WorldWideScience

Sample records for ccs-enabled unconventional fossil

  1. Reconciling fossil fuel power generation development and climate issues: CCS and CCS-Ready

    Energy Technology Data Exchange (ETDEWEB)

    Paelinck, Philippe; Sonnois, Louis; Leandri, Jean-Francois

    2010-09-15

    This paper intends to analyse how CCS can contribute to reduce CO2 emissions from fossil-fuel power plants and to describe what is its current overall status. Its potential future development is assessed, in both developed and developing countries, and an economical assessment of different investment options highlight the importance of CCS retrofit. The paper analyses then the challenges of the development of fossil fuelled power plants and details case examples to illustrate some technical challenges related to CCS and what are the technical solutions available today to ease and address them: CCS-Ready power plants.

  2. The effect of retrofitting Portuguese fossil fuel power plants with CCS

    International Nuclear Information System (INIS)

    Gerbelová, Hana; Versteeg, Peter; Ioakimidis, Christos S.; Ferrão, Paulo

    2013-01-01

    Highlights: ► A map of mainland Portugal with potential CO 2 source-sink matching was created. ► Four existing Portuguese power plants were simulated with and without CCS. ► Effect of CCS retrofit on performance and costs at each power plant was studied. ► The incremental COE was estimated at around 46 $/MW h for NGCC plants. ► The incremental COE was estimated at around 61 $/MW h for PC plants. -- Abstract: This work assesses the retrofit potential of existing Portuguese fossil fuel power plants with post-combustion CO 2 capture and storage (CCS) technology. The Integrated Environmental Control Model (IECM) was used to provide a systematic techno-economic analysis of the cost of emission control equipment, the reduction in greenhouse gas emissions, and other key parameters which may change when CCS is implemented at a fossil fuel power plant. The results indicate that CCS requires a large capital investment and significantly increases the levelized cost of electricity. However, the economic viability of CCS increases with higher CO 2 prices. The breakeven CO 2 price for plants with and without CCS was estimated at $85–$140/t of CO 2 depending on the technical parameters of the individual plants.

  3. The future of oil: unconventional fossil fuels.

    Science.gov (United States)

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  4. Earth 2075 (CO2) - can Ocean-Amplified Carbon Capture (oacc) Impart Atmospheric CO2-SINKING Ability to CCS Fossil Energy?

    Science.gov (United States)

    Fry, R.; Routh, M.; Chaudhuri, S.; Fry, S.; Ison, M.; Hughes, S.; Komor, C.; Klabunde, K.; Sethi, V.; Collins, D.; Polkinghorn, W.; Wroobel, B.; Hughes, J.; Gower, G.; Shkolnik, J.

    2017-12-01

    Previous attempts to capture atmospheric CO2 by algal blooming were stalled by ocean viruses, zooplankton feeding, and/or bacterial decomposition of surface blooms, re-releasing captured CO2 instead of exporting it to seafloor. CCS fossil energy coupling could bypass algal bloom limits—enabling capture of 10 GtC/yr atmospheric CO2 by selective emiliania huxleyi (EHUX) blooming in mid-latitude open oceans, far from coastal waters and polar seas. This could enable a 500 GtC drawdown, 350 ppm restoration by 2050, 280 ppm CO2 by 2075, and ocean pH 8.2. White EHUX blooms could also reflect sunlight back into outer space and seed extra ocean cloud cover, via DMS release, to raise albedo 1.8%—restoring preindustrial temperature (ΔT = 0°C) by 2030. Open oceans would avoid post-bloom anoxia, exclusively a coastal water phenomenon. The EHUX calcification reaction initially sources CO2, but net sinking prevails in follow-up equilibration reactions. Heavier-than-water EHUX sink captured CO2 to the sea floor before surface decomposition occurs. Seeding EHUX high on their nonlinear growth curve could accelerate short-cycle secondary open-ocean blooming—overwhelming mid-latitude viruses, zooplankton, and competition from other algae. Mid-latitude "ocean deserts" exhibit low viral, zooplankton, and bacterial counts. Thermocline prevents nutrient upwelling that would otherwise promote competing algae. Adding nitrogen nutrient would foster exclusive EHUX blooming. Elevated EHUX seed levels could arise from sealed, pH-buffered, floating, seed-production bioreactors infused with 10% CO2 from carbon feedstock supplied by inland CCS fossil power plants capturing 90% of emissions as liquid CO2. Deep-water SPAR platforms extract natural gas from beneath the sea floor. On-platform Haber and pH processing could convert extracted CH4 to buffered NH4+ nutrient, enabling ≥0.7 GtC/yr of bioreactor seed production and 10 GtC/yr of amplified secondary open-ocean CO2 capture—making CCS

  5. A trust fund approach to accelerating deployment of CCS: options and considerations

    Energy Technology Data Exchange (ETDEWEB)

    Naomi Pena; Edward S. Rubin

    2008-01-15

    The paper discusses one possible avenue to accelerate deployment of carbon dioxide capture and sequestration (CCS) technologies: use of a special-purpose CCS Trust Fund. A CCS Trust Fund financed, for example, through fees on coal-based or fossil fuel-based electricity generation may have a role in reducing CO{sub 2} emissions from power plants because it could: raise funds at the scale needed to support a significant number (e.g., 10 to 30) of commercial-scale CCS projects; ensure that the funds raised would be used to demonstrate CCS at commercial scale for a full range of systems applicable to U.S. power plants; establish the true costs, reliability, and operability of power plants with CCS; utilize private-sector business standards for project selection and management to ensure program cost effectiveness; and significantly reduce CCS costs within 10 to 15 years by supporting approximately 30 demonstrations, yielding substantial national economic benefits as CCS becomes widely deployed. The United States has considerable experience with trust funds. While no single existing fund illustrates all the features that might be desirable for a CCS Trust Fund, lessons from prior U.S. experience can be used to design an effective, efficient mechanism for advancing commercial-scale deployment of CCS. In particular, experience has indicated the importance of financial self-sufficiency, private-sector management standards, insulation from the annual Congressional appropriations process, and termination upon completion of objectives. Carefully crafted enabling legislation and, most likely, use of a quasi-public or private entity to manage a CCS Trust Fund will be needed to incorporate these and other desirable features. 25 refs., 1 tab., 1 app.

  6. The Water-Energy-Food Nexus of Unconventional Fossil Fuels.

    Science.gov (United States)

    Rosa, L.; Davis, K. F.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    Extraction of unconventional fossil fuels has increased human pressure on freshwater resources. Shale formations are globally abundant and widespread. Their extraction through hydraulic fracturing, a water-intensive process, may be limited by water availability, especially in arid and semiarid regions where stronger competition is expected to emerge with food production. It is unclear to what extent and where shale resource extraction could compete with local water and food security. Although extraction of shale deposits materializes economic gains and increases energy security, in some regions it may exacerbate the reliance on food imports, thereby decreasing regional food security. We consider the global distribution of known shale deposits suitable for oil and gas extraction and evaluate their impacts on water resources for food production and other human and environmental needs. We find that 17% of the world's shale deposits are located in areas affected by both surface water and groundwater stress, 50% in areas with surface water stress, and about 30% in irrigated areas. In these regions shale oil and shale gas production will likely threaten water and food security. These results highlight the importance of hydrologic analyses in the extraction of fossil fuels. Indeed, neglecting water availability as one of the possible factors constraining the development of shale deposits around the world could lead to unaccounted environmental impacts and business risks for firms and investors. Because several shale deposits in the world stretch across irrigated agricultural areas in arid regions, an adequate development of these resources requires appropriate environmental, economic and political decisions.

  7. Study on Economic Aspects and the Introduction of Clean Coal Technologies with CCS

    Science.gov (United States)

    Yoshizaki, Haruki; Nakata, Toshihiko

    The advantages of coal are the largest reserves among any other fossil fuels, and can be found in many places including some developed countries. Due to the weak energy security of Japan, it is necessary to use coal as an energy source. We have designed the detailed energy model of electricity sector in which we take both energy conversion efficiency and economic aspects into consideration. The Japan model means an energy-economic model focusing on the structure of the energy supply and demand in Japan. Furthermore, the most suitable carbon capture and storage (CCS) system consisting of CO2 collection, transportation, storages are assumed. This paper examines the introduction of clean coal technologies (CCT's) with CCS into the electricity market in Japan, and explores policy options for the promotion of CCT's combined with CCS. We have analyzed the impacts of carbon tax where each fossil technology, combined with CCS, becomes competitive in possible market. CO2 mitigation costs for all plants with CCS are detailed and compared.

  8. Either with CCS or not at all.; Mit CCS oder gar nicht.

    Energy Technology Data Exchange (ETDEWEB)

    Wicke, L. [Inst. fuer UmweltManagement (IfUM) an der ESCP - EAP, Europaeische Wirtschaftshochschule Berlin (Germany)

    2008-11-15

    The power plant projects in Hamburg and Berlin will have a decisive influence on the future of electricity production from coal, security of supply and the effectiveness of climate policies. In response to the declaration of intent by the G8 countries to reduce global CO{sub 2} emissions by half by the year 2050 Germany has committed itself to reduce its own emissions by at least 80%. Furthermore the International Energy Agency has irrefutably shown, in addition to the necessity of drastically improving energy efficiency until the year 2050 and vastly increasing the use of all renewable energy resources, that it is indispensable to implement CCS (carbon capture and storage) technology in all fossil fuel power plants as soon as possible, that is both in new and, through retrofitting, in existing installations. It must also be used in all industrial applications involving localised CO{sub 2} emissions. It thus appears imperative to implement CCS technology without further delay. It is in Vattenfall's own economic interest not to exploit the authorities' decision to grant permission for the construction of the Moorburg power plant without CCS ''for the time being''. On no account should this decision be allowed to create a precedent for further power plant permits ''without CCS''.

  9. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    Science.gov (United States)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  10. Environmental impact assessment of CCS chains – Lessons learned and limitations from LCA literature

    NARCIS (Netherlands)

    Corsten, M.A.M.; Ramirez, C.A.; Shen, L.; Koornneef, A.; Faaij, A.P.C.

    2013-01-01

    This study performs an assessment of existing LCA literature to obtain insights into potential environmental impacts over the complete life cycle of fossil fuel fired power plants with CCS. CCS results in a net reduction of the GWP of power plants through their life cycle in the order of 65–84%

  11. A monotone framework for CCS

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    2009-01-01

    The calculus of communicating systems, CCS, was introduced by Robin Milner as a calculus for modelling concurrent systems. Subsequently several techniques have been developed for analysing such models in order to get further insight into their dynamic behaviour. In this paper we present a static...... a finite automaton that faithfully captures the control structure of a CCS model. Each state in the automaton records a multiset of the enabled actions and appropriate transfer functions are developed for transforming one state into another. A classical worklist algorithm governs the overall construction...

  12. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    Science.gov (United States)

    Hisyamudin Muhd Nor, Nik; Norhana Selamat, Siti; Hanif Abd Rashid, Muhammad; Fauzi Ahmad, Mohd; Jamian, Saifulnizan; Chee Kiong, Sia; Fahrul Hassan, Mohd; Mohamad, Fariza; Yokoyama, Seiji

    2016-06-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO2) maker, its discharge will get to be significant if there is no move made. CO2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target.

  13. Carbon Sequestration and Carbon Capture and Storage (CCS) in Southeast Asia

    International Nuclear Information System (INIS)

    Muhd Nor, Nik Hisyamudin; Selamat, Siti Norhana; Abd Rashid, Muhammad Hanif; Ahmad, Mohd Fauzi; Jamian, Saifulnizan; Kiong, Sia Chee; Hassan, Mohd Fahrul; Mohamad, Fariza; Yokoyama, Seiji

    2016-01-01

    Southeast Asia is a standout amongst the most presented districts to unnatural weather change dangers even they are not principle worldwide carbon dioxide (CO_2) maker, its discharge will get to be significant if there is no move made. CO_2 wellsprings of Southeast Asia are mainly by fossil fuel through era of power and warmth generation, and also transportation part. The endeavors taken by these nations can be ordered into administrative and local level. This paper review the potential for carbon catch and capacity (CCS) as a part of the environmental change moderation system for the Malaysian power area utilizing an innovation appraisal structure. The country's recorded pattern of high dependence on fossil fuel for its power segment makes it a prime possibility for CCS reception. This issue leads to gradual increment of CO2 emission. It is evident from this evaluation that CCS can possibly assume a vital part in Malaysia's environmental change moderation methodology gave that key criteria are fulfilled. With the reason to pick up considerations from all gatherings into the earnestness of an Earth-wide temperature boost issue in Southeast Asia, assume that more efficient measures can be taken to effectively accomplish CO2 diminishment target. (paper)

  14. Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS.

    Science.gov (United States)

    Outani, Hidetatsu; Tanaka, Takaaki; Wakamatsu, Toru; Imura, Yoshinori; Hamada, Kenichiro; Araki, Nobuhito; Itoh, Kazuyuki; Yoshikawa, Hideki; Naka, Norifumi

    2014-06-19

    Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines. Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo. Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling. CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism.

  15. Applications of CCS technology to the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Marchionna, M. [eni, San Donato (Italy). Application Development and Cross-Business Projects

    2012-07-01

    The need to satisfy growing energy demand goes together with the need to tackle the risks to the climate related to increased CO{sub 2} production. One of the solutions is the CO{sub 2} Capture and Storage (CCS) technology, used to geologically sequester CO{sub 2} generated by fossil fuels, especially from large-point source emitters. (orig.)

  16. Not in My Backyard: CCS Sites and Public Perception of CCS.

    Science.gov (United States)

    Braun, Carola

    2017-12-01

    Carbon capture and storage (CCS) is a technology that counteracts climate change by capturing atmospheric emissions of CO 2 from human activities, storing them in geological formations underground. However, CCS also involves major risks and side effects, and faces strong public opposition. The whereabouts of 408 potential CCS sites in Germany were released in 2011. Using detailed survey data on the public perception of CCS, this study quantifies how living close to a potential storage site affects the acceptance of CCS. It also analyzes the influence of other regional characteristics on the acceptance of CCS. The study finds that respondents who live close to a potential CCS site have significantly lower acceptance rates than those who do not. Living in a coal-mining region also markedly decreases acceptance. © 2017 Society for Risk Analysis.

  17. Minimizing the water and air impacts of unconventional energy extraction

    Science.gov (United States)

    Jackson, R. B.

    2014-12-01

    Unconventional energy generates income and, done well, can reduce air pollution compared to other fossil fuels and even water use compared to fossil fuels and nuclear energy. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Based on research to date, some primary threats to water resources come from surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. For air resources, an increase in volatile organic compounds and air toxics locally is a potential health threat, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate pollution regionally. Critical needs for future research include data for 1) estimated ultimate recovery (EUR) of unconventional hydrocarbons; 2) the potential for further reductions of water requirements and chemical toxicity; 3) whether unconventional resource development alters the frequency of well-integrity failures; 4) potential contamination of surface and ground waters from drilling and spills; and 5) the consequences of greenhouse gases and air pollution on ecosystems and human health.

  18. Trojan horse or horn of plenty? Reflections on allowing CCS in the CDM

    International Nuclear Information System (INIS)

    Coninck, Heleen de

    2008-01-01

    The discussion around allowing CO 2 capture and geological storage (CCS) into the Kyoto Protocol's Clean Development Mechanism (CDM) is important, as the CDM is currently the only structural incentive for reducing greenhouse gas emissions in the developing world. Without the potential incentives given by the CDM, CCS in developing countries will only take place sporadically in niche sectors. The debate around CCS in the CDM has developed into a highly polarised discussion, with a deep divide between proponents and opponents and no view on reconciliation between the various perspectives. Environmental organisations and several developing-country parties in the climate negotiations are increasingly vehemently opposed against CCS in the CDM, and industrialised countries, several large fossil-fuel-dependent developing countries and industry view CCS as a natural option under the CDM, provided some surmountable technical and procedural barriers are taken care of. This paper argues that the efforts of those trying to bring the discussion to a close by solving technical and procedural issues around CCS in the CDM will not lead to agreement because of underlying convictions of all stakeholders. Six convictions are identified and discussed. Based on the discussion of the convictions of both opponents and proponents, research needs and a potential negotiation package are suggested. The research needs are primarily in the field of the CDM market impacts of CCS, the issue of enhanced oil emission accounting, and sustainable development aspects, and particularly whether developing countries could actually benefit from technological leadership in the field of CCS, or whether they will be worse off. Devoting attention to the identified convictions could provide information for a more acceptable negotiation package on CCS in the CDM. (author)

  19. Uncertainty modeling of CCS investment strategy in China's power sector

    International Nuclear Information System (INIS)

    Zhou, Wenji; Zhu, Bing; Fuss, Sabine; Szolgayova, Jana; Obersteiner, Michael; Fei, Weiyang

    2010-01-01

    The increasing pressure resulting from the need for CO 2 mitigation is in conflict with the predominance of coal in China's energy structure. A possible solution to this tension between climate change and fossil fuel consumption fact could be the introduction of the carbon capture and storage (CCS) technology. However, high cost and other problems give rise to great uncertainty in R and D and popularization of carbon capture technology. This paper presents a real options model incorporating policy uncertainty described by carbon price scenarios (including stochasticity), allowing for possible technological change. This model is further used to determine the best strategy for investing in CCS technology in an uncertain environment in China and the effect of climate policy on the decision-making process of investment into carbon-saving technologies.

  20. Inorganic Contaminants Associated with the Extraction of Unconventional Gas.Initial Analysis and Risk Assessment

    International Nuclear Information System (INIS)

    Xu, L.; Hurtado, A.; Recreo, F.; Eguilior, S.

    2015-01-01

    The latest technological developments in horizontal drilling and hydraulic fracturing are driving a commercial scale extraction of unconventional fossil fuels in various regions of the world. Europe's position in relation to the exploitation of unconventional fossil fuels is this has to be made under a paradigm of coherence between the technical and economic-financial aspects and environments and public trust, which are essential and which will eventually would enable the viability of exploiting these resources.This requires, by those decision makers, both industry and regulators, a comprehensive management of the risks associated with these exploitations, which implies the need to develop tools of analysis and assessment to environmental impact and risk. The exploitation of unconventional hydrocarbons in formations of shale requires the creation of a network of artificial fractures to connect with production well Horizontal wells are drilled for this purpose and go on for several km into the shale formation. During drilling, a mixture of oil, gas and formation water is pumped to the surface. The water is separated from oil and gas in tanks or pools. The flowback and produced water contains different kinds of chemicals in varying concentrations: salt, oil and other organic compounds, suspended solids, bacteria, naturally occurring radioactive elements (NORM), and any element injected with the fracturing fluid. The concentration of these elements in the water may be increased due to the treatments suffered by flowback and produced water for disposal. Due to the large variability of contaminants in the flowback and produced water and the potentially large volumes involved, the determination of the its composition is essential for proper management of them and to prevent health, safety and environmental risks. This report covers the risk analysis of an unconventional gas extraction project, the initial assessment of the risks associated with the use and management of

  1. Cost and performance of fossil fuel power plants with CO2 capture and storage

    International Nuclear Information System (INIS)

    Rubin, Edward S.; Chen, Chao; Rao, Anand B.

    2007-01-01

    CO 2 capture and storage (CCS) is receiving considerable attention as a potential greenhouse gas (GHG) mitigation option for fossil fuel power plants. Cost and performance estimates for CCS are critical factors in energy and policy analysis. CCS cost studies necessarily employ a host of technical and economic assumptions that can dramatically affect results. Thus, particular studies often are of limited value to analysts, researchers, and industry personnel seeking results for alternative cases. In this paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed for three major plant types: pulverized coal (PC) plants, natural gas combined cycle (NGCC) plants, and integrated gasification combined cycle (IGCC) systems using coal. In particular, we examine the effects of recent increases in capital costs and natural gas prices, as well as effects of differential plant utilization rates, IGCC financing and operating assumptions, variations in plant size, and differences in fuel quality, including bituminous, sub-bituminous and lignite coals. Our results show higher power plant and CCS costs than prior studies as a consequence of recent escalations in capital and operating costs. The broader range of cases also reveals differences not previously reported in the relative costs of PC, NGCC and IGCC plants with and without CCS. While CCS can significantly reduce power plant emissions of CO 2 (typically by 85-90%), the impacts of CCS energy requirements on plant-level resource requirements and multi-media environmental emissions also are found to be significant, with increases of approximately 15-30% for current CCS systems. To characterize such impacts, an alternative definition of the 'energy penalty' is proposed in lieu of the

  2. Clean fossil-fuelled power generation

    International Nuclear Information System (INIS)

    Oliver, Tony

    2008-01-01

    Using fossil fuels is likely to remain the dominant means of producing electricity in 2030 and even 2050, partly because power stations have long lives. There are two main ways of reducing CO 2 emissions from fossil-fuelled power plants. These are carbon capture and storage (CCS), which can produce near-zero CO 2 emissions, and increases in plant efficiency, which can give rise to significant reductions in CO 2 emissions and to reduced costs. If a typical UK coal-fired plant was replaced by today's best available technology, it would lead to reductions of around 25% in emissions of CO 2 per MW h of electricity produced. Future technologies are targeting even larger reductions in emissions, as well as providing a route, with CCS, to zero emissions. These two routes are linked and they are both essential activities on the pathway to zero emissions. This paper focuses on the second route and also covers an additional third route for reducing emissions, the use of biomass. It discusses the current status of the science and technologies for fossil-fuelled power generation and outlines likely future technologies, development targets and timescales. This is followed by a description of the scientific and technological developments that are needed to meet these challenges. Once built, a power plant can last for over 40 years, so the ability to upgrade and retrofit a plant during its lifetime is important

  3. Design Support for ESF-CCS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. J.; Kim, J. S.; Kim, K. T.; Suh, M. K.; Kim, H.; Yoo, Y. J. [BNF Technology Co., Seoul (Korea, Republic of)

    2008-06-15

    Through the design efforts for KSNP, the design technique on the nuclear power plant's I and C have been established. For the lack of a domestic platform, however, foreign products were imported. As a result, system design was subjected to critical changes for the platform characteristics, and foreign companies dominated domestic market. To take the control back from these foreign companies, domestication of the platform is indispensable. The design independence of ESF-CCS, gained through the KNICS R and D project, will give the technical maturity to the nuclear industries and electronics industries. From the perspectives of safety and performance, ESF-CCS developed throughout this research will enable us to be more competitive against overseas vendors when it is applied in the nuclear instrumentation and control system. Based on this competitiveness, our system can be supplied to the current or newly-developing I and C systems in nuclear power plants and used to setup the domestic technology of system design.

  4. Modelling of CO2 pipelines in dynamic CCS systems

    Science.gov (United States)

    Nimtz, M.; Klatt, M.; Krautz, H. J.

    2012-04-01

    The growing rate of renewable energies contributing to the power supply in Germany is starting to influence conventional thermal power plants. As a particular example, the state of Brandenburg in the eastern part of Germany has an installed capacity of 4.4 GW wind power [DEWI 2011] and 6.1 GW fossil fueled large-scale power plants (including the site in Boxberg, north-east saxony) [Vattenfall 2011] respectively. This ratio is disadvantageous, as the local thermal power plants have to provide all the balancing power to control the load of the power grid in the region. As long as there are bottlenecks in the grid, preventing the extra load from wind energy to be transported as well as a lack of technologies to store electrical energy, almost all load changes have to be balanced by the large fossil fueled power plants. The ability to provide balancing power will also be an essential criterion for new large-scale CCS (carbon dioxide capture and storage) power plants to be permitted. But this of course will influence the overall performance of the power plant and the connected peripheral systems. It is obvious that the additional equipment to capture, transport and store the CO2 and all related extra process steps will lower the flexibility and the speed of load changes that can be applied to the CCS system if no special measures are applied. All changes in load that are demanded from the power grid will be transferred to the capture and transport system, finally resulting in changes in mass flow and pressure of the CO2. These changes will also influence the performance of the storage reservoir. The presentation at the GeoEn session at the EGU 2012 will cover a look at a CCS system consisting of a coal fired Oxyfuel power plant, a pipeline to transport the CO2 and a saline aquifer as a storage reservoir. It is obvious that all parts of this system will influence each other due to the direct connection via pipeline and the physical limitations in mass flow and pressure

  5. Regulatory Promotion of Emergent CCS Technology

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Lincoln; Uchitel, Kirsten; Johnson, David

    2014-01-01

    Despite the growing inevitability of climate change and the attendant need for mitigation strategies, carbon capture and sequestration (CCS) has yet to gain much traction in the United States. Recent regulatory proposals by the U.S. Environmental Protection Agency (EPA), limited in scope to new-build power plants, represent the only significant policy initiative intended to mandate diffusion of CCS technology. Phase I of this Project assessed barriers to CCS deployment as prioritized by the CCS community. That research concluded that there were four primary barriers: (1) cost, (2) lack of a carbon price, (3) liability, and (4) lack of a comprehensive regulatory regime. Phase II of this Project, as presented in this Report, assesses potential regulatory models for CCS and examines where those models address the hurdles to diffusing CCS technology identified in Phase I. It concludes (1) that a CCS-specific but flexible standard, such as a technology performance standard or a very particular type of market-based regulation, likely will promote CCS diffusion, and (2) that these policies cannot work alone, but rather, should be combined with other measures, such as liability limits and a comprehensive CCS regulatory regime.

  6. CCS in the North Sea region: A comparison on the cost-effectiveness of storing CO2 in the Utsira formation at regional and national scales

    DEFF Research Database (Denmark)

    Strachan, N.; Hoefnagels, R.; Ramirez, A.

    2011-01-01

    The potential scale of carbon dioxide capture and storage (CCS) under long-term decarbonisation scenarios means that analysis on the contribution of large international CO2 storage reservoirs is critical. This paper compares the potentially key role of CCS within cost-optimizing energy systems...... formation as a common North Sea CO2 storage resource. A robust finding is that low carbon electricity is a primary decarbonisation pathway and that CCS plays a key role (32–40%) within this portfolio. This paper confirms that the overall driver of the amount of CCS utilized is the climate policy...... the CO2 storage cost curve, with the Netherlands and the UK being the largest contributors, followed by transboundary flows of CO2 from other countries. However, overall regional CCS flows may be larger (for example under low fossil fuel prices) than the estimated (and uncertain) maximum annual injection...

  7. Perspectives of new fossil-fuelled power plants with CO{sub 2} capture in the liberalised European electricity market; Energiewirtschaftliche Anforderungen an neue fossil befeuerte Kraftwerke mit CO{sub 2}-Abscheidung im liberalisierten europaeischen Elektrizitaetsmarkt

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Tom

    2014-03-15

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO{sub 2} emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO{sub 2} storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger

  8. CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes.

    Science.gov (United States)

    Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel

    2014-08-01

    The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.

  9. Carbon capture and storage (CCS)

    International Nuclear Information System (INIS)

    Martin-Amouroux, Jean-Marie

    2016-01-01

    The author first defines what carbon capture and storage (CCS)is, describes more precisely the various technologies, methods and processes involved in carbon capture, carbon transport, and carbon geological storage. He briefly evokes the various applications and uses of CCS. In the second part, he proposes an overview of advances and deadlocks of CCS in the world, of the status of installations and projects, of the development of capture practices in the industry, of some existing and important storage sites, of some pilot installations developed by various industrial actors in different countries (26 installations in the world). He indicates power stations equipped for CCS (in Canada, USA, United-Kingdom, Netherlands, Norway, China, South Korea and United Arab Emirates). He evokes projects which have been given up or postponed. He proposes an overview of policies implemented in different countries (USA, Canada, European Union, Australia, and others) to promote CCS

  10. The Value of CCS under Current Policy Scenarios: NDCs and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L.; Dahowski, Robert T.; McJeon, Haewon C.; Clarke, Leon E.; Iyer, Gokul C.; Muratori, Matteo

    2017-07-01

    This paper describes preliminary results of analysis using the Global Change Assessment Model (GCAM) to evaluate the potential role of CCS in addressing emissions reduction targets. Scenarios are modelled using the Paris-Increased Ambition (PIA) case developed by Fawcett et al. (2015), and a more aggressive Paris Two-Degree Ambition (P2A) case. Both cases are based upon nationally determined contributions (NDCs) agreed to at the UNFCCC Conference of Parties (COP-21) in December 2015, coupled with additional mitigation effort beyond the 2030 Paris timeframe, through the end of the century. Analysis of CCS deployment and abatement costs under both policy scenarios suggests that, as modelled, having CCS in the technological portfolio could reduce the global cost of addressing emissions reduction targets specified under the policy scenario by trillions of dollars, primarily by enabling a smoother and lower-cost transition to next-generation technologies. Through the end of the century, total global abatement costs associated with the PIA case – with five percent annual reduction in emission intensity and reaching 2.2 degrees by 2100 – are reduced by $15 trillion USD in the scenario where CCS is available to deploy by 2025 and remains available through 2100, reflecting a 47 percent savings in the cost of climate change abatement. Under the more ambitious P2A case, with 8 percent annual reduction in emission intensity and reaching 1.9 degrees by 2100, the availability of CCS reduces global abatement costs by $22 trillion USD through the end of the century, again nearly halving the costs of addressing the policy, relative to achieving the same target using an energy portfolio that does not include CCS. PIA and P2A scenarios with CCS result in 1,250 and 1,580 GtCO2 of global geologic storage by the end of the century, respectively.

  11. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    International Nuclear Information System (INIS)

    Kim, Hyewon; Kim, Yong Hoon; Kang, Seong-Gil; Park, Young-Gyu

    2016-01-01

    Offshore geologic storage of carbon dioxide (CO_2), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO_2 levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO_2 gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here, we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO_2 leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO_2 leakage (ocean acidification, hypercapnia) on marine

  12. Development of environmental impact monitoring protocol for offshore carbon capture and storage (CCS): A biological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyewon, E-mail: hyewon@ldeo.columbia.edu [Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964 (United States); Kim, Yong Hoon, E-mail: Yong.Kim@rpsgroup.com [RPS ASA, 55 Village Square Drive, South Kingstown, RI 02879 (United States); Kang, Seong-Gil, E-mail: kangsg@kriso.re.kr [Offshore CCS Research Unit, Korea Research Institute of Ships and Ocean Engineering, 32 1312 Beon-gil, Yuseong-daero, Yuseong-gu, Deaejeon (Korea, Republic of); Park, Young-Gyu, E-mail: ypark@kiost.ac.kr [Ocean Circulation and Climate Change Research Center, Korea Institute of Ocean Science and Technology, 787 Haeanro, Ansan (Korea, Republic of)

    2016-02-15

    Offshore geologic storage of carbon dioxide (CO{sub 2}), known as offshore carbon capture and sequestration (CCS), has been under active investigation as a safe, effective mitigation option for reducing CO{sub 2} levels from anthropogenic fossil fuel burning and climate change. Along with increasing trends in implementation plans and related logistics on offshore CCS, thorough risk assessment (i.e. environmental impact monitoring) needs to be conducted to evaluate potential risks, such as CO{sub 2} gas leakage at injection sites. Gas leaks from offshore CCS may affect the physiology of marine organisms and disrupt certain ecosystem functions, thereby posing an environmental risk. Here, we synthesize current knowledge on environmental impact monitoring of offshore CCS with an emphasis on biological aspects and provide suggestions for better practice. Based on our critical review of preexisting literatures, this paper: 1) discusses key variables sensitive to or indicative of gas leakage by summarizing physico-chemical and ecological variables measured from previous monitoring cruises on offshore CCS; 2) lists ecosystem and organism responses to a similar environmental condition to CO{sub 2} leakage and associated impacts, such as ocean acidification and hypercapnia, to predict how they serve as responsive indicators of short- and long-term gas exposure, and 3) discusses the designs of the artificial gas release experiments in fields and the best model simulation to produce realistic leakage scenarios in marine ecosystems. Based on our analysis, we suggest that proper incorporation of biological aspects will provide successful and robust long-term monitoring strategies with earlier detection of gas leakage, thus reducing the risks associated with offshore CCS. - Highlights: • This paper synthesizes the current knowledge on environmental impact monitoring of offshore Carbon Capture and Sequestration (CCS). • Impacts of CO{sub 2} leakage (ocean acidification

  13. Challenges of efficient and clean use of fossil fuels for power production

    Energy Technology Data Exchange (ETDEWEB)

    Vortmeyer, Nicolas; Zimmermann, Gerhard

    2010-09-15

    Constantly increasing resource efficiency together with the broad introduction of CCS technologies is fundamental for a continuous use of fossil fuels in power generation against the background of up-coming requirements for CO2 emission reduction. In principle, CCS means up-grading conventional power plant technology with proven CO2 removal processes. However, this leads to additional losses, auxiliary power demand and cost. System integration, development or at least adaption of components and processes are the main requirements in this context. Different technology solutions and recent developments will be addressed as well as challenges when implementing in demonstration projects.

  14. Potential impacts of CCS on the CDM

    International Nuclear Information System (INIS)

    Bakker, S; Mikunda, T.; Rivera Tinoco, R.

    2011-02-01

    CO2 capture and storage can ensure that stringent climate change mitigation targets are achieved more cost-effectively. However, in order to ensure a substantial role for CCS, deployment of CCS is required on a significant global scale by 2020. Currently, the CDM is the only international instrument that could provide a financial incentive for CCS in developing countries. In December 2010 it was decided that CCS could in principle be eligible under the CDM, provided a number of issues are resolved, including non-permanence, liability, monitoring and potential perverse outcomes. The latter issue relates to the concern that that CCS projects could flood the CDM market, thereby crowding out other technologies that could be considered more sustainable. This report, therefore, aims to quantify the possible impact of CCS on the CDM market, in order to assess the relevance of the CDM market objection. However, the analysis in the report is also valid for the role of CCS in other types of international support mechanisms. The first result of this study is a marginal abatement cost curve (MAC) for CCS in developing countries for 2020. Based on existing MAC studies, the IEA CCS Roadmap and an overview of ongoing and planned CCS activities, we compiled three scenarios for CCS in the power, industry and upstream sector, as shown below. The major part of the potential below $30/tCO2eq (70 - 100 MtCO2/yr) is in the natural gas processing sector. Using the MACs for the CDM market, we estimate the economic potential for CCS projects to be 4-19% of the CDM credit supply in 2020. The potential impact inclusion of CCS in the CDM may have is assessed by using several possible CER supply and demand scenarios, as well as scenarios related to market price responsiveness and the role of CDM in the post-2012 carbon market. The impact is estimated to be between $0 and $4 per tonne of CO2-eq, with three out of four scenarios indicating the lower part of this range.

  15. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  16. System analysis of CO{sub 2} sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability; Systemanalyse der CO{sub 2}-Sequestrierung aus Biomasse-Heizkraftwerken (Bio-KWK-CCS). Technik, Wirtschaftlichkeit, Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Claus

    2014-10-15

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO{sub 2} sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO{sub 2} sequestration'' refers to the process chain from CO{sub 2} capture, CO{sub 2} transport and CO{sub 2} storage. While the use of biomass in combined heat and power plants is a common practice, CO{sub 2} sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO{sub 2} from the atmosphere as a future climate protection instrument by means of CO{sub 2} neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO{sub 2

  17. CCS: Legal and Regulatory Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The International Energy Agency (IEA) considers carbon capture and storage (CCS) a crucial part of worldwide efforts to limit global warming by reducing greenhouse-gas emissions. The IEA has estimated that the broad deployment of low-carbon energy technologies could reduce projected 2050 emissions to half 2005 levels -- and that CCS could contribute about one-fifth of those reductions. Reaching that goal, however, would require around 100 CCS projects to be implemented by 2020 and over 3 000 by 2050.

  18. Perspectives of new fossil-fuelled power plants with CO2 capture in the liberalised European electricity market

    International Nuclear Information System (INIS)

    Kober, Tom

    2014-01-01

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO 2 emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO 2 storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger influence on the

  19. International Earth Science Constellation Mission Operations Working Group: Constellation Coordination System (CCS) Status. [Constellation Coordination System (CCS) Status

    Science.gov (United States)

    Skeberdis, Daniel

    2016-01-01

    This is a presentation at the MOWG fall meeting that will discuss CCS purpose, future status, security enhancements, arbitrary ephemeris mission features, overview of CCS 7.3, approach for the use of NORAD TLEs, account and data security, CCS System virtualization, control box visualization modification and other enhancements.

  20. Unconventional oil and gas extraction and animal health.

    Science.gov (United States)

    Bamberger, M; Oswald, R E

    2014-08-01

    The extraction of hydrocarbons from shale formations using horizontal drilling with high volume hydraulic fracturing (unconventional shale gas and tight oil extraction), while derived from methods that have been used for decades, is a relatively new innovation that was introduced first in the United States and has more recently spread worldwide. Although this has led to the availability of new sources of fossil fuels for domestic consumption and export, important issues have been raised concerning the safety of the process relative to public health, animal health, and our food supply. Because of the multiple toxicants used and generated, and because of the complexity of the drilling, hydraulic fracturing, and completion processes including associated infrastructure such as pipelines, compressor stations and processing plants, impacts on the health of humans and animals are difficult to assess definitively. We discuss here findings concerning the safety of unconventional oil and gas extraction from the perspectives of public health, veterinary medicine, and food safety.

  1. The Zero Emission Fossil Fuel Power Plant - from vision to reality.

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, L.; Sauthoff, M.

    2007-07-01

    Sufficient supply of energy without fossil fuels is not possible the next fifty years. Thus, we must find a solution to use coal, without endangering the environment. Carbon Capture and Storage, CCS, might be the answer. At a cost of about 20 Euro/ton CO{sub 2}, there exist technologies, which can be ready for commercial application in 2020. After that, even more cost effective technologies will be developed. To reduce emissions by more than half until 2050, cannot be reached without CCS. However, CCS is very powerful, but not the only tool. All ways to reduce emissions, including renewables and nuclear must be used. To put emphasis behind the words, Vattenfall has started an R and D program to develop technology for CCS in a ten year program. As part of that, Vattenfall is building a Pilot Plant including all process steps from coal input to liquid CO{sub 2}. It will be ready in 2008. In parallel, preparations for a demonstration plant are ongoing. It will be a coal fired full size plant with storage on shore. That will be ready for operation in 2015. (auth)

  2. ACM CCS 2013-2015 Student Travel Support

    Science.gov (United States)

    2016-10-29

    ACM CCS 2013-2015 Student Travel Support Under the ARO funded effort titled “ACM CCS 2013-2015 Student Travel Support,” from 2013 to 2015, George...Computer and Communications Security (ACM CCS ). The views, opinions and/or findings contained in this report are those of the author(s) and should not...AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 travel grant, acm ccs REPORT

  3. Management of fossil natural resources: the impossible challenge?

    International Nuclear Information System (INIS)

    Loubens, Audrey

    2013-10-01

    A set of articles addresses various issues related to fossil energies and resources. A first set addresses the general context of fossil resources: the forced wedding between fossil energies and the environment (discussion of an annual report by the IEA on coal reserves), the availability of fossil fuels (discussion about the high share of fossil fuel in an always more renewable world). A second set addresses how to transform resources into reserves: discussion of the annual IEA report on conventional oil and gas reserves, on unconventional oil and gas reserves, and on coal reserves. The next set is a prospective one, and addresses the question of a scenario by 2040: the extremely high tension between fossil resources and geopolitical reality, and the question of the possibility of a world energy transition (discussions of the World Energy Outlook published by the IEA). Other issues are addressed by the last set of articles: the abundance of fossil energies obscures the potential of renewable energies, the evolution of the chemical industry towards alternative solutions in order to limit the use of hydrocarbons, and the territorial claims by Russia in the Arctic region

  4. Learning from experts on public engagement with CCS

    Science.gov (United States)

    Xenias, Dimitrios; Whitmarsh, Lorraine

    2016-04-01

    Carbon Capture and Storage is a key technology for the transition to a low carbon economy. There are thus strong normative, substantive and instrumental rationales for public acceptance of large scale CCS. In this study, we interviewed 12 experts in CCS from the UK, the Netherlands, and Germany. The experts had previous experience on public engagement on CCS, and were asked to identify barriers and drivers for CCS deployment and public engagement with CCS. Interviews lasted between 40 and 70 minutes. Thematic analysis revealed a small number of recurrent issues, including: (a) lack of political leadership on the matter; (b) lack of public knowledge on relevant technologies, which may not however always be necessary; and (c) difficulty communicating why CCS is not a direct substitute for renewable energy generation. Despite the recent government disengagement from CCS funding in the UK, another surprise finding was that lack of funding and political leadership was a perceived barrier internationally. These emergent views inform a follow-up online survey with the UK public, currently in preparation, which will expand on and triangulate the present findings and lead to development of a toolkit for the benefit of those involved with public engagement with CCS.

  5. CCS Research Development and Deployment in a Clean Energy Future: Lessons from Australia over the Past Two Decades

    Directory of Open Access Journals (Sweden)

    Peter J. Cook

    2017-08-01

    Full Text Available There is widespread, though by no means universal, recognition of the importance of carbon capture and storage (CCS as a carbon mitigation technology. However, the rate of deployment does not match what is required for global temperatures to stay well below 2 °C. Although some consider the hurdles to achieving the widespread application of CCS to be almost insurmountable, a more optimistic view is that a great deal is now known about CCS through research, demonstration, and deployment. We know how to do it; we are confident it can be done safely and effectively; we know what it costs; and we know that costs are decreasing and will continue to do so. We also know that the world will need CCS as long as countries, companies, and communities continue to use fossil fuels for energy and industrial processes. What is lacking are the necessary policy drivers, along with a technology-neutral approach to decrease carbon emissions in a cost-effective and timely manner while retaining the undoubted benefits of ready access to reliable and secure electricity and energy-intensive industrial products. In this paper, Australia is used as an example of what has been undertaken in CCS over the past 20 years, particularly in research and demonstration, but also in international collaboration. Progress in the large-scale deployment of CCS in Australia has been too slow. However, the world’s largest storage project will soon be operational in Australia as part of the Gorgon liquefied natural gas (LNG project, and investigations are underway into several large-scale CCS Flagship program opportunities. The organization and progress of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC Otway Project, which is currently Australia’s only operational storage project, is discussed in some detail because of its relevance to the commercial deployment of CCS. The point is made that there is scope for building on this Otway activity to investigate

  6. 4th IEA International CCS Regulatory Network Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    On 9 and 10 May 2012, the IEA International CCS Regulatory Network (Network), launched in Paris in May 2008 to provide a neutral forum for CCS regulators, policy makers and stakeholders to share updates and views on CCS regulatory developments, held its fourth meeting at the International Energy Agency (IEA) offices in Paris, France. The aim of the meeting was to: provide an update on government efforts to develop and implement carbon capture and storage (CCS) legal and regulatory frameworks; and consider ways in which governments are dealing with some of the more difficult or complex aspects of CCS regulation. This report summarises the proceedings of the meeting.

  7. Energy policy on shaky ground? A study of CCS-scenarios

    OpenAIRE

    Bryngelsson, Mårten; Hansson, Anders

    2009-01-01

    Scenarios play an important role for the societal acceptance of CCS. This paper looks into influential reports containing CCS scenarios and analyses results, key assumptions and drivers for CCS' deployment. Significant uncertainties regarding CCS' development were in several cases excluded or marginalized. Despite these shortcomings, scenarios support a massive deployment of CCS and reflect an undivided optimism. If CCS would fail to meet the high expectations a backlash could follow. Indicat...

  8. Novel process designs to improve the efficiency of postcombustion carbon dioxide capture

    NARCIS (Netherlands)

    Sanchez Fernandez, E.

    2013-01-01

    The term carbon dioxide capture and storage (CCS) refers to a range of technologies that can reduce CO2 emissions from fossil fuels enabling the continued use of this fuel type without compromising the security of electricity supply. The technologies applicable to CCS differ in many key aspects; the

  9. A scalable infrastructure model for carbon capture and storage: SimCCS

    International Nuclear Information System (INIS)

    Middleton, Richard S.; Bielicki, Jeffrey M.

    2009-01-01

    In the carbon capture and storage (CCS) process, CO 2 sources and geologic reservoirs may be widely spatially dispersed and need to be connected through a dedicated CO 2 pipeline network. We introduce a scalable infrastructure model for CCS (simCCS) that generates a fully integrated, cost-minimizing CCS system. SimCCS determines where and how much CO 2 to capture and store, and where to build and connect pipelines of different sizes, in order to minimize the combined annualized costs of sequestering a given amount of CO 2 . SimCCS is able to aggregate CO 2 flows between sources and reservoirs into trunk pipelines that take advantage of economies of scale. Pipeline construction costs take into account factors including topography and social impacts. SimCCS can be used to calculate the scale of CCS deployment (local, regional, national). SimCCS' deployment of a realistic, capacitated pipeline network is a major advancement for planning CCS infrastructure. We demonstrate simCCS using a set of 37 CO 2 sources and 14 reservoirs for California. The results highlight the importance of systematic planning for CCS infrastructure by examining the sensitivity of CCS infrastructure, as optimized by simCCS, to varying CO 2 targets. We finish by identifying critical future research areas for CCS infrastructure

  10. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    Science.gov (United States)

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Evaluation of BPA uptake in clear cell sarcoma (CCS) in vitro and development of an in vivo model of CCS for BNCT studies.

    Science.gov (United States)

    Fujimoto, T; Andoh, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Sonobe, H; Epstein, Alan L; Akisue, T; Kirihata, M; Kurosaka, M; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS), a rare malignant tumor with a predilection for young adults, is of poor prognosis. Recently however, boron neutron capture therapy (BNCT) with the use of p-borono-L-phenylalanine (BPA) for malignant melanoma has provided good results. CCS also produces melanin; therefore, the uptake of BPA is the key to the application of BNCT to CCS. We describe, for the first time, the high accumulation of boron in CCS and the CCS tumor-bearing animal model generated for BNCT studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    International Nuclear Information System (INIS)

    Andoh, T.; Fujimoto, T.; Sudo, T.; Fujita, I.; Imabori, M.; Moritake, H.; Sugimoto, T.; Sakuma, Y.; Takeuchi, T.; Kawabata, S.; Kirihata, M.; Akisue, T.; Yayama, K.; Kurosaka, M.; Miyatake, S.; Fukumori, Y.; Ichikawa, H.

    2011-01-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of 10 B (45–74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  13. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, T. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Sudo, T. [Section of Translational Research, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fujita, I.; Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Moritake, H. [Department of Pediatrics, Miyazaki University, Kiyotake 889-1692 (Japan); Sugimoto, T. [Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046 (Japan); Sakuma, Y. [Department of Pathology, Hyogo Cancer Center, Akashi 673-0021 (Japan); Takeuchi, T. [Department of Pathology, Kochi University, Nangoku 783-8505 (Japan); Kawabata, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Kirihata, M. [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531 (Japan); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Yayama, K. [Laboratory of Cardiovascular Pharmacology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Miyatake, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Fukumori, Y. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Ichikawa, H., E-mail: ichikawa@pharm.kobegakuin.ac.jp [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2011-12-15

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of {sup 10}B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  14. A Low Carbon EU Energy System and Unconventional Sources

    International Nuclear Information System (INIS)

    Gracceva, F.; Kanudia, A.; Tosato, GC.

    2013-01-01

    The paper investigates the potential role of unconventional fossil fuels in a global low carbon energy system. Making use of a systemic approach, the paper presents an original application of a global partial equilibrium energy system model (TIAM-JET). In order to give a worldwide perspective with higher detail on European energy systems, the model links a set of extra-European macro-regions to the 30 European countries. First, a review of the most recent estimates of the available stocks of unconventional hydrocarbon resources is used to build the set of assumption for the scenario analysis. Secondly, a set of scenarios assuming different availability and cost of unconventional fuels are added to both a Current Trend scenario and a Carbon Constrained (CC) scenario, to explore the perspectives of unconventional gas and oil in a scenario halving CO 2 emissions by 2050, which is consistent with a 2 degree temperature increase. The results show if/how unconventional sources can contribute to the robustness of the European energy system with respect to the stress of a strong carbon constraint. We define this robustness as the capacity of the energy system to adapt its evolution to long-term constraints and keep delivering energy services to end users. In our approach robustness represents the long-term dimension of energy security. Assessing this ''system property'' requires analysing the wide range of factors that can exercise a stabilizing influence on the energy services delivery system, together with their relations, actual interactions and synergies. The energy system approach used for the analysis seeks to take into account as much of this complexity as possible. We assess the robustness of the EU system to the carbon constraint by looking at how the CC scenario affects energy system costs and energy prices under scenarios with different deployment of unconventional sources. This provides insights on the synergies and/or trade-offs between energy security and

  15. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    Science.gov (United States)

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  16. Boron neutron capture therapy for clear cell sarcoma (CCS): biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models.

    Science.gov (United States)

    Andoh, T; Fujimoto, T; Sudo, T; Fujita, I; Imabori, M; Moritake, H; Sugimoto, T; Sakuma, Y; Takeuchi, T; Kawabata, S; Kirihata, M; Akisue, T; Yayama, K; Kurosaka, M; Miyatake, S; Fukumori, Y; Ichikawa, H

    2011-12-01

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake l-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of (10)B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg). Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A Comparison of the Impacts of Wind Energy and Unconventional Gas Development on Land-use and Ecosystem Services: An Example from the Anadarko Basin of Oklahoma, USA.

    Science.gov (United States)

    Davis, Kendall M; Nguyen, Michael N; McClung, Maureen R; Moran, Matthew D

    2018-05-01

    The United States energy industry is transforming with the rapid development of alternative energy sources and technological advancements in fossil fuels. Two major changes include the growth of wind turbines and unconventional oil and gas. We measured land-use impacts and associated ecosystem services costs of unconventional gas and wind energy development within the Anadarko Basin of the Oklahoma Woodford Shale, an area that has experienced large increases in both energy sectors. Unconventional gas wells developed three times as much land compared to wind turbines (on a per unit basis), resulting in higher ecosystem services costs for gas. Gas wells had higher impacts on intensive agricultural lands (i.e., row crops) compared to wind turbines that had higher impacts on natural grasslands/pastures. Because wind turbines produced on average less energy compared to gas wells, the average land-use-related ecosystem cost per gigajoule of energy produced was almost the same. Our results demonstrate that both unconventional gas and wind energy have substantial impacts on land use, which likely affect wildlife populations and land-use-related ecosystem services. Although wind energy does not have the associated greenhouse gas emissions, we suggest that the direct impacts on ecosystems in terms of land use are similar to unconventional fossil fuels. Considering the expected rapid global expansion of these two forms of energy production, many ecosystems are likely to be at risk.

  18. Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment

    International Nuclear Information System (INIS)

    Viebahn, Peter; Vallentin, Daniel; Höller, Samuel

    2015-01-01

    expect a striking dominance of coal-fired power generation in the country’s electricity sector, even if the recent trend towards a flattened deployment of coal capacity and reduced annual growth rates of coal-fired generation proves to be true in the future. In order to reduce fossil fuel-related CO_2 emissions to a level that would be consistent with the long-term climate protection target of the international community to which China is increasingly committing itself, this option may require the introduction of CCS. However, a precondition for opting for CCS would be finding robust solutions to the constraints highlighted in this article. Furthermore, a comparison with other low-carbon technology options may be useful in drawing completely valid conclusions on the economic, ecological and social viability of CCS in a low-carbon policy environment. The assessment dimensions should be integrated into macro-economic optimisation models by combining qualitative with quantitative modelling, and the flexible operation of CCS power plants should be analysed in view of a possible role of CCS for balancing fluctuating renewable energies.

