WorldWideScience

Sample records for cc bond formation

  1. Boron-Based Catalysts for C-C Bond-Formation Reactions.

    Science.gov (United States)

    Rao, Bin; Kinjo, Rei

    2018-05-02

    Because the construction of the C-C bond is one of the most significant reactions in organic chemistry, the development of an efficient strategy has attracted much attention throughout the synthetic community. Among various protocols to form C-C bonds, organoboron compounds are not just limited to stoichiometric reagents, but have also made great achievements as catalysts because of the easy modification of the electronic and steric impacts on the boron center. This review presents recent developments of boron-based catalysts applied in the field of C-C bond-formation reactions, which are classified into four kinds on the basis of the type of boron catalyst: 1) highly Lewis acidic borane, B(C 6 F 5 ) 3 ; 2) organoboron acids, RB(OH) 2 , and their ester derivatives; 3) borenium ions, (R 2 BL)X; and 4) other miscellaneous kinds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. C-C bond formation in the intramolecular Diels-Alder reaction of triene amides.

    Science.gov (United States)

    Benallou, Abdelilah; El Alaoui El Abdallaoui, Habib; Garmes, Hocine

    2018-02-01

    The mechanism nature of the intramolecular Diels-Alder reaction has been performed; and thus, the changes of C-C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C-C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2-C3 σ bond while the second stage aims for C1-C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  3. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach

  4. Reductive Elimination Leading to C-C Bond Formation in Gold(III) Complexes: A Mechanistic and Computational Study.

    Science.gov (United States)

    Rocchigiani, Luca; Fernandez-Cestau, Julio; Budzelaar, Peter H M; Bochmann, Manfred

    2018-06-21

    The factors affecting the rates of reductive C-C cross-coupling reactions in gold(III) aryls were studied by using complexes that allow easy access to a series of electronically modified aryl ligands, as well as to gold methyl and vinyl complexes, by using the pincer compounds [(C^N^C)AuR] (R=C 6 F 5 , CH=CMe 2 , Me and p-C 6 H 4 X, where X=OMe, F, H, tBu, Cl, CF 3 , or NO 2 ) as starting materials (C^N^C=2,6-(4'-tBuC 6 H 3 ) 2 pyridine dianion). Protodeauration followed by addition of one equivalent SMe 2 leads to the quantitative generation of the thioether complexes [(C^N-CH)AuR(SMe 2 )] + . Upon addition of a second SMe 2 pyridine is displaced, which triggers the reductive aryl-R elimination. The rates for these cross-couplings increase in the sequence k(vinyl)>k(aryl)≫k(C 6 F 5 )>k(Me). Vinyl-aryl coupling is particularly fast, 1.15×10 -3  L mol -1  s -1 at 221 K, whereas both C 6 F 5 and Me couplings encountered higher barriers for the C-C bond forming step. The use of P(p-tol) 3 in place of SMe 2 greatly accelerates the C-C couplings. Computational modelling shows that in the C^N-bonded compounds displacement of N by a donor L is required before the aryl ligands can adopt a conformation suitable for C-C bond formation, so that elimination takes place from a four-coordinate intermediate. The C-C bond formation is the rate-limiting step. In the non-chelating case, reductive C(sp 2 )-C(sp 2 ) elimination from three-coordinate ions [(Ar 1 )(Ar 2 )AuL] + is almost barrier-free, particularly if L=phosphine. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Erbium-Based Bifuctional Heterogeneous Catalyst: A Cooperative Route Towards C-C Bond Formation

    Directory of Open Access Journals (Sweden)

    Manuela Oliverio

    2014-07-01

    Full Text Available Heterogeneous bifuctional catalysts are multifunctional synthetic catalysts enabling efficient organic transformations by exploiting two opposite functionalities without mutual destruction. In this paper we report the first Er(III-based metallorganic heterogeneous catalyst, synthesized by post-calcination MW-assisted grafting and modification of the natural aminoacid L-cysteine. The natural acid–base distance between sites was maintained to assure the cooperation. The applicability of this new bifunctional heterogeneous catalyst to C-C bond formation and the supposed mechanisms of action are discussed as well.

  6. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    Science.gov (United States)

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity.

  7. A bonding study of c-C5H8 adsorption on Pt(111)

    International Nuclear Information System (INIS)

    Simonetti, S.; Jasen, P.; Gonzalez, E.; Juan, A.; Brizuela, G.

    2006-01-01

    The chemisorption of cyclopentane (c-C 5 H 8 ) on Pt(111) has been studied using a qualitative band-structure calculations in the framework of tight-binding implementation with the YAeHMOP package. We modeled the metal surface by a two-dimensional slab of finite thickness with an overlayer of c-C 5 H 8 , in a (3x3) di-σ geometry. The c-C 5 H 8 molecule is attached to the surface with its C?C atoms bonded mainly with two Pt atoms while the opposite CH 2 bends towards the surface. The Pt?Pt bonds in the underlying surface and the C?C bonds of c-C 5 H 8 are weakened upon the chemisorption. A noticeable Pt-H and Pt-C interactions has been observed. We found that of Pt 5d z 2 band plays an important role in the bonding between c-C 5 H 8 and the surface, as do the Pt 6s and 6p z bands. The HOMO-LUMO bands of c-C 5 H 8 are very dispersed, indicative of a strong interaction with the metal surface

  8. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions

    NARCIS (Netherlands)

    Birkholz, M.N.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2009-01-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite

  9. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.

    Science.gov (United States)

    Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho

    2008-02-01

    The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic

  10. Forging C-C Bonds Through Decarbonylation of Aryl Ketones.

    Science.gov (United States)

    Somerville, Rosie J; Martin, Ruben

    2017-06-06

    The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making ir capable of splitting C-C bond.

    Science.gov (United States)

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, Nebojsa S; More, Karren; Adzic, Radoslav R

    2013-01-09

    Splitting the C-C bond is the main obstacle to electrooxidation of ethanol (EOR) to CO(2). We recently demonstrated that the ternary PtRhSnO(2) electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article, we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We characterized and compared the properties of several carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO(2) NP core decorated with multimetallic nanoislands (MM' = PtIr, PtRh, IrRh, PtIrRh) prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM'/SnO(2) NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity toward CO(2) formation of several of these MM'/SnO(2)/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO(2)/C catalysts. We demonstrate that the PtIr/SnO(2)/C catalyst with high Ir content shows outstanding catalytic properties with the most negative EOR onset potential and reasonably good selectivity toward ethanol complete oxidation to CO(2).

  12. Oxidative C-C bond cleavage of 1,2-diols by silver(II)

    International Nuclear Information System (INIS)

    Kumar, A.

    1981-01-01

    Oxidation of ethylene glycol and related compounds by Ag(II) has been investigated. Complexation of these substrates by Ag(II) precedes their oxidation. Oxidation occurs through electron transfer from an OH group to the Ag(II) within the complex resulting in the formation of alkoxyl-type radicals. The radicals thus formed undergo β-scission to give cleavage products. For ethylene glycol a complexation rate 1.3 x 10 6 M -1 s -1 and oxidation rate approx. 3 x 10 3 s -1 were observed. A general trend for the type of the substrates which would undergo C-C bond scission by Ag(II) is discussed

  13. Energy and Rate Determinations to Activate the C-C σ-BOND of Acetone by Gaseous NI^+

    Science.gov (United States)

    Castleberry, Vanessa A.; Dee, S. Jason; Villarroel, Otsmar J.; Laboren, Ivanna E.; Frey, Sarah E.; Bellert, Darrin J.

    2009-06-01

    A unique application of a custom fabricated photodissociation spectrometer permits the determination of thermodynamic properties (activation energies), reaction rates, and mechanistic details of bare metal cation mediated C-C σ-bond activation in the gas phase. Specifically, the products and rates resulting from the unimolecular decomposition of the Ni^+Acetone (Ni^+Ac) adduct are monitored after absorption of a known amount of energy. The three dissociative products which are observed in high yield are Ni^+, Ni^+CO, and CH3CO^+. The latter two fragment ions result from the activation of a C-C σ-bond. It was found that minimally 14 000 cm^{-1} of energy must be deposited into the adduct ion to induce C-C bond breakage. Preliminary results for the Ni^+ activation of the C-C σ-bond of acetone indicate that there are (at least) two low energy reaction coordinates leading to C-C bond breakage. The lower energy pathway emerges from the doublet ground state with an upper limit to the activation energy of 14 000 cm^{-1} and reaction rate ≈0.14 molecules/μs. The higher energy path is assumed to be along the quartet reaction coordinate with a minimum activation energy of 18 800 cm^{-1} (relative to the ground state) and a slightly slower reaction rate.

  14. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage.

