surfaces of materials due to its ability to cause localized melting and supercooling of the melt. This article presents an experimental study on the surface modification of Ni-based superalloy (Inconel 625) reinforced with SiC ceramic particles under electron beam melting. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction techniques have been applied to characterize the resulted microstructure. The results revealed growth of novel structures like wire, rod, tubular, pyramid, bamboo and tweezers type morphologies in the modified surface. In addition to that fibrous like structure was also observed. Formation of thin carbon sheet has been found at the regions of decomposed SiC. Electron beam modified surface of Inconel 625 alloy has been hardened twice as compared to the as-received samples. Surface hardening effect may be attributed to both the formation of the novel structures as well as the introduction of Si and C atom in the lattice of Inconel 625 alloy.

  19. Two-beam laser fabrication technique and the application for fabricating conductive silver nanowire on flexible substrate

    Directory of Open Access Journals (Sweden)

    Gui-Cang He

    2017-03-01

    Full Text Available In this study, a two-beam laser fabrication technique is proposed to fabricate silver nanowire (AgNW on the polyethylene terephthalate (PET substrate. The femtosecond pulse laser in the technique plays a role in generating Ag nanoparticles from the silver aqueous solution by multiphoton photoreduction. The continuous wave (CW laser of the technique works as optical tweezers, and make the Ag nanoparticles gather to a continuous AgNW by the optical trapping force. The optical trapping force of the CW laser was calculated under our experimental condition. The flexibility and the resistance stability of the AgNW that fabricated by this technique are very excellent. Compared to the resistance of the AgNW without bending, the decreasing rate of the AgNW resistance is about 16% under compressed bending condition at the radius of 1 mm, and the increasing rate of the AgNW resistance is only 1.3% after the AgNW bended about 3500 times at the bending radius of 1 mm. The study indicates that the AgNW is promising for achieving flexible device and would promote the development of the flexible electronics.

  20. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL.

    Science.gov (United States)

    Cui, Yunxi; Koirala, Deepak; Kang, HyunJin; Dhakal, Soma; Yangyuoru, Philip; Hurley, Laurence H; Mao, Hanbin

    2014-05-01

    Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].