  19. Public engagement with CCS: barriers, key issues and ways forward

    Science.gov (United States)

    Xenias, Dimitrios

    2017-04-01

    Although Carbon Capture and Storage (CCS) is recognised as a crucial transition technology to a low-carbon world, it has not been popular with the public or some governments (e.g. the UK). Also, despite its use in industrial processes for decades, CCS remains and unfamiliar technology for most publics. It is therefore important to foster top-down and bottom-up acceptance of large scale CCS. In an exploratory round of interviews we canvassed the views of British, Dutch, German and Norwegian experts (N=13) with previous experience in public engagement with CCS. They identified barriers and drivers for CCS deployment and public engagement with CCS. Thematic analysis revealed a small number of recurrent issues, including: (a) lack of political leadership on CCS; (b) lack of public knowledge on relevant technologies and (c) difficulty communicating why CCS is necessary. Emphasis on these barriers varied with the level of experts' engagement with the public. More interestingly, although most experts agreed on the importance of public engagement, their views divided between 'why' engage and 'how' best to do this. In a subsequent expert survey (N=99) interview findings were reinforced: public support was seen as important for CCS roll-out (72%), though lower than political support and funding. The survey also showed that local public was expected to experience most risks, while global public will experience most benefits; whereas local business is seen to benefit more than global. Experts were overwhelmingly positive about CCS - risks outweigh benefits, and are confident that CCS will play a major role in climate change mitigation (along with reduced energy demand and renewables). These findings will be expanded on and triangulated in a follow-up public survey which will benefit those involved with public engagement with CCS.

  20. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    Science.gov (United States)

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  1. Cronkhite-Canada Syndrome (CCS)-A Rare Case Report.

    Science.gov (United States)

    Chakrabarti, Subrata

    2015-03-01

    Cronkhite-Canada syndrome (CCS) is an extremely rare non-inherited condition characterized by gastrointestinal hamartomatous polyposis, alopecia, onychodystrophy, hyperpigmentation, weight loss and diarrhoea. The aetiology is probably autoimmune and diagnosis is based on history, physical examination, endoscopic findings of gastrointestinal polyposis, and histology. The disease is very rare; approximately 450 cases of CCS have been reported worldwide. The author reports a case of CCS in an elderly Indian male.

  2. The development and validation of the core competencies scale (CCS) for the college and university students.

    Science.gov (United States)

    Ruan, Bin; Mok, Magdalena Mo Ching; Edginton, Christopher R; Chin, Ming Kai

    2012-01-01

    This article describes the development and validation of the Core Competencies Scale (CCS) using Bok's (2006) competency framework for undergraduate education. The framework included: communication, critical thinking, character development, citizenship, diversity, global understanding, widening of interest, and career and vocational development. The sample comprised 70 college and university students. Results of analysis using Rasch rating scale modelling showed that there was strong empirical evidence on the validity of the measures in contents, structure, interpretation, generalizability, and response options of the CCS scale. The implication of having developed Rasch-based valid and dependable measures in this study for gauging the value added of college and university education to their students is that the feedback generated from CCS will enable evidence-based decision and policy making to be implemented and strategized. Further, program effectiveness can be measured and thus accountability on the achievement of the program objectives.

  3. Performance of the "CCS Algorithm" in real world patients.

    Science.gov (United States)

    LaHaye, Stephen A; Olesen, Jonas B; Lacombe, Shawn P

    2015-06-01

    With the publication of the 2014 Focused Update of the Canadian Cardiovascular Society Guidelines for the Management of Atrial Fibrillation, the Canadian Cardiovascular Society Atrial Fibrillation Guidelines Committee has introduced a new triage and management algorithm; the so-called "CCS Algorithm". The CCS Algorithm is based upon expert opinion of the best available evidence; however, the CCS Algorithm has not yet been validated. Accordingly, the purpose of this study is to evaluate the performance of the CCS Algorithm in a cohort of real world patients. We compared the CCS Algorithm with the European Society of Cardiology (ESC) Algorithm in 172 hospital inpatients who are at risk of stroke due to non-valvular atrial fibrillation in whom anticoagulant therapy was being considered. The CCS Algorithm and the ESC Algorithm were concordant in 170/172 patients (99% of the time). There were two patients (1%) with vascular disease, but no other thromboembolic risk factors, which were classified as requiring oral anticoagulant therapy using the ESC Algorithm, but for whom ASA was recommended by the CCS Algorithm. The CCS Algorithm appears to be unnecessarily complicated in so far as it does not appear to provide any additional discriminatory value above and beyond the use of the ESC Algorithm, and its use could result in under treatment of patients, specifically female patients with vascular disease, whose real risk of stroke has been understated by the Guidelines.

  4. Social Science Insights for the BioCCS Industry

    Directory of Open Access Journals (Sweden)

    Anne-Maree Dowd

    2015-05-01

    Full Text Available BioCCS is a technology gaining support as a possible emissions reduction policy option to address climate change. The process entails the capture, transport and storage of carbon dioxide produced during energy production from biomass. Globally, the most optimistic energy efficiency scenarios cannot avoid an average temperature increase of +2 °C without bioCCS. Although very much at the commencement stage, bioCCS demonstration projects can provide opportunity to garner knowledge, achieve consensus and build support around the technology’s properties. Yet many challenges face the bioCCS industry, including no guarantee biomass will always be from sustainable sources or potentially result in carbon stock losses. The operating environment also has no or limited policies, regulations and legal frameworks, and risk and safety concerns abound. Some state the key problem for bioCCS is cultural, lacking in a ‘community of support’, awareness and credibility amongst its own key stakeholders and the wider public. Therefore, the industry can benefit from the growing social science literature, drawing upon other energy and resource based industries with regard to social choice for future energy options. To this end, the following scoping review was conducted in order to ascertain gaps in existing public perception and acceptance research focusing on bioCCS.

  5. A study on macroeconomic cost of CCS in Korea

    Science.gov (United States)

    Kim, Ji-Whan; Kim, Yoon Kyung

    2015-04-01

    CCS is an important measure for mitigating the problem of World Climate Change and already several projects are entered the step of commercialization. The benefits of CCS implementation ultimately depends on the alleviation level of CO2 on earth because it is caused by the mitigation of the World Climate Change problem. Thus it is possible not to coincide at same time between starting the CCS and getting the benefits. Considering the high costs of CCS, the time mismatch between imposing the costs and getting the benefits is apt to impose some heavy burden on the individual national economy. For this reason, at the political decision-making, the policy makers should consider the macroeconomic effects. Meanwhile, Korean electricity market's supply side is comprised of competitive production and a sole distributor(public enterprise) and then electricity is supplied by a single price structure(administered pricing). Under this condition, if CCS is introduced to power setor, electric charges must be increased and production costs will go high. High production costs will have unfavourable effects on disposable income, price level, purchasing power and so on. In order to minimize these effects, policy makers have to consider the economic effects of introducing CCS. This study estimates the microscopic cost of CCS using ICCSEM 2.0 methodology made by CO2CRC and after that, the macroeconomic effects of introducing CCS is estimated on the basis of microscopic cost estimating results. The macroeconomic effects of CCS applied to Power Generation sector are estimated using macroeconometrics model and Input-Output analysis. A macroeconometrics model is an analytical tool designed to describe the operation of the national economy. This model is usually applied to examine the dynamics of aggregate quantities such as the total amount of goods and services produced, total income earned, the level of employment of productive resources, the level of prices and so forth. Introducing

  6. The Mississippi CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  7. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  8. Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Leib, Thomas [Leucadia Energy, LLC, Salt Lake City, UT (United States); Cole, Dan [Denbury Onshore, LLC, Plano, TX (United States)

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials

  9. CCS, locations and asynchronous transition systems

    DEFF Research Database (Denmark)

    Mukund, Madhavan; Nielsen, Mogens

    1992-01-01

    We provide a simple non-interleaved operational semantics for CCS in terms of asynchronous transition systems. We identify the concurrency present in the system in a natural way, in terms of events occurring at independent locations in the system. We extend the standard interleaving transition...... system for CCS by introducing labels on the transitions with information about the locations of events. We then show that the resulting transition system is an asynchronous transition system which has the additional property of being elementary, which means that it can also be represented by a 1-safe net....... We also introduce a notion of bisimulation on asynchronous transition systems which preserves independence. We conjecture that the induced equivalence on CCS processes coincides with the notion of location equivalence proposed by Boudol et al....

  10. Unconventional device concepts for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veenstra, S.C.; Slooff, L.H.; Verhees, W.J.H.; Cobussen-Pool, E.M.; Lenzmann, F.O.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands); Sessolo, M.; Bolink, H.J. [Instituto de Ciencia Molecular, Universidad de Valencia, Valencia (Spain)

    2009-09-15

    The inclusion of metal-oxide layers in polymer solar cells enables the fabrication of a series of unconventional device architectures. These devices include: semi-transparent polymer solar cells, devices with inverted polarity, as well as devices with air stable electrodes. A proof-of-principle of these devices is presented. The anticipated benefits of these novel device structures over conventional polymer solar cells are discussed.

  11. Value chain assesment in a CCS business development setting

    Energy Technology Data Exchange (ETDEWEB)

    Hektor, Erik A.; Lyngroth, Steinar; Midtsund, Marte Aaberg; Bratfos, Hans A.

    2010-09-15

    Carbon Capture and Storage (CCS) is perceived by many as a necessary bridge to a sustainable future solely based on renewable energy. However, one of the barriers to the commercial implementation of CCS is cost. Today's cost estimates are high due to the large amount of uncertainty relating to this new technology and hence restrain the utility sector from investing in the development of CCS and making it a viable business. This paper presents Value Chain Assessment (VCA) as a powerful tool to help understand how such uncertainties influence the NPV for the various stakeholders in CCS development projects.

  12. Unconventional politics of unconventional gas: Environmental reframing and policy change

    Science.gov (United States)

    Kear, Andrew Robert

    The present Rocky Mountain West natural gas boom, enabled by historic pro-resource-development political, institutional, economic, and cultural structures, is a politically contested battle over values. Volatile political action, unconventional coalitions, and unconventional politics engulf this unconventional gas boom -- especially at the state level. In this comparative case study of natural gas policy in Wyoming, Colorado, and New Mexico, I measure and compare these values, expressed as frames, through textual analysis of interest group public documents and state legislative bills and statutes from 1999-2008. By developing a new measure of state legislative framing, I test the relationship between interest group and institutional framing and also provide a viable measure of policy change useful to Narrative Policy Analysis theory. Results show that competing interest group and state legislative framing efforts are dynamic, measurably different, and periodically correlative. Competing interest groups rarely engage each other, except as the conflict matures when status-quo-supporters break their silence and engage the challengers' frames that have gained legislative traction. Environmental and land-use counter-framing ensues, but status-quo-supporters remain vigilant in their economic framing. Economic frames retain their institutional privilege within Wyoming and New Mexico, but natural gas policy undergoes a complete environmental reframe in the Colorado state legislature. Although the historically dominant economy frame based on "Old West" values remains largely intact, the respective state legislatures partially reframe policy (within 4 years) using environment, alternative land-uses, and democracy frames based on "New West" and long-extant but previously marginalized status-quo-challenger definitions. This reframing is not a strictly partisan issue, but rather it is influenced by political context, policy diffusion, and long-term interest group advocacy and

  13. Norway: Some lessons from a international project on CCS communication

    Energy Technology Data Exchange (ETDEWEB)

    Torvatn, Hans; Tvedt, Sturle D.; Naess, Robert

    2010-07-01

    Full text: Carbon Capture and Storage (CCS) has been part of the Norwegian debate on energy and possible solutions to the climate problems for more than a decade. One prime ministers fell from power on this issue, another first promised a 'Norwegian moon landing', then postponed the whole thing for several years. The debate has been heated several times, but little is known about what the public knows and thinks. The present paper presents some findings from six national surveys on knowledge and attitudes on CCS as part of the FENCO-ERA project 'Scrutinizing the impact of CCS communication on the general and local public (Impact of communication)'. Representative national surveys (N=61000) were conducted in six European countries: Germany, Greece, the Netherlands, Norway, Romania and the UK. Main topics covered: Sociodemographics, Attitudes towards energy issues, Media preferences, Trust, Knowledge on global warming and energy issues including CCS, initial attitudes towards CCS. The surveys also included an information experiment, testing the effect of positive and negative information on general acceptance of CCS. The paper will focus on the results from Norway using the other countries as illuminating contrasts. In Norway we will discuss four major findings: i) The majority of the Norwegian population are aware of CCS ii) There is a positive support for CCS demonstration plant, however, the support is unevenly distributed in the population iii) Information on CCS effects attitudes, however, source is less important than content iv) The project asked respondents to evaluate both risks and benefits. In Norway the effect of the benefit evaluation was stronger than the risk evaluation. Implications for CCS communication with the public as well as future research are discussed. (Author)

  14. Technology of CCS coal utilization (outline of large-size demonstration test for CCS); CCS tan riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Konno, K [Center for Coal Utilization, Japan, Tokyo (Japan); Hironaka, H [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal cartridge system (CCS) is a series of the total system, in which coal is processed centrally at a supply base for each unit of consumer areas, supplied as pulverized coal in bulk units, and coal ash after combustion is recovered and treated. The system is expected of advantages resulted from the centralized production, elimination of handling troubles, and cleanliness. Following a small scale demonstration test, a large demonstration test for practically usable scale has begun in 1990, and completed in fiscal 1995. This paper introduces the CCS and reports the result of the test. In the large demonstration test, a supply station (with manufacturing capability of 200,000 tons a year) was installed in the Aichi refinery of Idemitsu Kosan Co., Ltd., and systematization on quality design and system technologies has been carried out. Long-term continuous operation for five years was achieved (operation time of the supply facilities was about 19,000 hours) without a failure and accident, to which every elemental technology was evaluated highly, and convenience and reliability of the system was verified. 13 figs., 3 tabs.

  15. Slow photoelectron imaging spectroscopy of CCO- and CCS-.

    Science.gov (United States)

    Garand, Etienne; Yacovitch, Tara I; Neumark, Daniel M

    2008-08-21

    High-resolution photodetachment spectra of CCO(-) and CCS(-) using slow photoelectron velocity-map imaging spectroscopy are reported. Well-resolved transitions to the neutral X (3)Sigma(-), a (1)Delta, b (1)Sigma(+), and A (3)Pi states are seen for both species. The electron affinities of CCO and CCS are determined to be 2.3107+/-0.0006 and 2.7475+/-0.0006 eV, respectively, and precise term energies for the a (1)Delta, b (1)Sigma(+), and A (3)Pi excited states are also determined. The two low-lying singlet states of CCS are observed for the first time, as are several vibronic transitions within the four bands. Analysis of hot bands finds the spin-orbit orbit splitting in the X (2)Pi ground state of CCO(-) and CCS(-) to be 61 and 195 cm(-1), respectively.

  16. Risks Associated with Unconventional Gas Extraction Projects. Induced Seismicity, NORM and Ecological Risks

    International Nuclear Information System (INIS)

    Rodrigo-Naharro, J.; Hurtado, A.; Eguilior, S.; Recreo, F.

    2015-01-01

    The latest technological advances in hydraulic fracturing (fracking) and horizontal drilling are globally driving the commercial extraction of unconventional resources. Although there is still no commercial exploitation of these resources within the EU, the fact that there are potential reserves in some countries, such as Spain, stimulates the need of performing preliminary studies to define the characteristics that an unconventional gas extraction project should consider. The object of these features are the safety of the project, thus minimizing the probabilities of negative environmental impacts, and especially since there is not any EU Framework Directive focusing on the regulation of the operation of such fossil fuels. A project of this nature, involving natural systems, must start from the knowledge of these systems and from an assessment of its features in order to reach the environmental safety of the operations. Moreover, the implementation of risk management systems, along with the existence of an appropriate legislation and supervision are key elements in the development of unconventional gas extraction projects that are environmentally friendly. The present report includes, among the overall risks associated with such projects, those related to: i) the induced seismicity; ii) the Naturally-Occurring Radioactive Materials (NORM); and iii) the ecology.

  17. Collision Cross Section (CCS) Database: An Additional Measure to Characterize Steroids.

    Science.gov (United States)

    Hernández-Mesa, Maykel; Le Bizec, Bruno; Monteau, Fabrice; García-Campaña, Ana M; Dervilly-Pinel, Gaud

    2018-04-03

    Ion mobility spectrometry enhances the performance characteristics of liquid chromatography-mass spectrometry workflows intended to steroid profiling by providing a new separation dimension and a novel characterization parameter, the so-called collision cross section (CCS). This work proposes the first CCS database for 300 steroids (i.e., endogenous, including phase I and phase II metabolites, and exogenous synthetic compounds), which involves 1080 ions and covers the CCS of 127 androgens, 84 estrogens, 50 corticosteroids, and 39 progestagens. This large database provides information related to all the ionized species identified for each steroid in positive electrospray ionization mode as well as for estrogens in negative ionization mode. CCS values have been measured using nitrogen as drift gas in the ion mobility cell. Generally, direct correlation exists between mass-to-charge ratio ( m/ z) and CCS because both are related parameters. However, several steroids mainly steroid glucuronides and steroid esters have been characterized as more compact or elongated molecules than expected. In such cases, CCS results in additional relevant information to retention time and mass spectral data for the identification of steroids. Moreover, several isomeric steroid pairs (e.g., 5β-androstane-3,17-dione and 5α-androstane-3,17-dione) have been separated based on their CCS differences. These results indicate that adding the CCS to databases in analytical workflows increases selectivity, thus improving the confidence in steroids analysis. Consequences in terms of identification and quantification are discussed. Quality criteria and a construction of an interlaboratory reproducibility approach are also reported for the obtained CCS values. The CCS database described here is made publicly available.

  18. CCS with Replication in the Chomsky Hierarchy: The Expressive Power of Divergence

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Aranda, Jesus A.; Di Giusto, Cinzia

    2007-01-01

    A remarkable result in [4] shows that in spite of its being less expressive than CCS w.r.t. weak bisimilarity, CCS! (a CCS variant where infinite behavior is specified by using replication rather than recursion) is Turing powerful. This is done by encoding Random Access Machines (RAM) in CCS......!. The encoding is said to be non-faithful because it may move from a state which can lead to termination into a divergent one which do not correspond to any configuration of the encoded RAM. I.e., the encoding is not termination preserving. In this paper we study the existence of faithful encodings into CCS...... a faithful encoding of Type 2 grammars and that termination-preserving CCS! processes can generate languages which are not Type 2. We finally show that the languages generated by termination-preserving CCS! processes are Type 1 ....

  19. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage

    International Nuclear Information System (INIS)

    Odeh, Naser A.; Cockerill, Timothy T.

    2008-01-01

    The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO 2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO 2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO 2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO 2 capture is employed, the increase in other air pollutants such as NO x and NH 3 leads to higher eutrophication and acidification potentials

  20. The Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Doug Cathro

    2010-06-30

    The Lake Charles CCS Project is a large-scale industrial carbon capture and sequestration (CCS) project which will demonstrate advanced technologies that capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically the Lake Charles CCS Project will accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petroleum coke to chemicals plant (the LCC Gasification Project) and the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Lake Charles CCS Project will promote the expansion of EOR in Texas and Louisiana and supply greater energy security by expanding domestic energy supplies. The capture, compression, pipeline, injection, and monitoring infrastructure will continue to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project are expected to be fulfilled by working through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 includes the studies attached hereto that will establish: the engineering design basis for the capture, compression and transportation of CO{sub 2} from the LCC Gasification Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Hastings oil field in Texas. The overall objective of Phase 2, provided a successful competitive down-selection, is to execute design, construction and operations of three capital projects: (1) the CO{sub 2} capture and compression equipment, (2) a Connector Pipeline from the LLC Gasification Project to the Green Pipeline owned by Denbury and an affiliate of Denbury, and (3) a comprehensive MVA system at the Hastings oil field.

  1. Presheaf models for CCS-like languages

    DEFF Research Database (Denmark)

    Winskel, Glynn

    2003-01-01

    for a general process language, in which CCS and related languages are easily encoded. The results are then transferred to traditional models for processes. By first establishing the congruence results for presheaf models, abstract, general proofs of congruence properties can be provided and the awkwardness...... caused through traditional models not always possessing the cartesian liftings, used in the breakdown of process operations, are side stepped. The abstract results are applied to show that hereditary history-preserving bisimulation is a congruence for CCS-like languages to which is added a refinement...

  2. Quantitative mass spectrometry of unconventional human biological matrices

    Science.gov (United States)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  3. Unconventional Quantum Computing Devices

    OpenAIRE

    Lloyd, Seth

    2000-01-01

    This paper investigates a variety of unconventional quantum computation devices, including fermionic quantum computers and computers that exploit nonlinear quantum mechanics. It is shown that unconventional quantum computing devices can in principle compute some quantities more rapidly than `conventional' quantum computers.

  4. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    Science.gov (United States)

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Accelerating gasification with carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    White, K.; Rawson, J.R.Y.; Shilling, N.Z. [GE Energy, Houston, TX (United States)

    2007-07-01

    This paper discusses the CCS opportunity for IGCC, the evaluation methodology for CO{sub 2} sinks and the global policy environment. It also discusses how GE is taking steps to accelerate the use of CCS by partnering globally, investing in technology and establishing policy support for the development of the industry. 8 refs., 8 figs., 1 tab.

  6. Inorganic Contaminants Associated with the Extraction of Unconventional Gas.Initial Analysis and Risk Assessment; Contaminantes Inorgánicos Asociados a la Extracción de Gas no Convencional. Análisis y Evaluación Inicial de Riesgos

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Hurtado, A.; Recreo, F.; Eguilior, S.

    2015-07-01

    The latest technological developments in horizontal drilling and hydraulic fracturing are driving a commercial scale extraction of unconventional fossil fuels in various regions of the world. Europe's position in relation to the exploitation of unconventional fossil fuels is this has to be made under a paradigm of coherence between the technical and economic-financial aspects and environments and public trust, which are essential and which will eventually would enable the viability of exploiting these resources.This requires, by those decision makers, both industry and regulators, a comprehensive management of the risks associated with these exploitations, which implies the need to develop tools of analysis and assessment to environmental impact and risk. The exploitation of unconventional hydrocarbons in formations of shale requires the creation of a network of artificial fractures to connect with production well Horizontal wells are drilled for this purpose and go on for several km into the shale formation. During drilling, a mixture of oil, gas and formation water is pumped to the surface. The water is separated from oil and gas in tanks or pools. The flowback and produced water contains different kinds of chemicals in varying concentrations: salt, oil and other organic compounds, suspended solids, bacteria, naturally occurring radioactive elements (NORM), and any element injected with the fracturing fluid. The concentration of these elements in the water may be increased due to the treatments suffered by flowback and produced water for disposal. Due to the large variability of contaminants in the flowback and produced water and the potentially large volumes involved, the determination of the its composition is essential for proper management of them and to prevent health, safety and environmental risks. This report covers the risk analysis of an unconventional gas extraction project, the initial assessment of the risks associated with the use and

  7. Long term prediction of unconventional oil production

    International Nuclear Information System (INIS)

    Mohr, S.H.; Evans, G.M.

    2010-01-01

    Although considerable discussion surrounds unconventional oil's ability to mitigate the effects of peaking conventional oil production, very few models of unconventional oil production exist. The aim of this article was to project unconventional oil production to determine how significant its production may be. Two models were developed to predict the unconventional oil production, one model for in situ production and the other for mining the resources. Unconventional oil production is anticipated to reach between 18 and 32 Gb/y (49-88 Mb/d) in 2076-2084, before declining. If conventional oil production is at peak production then projected unconventional oil production cannot mitigate peaking of conventional oil alone.

  8. Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro.

    Science.gov (United States)

    Petzoldt, Svenja; Kahra, Dana; Kovermann, Michael; Dingeldein, Artur P G; Niemiec, Moritz S; Ådén, Jörgen; Wittung-Stafshede, Pernilla

    2015-06-01

    After Ctr1-mediated copper ion (Cu) entry into the human cytoplasm, chaperones Atox1 and CCS deliver Cu to P1B-type ATPases and to superoxide dismutase, respectively, via direct protein-protein interactions. Although the two Cu chaperones are presumed to work along independent pathways, we here assessed cross-reactivity between Atox1 and the first domain of CCS (CCS1) using biochemical and biophysical methods in vitro. By NMR we show that CCS1 is monomeric although it elutes differently from Atox1 in size exclusion chromatography (SEC). This property allows separation of Atox1 and CCS1 by SEC and, combined with the 254/280 nm ratio as an indicator of Cu loading, we demonstrate that Cu can be transferred from one protein to the other. Cu exchange also occurs with full-length CCS and, as expected, the interaction involves the metal binding sites since mutation of Cu-binding cysteine in Atox1 eliminates Cu transfer from CCS1. Cross-reactivity between CCS and Atox1 may aid in regulation of Cu distribution in the cytoplasm.

  9. Workshop on capture and sequestration of CO{sub 2} (CCS); Taller sobre captura y secuestro de CO{sub 2} (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    In this workshop diverse communications related to the capture and sequestration of CO{sub 2} are presented. This workshop was realized in the Technological Museum of the Comision Federal de Electricidad (CFE), in Mexico City on the ninth and tenth of July, 2008, and it had the objective of reflecting the necessity of considering in Mexico the application of the capture and sequestration technologies of CO{sub 2} (CCS), as well as to put in touch the technicians and managers of the Mexican institutions with the world-wide leaders in these technologies and with the managers of companies that are successfully applying CCS technologies. [Spanish] En este taller se presentan diversas ponencias relacionadas con la captura y secuestro de CO{sub 2}. Este taller se realizo en el Museo Tecnologico de la Comision Federal de Electricidad (CFE), en la Ciudad de Mexico, los dias 9 y 10 de julio de 2008 y tuvo como objetivo reflexionar sobre la necesidad de considerar en Mexico, la aplicacion de las tecnologias de captura y secuestro de CO{sub 2} (CCS), asi como poner en contacto a los tecnicos y directivos de las instituciones mexicanas con los lideres mundiales en estas tecnologias y con los directivos de empresas que estan aplicando con exito tecnologias de CCS.

  10. Unconventional wisdom: an economic analysis of US shale gas and implications for the EU

    International Nuclear Information System (INIS)

    Spencer, Thomas; Sartor, Oliver; Mathieu, Mathilde

    2014-01-01

    Despite very low and ultimately unsustainable short-term prices of natural gas, the unconventional oil and gas revolution has had a minimal impact on the US macro-economy. We provide an upper-optimistic-estimate of its long-term effect on the level of US GDP (not its long-term annual growth rate) at about 0.84% between 2012 and 2035. Compared to an annual growth rate of 1.4%, this long-term increase is small. And we estimate its short-term stimulus effects at 0.88% of GDP during the 2007/8 to 2012 downturn. The unconventional oil and gas revolution has also had a minimal impact on US manufacturing, confined to gas-intensive sectors, which we calculate as making up about 1.2% of US GDP. There is thus no evidence that shale gas is driving an overall manufacturing renaissance in the US. Absent further policies, the US shale revolution will not lead to a significant, sustained decarbonization of the US energy mix nor will it assure US energy security. A reference scenario based on current policies sees US emissions stagnant at current levels out to 2040, clearly insufficient for a reasonable US contribution to global climate change mitigation. Oil imports continue to rise in monetary terms. While it can promote some coal to gas switching in the short term if additional policies are enacted, there is also the risk that the unconventional oil and gas revolution further locks the US into an energy- and emissions-intensive capital stock. It is unlikely that the EU will repeat the US experience in terms of the scale of unconventional oil and gas production. Uncertainty exists around the exact size of exploitable EU shale gas reserves; a median scenario would see the EU producing about 3-10% of its gas demand from shale gas by 2030-2035. The EU's fossil fuel import dependency will therefore continue to increase and its fossil fuel prices will remain largely determined by international markets. Shale production would not have significant macro-economic or competitiveness

  11. Carbon prices and CCS investment: A comparative study between the European Union and China

    International Nuclear Information System (INIS)

    Renner, Marie

    2014-01-01

    Carbon Capture and Storage is considered as a key option for climate change mitigation; policy makers and investors need to know when CCS becomes economically attractive. Integrating CCS in a power plant adds significant costs which can be offset by a sufficient CO 2 price. However, most markets have failed: currently, the weak carbon price threatens CCS deployment in the European Union (EU). In China, a carbon regulation is appearing and CCS encounters a rising interest. This study investigates two questions: how much is the extra-cost of a CCS plant in the EU in comparison with China? Second, what is the CO 2 price beyond which CCS plants become more profitable than reference plants in the EU and in China? To address these issues, I conducted a literature review on public studies about CCS costs. To objectively assess the profitability of CCS plants, I constructed a net present value model to calculate the Levelised Cost of Electricity and the breakeven CO 2 price. CCS plants become the most profitable plant type beyond 115 €/tCO 2 in the EU vs. 45 €/tCO 2 in China (offshore transport and storage costs). I advise on the optimal plant type choice depending on the CO 2 price in both countries. - Highlights: • I develop a method to objectively update and compare CCS costs in the EU and China. • To represent investment choices, intra and inter CO 2 switching prices are required. • EU CCS plants are profitable for a CO 2 price higher than 115 €/t (offshore storage). • Chinese CCS plants are profitable beyond 45 €/tCO 2 (35 €/tCO 2 with onshore storage). • With 2030 projections, CCS (coal) plants are profitable in China but not in the EU

  12. Magnetothermopower in unconventional density waves

    International Nuclear Information System (INIS)

    Dora, B.; Maki, K.; Vanyolos, A.; Virosztek, A.

    2003-10-01

    After a brief introduction on unconventional density waves (i.e. unconventional charge density wave (UCDW) and unconventional spin density wave (USDW)), we discuss the magnetotransport of the low temperature phase (LTP) of α-(BEDT-TTF) 2 KHg(SCN) 4 . Recently we have proposed that the low temperature phase in α-(BEDT-TTF) 2 KHg(SCN 4 should be UCDW. Here we show that UCDW describes very consistently the magnetothermopower of )α-(BEDT-TTF) 2 KHg(SCN) 4 observed by Choi et al. (author)

  13. Unconventional Energy Resources: 2015 Review

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  14. Rethinking CCS. Moving forward in times of uncertainty

    International Nuclear Information System (INIS)

    Herzog, Howard; Eide, Jan

    2013-01-01

    While in early 2009 strict climate policies were expected to be put in place, today the course of climate policy worldwide is certain. While there is no worldwide policy in place, the future of CCS should be considered. CCS is a technology that can help manage the concentration of CO 2 and thus have an impact on the climate change. This paper describes the status quo and provides an outlook on possible future developments.

  15. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.

    Science.gov (United States)

    Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S

    2010-04-01

    In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.

  16. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2017-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  17. Pathways of Unconventional Protein Secretion

    NARCIS (Netherlands)

    Rabouille, Catherine

    2016-01-01

    Secretory proteins are conventionally transported through the endoplasmic reticulum to the Golgi and then to the plasma membrane where they are released into the extracellular space. However, numerous substrates also reach these destinations using unconventional pathways. Unconventional protein

  18. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    Science.gov (United States)

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  19. A real options-based CCS investment evaluation model: Case study of China's power generation sector

    International Nuclear Information System (INIS)

    Zhu, Lei; Fan, Ying

    2011-01-01

    Highlights: → This paper establishes a carbon captures and storage (CCS) investment evaluation model. → The model is based on real options theory and solved by the Least Squares Monte Carlo (LSM) method. → China is taken as a case study to evaluate the effects of regulations on CCS investment. → The findings show that the current investment risk of CCS is high, climate policy having the greatest impact on CCS development. -- Abstract: This paper establishes a carbon capture and storage (CCS) investment evaluation model based on real options theory considering uncertainties from the existing thermal power generating cost, carbon price, thermal power with CCS generating cost, and investment in CCS technology deployment. The model aims to evaluate the value of the cost saving effect and amount of CO 2 emission reduction through investing in newly-built thermal power with CCS technology to replace existing thermal power in a given period from the perspective of power generation enterprises. The model is solved by the Least Squares Monte Carlo (LSM) method. Since the model could be used as a policy analysis tool, China is taken as a case study to evaluate the effects of regulations on CCS investment through scenario analysis. The findings show that the current investment risk of CCS is high, climate policy having the greatest impact on CCS development. Thus, there is an important trade off for policy makers between reducing greenhouse gas emissions and protecting the interests of power generation enterprises. The research presented would be useful for CCS technology evaluation and related policy-making.

  20. Insurgent Uprising: An Unconventional Warfare Wargame

    Science.gov (United States)

    2017-12-01

    Cleveland, Charles T. Connett, and Will Irwin. “Unconventional Warfare in the Gray Zone.” Joint Forces Quarterly 80, no. 1 (2016). Work, Robert O...CODE 13. ABSTRACT (maximum 200 words) Today, and in the future, unconventional solutions will present U.S. policymakers with options for dealing...training objectives and will complement existing training exercises. 14. SUBJECT TERMS unconventional warfare, foreign internal defense, direct

  1. Analysis of Global CCS Technology, Regulations and Its Potential for Emission Reduction with Focus on China

    OpenAIRE

    Fan, Ying; Zhu, Lei; Zhang, Xiaobing

    2011-01-01

    This paper introduces the development of Carbon Capture and Storage (CCS) technology, the progress in CCS demonstration projects, and regulations and policies related to CCS. Barriers and limitations for the large-scale deployment of CCS are discussed. CCS and different technological solutions for emission reduction (e.g., energy conservation and renewable energy) are compared. The analysis shows that China should carefully evaluate the negative impacts of CCS deployment and needs to enhance ...

  2. Economic and Time-Sensitive Issues Surrounding CCS: A Policy Analysis.

    Science.gov (United States)

    Maddali, Vijay; Tularam, Gurudeo Anand; Glynn, Patrick

    2015-08-04

    Are the existing global policies on combating global warming via the carbon capture and storage (CCS) method significant enough to curtail the temperature rise on time? We argue that it is already too late to have any reliance on CCS. The current status of CCS is that it is plagued by technical uncertainties, infrastructure, financial, and regulatory issues. The technology is far from maturity and, hence, commercialization. Simulations conducted in this work suggest that the relevance of CCS is completely defied if the annual emission growth rate is in excess of 2% between the years of 2015 and 2040. At such a growth rate, the annual emissions reduction between 2040 and 2100 will need to be in the vicinity of 5.5% by the year 2100. Considering an average annual emissions growth rate of 2.5% over the past decade, it seems unlikely that the emissions could be contained to a 2% growth level. CCS in its current shape and form is at odds with the economics of its implementation and the time in hand with which to play a significant role in a carbon mitigation strategy. There is an urgent need to rethink policies and strategies to combat global warming to at least some degree.

  3. Joining the CCS Club. Insights from a Northwest European CO2 Pipeline Project

    International Nuclear Information System (INIS)

    Massol, Olivier; Tchung-Ming, Stephane

    2012-01-01

    The large-scale diffusion of Carbon Capture and Storage (CCS) imposes the construction of a sizeable CO 2 pipeline infrastructure. This paper analyzes the conditions for a widespread adoption of CCS by a group of emitters that can be connected to a common pipeline system. It details a quantitative framework capable of assessing how the tariff structure and the regulatory constraints imposed on the pipeline operator impact the overall cost of CO 2 abatement via CCS. This modeling framework is applied to the case of a real European CO 2 pipeline project. We find that the obligation to use cross-subsidy-free pipeline tariffs has a minor impact on the minimum CO 2 price required to adopt the CCS. In contrast, the obligation to charge non-discriminatory prices can either impede the adoption of CCS or significantly raises that price. Besides, we compared two alternative regulatory frameworks for CCS pipelines: a common European organization as opposed to a collection of national regulations. The results indicate that the institutional scope of that regulation has a limited impact on the adoption of CCS compared to the detailed design of the tariff structure imposed to pipeline operators. (authors)

  4. Multiregional environmental comparison of fossil fuel power generation-Assessment of the contribution of fugitive emissions from conventional and unconventional fossil resources

    NARCIS (Netherlands)

    Bouman, Evert A.; Ramirez, Andrea; Hertwich, Edgar G.

    2015-01-01

    In this paper we investigate the influence of fugitive methane emissions from coal, natural gas, and shale gas extraction on the greenhouse gas (GHG) impacts of fossil fuel power generation through its life cycle. A multiregional hybridized life cycle assessment (LCA) model is used to evaluate

  5. Carbon capture and storage (CCS): the way forward

    OpenAIRE

    Bui, Mai; Adjiman, Claire S.; Bardow, André; Anthony, Edward J.; Boston, Andy; Brown, Solomon; Fennell, Paul S.; Fuss, Sabine; Galindo, Amparo; Hackett, Leigh A.; Hallett, Jason P.; Herzog, Howard J.; Jackson, George; Kemper, Jasmin; Krevor, Samuel

    2018-01-01

    Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current stat...

  6. Collaborative Classroom Simulation (CCS): An Innovative Pedagogy Using Simulation in Nursing Education.

    Science.gov (United States)

    Berndt, Jodi; Dinndorf-Hogenson, Georgia; Herheim, Rena; Hoover, Carrie; Lanc, Nicole; Neuwirth, Janet; Tollefson, Bethany

    2015-01-01

    Collaborative Classroom Simulation (CCS) is a pedagogy designed to provide a simulation learning experience for a classroom of students simultaneously through the use of unfolding case scenarios. The purpose of this descriptive study was to explore the effectiveness of CCS based on student perceptions. Baccalaureate nursing students (n = 98) participated in the study by completing a survey after participation in the CCS experience. Opportunities for collaboration, clinical judgment, and participation as both observer and active participant were seen as strengths of the experience. Developed as a method to overcome barriers to simulation, CCS was shown to be an effective active learning technique that may prove to be sustainable.

  7. DEPLETION OF CCS IN A CANDIDATE WARM-CARBON-CHAIN-CHEMISTRY SOURCE L483

    International Nuclear Information System (INIS)

    Hirota, Tomoya; Sakai, Nami; Yamamoto, Satoshi

    2010-01-01

    We have carried out an observation of the CCS (J N = 2 1 -1 0 ) line with the Very Large Array in its D-configuration toward a protostellar core L483 (IRAS 18140-0440). This is a candidate source of the newly found carbon-chain-rich environment called 'Warm-Carbon-Chain-Chemistry (WCCC)', according to the previous observations of carbon-chain molecules. The CCS distribution in L483 is found to consist of two clumps aligned in the northwest-southeast direction, well tracing the CCS ridge observed with the single-dish radio telescope. The most remarkable feature is that CCS is depleted at the core center. Such a CCS distribution with the central hole is consistent with those of previously observed prestellar and protostellar cores, but it is rather unexpected for L483. This is because the distribution of CS, which is usually similar to that of CCS, is centrally peaked. Our results imply that the CCS (J N = 2 1 -1 0 ) line would selectively trace the outer cold envelope in the chemically less evolved phase that is seriously resolved out with the interferometric observation. Thus, it is most likely that the high abundance of CCS in L483 relative to the other WCCC sources is not due to the activity of the protostar, although it would be related to its younger chemical evolutionary stage, or a short timescale of the prestellar phase.

  8. The Impact of CCS Readiness on the Evolution of China's Electric Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Davidson, Casie L.; Yu, Sha; Horing, Jill D.; Wei, Ning; Clarke, Leon E.; Bender, Sadie R.

    2017-07-01

    In this study, GCAM-China is exercised to examine the impact of CCS availability on the projected evolution of China’s electric power sector under the Paris Increased Ambition policy scenario developed by Fawcett et al. based on the Intended Nationally Determined Contributions (INDCs) submitted under the COP-21 Paris Agreement. This policy scenario provides a backdrop for understanding China’s electric generation mix over the coming century under several CCS availability scenarios: CCS is fully available for commercial-scale deployment by 2025; by 2050; by 2075; and CCS is unavailable for use in meeting the modelled mitigation targets through 2100. Without having CCS available, the Chinese electric power sector turns to significant use of nuclear, wind, and solar to meet growing demands and emissions targets, at a cost. Should large-scale CCS deployment be delayed in China by 25 years, the modeled per-ton cost of climate change mitigation is projected to be roughly $420/tC (2010 US dollars) by 2050, relative to $360/tC in the case in which CCS is available to deploy by 2025, a 16% increase. Once CCS is available for commercial use, mitigation costs for the two cases converge, equilibrating by 2085. However, should CCS be entirely unavailable to deploy in China, the mitigation cost spread, compared to the 2025 case, doubles by 2075 ($580/tC and $1130/tC respectively), and triples by 2100 ($1050/tC vs. $3200/tC). However, while delays in CCS availability may have short-term impacts on China’s overall per-ton cost of meeting the emissions reduction target evaluated here, as well as total mitigation costs, the carbon price is likely to approach the price path associated with the full CCS availability case within a decade of CCS deployment. Having CCS available before the end of the century, even under the delays examined here, could reduce the total amount of nuclear and renewable energy that must deploy, reducing the overall cost of meeting the emissions

  9. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS.

    Science.gov (United States)

    Leitch, Jeffry M; Jensen, Laran T; Bouldin, Samantha D; Outten, Caryn E; Hart, P John; Culotta, Valeria C

    2009-08-14

    Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.

  10. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    Science.gov (United States)

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P CCS (47% reduction, P CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  11. Fossil energy: From laboratory to marketplace

    International Nuclear Information System (INIS)

    1992-03-01

    The purpose of this work is to provide a summary description of the role of advanced research in the overall Fossil Energy R ampersand D program successes. It presents the specific Fossil Energy advanced research products that have been adopted commercially or fed into other R ampersand D programs as part of the crosscutting enabling technology base upon which advanced systems are based

  12. Co-benefits of including CCS projects in the CDM in India's power sector

    International Nuclear Information System (INIS)

    Eto, R.; Murata, A.; Uchiyama, Y.; Okajima, K.

    2013-01-01

    This study examines the effects of the inclusion of the co-benefits on the potential installed capacity of carbon dioxide capture and storage (CCS) projects with a linear programming model by the clean development mechanism (CDM) in India's power sector. It is investigated how different marginal damage costs of air pollutants affect the potential installed capacity of CCS projects in the CDM with a scenario analysis. Three results are found from this analysis. First, large quantity of IGCC with CCS becomes realizable when the certified emission reduction (CER) prices are above US$56/tCO 2 in the integrated Northern, Eastern, Western, and North-Eastern regional grids (NEWNE) and above US $49/tCO 2 in the Southern grid. Second, including co-benefits contributes to decrease CO 2 emissions and air pollutants with introduction of IGCC with CCS in the CDM at lower CER prices. Third, the effects of the co-benefits are limited in the case of CCS because CCS reduces larger amount of CO 2 emissions than that of air pollutants. Total marginal damage costs of air pollutants of US$250/t and US$200/t lead to CER prices of US$1/tCO 2 reduction in the NEWNE grid and the Southern grid. - Highlights: • We estimate effects of co-benefits on installed capacity of CCS projects in the CDM. • We develop a linear programming (LP) model of two grids of India. • Including co-benefits contributes to introduce IGCC with CCS in the CDM at lower CER prices

  13. Fossil energy use and the environment

    International Nuclear Information System (INIS)

    Sage, P.W.

    1994-01-01

    Energy demand projections indicate that fossil energy will provide some ninety per cent of global primary energy demand for the foreseeable future. This paper considers the principal environmental impacts associated with fossil energy use and describes approaches to minimise them. Technologies are now available to reduce significantly pollutant emissions from fossil fuel use. Emerging technologies offer higher conversion efficiencies to reduce still further specific emissions per unit of energy output. It is essential, particularly in those areas of rapid growth in energy use, that best practice and technology are deployed. Technology transfer and training will help to achieve this and enable fossil energy use to be fully compatible with increasingly stringent environmental requirements. (author) 4 figs., 12 refs

  14. CCS site characterisation criteria

    Energy Technology Data Exchange (ETDEWEB)

    Bachu, S.; Hawkes, C.; Lawton, D.; Pooladi-Darvish, M.; Perkins, E.

    2009-12-15

    IEA GHG recently commissioned the Alberta Research Counil in Canada to conduct a review of storage site selection criteria and site characterisation methods in order to produce a synthesis report. This report reviews the literature on the subject on the site seleciton and characterisation since the publication of the IPCC Special Report on CCS, and provides a synthesis and classification of criteria. 161 refs.

  15. Reliability, Validity, and Predictive Utility of the 25-Item Criminogenic Cognitions Scale (CCS).

    Science.gov (United States)

    Tangney, June Price; Stuewig, Jeffrey; Furukawa, Emi; Kopelovich, Sarah; Meyer, Patrick; Cosby, Brandon

    2012-10-01

    Theory, research, and clinical reports suggest that moral cognitions play a role in initiating and sustaining criminal behavior. The 25 item Criminogenic Cognitions Scale (CCS) was designed to tap 5 dimensions: Notions of entitlement; Failure to Accept Responsibility; Short-Term Orientation; Insensitivity to Impact of Crime; and Negative Attitudes Toward Authority. Results from 552 jail inmates support the reliability, validity, and predictive utility of the measure. The CCS was linked to criminal justice system involvement, self-report measures of aggression, impulsivity, and lack of empathy. Additionally, the CCS was associated with violent criminal history, antisocial personality, and clinicians' ratings of risk for future violence and psychopathy (PCL:SV). Furthermore, criminogenic thinking upon incarceration predicted subsequent official reports of inmate misconduct during incarceration. CCS scores varied somewhat by gender and race. Research and applied uses of CCS are discussed.

  16. Immunogenicity, protective efficacy and mechanism of novel CCS adjuvanted influenza vaccine.

    Science.gov (United States)

    Even-Or, Orli; Samira, Sarit; Rochlin, Eli; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Spira, Jack; Goldwaser, Itzhak; Ellis, Ronald; Barenholz, Yechezkel

    2010-09-07

    We optimized the immunogenicity of adjuvanted seasonal influenza vaccine based on commercial split influenza virus as an antigen (hemagglutinin = HA) and on a novel polycationic liposome as a potent adjuvant and efficient antigen carrier (CCS/C-HA vaccine). The vaccine was characterized physicochemically, and the mechanism of action of CCS/C as antigen carrier and adjuvant was studied. The optimized CCS/C-HA split virus vaccine, when administered intramuscularly (i.m.), is significantly more immunogenic in mice, rats and ferrets than split virus HA vaccine alone, and it provides for protective immunity in ferrets and mice against live virus challenge that exceeds the degree of efficacy of the split virus vaccine. Similar adjuvant effects of optimized CCS/C are also observed in mice for H1N1 swine influenza antigen. The CCS/C-HA vaccine enhances immune responses via the Th1 and Th2 pathways, and it increases both the humoral responses and the production of IL-2 and IFN-γ but not of the pro-inflammatory factor TNFα. In mice, levels of CD4(+) and CD8(+) T-cells and of MHC II and CD40 co-stimulatory molecules are also elevated. Structure-function relationship studies of the CCS molecule as an adjuvant/carrier show that replacing the saturated palmitoyl acyl chain with the mono-unsaturated oleoyl (C18:1) chain affects neither size distribution and zeta potential nor immune responses in mice. However, replacing the polyalkylamine head group spermine (having two secondary amines) with spermidine (having only one secondary amine) reduces the enhancement of the immune response by ∼ 50%, while polyalkylamines by themselves are ineffective in improving the immunogenicity over the commercial HA vaccine. This highlights the importance of the particulate nature of the carrier and the polyalkylamine secondary amines in the enhancement of the immune responses against seasonal influenza. Altogether, our results suggest that the CCS/C polycationic liposomes combine the

  17. Renewable energy and CCS in German and European power sector decarbonization scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ludig, Sylvie

    2013-11-06

    In order to avoid unmanageable impacts of anthropogenic climate change, it is necessary to achieve substantial CO{sub 2} emission reductions in all energy sectors. Due to salient decarbonization options such as renewable energy technologies and carbon capture and storage (CCS), the power sector plays a major role in climate change mitigation strategies. However, these options come with a set of challenges: the output of wind and solar energy varies in time and space and CCS faces technical challenges and public acceptance problems. This thesis develops power sector decarbonization scenarios for the EU and Germany while taking into account both the interplay of renewable energy technologies and CCS as mitigation options as well as the technical challenges of renewable energy integration. More specifically, a series of model based studies address the respective roles of CCS and renewable energy technologies in emission reduction strategies while evaluating technical integration options such as transmission, storage and balancing technologies. Results show that large-scale expansion of renewable energies will play the main role in power sector decarbonization scenarios, but the availability of CCS could lead to lower total costs and easier reaching of emission reduction targets through compensation of emissions generated by balancing technologies. Long-distance transmission enables better siting of renewable energy and thus higher achievable renewable shares in power generation and higher capacity factors. These indirect effects of delayed expansions induce additional power system costs, which are high relative to investment costs for new transmission lines. Results also reveal a preference for flexible technologies in combination with high shares of renewables for balancing purposes rather than inflexible baseload plants. A case study for the EU shows that a near-complete decarbonization is possible both with and without transmission expansions, but total power

  18. Unconventional uranium transactions

    International Nuclear Information System (INIS)

    Anderson, S.C.

    1981-01-01

    The purpose of this paper is to describe some representative unconventional transactions which have been observed in the uranium market; to explain the circumstances giving rise to these transactions; and to describe the benefits resulting from these transactions. Unconventional transactions are usually quite specialized, since they are tailored to meet the particular needs of specific market participants. Nevertheless, most of these transactions fall into the following basic categories: multi-party (back-to-back; bridge); swap (deconversion; nationality); barter; inventory financing (leasing with repurchase obligation; sale with repurchase option). These transactions are explained and discussed. (U.K.)

  19. Unconventional Quantum Critical Points

    OpenAIRE

    Xu, Cenke

    2012-01-01

    In this paper we review the theory of unconventional quantum critical points that are beyond the Landau's paradigm. Three types of unconventional quantum critical points will be discussed: (1). The transition between topological order and semiclassical spin ordered phase; (2). The transition between topological order and valence bond solid phase; (3). The direct second order transition between different competing orders. We focus on the field theory and universality class of these unconventio...

  20. Unconventional uranium resources in China

    International Nuclear Information System (INIS)

    Qi Fucheng; Zhang Zilong; Li Zhixing; Wang Zhiming; He Zhongbo; Wang Wenquan

    2011-01-01

    Unconventional uranium resources in China mainly include black-rock series, peat, salt lake and evaporitic rocks. Among them, uraniferous black-rock series, uraniferous phosphorite and uranium-polymetallic phosphorite connected with black-rock series are important types for the sustainable support of uranium resources in China. Down-faulting and epocontinental rift in continental margin are the most important and beneficial ore-forming environment for unconventional uranium resources of black-rock series in China and produced a series of geochemistry combinations, such as, U-Cd, U-V-Mo, U-V-Re, U-V-Ni-Mo and U-V-Ni-Mo-Re-Tl. Unconventional uranium resources of black-rock series in China is related to uranium-rich marine black-rock series which are made up of hydrothermal sedimentary siliceous rocks, siliceous phospheorite and carbonaceous-siliceous-pelitic rock and settled in the continental margin down-faulting and epicontinental rift accompanied by submarine backwash and marine volcano eruption. Hydrothermal sedimentation or exhalation sedimentary is the mechanism to form unconventional uranium resources in black-rock series or large scale uranium-polymetallic mineralization in China. (authors)

  1. Technical and energy economic boundary conditions for a CCS based power generation structure in Europe; Technische und energiewirtschaftliche Rahmenbedingungen fuer eine CCS-basierte Erzeugungsstruktur in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Tom; Blesl, Markus [Stuttgart Univ. (Germany). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung

    2008-07-01

    The development of the power generation in Europe substantially is characterized by the process of liberalisation and the endeavours to climate protection. The ensuring of future supply security increasingly becomes more important. In order to achieve the climatic protection goal a multiplicity of technical options in the competitively organized market is available. In order to be competitive in such a market, certain requirements have to be expected to future power plants with CCS technology (CCS = carbon Capture and storage). By means of a European energy system model the question is to answered in the contribution under consideration which requirements to the CS technology have to be expected to the CCS technology.

  2. Unconventional Pathways of Secretion Contribute to Inflammation

    Directory of Open Access Journals (Sweden)

    Michael J. D. Daniels

    2017-01-01

    Full Text Available In the conventional pathway of protein secretion, leader sequence-containing proteins leave the cell following processing through the endoplasmic reticulum (ER and Golgi body. However, leaderless proteins also enter the extracellular space through mechanisms collectively known as unconventional secretion. Unconventionally secreted proteins often have vital roles in cell and organism function such as inflammation. Amongst the best-studied inflammatory unconventionally secreted proteins are interleukin (IL-1β, IL-1α, IL-33 and high-mobility group box 1 (HMGB1. In this review we discuss the current understanding of the unconventional secretion of these proteins and highlight future areas of research such as the role of nuclear localisation.