    Science.gov (United States)

    Wang, Teng; Jiao, Ning

    2014-04-15

    Because of the importance of nitrogen-containing compounds in chemistry and biology, organic chemists have long focused on the development of novel methodologies for their synthesis. For example, nitrogen-containing compounds show up within functional materials, as top-selling drugs, and as bioactive molecules. To synthesize these compounds in a green and sustainable way, researchers have focused on the direct functionalization of hydrocarbons via C-H or C-C bond cleavage. Although researchers have made significant progress in the direct functionalization of simple hydrocarbons, direct C-N bond formation via C-H or C-C bond cleavage remains challenging, in part because of the unstable character of some N-nucleophiles under oxidative conditions. The nitriles are versatile building blocks and precursors in organic synthesis. Recently, chemists have achieved the direct C-H cyanation with toxic cyanide salts in the presence of stoichiometric metal oxidants. In this Account, we describe recent progress made by our group in nitrile synthesis. C-H or C-C bond cleavage is a key process in our strategy, and azides or DMF serve as the nitrogen source. In these reactions, we successfully realized direct nitrile synthesis using a variety of hydrocarbon groups as nitrile precursors, including methyl, alkenyl, and alkynyl groups. We could carry out C(sp(3))-H functionalization on benzylic, allylic, and propargylic C-H bonds to produce diverse valuable synthetic nitriles. Mild oxidation of C═C double-bonds and C≡C triple-bonds also produced nitriles. The incorporation of nitrogen within the carbon skeleton typically involved the participation of azide reagents. Although some mechanistic details remain unclear, studies of these nitrogenation reactions implicate the involvement of a cation or radical intermediate, and an oxidative rearrangement of azide intermediate produced the nitrile. We also explored environmentally friendly oxidants, such as molecular oxygen, to make our

  15. Gold-Catalyzed Formal C-C Bond Insertion Reaction of 2-Aryl-2-diazoesters with 1,3-Diketones.

    Science.gov (United States)

    Ren, Yuan-Yuan; Chen, Mo; Li, Ke; Zhu, Shou-Fei

    2018-06-29

    The transition-metal-catalyzed formal C-C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3-diketones instead gives C-H bond insertion products. Herein, we report a protocol for a gold-catalyzed formal C-C bond insertion reaction of 2-aryl-2-diazoesters with 1,3-diketones, which provides efficient access to polycarbonyl compounds with an all-carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C-C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring-opening of the resulting donor-acceptor-type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis-acid-catalyzed C-C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage.

    Science.gov (United States)

    Wu, Xinxin; Zhu, Chen

    2018-06-01

    Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C-C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C-F, C-Cl, C-Br, C-N, C-S, C-Se, C-C, etc.) has been achieved by using the ring-opening strategy. Mechanistically, the C-C cleavage of cyclobutanols can be involved in two pathways: (a) transition-metal catalyzed β-carbon elimination; (b) radical-mediated 'radical clock'-type ring opening. The recent advances of our group for the ring-opening functionalization of tertiary cycloalkanols are described in this account. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    Science.gov (United States)

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-09

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole.

  18. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    Science.gov (United States)

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society

  19. Thermal shock resistances of a bonding material of C/C composite and copper

    International Nuclear Information System (INIS)

    Kurumada, Akira; Oku, Tatsuo; Kawamata, Kiyohiro; Motojima, Osamu; Noda, Nobuaki; McEnaney, B.

    1997-01-01

    The purpose of this study is to contribute to the development and the safety design of plasma facing components for fusion reactor devices. We evaluated the thermal shock resistance and the thermal shock fracture toughness of a bonding material which was jointed a carbon-fiber-reinforced carbon composite (C/C composite) to oxygen-free copper. We also examined the microstructures of the bonding layers using a scanning electron microscope before and after thermal shock tests. The bonding material did not fracture during thermal shock tests. However, thermal cracks and delamination cracks were observed in the bonding layers. (author)

  20. Rhenium-Promoted C-C Bond-Cleavage Reactions of Internal Propargyl Alcohols.

    Science.gov (United States)

    Lee, Kui Fun; Bai, Wei; Sung, Herman H Y; Williams, Ian D; Lin, Zhenyang; Jia, Guochen

    2018-06-07

    The first examples of C-C bond cleavage reactions of internal propargyl alcohols to give vinylidene complexes are described. Treatment of [Re(dppm) 3 ]I with RC≡CC(OH)R'R'' (R=aryl, alkyl; C(OH)R'R''=C(OH)Ph 2, C(OH)Me 2 , C(OH)HPh, C(OH)H 2 ) produced the vinylidene complexes ReI(=C=CHR)(dppm) 2 with the elimination of C(O)R'R''. Computational studies support that the reactions proceed through a β-alkynyl elimination of alkoxide intermediates Re{OC(R')(R'')C≡CR}(dppm) 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. c-C5H5 on a Ni(1 1 1) surface: Theoretical study of the adsorption, electronic structure and bonding

    International Nuclear Information System (INIS)

    German, E.; Simonetti, S.; Pronsato, E.; Juan, A.; Brizuela, G.

    2008-01-01

    In the present work the ASED-MO method is applied to study the adsorption of cyclopentadienyl anion on a Ni(1 1 1) surface. The adsorption with the centre of the aromatic ring placed above the hollow position has been identified to be energetically the most favourable. The aromatic ring remains almost flat, the H atoms are tilted 17 deg. away from the metal surface. We modelled the metal surface by a two-dimensional slab of finite thickness, with an overlayer of c-C 5 H 5 - , one c-C 5 H 5 - per nine surface Ni atoms. The c-C 5 H 5 - molecule is attached to the surface with its five C atoms bonding mainly with three Ni atoms. The Ni-Ni bond in the underlying surface and the C-C bonds of c-C 5 H 5 - are weakened upon adsorption. We found that the band of Ni 5d z 2 orbitals plays an important role in the bonding between c-C 5 H 5 - and the surface, as do the Ni 6s and 6p z bands

  2. Intermolecular Formation of Two C−C Bonds across Olefins Enabled by Boron-Based Relay Strategies

    Czech Academy of Sciences Publication Activity Database

    Hidasová, Denisa; Jahn, Ullrich

    2017-01-01

    Roč. 56, č. 33 (2017), s. 9656-9658 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : 1,2- metal ate rearrangement * C−C bond formation * radical reactions * transition metal catalysis * vinyl boronates Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  3. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.

    2014-08-11

    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  4. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  5. A new face of phenalenyl-based radicals in the transition metal-free C-H arylation of heteroarenes at room temperature: trapping the radical initiator via C-C σ-bond formation.

    Science.gov (United States)

    Ahmed, Jasimuddin; P, Sreejyothi; Vijaykumar, Gonela; Jose, Anex; Raj, Manthan; Mandal, Swadhin K

    2017-11-01

    The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.

  6. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-01-01

    The gas-phase reactivity of the fluorinated hydrocarbons CF 4 , CHF 3 , CH 3 F, C 2 F 6 , 1,1-C 2 H 4 F 2 , and C 6 F 6 with the lanthanide cations Ce + , Pr + , Sm + , Ho + , Tm + , and Yb + and the reactivity of C 6 H 5 F with all lanthanide cations Ln + (Ln = La-Lu, with the exception of Pm + ) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane, hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a 'harpoon'-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln + RF. The most reactive lanthanides La + , Ce + , Gd + , and Tb + and also the formal closed-shell species Lu + exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm + and Yb + the formation of neutral LnF 3 is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs

  7. Carbon-sulfur bond formation by reductive elimination of gold(iii) thiolates.

    Science.gov (United States)

    Currie, Lucy; Rocchigiani, Luca; Hughes, David L; Bochmann, Manfred

    2018-04-10

    Whereas the reaction of the gold(iii) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, -d[1a]/dt = k[1a][AdSH]. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.

  8. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    Science.gov (United States)

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-07

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  9. Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with C-C bond formation - structure, spectral and magnetic properties

    Czech Academy of Sciences Publication Activity Database

    Murašková, V.; Szabó, N.; Pižl, M.; Hoskovcová, I.; Dušek, Michal; Huber, Š.; Sedmidubský, D.

    2017-01-01

    Roč. 461, May (2017), s. 111-119 ISSN 0020-1693 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : iron(III) dinuclear complex * dialkoxo bridged pyridoxal Schiff base * C-C bond * crystal structure * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.002, year: 2016

  10. Catalyst-Dependent Chemoselective Formal Insertion of Diazo Compounds into C-C or C-H Bonds of 1,3-Dicarbonyl Compounds.