  3. Dynamical properties of unconventional magnetic systems

    International Nuclear Information System (INIS)

    Helgesen, G.

    1997-05-01

    The Advanced Study Institute addressed the current experimental and theoretical knowledge of the dynamical properties of unconventional magnetic systems including low-dimensional and mesoscopic magnetism, unconventional ground state, quantum magnets and soft matter. The main approach in this Advanced Study Institute was to obtain basic understanding of co-operative phenomena, fluctuations and excitations in the wide range unconventional magnetic systems now being fabricated or envisioned. The report contains abstracts for lectures, invited seminars and posters, together with a list of the 95 participants from 24 countries with e-mail addresses

  4. “Nuclear energy sounded wonderful 40 years ago”: UK citizen views on CCS

    International Nuclear Information System (INIS)

    Lock, Simon J.; Smallman, Melanie; Lee, Maria; Rydin, Yvonne

    2014-01-01

    Around the world there is increasing interest from government and industry in the potential for Carbon Capture and Storage (CCS) technologies to play a part in decarbonisation. This paper examines how people with little previous exposure to CCS technology, frame and discuss it, and how in the absence of information, ideas, notions, values and experiences shape opinion. We present data from a series of focus groups held with environmental activists, planning councillors, and adult and youth community group members in London in 2012. We found that views on CCS are shaped strongly by wider factors, particularly trade offs between different energy futures. Lay-critiques were similar to those put forward by environmental groups and were strongly framed by conceptions of nuclear power. We argue that although there is little public disquiet concerning this technology in private opinions were generally negative. This, and the use of nuclear power as a framing device, may present a challenge to policy-makers and industry committed to implementing CCS while promoting education as the main mechanism for public acceptance. - highlights: • We present data from a series of focus groups held with lay-citizens in London in 2012. • We found that lay-critiques of CCS were similar to those negative views put forward by environmental groups. • Lay views on CCS were strongly framed by conceptions of nuclear power. • This framing may present a challenge to policy-makers and industry committed to implementing CCS

  5. Time and tide wait for no man pioneers and laggards in the deployment of CCS

    International Nuclear Information System (INIS)

    Rübbelke, Dirk; Vögele, Stefan

    2014-01-01

    Highlights: • Analysis whether it pays throughout to be a CCS pioneer. • Welfare effects on electricity suppliers and consumers considered for European countries. • One country’s CCS activities affect other countries through import/export of electricity. • Pioneering CCS activities tend to be rather heterogeneous for laggard and pioneer countries. • Profitability of CCS for countries does not crucially depend on their laggard- or pioneer-role. - Abstract: In Europe the ambitions of individual countries to deploy carbon capture and storage (CCS) technologies are diverse. Reasons for this are, amongst other things, the heterogeneity of national electricity generation systems and storage capacities and the differences in the public perception of these technologies. In this analysis we investigate the consequences of partial deployment of CCS, i.e. we consider a situation where some European countries (the “pioneers”) actively deploy CCS technologies, while others (the “laggards”) do not use CCS. Our study focuses on the question whether it pays throughout to be a pioneer and whether laggards will generally be disadvantaged. In our assessment, we take into account impacts on consumers affected from rising electricity prices, electricity suppliers whose profits are influenced by changes in both electricity prices and sales, and international trade-flow changes (modifications in European electricity import/export patterns)

  6. CCS - environmental protection framework for an emerging technology. Background

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Ralf; Boehringer, Alexander; Charisse, Thomas (and others)

    2009-10-15

    With this paper, the German Federal Environment Agency (Umweltbundesamt, UBA) updates1 its position paper of 20062 on the technical capture and geological storage3 of carbon dioxide (CCS: carbon capture and storage). After a brief description of the development status of the process steps of capture, transport and geological storage of carbon dioxide (CO2) in Chapter 1, we look into the possible risks for human health and the environment (Chapter 2), which up to now have been little discussed or researched. These risks will largely depend on the integrity of storage sites. On the assumption of functioning capture technology at cost-effective conditions, the capacity of available and secure storage sites will decisively determine the scale of possible greenhouse gas emission reductions through CCS (Chapter 3). In examining storage capacity, it has always to be considered that the geological storage of CO2 can compete with other uses of underground geological formations, such as geothermics or compressed-air and natural-gas storage (Chapter 4). The Federal Environment Agency takes the view that these factors determine the role that CCS can play as an additional climate protection measure (Chapter 5). In Chapter 6 we show how CCS, in its application, should be integrated into emissions trading. CO2 emission reduction should in our view only be acknowledged when it is effectively and demonstrably ensured through permanent storage. Chapter 7 deals with necessary reforms of liability law, which legislators should undertake in order to assign the dangers and risks of CCS to those responsible for them. In Chapter 8, we summarize the fundamental demands on legislators, while Chapter 9 is devoted to issues concerning the source and application of funds for research and development. (orig.)

  7. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants.

    Science.gov (United States)

    Luchinat, Enrico; Barbieri, Letizia; Banci, Lucia

    2017-12-12

    Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.

  8. Accompanying socioeconomic research on the public acceptance of carbon capture and storage (CCS) at the national and international level; Soziooekonomische Begleitforschung zur gesellschaftlichen Akzeptanz von Carbon Capture and Storage (CCS) auf nationaler und internationaler Ebene

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Clemens [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Esken, Andrea; Fischedick, Manfred [Wuppertal Institut fuer Klima, Umwelt, Energie GmbH, Wuppertal (DE)] (and others)

    2008-02-22

    The final report covers the following core issues: state of research on acceptance and results of past studies on public acceptance of CCS; comparison with experiences gained with other energy technologies (nuclear power, wind power, natural gas storage); hazard potentials, risk perception and legal classification; media analysis regarding the topic of CCS; empirical surveys and acceptance of CCS in Germany; factors relevant to public acceptance and their significance; conclusions from the foregoing for the conceptualisation of an information campaign. [German] Stand der Akzeptanzforschung, Ergebnisse aus bereits bestehenden Studien zum Thema Akzeptanz und CCS; Vergleich mit Erfahrungen anderer Energietechnologien (Kern- und Windenergie, Erdgasspeicherung); Gefahrenpotenziale, Risikowahrnehmung und rechtliche Einordnung; Medienanalyse zum Thema CCS; Empirische Umfragen und Akzeptanz gegenueber CCS in Deutschland; Relevante Faktoren fuer die gesellschaftliche Akzeptanz und deren Bedeutung; Resultierende Hinweise fuer die Konzeption einer Informationskampagne. (orig.)

  9. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    Science.gov (United States)

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  10. STATIC TESTS OF UNCONVENTIONAL PROPULSION UNITS FOR ULTRALIGHT AIRPLANES

    Directory of Open Access Journals (Sweden)

    Martin Helmich

    2014-06-01

    Full Text Available This paper presents static tests of a new unconventional propulsion unit for small aviation airplanes. Our laboratory stand – a fan drive demonstrator – enables us to compare various design options. We performed experiments to verify the propulsion functionality and a measurement procedure to determine the available thrust of the propulsion unit and its dependence on engine speed. The results used for subsequent optimization include the operating parameters of the propulsion unit, and the temperature and velocity fields in parts of the air duct.

  11. Integration of CCS, emissions trading and volatilities of fuel prices into sustainable energy planning, and its robust optimization

    International Nuclear Information System (INIS)

    Koo, Jamin; Han, Kyusang; Yoon, En Sup

    2011-01-01

    In this paper, a new approach has been proposed that allows a robust optimization of sustainable energy planning over a period of years. It is based on the modified energy flow optimization model (EFOM) and minimizes total costs in planning capacities of power plants and CCS to be added, stripped or retrofitted. In the process, it reduces risks due to a high volatility in fuel prices; it also provides robustness against infeasibility with respect to meeting the required emission level by adopting a penalty constant that corresponds to the price level of emission allowances. In this manner, the proposed methodology enables decision makers to determine the optimal capacities of power plants and/or CCS, as well as volumes of emissions trading in the future that will meet the required emission level and satisfy energy demand from various user-sections with minimum costs and maximum robustness. They can also gain valuable insights on the effects that the price of emission allowances has on the competitiveness of RES and CCS technologies; it may be used in, for example, setting appropriate subsidies and tax policies for promoting greater use of these technologies. The proposed methodology is applied to a case based on directions and volumes of energy flows in South Korea during the year 2008. (author)

  12. Analysis of the European CCS research and innovation landscape

    OpenAIRE

    FIORINI ALESSANDRO; PASIMENI FRANCESCO; GEORGAKAKI ALIKI; TZIMAS EVANGELOS

    2016-01-01

    CO2 emissions from fuel combustion have more than doubled in the past 40 years. For this reason, a forward-looking approach to carbon capture and storage (CCS) for the power and industrial sectors is considered as critical to reaching the 2050 climate objectives in a cost-effective way and listed among the research and innovation priorities of the Energy Union. The purpose of this paper is to provide an indicator-based description of the CCS research and innovation landscape in Europe. Partic...

  13. The Verification of ESF-CCS Integration Test procedure by utilizing Lab view

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jayoung; Lee, Sangseok; Sohn, Kwangyoung [Korea Reliability Technology and System, Daejeon (Korea, Republic of); Lee, Junku; Park, Geunok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Since the Fukushima event, especially it is considered to be important to guarantee the safety of plant by mitigating the major accident. ESF-CCS (Engineered Safety Feature-Component Control System) is monitoring all the plant variables and generates the ESF-CCS actuation signals when the plant variables violate the setpoint. Taking a look at the classic design, ESF-CCS is composed of the sub-components such as Minimum Inventory (MI), ESCM (ESF-CCS Soft Control Module), CPM, ITP, Group Controller (GC), Loop Controller (LC), CCG (Control Channel Gate), MTP, CIM (Component Interface Module). By help of Lab view simulation in integration test procedure preparation, the following benefits are attained; - Control logic and design evaluation by Lab view - Eliminating the time-consuming test case design, and determining the 'expected result' with design validation - The reliability upgrade of integration test quality.

  14. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  15. Technical support for an enabling policy framework for carbon dioxide capture and geological storage. Task 3. Incentivising CO2 capture and storage in the EU

    International Nuclear Information System (INIS)

    De Coninck, H.; Groenenberg, H.

    2007-03-01

    To date CO2 capture and storage (CCS) is not deployed at a commercial scale, and a range of policy instruments could be used to provide adequate incentives for large scale deployment of CCS in the European Union. Five groups of incentives are discussed: (1) the EU Emissions Trading Scheme (weak and strong version); (2) Member-State-based public financial support through investment support, feed-in subsidies or a CO2 price guarantee; (3) an EU-level low-carbon portfolio standard with tradable certificates; (4) an EU-wide CCS obligation for all new fossil-fuel-based power capacity, and (5) public-private partnerships for realizing a CO2 pipeline infrastructure. The nature of the policy, mainly in case the scale of the instrument matters and much public financial is involved, determines whether it will be implemented by the EU or at the Member-State level. Support for CCS projects at the Member-State level, however, will require amendment of the Community Guidelines for State Aid for Environmental Protection

  16. Characterization of Unconventional Reservoirs: CO2 Induced Petrophysics

    Science.gov (United States)

    Verba, C.; Goral, J.; Washburn, A.; Crandall, D.; Moore, J.

    2017-12-01

    As concerns about human-driven CO2 emissions grow, it is critical to develop economically and environmentally effective strategies to mitigate impacts associated with fossil energy. Geologic carbon storage (GCS) is a potentially promising technique which involves the injection of captured CO2 into subsurface formations. Unconventional shale formations are attractive targets for GCS while concurrently improving gas recovery. However, shales are inherently heterogeneous, and minor differences can impact the ability of the shale to effectively adsorb and store CO2. Understanding GCS capacity from such endemic heterogeneities is further complicated by the complex geochemical processes which can dynamically alter shale petrophysics. We investigated the size distribution, connectivity, and type (intraparticle, interparticle, and organic) of pores in shale; the mineralogy of cores from unconventional shale (e.g. Bakken); and the changes to these properties under simulated GCS conditions. Electron microscopy and dual beam focused ion beam scanning electron microscopy were used to reconstruct 2D/3D digital matrix and pore structures. Comparison of pre and post-reacted samples gives insights into CO2-shale interactions - such as the mechanism of CO2 sorption in shales- intended for enhanced oil recovery and GCS initiatives. These comparisons also show how geochemical processes proceed differently across shales based on their initial diagenesis. Results show that most shale pore sizes fall within meso-macro pore classification (> 2 nm), but have variable porosity and organic content. The formation of secondary minerals (calcite, gypsum, and halite) may play a role in the infilling of fractures and pore spaces in the shale, which may reduce permeability and inhibit the flow of fluids.

  17. An unconventional colour superconductor

    International Nuclear Information System (INIS)

    Huang Mei

    2007-01-01

    Superfluidity, or superconductivity with mismatched Fermi momenta, appears in many systems such as charge-neutral dense quark matter, asymmetric nuclear matter, and in imbalanced cold atomic gases. The mismatch plays the role of breaking the Cooper pairing, and the pair-breaking state cannot be properly described in the framework of standard BCS theory. I give a brief review on recent theoretical developments in understanding unconventional colour superconductivity, including a gapless colour superconductor, chromomagnetic instabilities and the Higgs instability in the gapless phase. I also introduce a possible new framework for describing an unconventional colour superconductor

  18. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  19. Transport and Storage Economics of CCS Networks in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    A team from the Rotterdam Climate Initiative, CATO-2 (the Dutch national R and D programme on CCS) and the Clinton Climate Initiative, developed a financial model to assess the economics of alternative CO2 transport and storage options in the North Sea, based on common user infrastructure. The purpose of the financial model is to introduce a simple planning tool relating to the transport and storage components of an integrated CCS project using readily available, non-confidential data. A steering group of major emitters with advanced plans for CCS projects in the Netherlands and Belgium guided the project. Although the report focusses on potential projects in the Netherlands (Rotterdam and Eemshaven) and Belgium (Antwerp) in the short to medium term, the analysis and lessons could be useful to other regions considering CO2 network solutions.

  20. Carbon capture and sequestration (CCS) technological innovation system in China: Structure, function evaluation and policy implication

    International Nuclear Information System (INIS)

    Lai Xianjin; Ye Zhonghua; Xu Zhengzhong; Husar Holmes, Maja; Henry Lambright, W.

    2012-01-01

    Carbon capture and sequestration (CCS) can be an important technology option for China in addressing global climate change and developing clean energy technologies. Promoted by international climate conventions and supported by government research and development programs, an increasing number of CCS pilot and demonstration projects have been launched in China. In this study, we analyze the structure of China’s CCS effort from a technological innovation system (TIS) perspective. Within this system, key socio-political components, including institutions, actor-networks, and technology development, are examined to evaluate the state of the innovation system. The study assessed the perceived capacity of seven functional areas of the CCS innovation system through a survey of key CCS actors and stakeholders. The findings suggest that China’s CCS innovation system has a strong functional capacity for knowledge and technology development. It is significantly weaker in the innovative functions of knowledge diffusion, market formation, facilitating entrepreneurs and new entrants into the CCS market. Based on the evaluation of China’s technological innovation system to develop CCS, the article articulates specific public policies to formulate a more robust innovation system to traverse the “valley of death” from research and development to commercial deployment and accelerate energy innovation in China. - Highlights: ► We analyze and evaluate China’s CCS innovation system from TIS perspective. ► Strong and systematic CCS innovation system structure has come into being in China. ► The system has acquired high knowledge development and accumulation. ► Weak innovation functions are identified: market creation, guidance, etc. ► Public policies are needed to improve the innovation system performance.

  1. The Noble Gas Fingerprint in a UK Unconventional Gas Reservoir

    Science.gov (United States)

    McKavney, Rory; Gilfillan, Stuart; Györe, Domokos; Stuart, Fin

    2016-04-01

    In the last decade, there has been an unprecedented expansion in the development of unconventional hydrocarbon resources. Concerns have arisen about the effect of this new industry on groundwater quality, particularly focussing on hydraulic fracturing, the technique used to increase the permeability of the targeted tight shale formations. Methane contamination of groundwater has been documented in areas of gas production1 but conclusively linking this to fugitive emissions from unconventional hydrocarbon production has been controversial2. A lack of baseline measurements taken before drilling, and the equivocal interpretation of geochemical data hamper the determination of possible contamination. Common techniques for "fingerprinting" gas from discrete sources rely on gas composition and isotopic ratios of elements within hydrocarbons (e.g. δ13CCH4), but the original signatures can be masked by biological and gas transport processes. The noble gases (He, Ne, Ar, Kr, Xe) are inert and controlled only by their physical properties. They exist in trace quantities in natural gases and are sourced from 3 isotopically distinct environments (atmosphere, crust and mantle)3. They are decoupled from the biosphere, and provide a separate toolbox to investigate the numerous sources and migration pathways of natural gases, and have found recent utility in the CCS4 and unconventional gas5 industries. Here we present a brief overview of noble gas data obtained from a new coal bed methane (CBM) field, Central Scotland. We show that the high concentration of helium is an ideal fingerprint for tracing fugitive gas migration to a shallow groundwater. The wells show variation in the noble gas signatures that can be attributed to differences in formation water pumping from the coal seams as the field has been explored for future commercial development. Dewatering the seams alters the gas/water ratio and the degree to which noble gases degas from the formation water. Additionally the

  2. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase

    DEFF Research Database (Denmark)

    Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph

    2012-01-01

    chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the Cu chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution...... of a highly conserved arginine residue at position 163, with tryptophan in domain II of CCS, which interacts directly with superoxide dismutase 1 (SOD1). Biochemical analyses of the patient's fibroblasts, mammalian cell transfections, immunoprecipitation assays, and Lys7Δ (CCS homolog) yeast complementation...... support the pathogenicity of the mutation. Expression of CCS was reduced and binding of CCS to SOD1 impaired. As a result, this mutation causes reduced SOD1 activity and may impair other mechanisms important for normal Cu homeostasis. CCS-Arg163Trp represents the primary example of a human mutation...

  3. The necessity of and policy suggestions for implementing a limited number of large scale, fully integrated CCS demonstrations in China

    International Nuclear Information System (INIS)

    Li Zheng; Zhang Dongjie; Ma Linwei; West, Logan; Ni Weidou

    2011-01-01

    CCS is seen as an important and strategic technology option for China to reduce its CO 2 emission, and has received tremendous attention both around the world and in China. Scholars are divided on the role CCS should play, making the future of CCS in China highly uncertain. This paper presents the overall circumstances for CCS development in China, including the threats and opportunities for large scale deployment of CCS, the initial barriers and advantages that China currently possesses, as well as the current progress of CCS demonstration in China. The paper proposes the implementation of a limited number of larger scale, fully integrated CCS demonstration projects and explains the potential benefits that could be garnered. The problems with China's current CCS demonstration work are analyzed, and some targeted policies are proposed based on those observations. These policy suggestions can effectively solve these problems, help China gain the benefits with CCS demonstration soon, and make great contributions to China's big CO 2 reduction mission. - Highlights: → We analyze the overall circumstances for CCS development in China in detail. → China can garner multiple benefits by conducting several large, integrated CCS demos. → We present the current progress in CCS demonstration in China in detail. → Some problems exist with China's current CCS demonstration work. → Some focused policies are suggested to improve CCS demonstration in China.

  4. Relating R and D and investment policies to CCS market diffusion through two-factor learning

    International Nuclear Information System (INIS)

    Lohwasser, Richard; Madlener, Reinhard

    2013-01-01

    Carbon capture and storage (CCS) has the potential to play a major role in the stabilization of anthropogenic greenhouse gases. To develop the capture technology from its current demonstration phase towards commercial maturity, significant funding is directed to CCS, such as the EU’s €4.5 bn NER300 fund. However, we know little about how this funding relates to market diffusion of CCS. This paper addresses that question. We initially review past learning effects from both capacity installations and R and D efforts for a similar technology using the concept of two-factor learning. We apply the obtained learning-by-doing and learning-by-searching rates to CCS in the electricity market model HECTOR, which simulates 19 European countries hourly until 2040, to understand the impact of learning and associated policies on CCS market diffusion. We evaluate the effectiveness of policies addressing learning-by-doing and learning-by-searching by relating the policy budget to the realized CCS capacity and find that, at lower policy cost, both methods are about equally effective. At higher spending levels, policies promoting learning-by-doing are more effective. Overall, policy effectiveness increases in low CO 2 price scenarios, but the CO 2 price still remains the key prerequisite for the economic competitiveness, even with major policy support. - Highlights: ► Identified two-factor learning rates for CCS through empirical data from flue gas desulphurization. ► Evaluated effectiveness of CCS stimulation policies addressing learning-by-doing and learning-by-researching. ► Both policy types are about equally effective with small policy budgets. ► Policies addressing learning-by-doing, e.g., subsidies to CCS projects, are more effective with large policy budgets. ► Analysis deployed HECTOR power market model that simulates 19 European countries on hourly granularity until 2040.

  5. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    International Nuclear Information System (INIS)

    Coninck, Heleen de; Stephens, Jennie C.; Metz, Bert

    2009-01-01

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability of CCS, and would strengthen global trust, awareness and public confidence in the technology.

  6. Using the adsorption chillers for waste heat utilisation from the CCS installation

    Science.gov (United States)

    Sztekler, Karol; Kalawa, Wojciech; Nowak, Wojciech; Stefański, Sebastian; Krzywański, Jarosław; Grabowska, Karolina

    2018-06-01

    Worldwide tendencies in the scope of environmental protection demonstrate the requirement for the limited carbon dioxide emission, that influences on the development of greenhouse effect. As a result of coal as a basic fuel used in the professional power industry, this industry sector is the greatest CO2 polluter and it means that works on the reduction of carbon dioxide in such industry are completely justified. In the IPSEpro programming environment, a reference block model for a conventional coal power station was elaborated, including the CO2 separation unit basing on the adsorption methods with the CO2 preparation installation to liquid state. Simulation researches were conducted with means of numeric techniques, that enabled the system analysis for the CO2 separation unit with the CO2 preparation system to the liquid state, as well as analysis was made for the use of chiller systems, basing on the adsorption technology for waste heat use originating from the compression of CO2 in a cascade system, as well as for potential opportunities for further exploitation of the produced chilled water in the CCS cycle. We analysed in these papers the opportunities for chiller systems application, based on the adsorption chillers in the CCS installation used for the reduction of CO2 emission in the coal power station and its influence on the operation of a power station cycle.

  7. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  8. Mining-related environmental impacts of carbon mitigation; Coal-based carbon capture and sequestration and wind-enabling transmission expansion

    Energy Technology Data Exchange (ETDEWEB)

    Grubert, Emily

    2010-09-15

    Carbon mitigation can occur by preventing generation of greenhouse gases or by preventing emissions from entering the atmosphere. Accordingly, increasing the use of wind energy or carbon capture and storage (CCS) at coal-fired power plants could reduce carbon emissions. This work compares the direct mining impacts of increased coal demand associated with CCS with those of increased aluminum demand for expanding transmission systems to enable wind power incorporation. Aluminum needs for expanded transmission probably represent a one-time need for about 1.5% of Jamaica's annual bauxite production, while CCS coal needs for the same mitigation could almost double US coal demand.

  9. Coalbed methane and tight gas no longer unconventional resources

    International Nuclear Information System (INIS)

    Gatens, M.

    2006-01-01

    Unconventional gas refers to natural gas contained in difficult-to-produce formations that require special drilling and completion techniques to achieve commercial production. It includes tight gas, coal seams, organic shales, and gas hydrates. Canada's vast unconventional gas resource is becoming an increasingly important part of the country's gas supply. The emergence of unconventional gas production in Canada over the past several years has made the unconventional increasingly conventional in terms of industry activity. It was suggested that in order to realize the potential for unconventional gas in Canada, all stakeholders should engage to ensure the development is environmentally responsible. Unconventional gas accounts for nearly one third of U.S. gas production. It also accounts for nearly 5 Bcf per day and growing. The impetus to this sudden growth has been the gradual and increasing contribution of tight sands and limes to Canadian production, which accounts for more than 4 Bcf per day. Coalbed methane (CBM) is at 0.5 Bcf per day and growing. In response to expectations that CBM will reach 2 to 3 Bcf per day over the next 2 decades, Canadian producers are placing more emphasis on unconventional resource plays, including organic shales and gas hydrates. As such, significant growth of unconventional gas is anticipated. This growth will be facilitated by the adoption of U.S..-developed technologies and new Canadian technologies. It was suggested that research and development will be key to unlocking the unconventional gas potential. It was also suggested that the already existing, strong regulatory structure should continue in order to accommodate this growth in a sustainable manner. figs

  10. Transduced human copper chaperone for Cu,Zn-SOD (PEP-1-CCS) protects against neuronal cell death.

    Science.gov (United States)

    Choi, Soo Hyun; Kim, Dae Won; Kim, So Young; An, Jae Jin; Lee, Sun Hwa; Choi, Hee Soon; Sohn, Eun Jung; Hwang, Seok-Il; Won, Moo Ho; Kang, Tae-Cheon; Kwon, Hyung Joo; Kang, Jung Hoon; Cho, Sung-Woo; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2005-12-31

    Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

  11. East-West paths to unconventional computing.

    Science.gov (United States)

    Adamatzky, Andrew; Akl, Selim; Burgin, Mark; Calude, Cristian S; Costa, José Félix; Dehshibi, Mohammad Mahdi; Gunji, Yukio-Pegio; Konkoli, Zoran; MacLennan, Bruce; Marchal, Bruno; Margenstern, Maurice; Martínez, Genaro J; Mayne, Richard; Morita, Kenichi; Schumann, Andrew; Sergeyev, Yaroslav D; Sirakoulis, Georgios Ch; Stepney, Susan; Svozil, Karl; Zenil, Hector

    2017-12-01

    Unconventional computing is about breaking boundaries in thinking, acting and computing. Typical topics of this non-typical field include, but are not limited to physics of computation, non-classical logics, new complexity measures, novel hardware, mechanical, chemical and quantum computing. Unconventional computing encourages a new style of thinking while practical applications are obtained from uncovering and exploiting principles and mechanisms of information processing in and functional properties of, physical, chemical and living systems; in particular, efficient algorithms are developed, (almost) optimal architectures are designed and working prototypes of future computing devices are manufactured. This article includes idiosyncratic accounts of 'unconventional computing' scientists reflecting on their personal experiences, what attracted them to the field, their inspirations and discoveries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 'Capture ready' regulation of fossil fuel power plants - Betting the UK's carbon emissions on promises of future technology

    International Nuclear Information System (INIS)

    Markusson, Nils; Haszeldine, Stuart

    2010-01-01

    Climate change legislation requires emissions reductions, but the market shows interest in investing in new fossil fuelled power plants. The question is whether capture ready policy can reconcile these interests. The term 'capture ready' has been used a few years by the UK Government when granting licences for fossil fuelled power plants, but only recently has the meaning of the term been defined. The policy has been promoted as a step towards CCS and as an insurance against carbon lock-in. This paper draws on literature on technology lock-in and on regulation of technology undergoing development. Further, versions of the capture readiness concept proposed to date are compared. Capture readiness requirements beyond the minimum criterion of space on the site for capture operations are explored. This includes integration of capture and power plant, downstream operations, overall system integration and regulation of future retrofitting. Capture readiness comes with serious uncertainties and is no guarantee that new-built fossil plants will be abatable or abated in the future. As a regulatory strategy, it has been over-promised in the UK.

  13. The impact of future carbon prices on CCS investment for power generation in China

    International Nuclear Information System (INIS)

    Wu, Ning; Parsons, John E.; Polenske, Karen R.

    2013-01-01

    Carbon capture and storage (CCS) in China is currently discussed extensively but few in-depth analyses focusing on economics are observed. In this study, we answer two related questions about the development of CCS and power generation technologies in China: (1) what is the breakeven carbon-dioxide price to justify CCS installation investment for Integrated Gasification Combined Cycle (IGCC) and pulverized coal (PC) power plants, and, (2) what are the risks associated with investment for CCS. To answer these questions, we build a net present value model for IGCC and PC plants with capacity of 600 MW, with assumptions best representing the current technologies in China. Then, we run a sensitivity analysis of capital costs and fuel costs to reveal their impact on the carbon price, and analyze the risk on investment return caused by the carbon price volatility. Our study shows that in China, a breakeven carbon price of $61/tonne is required to justify investment on CCS for PC plants, and $72/tonne for IGCC plants. In this analysis, we also advise investors on the impact of capital and fuel costs on the carbon price and suggest optimal timing for CCS investment. - Highlights: ► We collect data on CCS and power generation which best represents technologies and costs in China. ► We model power plants' net present value to find the breakeven carbon prices. ► IGCC needs $72 per tonne to breakeven while PC requires $61 in China. ► Capital and fuel costs impact the carbon prices noticeably. ► We also examine the sensitivity, impact on return and time for investment

  14. CO2 slurry pipeline to transport solid marketable products to improve CCS economics

    Energy Technology Data Exchange (ETDEWEB)

    Luhning, Richard

    2010-09-15

    Carbon dioxide pipelines are anticipated to be a key element in CCS (Carbon Capture and Sequestration) to transport the carbon dioxide to sequestration sites or to oil fields for use in enhanced oil recovery applications. However the economics of CCS are such that the operations are economically challenged. The concept of using super critical (liquid) carbon dioxide in a slurry pipeline is to use the pipeline constructed for environmental purposes to transport marketable products such as sulphur, petroleum coke, limestone and others to market thereby generating additional income to make CCS carbon dioxide transportation economically attractive.

  15. CCS Retrofit: Analysis of the Global Installed Power Plant Fleet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Electricity generation from coal is still growing rapidly and energy scenarios from the IEA expect a possible increase from today’s 1 600 GW of coal-fired power plants to over 2 600 GW until 2035. This trend will increase the lock-in of carbon intensive electricity sources, while IEA assessments show that two-thirds of total abatement from all sectors should come from the power sector alone to support a least-cost abatement strategy. Since coal-fired power plants have a fairly long lifetime, and in order to meet climate constraints, there is a need either to apply CCS retrofit to some of today’s installed coal-fired power plants once the technology becomes available. Another option would be to retire some plants before the end of their lifetime. This working paper discusses criteria relevant to differentiating between the technical, cost-effective and realistic potential for CCS retrofit. The paper then discusses today’s coal-fired power plant fleet from a statistical perspective, by looking at age, size and the expected performance of today’s plant across several countries. The working paper also highlights the growing demand for applying CCS retrofitting to the coal-fired power plant fleet of the future. In doing so this paper aims at emphasising the need for policy makers, innovators and power plant operators to quickly complete the development of the CCS technology and to identify key countries where retrofit applications will have the biggest extent and impact.

  16. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    Science.gov (United States)

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  17. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone.

    Science.gov (United States)

    Carroll, Mark C; Girouard, Jody B; Ulloa, Janella L; Subramaniam, Jamuna R; Wong, Phillip C; Valentine, Joan Selverstone; Culotta, Valeria Cizewski

    2004-04-20

    The Cu- and Zn-containing superoxide dismutase 1 (SOD1) largely obtains Cu in vivo by means of the action of the Cu chaperone CCS. Yet, in the case of mammalian SOD1, a secondary pathway of activation is apparent. Specifically, when human SOD1 is expressed in either yeast or mammalian cells that are null for CCS, the SOD1 enzyme retains a certain degree of activity. This CCS-independent activity is evident with both wild-type and mutant variants of SOD1 that have been associated with familial amyotrophic lateral sclerosis. We demonstrate here that the CCS-independent activation of mammalian SOD1 involves glutathione, particularly the reduced form, or GSH. A role for glutathione in CCS-independent activation was seen with human SOD1 molecules that were expressed in either yeast cells or immortalized fibroblasts. Compared with mammalian SOD1, the Saccharomyces cerevisiae enzyme cannot obtain Cu without CCS in vivo, and this total dependence on CCS involves the presence of dual prolines near the C terminus of the SOD1 polypeptide. Indeed, the insertion of such prolines into human SOD1 rendered this molecule refractory to CCS-independent activation. The possible implications of multiple pathways for SOD1 activation are discussed in the context of SOD1 evolutionary biology and familial amyotrophic lateral sclerosis.

  18. Coal + Biomass → Liquids + Electricity (with CCS)

    Science.gov (United States)

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  19. Prerequisites for carbon capture and storage (CCS) in Sweden - a synthesis of the Baltic Sea Project; Foerutsaettningar foer avskiljning och lagring av koldioxid (CCS) i Sverige - En syntes av Oestersjoeprojektet

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Stigson, Peter; Hoeglund, Jonas; Bingel, Eva

    2011-07-01

    This publication summarizes a project on carbon capture and storage (CCS) in the Baltic region conducted at the initiative of the Energy Agency. The project is called 'the Baltic Project' and the aim has been to highlight the prospects for CCS in Sweden and how the Baltic Sea region affects this

  20. Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: Alternative approaches

    NARCIS (Netherlands)

    Buist, H.E.; Devito, S.; Goldbohm, R.A.; Stierum, R.H.; Venhorst, J.; Kroese, E.D.

    2015-01-01

    Carbon capture and storage (CCS) technologies are considered vital and economic elements for achieving global CO2 reduction targets, and is currently introduced worldwide (for more information on CCS, consult for example the websites of the International Energy Agency

  1. Chaperones CCS, ATOX and COXIV responses to copper supplementation in healthy adults.

    Science.gov (United States)

    Araya, Magdalena; Andrews, Monica; Pizarro, Fernando; Arredondo, Miguel

    2012-04-01

    Assessment of proteins in blood and other tissues has failed to identify markers of early copper effects on health. Studies in animal models show that chaperone of SOD (CCS) respond to changes of copper status. Evidence about other copper chaperones (COXIV, ATOX) is not clear. The aim of this study was to assess by means of an in vitro challenge the mRNA relative abundance of ccs, sod1, coxIV, mtIIa and atox in peripheral mononuclear cells (PMNCs) obtained from healthy individuals, acutely and chronically supplemented with small-to-moderate amounts of copper. Healthy participants received 8 mg Cu/d (supplemented group, SG) or placebo, (placebo group, PG) for 2 months. Biochemical indicators were assessed at basal (T0) and after 2 (T2) and 60 days (T60). At these times PMNCs were obtained, challenged with 1, 5 or 20 μM Cu-histidine for 20 h and the mRNA relative abundance of the selected genes assessed by real time PCR. The results showed that at T0, intracellular copper was not different between experimental and control groups. This increased at T2 and T60 when the copper in the media increased (two-way ANOVA, P CCS mRNA transcripts showed no significant changes (two-way ANOVA) at T2 and T60. In SG, CCS changed by treatment, time and interaction (two-way ANOVA, all P CCS but not SOD, ATOX or COXIV responded consistently to controlled changes of copper availability in an in vitro copper challenge.

  2. Programming Unconventional Computers: Dynamics, Development, Self-Reference

    Directory of Open Access Journals (Sweden)

    Susan Stepney

    2012-10-01

    Full Text Available Classical computing has well-established formalisms for specifying, refining, composing, proving, and otherwise reasoning about computations. These formalisms have matured over the past 70 years or so. Unconventional Computing includes the use of novel kinds of substrates–from black holes and quantum effects, through to chemicals, biomolecules, even slime moulds–to perform computations that do not conform to the classical model. Although many of these unconventional substrates can be coerced into performing classical computation, this is not how they “naturally” compute. Our ability to exploit unconventional computing is partly hampered by a lack of corresponding programming formalisms: we need models for building, composing, and reasoning about programs that execute in these substrates. What might, say, a slime mould programming language look like? Here I outline some of the issues and properties of these unconventional substrates that need to be addressed to find “natural” approaches to programming them. Important concepts include embodied real values, processes and dynamical systems, generative systems and their meta-dynamics, and embodied self-reference.

  3. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase.

    Science.gov (United States)

    Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph; Marquardt, Iris; Donsante, Anthony; Yi, Ling; Hicks, Julia D; Steinbach, Peter J; Wilson, Callum; Elpeleg, Orly; Møller, Lisbeth Birk; Christodoulou, John; Kaler, Stephen G; Gärtner, Jutta

    2012-08-01

    Copper (Cu) is a trace metal that readily gains and donates electrons, a property that renders it desirable as an enzyme cofactor but dangerous as a source of free radicals. To regulate cellular Cu metabolism, an elaborate system of chaperones and transporters has evolved, although no human Cu chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the Cu chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution of a highly conserved arginine residue at position 163, with tryptophan in domain II of CCS, which interacts directly with superoxide dismutase 1 (SOD1). Biochemical analyses of the patient's fibroblasts, mammalian cell transfections, immunoprecipitation assays, and Lys7Δ (CCS homolog) yeast complementation support the pathogenicity of the mutation. Expression of CCS was reduced and binding of CCS to SOD1 impaired. As a result, this mutation causes reduced SOD1 activity and may impair other mechanisms important for normal Cu homeostasis. CCS-Arg163Trp represents the primary example of a human mutation in a gene coding for a Cu chaperone. © 2012 Wiley Periodicals, Inc.

  4. Nuclear Energy R and D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    International Nuclear Information System (INIS)

    Petti, David; Herring, J. Stephen

    2010-01-01

    As described in the Department of Energy Office of Nuclear Energy's Nuclear Energy R and D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R and D Roadmap, entitled 'Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors', addresses this need. This document presents an Implementation Plan for R and D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: (1) Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, (2) Produce hydrogen for industrial processes and transportation fuels, and (3) Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation

  5. Potential acidification impacts on zooplankton in CCS leakage scenarios

    International Nuclear Information System (INIS)

    Halsband, Claudia; Kurihara, Haruko

    2013-01-01

    Highlights: • Effects of CCS techniques and ocean acidification on zooplankton are under-studied. • Vulnerable zooplankton are meso-, bathypelagic and vertically migrating species. • Impacts include impaired calcification, reproduction, development and survival. • Need for modelling studies combining physico-chemical with ecological impacts. -- Abstract: Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO 2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO 2 /pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle

  6. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  7. Biomass and CCS: The influence of technical change

    International Nuclear Information System (INIS)

    Laude, Audrey; Jonen, Christian

    2013-01-01

    The combination of bioenergy production and carbon capture and storage technologies (BECCS) provides an opportunity to create negative emissions of CO 2 in biofuel production. However, high capture costs reduce profitability. This paper investigates carbon price uncertainty and technological uncertainty through a real option approach. We compare the cases of early and delayed CCS deployments. An early technological progress may arise from aggressive R and D and pilot project programs, but the expected cost reduction remains uncertain. We show that this approach results in lower emissions and more rapid investment returns although these returns will not fully materialise until after 2030. In a second set of simulations, we apply an incentive that prioritises sequestered emissions rather than avoided emissions. In other words, this economic instrument does not account for CO 2 emissions from the CCS implementation itself, but rewards all the sequestered emissions. In contrast with technological innovations, this subsidy is certain for the investor. The resulting investment level is higher, and the project may become profitable before 2030. Negative emission in bioethanol production does not seem to be a short-term solution in our framework, whatever the carbon price drift. - Highlights: • Real option approach to assess CO 2 capture for bioethanol production. • Negative emissions opportunity but high capture costs. • Early CCS deployment increases investment probability. • Yet it is uncertain and costly: R and D and pilote programs required. • Rewarding stored emissions instead of avoided emissions is more efficient

  8. Conventional and unconventional political participation

    International Nuclear Information System (INIS)

    Opp, K.D.

    1985-01-01

    A non-recursive model is proposed and empirically tested with data of opponents of nuclear power. In explaining conventional and unconventional participation the theory of collective action is applied and modified in two respects: the perceived influence on the elimination of collective evils are taken into account; the selective incentives considered are non-material ones. These modifications proved to be valid: the collective good variables and non-material incentives were important determinants for the two forms of participation. Another result was that there is a reciprocal causal relationship between conventional and unconventional participation. (orig./PW) [de

  9. PROSPECTS OF CCS PROJECTS IMPLEMENTATION IN RUSSIA: ENVIRONMENTAL PROTECTION AND ECONOMIC OPPORTUNITIES

    Directory of Open Access Journals (Sweden)

    Pavel Tcvetkov

    2016-04-01

    Full Text Available The urgency of environmental protection is determined by its intensive change because of human impact, which, among other things, accompanied by an increasing of carbon dioxide (CO2 emissions. One of the ways to reduce the emission is Carbon Capture and Storage (CCS technologies. To date, developed countries have successfully implemented a number of CCS demonstration projects. Their main purpose is to study the effectiveness of CO2 storage. Russia is one of the world’s largest producers of CO2 emissions. However, CO2 capture and storage issues are not studied by Russian enterprises due to the absence of environmental taxes. The experience of developed countries shows that CO2 storage projects, in addition to the reduction of anthropogenic impact, can be commercially effective not only by reducing the tax burden. This review presents the analysis of international experience in the field of CO2 capture and storage. Given the immaturity of technology and lack of the necessary volume of statistical data, it was an attempt to determine the minimum conditions, which permit the implementation of CCS projects in Russian oil fields. On the basis of the Russian development forecast and the fuel balance structure the volumes of CO2 emissions in the 2016–2030 years were calculated. According to significant difference in opinions about the feasibility of CCS implementation in Russia, this review presents the main arguments for and against such projects. Evaluation of the potential effectiveness of CCS projects to enhance oil recovery factor showed that in spite of the absence of CO2 emissions taxes, such projects could be commercially effective in Russia due to the increase in oil recovery.

  10. Thermal starless ammonia core surrounded by CCS in the Orion a cloud

    Energy Technology Data Exchange (ETDEWEB)

    Tatematsu, Ken' ichi; Hirota, Tomoya; Umemoto, Tomofumi; Kandori, Ryo; Mizuno, Norikazu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ohashi, Satoshi [Department of Astronomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, Daedeokdaero 776, Yuseong, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Yamamoto, Satoshi, E-mail: k.tatematsu@nao.ac.jp, E-mail: tomoya.hirota@nao.ac.jp, E-mail: umemoto.tomofumi@nao.ac.jp, E-mail: r.kandori@nao.ac.jp, E-mail: norikazu.mizuno@nao.ac.jp, E-mail: satoshi.ohashi@nao.ac.jp, E-mail: minho@kasi.re.kr, E-mail: mjkang@kasi.re.kr, E-mail: jeongeun.lee@khu.ac.kr, E-mail: yamamoto@taurus.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-07-01

    We imaged two starless molecular cloud cores, TUKH083 and TUKH122, in the Orion A giant molecular cloud in the CCS and NH{sub 3} emission with the Very Large Array. TUKH122 contains one NH{sub 3} core 'TUKH122-n', which is elongated and has a smooth oval boundary. Where observed, the CCS emission surrounds the NH{sub 3} core. This configuration resembles that of the N{sub 2}H{sup +} and CCS distribution in the Taurus starless core L1544, a well-studied example of a dense prestellar core exhibiting infall motions. The linewidth of TUKH122-n is narrow (0.20 km s{sup –1}) in the NH{sub 3} emission line and therefore dominated by thermal motions. The smooth oval shape of the core boundary and narrow linewidth in N{sub 2}H{sup +} seem to imply that TUKH122-n is dynamically relaxed and quiescent. TUKH122-n is similar to L1544 in the kinetic temperature (10 K), linear size (0.03 pc), and virial mass (∼2 M {sub ☉}). Our results strongly suggest that TUKH122-n is on the verge of star formation. TUKH122-n is embedded in the 0.2 pc massive (virial mass ∼30 M {sub ☉}) turbulent parent core, while the L1544 NH{sub 3} core is embedded in the 0.2 pc less-massive (virial mass ∼10 M {sub ☉}) thermal parent core. TUKH083 shows complicated distribution in NH{sub 3}, but was not detected in CCS. The CCS emission toward TUKH083 appears to be extended, and is resolved out in our interferometric observations.

  11. The International Impact of US Unconventional Monetary Policy

    DEFF Research Database (Denmark)

    Lutz, Chandler

    2015-01-01

    Using a structural factor-augmented vector autoregression model and a large data set of daily time series, we study the impact of US unconventional monetary policy on British and German financial markets. Our findings indicate that a surprise US unconventional monetary policy easing leads...

  12. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  13. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era.

    Science.gov (United States)

    Zhou, Zhiwei; Tu, Jia; Zhu, Zheng-Jiang

    2018-02-01

    Metabolomics and lipidomics aim to comprehensively measure the dynamic changes of all metabolites and lipids that are present in biological systems. The use of ion mobility-mass spectrometry (IM-MS) for metabolomics and lipidomics has facilitated the separation and the identification of metabolites and lipids in complex biological samples. The collision cross-section (CCS) value derived from IM-MS is a valuable physiochemical property for the unambiguous identification of metabolites and lipids. However, CCS values obtained from experimental measurement and computational modeling are limited available, which significantly restricts the application of IM-MS. In this review, we will discuss the recently developed machine-learning based prediction approach, which could efficiently generate precise CCS databases in a large scale. We will also highlight the applications of CCS databases to support metabolomics and lipidomics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Organic Contaminants Associated with the Extraction of Unconventional Gas. Risk Analysis in the Initial Phases of the Project

    International Nuclear Information System (INIS)

    Xu, L.; Hurtado, A.; Recreo, F.; Eguilior, S.

    2015-01-01

    The latest technological advances in hydraulic fracturing and horizontal drilling are promoting a commercial scale extraction of unconventional fossil fuels in several regions of the world. Although there is still no commercial scale extraction in the Member States of the EU, potential stocks in some of them, as in the case of Spain, stimulate the need to carry out precautionary previous studies. These, based on the experience in the USA, will allow to define the characteristics that a priori should include a project of unconventional gas extraction, so that their safety is maximized by minimizing the likelihood of adverse effects on the environment. In unconventional gas production a fracturing fluid, typically water, with different types of additives is injected into the reservoir at very high pressure in order to create fractures to increase the porosity and permeability of the rock. In this scenario the flowback and produced water (water brought to the surface during the extraction of gas or oil) is usually a mixture of fluids injected and brines present in the repository. The quality of the flowback and produced water is variable. Its salinity varies from similar to drinking water to several times more saline than seawater. Furthermore, different compounds other than salt can be present in various amounts in the flowback and produced water: oil and other organic compounds, solids in suspension, bacteria, naturally occurring radioactive elements (NORM), and any of the elements injected with the hydraulic fracturing fluid. Due to the high variability of contaminants in the flowback and produced water as well as potentially large volumes involved, composition of flowback and produced water and the analysis of the risks associated with them is an important aspect to consider from the initial phases of project development of unconventional gas extraction. This report covers the risk analysis of an unconventional gas extraction project, the initial assessment of the

  15. A search for unconventional mesons

    International Nuclear Information System (INIS)

    Turnau, J.

    1984-01-01

    Selected problems of the fixed target meson spectroscopy connected with the issue of unconventional states glueballs, hybrides and four-quarks are discussed. The experimental basis of the dissertation consists of some results of the WA3 experiment performed by ACCMOR collaboration (Π - p→(3Π) - p, K - p→K - Π + Π - p, Π - p→K s o K s o n) and of the S136 experiment performed by CCM collaborations (Π - p↑→Π + Π - n, Π - p↑→K + K - n). Mesons with spin parities J PC = 0 -+ , 0 ++ , 1 ++ and 2 ++ are discussed from the point of view of the phenomenology of unconventional states. (author)

  16. Hazard assessment of nitrosamine and nitramine by-products of amine-based CCS: alternative approaches.

    Science.gov (United States)

    Buist, H E; Devito, S; Goldbohm, R A; Stierum, R H; Venhorst, J; Kroese, E D

    2015-04-01

    Carbon capture and storage (CCS) technologies are considered vital and economic elements for achieving global CO2 reduction targets, and is currently introduced worldwide (for more information on CCS, consult for example the websites of the International Energy Agency (http://www.iea.org/topics/ccs/) and the Global CCS Institute (http://www.globalccsinstitute.com/)). One prominent CCS technology, the amine-based post-combustion process, may generate nitrosamines and their related nitramines as by-products, the former well known for their potential mutagenic and carcinogenic properties. In order to efficiently assess the carcinogenic potency of any of these by-products this paper reviews and discusses novel prediction approaches consuming less time, money and animals than the traditionally applied 2-year rodent assay. For this, available animal carcinogenicity studies with N-nitroso compounds and nitramines have been used to derive carcinogenic potency values, that were subsequently used to assess the predictive performance of alternative prediction approaches for these chemicals. Promising cancer prediction models are the QSARs developed by the Helguera group, in vitro transformation assays, and the in vivo initiation-promotion, and transgenic animal assays. All these models, however, have not been adequately explored for this purpose, as the number of N-nitroso compounds investigated is yet too limited, and therefore further testing with relevant N-nitroso compounds is needed. Copyright © 2015. Published by Elsevier Inc.

  17. The role of biomass and CCS in China in a climate mitigation perspective

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Karlsson, Kenneth Bernard; Gregg, Jay Sterling

    2011-01-01

    As the world’s largest emitter of greenhouse gasses (GHGs), China plays a central role in the suite of options for climate change mitigation. To analyze the importance of biomass and carbon capture and storage (CCS) availability in China, varying levels of these parameters are created and then gl......As the world’s largest emitter of greenhouse gasses (GHGs), China plays a central role in the suite of options for climate change mitigation. To analyze the importance of biomass and carbon capture and storage (CCS) availability in China, varying levels of these parameters are created...... and then global climate scenarios are simulated using TIAM (TIMES Integrated Assessment Model). TIAM is a 16-region global energy system optimization model that includes a climate module that calculates the global concentrations of GHGs in the atmosphere. We analyze the potential for using biomass, CCS......, and bioenergy CCS (BECCS) in China under the constraint of meeting a climate stabilization target such that dangerous climate change (as defined by the Copenhagen Accord) is avoided. When considering hypothetical scenarios where GHG emissions are constrained, China consumes all available domestic biomass...

  18. Processing of unconventional stimuli requires the recruitment of the non-specialized hemisphere

    Directory of Open Access Journals (Sweden)

    Yoed Nissan Kenett

    2015-02-01

    Full Text Available In the present study we investigate hemispheric processing of conventional and unconventional visual stimuli in the context of visual and verbal creative ability. In Experiment 1, we studied two unconventional visual recognition tasks – Mooney face and objects' silhouette recognition – and found a significant relationship between measures of verbal creativity and unconventional face recognition. In Experiment 2 we used the split visual field paradigm to investigate hemispheric processing of conventional and unconventional faces and its relation to verbal and visual characteristics of creativity. Results showed that while conventional faces were better processed by the specialized right hemisphere, unconventional faces were better processed by the non-specialized left hemisphere. In addition, only unconventional face processing by the non-specialized left hemisphere was related to verbal and visual measures of creative ability. Our findings demonstrate the role of the non-specialized hemisphere in processing unconventional stimuli and how it relates to creativity.

  19. Unconventional strain-dependent conductance oscillations in pristine phosphorene.

    Science.gov (United States)

    Ray, S J; Kamalakar, M Venkata

    2018-05-16

    Phosphorene is a single elemental, two-dimensional semiconductor that has quickly emerged as a high mobility material for transistors and optoelectronic devices. In addition, being a 2D material it can sustain high levels of strain, enabling sensitive modification of its electronic properties. In this paper, we investigate the strain dependent electronic properties of phosphorene nanocrystals. By performing extensive calculations we determine the electrical conductance as a function of uniaxial, as well as biaxial strain stimuli and uncover a unique zone phase diagram. This enables us to uncover conductance oscillations in pristine phosphorene for the first time, by the simple application of strain. We show that such unconventional current-voltage behaviour is tuneable by the nature of strain, and that an additional gate voltage can modulate the amplitude (peak to valley ratio) of the observed phenomena and its switching efficiency. Furthermore, we show that the switching is highly robust against doping and defects. Our detailed results present new leads for innovation in strain based gauging and high-frequency nanoelectronic switches of phosphorene.

  20. U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project.

    Science.gov (United States)

    Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun

    2018-04-01

    The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.

  1. Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS.

    Science.gov (United States)

    Jensen, Laran T; Culotta, Valeria Cizewski

    2005-12-16

    Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.

  2. Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information

    Science.gov (United States)

    Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.

    2016-12-01

    This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.

  3. Distribution of CCS and HC3N in L1147, an early phase dark cloud

    International Nuclear Information System (INIS)

    Suzuki, Taiki; Ohishi, Masatoshi; Hirota, Tomoya

    2014-01-01

    We used the Nobeyama 45 m radio telescope to reveal spatial distributions of CCS and HC 3 N in L1147, one of the carbon-chain producing region (CCPR) candidates, where carbon-chain molecules are dominant rather than NH 3 . We found that three cores (two CCS cores and one HC 3 N core), which are away from a very low luminosity object (a source that may turn into a sub-stellar mass brown dwarf), exist along the NE-SW filament traced by the 850 μm dust continuum. The column densities of CCS are 3-7 × 10 12 cm –2 and those of HC 3 N are 2-6 × 10 12 cm –2 , respectively, much lower than those previously reported toward other CCPRs. We also found that two CCS peaks are displaced from the peaks of HC 3 N. In order to interpret such interleaved distributions, we conducted chemical reaction network simulations and found that slightly different gas densities could lead to large variation of the CCS-to-HC 3 N ratio in the early phase of dark cloud evolution. Such a chemical 'variation' may be seen in other CCPRs. Finally, we were able to confirm that the L1147 filament can be regarded as a CCPR.

  4. Designing policy for deployment of CCS in industry

    NARCIS (Netherlands)

    Mikunda, T.; Kober, T.; de Coninck, H.; Bazilian, M.; Rösler, H.; van der Zwaan, B.

    2014-01-01

    Attaining deep greenhouse gas (GHG) emission reductions in industry in order to support a stringent climate change control target will be difficult without recourse to CO2 capture and storage (CCS). Using the insights from a long-term bottom-up energy systems model, and undertaking a sectoral

  5. Effects of New Fossil Fuel Developments on the Possibilities of Meeting 2C Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Meindertsma, W.; Blok, K.

    2012-12-15

    Recent years have seen an increasing activity in developing new fossil fuel production capacity. This includes unconventional fossil fuels, such as tar sands and shale gas, fossil fuels from remote locations, and fossil fuels with a very large increase in production in the near future. In this report, the impact of such developments on our ability to mitigate climate change is investigated. Our inventory shows that the new fossil fuel developments currently underway consist of 29,400 billion cubic meters of natural gas, 260,000 million barrels of oil and 49,600 million tonnes of coal. The development of these new fossil fuels would result in emissions of 300 billion tonnes of CO2 -equivalent (CO2e) from 2012 until 2050. Until 2050, a 'carbon budget' of 1550 billion tonnes CO2e is still available if we want to of keep global warming below 2C with a 50% probability. For a 75% probability to stay below 2C this budget is only 1050 billion tonnes CO2e. So, the new fossil fuel developments identified in this report consume 20-33% of the remaining carbon budget until 2050. In a scenario where the new fossil fuels are developed, we need to embark on a rapid emission reductions pathway at the latest in 2019 in order to meet the 50% probability carbon budget. Avoiding the development of new fossil fuels will give us until 2025 to start further rapid emission reductions. These calculations are based on the assumption that the maximum emission reduction rate is 4% per year and that the maximum change in emission trend is 0.5 percentage point per year. The starting year for rapid emission reductions depends on the choice of these parameters. A sensitivity analysis shows that, in all cases, refraining from new fossil fuel development allows for a delay of 5 to 8 years before we should embark on a rapid emission reduction pathway. The high investments required for developing new fossil fuels lead to a lock in effect; once developed, these fossil fuels need to be

  6. Plan of promotion and development of unconventional renewable sources

    International Nuclear Information System (INIS)

    Rojas M, Jose Rodrigo

    2016-01-01

    The plan for the promotion and development of unconventional sources renewable energies developed by the Instituto Costarricense de Electricidad is explained. The percentage data from the use of unconventional renewable sources for power generation in Costa Rica is presented [es

  7. Unconventional ballooning structures for toroidal drift waves

    International Nuclear Information System (INIS)

    Xie, Hua-sheng; Xiao, Yong

    2015-01-01

    With strong gradients in the pedestal of high confinement mode (H-mode) fusion plasmas, gyrokinetic simulations are carried out for the trapped electron and ion temperature gradient modes. A broad class of unconventional mode structures is found to localize at arbitrary poloidal positions or with multiple peaks. It is found that these unconventional ballooning structures are associated with different eigen states for the most unstable mode. At weak gradient (low confinement mode or L-mode), the most unstable mode is usually in the ground eigen state, which corresponds to a conventional ballooning mode structure peaking in the outboard mid-plane of tokamaks. However, at strong gradient (H-mode), the most unstable mode is usually not the ground eigen state and the ballooning mode structure becomes unconventional. This result implies that the pedestal of H-mode could have better confinement than L-mode

  8. Unconventional Algorithms: Complementarity of Axiomatics and Construction

    Directory of Open Access Journals (Sweden)

    Gordana Dodig Crnkovic

    2012-10-01

    Full Text Available In this paper, we analyze axiomatic and constructive issues of unconventional computations from a methodological and philosophical point of view. We explain how the new models of algorithms and unconventional computations change the algorithmic universe, making it open and allowing increased flexibility and expressive power that augment creativity. At the same time, the greater power of new types of algorithms also results in the greater complexity of the algorithmic universe, transforming it into the algorithmic multiverse and demanding new tools for its study. That is why we analyze new powerful tools brought forth by local mathematics, local logics, logical varieties and the axiomatic theory of algorithms, automata and computation. We demonstrate how these new tools allow efficient navigation in the algorithmic multiverse. Further work includes study of natural computation by unconventional algorithms and constructive approaches.

  9. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    Science.gov (United States)

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  10. CATO-2 Deliverable WP 2.3-D03 Background paper on 'Role of CCS in the international climate regime'

    International Nuclear Information System (INIS)

    Hagemann, M.; Moltmann, S.; Palenberg, A.; De Visser, E.; Hoehne, N.; Jung, M.; Bakker, S.J.A.

    2011-03-01

    In its recent roadmap the IEA argued that CCS, in order to be effective, needs to be implemented on an international level. International cooperation is necessary to reduce costs, exchange ideas with implementation issues learned from experience and increase CCS implementation in developing countries. The aim of this study is to analyse ways to increase international cooperation in order to roll out CCS globally in developed but also developing countries. In this paper, we reviewed current international support mechanisms for CCS. Under the international climate agreement, the UNFCCC and the Kyoto Protocol, CCS does not play a major role. The clean development mechanism (CDM) is an instrument that could potentially support CCS in developing countries, but currently does not allow CCS and has no approved methodology for this technology. There are some promising developments in other areas of the international negotiations under the UNFCCC, but it is open as to what role CCS will play in them. Possible instruments include nationally appropriate mitigation actions, and climate technology innovation centres under a Technology Mechanism. We conclude that it is promising to consider bilateral and multilateral country partnerships outside the UNFCCC process. A review of existing CCS-related partnerships, undertaken within this study, showed that a growing number of such partnerships exist. These processes tend to focus on a limited number of issues, namely financing and implementation of R and D projects in the power sector, general knowledge exchange and capacity building as well as broad regulatory studies, and regions such as China. They do not sufficiently cover other important issues, such as financing and the implementation of regulatory frameworks. Partnerships with countries other than China, such as South Africa and India, are only small in size to this date. Considering the background information as analysed in this paper, we suggest three possible non

  11. Etiological classification of ischemic stroke in young patients: a comparative study of TOAST, CCS, and ASCO.

    Science.gov (United States)

    Gökçal, Elif; Niftaliyev, Elvin; Asil, Talip

    2017-09-01

    Analysis of stroke subtypes is important for making treatment decisions and prognostic evaluations. The TOAST classification system is most commonly used, but the CCS and ASCO classification systems might be more useful to identify stroke etiologies in young patients whose strokes have a wide range of different causes. In this manuscript, we aim to compare the differences in subtype classification between TOAST, CCS, and ASCO in young stroke patients. The TOAST, CCS, and ASCO classification schemes were applied to 151 patients with ischemic stroke aged 18-49 years old and the proportion of subtypes classified by each scheme was compared. For comparison, determined etiologies were defined as cases with evident and probable subtypes when using the CCS scheme and cases with grade 1 and 2 subtypes but no other grade 1 subtype when using the ASCO scheme. The McNemar test with Bonferroni correction was used to assess significance. By TOAST, 41.1% of patients' stroke etiology was classified as undetermined etiology, 19.2% as cardioembolic, 13.2% as large artery atherosclerosis, 11.3% as small vessel occlusion, and 15.2% as other causes. Compared with TOAST, both CCS and ASCO assigned fewer patients to the undetermined etiology group (30.5% p CCS and ASCO classification schemes in young stroke patients seems feasible, and using both schemes may result in fewer patients being classified as undetermined etiology. New studies with more patients and a prospective design are needed to explore this topic further.

  12. Agreement between TOAST and CCS ischemic stroke classification: the NINDS SiGN study.

    Science.gov (United States)

    McArdle, Patrick F; Kittner, Steven J; Ay, Hakan; Brown, Robert D; Meschia, James F; Rundek, Tatjana; Wassertheil-Smoller, Sylvia; Woo, Daniel; Andsberg, Gunnar; Biffi, Alessandro; Brenner, David A; Cole, John W; Corriveau, Roderick; de Bakker, Paul I W; Delavaran, Hossein; Dichgans, Martin; Grewal, Raji P; Gwinn, Katrina; Huq, Mohammed; Jern, Christina; Jimenez-Conde, Jordi; Jood, Katarina; Kaplan, Robert C; Katschnig, Petra; Katsnelson, Michael; Labovitz, Daniel L; Lemmens, Robin; Li, Linxin; Lindgren, Arne; Markus, Hugh S; Peddareddygari, Leema R; Pedersén, Annie; Pera, Joanna; Redfors, Petra; Roquer, Jaume; Rosand, Jonathan; Rost, Natalia S; Rothwell, Peter M; Sacco, Ralph L; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie; Thijs, Vincent; Tiedt, Steffen; Valenti, Raffaella; Worrall, Bradford B

    2014-10-28

    The objective of this study was to assess the level of agreement between stroke subtype classifications made using the Trial of Org 10172 Acute Stroke Treatment (TOAST) and Causative Classification of Stroke (CCS) systems. Study subjects included 13,596 adult men and women accrued from 20 US and European genetic research centers participating in the National Institute of Neurological Disorders and Stroke (NINDS) Stroke Genetics Network (SiGN). All cases had independently classified TOAST and CCS stroke subtypes. Kappa statistics were calculated for the 5 major ischemic stroke subtypes common to both systems. The overall agreement between TOAST and CCS was moderate (agreement rate, 70%; κ = 0.59, 95% confidence interval [CI] 0.58-0.60). Agreement varied widely across study sites, ranging from 28% to 90%. Agreement on specific subtypes was highest for large-artery atherosclerosis (κ = 0.71, 95% CI 0.69-0.73) and lowest for small-artery occlusion (κ = 0.56, 95% CI 0.54-0.58). Agreement between TOAST and CCS diagnoses was moderate. Caution is warranted when comparing or combining results based on the 2 systems. Replication of study results, for example, genome-wide association studies, should utilize phenotypes determined by the same classification system, ideally applied in the same manner. © 2014 American Academy of Neurology.

  13. Barriers and incentives of CCS deployment in China. Results from semi-structured interviews

    International Nuclear Information System (INIS)

    Dapeng, Liang; Weiwei, Wu

    2009-01-01

    From March to July of 2008, we conducted semi-structured interviews with 31 experts from the Chinese government, scientific institutes and industrial sectors. This paper summarizes the experts' opinions and draws conclusions about four crucial aspects that influence CO 2 capture and storage (CCS) deployment in China: technology research and experience accumulation, finance support, market development and policy and system. According to interviews result, technological improvement is necessary to cut down on CO 2 capture cost and decrease technological uncertainty. Then, to make some rational policies and systems, with elements such as a carbon tax and clean electricity pricing, to drive power plants to adopt CO 2 capture technology. Furthermore, financial incentive in both the long term and the short term, such as subsidies and CDM, will be important for CCS incentives, encouraging enterprises' enthusiasm for CCS and their capacity to enact it. Lastly, CCS deployment should be conducted under a market-oriented framework in the long term, so a business model and niche market deployment should be considered in advance. Among these aspects, policy and system is more complex than other three aspects, to resolve this obstacle, the innovation on electricity market and government decision model for climate change is crucial. (author)

  14. MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics.

    Science.gov (United States)

    Zhou, Zhiwei; Xiong, Xin; Zhu, Zheng-Jiang

    2017-07-15

    In metabolomics, rigorous structural identification of metabolites presents a challenge for bioinformatics. The use of collision cross-section (CCS) values of metabolites derived from ion mobility-mass spectrometry effectively increases the confidence of metabolite identification, but this technique suffers from the limit number of available CCS values. Currently, there is no software available for rapidly generating the metabolites' CCS values. Here, we developed the first web server, namely, MetCCS Predictor, for predicting CCS values. It can predict the CCS values of metabolites using molecular descriptors within a few seconds. Common users with limited background on bioinformatics can benefit from this software and effectively improve the metabolite identification in metabolomics. The web server is freely available at: http://www.metabolomics-shanghai.org/MetCCS/ . jiangzhu@sioc.ac.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Unconventional Leadership

    OpenAIRE

    Paul Marinescu; Sorin-George Toma

    2015-01-01

    From the perspective of leadership change symbolizes the existence of the organization.Most assuredly, this is not a matter of change at all costs, but rather of increasing organizational performance and training people. As leadership is a creative activity, in this paper, we aim to show that the unconventional is closely connected to creativity. From the perspective of interpersonal relationships the leader has to continually create contexts in which people can express themselves. On the one...

  16. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  17. Reliability, Validity, and Predictive Utility of the 25-Item Criminogenic Cognitions Scale (CCS)

    OpenAIRE

    Tangney, June Price; Stuewig, Jeffrey; Furukawa, Emi; Kopelovich, Sarah; Meyer, Patrick; Cosby, Brandon

    2012-01-01

    Theory, research, and clinical reports suggest that moral cognitions play a role in initiating and sustaining criminal behavior. The 25 item Criminogenic Cognitions Scale (CCS) was designed to tap 5 dimensions: Notions of entitlement; Failure to Accept Responsibility; Short-Term Orientation; Insensitivity to Impact of Crime; and Negative Attitudes Toward Authority. Results from 552 jail inmates support the reliability, validity, and predictive utility of the measure. The CCS was linked to cri...

  18. Legal aspects of storing CO2. Update and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-21

    CO2 emissions from energy production and consumption are a major contributor to climate change. Thus, stabilising CO2 concentrations in the atmosphere by reducing these emissions is an increasingly urgent international necessity. Carbon capture and storage (CCS) represents one of the most promising potential solutions to contain emissions resulting from continued use of coal and other fossil fuels. However, challenges such as a lack of legal and regulatory frameworks to guide near-term demonstration projects and long-term technology expansion must be addressed to facilitate the expanded use of CCS. In October 2006, the International Energy Agency (IEA) and the Carbon Sequestration Leadership Forum (CSLF) convened with legal experts,to discuss the range of legal issues associated with expanded use of CCS and to identify ways to facilitate further CCS development and implementation Participants examined gaps and barriers to the deployment of CCS and identified recommendations to guide further development of appropriate legal and regulatory frameworks. This publication provides policymakers with a detailed summary of the main legal issues surrounding the CCS debate, including up-to-date background information, case studies and conclusions on the best legal and regulatory approaches to advance CCS. These strategies can be used to enable further development, deployment and demonstration of CCS technology, potentially an essential element in global efforts to mitigate climate change.

  19. [Design and biological evaluation of poly-lactic-co-glycolic acid (PLGA) mesh/collagen-chitosan hybrid scaffold (CCS) as a dermal substitute].

    Science.gov (United States)

    Wang, Xin-Gang; You, Chuan-Gang; Sun, Hua-Feng; Hu, Xin-Lei; Han, Chun-Mao; Zhang, Li-Ping; Zheng, Yu-Rong; Li, Qi-Yin

    2011-02-01

    To design and construct a kind of dermal regeneration template with mesh, and to preliminarily evaluate its biological characteristics. PLGA mesh was integrated into CCS with freeze-drying method for constructing PLGA mesh/CCS composite (PCCS). The micromorphologies and mechanical properties among PLGA mesh, CCS, and PCCS were compared. PCCS and CCS was respectively implanted into subcutaneous tissue of SD rats (PCCS and CCS groups, 9 rats in each group). The tissue samples were collected at post operation week (POW) 1, 2, and 4 for histopathological and immunohistochemical observation. Protein levels of CD68, MPO, IL-1beta, IL-10 were examined by Western blot, with expression of gray value. Data were processed with one-way analysis of variance and t test. Three-dimensional porous structure of PCCS was similar to that of CCS. Mechanical property of PLGA mesh and PCCS was respectively (3.07 +/- 0.10), (3.26 +/- 0.15) MPa, and they were higher than that of CCS [(0.42 +/- 0.21) MPa, F = 592.3, P CCS group were observed at POW 4. A large accumulation of macrophages was observed in both groups, especially at POW 2, and more macrophage infiltration was observed in CCS group. The protein level of IL-10 in PCCS group at POW 2 was obviously higher than that in CCS group, while the protein levels of CD68, MPO, IL-1beta were significantly decreased as compared with those in CCS group (with t value from -4.06 to 2.89, P < 0.05 or P < 0.01). PCCS has excellent mechanical property with appropriate three-dimensional porous structure. Meanwhile, it can rapidly induce formation of new tissue and vascularization, and it has a prospect of serving as a dermal substitute.

  20. The greenhouse impact of unconventional gas for electricity generation

    International Nuclear Information System (INIS)

    Hultman, Nathan; Ramig, Christopher; Rebois, Dylan; Scholten, Michael

    2011-01-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  1. The greenhouse impact of unconventional gas for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, Nathan; Ramig, Christopher [School of Public Policy, University of Maryland, 2101 Van Munching Hall, College Park, MD 20742 (United States); Rebois, Dylan [Department of Mechanical Engineering, University of Maryland, 2181 Glenn L Martin Hall, Building 088, College Park, MD 20742 (United States); Scholten, Michael [Joint Quantum Institute, University of Maryland, 2207 Computer and Space Sciences Building, College Park, MD 20742 (United States)

    2011-10-15

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels-altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas-its relatively moderate GHG impact compared to coal-has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  2. Analysis of tandem repeat units of the promoter of capsanthin/capsorubin synthase (Ccs) gene in pepper fruit.

    Science.gov (United States)

    Tian, Shi-Lin; Li, Zheng; Li, Li; Shah, S N M; Gong, Zhen-Hui

    2017-07-01

    Capsanthin/capsorubin synthase ( Ccs ) gene is a key gene that regulates the synthesis of capsanthin and the development of red coloration in pepper fruits. There are three tandem repeat units in the promoter region of Ccs , but the potential effects of the number of repetitive units on the transcriptional regulation of Ccs has been unclear. In the present study, expression vectors carrying different numbers of repeat units of the Ccs promoter were constructed, and the transient expression of the β-glucuronidase ( GUS ) gene was used to detect differences in expression levels associated with the promoter fragments. These repeat fragments and the plant expression vector PBI121 containing the 35s CaMV promoter were ligated to form recombinant vectors that were transfected into Agrobacterium tumefaciens GV3101. A fluorescence spectrophotometer was used to analyze the expression associated with the various repeat units. It was concluded that the constructs containing at least one repeat were associated with GUS expression, though they did not differ from one another. This repeating unit likely plays a role in transcription and regulation of Ccs expression.

  3. Influence of methane in CO2 transport and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-04

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  4. Geocapacity: economic feasibility of CCS in networked systems

    NARCIS (Netherlands)

    Neele, F.; Hendriks, C.; Brandsma, R.

    2009-01-01

    A Decision Support System (DSS) has been developed to evaluate the technical and economical feasibility of CO2 storage in the subsurface. The DSS performs a detailed, stochastic analysis of the technical and economical aspects of a CCS project, which consists of any number of CO2 sources and sinks

  5. unconventional natural gas reservoirs

    International Nuclear Information System (INIS)

    Correa G, Tomas F; Osorio, Nelson; Restrepo R, Dora P

    2009-01-01

    This work is an exploration about different unconventional gas reservoirs worldwide: coal bed methane, tight gas, shale gas and gas hydrate? describing aspects such as definition, reserves, production methods, environmental issues and economics. The overview also mentioned preliminary studies about these sources in Colombia.

  6. Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis.

    Science.gov (United States)

    Huang, Chien-Hsun; Kuo, Wen-Yu; Jinn, Tsung-Luo

    2012-03-01

    Copper-zinc superoxide dismutase (CuZnSOD; CSD) is an important antioxidant enzyme for oxidative stress protection. To date, two activation pathways have been identified in many species. One requiring the CCS, Cu chaperone for SOD, to insert Cu and activate CSD (referred to as CCS-dependent pathway), and the other works independently of CCS (referred to as CCS-independent pathway). In our previous study, we suggest an unidentified factor will work with glutathione (GSH) for CSD activation in the absence of the CCS. Here, two models of the CCS-independent mechanism are proposed. The role of the unidentified factor may work as a scaffold protein, which provides a platform for the CSD protein and Cu-GSH to interact, or as a Cu carrier, which itself can bind Cu and interact with CSD proteins. We also suggest that the CSD protein conformation at C-terminal is important in providing a docking site for unidentified factor to access.

  7. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    Science.gov (United States)

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  8. Unconventional thermal cloak hiding an object outside the cloak

    Science.gov (United States)

    Gao, Y.; Huang, J. P.

    2013-11-01

    All the thermal cloaks reported in the literature can be used to thermally hide an object inside the cloak. However, a common limitation of this kind of thermal cloaks is that the cloaked object cannot feel the external heat flow since it is located inside the cloak; thus we call these cloaks “conventional thermal cloaks”. Here we manage to overcome this limitation by exploiting a class of unconventional thermal cloaks that enable the cloaked object to feel the external heat flow. Our finite-element simulations in two dimensions show the desired cloaking effect. The underlying mechanism originates from the complementary effect of thermal metamaterials with negative thermal conductivities. This work suggests a different method to design thermal devices where heat conduction can be controlled at will.

  9. Unconventional, High-Efficiency Propulsors

    DEFF Research Database (Denmark)

    Andersen, Poul

    1996-01-01

    The development of ship propellers has generally been characterized by search for propellers with as high efficiency as possible and at the same time low noise and vibration levels and little or no cavitation. This search has lead to unconventional propulsors, like vane-wheel propulsors, contra-r...

  10. Informed public preferences for electricity portfolios with CCS and other low-carbon technologies.

    Science.gov (United States)

    Fleishman, Lauren A; De Bruin, Wändi Bruine; Morgan, M Granger

    2010-09-01

    Public perceptions of carbon capture and sequestration (CCS) and other low-carbon electricity-generating technologies may affect the feasibility of their widespread deployment. We asked a diverse sample of 60 participants recruited from community groups in Pittsburgh, Pennsylvania to rank 10 technologies (e.g., coal with CCS, natural gas, nuclear, various renewables, and energy efficiency), and seven realistic low-carbon portfolios composed of these technologies, after receiving comprehensive and carefully balanced materials that explained the costs and benefits of each technology. Rankings were obtained in small group settings as well as individually before and after the group discussions. The ranking exercise asked participants to assume that the U.S. Congress had mandated a reduction in carbon dioxide emissions from power plants to be built in the future. Overall, rankings suggest that participants favored energy efficiency, followed by nuclear power, integrated gasification combined-cycle coal with CCS and wind. The most preferred portfolio also included these technologies. We find that these informed members of the general public preferred diverse portfolios that contained CCS and nuclear over alternatives once they fully understood the benefits, cost, and limitations of each. The materials and approach developed for this study may also have value in educating members of the general public about the challenges of achieving a low-carbon energy future. © 2010 Society for Risk Analysis.

  11. Impact of knowledge and misconceptions on benefit and risk perception of CCS.

    Science.gov (United States)

    Wallquist, Lasse; Visschers, Vivianne H M; Siegrist, Michael

    2010-09-01

    Carbon Dioxide Capture and Storage (CCS) is assumed to be one of the key technologies in the mitigation of climate change. Public acceptance may have a strong impact on the progress of this technology. Benefit perception and risk perception are known to be important determinants of public acceptance of CCS. In this study, the prevalence and effect of cognitive concepts underlying laypeople's risk perception and benefit perception of CCS were examined in a representative survey (N=654) in Switzerland. Results confirm findings from previous qualitative studies and show a quantification of a variety of widespread intuitive concepts that laypeople hold about storage mechanisms as well as about leakage and socioeconomic issues, which all appeared to influence risk perception and benefit perception. The perception of an overpressurized reservoir and concerns about diffuse impacts furthermore amplified risk perception. Appropriate images about storage mechanisms and climate change awareness were increasing the perception of benefits. Knowledge about CO2 seemed to lower both perceived benefits and perceived risks. Implications for risk communication and management are discussed.

  12. Unconventional Counter-Insurgency in Afghanistan

    National Research Council Canada - National Science Library

    Dyke, John R; Crisafulli, John R

    2006-01-01

    ...) invaded the Al Qaeda safe haven of Afghanistan. USSF A-teams, operating with almost total independence, conducted highly successful Unconventional Warfare "through, with, and by" the indigenous Afghan militias of the Northern Alliance...

  13. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    Science.gov (United States)

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  14. Cost Estimation and Comparison of Carbon Capture and Storage Technology with Wind Energy

    Directory of Open Access Journals (Sweden)

    ABDULLAH MENGAL

    2017-04-01

    Full Text Available The CCS (Carbon Capture and Storage is one of the significant solutions to reduce CO2 emissions from fossil fuelled electricity generation plants and minimize the effect of global warming. Economic analysis of CCS technology is, therefore, essential for the feasibility appraisal towards CO2 reduction. In this paper LCOE (Levelized Cost of Electricity Generation has been estimated with and without CCS technology for fossil fuel based power plants of Pakistan and also further compared with computed LCOE of WE (Wind Energy based power plants of the Pakistan. The results of this study suggest that the electricity generation costs of the fossil fuel power plants increase more than 44% with CCS technology as compared to without CCS technology. The generation costs are also found to be 10% further on higher side when considering efficiency penalty owing to installation of CCS technology. In addition, the CO2 avoided costs from natural gas plant are found to be 40 and 10% higher than the local coal and imported coal plants respectively. As such, the electricity generation cost of 5.09 Rs/kWh from WE plants is found to be competitive even when fossil fuel based plants are without CCS technology, with lowest cost of 5.9 Rs./kWh of CCNG (Combined Cycle Natural Gas plant. Based on analysis of results of this study and anticipated future development of efficient and cheap WE technologies, it is concluded that WE based electricity generation would be most appropriate option for CO2 reduction for Pakistan.

  15. Clinical Course Score (CCS): a new clinical score to evaluate efficacy of neurotrauma treatment in traumatic brain injury and subarachnoid hemorrhage.

    Science.gov (United States)

    Brandner, Sebastian; Kellermann, Isabel; Hore, Nirjhar; Bozhkov, Yavor; Buchfelder, Michael

    2015-01-01

    Neurotrauma continues to represent a challenging public health issue requiring continual improvement in therapeutic approaches. As no such current system exists, we present in this study the Clinical Course Score (CCS) as a new clinical score to evaluate the efficacy of neurotrauma treatment. The CCS was calculated in neurotrauma patients to be the difference between the grade of the Glasgow Outcome Scale 6 months after discharge from our department and the grade of a 1 to 5 point reduced Glasgow Coma Scale on admission. We assessed the CCS in a total of 248 patients (196 traumatic brain injury [TBI] patients and 52 subarachnoid hemorrhage [SAH] patients) who were treated in our Department of Neurosurgery between January 2011 and December 2012. We found negative CCS grades both in mild TBI and in mild SAH patients. In patients with severe TBI or SAH, we found positive CCS grades. In SAH patients, we found higher CCS scores in younger patients compared with elderly subjects in both mild and severe cases. The CCS can be useful in evaluating different therapeutic approaches during neurotrauma therapy. This new score might improve assessment of beneficial effects of therapeutic procedures.

  16. Potential acidification impacts on zooplankton in CCS leakage scenarios.

    Science.gov (United States)

    Halsband, Claudia; Kurihara, Haruko

    2013-08-30

    Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Fossil energy. Program report, 1 October 1977-30 September 1978. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    The Fossil Energy program is now in its second year under the Department of Energy. This document describes the Fossil Energy-supported contract and project activity for FY 1978. The primary thrust of the Program is on coal - especially direct coal combustion and what can be done to increase the environmental acceptability of coal. We are concerned with developing cleaner technologies, and we are working on precombustion cleanup, fluidized-bed combustion, and post-combustion cleanup. Longer range technologies are being developed to use coal more efficiently; for example, magnetohydrodynamics, fuel cells, and high-temperature turbine utilization. Another Fossil Energy priority is the development of a capability to produce synthetic fuels from coal. We are also engaged in a coal mining research and development program that focuses on increased mine productivity and workers' safety through the development of improved technologies. Our activity in the petroleum and gas research areas is intended to complement efforts in the private sector, which are to be further stimulated by new pricing or Federal incentives. Our present enhanced oil recovery efforts represent a shift in emphasis toward longer range, high-technology development projects instead of numerous field demonstrations and tests. The enhanced gas program emphasis activities to increase our knowledge of the size and economic productivity of the unconventional gas resources. We are also involved in oil shale development. We are continually assessing our program. Total annual funding has increased from $58 million in FY 1973 to $881 million in FY 1979.Fossil Energy is working closely with all parts of the Department of Energy, other appropriate Federal agencies, industry, and universities to insure that we maintain a balanced, aggressive, and responsive program suited to our national needs.

  18. Unconventional wind machine

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1979-01-01

    It is the purpose of this paper to introduce an unconventional wind machine which has economics comparable with nuclear power and is already available in the public market place. Specifically, up to about 17 MWE could be saved for other uses such as sale in most 1000 MWE plants of any type - nuclear, oil, gas, peat, or wood - which use conventional electrically driven fans in their cooling towers. 10 refs

  19. Unconventional gas development facilitates plant invasions.

    Science.gov (United States)

    Barlow, Kathryn M; Mortensen, David A; Drohan, Patrick J; Averill, Kristine M

    2017-11-01

    Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Maintenance management balancing performance maintenance and cost balance at reinforced concrete constructions of the fossil-fuel and nuclear power stations

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Benno, Hiroshi; Ozaki, Mitsuhiro

    2003-01-01

    Life elongation of concrete constructions (CCs) is a very important needs for supporting future safe supply of electric power. However, some CCs constructed and used for a long term at fossil-fuel and nuclear power stations had reduction of their required performance by deterioration based on environmental and using conditions represented by salt-damage. As such constructions are anxious to increase in future, it is necessary to keep reliability of their establishments by providing desired rehabilitation to persist supplying effect of their facilities. On the other hand, as it is also essential to progress keeping and reducing cost of power generation together with development of recent liberalization of electric power, it is an important subject how to keep their performance maintenance and cost balance. Therefore, here were outlined on required performance setting method, inspection method, long-term deterioration forecasting and evaluating methods, selection method of countermeasure scenarios minimizing LCC, inspection period setting method, introduction of database and deterioration forecasting system, and so on, to economically maintain and manage already built reinforced concrete constructions at suitable materials and places to elongate their lives. (G.K.)

  1. Education Program on Fossil Resources Including Coal

    Science.gov (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  2. Unconventional Natural Gas Development and Birth Outcomes in Pennsylvania, USA.

    Science.gov (United States)

    Casey, Joan A; Savitz, David A; Rasmussen, Sara G; Ogburn, Elizabeth L; Pollak, Jonathan; Mercer, Dione G; Schwartz, Brian S

    2016-03-01

    Unconventional natural gas development has expanded rapidly. In Pennsylvania, the number of producing wells increased from 0 in 2005 to 3,689 in 2013. Few publications have focused on unconventional natural gas development and birth outcomes. We performed a retrospective cohort study using electronic health record data on 9,384 mothers linked to 10,946 neonates in the Geisinger Health System from January 2009 to January 2013. We estimated cumulative exposure to unconventional natural gas development activity with an inverse-distance squared model that incorporated distance to the mother's home; dates and durations of well pad development, drilling, and hydraulic fracturing; and production volume during the pregnancy. We used multilevel linear and logistic regression models to examine associations between activity index quartile and term birth weight, preterm birth, low 5-minute Apgar score and small size for gestational age birth, while controlling for potential confounding variables. In adjusted models, there was an association between unconventional natural gas development activity and preterm birth that increased across quartiles, with a fourth quartile odds ratio of 1.4 (95% confidence interval = 1.0, 1.9). There were no associations of activity with Apgar score, small for gestational age birth, or term birth weight (after adjustment for year). In a posthoc analysis, there was an association with physician-recorded high-risk pregnancy identified from the problem list (fourth vs. first quartile, 1.3 [95% confidence interval = 1.1, 1.7]). Prenatal residential exposure to unconventional natural gas development activity was associated with two pregnancy outcomes, adding to evidence that unconventional natural gas development may impact health.See Video Abstract at http://links.lww.com/EDE/B14.

  3. Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment

    International Nuclear Information System (INIS)

    Viebahn, Peter; Vallentin, Daniel; Höller, Samuel

    2014-01-01

    Highlights: • In this study an integrated approach is chosen to assess CCS in India. • Five different assessment dimensions are covered. • Several conditions need to be fulfilled if CCS is to play a future role in India. • The most crucial requirement is a reliable storage capacity assessment for India. • Further requirements are economic viability, ecological impacts and public support. - Abstract: Objective: The aim of the present article is to conduct an integrated assessment in order to explore whether CCS could be a viable technological option for significantly reducing future CO 2 emissions in India. Methods: In this paper, an integrated approach covering five assessment dimensions is chosen. However, each dimension is investigated using specific methods (graphical abstract). Results: The most crucial precondition that must be met is a reliable storage capacity assessment based on site-specific geological data since only rough figures concerning the theoretical capacity exist at present. Our projection of different trends of coal-based power plant capacities up to 2050 ranges between 13 and 111 Gt of CO 2 that may be captured from coal-fired power plants to be built by 2050. If very optimistic assumptions about the country’s CO 2 storage potential are applied, 75 Gt of CO 2 could theoretically be stored as a result of matching these sources with suitable sinks. If a cautious approach is taken by considering the country’s effective storage potential, only a fraction may potentially be sequestered. In practice, this potential will decrease further with the impact of technical, legal, economic and social acceptance factors. Further constraints may be the delayed commercial availability of CCS in India, a significant barrier to achieving the economic viability of CCS, an expected net maximum reduction rate of the power plant’s greenhouse gas emissions of 71–74%, an increase of most other environmental and social impacts, and a lack of

  4. Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands

    International Nuclear Information System (INIS)

    Koelbl, Barbara S.; Broek, Machteld A. van den; Wilting, Harry C.; Sanders, Mark W.J.L.; Bulavskaya, Tatyana; Wood, Richard; Faaij, André P.C.; Vuuren, Detlef P. van

    2016-01-01

    Highlights: • We compare GHG mitigation policy including or excluding CCS on socio-economic impacts for the Netherlands. • We simulate these policy options in a global multiregional Input-Output Model with detailed bottom-up technology data. • Economy-wide differentials between these mitigation policies are small for Employment, GDP and Imports. • Notable impacts are found for the energy sector and some upstream sectors (natural gas, construction). • This pattern shows to base a choice on macroeconomic impacts is hard and it will affect strong and vested interests. - Abstract: Carbon Capture and Storage (CCS) could be an interesting option to mitigate greenhouse gas emissions in the Netherlands. This study compares a mitigation strategy for the Dutch power sector that includes CCS to one without on several socio-economic indicators. In particular, we calculate incremental gross value added (GVA), employment and import dependency impacts of two such low-carbon power production portfolios for the Netherlands. We combine technology specific techno-economic bottom-up data with a macro-economic multi-regional Input-Output-Table containing high sectoral detail. For the total economy, we find the differences between these scenarios to be small. Still, gross value added, and employment are lower under the CCS-inclusive strategy, while import dependency is higher. For the power sector, the differences between the scenarios are, however, considerable. Furthermore, our analysis shows that also for other sectors the differences between the scenarios could be large. For instance, a CCS-exclusive strategy leads to considerably higher GVA and employment in domestic construction services, while the CCS-inclusive strategy comes with considerably higher GVA and employment for natural gas mining and related upstream sectors.

  5. Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)

    International Nuclear Information System (INIS)

    Cormos, Calin-Cristian

    2012-01-01

    IGCC (Integrated Gasification Combined Cycle) is a power generation technology in which the solid feedstock is partially oxidized with oxygen and steam to produce syngas. In a conventional IGCC design without carbon capture, the syngas is purified for dust and hydrogen sulphide removal and then it is sent to a CCGT (Combined Cycle Gas Turbine) for power generation. CCS (Carbon capture and storage) technologies are expected to play a significant role in the coming decades for reducing the greenhouse gas emissions. IGCC is one of the power generation technologies having the highest potential to capture CO 2 with low penalties in term of plant energy efficiency, capital and operational costs. This paper investigates the most important techno-economic and environmental indicators (e.g. power output, ancillary consumption, energy efficiency, CW consumption, normalised mass and energy balances and plant construction materials, capital and O and M (operational and maintenance) costs, specific CO 2 emissions, cost of electricity, CO 2 removal and avoidance costs etc.) for IGCC with CCS. Coal-based IGCC cases produce around 400–450 MW net electricity with 90% carbon capture rate. Similar IGCC plants without CCS were presented as references. Future IGCC developments for energy vectors poly-generation were also presented. -- Highlights: ► Techno-economical evaluations of coal-based IGCC power generation with CCS. ► Model development for capital, O and M, CO 2 capture costs and cash flow estimations. ► Technical and economic investigations of key plant design characteristics. ► Evaluations of carbon capture options for IGCC power generation technology.

  6. The Impact of Conventional and Unconventional Monetary Policy on Investor Sentiment

    DEFF Research Database (Denmark)

    Lutz, Chandler

    2015-01-01

    This paper examines the relationship between monetary policy and investor sentiment across conventional and unconventional monetary policy regimes. During conventional times, we find that a surprise decrease in the fed funds rate leads to a large increase in investor sentiment. Similarly, when...... the fed funds rate is at its zero lower bound, research results indicate that expansionary unconventional monetary policy shocks also have a large and positive impact on investor mood. Together, our findings highlight the importance of both conventional and unconventional monetary policy...... in the determination of investor sentiment....

  7. CCS - and its relationship to net theory

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1987-01-01

    In this paper we give a short introduction to Milner's Calculus for Communicating Systems - a paradigm for concurrent computation. We put special emphasis on the basic concepts and tools from the underlying "algebraic approach", and their relationship to the approach to concurrency within net the...... theory. Furthermore, we provide an operational version of the language CCS with "true concurrency" in the sense of net theory, and a discussion of the possible use of such a marriage of the two theories of concurrency....

  8. Managing and understanding risk perception of surface leaks from CCS sites: risk assessment for emerging technologies and low-probability, high-consequence events

    Science.gov (United States)

    Augustin, C. M.

    2015-12-01

    Carbon capture and storage (CCS) has been suggested by the Intergovernmental Panel on Climate Change as a partial solution to the greenhouse gas emissions problem. As CCS has become mainstream, researchers have raised multiple risk assessment issues typical of emerging technologies. In our research, we examine issues occuring when stored carbon dioxide (CO2) migrates to the near-surface or surface. We believe that both the public misperception and the physical reality of potential environmental, health, and commercial impacts of leak events from such subsurface sites have prevented widespread adoption of CCS. This paper is presented in three parts; the first is an evaluation of the systemic risk of a CCS site CO2 leak and models indicating potential likelihood of a leakage event. As the likelihood of a CCS site leak is stochastic and nonlinear, we present several Bayesian simulations for leak events based on research done with other low-probability, high-consequence gaseous pollutant releases. Though we found a large, acute leak to be exceptionally rare, we demonstrate potential for a localized, chronic leak at a CCS site. To that end, we present the second piece of this paper. Using a combination of spatio-temporal models and reaction-path models, we demonstrate the interplay between leak migrations, material interactions, and atmospheric dispersion for leaks of various duration and volume. These leak-event scenarios have implications for human, environmental, and economic health; they also have a significant impact on implementation support. Public acceptance of CCS is essential for a national low-carbon future, and this is what we address in the final part of this paper. We demonstrate that CCS remains unknown to the general public in the United States. Despite its unknown state, we provide survey findings -analyzed in Slovic and Weber's 2002 framework - that show a high unknown, high dread risk perception of leaks from a CCS site. Secondary findings are a

  9. Impossibility results for the equational theory of timed CCS

    NARCIS (Netherlands)

    Aceto, L.; Ingólfsdóttir, A.; Mousavi, M.; Mossakowski, T.; Montanari, U.; Haveraaen, M.

    2007-01-01

    We study the equational theory of Timed CCS as proposed by Wang Yi in CONCUR’90. Common to Wang Yi’s paper, we particularly focus on a class of linearly-ordered time domains exemplified by the positive real or rational numbers. We show that, even when the set of basic actions is a singleton, there

  10. Geology and assessment of unconventional resources of Phitsanulok Basin, Thailand

    Science.gov (United States)

    ,

    2014-01-01

    The U.S. Geological Survey (USGS) quantitatively assessed the potential for unconventional oil and gas resources within the Phitsanulok Basin of Thailand. Unconventional resources for the USGS include shale gas, shale oil, tight gas, tight oil, and coalbed gas. In the Phitsanulok Basin, only potential shale-oil and shale-gas resources were quantitatively assessed.

  11. How unconventional gas prospers without tax incentives

    International Nuclear Information System (INIS)

    Kuuskraa, V.A.; Stevens, S.H.

    1995-01-01

    It was widely believed that the development of unconventional natural gas (coalbed methane, gas shales, and tight gas) would die once US Sec. 29 credits stopped. Quieter voices countered, and hoped, that technology advances would keep these large but difficult to produce gas resources alive and maybe even healthy. Sec. 29 tax credits for new unconventional gas development stopped at the end of 1992. Now, nearly three years later, who was right and what has happened? There is no doubt that Sec. 29 tax credits stimulated the development of coalbed methane, gas shales, and tight gas. What is less known is that the tax credits helped spawn and push into use an entire new set of exploration, completion, and production technologies founded on improved understanding of unconventional gas reservoirs. As set forth below, while the incentives inherent in Sec. 29 provided the spark, it has been the base of science and technology that has maintained the vitality of these gas sources. The paper discusses the current status; resource development; technology; unusual production, proven reserves, and well completions if coalbed methane, gas shales, and tight gas; and international aspects

  12. Unconventional superfluids of fermionic polar molecules in a bilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Boudjemâa, Abdelâali, E-mail: a.boudjemaa@univhb-chlef.dz

    2017-05-25

    We study unconventional superfluids of fermionic polar molecules in a two-dimensional bilayer system with dipoles are head-to-tail across the layers. We analyze the critical temperature of several unconventional pairings as a function of different system parameters. The peculiar competition between the d- and the s-wave pairings is discussed. We show that the experimental observation of such unconventional superfluids requires ultralow temperatures, which opens up new possibilities to realize several topological phases. - Highlights: • Investigation of novel superfluids of fermionic polar molecules in a bilayer geometry. • Solving the gap equation and the l-wave interlayer scattering problem. • Calculation of the critical temperature of several competing pairings using the BCS approach.

  13. Reducing the energy penalty costs of postcombustion CCS systems with amine-storage.

    Science.gov (United States)

    Patiño-Echeverri, Dalia; Hoppock, David C

    2012-01-17

    Carbon capture and storage (CCS) can significantly reduce the amount of CO(2) emitted from coal-fired power plants but its operation significantly reduces the plant's net electrical output and decreases profits, especially during times of high electricity prices. An amine-based CCS system can be modified adding amine-storage to allow postponing 92% of all its energy consumption to times of lower electricity prices, and in this way has the potential to effectively reduce the cost of CO(2) capture by reducing the costs of the forgone electricity sales. However adding amine-storage to a CCS system implies a significant capital cost that will be outweighed by the price-arbitrage revenue only if the difference between low and high electricity prices is substantial. In this paper we find a threshold for the variability in electricity prices that make the benefits from electricity price arbitrage outweigh the capital costs of amine-storage. We then look at wholesale electricity markets in the Eastern Interconnect of the United States to determine profitability of amine-storage systems in this region. Using hourly electricity price data from years 2007 and 2008 we find that amine storage may be cost-effective in areas with high price variability.

  14. V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.

    Science.gov (United States)

    Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae

    2018-02-01

    Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.

  15. A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis.

    Science.gov (United States)

    Rho, Seung Bae; Park, Young Gyo; Park, Kyoungsook; Lee, Seung-Hoon; Lee, Je-Ho

    2006-07-24

    Promyelocytic leukemia zinc finger protein (PLZF) is a sequence-specific, DNA binding, transcriptional repressor differentially expressed during embryogenesis and in adult tissues. PLZF is known to be a negative regulator of cell cycle progression. We used PLZF as bait in a yeast two-hybrid screen with a cDNA library from the human ovary tissue. A novel cervical cancer suppressor 3 (CCS-3) was identified as a PLZF interacting partner. Further characterization revealed the BTB domain as an interacting domain of PLZF. Interaction of CCS-3 with PLZF in mammalian cells was also confirmed by co-immunoprecipitation and in vitro binding assays. It was found that, although CCS-3 shares similar homology with eEF1A, the study determined CCS-3 to be an isoform. CCS-3 was observed to be downregulated in human cervical cell lines as well as in cervical tumors when compared to those from normal tissues. Overexpression of CCS-3 in human cervical cell lines inhibits cell growth by inducing apoptosis and suppressing human cyclin A2 promoter activity. These combined results suggest that the potential tumor suppressor activity of CCS-3 may be mediated by its interaction with PLZF.

  16. CCS Observations of the Protostellar Envelope of B335

    Science.gov (United States)

    Velusamy, T.; Kuiper, T. B. H.; Langer, W. D.

    1995-01-01

    Knowledge of the density, velocity and chemical profiles around protostars is of fundamental importance for testing dynamical models of protostar evolution and understanding the nature of the material falling onto circumstellar disks. Presented are single dish and interferometric spectral line observations of CCS towards the core of B335, a classic example of a young, low mass stellar object.

  17. Scenario for large-scale implementation of CCS in Europe

    NARCIS (Netherlands)

    Wildenborg, T.; Coussy, P.; Doukelis, A.; Ekström, C.; Georgiou, G.; Gkountanis, S.; Kramers, L.; Kuip, M. van der; Lindeberg, E.; Nordbø, Ø.; Serbutoviez, S.; Simonsson, D.

    2009-01-01

    In the CASTOR project funded by the EU and industry the emission reduction target for CO2 Capture and Storage (CCS) was set at 30% of the CO2 emissions from power plants in Europe, which is to be achieved during the first half of this century. The developed scenario shows that this target can be

  18. Characterization of unconventional gas play in the lower Beluga

    Energy Technology Data Exchange (ETDEWEB)

    Gorney, David [Marathon Oil Company (United States); Jetubu, Segun; Li, Weidong; Del Cairo, Rolando; Woods, James; Manuel, Ela [Baker Hughes (United States)

    2011-07-01

    Since the 1950's, the Cook Inlet basin, situated in Alaska, has been an important oil and gas provider to the state; the Beluga formation, located within the Cook Inlet basin, is an unconventional gas play. NMR measurements have been conducted in the Beluga formation and results were found to differ from the conventional predicted pressure and temperature model. The aim of this paper is to provide insights and results on the use of NMR in unconventional low pressure hydrocarbon formations. Experiments were carried out in the reservoir sands of Ninilchik at depths of 1500 to 3200 feet. Results showed that there is a need for combined petrophysics and petrofacies interpretation and that uncertainty can be lowered using MagTrak NMR data. This paper provided useful information on the use of NMR in unconventional low pressure hydrocarbon formations.

  19. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.

    Science.gov (United States)

    McGlade, Christophe; Ekins, Paul

    2015-01-08

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  20. From Explicit to Symbolic Types for Communication Protocols in CCS

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming; Kreiker, Jörg

    2012-01-01

    We study communication protocols having several rounds and expressed in value passing CCS. We develop a type-based analysis for providing an explicit record of all communications and show the usual subject reduction result. Since the explicit records can be infinitely large, we also develop a type...

  1. The equational theory of prebisimilarity over basic CCS with divergence

    NARCIS (Netherlands)

    Aceto, L.; Capobianco, S.; Ingólfsdóttir, A.; Luttik, B.

    2008-01-01

    This paper studies the equational theory of prebisimilarity, a bisimulation-based preorder introduced by Hennessy and Milner in the early 1980s, over basic CCS with the divergent process O. It is well known that prebisimilarity affords a finite ground-complete axiomatization over this language; this

  2. Passive seismic monitoring at the ketzin CCS site -Magnitude estimation

    NARCIS (Netherlands)

    Paap, B.F.; Steeghs, T.P.H.

    2014-01-01

    In order to allow quantification of the strength of local micro-seismic events recorded at the CCS pilot site in Ketzin in terms of local magnitude, earthquake data recorded by standardized seismometers were used. Earthquakes were selected that occurred in Poland and Czech Republic and that were

  3. Second Generation CO2 FEP Analysis: CASSIF - Carbon Storage Scenario Identification Framework

    NARCIS (Netherlands)

    Yavuz, F.; Tilburg, T. van; David, P.; Spruijt, M.; Wildenborg, T.

    2009-01-01

    Carbon dioxide Capture and Storage (CCS) is a promising contribution to reduce further increase of atmospheric CO2 emissions from fossil fuels. The CCS concept anticipates that large amounts of CO2 are going to be stored in the subsurface for the long term. Since CCS is a rather new technology,

  4. [Assessment of Couples' Communication in Patients with Advanced Cancer: Validation of a German Version of the Couple Communication Scale (CCS)].

    Science.gov (United States)

    Conrad, Martina; Engelmann, Dorit; Friedrich, Michael; Scheffold, Katharina; Philipp, Rebecca; Schulz-Kindermann, Frank; Härter, Martin; Mehnert, Anja; Koranyi, Susan

    2018-04-13

    There are only a few valid instruments measuring couples' communication in patients with cancer for German speaking countries. The Couple Communication Scale (CCS) represents an established instrument to assess couples' communication. However, there is no evidence regarding the psychometric properties of the German version of the CCS until now and the assumed one factor structure of the CCS was not verified for patients with advanced cancer yet. The CCS was validated as a part of the study "Managing cancer and living meaningfully" (CALM) on N=136 patients with advanced cancer (≥18 years, UICC-state III/IV). The psychometric properties of the scale were calculated (factor reliability, item reliability, average variance extracted [DEV]) and a confirmatory factor analysis was conducted (Maximum Likelihood Estimation). The concurrent validity was tested against symptoms of anxiety (GAD-7), depression (BDI-II) and attachment insecurity (ECR-M16). In the confirmatory factor analysis, the one factor structure showed a low, but acceptable model fit and explained on average 49% of every item's variance (DEV). The CCS has an excellent internal consistency (Cronbachs α=0,91) and was negatively associated with attachment insecurity (ECR-M16: anxiety: r=- 0,55, pCCS is a reliable and valid instrument measuring couples' communication in patients with advanced cancer. © Georg Thieme Verlag KG Stuttgart · New York.