    Science.gov (United States)

    Liu, Zhaohong; Sivaguru, Paramasivam; Zanoni, Giuseppe; Anderson, Edward A; Bi, Xihe

    2018-05-08

    A catalyst-dependent chemoselective one-carbon insertion of diazo compounds into the C-C or C-H bonds of 1,3-dicarbonyl species is reported. In the presence of silver(I) triflate, diazo insertion into the C(=O)-C bond of the 1,3-dicarbonyl substrate leads to a 1,4-dicarbonyl product containing an all-carbon α-quaternary center. This reaction constitutes the first example of an insertion of diazo-derived carbenoids into acyclic C-C bonds. When instead scandium(III) triflate was applied as the catalyst, the reaction pathway switched to formal C-H insertion, affording 2-alkylated 1,3-dicarbonyl products. Different reaction pathways are proposed to account for this powerful catalyst-dependent chemoselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cu-catalyzed esterification reaction via aerobic oxygenation and C-C bond cleavage: an approach to α-ketoesters.

    Science.gov (United States)

    Zhang, Chun; Feng, Peng; Jiao, Ning

    2013-10-09

    The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.

  12. Designing new catalytic C-C and C-N bond formations promoted by organoactinides

    International Nuclear Information System (INIS)

    Eisen, M.S.; Straub, T.; Haskel, A.

    1998-01-01

    Organoactinides of the type Cp 2 * AcMe 2 (Cp * =C 5 Me 5 ; Ac=Th; U) are active catalytic precursors for the oligomerization of terminal alkynes HC≡CR (R=alkyl, aryl, SiMe 3 ). The regioselectivity and the extent of oligomerization depend strongly on the alkyne substituent R, whereas the catalytic reactivity is similar for both organoactinides. Reaction with tert-butylacetylene yields regioselectively the E-2,4-disubstituted 1-buten-3-yne dimer whereas trimethylsilylacetylene is regioselective trimerized to the E,E-1,4,6-tris(trimethylsilyl)-1,3-hexa diene-5-yne, with small amounts (3-5%) of the corresponding E-2,4-disubstituted 1-buten-3-yne dimer. Oligomerization with less bulky alkyl and aryl substituted alkynes produces a mixture of higher oligomers with no regioselectivity. Using the Cp 2 * ThMe 2 catalyst, we have recently developed a strategic method to control the extent and in some cases the regioselectivity of the catalyzed oligomerization of nonbulky terminal alkynes to dimers and/or trimers. The metallocene catalytic precursors ensure the selective synthesis of small oligomers by the addition of specific amines. Catalytic ''tailoring'' to dimer and trimers can be achieved by using small or bulky amines, respectively. Kinetic and mechanistic data for the controlling experiments argue that the turnover-limiting step involves the acetylide actinide complex formation with the rapid insertion of the alkyne and protonolysis by the amine. The analog Cp 2 * UMe 2 in the presence of primary amines induce the selective C-N bond formation, producing enamines which are tautomerized to the corresponding imines. (orig.)

  13. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo; Tan, Davin; Lee, Richmond; Li, Lixin; Pan, Yuanhang; Huang, Kuo-Wei; Tan, Choonhong; Jiang, Zhiyong

    2012-01-01

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E

  14. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    Science.gov (United States)

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  15. Syntheses, structures and redox properties of some complexes containing the Os(dppe)Cp* fragment, including [{Os(dppe)Cp*}2(mu-C triple bondCC triple bond C)].

    Science.gov (United States)

    Bruce, Michael I; Costuas, Karine; Davin, Thomas; Halet, Jean-François; Kramarczuk, Kathy A; Low, Paul J; Nicholson, Brian K; Perkins, Gary J; Roberts, Rachel L; Skelton, Brian W; Smith, Mark E; White, Allan H

    2007-12-14

    The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.

  16. Nickel-catalyzed cyclization of alpha, omega-dienes: formation vs. cleavage of C-C bonds

    Czech Academy of Sciences Publication Activity Database

    Nečas, D.; Turský, M.; Tišlerová, I.; Kotora, Martin

    2006-01-01

    Roč. 30, č. 4 (2006), s. 671-674 ISSN 1144-0546 R&D Projects: GA MŠk 1M0508; GA ČR GD203/03/H140 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * nickel * cyclization * diene * cyclopentane Subject RIV: CC - Organic Chemistry Impact factor: 2.647, year: 2006

  17. Oxidative addition of the ethane C-C bond to Pd. An ab initio benchmark and DFT validation study

    NARCIS (Netherlands)

    De Jong, G.T.; Geerke, D.P.; Diefenbach, A.; Sola, M.; Bickelhaupt, F.M.

    2005-01-01

    We have computed a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the ethane C-C bond to the palladium atom and have used this to evaluate the performance of 24 popular density functionals, covering LDA, GGA, meta-GGA, and hybrid density

  18. Bonded exciplex formation: electronic and stereoelectronic effects.

    Science.gov (United States)

    Wang, Yingsheng; Haze, Olesya; Dinnocenzo, Joseph P; Farid, Samir; Farid, Ramy S; Gould, Ian R

    2008-12-18

    As recently proposed, the singlet-excited states of several cyanoaromatics react with pyridine via bonded-exciplex formation, a novel concept in photochemical charge transfer reactions. Presented here are electronic and steric effects on the quenching rate constants, which provide valuable support for the model. Additionally, excited-state quenching in poly(vinylpyridine) is strongly inhibited both relative to that in neat pyridine and also to conventional exciplex formation in polymers, consistent with a restrictive orientational requirement for the formation of bonded exciplexes. Examples of competing reactions to form both conventional and bonded exciplexes are presented, which illustrate the delicate balance between these two processes when their reaction energetics are similar. Experimental and computational evidence is provided for the formation of a bonded exciplex in the reaction of the singlet excited state of 2,6,9,10-tetracyanoanthracene (TCA) with an oxygen-substituted donor, dioxane, thus expanding the scope of bonded exciplexes.

  19. A novel approach for a C-11C bond formation: synthesis of 17α-([11C]prop-1-ynyl)-3-methoxy-3,17β-estradiol

    International Nuclear Information System (INIS)

    Wuest, F.; Zessin, J.

    2002-01-01

    A novel method for a 11 C-C bond formation was developed, employing a cross-coupling reaction between a terminal acetylene and [ 11 C]methyl iodide. The method was used for the synthesis of 17α-([ 11 C]prop-1-ynyl)-3-methoxy-3,17β-estadiol. (orig.)

  20. Highly enantioselective rhodium(I)-catalyzed carbonyl carboacylations initiated by C-C bond activation.

    Science.gov (United States)

    Souillart, Laetitia; Cramer, Nicolai

    2014-09-01

    The lactone motif is ubiquitous in natural products and pharmaceuticals. The Tishchenko disproportionation of two aldehydes, a carbonyl hydroacylation, is an efficient and atom-economic access to lactones. However, these reaction types are limited to the transfer of a hydride to the accepting carbonyl group. The transfer of alkyl groups enabling the formation of CC bonds during the ester formation would be of significant interest. Reported herein is such asymmetric carbonyl carboacylation of aldehydes and ketones, thus affording complex bicyclic lactones in excellent enantioselectivities. The rhodium(I)-catalyzed transformation is induced by an enantiotopic CC bond activation of a cyclobutanone and the formed rhodacyclic intermediate reacts with aldehyde or ketone groups to give highly functionalized lactones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tracing the Fingerprint of Chemical Bonds within the Electron Densities of Hydrocarbons: A Comparative Analysis of the Optimized and the Promolecule Densities.

    Science.gov (United States)

    Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour

    2016-10-18

    The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. C=C bond cleavage on neutral VO3(V2O5)n clusters.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui

    2009-01-28

    The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.

  3. Analysis of Disulfide Bond Formation

    NARCIS (Netherlands)

    Braakman, Ineke; Lamriben, Lydia; van Zadelhoff, Guus; Hebert, Daniel N.

    2017-01-01

    In this unit, protocols are provided for detection of disulfide bond formation in cultures of intact cells and in an in vitro translation system containing isolated microsomes or semi-permeabilized cells. First, the newly synthesized protein of interest is biosynthetically labeled with radioactive

  4. Importance of mother-infant communication for social bond formation in mammals.

    Science.gov (United States)

    Okabe, Shota; Nagasawa, Miho; Mogi, Kazutaka; Kikusui, Takefumi

    2012-06-01

    Mother-infant bonding is a universal relationship of all mammalian species. Here, we describe the role of reciprocal communication between mother and infant in the formation of bonding for several mammalian species. Mother-infant bond formation is reinforced by various social cues or stimuli, including communicative signals, such as odor and vocalizations, or tactile stimuli. The mother also develops cross-modal sensory recognition of the infant, during bond formation. Many studies have indicated that the oxytocin neural system plays a pivotal role in bond formation by the mother; however, the underlying neural mechanisms for infants have not yet been clarified. The comparative understanding of cognitive functions of mother and infants may help us understand the biological significance of mother-infant communication in mammalian species. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  5. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    Science.gov (United States)

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.

  6. Addition by subtraction in coupled-cluster theory: a reconsideration of the CC and CI interface and the nCC hierarchy.

    Science.gov (United States)

    Bartlett, Rodney J; Musiał, Monika

    2006-11-28

    The nCC hierarchy of coupled-cluster approximations, where n guarantees exactness for n electrons and all products of n electrons are derived and applied to several illustrative problems. The condition of exactness for n=2 defines nCCSD=2CC, with nCCSDT=3CC and nCCSDTQ=4CC being exact for three and four electrons. To achieve this, the minimum number of diagrams is evaluated, which is less than in the corresponding CC model. For all practical purposes, nCC is also the proper definition of a size-extensive CI. 2CC is also an orbitally invariant coupled electron pair approximation. The numerical results of nCC are close to those for the full CC variant, and in some cases are closer to the full CI reference result. As 2CC is exact for separated electron pairs, it is the natural zeroth-order approximation for the correlation problem in molecules with other effects introduced as these units start to interact. The nCC hierarchy of approximations has all the attractive features of CC including its size extensivity, orbital invariance, and orbital insensitivity, but in a conceptually appealing form suited to bond breaking, while being computationally less demanding. Excited states from the equation of motion (EOM-2CC) are also reported, which show results frequently approaching those of EOM-CCSDT.

  7. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  8. Mechanism of C-C and C-H bond cleavage in ethanol oxidation reaction on Cu2O(111): a DFT-D and DFT+U study.

    Science.gov (United States)

    Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-10-04

    The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.

  9. Borane-catalyzed cracking of C-C bonds in coal; Boran-katalysierte C-C-Bindungungsspaltung in Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Narangerel, J; Haenel, M W [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-09-01

    Coal, especially coking coal, was reacted with hydrogen at comparatively mild reaction conditions (150-280 degrees centigrade, 20 MPa hydrogen pressure) in the presence of catalysts consisting of borange reagents and certain transition metal halides to obtaine more than 80 percent of pyridine-soluble products. The influence of the degree of coalification, catalyst and temperature on the borane-catalyzed hydrogenolysis of C-C bonds in coal was investigated. (orig.) [Deutsch] Steinkohlen, insbesondere im Inkohlungsbereich der Fettkohlen (Kokskohlen), werden in Gegenwart von Katalysatoren aus Boran-Reagentien und bestimmten Uebergangsmetallhalogeniden mit Wasserstoff bei vergleichsweise milden Reaktionsbedingungen (250-280 C, 20 MPa Wasserstoffdruck) in zu ueber 80% pyridinloesliche Produkte umgewandelt. Der Einfluss von Inkohlungsgrad, Katalysator und Temperatur auf die Boran-katalysierte C-C-Bindungshydrogenolyse in Kohle wurde untersucht. (orig.)

  10. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    Science.gov (United States)

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  11. Organometallic Methods for Forming and Cleaving Carbon-Carbon Bonds

    DEFF Research Database (Denmark)

    Christensen, Stig Holden

    with concomitant C-C bond formation was studied with a number of Grignard reagents. The transformation was performed in a sealed vial by heating to about 160 °C in an aluminum block or at 180 °C in a microwave oven. Good yields of the product alcohols were obtained with allyl- and benzylmagnesium halides when...

  12. Effect of curing modes of dual-curing core systems on microtensile bond strength to dentin and formation of an acid-base resistant zone.

    Science.gov (United States)

    Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Waidyasekera, Kanchana; Ikeda, Masaomi; Chen, Jihua; Nikaido, Toru; Tagami, Junji

    2011-12-01

    To evaluate the microtensile bond strength (μTBS) and acid-base resistant zone (ABRZ) of two dualcuring core systems to dentin using four curing modes. Sixty-four caries-free human molars were randomly divided into two groups according to two dual-curing resin core systems: (1) Clearfil DC Core Automix; (2) Estelite Core Quick. For each core system, four different curing modes were applied to the adhesive and core resin: (1) dual-cured and dual-cured (DD); (2) chemically cured and dual-cured (CD); (3) dual-cured and chemically cured (DC); (4) chemically cured and chemically cured (CC). The specimens were sectioned into sticks (n = 20 for each group) for the microtensile bond test. μTBS data were analyzed using two-way ANOVA and the Dunnett T3 test. Failure patterns were examined with scanning electron microscopy (SEM) to determine the proportion of each mode. Dentin sandwiches were produced and subjected to an acid-base challenge. After argon-ion etching, the ultrastructure of ABRZ was observed using SEM. For Clearfil DC Core Automix, the μTBS values in MPa were as follows: DD: 29.1 ± 5.4, CD: 21.6 ± 5.6, DC: 17.9 ± 2.8, CC: 11.5 ± 3.2. For Estelite Core Quick, they were: DD: 48.9 ±5.7, CD: 20.5 ± 4.7, DC: 41.4 ± 8.3, CC: 19.1 ± 6.0. The bond strength was affected by both material and curing mode, and the interaction of the two factors was significant (p < 0.001). Within both systems, there were significant differences among groups, and the DD group showed the highest μTBS (p < 0.05). ABRZ morphology was not affected by curing mode, but it was highly adhesive-material dependent. The curing mode of dual-curing core systems affects bond strength to dentin, but has no significant effect on the formation of ABRZ.

  13. Proposed formation mechanism and active species of hydrogen molecules generated from a novel magnesium-citric acid-hydroxypropyl cellulose coating (MgCC) material

    Science.gov (United States)

    Kobayashi, Shigeki; Chikuma, Toshiyuki; Chiba, Kazuyoshi; Tsuchiya, Daisuke; Hirai, Tomomitsu

    2016-02-01

    The presence of acids is known to accelerate the reaction (Mg + 2H2O = Mg(OH)2 + H2). We developed a novel Mg-citric acid coating (MgCC) material produced by milling Mg powder coated with hydroxypropyl cellulose (HPC); because of its H2 generation, this material could be used in antioxidant therapy and antiaging applications. After milling in the presence of citric acid, this material produced H2-rich water upon addition to cooled water. Although the reaction was considered to involve a two-electron transfer from Mg to 2H2O, the role of the acid in H2 generation remains incompletely understood. To clarify the reaction mechanism, we performed studies on the deuterium kinetic isotope effects (KIE) and electron spin resonance (ESR). We observed differences in the concentration ratios, such as H2/D2 > 1 and H2/(H2 + D2 + HD) > 1, involved in H2, D2, and (H2 + D2 + HD) production, and found that adducts with hydrogen atoms (Hrad) were not obtained from the spin-trapping reaction between 5-(2, 2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) and the MgCC material. The H2, D2, and HD produced from MgCC were identified by using a gas chromatograph connected to a mass spectrometer. The spin-trapping techniques showed that the Hrad adducts formed by the reaction of NaBH4 with CYPMPO could not be observed from reaction of MGCC with CYPMPO in H2O. The data suggest that the rate-controlling step and proposed transition state (TS) exist in the reaction pathway of the O-H bond cleavage and H-H bond formation. A TS of a structure such as [Mg(OH2)2]∗ could be expected in the reaction pathway between Mg and 2H2O by density functional theory calculations. Also, these results show that H2 generation is accelerated in the presence of acids because the activation energy of the TS is significantly smaller than that of H2O.

  14. HfC plasma coating of C/C composites

    International Nuclear Information System (INIS)

    Boncoeur, M.; Schnedecker, G.; Lulewicz, J.D.

    1992-01-01

    The surface properties of C/C composites such as hardness and corrosion or erosion resistance can be modified by a ceramic coating applied by plasma torch. The technique of plasma spraying in controlled temperature and atmosphere, that was developed and patented by the CEA, makes it possible to apply coatings to the majority of metals and ceramics without affecting the characteristics of the composite. An example of hard deposit of HfC on a C/C composite is described. The characteristics of the deposit and of the bonding with the C/C composite were studied before and after a heat treatment under vacuum for 2 hours at 1000 C. 2 refs

  15. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  16. Laccase-catalyzed C-S and C-C coupling for a one-pot synthesis of 1,4-naphthoquinone sulfides and 1,4-naphthoquinone sulfide dimers

    CSIR Research Space (South Africa)

    Wellington, Kevin W

    2013-06-01

    Full Text Available Oxidative C-S and C-C bond formation with aryl and alkyl thiols was catalyzed under mild conditions in a reaction vessel open to air at pH 4.5 in the presence of a commercial laccase (Novozym 51003 or Suberase) and a cosolvent (DMF) to afford 1...

  17. Disulphide bond formation in food protein aggregation and gelation

    NARCIS (Netherlands)

    Visschers, R.W.; Jongh, de H.H.J.

    2005-01-01

    In this short review we discuss the role of cysteine residues and cystine bridges for the functional aggregation of food proteins. We evaluate how formation and cleavage of disulphide bonds proceeds at a molecular level, and how inter- and intramolecular disulfide bonds can be detected and modified.