  5. CCS and climate change research in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M. [Regina Univ., SK (Canada)

    2009-07-01

    This presentation highlighted recent research activity in Canada regarding climate change and carbon capture and sequestration (CCS). The Canadian government has allocated 1 billion for research, demonstration and small scale renewable energy technology. The government of Alberta has allocated 2 billion for the following 3 projects in Alberta: (1) the Enhance/Northwest project for the Alberta Carbon Trunk line will incorporate gasification, carbon dioxide capture from the Agrium fertilizer plant and Northwest Upgrader, enhanced oil recovery and carbon storage in Alberta, (2) the Epcor/Enbridge project involves an integrated gasification combined-cycle carbon capture power generation facility adjacent to Epcor's existing Genessee power plant, west of Edmonton, and (3) the Shell Canada Energy/Chevron Canada/Marathon Oil Sands project will integrate carbon capture and storage at Alberta's Scotford upgrader. Regulations are under development in Alberta for a technology development fund. Research efforts in Saskatchewan have included the creation of the International Performance Assessment Centre for the Geologic Storage of Carbon Dioxide (ITC IPAC-CO2) at the University of Regina; the Petroleum Technology Research Centre's Aquistore project which will capture 600 tonnes of carbon dioxide per day from refineries; and SaskPower's Boundary Dam 3. The $10 carbon tax which was implemented in 2008 in the province of British Columbia will escalate to $30 by 2012. The province of Nova Scotia has created a new centre to study CCS. figs.

  6. Fossil Explorers

    Science.gov (United States)

    Moran, Sean; McLaughlin, Cheryl; MacFadden, Bruce; Jacobbe, Elizabeth; Poole, Michael

    2015-01-01

    Many young learners are fascinated with fossils, particularly charismatic forms such as dinosaurs and giant sharks. Fossils provide tangible, objective evidence of life that lived millions of years ago. They also provide a timescale of evolution not typically appreciated by young learners. Fossils and the science of paleontology can, therefore,…

  7. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Lilliestam, Johan; Bielicki, Jeffrey M.; Patt, Anthony G.

    2012-01-01

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO 2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  8. A novel, simple scale for assessing the symptom severity of atrial fibrillation at the bedside: the CCS-SAF scale.

    Science.gov (United States)

    Dorian, Paul; Cvitkovic, Suzan S; Kerr, Charles R; Crystal, Eugene; Gillis, Anne M; Guerra, Peter G; Mitchell, L Brent; Roy, Denis; Skanes, Allan C; Wyse, D George

    2006-04-01

    The severity of symptoms caused by atrial fibrillation (AF) is extremely variable. Quantifying the effect of AF on patient well-being is important but there is no simple, commonly accepted measure of the effect of AF on quality of life (QoL). Current QoL measures are cumbersome and impractical for clinical use. To create a simple, concise and readily usable AF severity score to facilitate treatment decisions and physician communication. The Canadian Cardiovascular Society (CCS) Severity of Atrial Fibrillation (SAF) Scale is analogous to the CCS Angina Functional Class. The CCS-SAF score is determined using three steps: documentation of possible AF-related symptoms (palpitations, dyspnea, dizziness/syncope, chest pain, weakness/fatigue); determination of symptom-rhythm correlation; and assessment of the effect of these symptoms on patient daily function and QoL. CCS-SAF scores range from 0 (asymptomatic) to 4 (severe impact of symptoms on QoL and activities of daily living). Patients are also categorized by type of AF (paroxysmal versus persistent/permanent). The CCS-SAF Scale will be validated using accepted measures of patient-perceived severity of symptoms and impairment of QoL and will require 'field testing' to ensure its applicability and reproducibility in the clinical setting. This type of symptom severity scale, like the New York Heart Association Functional Class for heart failure symptoms and the CCS Functional Class for angina symptoms, trades precision and comprehensiveness for simplicity and ease of use at the bedside. A common language to quantify AF severity may help to improve patient care.

  9. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    Science.gov (United States)

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  10. Unconventional liquid metal cooled fast reactors

    International Nuclear Information System (INIS)

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  11. Competence-based and integrity-based trust as predictors of acceptance of carbon dioxide capture and storage (CCS).

    Science.gov (United States)

    Terwel, Bart W; Harinck, Fieke; Ellemers, Naomi; Daamen, Dancker D L

    2009-08-01

    Public trust in organizations that are involved in the management and use of new technologies affects lay judgments about the risks and benefits associated with these technologies. In turn, judgments about risks and benefits influence lay attitudes toward these technologies. The validity of this (indirect) effect of trust on lay attitudes toward new technologies, which is referred to as the causal chain account of trust, has up till now only been examined in correlational research. The two studies reported in this article used an experimental approach to more specifically test the causal chain account of trust in the context of carbon dioxide capture and storage technology (CCS). Complementing existing literature, the current studies explicitly distinguished between two different types of trust in organizations: competence-based trust (Study 1) and integrity-based trust (Study 2). In line with predictions, results showed that the organizational position regarding CCS implementation (pro versus con) more strongly affected people's risk and benefit perceptions and their subsequent acceptance of CCS when competence-based trust was high rather than low. In contrast, the organizational position had a greater impact on people's level of CCS acceptance when integrity-based trust was low rather than high.

  12. Unconventional superconductivity in Sr{sub 2}RuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Department of Physics and Materials Research Institute, Pennsylvania State University, University Park, PA 16802 (United States); Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China); Mao, Zhi-Qiang [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States)

    2015-07-15

    Highlights: • Constraints on and experimental support to unconventional superconductivity in Sr{sub 2}RuO{sub 4}. • Phase-sensitive determination of the pairing symmetry in Sr{sub 2}RuO{sub 4}. • Response of superconductivity to mechanical perturbations. • Superconductivity in non-bulk Sr{sub 2}RuO{sub 4}. • Unresolved issues and outlook in Sr{sub 2}RuO{sub 4} research. - Abstract: Sr{sub 2}RuO{sub 4}, featuring a layered perovskite crystalline and quasi-two-dimensional electronic structure, was first synthesized in 1959. Unconventional, p-wave pairing was predicted for Sr{sub 2}RuO{sub 4} by Rice and Sigrist and Baskaran shortly after superconductivity in this material was discovered in 1994. Experimental evidence for unconventional superconductivity in Sr{sub 2}RuO{sub 4} has been accumulating in the past two decades and reviewed previously. In this article, we will first discuss constraints on the pairing symmetry of superconductivity in Sr{sub 2}RuO{sub 4} and summarize experimental evidence supporting the unconventional pairing symmetry in this material. We will then present several aspects of the experimental determination of the unconventional superconductivity in Sr{sub 2}RuO{sub 4} in some detail. In particular, we will discuss the phase-sensitive measurements that have played an important role in the determination of the pairing symmetry in Sr{sub 2}RuO{sub 4}. The responses of superconductivity to the mechanical perturbations and their implications on the mechanism of superconductivity will be discussed. A brief survey of various non-bulk Sr{sub 2}RuO{sub 4} will also be included to illustrate the many unusual features resulted from the unconventional nature of superconductivity in this material system. Finally, we will discuss some outstanding unresolved issues on Sr{sub 2}RuO{sub 4} and provide an outlook of the future work on Sr{sub 2}RuO{sub 4}.

  13. CCS acceptability: social site characterization and advancing awareness at prospective storage sites in Poland and Scotland

    International Nuclear Information System (INIS)

    Brunsting, Suzanne; Mastop, Jessanne; Kaiser, Marta; Zimmer, Rene; Shackley, Simon; Mabon, Leslie; Howell, Rhys

    2015-01-01

    This paper summarizes the work on the social dimension conducted within the EU FP7 SiteChar project. The most important aim of the research was to advance public awareness and draw lessons for successful public engagement activities when developing a CO 2 storage permit application. To this end, social site characterization (e.g. representative surveys) and public participation activities (focus conference) were conducted at two prospective Carbon Capture and Storage (CCS) sites: an onshore site in Poland and an offshore site in Scotland. The research consisted of four steps over a time period of 1.5 year, from early 2011 to mid-2012. The first step consisted of four related qualitative and quantitative research activities to provide a social characterization of the areas: desk research, stakeholder interviews, media analyses, and a survey among representative samples of the local community. The aim was to identify: - stakeholders or interested parties; - factors that may drive their perceptions of and attitudes towards CCS. Results were used to as input for the second step, in which a new format for public engagement named 'focus conferences' was tested at both sites involving a small sample of the local community. The third step consisted of making available generic as well as site-specific information to the general and local public, by: - setting up a bilingual set of information pages on the project web site suitable for a lay audience; - organizing information meetings at both sites that were open to all who took interest. The fourth step consisted of a second survey among a new representative sample of the local community. The survey was largely identical to the survey in step 1 to enable the monitoring of changes in awareness, knowledge and opinions over time. Results provide insight in the way local CCS plans may be perceived by the local stakeholders, how this can be reliably assessed at early stage without raising unnecessary concerns, and how

  14. Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies

    International Nuclear Information System (INIS)

    Viebahn, Peter; Daniel, Vallentin; Samuel, Höller

    2012-01-01

    Highlights: ► In this study an integrated approach is chosen for the assessment of CCS in Germany. ► Five different assessment dimensions are covered. ► A Conservative storage capacity assessment for Germany is done. ► There might be no need to focus on CCS in the power plant sector in Germany. ► We see a potential field of CCS for industrial processes and biomass applications. -- Abstract: If the current energy policy priorities are retained, there may be no need to focus additionally on carbon capture and storage (CCS) in the power plant sector of Germany. This applies even in the case of ambitious climate protection targets, according to the results of the presented integrated assessment study. These cover a variety of aspects: Firstly, the technology is not expected to become available on a large scale in Germany before 2025. Secondly, if renewable energies and combined heat and power are expanded further and energy productivity is enhanced, there is likely to be only a limited demand for CCS power plants, as a scenario analysis of CCS deployment in Germany shows. Thirdly, cost analysis using the learning curve approach shows that the electricity generation costs of renewable electricity approach those of CCS power plants. This leads to the consequence that, from 2020, several renewable technologies may well be in a position to offer electricity at a cheaper rate than CCS power plants. In addition, a review of new life cycle assessments for CO 2 separation in the power plant sector indicates that the greenhouse gas emissions from 1 kW h of electricity generated by first-generation CCS power plants could only be reduced by 68% to 87% (95% in individual cases). Finally, a cautious, conservative estimate of the effective German CO 2 storage capacity of approximately 5 billion tonnes of CO 2 is calculated, including a fluctuation range yielding values between 4 and 15 billion tonnes of CO 2 . Therefore, the total CO 2 emissions caused by large point

  15. The health implications of unconventional natural gas development in Pennsylvania.

    Science.gov (United States)

    Peng, Lizhong; Meyerhoefer, Chad; Chou, Shin-Yi

    2018-06-01

    We investigate the health impacts of unconventional natural gas development of Marcellus shale in Pennsylvania between 2001 and 2013 by merging well permit data from the Pennsylvania Department of Environmental Protection with a database of all inpatient hospital admissions. After comparing changes in hospitalization rates over time for air pollution-sensitive diseases in counties with unconventional gas wells to changes in hospitalization rates in nonwell counties, we find a significant association between shale gas development and hospitalizations for pneumonia among the elderly, which is consistent with higher levels of air pollution resulting from unconventional natural gas development. We note that the lack of any detectable impact of shale gas development on younger populations may be due to unobserved factors contemporaneous with drilling, such as migration. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Why are small scale demonstration projects important for the future of CCS?

    Science.gov (United States)

    Leetaru, H. E.; Bauer, R. A.; McBride, J. H.; Freiburg, J. T.; Greenberg, S. E.

    2017-12-01

    Carbon Capture and Storage (CCS) is moving toward large-scale commercial projects and the U.S. Department of Energy is supporting a new CarbonSAFE initiative to assist in the development of a 50 million tonnes geologic storage project. This type of large commercial CCS project will rely on lessons learned from smaller DOE CCS projects such as the Illinois Basin-Decatur Project (IBDP) and the Illinois Industrial Carbon Capture and Storage (IL-ICCS) Project located one mile north of IBDP. Over a three year period ending 2014 IBDP injected almost one million tonnes of CO2 into the Mt. Simon Sandstone, and the IL-ICCS project which commenced injection in 2017 will inject another four million tonnes over a four year period. The IBDP has recorded microseismic events within the study area through continuous downhole seismic monitoring before, during, and after injection. Monitoring shows that microseismicity increased during injection and originate not only in the Cambrian Mt. Simon Sandstone (the target reservoir), but also in the underlying Argenta clastics and deeper Precambrian igneous rocks as SW-NE elongate clusters aligned in strike to the maximum in situ stress direction. An interpretation of site 3D seismic reflection data suggests that much of the microseismicity is proximal to interpreted faults that extend from the basement up into the lowermost Mt. Simon strata. The faults proximally associated with microseismic activity are oriented parallel with respect to the maximum stress direction. The seismic monitoring of the IBDP indicate that the assessment of induced seismic potential associated with commercial-scale CCS requires not only identification of a suitable reservoir and its petrophysical characteristics, but also the extent and orientation of existing faults and their relation to regional stress orientation. Assessment of regional fault orientation using 3D seismic reflection data can be extremely useful to understanding the risks of induced seismicity

  17. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    Science.gov (United States)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  18. IMPACT OF UNCONVENTIONAL ADVERTISING ON PERFORMANCE OF CULTURAL INSTITUTIONS IN CITY OF OSIJEK

    OpenAIRE

    Iva Buljabasic

    2015-01-01

    In time of crises, some cultural institutions in city of Osijek are having difficulties with attracting the audience, so they decided to go along with unconventional advertising methods. Cultural institutions and unconventional advertising are compound of old and new ways of acting. The main goal of this paper is to explain how unconventional advertising impacts on performance of cultural institutions in city of Osijek. The question is can cultural institutions in city of Osijek that for year...

  19. Conflicts over carbon capture and storage in international climate governance

    International Nuclear Information System (INIS)

    Krüger, Timmo

    2017-01-01

    In the Paris Agreement, ambitious emission targets are accompanied by insufficient mitigation measures. It lacks, in particular, strategies on how to reduce the use of fossil fuels. In this context the distinctive prospect of carbon capture and storage (CCS) – reducing emissions, albeit using fossil fuels on a large scale – is of particular interest. CCS technologies promise to solve the climate problem independent of drawn-out political disputes and without changing production and consumption patterns. Conflicts about CCS put the fundamental debate on the agenda, whether a comprehensive transformation of social structures is (un-)necessary and (un-)desired in order to solve the ecological crisis. Therefore, in this paper CCS-conflicts are analyzed with a broader perspective including their effects on general struggles about international climate governance. The key research question is to what extent established social practices and structures become politicized – i.e. challenged. Based on the presented empirical findings, I discuss two theses: First, that the future of climate governance is contingent on decisions about the continued use of fossil fuels. Second, that CCS-conflicts have an explosive force that could lead to massive cracks within the paradigm of ecological modernization and thus could politicize international climate policy. - Highlights: • The negotiations about whether CCS should be included in the CDM are analyzed. • The characteristics of the paradigm of ecological modernization are elaborated. • CCS-conflicts are discussed in relation to the paradigm of ecological modernization. • The status quo of CCS’s political significance is assessed. • Possible re- and/or depoliticizing impacts of conflicts over CCS are considered.

  20. Joint IEA-OPEC workshop on CO2-enhanced oil recovery with CCS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The IEA and OPEC jointly organised a workshop to discuss CO2-EOR and its role in supporting the early demonstration of CCS. The workshop was hosted by Kuwait Petroleum Corporation, and held in Kuwait City on 7-8 February 2012. It brought together OPEC Member country experts and international CO2-EOR experts to discuss commercial, economic, technical, regulatory and policy aspects associated with the technology. Issues discussed include factors that can promote CO2-EOR ahead of ''pure'' CCS, barriers preventing uptake of the technology,and the range of policy interventions that could be employed to promote its use in OPEC Member countriesand other parts of the world. This report presents a synthesis of the discussions that took place, and lays the foundation for future analysis.

  1. Contaminant screening of wastewater with HPLC-IM-qTOF-MS and LC+LC-IM-qTOF-MS using a CCS database.

    Science.gov (United States)

    Stephan, Susanne; Hippler, Joerg; Köhler, Timo; Deeb, Ahmad A; Schmidt, Torsten C; Schmitz, Oliver J

    2016-09-01

    Non-target analysis has become an important tool in the field of water analysis since a broad variety of pollutants from different sources are released to the water cycle. For identification of compounds in such complex samples, liquid chromatography coupled to high resolution mass spectrometry are often used. The introduction of ion mobility spectrometry provides an additional separation dimension and allows determining collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 500 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. A non-target analysis of a wastewater sample was initially performed with high performance liquid chromatography (HPLC) coupled to an ion mobility-quadrupole-time of flight mass spectrometer (IM-qTOF-MS). A database search including exact mass (±5 ppm) and CCS (±1 %) delivered 22 different compounds. Furthermore, the same sample was analyzed with a two-dimensional LC method, called LC+LC, developed in our group for the coupling to IM-qTOF-MS. This four dimensional separation platform revealed 53 different compounds, identified over exact mass and CCS, in the examined wastewater sample. It is demonstrated that the CCS database can also help to distinguish between isobaric structures exemplified for cyclophosphamide and ifosfamide. Graphical Abstract Scheme of sample analysis and database screening.

  2. Fossil Crinoids

    Science.gov (United States)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  3. News Media Analysis of Carbon Capture and Storage and Biomass: Perceptions and Possibilities

    Directory of Open Access Journals (Sweden)

    Andrea M. Feldpausch-Parker

    2015-04-01

    Full Text Available In the US, carbon capture and storage (CCS has received most of its attention when coupled with the fossil fuel industry as a mitigation strategy for climate change. CCS, which is constituted as a broad suite of capture and sequestration technologies and techniques, does not preclude coupling with other energy industries such as bioenergy (bioenergy and CCS or BECCS. In this paper, we examined news media coverage of CCS and biomass individually in locations throughout the US where these technologies are being explored to determine how they are perceived and what possibilities lay in their coupling for climate change mitigation. From our analyses, we found that individually, both CCS and biomass are perceived generally as beneficial for energy development by the news media, though they are not often mentioned in combination. Combined references do, however, speak to their value for climate change mitigation and as an alternative to fossil fuels.

  4. Thermodynamic theory of dislocation-enabled plasticity

    International Nuclear Information System (INIS)

    Langer, J. S.

    2017-01-01

    The thermodynamic theory of dislocation-enabled plasticity is based on two unconventional hypotheses. The first of these is that a system of dislocations, driven by external forces and irreversibly exchanging heat with its environment, must be characterized by a thermodynamically defined effective temperature that is not the same as the ordinary temperature. The second hypothesis is that the overwhelmingly dominant mechanism controlling plastic deformation is thermally activated depinning of entangled pairs of dislocations. This paper consists of a systematic reformulation of this theory followed by examples of its use in analyses of experimentally observed phenomena including strain hardening, grain-size (Hall-Petch) effects, yielding transitions, and adiabatic shear banding.

  5. Conventional vs. unconventional enhanced (or engineered) geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dzebisashvili, K.; Breede, K.; Liu, X.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Enhanced (or Engineered) Geothermal Systems (EGS) have evolved from the Hot Dry Rock (HDR) concept, implemented for the first time at Fenton Hill in 1977, and subsequently through the Stimulated Geothermal System, the Deep Heat Mining and finally the Deep Earth Geothermal. All of these systems usually imply petro-thermal processes. The term EGS has evolved to include conduction dominated, low permeability resources in sedimentary and basement formations, as well as geopressured, magma, and low-grade, unproductive hydrothermal resources. Co-produced hot water from hydrocarbon wells has also been included by some in the definition of EGS, which constitutes a considerable divergence from the original concept. Four decades on from the first EGS implementation, this paper highlights the lessons learned from 'conventional' systems and contrasts the 'unconventional' solutions that have been proposed. Examples of unconventional EGS include single-well solutions, downhole heat exchangers, engineered well profiles and using circulation fluids other than water. Perhaps some of the ideas proposed in the past, which would be considered unconventional, have remained dormant or never made it to a commercial stage for field implementation, but they may yet open doors to the future generations of EGS. (orig.)

  6. Risks Associated with Unconventional Gas Extraction Projects. Induced Seismicity, NORM and Ecological Risks; Riesgos Asociados a los Proyectos de Extracción de Gas no Convencional. Sismicidad Inducida, NORM y Riesgos Ecológicos

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo-Naharro, J.; Hurtado, A.; Eguilior, S.; Recreo, F.

    2015-07-01

    The latest technological advances in hydraulic fracturing (fracking) and horizontal drilling are globally driving the commercial extraction of unconventional resources. Although there is still no commercial exploitation of these resources within the EU, the fact that there are potential reserves in some countries, such as Spain, stimulates the need of performing preliminary studies to define the characteristics that an unconventional gas extraction project should consider. The object of these features are the safety of the project, thus minimizing the probabilities of negative environmental impacts, and especially since there is not any EU Framework Directive focusing on the regulation of the operation of such fossil fuels. A project of this nature, involving natural systems, must start from the knowledge of these systems and from an assessment of its features in order to reach the environmental safety of the operations. Moreover, the implementation of risk management systems, along with the existence of an appropriate legislation and supervision are key elements in the development of unconventional gas extraction projects that are environmentally friendly. The present report includes, among the overall risks associated with such projects, those related to: i) the induced seismicity; ii) the Naturally-Occurring Radioactive Materials (NORM); and iii) the ecology.

  7. Unconventional power - a factor of reducing the pollution in Romania

    International Nuclear Information System (INIS)

    Terzi, P.

    1996-01-01

    The unconventional power generation includes all the activities related to the utilization and management of energy sources, facilities and equipment used to produce and distribute the power obtained through systems other than those based on burning of classical fissile fuels. By its very nature it is not pollutant. The renewable energies as the solar, wind, geothermal, tidal energies, etc, enter this category. As in the same category it is included the energy recovered from different industrial processes, usually associated with the treatment of organic residues or of refuse waters, the unconventional power generation is an important factor in ecological and environmental policy. The paper stresses also the beneficial accompanying actions which are associated with exploiting other unconventional energy sources. For instance, the tidal power exploitation implies also measures of protection of see shore regions from erosion and other forms of decay

  8. Unconventional funding of urban public transport

    NARCIS (Netherlands)

    Ubbels, B.J.; Nijkamp, P.

    2002-01-01

    In the past decade public authorities have developed a wealth of creative funding mechanisms to support transit systems. This paper offers a taxonomy of various unconventional funding mechanisms (i.e. outside the domain of charges for transit passengers or general taxation schemes), based on a

  9. On predicting quantal cross sections by interpolation: Surprisal analysis of j/sub z/CCS and statistical j/sub z/ results

    International Nuclear Information System (INIS)

    Goldflam, R.; Kouri, D.J.

    1976-01-01

    New methods for predicting the full matrix of integral cross sections are developed by combining the surprisal analysis of Bernstein and Levine with the j/sub z/-conserving coupled states method (j/sub z/CCS) of McGuire, Kouri, and Pack and with the statistical j/sub z/ approximation (Sj/sub z/) of Kouri, Shimoni, and Heil. A variety of approaches is possible and only three are studied in the present work. These are (a) a surprisal fit of the j=0→j' column of the j/sub z/CCS cross section matrix (thereby requiring only a solution of the lambda=0 set of j/sub z/CCS equations), (b) a surprisal fit of the lambda-bar=0 Sj/sub z/ cross section matrix (again requiring solution of the lambda=0 set of j/sub z/CCS equations only), and (c) a surprisal fit of a lambda-bar not equal to 0 Sj/sub z/ submatrix (involving input cross sections for j,j'> or =lambda-bar transitions only). The last approach requires the solution of the lambda=lambda-bar set of j/sub z/CCS equations only, which requires less computation effort than the effective potential method. We explore three different choices for the prior and two-parameter (i.e., linear) and three-parameter (i.e., parabolic) fits as applied to Ar--N 2 collisions. The results are in general very encouraging and for one choice of prior give results which are within 20% of the exact j/sub z/CCS results

  10. Unconventional Military Advising Mission Conducted by Conventional US Military Forces

    OpenAIRE

    Hajjar, Remi M.

    2016-01-01

    This article examines how and why many contemporary US mainstream military advisors—as compared to Special Forces advisors—often work from a position of disadvantage when conducting unconventional advising missions. Post-9/11 deployments to Iraq and Afghanistan have caused the US military to adapt to myriad complexities, including a renewed need for the widespread execution of the unconventional military advising mission by the Special Forces and conventional units. Although Special Forces ty...

  11. Effects of the EU law on the climate protection. On the implementation of the European guideline on carbon capture and storage (CCS) into German legislation; Auswirkungen des EU-Rechts auf den Klimaschutz. Zur Umsetzung der europaeischen Richtlinie zu Carbon Capture and Storage (CCS) in das deutsche Recht

    Energy Technology Data Exchange (ETDEWEB)

    Greb, Tobias [SammlerUsinger Rechtsanwaelte, Berlin (Germany)

    2014-07-01

    The contribution is covering the implementation of the European guideline on climate protection and carbon capture and storage (CCS) into German legislation. The CCS technology and special critical aspects concerning the CCS technology are described. The specific legal frame includes the facilities for carbon dioxide precipitation, carbon dioxide pipelines, and carbon dioxide storage sites. The legal drafts concerning CCD are discussed including commissioning, and conflicts of interest. The long-term responsibility including transfer of responsibilities and follow-up regulations are further problems with respect to the implementation into German legislation.

  12. CONTRIBUTIONS ON THE DESIGN OF UNCONVENTIONAL CORRUGATED BOARD STRUCTURES

    Directory of Open Access Journals (Sweden)

    NEIDONI Nadina

    2015-06-01

    Full Text Available The paper depicts a few contributions on the design of several unconventional corrugated board structures. In general, cardboard and corrugated cardboard is strongly linked to packaging. However, limiting these materials to their primary use does nothing else but to restrict the possibilities of using them in other interesting areas. Consequently, new structures built from cardboard have been imagined and in the paper there are presented a few unconventional uses of the corrugated fiberboard, namely as furniture elements, along with the technology used in the design and the manufacturing process.

  13. How may CCS technology affect the electricity market in North-Western Europe?

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Groenenberg, H.

    2008-11-01

    The EU electricity market is changing. Electricity demand in Europe is on the rise, the power plant fleet is aging, and a large share of the capacity will need to be replaced in the coming decades. An ambitious target has been formulated for the share of renewable energy, and CO2 prices are anticipated to increase. On top of this, CO2 Capture and Storage (CCS) has appeared as an important technology in the transition to a long term sustainable energy supply. This paper discusses the implications of all the fore-mentioned developments for the EU electricity market, with an emphasis on the Northwest European market. On the whole, electricity prices in the Northwestern part of Europe are anticipated to increase until 2020, but this may only partly be ascribed to the pending introduction of CCS

  14. Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands

    International Nuclear Information System (INIS)

    Olateju, Babatunde; Kumar, Amit

    2013-01-01

    Highlights: • Development of a techno-economic model for UCG-CCS and SMR-CCS. • Estimation of H 2 production costs with and without CCS for UCG and SMR. • UCG is more economical for H 2 production with CCS. • SMR is more cost efficient for H 2 production without CCS. • Cost competiveness is highly sensitive to the IRR differential between UCG and SMR. - Abstract: This paper examines the techno-economic viability of hydrogen production from underground coal gasification (UCG) in Western Canada, for the servicing of the oil sands bitumen upgrading industry. Hydrogen production for bitumen upgrading is predominantly achieved via steam methane reforming (SMR); which involves significant greenhouse gas (GHG) emissions along with considerable feedstock (natural gas) cost volatility. UCG is a formidable candidate for cost-competitive environmentally sustainable hydrogen production; given its negligible feedstock cost, the enormity of deep coal reserves in Western Canada and the favourable CO 2 sequestration characteristics of potential UCG sites in the Western Canadian sedimentary basin (WCSB). Techno-economic models were developed for UCG and SMR with and without CCS, to estimate the cost of hydrogen production including delivery to a bitumen upgrader. In this paper, at base case conditions, a 5% internal rate of return (IRR) differential between UCG and SMR was considered so as to account for the increased investment risk associated with UCG. The cost of UCG hydrogen production without CCS is estimated to be $1.78/kg of H 2 . With CCS, this increases to range of $2.11–$2.70/kg of H 2 , depending on the distance of the site for CO 2 sequestration from the UCG plant. The SMR hydrogen production cost without CCS is estimated to be $1.73/kg of H 2 . In similar fashion to UCG, this rises to a range of $2.14 to $2.41/kg of H 2 with the consideration of CCS. Lastly, for hydrogen production without CCS, UCG has a superior cost competitiveness in comparison to SMR

  15. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    Science.gov (United States)

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  16. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    Science.gov (United States)

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  17. Options for near-term phaseout of CO(2) emissions from coal use in the United States.

    Science.gov (United States)

    Kharecha, Pushker A; Kutscher, Charles F; Hansen, James E; Mazria, Edward

    2010-06-01

    The global climate problem becomes tractable if CO(2) emissions from coal use are phased out rapidly and emissions from unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology options for phasing out coal emissions in the United States by approximately 2030. We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO(2) in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. While we recognize that coal emissions must be phased out globally, we believe U.S. leadership is essential. A major challenge for reducing U.S. emissions is that coal provides the largest proportion of base load power, i.e., power satisfying minimum electricity demand. Because this demand is relatively constant and coal has a high carbon intensity, utility carbon emissions are largely due to coal. The current U.S. electric grid incorporates little renewable power, most of which is not base load power. However, this can readily be changed within the next 2-3 decades. Eliminating coal emissions also requires improved efficiency, a "smart grid", additional energy storage, and advanced nuclear power. Any further coal usage must be accompanied by carbon capture and storage (CCS). We suggest that near-term emphasis should be on efficiency measures and substitution of coal-fired power by renewables and third-generation nuclear plants, since these technologies have been successfully demonstrated at the relevant (commercial) scale. Beyond 2030, these measures can be supplemented by CCS at power plants and, as needed, successfully demonstrated fourth-generation reactors. We conclude that U.S. coal emissions could be phased out by 2030 using existing technologies or ones that could be commercially competitive with coal within about a decade. Elimination of fossil fuel subsidies and a substantial rising price on carbon emissions are the

  18. Developing and applying a methodology for the scientific classification of publications on carbon capture and storage (CCS); Entwicklung und Anwendung einer Methodik zur wissenschaftlichen Einordnung von Publikationen zum Thema Carbon Capture and Storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Tobias; Sommer, Karl Christoph; Martens, Per Nicolai [RWTH Aachen (Germany). Inst. fuer Bergbaukunde I

    2012-05-15

    This article describes the conception and application of a methodology to scientifically classify publications on the Carbon Capture and Storage (CCS) topic. The first part of the presented methodology contains an analysis of both the fundamental positioning of the individual stakeholders writing about the CCS topic as well as their individual argumentative focus. For this purpose, all theses, which the individually analyzed stakeholders have included in their publications, are ascertained, classified, weighted, and evaluated. The second part of the methodology contains the linguistic evaluation (terminology) as well as the subsequent comparison of the individual stakeholders' linguistic and content related positions in a graphic depiction. The evaluations indicate that the theses associated with CCS technology in the reviewed publications primarily emphasize the economic and social aspects. The scope of the presented theses varies whereby only the publications of seven of the 28 reviewed stakeholders could be identified as being primarily ''holistically'' oriented. In addition, it can be seen that there is an above average number of stakeholders with a primarily negative position on the CCS topic in publications with a social argumentative focus. Another noticeable relationship exists between an economic argumentation and a positive position on the CCS topic. The linguistic analysis of the publications provides - as was to be expected - a clear correlation of the selected terminology and the argumentative focus. Stakeholders with a primarily negative argumentative focus tend to use therms with a negative connotation. The presented methodology can also be used in similar form in other controversially debated sectors. In principle, it is possible to also transfer this methodology to other topics outside the energy sector. It is, thus, possible to apply this method to any controversially debated topic for which a sufficiently large number of

  19. A review on hydraulic fracturing of unconventional reservoir

    Directory of Open Access Journals (Sweden)

    Quanshu Li

    2015-03-01

    Full Text Available Hydraulic fracturing is widely accepted and applied to improve the gas recovery in unconventional reservoirs. Unconventional reservoirs to be addressed here are with very low permeability, complicated geological settings and in-situ stress field etc. All of these make the hydraulic fracturing process a challenging task. In order to effectively and economically recover gas from such reservoirs, the initiation and propagation of hydraulic fracturing in the heterogeneous fractured/porous media under such complicated conditions should be mastered. In this paper, some issues related to hydraulic fracturing have been reviewed, including the experimental study, field study and numerical simulation. Finally the existing problems that need to be solved on the subject of hydraulic fracturing have been proposed.

  20. Techno-economic analysis of integrated onshore and offshore UCG-CCS systems to produce electricity, SNG and urea

    Science.gov (United States)

    Nakaten, Natalie; Kapusta, Krzysztof; Burchart-Korol, Dorota; Kempka, Thomas

    2017-04-01

    Underground coal gasification (UCG) enables the utilization of coal reserves that are economically not exploitable because of complex geological boundary conditions. In the present study, we investigate site-specific commercial-scale onshore and offshore UCG-systems combined with carbon capture and storage (CCS) in line with electricity, synthetic natural gas (SNG) and fertilizer (urea) production based on data of in-situ trail undertaken at the Wieczorek coal mine (Silesian Basin, Poland) [1] and ex-situ tests on different Polish coals. Hereby, techno-economic modeling approaches according to Kempka et al. [2] and Nakaten et al. [3] have been applied to determine onshore and offshore levelized end-use product costs as well as cost bandwidths resulting from economical, technical and geological uncertainties. Our analysis results show that the investigated onshore UCG end-use options are by 3 % (SNG), 27 % (electricity) and 47 % (urea) lower than the according market prices, and thus competitive on the Polish energy market. However, due to high costs for the offshore platform and the related infrastructure, offshore UCG end-use products are not economic in view of the EU raw materials and energy market. For UCG-CCS systems, a relevant approach to decrease production costs is a precise management of the oxidizer composition: an oxygen ratio below 30 % by volume and a high UCG-to-syngas conversion efficiency favor the economics of electricity and SNG production, whereby cost-effective urea production under the given boundary conditions is characterized by high CO2 and H2 ratios in the synthesis gas composition. As drilling costs have a limited share on total levelized production costs of 3 % in maximum, uncertainties related to model input parameters affected by drilling costs, e.g., UCG reactor width, are negligible. From our techno-economic modeling results, we conclude that competitiveness of the investigated onshore UCG-CCS end-use options will be even more

  1. Benefits of coal-fired power generation with flexible CCS in a future northwest European power system with large scale wind power

    NARCIS (Netherlands)

    Van der Wijk, Pieter Cornelis; Brouwer, Anne Sjoerd|info:eu-repo/dai/nl/330822748; Van den Broek, Machteld|info:eu-repo/dai/nl/092946895; Slot, Thijs; Stienstra, Gerard; Van der Veen, Wim; Faaij, André P C

    Coal-fired power generation with carbon capture and storage (CCS) is projected as a cost-effective technology to decarbonize the power sector. Intermittent renewables could reduce its load factor and revenues, so flexible capture unit operation strategies (flexible CCS) have been suggested to

  2. The Fossile Episode

    OpenAIRE

    Hassler, John; Sinn, Hans-Werner

    2012-01-01

    We build a two-sector dynamic general equilibrium model with one-sided substitutability between fossil carbon and biocarbon. One shock only, the discovery of the technology to use fossil fuels, leads to a transition from an inital pre-industrial phase to three following phases: a pure fossil carbon phase, a mixed fossil and biocarbon phase and an absorbing biocarbon phase. The increased competition for biocarbon during phase 3 and 4 leads to increasing food prices. We provide closed form expr...

  3. The Fossil Episode

    OpenAIRE

    John Hassler; Hans-Werner Sinn

    2012-01-01

    We build a two-sector dynamic general equilibrium model with one-sided substitutability between fossil carbon and biocarbon. One shock only, the discovery of the technology to use fossil fuels, leads to a transition from an initial pre-industrial phase to three following phases: a pure fossil carbon phase, a mixed fossil and biocarbon phase and an absorbing biocarbon phase. The increased competition for biocarbon during phase 3 and 4 leads to increasing food prices. We provide closed form exp...

  4. USU Alternative and Unconventional Energy Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Behunin, Robert [Utah State Univ., Logan, UT (United States); Wood, Byard [Utah State Univ., Logan, UT (United States); Heaslip, Kevin [Utah State Univ., Logan, UT (United States); Zane, Regan [Utah State Univ., Logan, UT (United States); Lyman, Seth [Utah State Univ., Logan, UT (United States); Simmons, Randy [Utah State Univ., Logan, UT (United States); Christensen, David [Utah State Univ., Logan, UT (United States)

    2014-01-29

    and is poised to quickly become a multi-million dollar company with clients around the globe. Moreover, USU students and researchers alike are now on the leading edge of the electrified transportation workforce. Finally, the legacy of this DOE investment in electric transportation is continuing at USU with the formation in progress of an industry sponsored research center built around the Electric Roadway and Vehicle (EVR) research facility and test track (http://evr.usu.edu). The research conducted in unconventional energy environmental monitoring and beneficial reuse technologies experienced broad success developing experimental and modeling tools and implementing those tools to better understand environmental impacts of industrial processes used in unconventional energy development in the Utah’s Uintah Basin. Before this project began the USU Uintah Basin branch campus had minimal capability to perform this regionally critical environmental research. This research investment enabled monitoring and modeling equipment and expertise to assess impacts of energy development to all aspects of environmental quality. Laboratory capability for environmental analysis has been developed and engaged along with field testing at multiple locations. Successful campaigns to measure greenhouse gas and hydrocarbon emissions from produced water surface impoundments and leakage from subsurface oil and gas infrastructure were executed. A computer model of meteorological conditions during winter inversion episodes was created, and commercialization efforts are underway for those models. Finally, in the past 24 months, nearly $2 million in non- DOE external funding from state, local, federal and private entities has been awarded to USU Uintah Basin to continue and add to work and capability established by this task. The preceding examples represent a few highlights resulting from the USU Alternative and Unconventional Energy Research and Development project. The following report

  5. Small multiplicity events in e+ + e- → Z0 and unconventional phenomena

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-12-01

    Events with two-, four- or six-charged particles and no photons produced through the process e + + e - → Z 0 provide an opportunity to search for unconventional phenomena at the SLC and LEP electron-positron colliders. Examples of unconventional processes are compared with the expected background from electromagnetic processes and from charged lepton pair production

  6. CCS-MIP: Low cost Customizable Control Centre

    Science.gov (United States)

    Labezin, Christian; Vielcanet, Pierre

    1994-01-01

    The positioning and station keeping of French national satellites are among the main missions of CNES French Space Agency CNES. The related experience and skills of the Toulouse Space Centre are reknown and often required at international level for a wide range of missions. CISI, a software engineering company, has been contributing during the last 20 years to the development of the French space programs, particularly in the field of space missions ground control segments. The CCS-MIP system, presented here, is a satellite positioning and station-keeping system designed to answer the CNES multi-mission needs, easily adaptable for a wide range of applications.

  7. Uranium concentration in fossils

    International Nuclear Information System (INIS)

    Okano, J.; Uyeda, C.

    1988-01-01

    Recently it is known that fossil bones tend to accumulate uranium. The uranium concentration, C u in fossils has been measured so far by γ ray spectroscopy or by fission track method. The authors applied secondary ion mass spectrometry, SIMS, to detect the uranium in fossil samples. The purpose of this work is to investigate the possibility of semi-quantitative analyses of uranium in fossils, and to study the correlation between C u and the age of fossil bones. The further purpose of this work is to apply SIMS to measure the distribution of C u in fossil teeth

  8. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  9. Chevron's technologies for converting unconventional hydrocarbons into transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zestar, L.P.; Nordrum, L.J. [Chevron Energy Technology Co., San Roman, CA (United States); Farshid, D.; Reynolds, B.E. [Chevron Global Downstream, San Ramon, CA (United States). Technology Marketing Div.

    2009-07-01

    Molecules laden with metal, sulphur and nitrogen impurities limit the value of unconventional heavy oils and produce large amounts of low-value byproducts during the processing phase. This paper discussed a vacuum resid slurry hydrocracking (VRSH) process for upgrading vacuum resid from bitumens and extra-heavy oil. The process converted all hydrocarbon materials in the field into high quality, high-value products. The technology used a proprietary ultra-fine slurry catalyst to achieve nearly 100 per cent resid conversion. The majority of the product was converted to distillates. The remaining unconverted oil was retained in a slurry reactor with a highly active and concentrated catalyst in order to enable higher resid conversion. The process generated significant amounts of hydrogen. It was concluded that the process can be operated in high conversion or high throughput modes. 1 tab., 4 figs.

  10. Modes of fossil preservation

    Science.gov (United States)

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  11. Unconventional aspects of electronic transport in delafossite oxides

    Science.gov (United States)

    Daou, Ramzy; Frésard, Raymond; Eyert, Volker; Hébert, Sylvie; Maignan, Antoine

    2017-12-01

    The electronic transport properties of the delafossite oxides ? are usually understood in terms of two well-separated entities, namely the triangular ? and (? layers. Here, we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on ? and ?, which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals ?, ?, and ?, where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.

  12. UC Irvine CHRS Real-time Global Satellite Precipitation Monitoring System (G-WADI PERSIANN-CCS GeoServer) for Hydrometeorological Applications

    Science.gov (United States)

    Sorooshian, S.; Hsu, K. L.; Gao, X.; Imam, B.; Nguyen, P.; Braithwaite, D.; Logan, W. S.; Mishra, A.

    2015-12-01

    The G-WADI Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) GeoServer has been successfully developed by the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California Irvine in collaboration with the UNESCO's International Hydrological Programme (IHP) and a number of its international centers. The system employs state-of-the-art technologies in remote sensing and artificial intelligence to estimate precipitation globally from satellite imagery in real-time and high spatiotemporal resolution (4km, hourly). It offers graphical tools and data service to help the user in emergency planning and management for natural disasters related to hydrological processes. The G-WADI PERSIANN-CCS GeoServer has been upgraded with new user-friendly functionalities. The precipitation data generated by the GeoServer is disseminated to the user community through support provided by ICIWaRM (The International Center for Integrated Water Resources Management), UNESCO and UC Irvine. Recently a number of new applications for mobile devices have been developed by our students. The RainMapper has been available on App Store and Google Play for the real-time PERSIANN-CCS observations. A global crowd sourced rainfall reporting system named iRain has also been developed to engage the public globally to provide qualitative information about real-time precipitation in their location which will be useful in improving the quality of the PERSIANN-CCS data. A number of recent examples of the application and use of the G-WADI PERSIANN-CCS GeoServer information will also be presented.

  13. Unconventional Protein Secretion in Animal Cells.

    Science.gov (United States)

    Ng, Fanny; Tang, Bor Luen

    2016-01-01

    All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR). Mechanisms underlying unconventional protein secretion (UPS) are actively being analyzed and deciphered, and these range from an unusual form of plasma membrane translocation to vesicular processes involving the generation of exosomes and other extracellular microvesicles. In this chapter, we provide an overview on what is currently known about UPS in animal cells.

  14. Carbon capture and sequestration (CCS)

    Science.gov (United States)

    2009-06-19

    Carbon capture and sequestration (or storage)known as CCShas attracted interest as a : measure for mitigating global climate change because large amounts of carbon dioxide (CO2) : emitted from fossil fuel use in the United States are potentiall...

  15. An Improved Approach for Forecasting Ecological Impacts from Future Drilling in Unconventional Shale Oil and Gas Plays.

    Science.gov (United States)

    Wolaver, Brad D; Pierre, Jon Paul; Ikonnikova, Svetlana A; Andrews, John R; McDaid, Guinevere; Ryberg, Wade A; Hibbitts, Toby J; Duran, Charles M; Labay, Benjamin J; LaDuc, Travis J

    2018-04-13

    Directional well drilling and hydraulic fracturing has enabled energy production from previously inaccessible resources, but caused vegetation conversion and landscape fragmentation, often in relatively undisturbed habitats. We improve forecasts of future ecological impacts from unconventional oil and gas play developments using a new, more spatially-explicit approach. We applied an energy production outlook model, which used geologic and economic data from thousands of wells and three oil price scenarios, to map future drilling patterns and evaluate the spatial distribution of vegetation conversion and habitat impacts. We forecast where future well pad construction may be most intense, illustrating with an example from the Eagle Ford Shale Play of Texas. We also illustrate the ecological utility of this approach using the Spot-tailed Earless Lizard (Holbrookia lacerata) as the focal species, which historically occupied much of the Eagle Ford and awaits a federal decision for possible Endangered Species Act protection. We found that ~17,000-45,500 wells would be drilled 2017‒2045 resulting in vegetation conversion of ~26,485-70,623 ha (0.73-1.96% of pre-development vegetation), depending on price scenario ($40-$80/barrel). Grasslands and row crop habitats were most affected (2.30 and 2.82% areal vegetation reduction). Our approach improves forecasts of where and to what extent future energy development in unconventional plays may change land-use and ecosystem services, enabling natural resource managers to anticipate and direct on-the-ground conservation actions to places where they will most effectively mitigate ecological impacts of well pads and associated infrastructure.

  16. Canada's carbon capture and storage initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Alexandra; Mitrovic, Milenka; Grant, Andrea

    2010-09-15

    Carbon capture and storage (CCS) is a critical technology for Canada to make meaningful emissions reductions in the fossil fuels sector. Canada is a global leader in CCS, and both federal and provincial governments are taking action to advance the deployment of this technology, including allocating over CAD 3.5 billion in public funding to CCS. These investments support several interdependent initiatives focusing on addressing the challenges facing CCS, supporting innovation, accelerating deployment, and facilitating information sharing. Canada is also committed to working internationally to ensure that our efforts at home contribute to the overall global advancement of CCS.

  17. Development of an Improved Methodology to Assess Potential Unconventional Gas Resources

    International Nuclear Information System (INIS)

    Salazar, Jesus; McVay, Duane A.; Lee, W. John

    2010-01-01

    Considering the important role played today by unconventional gas resources in North America and their enormous potential for the future around the world, it is vital to both policy makers and industry that the volumes of these resources and the impact of technology on these resources be assessed. To provide for optimal decision making regarding energy policy, research funding, and resource development, it is necessary to reliably quantify the uncertainty in these resource assessments. Since the 1970s, studies to assess potential unconventional gas resources have been conducted by various private and governmental agencies, the most rigorous of which was by the United States Geological Survey (USGS). The USGS employed a cell-based, probabilistic methodology which used analytical equations to calculate distributions of the resources assessed. USGS assessments have generally produced distributions for potential unconventional gas resources that, in our judgment, are unrealistically narrow for what are essentially undiscovered, untested resources. In this article, we present an improved methodology to assess potential unconventional gas resources. Our methodology is a stochastic approach that includes Monte Carlo simulation and correlation between input variables. Application of the improved methodology to the Uinta-Piceance province of Utah and Colorado with USGS data validates the means and standard deviations of resource distributions produced by the USGS methodology, but reveals that these distributions are not right skewed, as expected for a natural resource. Our investigation indicates that the unrealistic shape and width of the gas resource distributions are caused by the use of narrow triangular input parameter distributions. The stochastic methodology proposed here is more versatile and robust than the USGS analytic methodology. Adoption of the methodology, along with a careful examination and revision of input distributions, should allow a more realistic

  18. Dual-track CCS stakeholder engagement: Lessons learned from FutureGen in Illinois

    Science.gov (United States)

    Hund, G.; Greenberg, S.E.

    2011-01-01

    FutureGen, as originally planned, was to be the world's first coal-fueled, near-zero emissions power plant with fully integrated, 90% carbon capture and storage (CCS). From conception through siting and design, it enjoyed strong support from multiple stakeholder groups, which benefited the overall project. Understanding the stakeholder engagement process for this project provides valuable insights into the design of stakeholder programs for future CCS projects. FutureGen is one of few projects worldwide that used open competition for siting both the power plant and storage reservoir. Most site proposals were coordinated by State governments. It was unique in this and other respects relative to the site selection method used on other DOE-supported projects. At the time of site selection, FutureGen was the largest proposed facility designed to combine an integrated gasification combined cycle (IGCC) coal-fueled power plant with a CCS system. Stakeholder engagement by states and the industry consortium responsible for siting, designing, building, and operating the facility took place simultaneously and on parallel tracks. On one track were states spearheading state-wide site assessments to identify candidate sites that they wanted to propose for consideration. On the other track was a public-private partnership between an industry consortium of thirteen coal companies and electric utilities that comprised the FutureGen Alliance (Alliance) and the U.S. Department of Energy (DOE). The partnership was based on a cooperative agreement signed by both parties, which assigned the lead for siting to the Alliance. This paper describes the stakeholder engagement strategies used on both of these tracks and provides examples from the engagement process using the Illinois semi-finalist sites. ?? 2011 Published by Elsevier Ltd.

  19. Acute Endoplasmic Reticulum Stress-Independent Unconventional Splicing of XBP1 mRNA in the Nucleus of Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wang

    2015-06-01

    Full Text Available The regulation of expression of X-box-binding protein-1 (XBP1, a transcriptional factor, involves an unconventional mRNA splicing that removes the 26 nucleotides intron. In contrast to the conventional splicing that exclusively takes place in the nucleus, determining the location of unconventional splicing still remains controversial. This study was designed to examine whether the unconventional spicing of XBP1 mRNA could occur in the nucleus and its possible biological relevance. We use RT-PCR reverse transcription system and the expand high fidelity PCR system to detect spliced XBP1 mRNA, and fraction cells to determine the location of the unconventional splicing of XBP1 mRNA. We employ reporter constructs to show the presence of unconventional splicing machinery in mammal cells independently of acute endoplasmic reticulum (ER stress. Our results reveal the presence of basal unconventional splicing of XBP1 mRNA in the nucleus that also requires inositol-requiring transmembrane kinase and endonuclease 1α (IRE1α and can occur independently of acute ER stress. Furthermore, we confirm that acute ER stress induces the splicing of XBP1 mRNA predominantly occurring in the cytoplasm, but it also promotes the splicing in the nucleus. The deletion of 5′-nucleotides in XBP1 mRNA significantly increases its basal unconventional splicing, suggesting that the secondary structure of XBP1 mRNA may determine the location of unconventional splicing. These results suggest that the unconventional splicing of XBP1 mRNA can take place in the nucleus and/or cytoplasm, which possibly depends on the elaborate regulation. The acute ER stress-independent unconventional splicing in the nucleus is most likely required for the maintaining of day-to-day folding protein homeostasis.

  20. Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth

    International Nuclear Information System (INIS)

    Wang, Jianliang; Mohr, Steve; Feng, Lianyong; Liu, Huihui; Tverberg, Gail E.

    2016-01-01

    China is vigorously promoting the development of its unconventional gas resources because natural gas is viewed as a lower-carbon energy source and because China has relatively little conventional natural gas supply. In this paper, we first evaluate how much unconventional gas might be available based on an analysis of technically recoverable resources for three types of unconventional gas resources: shale gas, coalbed methane and tight gas. We then develop three alternative scenarios of how this extraction might proceed, using the Geologic Resources Supply Demand Model. Based on our analysis, the medium scenario, which we would consider to be our best estimate, shows a resource peak of 176.1 billion cubic meters (bcm) in 2068. Depending on economic conditions and advance in extraction techniques, production could vary greatly from this. If economic conditions are adverse, unconventional natural gas production could perhaps be as low as 70.1 bcm, peaking in 2021. Under the extremely optimistic assumption that all of the resources that appear to be technologically available can actually be recovered, unconventional production could amount to as much as 469.7 bcm, with peak production in 2069. Even if this high scenario is achieved, China’s total gas production will only be sufficient to meet China’s lowest demand forecast. If production instead matches our best estimate, significant amounts of natural gas imports are likely to be needed. - Highlights: • A comprehensive investigation on China’s unconventional gas resources is presented. • China’s unconventional gas production is forecast under different scenarios. • Unconventional gas production will increase rapidly in high scenario. • Achieving the projected production in high scenario faces many challenges. • The increase of China’s unconventional gas production cannot solve its gas shortage.

  1. Experts discuss unconventional conflicts in the Americas | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-07-10

    Jul 10, 2015 ... Experts discuss unconventional conflicts in the Americas ... in illicit activities — like drug smuggling and illegal mining — that destabilize societies and ruin lives. ... Social exclusion and "violences" in Central American cities.

  2. An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils".

    Science.gov (United States)

    Li, Qiang; Ni, Xijun

    2016-01-14

    Treeshrews are widely considered a "living model" of an ancestral primate, and have long been called "living fossils". Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage.