  18. 4-alkyl-L-(Dehydro)proline biosynthesis in actinobacteria involves N-terminal nucleophile-hydrolase activity of γ-glutamyltranspeptidase homolog for C-C bond cleavage

    Science.gov (United States)

    Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2017-07-01

    γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.

  19. Alkane Activation at Ambient Temperatures: Unusual Selectivities, C-C, C-H Bond Scission versus C-C Bond Coupling

    NARCIS (Netherlands)

    Trionfetti, C.; Agiral, A.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2008-01-01

    Activating bonds: A cold plasma generated by dielectric barrier discharge in a microreactor converts alkanes (C1–C3) at atmospheric pressure. Large amounts of products with higher molecular weight than the starting hydrocarbons are observed showing that C-H activation at lower T favourably leads to

  20. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    Science.gov (United States)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  1. Formation of Irreversible H-bonds in Cellulose Materials

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark

    2015-01-01

    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  2. Correlation between native bonds in a polymeric material and molecular emissions from the laser-induced plasma observed with space and time resolved imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, S. [CRITT Materiaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Institut Charles Sadron, CNRS and University of Strasbourg, 23 rue de Loess, 67034 Strasbourg Cedex (France); Motto-Ros, V.; Ma, Q.L.; Lei, W.Q.; Wang, X.C. [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France); Pelascini, F.; Surma, F. [CRITT Materiaux Alsace, 19 rue de St Junien, 67300 Schiltigheim (France); Detalle, V., E-mail: vincent.detalle@culture.gouv.fr [Laboratoire de Recherche des Monuments Historiques, 29 rue de Paris, 77420 Champs-sur-Marne (France); Yu, J. [Universite de Lyon, F-69622, Lyon, France, Universite Lyon 1, Villeurbanne, CNRS, UMR5579, LASIM (France)

    2012-08-15

    Emissions from C{sub 2} molecules and CN radicals in laser-induced plasmas on polymeric materials were observed with time-resolved spectroscopic imaging. More precisely, differential imaging with a pair of narrowband filters (one centered on the emission line and another out of the line) was used to extract emission images of interested molecules or radicals. The correlation between the molecular emission image of the plasma and the molecular structure of the polymer to be analyzed was studied for four different types of materials: polyamide (PA) with native CN bonds, polyethylene (PE) with simple CC bonds, polystyrene (PS) with delocalized double CC bonds, and polyoxymethylene (POM) which neither contains CC nor CN bonds. A clear correlation is demonstrated between emission and molecular structure of the material, allowing the identification of several organic compounds by differential spectroscopic imaging. - Highlights: Black-Right-Pointing-Pointer Plasma imaging method to discriminate different type of polymers. Black-Right-Pointing-Pointer Molecular emissions (CN and C{sub 2}) are spatially and temporally correlated to native bonds. Black-Right-Pointing-Pointer Several formation processes of molecular fragments are observed.

  3. Solvent Induced Disulfide Bond Formation in 2,5-dimercapto-1,3,4-thiadiazole

    OpenAIRE

    Palanisamy Kalimuthu; Palraj Kalimuthu; S. Abraham John

    2007-01-01

    Disulfide bond formation is the decisive event in the protein folding to determine the conformation and stability of protein. To achieve this disulfide bond formation in vitro, we took 2,5-dimercapto-1,3,4-thiadiazole (DMcT) as a model compound. We found that disulfide bond formation takes place between two sulfhydryl groups of DMcT molecules in methanol. UV-Vis, FT-IR and mass spectroscopic as well as cyclic voltammetry were used to monitor the course of reaction. We proposed a mechanism for...

  4. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  5. A dense and strong bonding collagen film for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Sheng; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-30

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H{sub 2}O{sub 2} solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  6. A dense and strong bonding collagen film for carbon/carbon composites

    International Nuclear Information System (INIS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-01-01

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H 2 O 2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites

  7. Asymmetric and symmetric bolaform supra-amphiphiles: formation of imine bond influenced by aggregation.

    Science.gov (United States)

    Wang, Guangtong; Wu, Guanglu; Wang, Zhiqiang; Zhang, Xi

    2014-02-18

    A series of bolaform supra-amphilphiles with different symmetries were fabricated through dynamic benzoic imine bond formation. The pH dependence of imine formations of these supra-amphiphiles were characterazied. We found that the extent of the imine formation of these supra-amphiphies were different. The supra-amphiphiles with a poorer symmetry always exhibited a lower imine formation at a given pH. Therefore, the varied extent of imine bond formation indicate the different aggregations of these supra-amphilphiles, which are controlled by the molecular symmetry of the supra-amphiphiles.

  8. Does the Intramolecular Hydrogen Bond Affect the Spectroscopic Properties of Bicyclic Diazole Heterocycles?

    Directory of Open Access Journals (Sweden)

    Paweł Misiak

    2018-01-01

    Full Text Available The formation of an intramolecular hydrogen bond in pyrrolo[1,2-a]pyrazin-1(2H-one bicyclic diazoles was analyzed, and the influence of N-substitution on HB formation is discussed in this study. B3LYP/aug-cc-pVDZ calculations were performed for the diazole, and the quantum theory of atoms in molecules (QTAIM approach as well as the natural bond orbital (NBO method was applied to analyze the strength of this interaction. It was found that the intramolecular hydrogen bond that closes an extra ring between the C=O proton acceptor group and the CH proton donor, that is, C=O⋯H–C, influences the spectroscopic properties of pyrrolopyrazine bicyclic diazoles, particularly the carbonyl frequencies. The influence of N-substitution on the aromaticity of heterocyclic rings is also discussed in this report.

  9. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  10. Polarizable Embedded RI-CC2 Method for Two-Photon Absorption Calculations

    DEFF Research Database (Denmark)

    Hršak, Dalibor; Khah, Alireza Marefat; Christiansen, Ove

    2015-01-01

    We present a novel polarizable embedded resolution-of-identity coupled cluster singles and approximate doubles (PERI-CC2) method for calculation of two-photon absorption (TPA) spectra of large molecular systems. The method was benchmarked for three types of systems: a water-solvated molecule...... of formamide, a uracil molecule in aqueous solution, and a set of mutants of the channelrhodopsin (ChR) protein. The first test case shows that the PERI-CC2 method is in excellent agreement with the PE-CC2 method and in good agreement with the PE-CCSD method. The uracil test case indicates that the effects...... of hydrogen bonding on the TPA of a chromophore with the nearest environment is well-described with the PERI-CC2 method. Finally, the ChR calculation shows that the PERI-CC2 method is well-suited and efficient for calculations on proteins with medium-sized chromophores....

  11. Studies on the selectivity of the reaction of (CO){sub 5}W=C(aryl)H with enynes: transfer of the carbene ligand to the C=C Bond versus insertion of the C triple bond C into the W=C Bond

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H.; Volkland, H.P.; Stumpf, R.

    1996-10-01

    The strongly electrophilic monophenylcarbene complex [(CO){sub 5}W=C(Ph)H] (2a) reacts with the enynes H-C triple bond C-R(R=-C(Me)=CH{sub 2})(3), -C{sub 6}H{sub 4}-CH=CH{sub 2}-p (5) and subsequently with PMe{sub 3} to form the C{sub a}lpha-PMe{sub 3} adducts of the vinylidene complexes [(CO){sub 5}W-{l_brace}C(PMe{sub 3})=CH-C{sub 3}H{sub 3}(Me)Ph{r_brace}] (4) and [(CO){sub 5}W {l_brace}C(PMe{sub 3})=CH-C{sub 6}H{sub 4}-C{sub 3}H{sub 4}Ph{r_brace}] (6). The reaction very likely proceeds by transfer of the carbene ligand to the C=C bond of the enyne to form a cyclopropyl-substituted alkyne complex which is in equilibrium with its vinylidene isomer.

  12. Development of high conductive C/C composite tiles for plasma facing armor

    International Nuclear Information System (INIS)

    Ioki, K.; Namiki, K.; Tsujimura, S.; Toyoda, M.; Seki, M.; Takatsu, H.

    1991-01-01

    C/C composites with high thermal conductivity were developed in unidirectional, two-dimensional and felt types, and were fabricated as full-scale armor tile. Their thermal conductivity in the direction perpendicular to the plasma-side surface is 250∝550 W/mdeg C, that is comparable to that of pyrolytic graphite. It was shown by heat load tests that the C/C composites have low surface erosion characteristics and high thermal shock resistance. Various kinds of C/C composites were successfully bonded to metal substrate, and their mechanical strength and thermal shock resistance were tested. (orig.)

  13. Renewable Formate from C-H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts.

    Science.gov (United States)

    Loewen, Natalia D; Neelakantan, Taruna V; Berben, Louise A

    2017-09-19

    As a society, we are heavily dependent on nonrenewable petroleum-derived fuels and chemical feedstocks. Rapid depletion of these resources and the increasingly evident negative effects of excess atmospheric CO 2 drive our efforts to discover ways of converting excess CO 2 into energy dense chemical fuels through selective C-H bond formation and using renewable energy sources to supply electrons. In this way, a carbon-neutral fuel economy might be realized. To develop a molecular or heterogeneous catalyst for C-H bond formation with CO 2 requires a fundamental understanding of how to generate metal hydrides that selectively donate H - to CO 2 , rather than recombining with H + to liberate H 2 . Our work with a unique series of water-soluble and -stable, low-valent iron electrocatalysts offers mechanistic and thermochemical insights into formate production from CO 2 . Of particular interest are the nitride- and carbide-containing clusters: [Fe 4 N(CO) 12 ] - and its derivatives and [Fe 4 C(CO) 12 ] 2- . In both aqueous and mixed solvent conditions, [Fe 4 N(CO) 12 ] - forms a reduced hydride intermediate, [H-Fe 4 N(CO) 12 ] - , through stepwise electron and proton transfers. This hydride selectively reacts with CO 2 and generates formate with >95% efficiency. The mechanism for this transformation is supported by crystallographic, cyclic voltammetry, and spectroelectrochemical (SEC) evidence. Furthermore, installation of a proton shuttle onto [Fe 4 N(CO) 12 ] - facilitates proton transfer to the active site, successfully intercepting the hydride intermediate before it reacts with CO 2 ; only H 2 is observed in this case. In contrast, isoelectronic [Fe 4 C(CO) 12 ] 2- features a concerted proton-electron transfer mechanism to form [H-Fe 4 C(CO) 12 ] 2- , which is selective for H 2 production even in the presence of CO 2 , in both aqueous and mixed solvent systems. Higher nuclearity clusters were also studied, and all are proton reduction electrocatalysts, but none

  14. Bifunctional RuII -Complex-Catalysed Tandem C-C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents.

    Science.gov (United States)

    Roy, Bivas Chandra; Chakrabarti, Kaushik; Shee, Sujan; Paul, Subhadeep; Kundu, Sabuj

    2016-12-12

    Catalytic activities of a series of functional bipyridine-based Ru II complexes in β-alkylation of secondary alcohols using primary alcohols were investigated. Bifunctional Ru II complex (3 a) bearing 6,6'-dihydroxy-2,2'-bipyridine (6DHBP) ligand exhibited the highest catalytic activity for this reaction. Using significantly lower catalyst loading (0.1 mol %) dehydrogenative carbon-carbon bond formation between numerous aromatic, aliphatic and heteroatom substituted alcohols were achieved with high selectivity. Notably, for the synthesis of β-alkylated secondary alcohols this protocol is a rare one-pot strategy using a metal-ligand cooperative Ru II system. Remarkably, complex 3 a demonstrated the highest reactivity compared to all the reported transition metal complexes in this reaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang

    2016-01-01

    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  16. C-H Bond Functionalization via Hydride Transfer: Direct Coupling of Unactivated Alkynes and sp3 C-H Bonds Catalyzed by Platinum Tetraiodide

    Science.gov (United States)

    Vadola, Paul A.; Sames, Dalibor

    2010-01-01

    We report a catalytic intramolecular coupling between terminal unactivated alkynes and sp3 C-H bonds via the through-space hydride transfer (HT-cyclization of alkynes). This method enables one-step preparation of complex heterocyclic compounds by α-alkenylation of readily available cyclic ethers and amines. We show that PtI4 is an effective Lewis acid catalyst for the activation of terminal alkynes for the hydride attack and subsequent C-C bond formation. In addition, we have shown that the activity of neutral platinum salts (PtXn) can be modulated by the halide ligands. This modulation in turn allows for fine-tuning of the platinum center reactivity to match the reactivity and stability of selected substrates and products. PMID:19852462

  17. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  18. New Insights from Domain-averaged Fermi holes and Bond Order Analysis into the Bonding Conundrum in C2.

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert; Kohout, M.

    2016-01-01

    Roč. 114, 7-8 (2016), s. 1270-1284 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : peculiarity of C2 bonding * domain-averaged Fermi holes (DAFH) * cioslowski bond orders Subject RIV: CC - Organic Chemistry Impact factor: 1.870, year: 2016

  19. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Wada, Takahiro

    2009-01-01

    We studied characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe 2 (CIS) by first principles calculations. The chalcopyrite-type CIS has two kinds of chemical bonds, Cu-Se and In-Se. The Cu-Se bond is a weak covalent bonding because electrons occupy both bonding and antibonding orbitals of Cu 3d and Se 4p and occupy only the bonding orbital (a 1 ) of Cu 4s and Se 4p and do not occupy the antibonding orbital (a 1 * ) of Cu 4s and Se 4p. On the other hand, the In-Se bond has a partially covalent and partially ionic character because the In 5s orbital covalently interacts with Se 4p; the In 5p orbital is higher than Se 4p and so the electron in the In 5p orbital moves to the Se 4p orbital. The average bond order of the Cu-Se and In-Se bonds can be calculated to be 1/4 and 1, respectively. The bond order of Cu-Se is smaller than that of In-Se. The characteristics of these two chemical bonds are related to the formation of Cu and In vacancies in CIS. The formation energy of the Cu vacancy is smaller than that of the In vacancy under both Cu-poor and In-poor conditions. The displacement (Δl) of the surrounding Se atoms after the formation of the Cu vacancy is smaller than the Δl after the formation of the In vacancy. The interesting and unique characteristics of CIS are discussed on the basis of the characteristics of the chemical bond. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    Science.gov (United States)

    Solimannejad, Mohammad; Massahi, Shokofeh; Alkorta, Ibon

    2009-07-01

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH⋯N and NH⋯O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol -1 and 12-19 kJ mol -1, respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm -1 is predicted for dimers and trimers, respectively.

  1. Biofilm Formation in Klebsiella pneumoniae Bacteremia Strains Was Found to be Associated with CC23 and the Presence of wcaG

    Directory of Open Access Journals (Sweden)

    Jin-xin Zheng

    2018-02-01

    Full Text Available Klebsiella pneumoniae bacteremia biofilm traits and distribution characteristics have not been clarified. This study aimed to determine the prevalence and characteristics of K. pneumoniae bacteremia biofilm formation (BF and to explore the virulence factors associated with K. pneumoniae BF. A total of 250 K. pneumoniae bacteremia isolates were collected from patients in Shenzhen and Shanghai, China. Virulence genes in their genomes were detected by PCR. The isolates were subjected to multilocus sequence typing (MLST and clonal complex (CC classification based on housekeeping genes. Biofilms were detected by crystal violet staining. Greater BF was observed in isolates from young adults (<40 years old than in those from seniors (≥65 years old; P = 0.002. MLST yielded 65 different sequence types (STs, with the most represented STs being ST11, ST23, and ST65, and the main CCs were CC23 and CC65; CC23 isolates exhibited greater BF than CC65 or ST11 isolates (both P < 0.001. BF was more pronounced among magA(K1, aero+, rmpA+, rmpA2+, allS+, wcaG+, and iutA+ isolates than in isolates that were negative for these virulence factors. Multivariate regression analysis revealed only wcaG as an independent risk factor for BF (odds ratio 11.426, P < 0.001, and BF was decreased when wcaG was silenced by antisense RNA. In conclusion, BF in K. pneumoniae bacteremia isolates was found to be associated with CC23 classification and the presence of the wcaG virulence factor gene.

  2. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    Science.gov (United States)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  3. Study of the adsorption, electronic structure and bonding of C2H4 on the FeNi(1 1 1) surface

    International Nuclear Information System (INIS)

    Simonetti, S.; Brizuela, G.; Juan, A.

    2010-01-01

    The adsorption of C 2 H 4 on the FeNi(1 1 1) alloy surface has been studied by ASED-MO tight binding calculations. The C 2 H 4 molecule presents its most stable geometry with the C=C bond axis parallel to the surface along the [1, -1, 0] direction, bonded on top Fe atom and bonded along a Fe-Fe bridge site. As a consequence, the strength of the local Fe-Fe bond decreases between 37 and 62% of its original bulk value. This bond weakening is mainly due to the new C-Fe interactions however no Fe 3 C carbide formation is evidenced on surface. The Fe-Ni and Ni-Ni superficial bonds are only slightly modified.

  4. Selective C--C coupling of ir-ethene and ir-carbenoid radicals

    NARCIS (Netherlands)

    Dzik, W.I.; Reek, J.N.H.; de Bruin, B.