  3. The role of initial affective impressions in responses to educational communications: the case of carbon capture and sequestration (CCS).

    Science.gov (United States)

    Bruine de Bruin, Wändi; Wong-Parodi, Gabrielle

    2014-06-01

    Emerging technologies promise potential benefits at a potential cost. Developers of educational communications aim to improve people's understanding and to facilitate public debate. However, even relatively uninformed recipients may have initial feelings that are difficult to change. We report that people's initial affective impressions about carbon capture and sequestration (CCS), a low-carbon coal-based electricity-generation technology with which most people are unfamiliar, influences how they interpret previously validated education materials. As a result, even individuals who had originally self-identified as uninformed persisted in their initial feelings after reading the educational communication-though perseverance of feelings about CCS was stronger among recipients who had originally self-identified as relatively informed (Study 1). Moreover, uninformed recipients whose initial feelings were experimentally manipulated by relatively uninformative pro-CCS or anti-CCS arguments persisted in their manipulated feelings after reading the educational communication, due to evaluating the educational communication in line with their manipulated impressions (Study 2). Hence, our results suggest that educational communications will have more impact if they are disseminated before people form strong feelings about the topic under consideration, especially if these are based on little to no factual understanding. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.

  5. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    Science.gov (United States)

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  6. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    Science.gov (United States)

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately

  7. Evaluating the development of carbon capture and storage technologies in the United States

    NARCIS (Netherlands)

    Alphen, K. van; Noothout, P.M.; Hekkert, M.P.; Turkenburg, W.C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies

  8. A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS). II. Studies in mice and ferrets and mechanism of adjuvanticity.

    Science.gov (United States)

    Even-Or, Orli; Joseph, Aviva; Itskovitz-Cooper, Noga; Samira, Sarit; Rochlin, Eli; Eliyahu, Hagit; Goldwaser, Itzik; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Kedar, Eli; Barenholz, Yechezkel

    2011-03-16

    We recently showed that lipid assemblies comprised of a novel polycationic sphingolipid (ceramide carbamoyl-spermine, CCS) are an effective adjuvant/carrier when complexed with cholesterol (CCS/C) for influenza and other vaccines administered parenterally and intranasally (i.n.) in mice. Here we expand these studies to ferrets, an established model of influenza infection. We also address the question of why the CCS/C-based liposomal vaccine (also known as VaxiSome™) in mice is superior to vaccines based on liposomes of other lipid compositions (neutral, anionic or cationic). Ferrets immunized i.n. with CCS/C-influenza vaccine produced significantly higher hemagglutination inhibition (HI) antibody titers compared to ferrets immunized intramuscularly with the unadjuvanted influenza vaccine, indicating that the CCS/C-based vaccine is very immunogenic. Furthermore, the i.n. adjuvanted vaccine was shown to significantly reduce the severity of influenza virus infection in ferrets following homologous viral challenge as determined by weight loss, temperature rise and viral titer. No adverse reactions were observed. Pharmacokinetic and biodistribution studies following i.n. administration in mice of CCS/C-based vaccine showed that both the lipids and antigens are retained in the nose and lung for at least 24h, and it appears that this retention correlates with the superior immunogenicity elicited by the adjuvanted vaccine formulation. The CCS lipid also increases production of cytokines (mainly IFN gamma, IL-2 and IL-12) and co-stimulatory molecules' expression, which might further explain the robust adjuvantation of this liposome-based vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  10. STUDY OF UNCONVENTIONAL TEXTILES USED AS INSERTION FOR CLOTHES IN TERMS OF ITS DYNAMIC TENSILE STREGHT

    Directory of Open Access Journals (Sweden)

    OANA Dorina

    2015-05-01

    Full Text Available Unconventional textiles are manufactured different from those obtained by the classic spinning weaving and knitting. They are obtained by mechanical or chemical consolidation of a textile backing up of fibrous layers or combinations of layers of fiber and yarn, fabrics and yarns, fabrics or knitted fabrics and fibers. For the apparel industry has expanded the use of unconventional fabrics especially in auxiliary materials they replace traditional materials such as woven tassel and buckram. Application of reinforcement layers have very important role in increasing the stability of form and material exploitation basic characteristics. Using unconventional fabrics used as insertions for clothing presents a desosibit advantage in terms of possible replacement joints bonded by heat sealed seam, thus saving time and using technology more accessible. For unconventional fabrics used as auxiliaries in the apparel industry is usually determined flexural stiffness, tensile strength, resistance to repeated stretches but more efficient in terms of proximity to the real conditions of the clothing is dynamic tensile resistance. Unconventional textile materials have a certain anisotropy in terms of the performed measurements. So, we followed the conducted research to highlight the anisotropy of several samples and characterization of best of unconventional materials in this regard, to be used under conditions effective as clothing industry.

  11. The framing of unconventional natural gas resources in the foreign energy policy discourse of the Russian Federation

    International Nuclear Information System (INIS)

    Ocelík, Petr; Osička, Jan

    2014-01-01

    The advent of unconventional resources of natural gas has altered the order on global as well as continental gas markets. With rising liquidity, the position of established dominant suppliers is eroding. We focus on the initial response of Russia, the leading supplier of natural gas to Europe, to the new situation, building the research on unit-level constructivism and discourse analysis. We use frame analysis to reveal what image of unconventional resources was constructed in Russian foreign energy policy discourse (FEPD) in the period between 2009 and 2011, when the “unconventional revolution” did not yet have any sharp contours. We conclude that in Russian FEPD the unconventionals are considered as a distinctive and inferior source of energy compared to conventional natural gas. Emphasis is put on their economic irrationality and environmental hazards. The bottom line of the discourse is the idea that there is a choice between conventional and unconventional sources, with this choice being framed as one between good and bad, or right and wrong. - Highlights: • We examine the image of “unconventional gas” in Russian foreign energy policy discourse. • Two main frames (reliable supplier and triumphant natural gas) were identified. • Two main argumentation schemes (economic and environmental) were identified. • The “unconventional gas” is defined as a mistaken and inferior source of energy

  12. Adoption of Agricultural Conservation Practices in the Ignacio Agramonte Cooperative of Credits and Services (CCS, Nuevitas, Camaguey

    Directory of Open Access Journals (Sweden)

    Arelys Valido Tomé

    2016-09-01

    Full Text Available The adoption of sustainable technologies, like Agriculture Conservation Practices in drought-stricken suburban areas is a must for land sustainable management. In order to contribute with the inclusion of this technology at the Ignacio Agramonte CCS, in El Carmen, municipality of Nuevitas, Camaguey, Agricultural Extension tools were used, like systemic diagnostic and participatory orientation. The SWOT matrix was created after three workshops, where agricultural conservation practices were identified for adoption, based on actual conditions at the CCS. As a result, five key problems were identified: lack of water for irrigation, saline waters, saline soils, use of inappropriate management technologies, deforestation and poor training in agriculture. The most critical impact found in the matrix was in Weaknesses - Threats (81.3%. Furthermore, local farmers, inhabitants and public officials agreed on the use of agricultural extension tools to provide positive elements and an effective way to help increase motivation and knowledge about agricultural conservation technology, as an alternative to mitigate the degradation state of lands at the CCS.

  13. Competitiveness and potentials of UCG-CCS on the European energy market

    Science.gov (United States)

    Kempka, T.; Nakaten, N.; Schlüter, R.; Fernandez-Steeger, T.; Azzam, R.

    2009-04-01

    The world-wide coal reserves can satisfy the world's primary energy demand for several hundred years. However, deep coal deposits with seams of low thickness and structural complexity do currently not allow an economic exploitation of many deposits. Here, underground coal gasification (UCG) can offer an economical approach for coal extraction. The intended overall process relies on coal deposit exploitation using directed drillings located at the coal seam base and the subsequent in situ coal conversion into a synthesis gas. The resulting synthesis gas is used for electricity generation in a combined cycle plant at the surface. A reduction of the CO2 emissions resulting from the combined process is realized by subsequent CO2 capture and its injection into the previously gasified coal seams. The scope of the present study was the investigation of UCG-CCS competitiveness on the European energy market and the determination of the impacting factors. For that purpose, a modular model for calculation of UCG-CCS electricity generation costs was implemented and adapted to the most relevant process parameters. Furthermore, the range of energy supply coverage was estimated based on different German energy generation scenarios.

  14. CCS Infrastructure Development Scenarios for the Integrated Iberian Peninsula and Morocco Energy System

    NARCIS (Netherlands)

    Kanudia, A.; Berghout, N.A.; Boavida, D.; van den Broek, M.A.

    2013-01-01

    This paper briefly illustrates a method to represent national energy systems and the geographical details of CCS infrastructures in the same technical-economic model. In the MARKAL-TIMES modeling framework a model of Morocco, Portugal and Spain with both spatial and temporal details has been

  15. Drafting a monitoring plan for the ROAD project under the EU CCS directive

    NARCIS (Netherlands)

    Steegs, T.P.H.; Neelse, F.P.; Gittins, C.; Ros, M.

    2014-01-01

    The Rotterdam Capture and Storage Demonstration Project (ROAD) is an integrated CCS project in the Netherlands that has recently completed the storage permitting process. Development of the monitoring and contingency plans is a key component of this process. Our paper discusses the development of

  16. Applying Unconventional Secretion in Ustilago maydis for the Export of Functional Nanobodies

    Directory of Open Access Journals (Sweden)

    Marius Terfrüchte

    2017-04-01

    Full Text Available Exploiting secretory pathways for production of heterologous proteins is highly advantageous with respect to efficient downstream processing. In eukaryotic systems the vast majority of heterologous proteins for biotechnological application is exported via the canonical endoplasmic reticulum–Golgi pathway. In the endomembrane system target proteins are often glycosylated and may thus be modified with foreign glycan patterns. This can be destructive for their activity or cause immune reactions against therapeutic proteins. Hence, using unconventional secretion for protein expression is an attractive alternative. In the fungal model Ustilago maydis, chitinase Cts1 is secreted via an unconventional pathway connected to cell separation which can be used to co-export heterologous proteins. Here, we apply this mechanism for the production of nanobodies. First, we achieved expression and unconventional secretion of a functional nanobody directed against green fluorescent protein (Gfp. Second, we found that Cts1 binds to chitin and that this feature can be applied to generate a Gfp-trap. Thus, we demonstrated the dual use of Cts1 serving both as export vehicle and as purification tag. Finally, we established and optimized the production of a nanobody against botulinum toxin A and hence describe the first pharmaceutically relevant target exported by Cts1-mediated unconventional secretion.

  17. Experts Perception on Carbon Capture and Storage (CCS) in Spain; La Percepcion de la Captura y Almacenamiento de CO{sub 2} (CAC) por Parte de los Expertos Espanoles

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R; Oltra, C

    2010-12-24

    This report presents the results from a survey on experts attitudes towards the development of CCS in Spain. This is the fi rst study carried out in Spain trying to report an empirical analysis of stake holders perception on the risks, challenges and barriers facing CCS deployment. Results show a positive attitude towards CCS implementation in Spain. Experts are concerned about the existence of suitable storage sites in Spain, safety of storage and costs from capture. They tend to support of CCS as a bridging solution to climate change and have a general low level of perceived risk from CCS. Experts risk perception is influenced, to some extent, by prior values and beliefs as well as by socio demographics and, to a lesser extent, by group membership. (Author) 15 refs.

  18. Water Use for Unconventional Energy Development: How Much, What Kind, and to What Reaction?

    Science.gov (United States)

    Grubert, E.

    2017-12-01

    Water resources—access to water, protection of water, and allocation of water in particular—are a major priority for Americans, but water use for the energy sector has not previously been well characterized. Water use and management associated with unconventional energy development is of special interest, in part because it is often new to the locations and contexts where it occurs. This presentation focuses on three major questions about water use for unconventional energy development, drawing on both engineering and anthropological research. First, using results from a recent study of water use for energy in the entire United States, how much water does the US use for unconventional energy resources, and how does that compare with water use for more mature fuel cycles? Second, based on that same study, what kind of water is used for these unconventional energy resource fuel cycles? Specifically, where does the water come from, and what is its quality? Finally, drawing on recent case studies in the US and elsewhere, what has the reaction been to these water uses, and why does that matter? Case studies focused on oil and natural gas resources illustrate societal reactions to issues of both water management, particularly related to induced seismicity associated with produced water injection, and water allocation, particularly related to hydraulic fracturing. Overall, recent work finds that public concern about water used for unconventional energy resources is often better explained by observed or anticipated local impacts and the uncertainty surrounding these impacts than by specifics about quantities, allocation, and management techniques. This work provides both quantitative and qualitative characterization of water management and allocation for unconventional energy development.

  19. Unconventional Treatments for Vitiligo: Are They (Un) Satisfactory?

    Science.gov (United States)

    Gianfaldoni, Serena; Tchernev, Georgi; Lotti, Jacopo; Wollina, Uwe; Satolli, Francesca; Rovesti, Miriam; França, Katlein; Lotti, Torello

    2018-01-25

    The authors show a brief overview of the vitiligo's unconventional therapies. A part for well-documented effectiveness of L-phenylalanine, PGE2 and antioxidant agents in the treatment of vitiligo, for the other therapeutical approaches more investigations are needed.

  20. Plasma shape reconstruction of merging spherical tokamak based on modified CCS method

    Science.gov (United States)

    Ushiki, Tomohiko; Inomoto, Michiaki; Itagaki, Masafumi; McNamara, Steven

    2017-10-01

    The merging start-up method is the one of the CS-free start-up schemes that has the advantage of high plasma temperature and density because it involves reconnection heating and compression processes. In order to achieve optimal merging operations, the initial two STs should have identical plasma currents and shapes, and then move symmetrically toward the center of the device with appropriate velocity. Furthermore, from the viewpoint of the compression effect, controlling the plasma major radius is also important. To realize the active feedback control of the plasma currents, the positions, and the shapes of the two initial STs and to optimize the plasma parameters described above, accurate estimation of the plasma boundary shape is highly important. In the present work, the Modified-CCS method is demonstrated to reconstruct the plasma boundary shapes as well as the eddy current profiles in the UTST (The University of Tokyo) and ST40 device (Tokamak Energy Ltd). The present research results demonstrate the effectiveness of the M-CCS method in the reconstruction analyses of ST merging.

  1. Combating Daesh: A Socially Unconventional Strategy

    Science.gov (United States)

    2015-06-01

    to those that pledge political support.49 Auyero et al . outline four scenarios where clientelism may spur collective action.50 The first is...to al -Baghdadi Abu Ahmad al -Alwani Direct tie to al -Baghdadi Adnan Latif Hamid al -Sweidawi Wilaya Anbar Governor Fadel Ahmad Abdullah al -Hiyali...Exploitation, SME, Unconventional Warfare, UW, Irregular Warfare, IW, Abu Badr al -Baghdadi, Army Operating Concept, AOC, Human Domain Mapping

  2. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    Science.gov (United States)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  3. DCIs, SEPs, and CCs, Oh My! Understanding the Three Dimensions of the NGSS

    Science.gov (United States)

    Duncan, Ravit Golan; Cavera, Veronica L.

    2015-01-01

    The "Next Generation Science Standards'" three dimensions--disciplinary core ideas (DCIs), science and engineering practices (SEPs), and crosscutting concepts (CCs)--were headliners at NSTA's national conference in Chicago and featured in many of the organization's other professional-development efforts this year (NGSS Lead States 2013).…

  4. THE FORMS OF UNCONVENTIONAL ADVERTISING – A THEORETICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Maria Alina JURCA

    2010-01-01

    Full Text Available The large number of advertisements that the consumers are bombarded with every day has made them virtually immune to commercial messages. This is why advertisers are trying to find new, alternative ways to reach the customers, which are comprised by economic literature in the concept of unconventional advertising. Based on a thorough documentary research, this study identifies the existing forms of unconventional advertising by presenting them in the order of their frequency of use and it tries to group the ones with similar characteristics into somewhat larger categories. A better understanding and knowledge of these new forms of advertising can provide marketing and advertising specialists with new strategies to convey the brand message that can grab the attention of any prospect customer.

  5. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    Science.gov (United States)

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS.

  6. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  7. Just fracking: a distributive environmental justice analysis of unconventional gas development in Pennsylvania, USA

    Science.gov (United States)

    Clough, Emily; Bell, Derek

    2016-02-01

    This letter presents a distributive environmental justice analysis of unconventional gas development in the area of Pennsylvania lying over the Marcellus Shale, the largest shale gas formation in play in the United States. The extraction of shale gas using unconventional wells, which are hydraulically fractured (fracking), has increased dramatically since 2005. As the number of wells has grown, so have concerns about the potential public health effects on nearby communities. These concerns make shale gas development an environmental justice issue. This letter examines whether the hazards associated with proximity to wells and the economic benefits of shale gas production are fairly distributed. We distinguish two types of distributive environmental justice: traditional and benefit sharing. We ask the traditional question: are there a disproportionate number of minority or low-income residents in areas near to unconventional wells in Pennsylvania? However, we extend this analysis in two ways: we examine income distribution and level of education; and we compare before and after shale gas development. This contributes to discussions of benefit sharing by showing how the income distribution of the population has changed. We use a binary dasymetric technique to remap the data from the 2000 US Census and the 2009-2013 American Communities Survey and combine that data with a buffer containment analysis of unconventional wells to compare the characteristics of the population living nearer to unconventional wells with those further away before and after shale gas development. Our analysis indicates that there is no evidence of traditional distributive environmental injustice: there is not a disproportionate number of minority or low-income residents in areas near to unconventional wells. However, our analysis is consistent with the claim that there is benefit sharing distributive environmental injustice: the income distribution of the population nearer to shale gas wells

  8. Carbon Capture and Sequestration- A Review

    Science.gov (United States)

    Sood, Akash; Vyas, Savita

    2017-08-01

    The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.

  9. Making sense of "alternative", "complementary", "unconventional" and "integrative" medicine: exploring the terms and meanings through a textual analysis.

    Science.gov (United States)

    Ng, Jeremy Y; Boon, Heather S; Thompson, Alison K; Whitehead, Cynthia R

    2016-05-20

    Medical pluralism has flourished throughout the Western world in spite of efforts to legitimize Western biomedical healthcare as "conventional medicine" and thereby relegate all non-physician-related forms of healthcare to an "other" category. These "other" practitioners have been referred to as "unconventional", "alternative" and "complementary", among other terms throughout the past half century. This study investigates the discourses surrounding the changes in the terms, and their meanings, used to describe unconventional medicine in North America. Terms identified by the literature as synonymous to unconventional medicine were searched using the Scopus database. A textual analysis following the method described by Kripendorff 2013 was subsequently performed on the five most highly-cited unconventional medicine-related peer-reviewed literature published between 1970 and 2013. Five commonly-used, unconventional medicine-related terms were identified. Authors using "complementary and alternative", "complementary", "alternative", or "unconventional" tended to define them by what they are not (e.g., therapies not taught/used in conventional medicine, therapy demands not met by conventional medicine, and therapies that lack research on safety, efficacy and effectiveness). Authors defined "integrated/integrative" medicine by what it is (e.g., a new model of healthcare, the combining of both conventional and unconventional therapies, accounting for the whole person, and preventative maintenance of health). Authors who defined terms by "what is not" stressed that the purpose of conducting research in this area was solely to create knowledge. Comparatively, authors who defined terms by "what is" sought to advocate for the evidence-based combination of unconventional and conventional medicines. Both author groups used scientific rhetoric to define unconventional medical practices. This emergence of two groups of authors who used two different sets of terms to refer to the

  10. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.

    Science.gov (United States)

    Liu, Lili; Niu, Zhiqiang; Chen, Jun

    2016-07-25

    As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at

  11. A Policy Strategy for Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    Successful deployment of carbon capture and storage (CCS) is critically dependent on comprehensive policy support. While policy plays an important role in the deployment of many low-carbon technologies, it is especially crucial for CCS. This is because, in contrast to renewable energy or applications of energy efficiency, CCS generates no revenue, nor other market benefits, so long as there is no price on CO2 emissions. It is both costly to install and, once in place, has increased operating costs. Effective, well-designed policy support is essential in overcoming these barriers and the subsequent deployment of CCS technology. This guide for policy makers aims to assist those involved in designing national and international policies around CCS. It covers development of CCS from its early stages through to wide-scale deployment of the technology. The focus is both on incentives for conventional fossil-fuel CCS and for bioenergy with CCS (BECCS).

  12. Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices

    International Nuclear Information System (INIS)

    Alshammari, Yousef M.; Sarathy, S. Mani

    2017-01-01

    COP 21 led to a global agreement to limit the earth's rising temperature to less than 2 °C. This will require countries to act upon climate change and achieve a significant reduction in their greenhouse gas emissions which will play a pivotal role in shaping future energy systems. Saudi Arabia is the World's largest exporter of crude oil, and the 11th largest CO_2 emitter. Understanding the Kingdom's role in global greenhouse gas reduction is critical in shaping the future of fossil fuels. Hence, this work presents an optimisation study to understand how Saudi Arabia can meet the CO_2 reduction targets to achieve the 80% reduction in the power generation sector. It is found that the implementation of energy efficiency measures is necessary to enable meeting the 80% target, and it would also lower costs of transition to low carbon energy system while maintaining cleaner use of hydrocarbons with CCS. Setting very deep GHG reduction targets may be economically uncompetitive in consideration of the energy supply requirements. In addition, we determine the breakeven price of crude oil needed to make CCS economically viable. Results show important dimension for pricing CO_2 and the role of CCS compared with alternative sources of energy. - Highlights: • Energy efficiency measures are needed to achieve 80% reduction. • Nuclear appears as an important option to achieve deep cuts in CO_2 by 2050. • Technology improvement can enable using heavy fuel oil with CCS until 2050. • IGCC requires lower net CO_2 footprint in order to be competitive. • Nuclear power causes a sharp increase in the CO_2 avoidance costs.

  13. Unconventional Participation in Time of Crisis: How Ideology Shapes Citizens’ Political Actions

    Directory of Open Access Journals (Sweden)

    Vincenzo Memoli

    2016-04-01

    Full Text Available Since democracy requires the involvement of citizens, the topic of political participation has attracted great attention from both practitioners and scholars. During the current financial and economic crisis, there have been various protest movements in many European countries. In this paper, which employs data from the European Social Survey and analyzes some European countries using a longitudinal study (2002-2012, I measure unconventional political participation considering three types of action - signed a petition, participated in a lawful demonstration and joined a boycott. By linking citizens to government ideology and vote for party government to political action through a multilevel model, this paper argues that both ideology and citizens’ electoral choices have a bearing on unconventional political participation. In times of crisis, government choices do not feed the level of unconventional political participation. However, differences emerge in terms of political behavior when I consider citizens’ ideology, loser status and government ideology.

  14. Unconventional Consumption Methods and Enjoying Things Consumed: Recapturing the "First-Time" Experience.

    Science.gov (United States)

    O'Brien, Ed; Smith, Robert W

    2018-06-01

    People commonly lament the inability to re-experience familiar things as they were first experienced. Four experiments suggest that consuming familiar things in new ways can disrupt adaptation and revitalize enjoyment. Participants better enjoyed the same familiar food (Experiment 1), drink (Experiment 2), and video (Experiments 3a-3b) simply when re-experiencing the entity via unusual means (e.g., eating popcorn using chopsticks vs. hands). This occurs because unconventional methods invite an immersive "first-time" perspective on the consumption object: boosts in enjoyment were mediated by revitalized immersion into the consumption experience and were moderated by time such that they were strongest when using unconventional methods for the first time (Experiments 1-2); likewise, unconventional methods that actively disrupted immersion did not elicit the boost, despite being novel (Experiments 3a-3b). Before abandoning once-enjoyable entities, knowing to consume old things in new ways (vs. attaining new things altogether) might temporarily restore enjoyment and postpone wasteful replacement.

  15. Roles of calpain-calpastatin system (CCS) in human T cell activation.

    Science.gov (United States)

    Mikosik, Anna; Jasiulewicz, Aleksandra; Daca, Agnieszka; Henc, Izabella; Frąckowiak, Joanna E; Ruckemann-Dziurdzińska, Katarzyna; Foerster, Jerzy; Le Page, Aurelie; Bryl, Ewa; Fulop, Tamas; Witkowski, Jacek M

    2016-11-22

    The immune response is determined by the speed of the T cell reaction to antigens assured by a state of readiness for proliferation and cytokine secretion. Proliferation, apoptosis and motion of many cell types are controlled by cytoplasmic proteases - µ- and m-calpain - and their inhibitor calpastatin, together forming the "calpain-calpastatin system" (CCS), assumed to modify their targets only upon activation-dependent cytoplasmic Ca2+ increase. Contrastingly to this notion, using quantitative real time PCR and semiquantitative flow cytometry respectively, we show here that the CCS genes are constitutively expressed, and that both calpains are constitutively active in resting, circulating human CD4+ and CD8+ lymphocytes. Furthermore, we demonstrate that calpain inhibition in the resting T cells prevents them from proliferation in vitro and greatly reduces secretion of multiple cytokines. The mechanistic reason for these effects of calpain inhibition on T cell functions might be the demonstrated significant reduction of the expression of active (phosphorylated) upstream signalling molecules, including the phospholipase C gamma, p56Lck and NFκB, in the inhibitor-treated cells. Thus, we propose that the constitutive, self-regulatory calpain-calpastatin system activity in resting human T cells is a necessary, controlling element of their readiness for complex and effective response to antigenic challenge.

  16. Socio-economic analysis of CCS/EOR in Denmark; Samfundsoekonomisk analyse af CCS/EOR i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-12-15

    The Danish Energy Agency has initiated an analysis of the socio-economic sustainability of a CCS / EOR system based on CO{sub 2} capture from Danish sources and injected into selected Danish North Sea oil fields. The analysis shall assess the socioeconomic consequences of such a project as well as highlight the budgetary economic effects for the parties involved. Taking into account a realistic time frame for conversion of the cogeneration power plants and for the extent of the possible capture of CO{sub 2} in each of these plants, it has been chosen only to presuppose the establishment of CCS in three plants, namely Studstrupvaerket, Fynsvaerket and Nordjyllandsvaerket. Only the oil fields Dan, Halfdan and Gorm were selected for the analysis. The analysis shows that in the selected oil fields it is possible to increase the oil production by approx. 151 million. barrels of oil to the year 2049, which corresponds to approx. 40% of the estimated potential in these fields. The increased oil production requires that approx. 95 million. tonnes of CO{sub 2} is captured in the three power plants, which are subsequently transported and injected in the oil fields in the North Sea. The transport of CO{sub 2} from the CHP plants to the North Sea are assumed to be done by ship, since this solution is economically favorable and also offers logistical advantages and increased flexibility. The analysis shows that both the budget economic and the socio-economic analysis as a whole provide a positive economic net present value over a 30-year period. The socio-economic benefit is expected to be about. 3.5 billion DKK higher. This difference is due to especially the following conditions: a) CO{sub 2} emissions of CO{sub 2} transport are only included in the socio-economic analysis, since shipping is outside the quota system. In the socio-economic analysis, the estimated value of damage impact on the environment is included; b) The value of the oil produced after 2049 is included in

  17. World-wide innovations in the development of CCS-technologies and possibilities of utilization and recycling of CO{sub 2}; Weltweite Innovationen bei der Entwicklung von CCS-Technologien und Moeglichkeiten der Nutzung und des Recyclings von CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kuckshinrichs, Wilhelm; Markewitz, Peter; Linssen, Jochen; Zapp, Petra [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF), Systemforschung und Technologische Entwicklung (IEF-STE); Peters, Martina; Koehler, Burkhard; Mueller, Thomas E.; Leitner, Walter [RWTH Aachen (DE). Inst. fuer Technische und Makromolekulare Chemie (ITMC und CAT Catalytic Center)

    2010-07-01

    In the context of world-wide strategies for the reduction of climatic gases the CCS technology (CCS = carbon capture and sequestration) highlights a great importance. In individual areas the capture of carbon dioxide occurs commercially. However, the losses of the efficiency in the operation of power stations must be reduced by the separation and processing of carbon dioxide. A construction of a demonstration unit is particularly important. On this basis, diaphragm-based procedures, procedures for oxygen production as well as the dry sorption of carbon dioxide are promising. The technical and chemical utilization of carbon dioxide can offer an interesting approach for the direct reduction of the global emissions of carbon dioxide.

  18. Magnetic flux periodicities and finite momentum pairing in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian

    2009-12-22

    This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)

  19. D-strings in unconventional type I vacuum configurations

    International Nuclear Information System (INIS)

    Bianchi, M.; Gava, E.; Morales, F.; Narain, K.S.

    1998-11-01

    We determine the spectrum of D-string bound states in various classes of generalized type I vacuum configurations with sixteen and eight supercharges. The precise matching of the BPS spectra confirms the duality between unconventional type IIB orientfolds with quantized NS-NS antisymmetric tensor and heterotic CHL models in D=8. A similar analysis puts the duality between type II (4,0) models and type I strings without open strings on a firmer ground. The analysis can be extended to type II (2,0) asymmetric orbifolds and their type I duals that correspond to unconventional K3 compactifications. Finally we discuss BPS-saturated threshold corrections to the corresponding low-energy effective lagrangians. In particular we show how the exact moduli dependence of some F 4 terms in the eight-dimensional type II (4,0) orbifold is reproduced by the infinite sum of D-instanton contributions in the dual type I theory. (author)

  20. Economic benefits, external costs and the regulation of unconventional gas in the United States

    International Nuclear Information System (INIS)

    Cronshaw, Ian; Grafton, R. Quentin

    2016-01-01

    We review the economic benefits and external costs of unconventional gas production (UCG) in the United States from a policy perspective. Based on an overview of state regulation in Pennsylvania, a state that has witnessed very rapid growth of gas production over the past 5 years, and global experiences we present 10 key principles that are proposed to reduce the risks and to increase the net rewards of UCG. Application of these principles has the potential to reduce the risks of UCG, especially at a local level, while maximizing the benefits of gas developments. - Highlights: • SWOT summary of unconventional gas developments. • Risks and returns of unconventional gas highlighted. • 10 principles given to reduce risks and increase rewards of gas extraction.

  1. Unconventional Use of Intense Pulsed Light

    OpenAIRE

    Piccolo, D.; Di Marcantonio, D.; Crisman, G.; Cannarozzo, G.; Sannino, M.; Chiricozzi, A.; Chimenti, S.

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hype...

  2. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  3. 76 FR 77990 - Unconventional Resources Technology Advisory Committee

    Science.gov (United States)

    2011-12-15

    ..., and reasonable provisions will be made to include all who wish to speak. Public comment will follow... (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal..., Welcome, Introductions, Opening Remarks, Overview of the Section 999 Research Portfolio (Unconventional...

  4. Component Functional Allocations of the ESF Multi-loop Controller for the KNICS ESF-CCS Design

    International Nuclear Information System (INIS)

    Hur, Seop; Choi, Jong Kyun; Kim, Dong Hoon; Kim, Ho; Kim, Seong Tae

    2006-01-01

    The safety related components in nuclear power plants are traditionally controlled by single-loop controllers. Traditional single-loop controller systems utilize dedicated processors for each component but that components independence is compromised through a sharing of power supplies, auxiliary logic modules and auxiliary I/O cards. In the new design of the ESF-CCS, the multi-loop controllers with data networks are widely used. Since components are assigned to ESF-CCS functional groups in a manner consistent with their process relationship, the effects of the failures are predictable and manageable. Therefore, the key issues for the design of multi-loop controller is to allocate the components to the each multi-loop controller through plant and function analysis and grouping. This paper deals with an ESF component functional allocation which is performed through allocation criteria and a fault analysis

  5. Intergas `95: International unconventional gas symposium. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The International Unconventional Gas Symposium was held on May 14--20, 1995 in Tuscaloosa, Alabama where 52 reports were presented. These reports are grouped in this proceedings under: geology and resources; mine degasification and safety; international developments; reservoir characterization/coal science; and environmental/legal and regulatory. Each report has been processed separately for inclusion in the Energy Science and Technology Database.

  6. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  7. Coal and energy security for India: Role of carbon dioxide (CO2) capture and storage (CCS)

    International Nuclear Information System (INIS)

    Garg, Amit; Shukla, P.R.

    2009-01-01

    Coal is the abundant domestic energy resource in India and is projected to remain so in future under a business-as-usual scenario. Using domestic coal mitigates national energy security risks. However coal use exacerbates global climate change. Under a strict climate change regime, coal use is projected to decline in future. However this would increase imports of energy sources like natural gas (NG) and nuclear and consequent energy security risks for India. The paper shows that carbon dioxide (CO 2 ) capture and storage (CCS) can mitigate CO 2 emissions from coal-based large point source (LPS) clusters and therefore would play a key role in mitigating both energy security risks for India and global climate change risks. This paper estimates future CO 2 emission projections from LPS in India, identifies the potential CO 2 storage types at aggregate level and matches the two into the future using Asia-Pacific Integrated Model (AIM/Local model) with a Geographical Information System (GIS) interface. The paper argues that clustering LPS that are close to potential storage sites could provide reasonable economic opportunities for CCS in future if storage sites of different types are further explored and found to have adequate capacity. The paper also indicates possible LPS locations to utilize CCS opportunities economically in future, especially since India is projected to add over 220,000 MW of thermal power generation capacity by 2030.

  8. Status of fossil fuel reserves; Etat des reserves des combustibles fossiles

    Energy Technology Data Exchange (ETDEWEB)

    Laherrere, J

    2005-07-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  9. 78 FR 53741 - Unconventional Resources Technology Advisory Committee

    Science.gov (United States)

    2013-08-30

    ... be made to include all who wish to speak. Public comment will follow the three-minute rule. Minutes... (Pub. L. 92-463, 86 Stat. 770) requires that public notice of this meeting be announced in the Federal..., Welcome, Introductions, Opening Remarks, Overview of the Oil and Gas Unconventional Research Portfolio...

  10. A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS.

    Science.gov (United States)

    Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A; Lempicki, Richard A; Huang, Da Wei

    2013-07-31

    PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results.

  11. Carbon Capture and Storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany

    International Nuclear Information System (INIS)

    Kraeusel, Jonas; Möst, Dominik

    2012-01-01

    Carbon Capture and Storage (CCS) is an emerging technology to mitigate greenhouse gas emissions from fossil fuel-fired power plants. In the wake of a rapidly changing German energy system, CCS can play an important role. By means of an online survey among 130 university students in Dresden, this paper investigates the level and influencing factors of social acceptance of CCS. Furthermore, the individual willingness to pay for CCS and renewable power delivery is measured and compared through a choice model. The survey results reveal that the attitude towards CCS is neutral. Moreover, it is shown that acceptance of CCS is an important factor for the willingness to pay. The level of willingness to pay for CCS technology is much lower than for renewable energy. - Highlights: ► Analysis of acceptance and willingness to pay of carbon capture and storage and renwable energies. ► Consumers always prefer green electricity compared to CCS power. ► Willingness to pay for green electricity is quite high.

  12. Modeling electron fractionalization with unconventional Fock spaces.

    Science.gov (United States)

    Cobanera, Emilio

    2017-08-02

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  13. Unconventional gases: a North-American energy revolution not without consequences for Europe

    International Nuclear Information System (INIS)

    2011-01-01

    This paper gives a definition of the different existing unconventional gases (coal-bed methane, tight gases, shale gases), and outlines that, although these gases as well as the techniques to extract them have been well known for a long time, it is the combination of two of these techniques (hydraulic fracturing or fracking, and horizontal drilling) which enables the current technological development and the exploitation of these gases. It also outlines that the current situation in terms of natural resources favours such a development. It evokes projects in the United States, China, India, Europe, and more particularly in France, stressing that environmental issues and population density in Europe are obstacles to perform these drillings. The author questions the production cost issue and explains how these developments, notably in the USA, may change completely the world energetic landscape, and therefore entail a review of the European energy agenda. He explores the possible consequences of a durable decrease of gas prices

  14. Reforming fossil fuel use : the merits, costs and risks of carbon dioxide capture and storage

    NARCIS (Netherlands)

    Damen, Kay J.

    2007-01-01

    The sense of urgency in achieving large reductions in anthropogenic CO2 emissions has increased the interest in carbon dioxide capture and storage (CCS). CCS can be defined as the separation and capture of CO2 produced at large stationary sources, followed by transport and storage in geological

  15. Press Coverage of CCS: A New Technology in the Media; Analisis de la Cobertura de la Tecnologia de Captura y Almacenamiento de CO{sub 2} (CAC) en la Prensa Escrita: Una Nueva Tecnologia en los Medios de Comunicacion

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R; Oltra, C; Sala, R; Di Masso, M

    2009-12-19

    Public knowledge of Carbon Capture and Storage (CCS) technology is very low among the Spanish population. Only 17% of the Spanish said to have heard about CCS. There is also an important percentage of the population who is not sure about the use of CCS as a mitigation option for climate change. In that sense, the media could play an important role in the formation of public attitudes of CCS. The objective of the present work is to identify the picture of CCS transmitted in the Spanish press from January 2005 to July 2008. We carried out a quantitative analysis of a total of 139 press articles, considering different dimensions as the general attitude to CCS, the actors mentioned and their attitude, benefits and risks related to CCS, or the link with climate change. Data show a significant increase of CCS coverage in the Spanish press from 2007. The CCS technology is framed in the climate change context, as a possible solution to reduce CO{sub 2} emissions. The general attitude transmitted is positive: the benefits of the technology are emphasized versus the risks. Nevertheless, data show an important polarization in the attitudes through CCS between environmental NGOs (against it) and all the other actors (in favour). (Author) 5 refs.

  16. Special Forces and the Art of Influence: A Grassroots Approach to Psychological Operations in an Unconventional Warfare Environment

    National Research Council Canada - National Science Library

    Thomas, II, Joel W

    2006-01-01

    This thesis researches the intricacies of the art of influence in an unconventional warfare environment to develop a model of influence that can be utilized by Special Forces conducting unconventional warfare...

  17. Application of Reservoir Flow Simulation Integrated with Geomechanics in Unconventional Tight Play

    Science.gov (United States)

    Lin, Menglu; Chen, Shengnan; Mbia, Ernest; Chen, Zhangxing

    2018-01-01

    Multistage hydraulic fracturing techniques, combined with horizontal drilling, have enabled commercial production from the vast reserves of unconventional tight formations. During hydraulic fracturing, fracturing fluid and proppants are pumped into the reservoir matrix to create the hydraulic fractures. Understanding the propagation mechanism of hydraulic fractures is essential to estimate their properties, such as half-length. In addition, natural fractures are often present in tight formations, which might be activated during the fracturing process and contribute to the post-stimulation well production rates. In this study, reservoir simulation is integrated with rock geomechanics to predict the well post-stimulation productivities. Firstly, a reservoir geological model is built based on the field data collected from the Montney formation in the Western Canadian Sedimentary Basin. The hydraulic fracturing process is then simulated through an integrated approach of fracturing fluid injection, rock geomechanics, and tensile failure criteria. In such a process, the reservoir pore pressure increases with a continuous injection of the fracturing fluid and proppants, decreasing the effective stress exerted on the rock matrix accordingly as the overburden pressure remains constant. Once the effective stress drops to a threshold value, tensile failure of the reservoir rock occurs, creating hydraulic fractures in the formation. The early production history of the stimulated well is history-matched to validate the predicted fracture geometries (e.g., half-length) generated from the fracturing simulation process. The effects of the natural fracture properties and well bottom-hole pressures on well productivity are also studied. It has been found that nearly 40% of hydraulic fractures propagate in the beginning stage (the pad step) of the fracturing schedule. In addition, well post-stimulation productivity will increase significantly if the natural fractures are propped or

  18. Filtering, transport and long-term storage of carbon dioxide in licensing law and national planning law. Implementation of the 2009/31 EG directive via a CCS law; Abscheidung, Transport und dauerhafte Speicherung von Kohlenstoffdioxid im Genehmigungs- und nationalen Planungsrecht. Umsetzung der Richtlinie 2009/31 EG durch ein CCS-Gesetz

    Energy Technology Data Exchange (ETDEWEB)

    Kuznik, Christoph

    2012-07-01

    The book discusses the legal boundary conditions of the CCS technology in licensing law and national planning law against the background of RL/ 2009/31 EG and the various drafts of a German CCS law between 2009 and 2011. The legal situation is outlined as of June 2011, when the original dissertation was submitted; the draft acts are analyzed critically in a comparative evaluation. Publications of a later date are considered as far as possible.

  19. Multiscale properties of unconventional reservoir rocks

    Science.gov (United States)

    Woodruff, W. F.

    A multidisciplinary study of unconventional reservoir rocks is presented, providing the theory, forward modeling and Bayesian inverse modeling approaches, and laboratory protocols to characterize clay-rich, low porosity and permeability shales and mudstones within an anisotropic framework. Several physical models characterizing oil and gas shales are developed across multiple length scales, ranging from microscale phenomena, e.g. the effect of the cation exchange capacity of reactive clay mineral surfaces on water adsorption isotherms, and the effects of infinitesimal porosity compaction on elastic and electrical properties, to meso-scale phenomena, e.g. the role of mineral foliations, tortuosity of conduction pathways and the effects of organic matter (kerogen and hydrocarbon fractions) on complex conductivity and their connections to intrinsic electrical anisotropy, as well as the macro-scale electrical and elastic properties including formulations for the complex conductivity tensor and undrained stiffness tensor within the context of effective stress and poroelasticity. Detailed laboratory protocols are described for sample preparation and measurement of these properties using spectral induced polarization (SIP) and ultrasonics for the anisotropic characterization of shales for both unjacketed samples under benchtop conditions and jacketed samples under differential loading. An ongoing study of the effects of kerogen maturation through hydrous pyrolysis on the complex conductivity is also provided in review. Experimental results are catalogued and presented for various unconventional formations in North America including the Haynesville, Bakken, and Woodford shales.

  20. The insurance industry and unconventional gas development: Gaps and recommendations

    International Nuclear Information System (INIS)

    Wetherell, Daniel; Evensen, Darrick

    2016-01-01

    The increasingly growing and controversial practice of natural gas development by horizontal drilling and high volume hydraulic fracturing (‘fracking’) faces a severe environmental insurance deficit at the industry level. Part of this deficit is arguably inherent to the process, whereas another part is caused by current risk information shortfalls on the processes and impacts associated with development. In the short and long terms, there are several conventional and unconventional methods by which industry-level and governmental-level policy can insure against these risks. Whilst academic attention has been afforded to the potential risks associated with unconventional natural gas development, little consideration has been given to the lack of insurance opportunities against these risks or to the additional risks promulgated by the dearth of insurance options. We chronicle the ways in which insurance options are limited due to unconventional gas development, the problems caused by lack of insurance offerings, and we highlight potential policy remedies for addressing these gaps, including a range of government- and industry-specific approaches. - Highlights: •A gap exists in provision of liability insurance for ‘fracking’-related risks. •The market gap is due primarily to uncertainties about probabilistic risk. •Insurance for risks similar to ‘fracking’ highlight potential policy options. •Government regulation and/or industry agreements can effectively fill the gap. •Policies on insurance and liability coverage necessitate ethical considerations.

  1. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...... with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...

  2. A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach

    International Nuclear Information System (INIS)

    Hosseini, Seyed Hossein; Shakouri, Hamed G.

    2016-01-01

    Fluctuations in the oil global market has been a critical topic for the world economy so that analyzing and forecasting the conventional oil production rate has been examined by many researchers thoroughly. However, the dynamics of the market has not been studied systematically with regard to the new emerging competitors, namely unconventional oil. In this paper, the future trend of conventional and unconventional oil production and capacity expansion rates are analyzed using system dynamics approach. To do so, a supply-side modeling approach is utilized while main effective loops are modeled mathematically as follows: technological learning and progress, long and short-term profitability of oil capacity expansion and production, and oil proved reserve limitations. The proposed model is used to analyze conventional and unconventional oil production shares, up to 2025, under different oil price scenarios. The results show that conventional oil production rate ranges from 79.995 to 87.044 MB/day, which is 75–80 percent of total oil production rate, while unconventional oil production rate ranges from 19.615 to 28.584 MB/day. Simulation results reveal that unconventional oil can gain a considerable market share in the short run, although conventional oil will remain as the major source for the market in the long run. - Highlights: • Variables and loops affecting oil production are formulated mathematically. • Shares of conventional and unconventional oil in the global oil market is analyzed. • Oil production rate under different oil price scenarios up to 2025 is simulated. • Unconventional oil would obtain a considerable share in market in the short-term. • A late peak for the conventional oil resources would occur.

  3. Health concerns associated with unconventional gas mining in rural Australia.

    Science.gov (United States)

    Haswell, Melissa R; Bethmont, Anna

    2016-01-01

    Many governments globally are investigating the benefits and risks associated with unconventional gas mining for shale, tight and coal seam gas (coalbed methane) to determine whether the industry should proceed in their jurisdiction. Most locations likely to be developed are in rural areas, with potential impact on farmers and small communities. Despite significant health concerns, public health knowledge and growing evidence are often overlooked in decision-making. It is difficult to gain a broad but accurate understanding of the health concerns for rural communities because the evidence has grown very recently and rapidly, is complex and largely based in the USA, where the industry is advanced. In 2016, a concerned South Australian beef and lamb farmer in an area targeted for potential unconventional gas development organised visits to homes in developed unconventional gas areas of Pennsylvania and forums with leading researchers and lawyers in Pennsylvania and New York. Guided by priorities identified during this trip, this communication concisely distils the research evidence on these key concerns, highlighting the Australian situation where evidence exists. It summarises key information of particular concern to rural regions, using Australia as an example, to assist rural health professionals to be better prepared to engage in decision-making and address the challenges associated with this new industry. Discussions with communities and experts, supported by the expanding research from the USA and Australia, revealed increasing health concerns in six key areas. These are absence of a safe solution to the toxic wastewater management problems, air pollution, land and water competition, mental health and psychosocial wellbeing risks, fugitive methane emissions and lack of proven regulatory regimes. Emerging epidemiological studies suggesting interference with foetal development and birth outcomes, and exacerbation of asthma conditions, are particularly concerning

  4. Children's Ideas about Fossils and Foundational Concepts Related to Fossils

    Science.gov (United States)

    Borgerding, Lisa A.; Raven, Sara

    2018-01-01

    Many standards documents and learning progressions recommend evolution learning in elementary grades. Given young children's interest in dinosaurs and other fossils, fossil investigations can provide a rich entry into evolutionary biology for young learners. Educational psychology literature has addressed children's reasoning about foundational…

  5. Roselle (Hibiscus sabdariffa L.) seeds as unconventional nutritional ...

    African Journals Online (AJOL)

    mohamhed

    2012-05-22

    May 22, 2012 ... The composition of roselle seed from oil, protein, ash, fiber, fatty acids and amino acids was determined and compared in three cultivars in order to use it as an unconventional nutritional source. Aswan cv. occupies the highest significant rank in protein (31.51), oil (23.70) and fiber (4.87%) contents.

  6. Roselle ( Hibiscus sabdariffa L.) seeds as unconventional nutritional ...

    African Journals Online (AJOL)

    The composition of roselle seed from oil, protein, ash, fiber, fatty acids and amino acids was determined and compared in three cultivars in order to use it as an unconventional nutritional source. Aswan cv. occupies the highest significant rank in protein (31.51), oil (23.70) and fiber (4.87%) contents. Aswan and Sewa cvs.

  7. Expert opinions on carbon dioxide capture and storage-A framing of uncertainties and possibilities

    International Nuclear Information System (INIS)

    Hansson, Anders; Bryngelsson, Marten

    2009-01-01

    There are many uncertainties and knowledge gaps regarding the development of carbon dioxide capture and storage (CCS)-e.g., when it comes to costs, life-cycle effects, storage capacity and permanence. In spite of these uncertainties and barriers, the CCS research community is generally very optimistic regarding CCS' development. The discrepancy between the uncertainties and the optimism is the point of departure in this study, which is based on interviews with 24 CCS experts. The aim is to analyse experts' framings of CCS with focus on two key aspects: (i) the function and potential of CCS and (ii) uncertainties. The optimism among the CCS experts is tentatively explained. The interpretative flexibility of CCS is claimed to be an essential explanation for the optimism. CCS is promoted from a wide variety of perspectives, e.g., solidarity and peace, bridge to a sustainable energy system, sustaining the modern lifestyle and compatibility with the fossil fuel lock-in. Awareness of the uncertainties and potential over-optimism is warranted within policy and decision making as they often rely on scientific forecasts and experts' judgements.

  8. Expert opinions on carbon dioxide capture and storage-A framing of uncertainties and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Anders [Linkoeping University, Department of Technology and Social Change, SE-58183 Linkoeping (Sweden); Linkoeping University, Centre for Climate Science and Policy Research, SE-60174 Norrkoeping (Sweden); Bryngelsson, Marten [KTH, School of Chemical Sciences, Teknikringen 50, SE-10044 Stockholm (Sweden)], E-mail: mrtn@kth.se

    2009-06-15

    There are many uncertainties and knowledge gaps regarding the development of carbon dioxide capture and storage (CCS)-e.g., when it comes to costs, life-cycle effects, storage capacity and permanence. In spite of these uncertainties and barriers, the CCS research community is generally very optimistic regarding CCS' development. The discrepancy between the uncertainties and the optimism is the point of departure in this study, which is based on interviews with 24 CCS experts. The aim is to analyse experts' framings of CCS with focus on two key aspects: (i) the function and potential of CCS and (ii) uncertainties. The optimism among the CCS experts is tentatively explained. The interpretative flexibility of CCS is claimed to be an essential explanation for the optimism. CCS is promoted from a wide variety of perspectives, e.g., solidarity and peace, bridge to a sustainable energy system, sustaining the modern lifestyle and compatibility with the fossil fuel lock-in. Awareness of the uncertainties and potential over-optimism is warranted within policy and decision making as they often rely on scientific forecasts and experts' judgements.

  9. The Western Energy Corridor Initiative: Unconventional Fuel Development Issues, Impacts, and Management Assessment

    Science.gov (United States)

    Wolfsberg, A.; Hagood, M.; Pasqualini, D.; Wood, T.; Wilson, C.; Witkowski, M.; Levitt, D.; Pawar, R.; Keating, G.; Ziock, H.

    2008-12-01

    The United States is increasingly dependent on imported oil and gas; commodities for which other nations are competing and for which future supply may be inadequate to support our transportation fuel needs. Therefore, a renewed interest in 'harder-to-get' unconventional fuels has emerged in both industry and government with directed focus on world class hydrocarbon resources within a corridor extending from Canada southward through the Rocky Mountain States. Within this Western Energy Corridor, co-located with significant conventional hydrocarbon and renewable energy resources, lie some of the world's richest unconventional hydrocarbon resources in oil shales, oil sands and coal for coal-to-liquid conversion. However, development of these resources poses substantial environmental concerns as well as increasing competition for limited resources of water and habitat. With large-scale energy development in the predominantly rural region, local communities, infrastructures, and economies will face increasing demands for roads, electricity, law enforcement, labor, and other support services. The Western Energy Corridor Initiative (WECI) seeks to develop an integrated assessment of the impacts of unconventional fuel development, the interrelationships of planned energy developments in different basins, and the resultant demands placed on the region. This initial WECI study focuses on two of the most important current issues for industry, regulators, and stakeholders -- the assessment of carbon and water resources issues, impacts, and management strategies. Through scenario analyses using coupled systems and process level models, this study investigates the viability of integrated development of multiple energy resources in a carbon neutral and environmentally acceptable manner, and the interrelationships of various energy resource development plans. The modeling framework is designed to extend to include infrastructure, employment, training, fiscal and economic demands

  10. Management of atrial fibrillation around the world: a comparison of current ACCF/AHA/HRS, CCS, and ESC guidelines.

    Science.gov (United States)

    Wasmer, Kristina; Eckardt, Lars

    2011-10-01

    New guidelines for the management of atrial fibrillation (AF) have recently been published by the American College of Cardiology Foundation/American Heart Association, and Heart Rhythm Society (ACCF/AHA/HRS) task force on practice guidelines, the Canadian Cardiovascular Society (CCS), and the European Society of Cardiology (ESC). Although they all refer to the same scientific data and agree in the majority of AF management, interpretation, and weighing of study results are quite different in some aspects. While recommendations for stroke risk assessment and prophylaxis are rather conservative in the ESC guidelines, the CCS guideline recommendations are more conservative with regard to lenient rate control and the ACCF/AHA/HRS recommendations are rather strict with regard to rhythm management.