    2008-01-01

    The reactivity of the paramagnetic iridium(II) complex [IrII(ethene)(Me3tpa)]2+ (1) (Me3tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective CC bond

  5. Nano-motion dynamics are determined by surface-tethered selectin mechanokinetics and bond formation.

    Directory of Open Access Journals (Sweden)

    Brian J Schmidt

    2009-12-01

    Full Text Available The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two

  6. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Solimannejad, Mohammad, E-mail: m-solimannejad@araku.ac.ir [Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak (Iran, Islamic Republic of); Massahi, Shokofeh [Quantum Chemistry Group, Department of Chemistry, Arak University, 38156-879 Arak (Iran, Islamic Republic of); Alkorta, Ibon, E-mail: ibon@iqm.csic.es [Instituto de Quimica Medica (CSIC), Juan de la Cierva, 3, 28006 Madrid (Spain)

    2009-07-30

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH{center_dot}{center_dot}{center_dot}N and NH{center_dot}{center_dot}{center_dot}O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol{sup -1} and 12-19 kJ mol{sup -1}, respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm{sup -1} is predicted for dimers and trimers, respectively.

  7. A computational study of dimers and trimers of nitrosyl hydride: Blue shift of NH bonds that are involved in H-bond and orthogonal interactions

    International Nuclear Information System (INIS)

    Solimannejad, Mohammad; Massahi, Shokofeh; Alkorta, Ibon

    2009-01-01

    Ab initio calculations at MP2/aug-cc-pVTZ level were used to analyze the interactions between nitrosyl hydride (HNO) dimers and trimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Nine different structures have been obtained for the trimers. Three types of interactions are observed, NH···N and NH···O hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of dimers and trimers including BSSE and ZPE are in the range 4-8 kJ mol -1 and 12-19 kJ mol -1 , respectively. Blue shift of NH bond upon complex formation in the ranges between 30-80 and 14,114 cm -1 is predicted for dimers and trimers, respectively.

  8. Alpha-cyclodextrins reversibly capped with disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Kumprecht, Lukáš; Buděšínský, Miloš; Bouř, Petr; Kraus, Tomáš

    2010-01-01

    Roč. 34, č. 10 (2010), s. 2254-2260 ISSN 1144-0546 R&D Projects: GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclodextrins * disulfide bond * dynamic covalent bond Subject RIV: CC - Organic Chemistry Impact factor: 2.631, year: 2010

  9. C—C bond formation in the intramolecular Diels-Alder reaction of triene amides

    Directory of Open Access Journals (Sweden)

    Abdelilah Benallou

    2018-02-01

    Full Text Available The mechanism nature of the intramolecular Diels–Alder reaction has been performed; and thus, the changes of C—C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C—C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2—C3 σ bond while the second stage aims for C1—C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  10. Investigations of Reactive Carbohydrates in Glycosidic Bond Formation and Degradation

    DEFF Research Database (Denmark)

    Heuckendorff, Mads

    The overall objective of the research described in this thesis was to explore the field of glycosidic bond formation and degradation. In more detail, the objective was to do further research in the field of highly reactive glycosyl donors. New ways of making highly reactive donors were explored...

  11. New Concept of the Biosynthesis of 4-Alkyl-L-proline Precursors of Lincomycin, Hormaomycin and Pyrrolobenzodiazepines: Could a γ-Glutamyltransferase Cleave the C-C Bond?

    Directory of Open Access Journals (Sweden)

    Petra eJiraskova

    2016-03-01

    Full Text Available Structurally different and functionally diverse natural compounds – antitumour agents pyrrolo[1,4]benzodiazepines, bacterial hormone hormaomycin and lincosamide antibiotic lincomycin – share a common building unit, 4-alkyl-L-proline derivative (APD. APDs arise from L-tyrosine through a special biosynthetic pathway. Its generally accepted scheme, however, did not comply with current state of knowledge. Based on gene inactivation experiments and in vitro functional tests with recombinant enzymes, we designed a new APD biosynthetic scheme for the model of lincomycin biosynthesis. In the new scheme at least one characteristic in each of five final biosynthetic steps has been changed: the order of reactions, assignment of enzymes and/or reaction mechanisms. First, we demonstrate that LmbW methylates a different substrate than previously assumed. Second, we propose a unique reaction mechanism for the next step, in which a putative γ-glutamyltransferase LmbA indirectly cleaves off the oxalyl residue by transient attachment of glutamate to LmbW product. This unprecedented mechanism would represent the first example of the C-C bond cleavage catalyzed by a γ-glutamyltransferase, i.e., an enzyme that appears unsuitable for such activity. Finally, the inactivation experiments show that LmbX is an isomerase indicating that it transforms its substrate into a compound suitable for reduction by LmbY, thereby facilitating its subsequent complete conversion to APD 4-propyl-L-proline. Elucidation of the APD biosynthesis has long time resisted mainly due to the apparent absence of relevant C-C bond cleaving enzymatic activity. Our proposal aims to unblock this situation not only for lincomycin biosynthesis, but generally for all above mentioned groups of bioactive natural products with biotechnological potential.

  12. High Charge Mobility of a Perylene Bisimide Dye with Hydrogen-bond Formation Group

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A perylene bisimide dye covalently bonded with a hydrogen-bond formation group of 1,3, 5-triazine-2, 4-diamine has been synthesized. Its casting films show a charge carrier mobility over 10-3 cm2/Vs, which is in the range of the highest values found for other promising charge transport materials suitable for solution processable technique.

  13. Zeolite-Catalyzed Hydrocarbon Formation from Methanol: Density Functional Simulations

    Directory of Open Access Journals (Sweden)

    George Fitzgerald

    2002-04-01

    Full Text Available Abstract: We report detailed density functional theory (DFT calculations of important mechanisms in the methanol to gasoline (MTG process in a zeolite catalyst. Various reaction paths and energy barriers involving C-O bond cleavage and the first C-C bond formation are investigated in detail using all-electron periodic supercell calculations and recently developed geometry optimization and transition state search algorithms. We have further investigated the formation of ethanol and have identified a different mechanism than previously reported [1], a reaction where water does not play any visible role. Contrary to recent cluster calculations, we were not able to find a stable surface ylide structure. However, a stable ylide structure built into the zeolite framework was found to be possible, albeit a very high reaction barrier.

  14. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....

  15. Theoretical determination of molecular structure and conformation. 20. Reevaluation of the strain energies of cyclopropane and cyclobutane - CC and CH bond energies, 1,3 interactions, and sigma-aromaticity

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, D.; Gauss, J.

    1986-11-26

    In order to rationalize the striking similarity of the strain energies (SE) of cyclopropane (1, 28 kcal/mol) and cyclobutane (2, 27 kcal/mol), the energetic consequences of Pitzer strain, Baeyer strain, hybridization effects (CH bond strengthening), Dunitz-Schomaker strain (1,3 CC interactions), and bond stretching effects have been quantitatively assessed at the HF/6-31G** level of theory. Calculations have been based on chemically meaningful definitions of bond length, bond angle, bond energy, and bending force constant in strained molecules. Results reveal that Pitzer strain in both 1 and 2 is just 4 kcal/mol and that CH bond strengthening stabilizes 1 by 6 kcal/mol (2 by 3 kcal/mol), far less than has been assumed previously. The calculated Baeyer strain of 1 and 2 is 41 and 13 kcal/mol, respectively. SE(1) and SE(2) can only be compared if a correction term of 9 kcal/mol due to Dunitz-Schomaker strain (present in 2, but absent in 1) is taken into account. The analysis of the various energy contributions to the SEs of 1 and 2 reveals that 1 is stabilized by at least 17 kcal/mol. Both MO and electron density analysis suggest that 1 is totally different from the other cycloalkanes in being stabilized by 3-center 2-electron delocalization. sigma-Electrons are delocalized in the surface of the three-membered ring, a phenomenon which may be described by the term sigma-aromaticity.

  16. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    , and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  17. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  18. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  19. Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2015-01-12

    Succinimide formation from aspartic acid (Asp) residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe) as a model compound, we propose the possibility that acetic acid (AA), which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition) to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds) occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  20. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    Science.gov (United States)

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  1. Substrate-Mediated C-C and C-H Coupling after Dehalogenation.

    Science.gov (United States)

    Kong, Huihui; Yang, Sha; Gao, Hongying; Timmer, Alexander; Hill, Jonathan P; Díaz Arado, Oscar; Mönig, Harry; Huang, Xinyan; Tang, Qin; Ji, Qingmin; Liu, Wei; Fuchs, Harald

    2017-03-15

    Intermolecular C-C coupling after cleavage of C-X (mostly, X = Br or I) bonds has been extensively studied for facilitating the synthesis of polymeric nanostructures. However, the accidental appearance of C-H coupling at the terminal carbon atoms would limit the successive extension of covalent polymers. To our knowledge, the selective C-H coupling after dehalogenation has not so far been reported, which may illuminate another interesting field of chemical synthesis on surfaces besides in situ fabrication of polymers, i.e., synthesis of novel organic molecules. By combining STM imaging, XPS analysis, and DFT calculations, we have achieved predominant C-C coupling on Au(111) and more interestingly selective C-H coupling on Ag(111), which in turn leads to selective synthesis of polymeric chains or new organic molecules.