  11. Right-handed fossil humans.

    Science.gov (United States)

    Lozano, Marina; Estalrrich, Almudena; Bondioli, Luca; Fiore, Ivana; Bermúdez de Castro, José-Maria; Arsuaga, Juan Luis; Carbonell, Eudald; Rosas, Antonio; Frayer, David W

    2017-11-01

    Fossil hominids often processed material held between their upper and lower teeth. Pulling with one hand and cutting with the other, they occasionally left impact cut marks on the lip (labial) surface of their incisors and canines. From these actions, it possible to determine the dominant hand used. The frequency of these oblique striations in an array of fossil hominins documents the typically modern pattern of 9 right- to 1 left-hander. This ratio among living Homo sapiens differs from that among chimpanzees and bonobos and more distant primate relatives. Together, all studies of living people affirm that dominant right-handedness is a uniquely modern human trait. The same pattern extends deep into our past. Thus far, the majority of inferred right-handed fossils come from Europe, but a single maxilla from a Homo habilis, OH-65, shows a predominance of right oblique scratches, thus extending right-handedness into the early Pleistocene of Africa. Other studies show right-handedness in more recent African, Chinese, and Levantine fossils, but the sample compiled for non-European fossil specimens remains small. Fossil specimens from Sima del los Huesos and a variety of European Neandertal sites are predominately right-handed. We argue the 9:1 handedness ratio in Neandertals and the earlier inhabitants of Europe constitutes evidence for a modern pattern of handedness well before the appearance of modern Homo sapiens. © 2017 Wiley Periodicals, Inc.

  12. Panorama 2011: Unconventional gas and water

    International Nuclear Information System (INIS)

    Vially, R.

    2011-01-01

    For a number of years now, the rapid development of unconventional gas use in North America has been revolutionising the natural gas market. This generic term refers to several production types, such as tight gas, shale gas and coal bed methane. What they have in common is that the rock needs to be 'stimulated' in order to extract gas from it that can be commercially produced. These methods (horizontal drilling, hydraulic fracturing) all involve sensible management of the water needed for gas production. (author)

  13. Návrh strategie CSR společnosti CCS, s. r. o.

    OpenAIRE

    Paseková, Markéta

    2015-01-01

    CSR strategy is not only about unilateral spending of funds on charitable purposes. An effective CSR strategy leads to fulfillment of economic goals of the company. The aim of this thesis is to analyze the current state of CSR in company CCS, s. r. o. and suggest possible improvements, or more precisely, develop an effective and coherent CSR strategy. As a tool for creating strategy are in this thesis primarily used in-depth interviews with employees of HR and marketing teams and models of or...

  14. Exploitation of unconventional protein sources in the feed of weaner ...

    African Journals Online (AJOL)

    Exploitation of unconventional protein sources in the feed of weaner rabbits ... as protein sources for feeding ruminants but rarely considered as feed for micro ... 26.88 g/100g DM in Centrosema pubescens and Moringa oleifera, respectively.

  15. CCS Site Optimization by Applying a Multi-objective Evolutionary Algorithm to Semi-Analytical Leakage Models

    Science.gov (United States)

    Cody, B. M.; Gonzalez-Nicolas, A.; Bau, D. A.

    2011-12-01

    Carbon capture and storage (CCS) has been proposed as a method of reducing global carbon dioxide (CO2) emissions. Although CCS has the potential to greatly retard greenhouse gas loading to the atmosphere while cleaner, more sustainable energy solutions are developed, there is a possibility that sequestered CO2 may leak and intrude into and adversely affect groundwater resources. It has been reported [1] that, while CO2 intrusion typically does not directly threaten underground drinking water resources, it may cause secondary effects, such as the mobilization of hazardous inorganic constituents present in aquifer minerals and changes in pH values. These risks must be fully understood and minimized before CCS project implementation. Combined management of project resources and leakage risk is crucial for the implementation of CCS. In this work, we present a method of: (a) minimizing the total CCS cost, the summation of major project costs with the cost associated with CO2 leakage; and (b) maximizing the mass of injected CO2, for a given proposed sequestration site. Optimization decision variables include the number of CO2 injection wells, injection rates, and injection well locations. The capital and operational costs of injection wells are directly related to injection well depth, location, injection flow rate, and injection duration. The cost of leakage is directly related to the mass of CO2 leaked through weak areas, such as abandoned oil wells, in the cap rock layers overlying the injected formation. Additional constraints on fluid overpressure caused by CO2 injection are imposed to maintain predefined effective stress levels that prevent cap rock fracturing. Here, both mass leakage and fluid overpressure are estimated using two semi-analytical models based upon work by [2,3]. A multi-objective evolutionary algorithm coupled with these semi-analytical leakage flow models is used to determine Pareto-optimal trade-off sets giving minimum total cost vs. maximum mass

  16. Property impacts on Carbon Capture and Storage (CCS) processes: A review

    International Nuclear Information System (INIS)

    Tan, Yuting; Nookuea, Worrada; Li, Hailong; Thorin, Eva; Yan, Jinyue

    2016-01-01

    Highlights: • Property impacts on CCS processes have been reviewed. • Properties were ranked and priority of properties in model development was analyzed. • Relevant properties in the design and operation of CCS processes have been identified. • The studied CCS processes include CO_2 capture, conditioning, transport and storage. - Abstract: The knowledge of thermodynamic and transport properties of CO_2-mixtures is important for designing and operating different processes in carbon capture and storage systems. A literature survey was conducted to review the impact of uncertainty in thermos-physical properties on the design and operation of components and processes involved in CO_2 capture, conditioning, transport and storage. According to the existing studies on property impacts, liquid phase viscosity and diffusivity as well as gas phase diffusivity significantly impact the process simulation and absorber design for chemical absorption. Moreover, the phase equilibrium is important for regenerating energy estimation. For CO_2 compression and pumping processes, thermos-physical properties have more obvious impacts on pumps than on compressors. Heat capacity, density, enthalpy and entropy are the most important properties in the pumping process, whereas the compression process is more sensitive to heat capacity and compressibility. In the condensation and liquefaction process, the impacts of density, enthalpy and entropy are low on heat exchangers. For the transport process, existing studies mainly focused on property impacts on the performance of pipeline steady flow processes. Among the properties, density and heat capacity are most important. In the storage process, density and viscosity have received the most attention in property impact studies and were regarded as the most important properties in terms of storage capacity and enhanced oil recovery rate. However, for physical absorption, physical adsorption and membrane separation, there has been a

  17. Mobile Landing Platform with Core Capability Set (MLP w/CCS): Combined Initial Operational Test and Evaluation and Live Fire Test and Evaluation Report

    Science.gov (United States)

    2015-07-01

    SUBTITLE Mobile Landing Platform with Core Capability Set (MLP w/CCS) Combined Initial Operational Test and Evaluation ( IOT &E) and Live Fire Test and...based on data from a series of integrated test events, a dedicated end-to-end Initial Operational Test and Evaluation ( IOT &E), and two Marine Corps...Internally Transportable Vehicles (ITVs).   ii the LMSR to anchor within a few miles of the shore. Using MLP (CCS), the equipment is transported ashore

  18. Amplification Effects and Unconventional Monetary Policies

    Directory of Open Access Journals (Sweden)

    Cécile BASTIDON GILLES

    2012-02-01

    Full Text Available Global financial crises trigger off amplification effects, which allow relatively small shocks to propagate through the whole financial system. For this reason, the range of Central banks policies is now widening beyond conventional monetary policies and lending of last resort. The aim of this paper is to establish a rule for this practice. The model is based on the formalization of funding conditions in various types of markets. We conduct a comprehensive analysis of the “unconventional monetary policies”, and especially quantify government bonds purchases by the Central bank.

  19. Advances in unconventional computing

    CERN Document Server

    2017-01-01

    The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete autho...

  20. The original colours of fossil beetles.

    Science.gov (United States)

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Noh, Heeso; Cao, Hui

    2012-03-22

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.

  1. Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices

    KAUST Repository

    Alshammari, Yousef Mohammad

    2016-11-10

    COP 21 led to a global agreement to limit the earth\\'s rising temperature to less than 2 °C. This will require countries to act upon climate change and achieve a significant reduction in their greenhouse gas emissions which will play a pivotal role in shaping future energy systems. Saudi Arabia is the World\\'s largest exporter of crude oil, and the 11th largest CO2 emitter. Understanding the Kingdom\\'s role in global greenhouse gas reduction is critical in shaping the future of fossil fuels. Hence, this work presents an optimisation study to understand how Saudi Arabia can meet the CO2 reduction targets to achieve the 80% reduction in the power generation sector. It is found that the implementation of energy efficiency measures is necessary to enable meeting the 80% target, and it would also lower costs of transition to low carbon energy system while maintaining cleaner use of hydrocarbons with CCS. Setting very deep GHG reduction targets may be economically uncompetitive in consideration of the energy supply requirements. In addition, we determine the breakeven price of crude oil needed to make CCS economically viable. Results show important dimension for pricing CO2 and the role of CCS compared with alternative sources of energy.

  2. Analysis of the Command and Control Segment (CCS) attitude estimation algorithm

    Science.gov (United States)

    Stockwell, Catherine

    1993-01-01

    This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.

  3. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.

    Science.gov (United States)

    Ağralı, Semra; Üçtuğ, Fehmi Görkem; Türkmen, Burçin Atılgan

    2018-06-01

    We consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nation-wide carbon emissions in an

  4. Assessment of Methane Emissions – Impact of Using Natural Gas Engines in Unconventional Resource Development

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew [West Virginia Univ., Morgantown, WV (United States); Johnson, Derek [West Virginia Univ., Morgantown, WV (United States); Heltzel, Robert [West Virginia Univ., Morgantown, WV (United States); Oliver, Dakota [West Virginia Univ., Morgantown, WV (United States)

    2018-04-08

    Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findings from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.

  5. The legacy of fossil fuels.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The legacy of fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Armaroli, N.; Balzani, V. [CNR, Bologna (Italy)

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  7. Highlights and Lessons from the EU CCS Demonstration Project Network: 13th International Conference on Greenhouse Gas Control Technologies, GHGT 2016. 14 November 2016 through 18 November 2016

    NARCIS (Netherlands)

    Kapetaki, Z.; Hetland, J.; Guenan, T. le; Mikunda, T.; Scowcroft, J.

    2017-01-01

    The European Carbon Capture and Storage (CCS) Demonstration Project Network (the “Network”) is currently composed of projects located in the Netherlands, Norway, Spain, and the UK. The goal of the Network is to accelerate deployment of CCS by sharing project development experiences about technology

  8. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    International Nuclear Information System (INIS)

    Kiesel, Maximilian Ludwig

    2013-01-01

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na x CoO 2 and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general considerations on

  9. Unconventional superconductivity in cuprates, cobaltates and graphene. What is universal and what is material-dependent in strongly versus weakly correlated materials?

    Energy Technology Data Exchange (ETDEWEB)

    Kiesel, Maximilian Ludwig

    2013-02-08

    A general theory for all classes of unconventional superconductors is still one of the unsolved key issues in condensed-matter physics. Actually, it is not yet fully settled if there is a common underlying pairing mechanism. Instead, it might be possible that several distinct sources for unconventional (not phonon-mediated) superconductivity have to be considered, or an electron-phonon interaction is not negligible. The focus of this thesis is on the most probable mechanism for the formation of Cooper pairs in unconventional superconductors, namely a strictly electronic one where spin fluctuations are the mediators. Studying different superconductors in this thesis, the emphasis is put on material-independent features of the pairing mechanism. In addition, the investigation of the phase diagrams enables a view on the vicinity of superconductivity. Thus, it is possible to clarify which competing quantum fluctuations enhance or weaken the propensity for a superconducting state. The broad range of superconducting materials requires the use of more than one numerical technique to study an appropriate microscopic description. This is not a problem but a big advantage because this facilitates the approach-independent description of common underlying physics. For this evaluation, the strongly correlated cuprates are simulated with the variational cluster approach. Especially the question of a pairing glue is taken into consideration. Furthermore, it is possible to distinguish between retarded and non-retarded contributions to the gap function. The cuprates are confronted with the cobaltate Na{sub x}CoO{sub 2} and graphene. These weakly correlated materials are investigated with the functional renormalization group (fRG) and reveal a comprehensive phase diagram, including a d+id-wave superconductivity, which breaks time-reversal symmetry. The corresponding gap function is nodeless, but for NaCoO, it features a doping-dependent anisotropy. In addition, some general

  10. Tackling CO2 reduction in India through use of CO2 capture and storage (CCS): Prospects and challenges

    International Nuclear Information System (INIS)

    Shackley, Simon; Verma, Preeti

    2008-01-01

    CO 2 capture and storage (CCS) is not currently a priority for the Government of India (GOI) because, whilst a signatory to the UNFCCC and Kyoto Protocol, there are no existing greenhouse gas emission reduction targets and most commentators do not envisage compulsory targets for India in the post-2012 phase. The overwhelming priority for the GOI is to sustain a high level of economic growth (8%+) and provision of secure, reliable energy (especially electricity) is one of the widely recognised bottlenecks in maintaining a high growth rate. In such a supply-starved context, it is not easy to envisage adoption of CCS-which increases overall generation capacity and demand for coal without increasing actual electricity supply-as being acceptable. Anything which increases costs-even slightly-is very unlikely to happen, unless it is fully paid for by the international community. The majority viewpoint of the industry and GOI interviewees towards CCS appears to be that it is a frontier technology, which needs to be developed further in the Annex-1 countries to bring down the cost through RD and D and deployment. More RD and D is required to assess in further detail the potential for CO 2 storage in geological reservoirs in India and the international community has an important role to play in cultivating such research

  11. Balance and saving of GHG emissions in thermochemical biorefineries

    International Nuclear Information System (INIS)

    Haro, Pedro; Aracil, Cristina; Vidal-Barrero, Fernando; Ollero, Pedro

    2015-01-01

    Highlights: • A simplified methodology for the balance and saving of GHG emissions is provided. • The GHG balance has a physical meaning and does not depend on the fossil reference. • The GHG saving depends on regulation of energy carriers. • The impact of Bio-CCS incorporation and multiproduction is analyzed. • The co-production of chemicals needs to be included in future regulation. - Abstract: In this study, a simplified methodology for the calculation of the balance of greenhouse gas (GHG) emissions and corresponding saving compared with the fossil reference is presented. The proposed methodology allows the estimation of the anthropogenic GHG emissions of thermochemical biorefineries (net emitted to the atmosphere). In the calculation of the GHG balance, all relevant factors have been identified and analyzed including multiproduction, emissions from biogenic carbon capture and storage (Bio-CCS), co-feeding of fossil fuels (secondary feedstock) and possible carbon storage in biomass-derived products (chemicals). Therefore, it is possible to calculate the balance of GHG emissions of a hypothetical thermochemical biorefinery considering different alternatives of land-use, biomass feedstock, co-feeding of fossil fuels, Bio-CCS incorporation and final use of the products. The comparison of the estimated GHG balance with the corresponding fossil reference for each product is of special relevance in the methodology since it is the parameter used in European regulation for the fulfillment of sustainability criteria in biomass-derived fuels and liquids. The proposed methodology is tested using a previously assessed set of different process concepts of thermochemical biorefineries (techno-economic analysis). The resulting GHG balance and saving are analyzed to identify uncertainties and provide recommendations for future regulation. In all process concepts, the GHG savings are above the minimum requirement of GHG emissions for 2018. In the case of incorporating

  12. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study

    International Nuclear Information System (INIS)

    Nelson, Andrew W.; Knight, Andrew W.; Eitrheim, Eric S.; Schultz, Michael K.

    2015-01-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation – before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. - Highlights: • Natural radionuclides in ground water near unconventional drilling operations were investigated. • Natural uranium ( nat U), lead-210 ( 210 Pb), and polonium-210 ( 210 Po) levels are described. • No statistically significant increases in natural radioactivity post-drilling were observed

  13. Characterization of the recombinant copper chaperone (CCS) from the plant Glycine (G.) max.

    Science.gov (United States)

    Sagasti, Sara; Yruela, Inmaculada; Bernal, Maria; Lujan, Maria A; Frago, Susana; Medina, Milagros; Picorel, Rafael

    2011-02-01

    The goal of the present work was to characterize the recombinant copper chaperone (CCS) from soybean. Very little is known about plant copper chaperones, which makes this study of current interest, and allows for a comparison with the better known homologues from yeast and humans. To obtain sizeable amounts of pure protein suitable for spectroscopic characterization, we cloned and overexpressed the G. max CCS chaperone in E. coli in the presence of 0.5 mM CuSO(4) and 0.5 mM ZnSO(4) in the broth. A pure protein preparation was obtained by using two IMAC steps and pH gradient chromatography. Most of the proteins were obtained as apo-form, devoid of copper atoms. The chaperone showed a high content (i.e., over 40%) of loops, turns and random coil as determined both by circular dichroism and homology modelling. The homology 3-D structural model suggests the protein might fold in three structural protein domains. The 3-D model along with the primary structure and spectroscopic data may suggest that copper atoms occupy the two metal binding sites, MKCEGC and CTC, within the N-terminal domain I and C-terminal domain III, respectively. But only one Zn-binding site was obtained spectroscopically.

  14. Ending the Debate: Unconventional Warfare, Foreign Internal Defense, and Why Words Matter

    National Research Council Canada - National Science Library

    Jones, D

    2006-01-01

    There is an ongoing debate within the Special Forces community whether unconventional warfare and foreign internal defense are applicable in the contemporary and future Special Operations environments...

  15. Expert opinions on carbon dioxide capture and storage. A framing of uncertainties and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Anders [Linkoeping University, Department of Technology and Social Change, SE-58183 Linkoeping (Sweden); Bryngelsson, Maarten [KTH, School of Chemical Sciences, Teknikringen 50, SE-10044 Stockholm (Sweden)

    2009-06-15

    There are many uncertainties and knowledge gaps regarding the development of carbon dioxide capture and storage (CCS) - e.g., when it comes to costs, life-cycle effects, storage capacity and permanence. In spite of these uncertainties and barriers, the CCS research community is generally very optimistic regarding CCS' development. The discrepancy between the uncertainties and the optimism is the point of departure in this study, which is based on interviews with 24 CCS experts. The aim is to analyse experts' framings of CCS with focus on two key aspects: (1) the function and potential of CCS and (2) uncertainties. The optimism among the CCS experts is tentatively explained. The interpretative flexibility of CCS is claimed to be an essential explanation for the optimism. CCS is promoted from a wide variety of perspectives, e.g., solidarity and peace, bridge to a sustainable energy system, sustaining the modern lifestyle and compatibility with the fossil fuel lock-in. Awareness of the uncertainties and potential over-optimism is warranted within policy and decision making as they often rely on scientific forecasts and experts' judgements. (author)

  16. Soft-Bodied Fossils Are Not Simply Rotten Carcasses - Toward a Holistic Understanding of Exceptional Fossil Preservation: Exceptional Fossil Preservation Is Complex and Involves the Interplay of Numerous Biological and Geological Processes.

    Science.gov (United States)

    Parry, Luke A; Smithwick, Fiann; Nordén, Klara K; Saitta, Evan T; Lozano-Fernandez, Jesus; Tanner, Alastair R; Caron, Jean-Bernard; Edgecombe, Gregory D; Briggs, Derek E G; Vinther, Jakob

    2018-01-01

    Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non-biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay-prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  17. UNCONVENTIONAL MONETARY POLICY: CHANGING EUROPEAN CENTRAL BANK’S PERSPECTIVE ON FINANCIAL GOVERNANCE

    Directory of Open Access Journals (Sweden)

    Bogdan Munteanu

    2017-06-01

    Full Text Available The paper aims to look at the European Central Bank governance in terms of decisions taken to deploy a new kit of unconventional monetary policy measures, in order to respond to a new economic paradigm characterized by dynamic change in evolution, high volatility and enhanced financial risks. As an institution, the European Central Bank is led by the Governing Council and the decisions taken on how to use monetary policy impact an entire financial system. European Central Banking governance is about safeguarding the common currency and ensuring a future for the economic and monetary area to emerge stronger. For this purpose, when conventional monetary policies reach limits in their effects, it is time for the European Central Bank governance to analyse and assume the decision to deploy the arsenal of unconventional monetary policies. The experience of recent years showed a positive effect of the European Central Bank’s unconventional monetary measures, but costs could rise in case of extensive use of such measures. When these measures are used in combination, the effect is amplified and the European Central Bank needs to assess when it is time to withdraw the support, how to communicate and what exit strategy should use, what the costs are and impact can expect.

  18. Uranium concentrations in fossils measured by SIMS

    International Nuclear Information System (INIS)

    Uyeda, Chiaki; Okano, Jun

    1988-01-01

    Semiquantitative analyses of uranium in fossil bones and teeth were carried out by SIMS. The results show a tendency that uranium concentrations in the fossils increase with the ages of the fossils. It is noticed that fossil bones and teeth having uranium concentration of more than several hundred ppm are not rare. (author)

  19. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    Energy Technology Data Exchange (ETDEWEB)

    Tavoni, F. [Fondazione Eni Enrico Mattei, Sustainable Development, Milan (Italy); Van der Zwaan, B.C.C. [ECN Policy Studies, Petten (Netherlands)

    2011-10-15

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  20. Nuclear Versus Coal plus CCS. A Comparison of Two Competitive Base-Load Climate Control Options

    International Nuclear Information System (INIS)

    Tavoni, F.; Van der Zwaan, B.C.C.

    2011-01-01

    In this paper, we analyze the relative importance and mutual behavior of two competing base-load electricity generation options that each are capable of contributing significantly to the abatement of global CO2 emissions: nuclear energy and coal-based power production complemented with CO2 capture and storage (CCS). We also investigate how, in scenarios developed with an integrated assessment model that simulates the economics of a climate-constrained world, the prospects for nuclear energy would change if exogenous limitations on the spread of nuclear technology were relaxed. Using the climate change economics model World Induced Technical Change Hybrid, we find that until 2050 the growth rates of nuclear electricity generation capacity would become comparable to historical rates observed during the 1980s. Given that nuclear energy continues to face serious challenges and contention, we inspect how extensive the improvements of coal-based power equipped with CCS technology would need to be if our economic optimization model is to significantly scale down the construction of new nuclear power plants.

  1. Efficacy of Enhanced External Counterpulsation in Patients With Chronic Refractory Angina on Canadian Cardiovascular Society (CCS) Angina Class: An Updated Meta-Analysis.

    Science.gov (United States)

    Zhang, Chunmei; Liu, Xiangjuan; Wang, Xiaomeng; Wang, Qi; Zhang, Yun; Ge, Zhiming

    2015-11-01

    A growing number of patients with chronic artery disease suffer from angina, despite the optimal medical management (ie, β-blockers, calcium channel blockers, and long-acting nitrates) and revascularization. Currently, enhanced external counterpulsation (EECP) therapy has been verified as a noninvasive, safe therapy for refractory angina. The study was designed to evaluate the efficacy of EECP in patients with chronic refractory angina according to Canadian Cardiovascular Society (CCS) angina class.We identified systematic literature through MEDLINE, EMBASE, the Cochrane Clinical Trials Register Database, and the ClinicalTrials. gov Website from 1990 to 2015. Studies were considered eligible if they were prospective and reported data on CCS class before and after EECP treatment. Meta-analysis was performed to assess the efficacy of EECP therapy by at least 1 CCS angina class improvement, and proportion along with the 95% confidence interval (CI) was calculated. Statistical heterogeneity was calculated by I statistic and the Q statistic. Sensitivity analysis was addressed to test the influence of trials on the overall pooled results. Subgroup analysis was applied to explore potential reasons for heterogeneity.Eighteen studies were enrolled in our meta-analysis. Pooled analysis showed 85% of patients underwent EECP had a reduction by at least one CCS class (95%CI 0.81-0.88, I = 58.5%, P CCS class was about 84% after EECP (95%CI 0.81-0.88, I = 32.7%, P = 0.1668). After 3 large studies were excluded, the pooled proportion was 82% (95%CI 0.79-0.86, I = 18%, P = 0.2528). Funnel plot indicated that some asymmetry while the Begg and Egger bias statistic showed no publication bias (P = 0.1495 and 0.2859, respectively).Our study confirmed that EECP provided an effective treatment for patients who were unresponsive to medical management and/or invasive therapy. However, the long-term benefits of EECP therapy needed further studies to evaluate in the management of chronic

  2. Intermittent grazing: A management tool to reduce the impact of lupine-induced Crooked Calf Syndrome (CCS)

    Science.gov (United States)

    The Lupinus genus is a large group of legumes, some of which cause a congenital condition in cattle referred to as “Crooked Calf Syndrome” (CCS). Only Lupines that contain the alkaloids anagyrine or ammodendrine are problematic to cattle producers. The syndrome is manifest by a series of multiple ...

  3. Annual Report: EPAct Complementary Program's Ultra-Deepwater R&D Portfolio and Unconventional Resources R&D Portfolio (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    none,; Rose, Kelly [NETL; Hakala, Alexandra [NETL; Guthrie, George [NETL

    2012-09-30

    This report summarizes FY13 research activities performed by the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD), along with its partners in the Regional University Alliance (RUA) to fulfill research needs under the Energy Policy Act of 2005 (EPAct) Section 999's Complementary Program. Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes $50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research and development effort, the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. Section 999 further prescribes four program elements for the effort, one of which is the Complementary Research Program that is to be performed by NETL. This document lays out the plan for the research portfolio for the Complementary Research Program, with an emphasis on the 2013 funding. The Complementary Program consists of two research portfolios focused on domestic resources: (1) the Deepwater and Ultra-Deepwater Portfolio (UDW) (focused on hydrocarbons in reservoirs in extreme environments) and (2) the Unconventional Resources Portfolio (UCR) (focused on hydrocarbons in shale reservoirs). These two portfolios address the science base that enables these domestic resources to be produced responsibly, informing both regulators and operators. NETL is relying on a core Department of Energy-National Energy Technology Laboratory (DOE-NETL) competency in engineered-natural systems to develop this science base, allowing leveraging of decades of investment. NETL's Complementary Research Program research portfolios support the development of unbiased research and information for policymakers and the public, performing rapid predictions of possible outcomes associated with unexpected events, and carrying out quantitative assessments for energy policy stakeholders that accurately integrate the risks of safety and environmental impacts. The

  4. Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks

    Science.gov (United States)

    Duffy, Diane E.; McIntosh, Allen A.; Rosenstein, Mark; Willinger, Walter

    1994-04-01

    In this paper, we report on an ongoing statistical analysis of actual CCSN traffic data. The data consist of approximately 170 million signaling messages collected from a variety of different working CCS subnetworks. The key findings from our analysis concern: (1) the characteristics of both the telephone call arrival process and the signaling message arrival process; (2) the tail behavior of the call holding time distribution; and (3) the observed performance of the CCSN with respect to a variety of performance and reliability measurements.

  5. H2S and polysulfide metabolism: Conventional and unconventional pathways.

    Science.gov (United States)

    Olson, Kenneth R

    2018-03-01

    It is now well established that hydrogen sulfide (H 2 S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H 2 S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H 2 S but require prior oxidation of H 2 S and the formation of per- and polysulfides (H 2 S n , n = 2-8). Attendant with understanding the regulatory functions of H 2 S and H 2 S n is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Preparation of environmental analyses for synfuel and unconventional gas technologies

    Energy Technology Data Exchange (ETDEWEB)

    Reed, R.M. (ed.)

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  7. Bayesian phylogenetic estimation of fossil ages.

    Science.gov (United States)

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  8. A Comparison of national CCS strategies for Northwest Europe, with a focus on the potential of common CO2 storage at the Utsira formation

    DEFF Research Database (Denmark)

    Ramirez, Andrea; Hoefnagels, Ric; van den Broek, Machteld

    2011-01-01

    Mega structures for CO2 storage, such as the Utsira formation in the North Sea, could theoretically supply CO2 storage capacity for several countries for a period of several decades. Their use could increase the cost-effectiveness of CCS in a region while minimizing opposition from the public to CO...... region Pan European TIMES model (PET). In the models scenarios, assumptions and parameters that are not country dependent (e.g. costs related with CO2 capture technology development) have been harmonized. The results indicate that with stringent climate targets, CCS appears as a key mitigation option...... in the national portfolio of measures. Within the CCS portfolio, storage of CO2 in the Utsira formation can indeed be a cost effective option for North Europe and it represents a valuable CO2 storage option at the regional level. For instance, the United Kingdom will profit from the comparably short transport...

  9. Variable-Fidelity Conceptual Design System for Advanced Unconventional Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ongoing work in unconventional air-vehicles, i.e. deformable mold-lines and bio-mimetics, is beginning to provide the insight necessary to exploit performance...

  10. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors

    International Nuclear Information System (INIS)

    Lee, C.Y.

    2004-01-01

    Direct observation of the collective modes in unconventional superconductors (USC) by microwave impedance technique experiments has made the very important study of the collective excitations in these systems. One of the problem is still the exact form of the order parameter of unconventional superconductors. Among the possibilities there are extended s-wave pairing, mixture of s- and d-states, as well as of different d-wave states. I consider the mixed (1-γ)d x 2 -y 2 +iγd xy state in high temperature superconductors (HTSC) and derive for the first time a full set of equations for collective modes spectrum in mixed d-wave state with arbitrary admixture of d xy state. Obtained results allow to calculate the whole collective mode spectrum, which could be used for interpretation of the sound attenuation and microwave absorption data as well as for identification of the type of pairing and order parameter in unconventional superconductors. In particular, they allow to estimate the extent of admixture of d xy state in a possible mixed state

  11. Sustainability of Fossil Fuels

    Science.gov (United States)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  12. Upgrading Unconventional Oil Resources with the EST Process

    Energy Technology Data Exchange (ETDEWEB)

    Delbianco, Alberto; Meli, Salvatori; Panariti, Nicolleta; Rispoli, Giacomo

    2007-07-01

    We strongly believe that unconventional oils will play a much larger role in the growth of supply than is currently recognized. As a matter of fact, whereas the earth's conventional proven world oil reserves are 1.3 trillion barrels, extra-heavy plus bitumen resources amount to about 4 trillion barrels. The unconventional oils are characterized by low API gravity (<10), high viscosity and high concentration of poisons such as sulphur, nitrogen, metals, and asphaltenes. For this reason, a key role for the full exploitation of these hydrocarbon resources is played by the downstream processes that are required to upgrade and convert them into valuable products. In this scenario, Eni has developed a novel hydrocracking process (EST: Eni Slurry Technology) which is particularly well-suited for the conversion and upgrading of heavy feedstocks (conventional vacuum residues, extra-heavy oils and bitumen). EST employs nano-sized hydrogenation catalysts and an original process scheme that allow complete feedstock conversion to an upgraded synthetic crude oil (SCO) with an API gravity gain greater than 20 and avoid the production of residual by-products, such as pet-coke or heavy fuel oil. A Commercial Demonstration Unit (CDP) of 1200 bbl/d capacity is successfully operating in the Eni's Taranto refinery since November 2005. (auth)

  13. The Quest CCS Project - MMV Technology Deployment Through Two Years of Operation

    Science.gov (United States)

    O'Brien, S.

    2017-12-01

    In September 2012, Shell, on behalf of the Athabasca Oil Sands Project venture (Shell Canada Energy, Chevron Canada Limited, Marathon Oil Canada Corporation), announced that it was proceeding to construct the Quest Carbon Capture and Storage (CCS) project near Fort Saskatchewan. Quest is the world's first large-scale commercial application of CCS at an oil sands operation, and it is now capturing more than one million tonnes of CO2 per year from the Scotford Upgrader. It is a fully integrated project, involving CO2 capture at the bitumen upgrader, transportation along a 65 km pipeline, and CO2 storage in a deep saline aquifer (the Basal Cambrian Sands). Construction was completed in August 2015, and the Quest project was certified for commercial operation in September 2015. The Measurement, Monitoring and Verification (MMV) program for Quest is comprehensive, with a variety of technologies being used to monitor the atmosphere, hydrosphere, biosphere and geosphere. These include a Lightsource system for atmospheric monitoring, extensive groundwater sampling, DAS VSPs to assess the development of the CO2 plume, a microseismic array to measure any induced seismic activity, and temperature and pressure gauges for reservoir monitoring. Over two years of operations, this program has been optimized to address key risks while improving operational efficiency. Quest has now successfully captured and stored more than 2 million tonnes of CO2 with no MMV indications of any storage issues.

  14. Public Perception of CCS Technology. The Effects of Information on Attitude; Percepcion Publica de la Tecnologia de CAC. El Efecto de la Informacion en la Actitud

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C.; Marin, R.; Sala, R.

    2011-11-10

    This report examines the public perception of Carbon Capture and Storage technology and the impacts of information on perception. We analyze, from an electronic questionnaire with technical and contextual information, dimensions such as the initial reaction to the technology, the acceptance of CO{sub 2} storage, the perception of risk of storage and the degree of antagonism toward the organizations involved. The determinants of attitudes and reactions to CCS are also analyzed. A favorable initial reaction to CCS is found after some information and contextualization of CCS as well as significant risk perception. The type of information transmitted appears to influence the attitude of participants to the technology. The broader positive impact on attitude occurs when transmitting the idea of CO{sub 2} as a natural resource. (Author) 4 refs.

  15. Progress in ESR dating of fossils

    International Nuclear Information System (INIS)

    Ikeya, M.

    1983-01-01

    In this review the progress of ESR dating is briefly described together with its historical development. Examples of fossil dating include shells and corals in geological sediments, fossil bones and teeth in anthropology and fossil woods in geology. The total dose of natural radiation (TD) equivalent to the archaeological dose in TL dating was obtained by the additive dose method. Initially, the TDs were plotted against the known ages; using the apparent annual dose-rate thus obtained gives the ESR age within a factor of 2 or 3 for a fossil. Precise assessment of the radiation environment was made later taking the disequilibrium of uranium series disintegration into account. ESR ages of corals agreed well with those obtained by radiocarbon and uranium-thorium methods. The time-independent accumulation rate or a linear accumulation or uranium was adopted as a first sensible model for the opensystem fossil bones: the relation between the TD and the age explains the ages of anthropologically important bones. Lastly, geological assessment of fossil woods was made by ESR based on the organic radicals and electron traps in the silicified part. (author)

  16. Organic Contaminants Associated with the Extraction of Unconventional Gas. Risk Analysis in the Initial Phases of the Project; Contaminantes Orgánicos Asociados a la Extracción de Gas no Convencional. Análisis de Riesgos en las Fases Iniciales del Proyecto

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Hurtado, A.; Recreo, F.; Eguilior, S.

    2015-07-01

    The latest technological advances in hydraulic fracturing and horizontal drilling are promoting a commercial scale extraction of unconventional fossil fuels in several regions of the world. Although there is still no commercial scale extraction in the Member States of the EU, potential stocks in some of them, as in the case of Spain, stimulate the need to carry out precautionary previous studies. These, based on the experience in the USA, will allow to define the characteristics that a priori should include a project of unconventional gas extraction, so that their safety is maximized by minimizing the likelihood of adverse effects on the environment. In unconventional gas production a fracturing fluid, typically water, with different types of additives is injected into the reservoir at very high pressure in order to create fractures to increase the porosity and permeability of the rock. In this scenario the flowback and produced water (water brought to the surface during the extraction of gas or oil) is usually a mixture of fluids injected and brines present in the repository. The quality of the flowback and produced water is variable. Its salinity varies from similar to drinking water to several times more saline than seawater. Furthermore, different compounds other than salt can be present in various amounts in the flowback and produced water: oil and other organic compounds, solids in suspension, bacteria, naturally occurring radioactive elements (NORM), and any of the elements injected with the hydraulic fracturing fluid. Due to the high variability of contaminants in the flowback and produced water as well as potentially large volumes involved, composition of flowback and produced water and the analysis of the risks associated with them is an important aspect to consider from the initial phases of project development of unconventional gas extraction. This report covers the risk analysis of an unconventional gas extraction project, the initial assessment of the

  17. TRUCE: A Coordination Action for Unconventional Computation

    DEFF Research Database (Denmark)

    Amos, M.; Stepney, S.; Doursat, R.

    2012-01-01

    Unconventional computation (UCOMP) is an important and emerging area of scientific research, which explores new ways of computing that go beyond the traditional model, as well as quantum- and brain inspired computing. Such alternatives may encompass novel substrates (e.g., DNA, living cells...... quickly, and has the potential to revolutionize not only our fundamental understanding of the nature of computing, but the way in which we solve problems, design networks, do industrial fabrication, make drugs or construct buildings. The problems we already face in the 21 st century will require new...

  18. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  19. Collective excitations in unconventional superconductors and superfluids

    CERN Document Server

    Brusov, Peter

    2009-01-01

    This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s -, p - and d -wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3 He, superfluid 4 He, superfluid 3 He-

  20. Unconventional applications of conventional intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.; Matter, J.C.

    1983-01-01

    A number of conventional intrusion detection sensors exists for the detection of persons entering buildings, moving within a given volume, and crossing a perimeter isolation zone. Unconventional applications of some of these sensors have recently been investigated. Some of the applications which are discussed include detection on the edges and tops of buildings, detection in storm sewers, detection on steam and other types of large pipes, and detection of unauthorized movement within secure enclosures. The enclosures can be used around complicated control valves, electrical control panels, emergency generators, etc

  1. The fossil history of pseudoscorpions (Arachnida: Pseudoscorpiones

    Directory of Open Access Journals (Sweden)

    D. Harms

    2017-08-01

    Full Text Available Pseudoscorpions, given their resemblance to scorpions, have attracted human attention since the time of Aristotle, although they are much smaller and lack the sting and elongated tail. These arachnids have a long evolutionary history but their origins and phylogenetic affinities are still being debated. Here, we summarise their fossil record based on a comprehensive review of the literature and data contained in other sources. Pseudoscorpions are one of the oldest colonisers of the land, with fossils known since the Middle Devonian (ca. 390 Ma. The only arachnid orders with an older fossil record are scorpions, harvestmen and acariform mites, plus two extinct groups. Pseudoscorpions do not fossilise easily, and records from the Mesozoic and Cenozoic consist almost exclusively of amber inclusions. Most Mesozoic fossils come from Archingeay and Burmese ambers (Late Cretaceous and those from the Cenozoic are primarily from Eocene Baltic amber, although additional fossils from, for example, Miocene Dominican and Mexican ambers, are known. Overall, 16 of the 26 families of living pseudoscorpions have been documented from fossils and 49 currently valid species are recognised in the literature. Pseudoscorpions represent a case of morphological stasis and even the Devonian fossils look rather modern. Indeed, most amber fossils are comparable to Recent groups despite a major gap in the fossil record of almost 250 Myr. Baltic amber inclusions indicate palaeofauna inhabiting much warmer climates than today and point to climatic shifts in central Europe since the Eocene. They also indicate that some groups (e.g. Feaellidae and Pseudogarypidae had much wider Eocene distributions. Their present-day occurrence is relictual and highlights past extinction events. Faunas from younger tropical amber deposits (e.g. Dominican and Mexican amber are comparable to Recent ones. Generally, there is a strong bias in the amber record towards groups that live under tree

  2. Evaluation of hard fossil fuel

    International Nuclear Information System (INIS)

    Zivkovic, S.; Nuic, J.

    1999-01-01

    Because of its inexhaustible supplies hard fossil fuel will represent the pillar of the power systems of the 21st century. Only high-calorie fossil fuels have the market value and participate in the world trade. Low-calorie fossil fuels ((brown coal and lignite) are fuels spent on the spot and their value is indirectly expressed through manufactured kWh. For the purpose of determining the real value of a tonne of low-calorie coal, the criteria that help in establishing the value of a tonne of hard coal have to be corrected and thus evaluated and assessed at the market. (author)

  3. A feasibility study of unconventional planar ligand spacers in chalcogenide nanocrystals.

    Science.gov (United States)

    Lukose, Binit; Clancy, Paulette

    2016-05-18

    The solar cell efficiency of chalcogenide nanocrystals (quantum dots) has been limited in the past by the insulation between neighboring quantum dots caused by intervening, often long-chain, aliphatic ligands. We have conducted a computationally based feasibility study to investigate the use of ultra-thin, planar, charge-conducting ligands as an alternative to traditional long passive ligands. Not only might these radically unconventional ligands decrease the mean distance between adjacent quantum dots, but, since they are charge-conducting, they have the potential to actively enhance charge migration. Our ab initio studies compare the binding energies, electronic energy gaps, and absorption characteristics for both conventional and unconventional ligands, such as phthalocyanines, porphyrins and coronene. This comparison identified these unconventional ligands with the exception of titanyl phthalocyanine, that bind to themselves more strongly than to the surface of the quantum dot, which is likely to be less desirable for enhancing charge transport. The distribution of finite energy levels of the bound system is sensitive to the ligand's binding site and the levels correspond to delocalized states. We also observed a trap state localized on a single Pb atom when a sulfur-containing phenyldithiocarbamate (PTC) ligand is attached to a slightly off-stoichiometric dot in a manner that the sulfur of the ligand completes stoichiometry of the bound system. Hence, this is indicative of the source of trap state when thio-based ligands are bound to chalcogenide nanocrystals. We also predict that titanyl phthalocyanine in a mix with chalcogenide dots of diameter ∼1.5 Å can form a donor-acceptor system.

  4. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    Science.gov (United States)

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An integrative approach to the Carbon Capture and Storage (CCS) technologies inside a Water-Energy Nexus Framework

    NARCIS (Netherlands)

    Vaca Jiménez, Santiago David; Nonhebel, Sanderine; Dijkema, Gerhard

    2016-01-01

    The energy sector is a major source of the anthropogenic CO2 emissions. Therefore, the sector’s de-carbonization is imperative if we intend to curb the progression of Climate Change. Carbon Capture and Storage (CCS) was created in an attempt to reduce the carbon footprint of energy production.

  6. Can Unconventional Exercise be Helpful in the Treatment, Management and Prevention of Osteosarcopenic Obesity?

    Science.gov (United States)

    Kelly, Owen J; Gilman, Jennifer C

    2017-01-01

    Body composition changes occur with aging; bone and muscle mass decrease while fat mass increases. The collective term for these changes is osteosarcopenic obesity. It is known that conventional resistance exercise programs build/maintain lean mass and reduce fat mass. However, unconventional (to Western society/medicine) forms of exercise may be viable for the treatment/prevention of osteosarcopenic obesity. The purpose of this review is to assess relatively unconventional exercises for their efficacy in maintaining/improving bone and muscle mass and reducing fat mass. A literature search for unconventional exercise showed Tai Chi, yoga, Pilates, whole body vibration, electrical stimulation of muscle, and the Alexander Technique were considered alternative/ unconventional. A PubMed and Medline search for human data using combinations and synonyms of osteoporosis, sarcopenia and obesity, and each exercise was then conducted. Tai Chi, yoga, and Pilates, in addition to whole body vibration, electrical stimulation of muscle, and the Alexander Technique are all considered low impact. Tai Chi, yoga, and Pilates not only physically support the body, but also increase balance and quality of life. The devices showed promise in reducing or preventing muscle atrophy in older people that are unable to perform conventional exercises. Any exercise, conventional or otherwise, especially in sedentary older people, at risk of, or diagnosed with osteosarcopenic obesity may be better than none. Exercise prescriptions should suit the patient and the desired outcomes; the patient should not be forced to fit an exercise prescription, so all potential forms of exercise should be considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Status of fossil fuel reserves

    International Nuclear Information System (INIS)

    Laherrere, J.

    2005-01-01

    Reserves represent the sum of past and future productions up to the end of production. In most countries the reserve data of fields are confidential. Therefore, fossil fuel reserves are badly known because the published data are more political than technical and many countries make a confusion between resources and reserves. The cumulated production of fossil fuels represents only between a third and a fifth of the ultimate reserves. The production peak will take place between 2020 and 2050. In the ultimate reserves, which extrapolate the past, the fossil fuels represent three thirds of the overall energy. This document analyses the uncertainties linked with fossil fuel reserves: reliability of published data, modeling of future production, comparison with other energy sources, energy consumption forecasts, reserves/production ratio, exploitation of non-conventional hydrocarbons (tar sands, extra-heavy oils, bituminous shales, coal gas, gas shales, methane in overpressure aquifers, methane hydrates), technology impacts, prices impact, and reserves growth. (J.S.)

  8. New fossil fuel combustion technologies

    International Nuclear Information System (INIS)

    Minghetti, E.; Palazzi, G.

    1995-01-01

    The aim of the present article is to supply general information concerning fossil fuels that represent, today and for the near future, the main energy source of our Planet. New fossil fuel technologies are in continual development with two principal goals: to decrease environmental impact and increase transformation process efficiency. Examples of this efforts are: 1) gas-steam combined cycles integrated with coal gasification plants, or with pressurized-fluidized-bed combustors; 2) new cycles with humid air or coal direct fired turbine, now under development. In the first part of this article the international and national energy situations and trends are shown. After some brief notes on environmental problems and alternative fuels, such as bio masses and municipal wastes, technological aspects, mainly relevant to increase fossil-fueled power plant performances, are examined in greater depth. Finally the research and technological development activities of ENEA (Italian Agency for New Technologies, Energy and Environment) Engineering Branch, in order to improve fossil fuels energy and environmental use are presented

  9. First fossil insectivores from Flores

    NARCIS (Netherlands)

    Hoek Ostende, van den L.W.; Berch, van der G.; Awe Due, R.

    2006-01-01

    The hominid bearing strata from the Liang Bua cave on Flores have yielded a large amount of microvertebrate remains. Among these are three mandibles of shrews, the first record of fossil insectivores from the island. The fossils, representing two different species, are not referable to any of the

  10. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    Science.gov (United States)

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    Unconventional reservoirs” for carbon dioxide (CO2) storage—that is, geologic reservoirs in which changes to the rock trap CO2 and therefore contribute to CO2 storage—including coal, shale, basalt, and ultramafic rocks, were the focus of a U.S. Geological Survey (USGS) workshop held March 28 and 29, 2012, at the National Conservation Training Center in Shepherdstown, West Virginia. The goals of the workshop were to determine whether a detailed assessment of CO2 storage capacity in unconventional reservoirs is warranted, and if so, to build a set of recommendations that could be used to develop a methodology to assess this storage capacity. Such an assessment would address only the technically available resource, independent of economic or policy factors. At the end of the workshop, participants agreed that sufficient knowledge exists to allow an assessment of the potential CO2 storage resource in coals, organic-rich shales, and basalts. More work remains to be done before the storage resource in ultramafic rocks can be meaningfully assessed.

  11. Associations Between Positive Body Image, Sexual Liberalism, and Unconventional Sexual Practices in U.S. Adults.

    Science.gov (United States)

    Swami, Viren; Weis, Laura; Barron, David; Furnham, Adrian

    2017-11-01

    While studies have documented robust relationships between body image and sexual health outcomes, few studies have looked beyond sexual functioning in women. Here, we hypothesized that more positive body image would be associated with greater sexual liberalism and more positive attitudes toward unconventional sexual practices. An online sample of 151 women and 164 men from the U.S. completed measures of sexual liberalism, attitudes toward unconventional sexual practices, and indices of positive body image (i.e., body appreciation, body acceptance by others, body image flexibility, and body pride), and provided their demographic details. Regression analyses indicated that, once the effects of sexual orientation, relationship status, age, and body mass index had been accounted for, higher body appreciation was significantly associated with greater sexual liberalism in women and men. Furthermore, higher body appreciation and body image flexibility were significantly associated with more positive attitudes toward unconventional sexual practices in women and men. These results may have implications for scholars working from a sex-positive perspective, particularly in terms of understanding the role body image plays in sexual attitudes and behaviors.

  12. Uranium in fossil bones

    International Nuclear Information System (INIS)

    Koul, S.L.

    1978-01-01

    An attempt has been made to determine the uranium content and thus the age of certain fossil bones Haritalyangarh (Himachal Pradesh), India. The results indicate that bones rich in apatite are also rich in uranium, and that the radioactivity is due to radionuclides in the uranium series. The larger animals apparently have a higher concentration of uranium than the small. The dating of a fossil jaw (elephant) places it in the Pleistocene. (Auth.)

  13. The Roles of Discourse, Legitimacy and Power in Enabling and Hindering Institutional Change towards Sustainability : A dissertation submitted in partial fulfillment of the requirements for the degree of PHD in business administration and docteur en sciences de gestion de l'école doctorale EM2P - économie, management, mathématiques et physique n° 405 from Essec Business School

    OpenAIRE

    Etchanchu, Helen

    2016-01-01

    Despite increasing awareness and agreements to mitigate climate change, countries are slow to decrease their fossil fuel consumption. For example, the global financial crisis in 2008 led to a fall of natural gas consumption in OECD countries. However, the exploitation of unconventional hydrocarbon resources, such as shale gas, in the United States has significantly increased gas consumption again, showing strong economic, environmental, and political implications that challenge the energy sec...

  14. The GB/3D Type Fossils Online Web Portal

    Science.gov (United States)

    McCormick, T.; Howe, M. P.

    2013-12-01

    fossils which can be used in education and public outreach. The audience for the web portal includes both professional paleontologists and the general public. The professional paleontologist can use the portal to discover the whereabouts of the type material for a taxon they are studying, and can use the pictures and 3d models to assess the completeness and preservation quality of the material. This may reduce or negate the need to send specimens (which are often fragile and always irreplaceable) to researchers through the post, or for researchers to make possibly long, expensive and environmentally damaging journeys to visit far-off collections. We hope that the pictures and 3d models will help to stimulate public interest in paleontology and natural history. The ability to digitally image and scan specimens in 3d enables institutions to have an archive record in case specimens are lost or destroyed by accident or warfare. Recent events in Cairo and Baghdad remind us that museum collections are vulnerable to civil and military strife.

  15. A Conceptual Design and Analysis Method for Conventional and Unconventional Airplanes

    NARCIS (Netherlands)

    Elmendorp, R.J.M.; Vos, R.; La Rocca, G.

    2014-01-01

    A design method is presented that has been implemented in a software program to investigate the merits of conventional and unconventional transport airplanes. Design and analysis methods are implemented in a design tool capable of creating a conceptual design based on a set of toplevel requirements.

  16. Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling

    International Nuclear Information System (INIS)

    Patra, Moumita; Maiti, Santanu K.

    2017-01-01

    We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.

  17. Unconventional low-field magnetic response of a diffusive ring with spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in

    2017-01-30

    We report an unconventional behavior of electron transport in the limit of zero magnetic flux in a one-dimensional disordered ring, be it completely random or any correlated one, subjected to Rashba spin–orbit (SO) coupling. It exhibits much higher circulating current compared to a fully perfect ring for a wide range of SO coupling yielding larger electrical conductivity which is clearly verified from our Drude weight analysis. - Highlights: • Unconventional behavior of electron transport in a 1D disordered ring is reported. • Interplay between Rashba So interaction and disorder is discussed. • Disordered ring provides much higher current compared to a perfect one. • Results are independent with disorderness, be it correlated or random. • MI transition and selective switching effects are discussed.

  18. Etiological classifications of transient ischemic attacks: subtype classification by TOAST, CCS and ASCO--a pilot study.

    Science.gov (United States)

    Amort, Margareth; Fluri, Felix; Weisskopf, Florian; Gensicke, Henrik; Bonati, Leo H; Lyrer, Philippe A; Engelter, Stefan T

    2012-01-01

    In patients with transient ischemic attacks (TIA), etiological classification systems are not well studied. The Trial of ORG 10172 in Acute Stroke Treatment (TOAST), the Causative Classification System (CCS), and the Atherosclerosis Small Vessel Disease Cardiac Source Other Cause (ASCO) classification may be useful to determine the underlying etiology. We aimed at testing the feasibility of each of the 3 systems. Furthermore, we studied and compared their prognostic usefulness. In a single-center TIA registry prospectively ascertained over 2 years, we applied 3 etiological classification systems. We compared the distribution of underlying etiologies, the rates of patients with determined versus undetermined etiology, and studied whether etiological subtyping distinguished TIA patients with versus without subsequent stroke or TIA within 3 months. The 3 systems were applicable in all 248 patients. A determined etiology with the highest level of causality was assigned similarly often with TOAST (35.9%), CCS (34.3%), and ASCO (38.7%). However, the frequency of undetermined causes differed significantly between the classification systems and was lowest for ASCO (TOAST: 46.4%; CCS: 37.5%; ASCO: 18.5%; p CCS, and ASCO, cardioembolism (19.4/14.5/18.5%) was the most common etiology, followed by atherosclerosis (11.7/12.9/14.5%). At 3 months, 33 patients (13.3%, 95% confidence interval 9.3-18.2%) had recurrent cerebral ischemic events. These were strokes in 13 patients (5.2%; 95% confidence interval 2.8-8.8%) and TIAs in 20 patients (8.1%, 95% confidence interval 5.0-12.2%). Patients with a determined etiology (high level of causality) had higher rates of subsequent strokes than those without a determined etiology [TOAST: 6.7% (95% confidence interval 2.5-14.1%) vs. 4.4% (95% confidence interval 1.8-8.9%); CSS: 9.3% (95% confidence interval 4.1-17.5%) vs. 3.1% (95% confidence interval 1.0-7.1%); ASCO: 9.4% (95% confidence interval 4.4-17.1%) vs. 2.6% (95% confidence interval

  19. Multi-criteria decision analysis of energy system transformation pathways: A case study for Switzerland

    International Nuclear Information System (INIS)

    Volkart, Kathrin; Weidmann, Nicolas; Bauer, Christian; Hirschberg, Stefan

    2017-01-01

    Two recent political decisions are expected to frame the development of the Swiss energy system in the coming decades: the nuclear phase-out and the greenhouse gas (GHG) emission reduction target. To accomplish both of them, low-carbon technologies based on renewable energy and Carbon Capture and Storage (CCS) are expected to gain importance. The objective of the present work is to support prospective Swiss energy policy-making by providing a detailed sustainability analysis of possible energy system transformation pathways. For this purpose, the results of the scenario quantification with an energy system model are coupled with multi-criteria sustainability analysis. Two climate protection and one reference scenario are addressed, and the trade-offs between the scenarios are analysed based on a set of 12 interdisciplinary indicators. Implementing a stringent climate policy in Switzerland is associated with co-benefits such as less fossil resource use, less fatalities in severe accidents in the energy sector, less societal conflicts and higher resource autonomy. The availability and implementation of CCS allows for achieving the GHG emission reduction target at lower costs, but at the expense of a more fossil fuel-based energy system. - Highlights: • Three energy system transformation pathways for Switzerland are analysed. • A set of policy-relevant sustainability indicators are quantified for each pathway. • Implementing a stringent climate policy in Switzerland is associated with co-benefits. • In the CCS scenario fossil fuel use increases, but the total system costs are lower. • Fossil-fuelled transport substantially contributes to most of the addressed criteria.

  20. Unconventional shale gas extraction: present and future affects

    OpenAIRE

    Mohajan, Haradhan

    2012-01-01

    In the 1990s the extraction of unconventional shale gas extraction increases in the USA due to national and global demand of energy. The expansion of shale gas production will provide low carbon economy, therefore it is a positive side of low greenhouse gas emissions in the atmosphere and considering the benefit sides it has been referred to as a bridging fuel. Horizontal drilling and hydraulic fracturing are the two technologies by the combination with one another; provide the potential to ...

  1. Aspects of unconventional cores for large sodium cooled power reactors; evaluation of a literature survey

    International Nuclear Information System (INIS)

    Kiefhaber, E.

    1978-10-01

    The report gives an overview of a literature study on the application of unconventional cores for sodium cooled fast reactors. Different types of unconventional cores (heterogeneous cores, pancake cores, moderated cores and others) are compared with conventional cores, which are characterized by a cylindrical geometry with two or three fissile zones surrounded by an axial and a radial blanket. The main parameters of interest in this comparison are the neutronic parameters sodium void and Doppler effect, the breeding properties and the steel damage. Consequences for the core safety and the overall plant design are also mentioned

  2. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Science.gov (United States)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  3. Offshore CCS and ocean acidification : A global long-term probabilistic cost-benefit analysis of climate change mitigation

    NARCIS (Netherlands)

    van der Zwaan, B.C.C.; Gerlagh, Reyer

    Public fear over environmental and health impacts of CO2 storage, or over potential leakage of CO2 from geological reservoirs, is among the reasons why over the past decade CCS has not yet been deployed on a scale large enough so as to meaningfully contribute to mitigate climate change. Storage of

  4. Fossil Groups as Cosmological Labs

    Science.gov (United States)

    D'Onghia, Elena

    Optical and X-ray measurements of fossil groups (FGs) suggest that they are old and relaxed systems. If FGs are assembled at higher redshift, there is enough time for intermediate-luminosity galaxies to merge, resulting in the formation of the brightest group galaxy (BGG). We carry out the first, systematic study of a large sample of FGs, the "FOssil Group Origins'' (FOGO) based on an International Time Project at the Roque de los Muchachos Observatory. For ten FOGO FGs we have been awarded time at SUZAKU Telescope to measure the temperature of the hot intragroup gas (IGM). For these systems we plan to evaluate and correlate their X-ray luminosity and X-ray temperature, Lx-Tx, optical luminosity and X-ray temperature, Lopt-Tx, and group velocity dispersion with their X-ray temperature, sigma V-Tx, as compared to the non fossil systems. By combining these observations with state-of-art cosmological hydrodynamical simulations we will open a new window into the study of the IGM and the nature of fossil systems. Our proposed work will be of direct relevance for the understanding and interpretation of data from several NASA science missions. Specifically, the scaling relations obtained from these data combined with our predictions obtained using state-of-the-art hydrodynamical simulation numerical adopting a new hydrodynamical scheme will motivate new proposal on CHANDRA X-ray telescope for fossil groups and clusters. We will additionally create a public Online Planetarium Show. This will be an educational site, containing an interactive program called: "A Voyage to our Universe''. In the show we will provide observed images of fossil groups and similar images and movies obtained from the numerical simulations showing their evolution. The online planetarium show will be a useful reference and an interactive educational tool for both students and the public.

  5. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  6. Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND

    International Nuclear Information System (INIS)

    Zhang, Shuwei; Bauer, Nico; Luderer, Gunnar; Kriegler, Elmar

    2014-01-01

    Highlights: • The augmented REMIND model is used to study the role of energy technologies under a carbon tax. • The scale and timing of fossil fuels with CCS, nuclear, and renewables are examined. • CCS is important but the window of opportunity for its deployment is limited. • The effectiveness of nuclear is strongly linked to its cost performance. • Renewable energy is a long-term mitigation option. - Abstract: In a world with the need of climate protection through emission reduction, China’s domestic mitigation will be put on the national agenda. The large-scale deployment of innovative technologies induced by climate policies is a key determinant for reducing emissions in an effective and efficient manner. A distinguishing feature of the Chinese energy sector (especially electricity generation), is that investment costs are significantly lower than in other world regions. Represented in the methodological framework of the augmented REMIND model, three promising mitigation technologies (also known as technology clusters) in the electricity sector: CCS with advanced coal-generation technologies, nuclear, and renewables are the focus of this study. The scenarios are designed to analyze the roles of these technologies and their associated economic impacts under a climate policy (i.e., a carbon tax). Our results indicate that: (1)Technology policies improving the techno-economic features of low-carbon technologies are insufficient to restrain China’s increasing emissions. (2)Carbon-pricing policies can effectively reduce emissions by making low-carbon options more competitive than conventional fossil fuel alternatives. In the global carbon tax regime framed in this paper, China’s mitigation potential is larger than that of any of other region and the peak of emissions occurs earlier (by 2020) and is 50% lower than in the BASE scenario. (3)CCS is important, but the window of opportunity for its deployment is limited to the near- to mid-term future. It

  7. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS).

    Science.gov (United States)

    Nielsen, Claus J; Herrmann, Hartmut; Weller, Christian

    2012-10-07

    This critical review addresses the atmospheric gas phase and aqueous phase amine chemistry that is relevant to potential emissions from amine-based carbon capture and storage (CCS). The focus is on amine, nitrosamine and nitramine degradation, and nitrosamine and nitramine formation processes. A comparison between the relative importance of the various atmospheric sinks for amines, nitrosamines and nitramines is presented.

  8. Evaluating the development of carbon capture and storage technologies in the United States

    International Nuclear Information System (INIS)

    van Alphen, Klaas; Noothout, Paul M.; Hekkert, Marko P.; Turkenburg, Wim C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies in the US between 2000 and 2009 and to come up with policy recommendations for technology managers that wish to accelerate the deployment of CCS. The analysis describes the successful built-up of an innovation system around CCS and pinpoints the key determinants for this achievement. However, the evaluation of the system's performance also indicates that America's leading role in the development of CCS should not be taken for granted. It shows that the large CCS R and D networks, as well as the extensive CCS knowledge base, which have been accumulated over the past decade, have not yet been valorized by entrepreneurs to explore the market for integrated CCS concepts linked to power generation. Therefore, it is argued that the build-up of the innovation system has entered a critical phase that is decisive for a further thriving development of CCS technologies in the US. This study provides a clear understanding of the current barriers to the technology's future deployment and outlines a policy strategy that (1) stimulates technological learning; (2) facilitates collaboration and coordination in CCS actor networks; (3) creates financial and market incentives for the technology; and (4) provides supportive regulation and sound communication on CCS. (author)

  9. Performance Analysis of Cold Energy Recovery from CO2 Injection in Ship-Based Carbon Capture and Storage (CCS

    Directory of Open Access Journals (Sweden)

    Hwalong You

    2014-11-01

    Full Text Available Carbon capture and storage (CCS technology is one of the practical solutions for mitigating the effects of global warming. When captured CO2 is injected into storage sites, the CO2 is subjected to a heating process. In a conventional CO2 injection system, CO2 cold energy is wasted during this heating process. This study proposes a new CO2 injection system that takes advantage of the cold energy using the Rankine cycle. The study compared the conventional system with the new CO2 injection system in terms of specific net power consumption, exergy efficiency, and life-cycle cost (LCC to estimate the economic effects. The results showed that the new system reduced specific net power consumption and yielded higher exergy efficiency. The LCC of the new system was more economical. Several cases were examined corresponding to different conditions, specifically, discharge pressure and seawater temperature. This information may affect decision-making when CCS projects are implemented.

  10. Fossil and non-fossil sources of organic carbon (OC and elemental carbon (EC in Göteborg, Sweden

    Directory of Open Access Journals (Sweden)

    S. Szidat

    2009-03-01

    Full Text Available Particulate matter was collected at an urban site in Göteborg (Sweden in February/March 2005 and in June/July 2006. Additional samples were collected at a rural site for the winter period. Total carbon (TC concentrations were 2.1–3.6 μg m−3, 1.8–1.9 μg m−3, and 2.2–3.0 μg m−3 for urban/winter, rural/winter, and urban/summer conditions, respectively. Elemental carbon (EC, organic carbon (OC, water-insoluble OC (WINSOC, and water-soluble OC (WSOC were analyzed for 14C in order to distinguish fossil from non-fossil emissions. As wood burning is the single major source of non-fossil EC, its contribution can be quantified directly. For non-fossil OC, the wood-burning fraction was determined independently by levoglucosan and 14C analysis and combined using Latin-hypercube sampling (LHS. For the winter period, the relative contribution of EC from wood burning to the total EC was >3 times higher at the rural site compared to the urban site, whereas the absolute concentrations of EC from wood burning were elevated only moderately at the rural compared to the urban site. Thus, the urban site is substantially more influenced by fossil EC emissions. For summer, biogenic emissions dominated OC concentrations most likely due to secondary organic aerosol (SOA formation. During both seasons, a more pronounced fossil signal was observed for Göteborg than has previously been reported for Zurich, Switzerland. Analysis of air mass origin using back trajectories suggests that the fossil impact was larger when local sources dominated, whereas long-range transport caused an enhanced non-fossil signal. In comparison to other European locations, concentrations of levoglucosan and other monosaccharide anhydrides were low for the urban and the rural site in the area of Göteborg during winter.

  11. Environmental costs of fossil fuel energy production

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1997-01-01

    The costs of environmental impacts caused by fossil fuel energy production are external to the energy economy and normally they are not reflected in energy prices. To determine the environmental costs associated with an energy source a detailed analysis of all environmental impacts of the complete energy cycle is required. The economic evaluation of environmental damages is presented caused by atmospheric emissions produced by fossil fuel combustion for different uses. Considering the emission factors of sulphur oxides, nitrogen oxides, dust and carbon dioxide and the economic evaluation of their environmental damages reported in literature, a range of environmental costs associated with different fossil fuels and technologies is presented. A comparison of environmental costs resulting from atmospheric emissions produced by fossil-fuel combustion for energy production shows that natural gas has a significantly higher environmental value than other fossil fuels. (R.P.)

  12. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Directory of Open Access Journals (Sweden)

    V. Ulevicius

    2016-05-01

    Full Text Available In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1 was measured by an Aerodyne aerosol chemical speciation monitor (ACSM and a source apportionment with the multilinear engine (ME-2 running the positive matrix factorization (PMF model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m−3 and black carbon (BC up to 17 µg m−3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C measurements of the elemental (EC and organic (OC carbon fractions. Non-fossil organic carbon (OCnf was the dominant fraction of PM1, with the primary (POCnf and secondary (SOCnf fractions contributing 26–44 % and 13–23 % to the total carbon (TC, respectively. 5–8 % of the TC had a primary fossil origin (POCf, whereas the contribution of fossil secondary organic carbon (SOCf was 4–13 %. Non-fossil EC (ECnf and fossil EC (ECf ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  13. Traversing the mountaintop: world fossil fuel production to 2050.

    Science.gov (United States)

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  14. Assessing innovation in emerging energy technologies: Socio-technical dynamics of carbon capture and storage (CCS) and enhanced geothermal systems (EGS) in the USA

    International Nuclear Information System (INIS)

    Stephens, Jennie C.; Jiusto, Scott

    2010-01-01

    This study applies a socio-technical systems perspective to explore innovation dynamics of two emerging energy technologies with potential to reduce greenhouse gas emissions from electrical power generation in the United States: carbon capture and storage (CCS) and enhanced geothermal systems (EGS). The goal of the study is to inform sustainability science theory and energy policy deliberations by examining how social and political dynamics are shaping the struggle for resources by these two emerging, not-yet-widely commercializable socio-technical systems. This characterization of socio-technical dynamics of CCS and EGS innovation includes examining the perceived technical, environmental, and financial risks and benefits of each system, as well as the discourses and actor networks through which the competition for resources - particularly public resources - is being waged. CCS and EGS were selected for the study because they vary considerably with respect to their social, technical, and environmental implications and risks, are unproven at scale and uncertain with respect to cost, feasibility, and life-cycle environmental impacts. By assessing the two technologies in parallel, the study highlights important social and political dimensions of energy technology innovation in order to inform theory and suggest new approaches to policy analysis.

  15. Investigation of droplet nucleation in CCS relevant systems - design and testing of the expansion chamber

    Science.gov (United States)

    Čenský, Miroslav; Hrubý, Jan; Vinš, Václav; Hykl, Jiří; Šmíd, Bohuslav

    2018-06-01

    A unique in-house designed experimental apparatus for investigation of nucleation of droplets in CCS relevant systems is being developed by the present team. The apparatus allows simulating various processes relevant to CCS technologies. Gaseous mixtures with CO2 are prepared in a Mixture Preparation Device (MPD) based on accurate adjustment of flow rates of individual components [EPJ Web of Conferences 143, 02140 (2017)]. The mixture then flows into an expansion chamber, where it undergoes a rapid adiabatic expansion. As a consequence of adiabatic cooling, the mixture becomes supersaturated and nucleation and simultaneous growth of droplets occurs. In this study, we describe the design and testing of the expansion part of the experimental setup. The rapid expansion was realized using two valve systems, one for low pressures (up to 0.7 MPa) and the other for high pressures (up to 10 MPa). A challenge for a proper design of the expansion system is avoiding acoustic oscillations. These can occur either in the mode of Helmholtz resonator, where the compressible gas in the chamber acts as a spring and the rapidly moving gas in the valve system as a mass, or in the "flute" mode, where acoustic waves are generated in a long outlet tubing.

  16. Fossil fuel support mechanisms in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Fossil fuel subsidies and other state support for fossil fuels are forbidden by the Kyoto Protocol and other international treaties. However, they are still commonly used. This publication presents and analyses diverse state support mechanisms for fossil fuels in Finland in 2003-2010. Total of 38 support mechanisms are covered in quantitative analysis and some other mechanisms are mentioned qualitatively only. For some mechanisms the study includes a longer historical perspective. This is the case for tax subsidies for crude oil based traffic fuels that have been maintained in Finland since 1965.

  17. An International Relations perspective on the global politics of carbon dioxide capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, H. [Energy research Centre of the Netherlands ECN, Unit Policy Studies, Radarweg 60, 1043 NT Amsterdam (Netherlands); Baeckstrand, K. [Department of Political Science, Lund University, P.O. Box 52, 221 00 Lund (Sweden)

    2011-05-15

    With the publication of the IPCC Special Report on Carbon dioxide Capture and Storage (CCS), CCS has emerged as a focal issue in international climate diplomacy and energy collaboration. This paper has two goals. The first goal is to map CCS activities in and among various types of intergovernmental organisations; the second goal is to apply International Relations (IR) theories to explain the growing diversity, overlap and fragmentation of international organisations dealing with CCS. Which international organisations embrace CCS, and which refrain from discussing it at all? What role do these institutions play in bringing CCS forward? Why is international collaboration on CCS so fragmented and weak? We utilise realism, liberal institutionalism and constructivism to provide three different interpretations of the complex global landscape of CCS governance in the context of the similarly complicated architecture of global climate policy. A realist account of CCS's fragmented international politics is power driven. International fossil fuel and energy organisations, dominated by major emitter states, take an active role in CCS. An interest-based approach, such as liberal institutionalism, claims that CCS is part of a 'regime complex' rather than an integrated, hierarchical, comprehensive and international regime. Such a regime complex is exemplified by the plethora of international organisations with a role in CCS. Finally, constructivism moves beyond material and interest-based interpretations of the evolution of the institutionally fragmented architecture of global CCS governance. The 2005 IPCC Special Report on CCS demonstrates the pivotal role that ideas, norms and scientific knowledge have played in transforming the preferences of the international climate-change policy community.

  18. Fossil power plant automation

    International Nuclear Information System (INIS)

    Divakaruni, S.M.; Touchton, G.

    1991-01-01

    This paper elaborates on issues facing the utilities industry and seeks to address how new computer-based control and automation technologies resulting from recent microprocessor evolution, can improve fossil plant operations and maintenance. This in turn can assist utilities to emerge stronger from the challenges ahead. Many presentations at the first ISA/EPRI co-sponsored conference are targeted towards improving the use of computer and control systems in the fossil and nuclear power plants and we believe this to be the right forum to share our ideas

  19. Influencing attitudes toward carbon capture and sequestration: a social marketing approach.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Dowlatabadi, Hadi; McDaniels, Tim; Ray, Isha

    2011-08-15

    Carbon capture and sequestration (CCS), while controversial, is seen as promising because it will allow the United States to continue using its vast fossil fuel resources in a carbon-constrained world. The public is an important stakeholder in the national debate about whether or not the U.S. should include CCS as a significant part of its climate change strategy. Understanding how to effectively engage with the public about CCS has become important in recent years, as interest in the technology has intensified. We argue that engagement efforts should be focused on places where CCS will first be deployed, i.e., places with many "energy veteran" (EV) citizens. We also argue that, in addition to information on CCS, messages with emotional appeal may be necessary in order to engage the public. In this paper we take a citizen-guided social marketing approach toward understanding how to (positively or negatively) influence EV citizens' attitudes toward CCS. We develop open-ended interview protocols, and a "CCS campaign activity", for Wyoming residents from Gillette and Rock Springs. We conclude that our participants believed expert-informed CCS messages, embedded within an emotionally self-referent (ESR) framework that was relevant to Wyoming, to be more persuasive than the expert messages alone. The appeal to core values of Wyomingites played a significant role in the citizen-guided CCS messages.

  20. Unconventional superconductors. Anisotropy and multiband effects

    Energy Technology Data Exchange (ETDEWEB)

    Askerzade, Iman [Ankara Univ. (Turkey). Center of Excellence of Superconductivity Research of Turkey; Azerbaijan National Academy of Sciences (Azerbaijan). Inst. of Physics

    2012-07-01

    This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approaches and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers. (orig.)

  1. Unconventional superconductors anisotropy and multiband effects

    CERN Document Server

    Askerzade, Iman

    2012-01-01

    This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel  superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approachs and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant  new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers.

  2. Progress of fossil fuel science

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  3. Fossil energy and food security

    International Nuclear Information System (INIS)

    Folke, G.

    2001-01-01

    To fulfil the basic goal of delivering food for the tables of the citizens, modern Western agriculture is extremely dependent on supporting material flows, infrastructure, and fossil energy. According to several observers, fossil fuel production is about to peak, i.e., oil extraction is no longer capable of keeping pace with the increasing demand. This situation may trigger an unprecedented increase in fossil energy prices, which may make the current highly energy dependent food production-distribution system highly vulnerable. The paper starts with a survey of this vulnerability. Also, the supply of phosphorus, a key factor in agriculture, may be at stake under such circumstances. The paper analyses this situation and discusses settlement structures integrated with agriculture that might increase food security by reducing energy demands. In the proposed ideal societal structure, agriculture is integrated with settlements and most of the food needed by the population is produced locally, and the nutrients for food production are recycled from households and animals by means of biological processes demanding considerably less mechanical investment and fossil support energy than the conventional type of agriculture. The vulnerability of this structure would be considerably lower, than that of the current system. (author)

  4. CO2 emission standards and investment in carbon capture

    International Nuclear Information System (INIS)

    Eide, Jan; Sisternes, Fernando J. de; Herzog, Howard J.; Webster, Mort D.

    2014-01-01

    Policy makers in a number of countries have proposed or are considering proposing CO 2 emission standards for new fossil fuel-fired power plants. The proposed standards require coal-fired power plants to have approximately the same carbon emissions as an uncontrolled natural gas-fired power plant, effectively mandating the adoption of carbon capture and sequestration (CCS) technologies for new coal plants. However, given the uncertainty in the capital and operating costs of a commercial scale coal plant with CCS, the impact of such a standard is not apparent a priori. We apply a stochastic generation expansion model to determine the impact of CO 2 emission standards on generation investment decisions, and in particular for coal plants with CCS. Moreover, we demonstrate how the incentive to invest in coal-CCS from emission standards depends on the natural gas price, the CO 2 price, and the enhanced oil recovery price, as well as on the level of the emission standard. This analysis is the first to consider the entire power system and at the same time allow the capture percentage for CCS plants to be chosen from a continuous range to meet the given standard at minimum cost. Previous system level studies have assumed that CCS plants capture 90% of the carbon, while studies of individual units have demonstrated the costs of carbon capture over a continuous range. We show that 1) currently proposed levels of emission standards are more likely to shift fossil fuel generation from coal to natural gas rather than to incentivize investment in CCS; 2) tighter standards that require some carbon reductions from natural gas-fired power plants are more likely than proposed standards to incentivize investments in CCS, especially on natural gas plants, but also on coal plants at high gas prices; and 3) imposing a less strict emission standard (emission rates higher than natural gas but lower than coal; e.g., 1500 lbs/MWh) is more likely than current proposals to incentivize

  5. Zinc recovery from the water-jacket furnace flue dusts by leaching and electrowinning in a SEC-CCS cell

    CSIR Research Space (South Africa)

    Mukongo, T

    2009-01-01

    Full Text Available electrolysis in a symmetric electrolysis current–continuous circulating system, SEC-CCS. Electrolysis current efficiency higher than 94% and 3.5 kWh/ kg of specific energy consumption was achieved under 500–600 A/m2 at 35 to 40 °C in the presence of gelatine....

  6. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  7. Supply of fossil heating and motor fuels

    International Nuclear Information System (INIS)

    Kaegi, W.; Siegrist, S.; Schaefli, M.; Eichenberger, U.

    2003-01-01

    This comprehensive study made for the Swiss Federal Office of Energy (SFOE) within the framework of the Energy Economics Fundamentals research programme examines if it can be guaranteed that Swiss industry can be supplied with fossil fuels for heating and transport purposes over the next few decades. The results of a comprehensive survey of literature on the subject are presented, with a major focus being placed on oil. The study examines both pessimistic and optimistic views and also presents an overview of fossil energy carriers and the possibilities of substituting them. Scenarios and prognoses on the availability of fossil fuels and their reserves for the future are presented. Also, new technologies for exploration and the extraction of fossil fuels are discussed, as are international interdependencies that influence supply. Market and price scenarios are presented that take account of a possible increasing scarcity of fossil fuels. The implications for industry and investment planning are examined

  8. Acceptability of CO2 capture and storage. A review of legal, regulatory, economic and social aspects of CO2 capture and storage

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Groenenberg, H.; Anderson, J.; Curnow, P.; Flach, T.; Flagstad, O.A.; Norton, C.; Reiner, D.; Shackley, S.

    2006-05-01

    bridging option, energy use of CO2 capture, global storage capacity estimates, availability of fossil fuels, and the environmental externalities of fossil fuel use (Chapter 6). Each review of the topics leads to a number of questions and gaps in knowledge that remain unresolved, and that are summarised in the 'preliminary gap analysis' (Section 7). The analysis has served as a basis for further discussion of these issues in a stakeholder workshop, held on April 25 and 26, 2006, in Gent (Belgium). The participants of the workshop represented a broad range of stakeholders, including government, oil industry, electricity industry, academia, and environmental NGOs. The workshop notably did not attempt to reach consensus on the topics discussed, but merely meant to flag controversies and develop a common language among the diversity of attendants. The discussions were grouped into three main topics: CCS in the energy system, public perception, and regulation. The major conclusions are summarised in Chapter 8

  9. Making ''unconventional'' energy resources conventional

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, D A; Bresee, J C; Cooper, M J; Herwig, L O; Kintner, E E

    1977-01-01

    Three ''unconventional'' energy technologies - geothermal, solar and fusion - looked upon in the United States as possessing significant potential for the large scale production of energy. Both fusion and solar energy promise virtually inexhaustible supplies in the long term while geothermal resources offer a relatively near term prospect for more modest, but still significant, energy contributions. Realizing energy production from any of these technologies will require: (1) a great deal of scientific information and/or engineering development; (2) a significant effort to achieve and insure attractive economics; and (3) the development of adequate industrial capacity and technological infrastructure. Here the status of the United States Energy Research and Development Administration's technology development programs in geothermal, solar and fusion energy systems is reviewed. Recent advances in overcoming significant technological barriers are discussed and future directions are described. Special needs and unique opportunities for contributions to each technology are also set forth.

  10. Unconventional neurotransmitters, neurodegeneration and neuroprotection

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2009-01-01

    Full Text Available Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

  11. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  12. Using extant taxa to inform studies of fossil footprints

    Science.gov (United States)

    Falkingham, Peter; Gatesy, Stephen

    2016-04-01

    Attempting to use the fossilized footprints of extinct animals to study their palaeobiology and palaeoecology is notoriously difficult. The inconvenient extinction of the trackmaker makes direct correlation between footprints and foot far from straightforward. However, footprints are the only direct evidence of vertebrate motion recorded in the fossil record, and are potentially a source of data on palaeobiology that cannot be obtained from osteological remains alone. Our interests lie in recovering information about the movements of dinosaurs from their tracks. In particular, the Hitchcock collection of early Jurassic tracks held at the Beneski Museum of Natural History, Amherst, provide a rare look into the 3D form of tracks at and below the surface the animal walked on. Breaking naturally along laminations into 'track books', the specimens present sediment deformation at multiple levels, and in doing so record more of the foot's motion than a single surface might. In order to utilize this rich information source to study the now extinct trackmakers, the process of track formation must be understood at a fundamental level; the interaction of the moving foot and compliant substrate. We used bi-planar X-ray techniques (X-ray Reconstruction of Moving Morphology) to record the limb and foot motions of a Guineafowl traversing both granular and cohesive substrates. This data was supplemented with photogrammetric records of the resultant track surfaces, as well as the motion of metal beads within the sediment, to provide a full experimental dataset of foot and footprint formation. The physical experimental data was used to generate computer simulations of the process using high performance computing and the Discrete Element Method. The resultant simulations showed excellent congruence with reality, and enabled visualization within the sediment volume, and throughout the track-forming process. This physical and virtual experimental set-up has provided major insight into

  13. Fossil evidence of the zygomycetous fungi

    NARCIS (Netherlands)

    Krings, M.; Taylor, T.N.; Dotzler, N.

    2013-01-01

    Molecular clock data indicate that the first zygomycetous fungi occurred on Earth during the Precambrian, however, fossil evidence of these organisms has been slow to accumulate. In this paper, the fossil record of the zygomycetous fungi is compiled, with a focus on structurally preserved

  14. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa.

    Science.gov (United States)

    Wiens, John J; Kuczynski, Caitlin A; Townsend, Ted; Reeder, Tod W; Mulcahy, Daniel G; Sites, Jack W

    2010-12-01

    Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.

  15. Fossil fuel usage and the environment

    International Nuclear Information System (INIS)

    Klass, D.L.

    1991-01-01

    The Greenhouse Effect and global warming, ozone formation in the troposphere, ozone destruction in the stratosphere, and acid rain are important environmental issues. The relationship of fossil fuel usage to some of these issues is discussed. Data on fossil fuel consumption and the sources and sinks of carbon dioxide, carbon monoxide, methane, nitrogen and sulfur oxides, and ozone indicate that natural gas provides lower emissions of carbon dioxide, carbon monoxide, and nitrogen and sulfur oxides than other fossil fuels. Global emissions of methane from the gas industry are significantly less than those from other anthropogenic activities and natural sources, and methane plays an important role along with carbon monoxide and nitric oxide in tropospheric ozone formation. Reductions in any or all of these air pollutants would reduce ozone in the lower atmosphere. Several remedial measures have been or are being implemented in certain countries to reduce fossil fuel emissions. These include removal of emissions from the atmosphere by new biomass growth, fuel substitution by use of cleaner burning fuels for stationary and mobile sources, and fossil fuel combustion at higher efficiencies. It is unlikely that concerted environmental action by all governments of the world will occur soon, but much progress has been made to achieve clean air

  16. Primate diversification inferred from phylogenies and fossils.

    Science.gov (United States)

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  17. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials

    Directory of Open Access Journals (Sweden)

    Petre Badica, Adrian Crisan, Gheorghe Aldica, Kazuhiro Endo, Hanna Borodianska, Kazumasa Togano, Satoshi Awaji, Kazuo Watanabe, Yoshio Sakka and Oleg Vasylkiv

    2011-01-01

    Full Text Available Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering, nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  18. A survey on the public perception of CCS in France

    International Nuclear Information System (INIS)

    Minh, Ha-Duong; Campos, A.S.; Nadai, A.

    2007-12-01

    An awareness and opinion survey on Carbon Capture and Storage was conducted on a representative sample of French aged 15 years and above. About 6% of respondents were able to provide a satisfying definition of the technology. The key question about 'approval of or opposition to' the use of CCS in France was asked twice, first after presenting the technology, then after exposing the potential adverse consequences. Approval rates, 59% and 38%, show that there is no a priori rejection of the technology, but public trust needs to be build. The sample was split in two to test for a semantic effect: questioning one half about 'Stockage' (English: storage), the other about 'Sequestration'. Manipulating the vocabulary had no statistically significant effect on approval rates. Stockage is more meaningful, but does not convey the idea of permanent monitoring. (authors)

  19. Using Strong Gravitational Lensing to Identify Fossil Group Progenitors

    Science.gov (United States)

    Johnson, Lucas E.; Irwin, Jimmy A.; White, Raymond E., III; Wong, Ka-Wah; Maksym, W. Peter; Dupke, Renato A.; Miller, Eric D.; Carrasco, Eleazar R.

    2018-04-01

    Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z fossil criteria within the look forward time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong-lensing events with the goal of determining whether lensing systems have any predisposition to being fossil systems or progenitors. We find that ∼13% of lensing groups are identified as traditional fossils while only ∼3% of nonlensing control groups are. We also find that ∼23% of lensing systems are traditional fossil progenitors compared to ∼17% for the control sample. Our findings show that strong-lensing systems are more likely to be fossil/pre-fossil systems than comparable nonlensing systems. Cumulative galaxy luminosity functions of the lensing and nonlensing groups also indicate a possible, fundamental difference between strong-lensing and nonlensing systems’ galaxy populations, with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.

  20. Developments in fossil fuel electricity generation

    International Nuclear Information System (INIS)

    Williams, A.; Argiri, M.

    1993-01-01

    A major part of the world's electricity is generated by the combustion of fossil fuels, and there is a significant environmental impact due to the production of fossil fuels and their combustion. Coal is responsible for 63% of the electricity generated from fossil fuels; natural gas accounts for about 20% and fuel oils for 17%. Because of developments in supply and improvements in generating efficiencies there is apparently a considerable shift towards a greater use of natural gas, and by the year 2000 it could provide 25% of the world electricity output. At the same time the amount of fuel oil burned will have decreased. The means to minimize the environmental impact of the use of fossil fuels, particularly coal, in electricity production are considered, together with the methods of emission control. Cleaner coal technologies, which include fluidized bed combustion and an integrated gasification combined cycle (IGCC), can reduce the emissions of NO x , SO 2 and CO 2 . (author)

  1. OKLO: fossil reactors

    International Nuclear Information System (INIS)

    Naudet, R.

    Events leading up to the discovery during the summer of 1972 of the Oklo fossil reactor in Gabon and its subsequent exploration are reviewed. Results of studies are summarized; future investigations are outlined

  2. Communicating CCS. Effects of text-only and text-and-visual depictions of CO2 storage on risk perceptions and attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; De Best-Waldhober, M.; Brouwer, A.S. [ECN Policy Studies, Amsterdam (Netherlands); Riesch, H.; Reiner, D. [Cambridge University, Cambridge (United Kingdom)

    2013-05-01

    This experiment aims to increase understanding of the conditions under which combining textual and visual information on CO2 storage fosters comprehension of the technology. Specifically, it is investigated if and how precision in indicating the depth of CO2 injection in either text, visual, or combinations thereof influence estimates of CO2 injection depth and how this in turn influences perceived safety of and attitude towards CO2 injection. We used a 3x3 experimental design with two factors, resulting in 9 conditions: Textual description of depth of injection (absent, ambiguous, precise) X visualization of depth (absent, ambiguous, precise). Three texts were developed explaining the background and process of CCS. They were similar in every respect except for the accuracy of indication of depth: Absent ( 'underground'); Ambiguous ('deep underground'); Precise ('1,000 meters or deeper underground'). Three visual conditions were developed displaying the depth of CO2 injection. They were similar in every respect except for the accuracy of indication of depth: Absent (no visual displayed); Ambiguous (visual not to scale, injection obviously too shallow); Precise (visual to scale). Respondents were a representative sample of the adult UK population (n = 429). Each of them received one of the nine conditions, followed by a short questionnaire. Results indicate that estimates of depth are generally most accurate in text-only conditions and least accurate in visual-only conditions. Interestingly, the condition in which people are given no information about depth at all scores in-between with a mean estimate of 869 meters. Regarding textual depictions of CO2 injection depth, results indicate that the more precise indication of depth in the text the better respondents' estimate of depth, but this effect is only found for respondents who enjoy reading text. Regarding visual depictions of CO2 injection, results indicate that the presence of a visual worsens respondents

  3. Organic preservation of fossil musculature with ultracellular detail.

    Science.gov (United States)

    McNamara, Maria; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2010-02-07

    The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invariably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether such tissues can be preserved with similar morphological fidelity as organic remains, except when enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old salamander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarcolemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil tissues and their counterparts in extant amphibians reflect limited degradation during fossilization. Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved tissues in the Eocene Grube Messel biota.

  4. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    Science.gov (United States)

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Philippines targeting unconventional sources for uranium

    International Nuclear Information System (INIS)

    Reyes, R.

    2014-01-01

    The quest for uranium in the Philippines dates back in the mid–1950s and to date about 70% of the country has been systematically explored, from reconnaissance to some detailed level using the combined radiometric and geochemical survey methods. However, no major uranium deposit has been discovered so far, only some minor mineralization. Also, there is a general view that the geological environment of the Philippines is unfavourable for uranium based on the lack of similarity between the geological features of known uranium–producing districts around the world and that of the country. It is in this light that the search for uranium in the country shifted to unconventional sources. The first unconventional source of uranium (U) that is being looked into is from rare earth elements (REE)–thorium (Th) minerals. Radiometric measurements along the beaches in northern Palawan identified major REE–Th and minor U potential areas. Heavy beach and stream panned concentrate gave high values of REE and Th, including U within the Ombo and Erawan coastal areas. Preliminary evaluation conducted in these two prospective areas indicated; 1) in the Ombo area, an estimated reserve of 750 t of Th, 30,450 t of REE and 80 t of U contained in about 540,000 t of beach sand with a respective average grade of 0.14% Th, 5.64% REE and 0.015% U, and 2) in the Erawan area, an estimated total reserve of 2,200 t of Th, 113,430 t of REE and 150 t U contained in 2,450,00 t of beach sand with an average grade of 0.09% Th, 4.63% REE and 0.006% U, respectively. Major allanite and minor monazite are the minerals identified and the source of these heavy minerals is the Tertiary Kapoas granitic intrusive rocks. Another unconventional source is a base metal zone with numerous occurrences containing complex assemblages of Cu–Mo–U within the Larap–Paracale mineralized district in Camarines Norte province, in which uranium may be produced as a by–product. A private mining company conducted

  6. Taxing fossil fuels under speculative storage

    International Nuclear Information System (INIS)

    Tumen, Semih; Unalmis, Deren; Unalmis, Ibrahim; Unsal, D. Filiz

    2016-01-01

    Long-term environmental consequences of taxing fossil fuel usage have been extensively studied in the literature. However, these taxes may also impose several short-run macroeconomic policy challenges, the nature of which remains underexplored. This paper investigates the mechanisms through which environmental taxes on fossil fuel usage can affect the main macroeconomic variables in the short-run. We concentrate on a particular mechanism: speculative storage. Formulating and using a dynamic stochastic general equilibrium (DSGE) model, calibrated for the United States, with an explicit storage facility and nominal rigidities, we show that in designing environmental tax policies it is crucial to account for the fact that fossil fuel prices are subject to speculation. The existence of forward-looking speculators in the model improves the effectiveness of tax policies in reducing fossil fuel usage. Improved policy effectiveness, however, is costly: it drives inflation and interest rates up, while impeding output. Based on this tradeoff, we seek an answer to the question how monetary policy should interact with environmental tax policies in our DSGE model of fossil fuel storage. We show that, in an environment with no speculative storers, monetary policy should respond to output along with CPI inflation in order to minimize the welfare losses brought by taxes. However, when the storage facility is activated, responding to output in the monetary policy rule becomes less desirable.

  7. Perinatal outcomes and unconventional natural gas operations in Southwest Pennsylvania.

    Directory of Open Access Journals (Sweden)

    Shaina L Stacy

    Full Text Available Unconventional gas drilling (UGD has enabled extraordinarily rapid growth in the extraction of natural gas. Despite frequently expressed public concern, human health studies have not kept pace. We investigated the association of proximity to UGD in the Marcellus Shale formation and perinatal outcomes in a retrospective cohort study of 15,451 live births in Southwest Pennsylvania from 2007-2010. Mothers were categorized into exposure quartiles based on inverse distance weighted (IDW well count; least exposed mothers (first quartile had an IDW well count less than 0.87 wells per mile, while the most exposed (fourth quartile had 6.00 wells or greater per mile. Multivariate linear (birth weight or logistical (small for gestational age (SGA and prematurity regression analyses, accounting for differences in maternal and child risk factors, were performed. There was no significant association of proximity and density of UGD with prematurity. Comparison of the most to least exposed, however, revealed lower birth weight (3323 ± 558 vs 3344 ± 544 g and a higher incidence of SGA (6.5 vs 4.8%, respectively; odds ratio: 1.34; 95% confidence interval: 1.10-1.63. While the clinical significance of the differences in birth weight among the exposure groups is unclear, the present findings further emphasize the need for larger studies, in regio-specific fashion, with more precise characterization of exposure over an extended period of time to evaluate the potential public health significance of UGD.

  8. Perinatal outcomes and unconventional natural gas operations in Southwest Pennsylvania.

    Science.gov (United States)

    Stacy, Shaina L; Brink, LuAnn L; Larkin, Jacob C; Sadovsky, Yoel; Goldstein, Bernard D; Pitt, Bruce R; Talbott, Evelyn O

    2015-01-01

    Unconventional gas drilling (UGD) has enabled extraordinarily rapid growth in the extraction of natural gas. Despite frequently expressed public concern, human health studies have not kept pace. We investigated the association of proximity to UGD in the Marcellus Shale formation and perinatal outcomes in a retrospective cohort study of 15,451 live births in Southwest Pennsylvania from 2007-2010. Mothers were categorized into exposure quartiles based on inverse distance weighted (IDW) well count; least exposed mothers (first quartile) had an IDW well count less than 0.87 wells per mile, while the most exposed (fourth quartile) had 6.00 wells or greater per mile. Multivariate linear (birth weight) or logistical (small for gestational age (SGA) and prematurity) regression analyses, accounting for differences in maternal and child risk factors, were performed. There was no significant association of proximity and density of UGD with prematurity. Comparison of the most to least exposed, however, revealed lower birth weight (3323 ± 558 vs 3344 ± 544 g) and a higher incidence of SGA (6.5 vs 4.8%, respectively; odds ratio: 1.34; 95% confidence interval: 1.10-1.63). While the clinical significance of the differences in birth weight among the exposure groups is unclear, the present findings further emphasize the need for larger studies, in regio-specific fashion, with more precise characterization of exposure over an extended period of time to evaluate the potential public health significance of UGD.

  9. How to access and exploit natural resources sustainably: petroleum biotechnology.

    Science.gov (United States)

    Sherry, Angela; Andrade, Luiza; Velenturf, Anne; Christgen, Beate; Gray, Neil D; Head, Ian M

    2017-09-01

    As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially-mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Unconventional superconductivity in magic-angle graphene superlattices

    Science.gov (United States)

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-01

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°—the first ‘magic’ angle—the electronic band structure of this ‘twisted bilayer graphene’ exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature–carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high

  11. Important accounting issues for carbon dioxide capture and storage projects under the UNFCCC

    International Nuclear Information System (INIS)

    Haefeli, S.; Bosi, M.; Philibert, C.

    2005-01-01

    Carbon dioxide capture and storage (CCS) provides options for making continued use of fossil fuels more compatible with pollution abatement policies. This paper evaluated policy issues related to CCS, with particular focus on the geological sequestration of carbon dioxide (CO 2 ) into geological storage sites. Before any carbon dioxide (CO 2 ) CCS activities can be included in the portfolio of climate change mitigation activities, several issues need to be resolved such as the development of appropriate accounting and baselines rules and monitoring modalities. Guidance and policies on baselines and the accounting of emission reductions are critical to ensure that CCS projects can benefit from CO 2 markets and are recognized under various mitigation schemes. This paper examined the major issues that should considered along with changes to current accounting approaches. Issues that need to be addressed in order to prepare national inventories for the inclusion of CCS under the United Nations Framework Convention on Climate Change (UNFCCC) and emission reduction schemes such as the European greenhouse gas emissions trading scheme were first presented, followed by an examination of CCS issues under project-based mechanisms such as the Kyoto Protocol's Clean Development Mechanism. The importance of clear definitions and monitoring guidelines for the proper accounting of CCS were also highlighted. 12 refs., 2 figs

  12. ''No smoking''. CO2-low power generation in a sustainable German energy system. A comparison of CO2 abatement costs of renewable energy sources and carbon capture and storage

    International Nuclear Information System (INIS)

    Trittin, Tom

    2012-05-01

    Significant reduction of CO 2 -emissions is essential in order to prevent a worsening of ongoing climate change. This thesis analyses two different pathways for the mitigation of CO 2 -emissions in electricity generation. It focuses on the calculation of CO 2 -mitigation costs of renewable energy sources (RES) as well as of power plants with carbon capture and storage (CCS). Under the frame of long-term CO 2 reductions targets for the German electricity sector future CO 2 -mitigation costs are calculated on a system-based and a technology-based approach. The calculations show that RES have lower system-based mitigation costs in all scenarios compared to a system based on CCS. If the retrofit of power plants is taken into consideration, the results are even more clearly in favour of RES. Further, the thesis investigates whether CCS can serve as a bridge towards a sustainable energy system based on RES. Findings of different scientific disciplines suggest that CCS is not the optimal choice. These findings lead to the conclusion that CCS cannot support an easier integration of RES. CCS rather has the potential to further strengthen the fossil pathway and delaying the large-scale integration of RES. Hence, CCS is rather unsuited as a bridging technology towards a system mainly based on RES.

  13. Investigation of droplet nucleation in CCS relevant systems – design and testing of the expansion chamber

    Directory of Open Access Journals (Sweden)

    Čenský Miroslav

    2018-01-01

    Full Text Available A unique in-house designed experimental apparatus for investigation of nucleation of droplets in CCS relevant systems is being developed by the present team. The apparatus allows simulating various processes relevant to CCS technologies. Gaseous mixtures with CO2 are prepared in a Mixture Preparation Device (MPD based on accurate adjustment of flow rates of individual components [EPJ Web of Conferences 143, 02140 (2017]. The mixture then flows into an expansion chamber, where it undergoes a rapid adiabatic expansion. As a consequence of adiabatic cooling, the mixture becomes supersaturated and nucleation and simultaneous growth of droplets occurs. In this study, we describe the design and testing of the expansion part of the experimental setup. The rapid expansion was realized using two valve systems, one for low pressures (up to 0.7 MPa and the other for high pressures (up to 10 MPa. A challenge for a proper design of the expansion system is avoiding acoustic oscillations. These can occur either in the mode of Helmholtz resonator, where the compressible gas in the chamber acts as a spring and the rapidly moving gas in the valve system as a mass, or in the “flute” mode, where acoustic waves are generated in a long outlet tubing.

  14. Two-particle self-consistent approach to unconventional superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)

    2013-07-01

    A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.

  15. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.

    Science.gov (United States)

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  16. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2016-01-01

    Full Text Available An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT actuation and electrorheological fluids (ERFs control technology is presented. The actuator consists of actuation unit (PZT stack pump, fluid control unit (ERFs valve, and execution unit (hydraulic actuator. In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  17. Recovery Act: Understanding the Impact of CO2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology

    Energy Technology Data Exchange (ETDEWEB)

    Fouke, Bruce [Univ. of Illinois, Champaign, IL (United States)

    2013-03-31

    An integrated research and teaching program was developed to provide cross--disciplinary training opportunities in the emerging field of carbon capture and storage (CCS) for geobiology students attending the University of Illinois Urbana-­Champaign (UIUC). Students from across the UIUC campus participated, including those from the departments of Geology, Microbiology, Biochemistry, Civil and Environmental Engineering, Animal Sciences and the Institute for Genomic Biology. The project took advantage of the unique opportunity provided by the drilling and sampling of the large-­scale Phase III CCS demonstration Illinois Basin - Decatur Project (IBDP) in the central Illinois Basin at nearby Decatur, Illinois. The IBPD is under the direction of the Illinois State Geological Survey (ISGS, located on the UIUC campus) and the Midwest Geological Sequestration Consortium (MGSC). The research component of this project focused on the subsurface sampling and identification of microbes inhabiting the subsurface Cambrian-­age Mt. Simon Sandstone. In addition to formation water collected from the injection and monitoring wells, sidewall rock cores were collected and analyzed to characterize the cements and diagenetic features of the host Mt. Simon Sandstone. This established a dynamic geobiological framework, as well as a comparative baseline, for future studies of how CO2 injection might affect the deep microbial biosphere at other CCS sites. Three manuscripts have been prepared as a result of these activities, which are now being finalized for submission to top-­tier international peer-­reviewed research journals. The training component of this project was structured to ensure that a broad group of UIUC students, faculty and staff gained insight into CCS issues. An essential part of this training was that the UIUC faculty mentored and involved undergraduate and graduate students, as well as postdocs and research scientists, at all stages of the project in order

  18. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    Science.gov (United States)

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  19. Unconventional oil and gas spills: Materials, volumes, and risks to surface waters in four states of the U.S.

    Science.gov (United States)

    Maloney, Kelly O; Baruch-Mordo, Sharon; Patterson, Lauren A; Nicot, Jean-Philippe; Entrekin, Sally A; Fargione, Joseph E; Kiesecker, Joseph M; Konschnik, Kate E; Ryan, Joseph N; Trainor, Anne M; Saiers, James E; Wiseman, Hannah J

    2017-03-01

    Extraction of oil and gas from unconventional sources, such as shale, has dramatically increased over the past ten years, raising the potential for spills or releases of chemicals, waste materials, and oil and gas. We analyzed spill data associated with unconventional wells from Colorado, New Mexico, North Dakota and Pennsylvania from 2005 to 2014, where we defined unconventional wells as horizontally drilled into an unconventional formation. We identified materials spilled by state and for each material we summarized frequency, volumes and spill rates. We evaluated the environmental risk of spills by calculating distance to the nearest stream and compared these distances to existing setback regulations. Finally, we summarized relative importance to drinking water in watersheds where spills occurred. Across all four states, we identified 21,300 unconventional wells and 6622 reported spills. The number of horizontal well bores increased sharply beginning in the late 2000s; spill rates also increased for all states except PA where the rate initially increased, reached a maximum in 2009 and then decreased. Wastewater, crude oil, drilling waste, and hydraulic fracturing fluid were the materials most often spilled; spilled volumes of these materials largely ranged from 100 to 10,000L. Across all states, the average distance of spills to a stream was highest in New Mexico (1379m), followed by Colorado (747m), North Dakota (598m) and then Pennsylvania (268m), and 7.0, 13.3, and 20.4% of spills occurred within existing surface water setback regulations of 30.5, 61.0, and 91.4m, respectively. Pennsylvania spills occurred in watersheds with a higher relative importance to drinking water than the other three states. Results from this study can inform risk assessments by providing improved input parameters on volume and rates of materials spilled, and guide regulations and the management policy of spills. Published by Elsevier B.V.

  20. Dental development in living and fossil orangutans.

    Science.gov (United States)

    Smith, Tanya M

    2016-05-01

    Numerous studies have investigated molar development in extant and fossil hominoids, yet relatively little is known about orangutans, the only great ape with an extensive fossil record. This study characterizes aspects of dental development, including cuspal enamel daily secretion rate, long-period line periodicities, cusp-specific molar crown formation times and extension rates, and initiation and completion ages in living and fossil orangutan postcanine teeth. Daily secretion rate and periodicities in living orangutans are similar to previous reports, while crown formation times often exceed published values, although direct comparisons are limited. One wild Bornean individual died at 4.5 years of age with fully erupted first molars (M1s), while a captive individual and a wild Sumatran individual likely erupted their M1s around five or six years of age. These data underscore the need for additional samples of orangutans of known sex, species, and developmental environment to explore potential sources of variation in molar emergence and their relationship to life history variables. Fossil orangutans possess larger crowns than living orangutans, show similarities in periodicities, and have faster daily secretion rate, longer crown formation times, and slower extension rates. Molar crown formation times exceed reported values for other fossil apes, including Gigantopithecus blacki. When compared to African apes, both living and fossil orangutans show greater cuspal enamel thickness values and periodicities, resulting in longer crown formation times and slower extension rates. Several of these variables are similar to modern humans, representing examples of convergent evolution. Molar crown formation does not appear to be equivalent among extant great apes or consistent within living and fossil members of Pongo or Homo. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.