  2. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Directory of Open Access Journals (Sweden)

    Hatahet Feras

    2010-09-01

    Full Text Available Abstract Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3 pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.

  3. Corrosion Study and Intermetallics Formation in Gold and Copper Wire Bonding in Microelectronics Packaging

    Directory of Open Access Journals (Sweden)

    Christopher Breach

    2013-07-01

    Full Text Available A comparison study on the reliability of gold (Au and copper (Cu wire bonding is conducted to determine their corrosion and oxidation behavior in different environmental conditions. The corrosion and oxidation behaviors of Au and Cu wire bonding are determined through soaking in sodium chloride (NaCl solution and high temperature storage (HTS at 175 °C, 200 °C and 225 °C. Galvanic corrosion is more intense in Cu wire bonding as compared to Au wire bonding in NaCl solution due to the minimal formation of intermetallics in the former. At all three HTS annealing temperatures, the rate of Cu-Al intermetallic formation is found to be three to five times slower than Au-Al intermetallics. The faster intermetallic growth rate and lower activation energy found in this work for both Au/Al and Cu/Al as compared to literature could be due to the thicker Al pad metallization which removed the rate-determining step in previous studies due to deficit in Al material.

  4. Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis.

    Science.gov (United States)

    Fritch, Benjamin; Kosolapov, Andrey; Hudson, Phillip; Nissley, Daniel A; Woodcock, H Lee; Deutsch, Carol; O'Brien, Edward P

    2018-04-18

    Mechanical forces acting on the ribosome can alter the speed of protein synthesis, indicating that mechanochemistry can contribute to translation control of gene expression. The naturally occurring sources of these mechanical forces, the mechanism by which they are transmitted 10 nm to the ribosome's catalytic core, and how they influence peptide bond formation rates are largely unknown. Here, we identify a new source of mechanical force acting on the ribosome by using in situ experimental measurements of changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and coarse-grained computer simulations. We demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that are fully transmitted to the ribosome's P-site. The route of force transmission is shown to be through the nascent polypetide's backbone, not through the wall of the ribosome's exit tunnel. Utilizing quantum mechanical calculations we find that a consequence of such a pulling force is to decrease the transition state free energy barrier to peptide bond formation, indicating that the elongation of a nascent chain can accelerate translation. Since nascent protein segments can start out as largely unfolded structural ensembles, these results suggest a pulling force is present during protein synthesis that can modulate translation speed. The mechanism of force transmission we have identified and its consequences for peptide bond formation should be relevant regardless of the source of the pulling force.

  5. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins.

    Science.gov (United States)

    Leitner, Verena M; Walker, Greg F; Bernkop-Schnürch, Andreas

    2003-09-01

    Disulphide bonds between thiolated polymers (thiomers) and cysteine-rich subdomains of mucus glycoproteins are supposed to be responsible for the enhanced mucoadhesive properties of thiomers. This study set out to provide evidence for these covalent interactions using poly(acrylic acid)-cysteine conjugates of 2 and 450 kDa (PAA2-Cys, PAA450-Cys) displaying 402.5-776.0 micromol thiol groups per gram polymer. The effect of the disulphide bond breaker cysteine on thiomer-mucin disulphide bonds was monitored by (1) mucoadhesion studies and (2) rheological studies. Furthermore, (3) diffusion studies and (4) gel filtration studies were performed with thiomer-mucus mixtures. The addition of cysteine significantly (Ppolymer. Gel filtration studies showed that PAA2-Cys was able to form disulphide bonds with mucin glycoproteins resulting in an altered elution profile of the mucin/PAA2-Cys mixture in comparison to mucin alone or mucin/PAA2 mixture. According to these results, the study provides evidence for the formation of covalent bonds between thiomer and mucus glycoproteins.

  6. Ab initio computational study of –N-C and –O-C bonding formation : functional group modification reaction based chitosan

    Science.gov (United States)

    Siahaan, P.; Salimah, S. N. M.; Sipangkar, M. J.; Hudiyanti, D.; Djunaidi, M. C.; Laksitorini, M. D.

    2018-04-01

    Chitosan application in pharmaceutics and cosmeceutics industries is limited by its solubility issue. Modification of -NH2 and -OH fuctional groups of chitosan by adding carboxyl group has been shown to improve its solubility and application. Attempt to synthesize carboxymethyl chitosan (CMC) from monocloroacetic acid (MCAA) has been done prior this report. However no information is available wether –OH (-O-C bonding formation) or -NH2 (-N-C bonding formation) is the preference for - CH2COOH to attach. In the current study, the reaction mechanism between chitosan and MCAA reactants into carboxymethyl chitosan (CMC) was examined by computational approach. Dimer from of chitosan used as a molecular model in calculation All the molecular structure involved in the reaction mechanism was optimized by ab initio computational on the theory and basis set HF/6-31G(d,p). The results showed that the - N-C bonding formation via SN2 than the -O-C bonding formation via SN2 which have activation energy 469.437 kJ/mol and 533.219 kJ/mol respectively. However, the -O-C bonding formation more spontaneous than the -N-C bonding formation because ΔG the formation of O-CMC-2 reaction is more negative than ΔG of formation N-CMC-2 reaction is -4.353 kJ/mol and -1.095 kJ/mol respectively. The synthesis of N,O-CMC first forms -O-CH2COOH, then continues to form -NH-CH2COOH. This information is valuable to further optimize the reaction codition for CMC synthesis.

  7. Glass frit bonding with controlled width and height using a two-step wet silicon etching procedure

    Science.gov (United States)

    Yifang, Liu; Daner, Chen; Liwei, Lin; Gaofeng, Zheng; Jianyi, Zheng; Lingyun, Wang; Daoheng, Sun

    2016-03-01

    A simple and versatile two-step silicon wet etching technique for the control of the width and height of the glass frit bonding layer has been developed to improve bonding strength and reliability in wafer-level microelectromechanical systems (MEMS) packaging processes. The height of the glass frit bonding layer is set by the design of a vertical reference wall which regulates the distance between the silicon wafer and the encapsulation capping substrate. On the other hand, the width of the bonding layer is constrained between two micro grooves which are used to accommodate the spillages of extra glass frit during the bonding process. An optimized thermal bonding process, including the formation of glass liquid, removal of gas bubbles under vacuum and the filling of voids under normal atmospheric condition has been developed to suppress the formation of the bubbles/voids. The stencil printing and pre-sintering processes for the glass frit have been characterized before the thermal bonding process under different magnitudes of bonding pressure. The bonding gap thickness is found to be equal to the height of the reference wall of 10 μm in the prototype design. The bubbles/voids are found to be suppressed effectively and the bonding strength increases from 10.2 to 19.1 MPa as compared with a conventional thermal annealing process in air. Experimentally, prototype samples are measured to have passed the high hermetic sealing leakage tests of 5  ×  10-8 atm cc s-1.

  8. Simultaneous bond degradation and bond formation during phenol-formaldehyde curing with wood

    Science.gov (United States)

    Daniel J. Yelle; John Ralph

    2016-01-01

    Bonding of wood using phenol–formaldehyde adhesive develops highly durable bonds. Phenol– formaldehyde is believed to form primary bonds with wood cell wall polymers (e.g., lignin). However, it is unclear how this adhesive interacts and bonds to lignin. Through wood solubilisation methodologies, earlywood and latewood bonded assemblies were characterized using two-...

  9. Topology of charge density of flucytosine and related molecules and characteristics of their bond charge distributions.

    Science.gov (United States)

    Murgich, Juan; Franco, Héctor J; San-Blas, Gioconda

    2006-08-24

    The molecular charge distribution of flucytosine (4-amino-5-fluoro-2-pyrimidone), uracil, 5-fluorouracil, and thymine was studied by means of density functional theory calculations (DFT). The resulting distributions were analyzed by means of the atoms in molecules (AIM) theory. Bonds were characterized through vectors formed with the charge density value, its Laplacian, and the bond ellipticity calculated at the bond critical point (BCP). Within each set of C=O, C-H, and N-H bonds, these vectors showed little dispersion. C-C bonds formed three different subsets, one with a significant degree of double bonding, a second corresponding to single bonds with a finite ellipticity produced by hyperconjugation, and a third one formed by a pure single bond. In N-C bonds, a decrease in bond length (an increase in double bond character) was not reflected as an increase in their ellipticity, as in all C-C bonds studied. It was also found that substitution influenced the N-C, C-O, and C-C bond ellipticity much more than density and its Laplacian at the BCP. The Laplacian of charge density pointed to the existence of both bonding and nonbonding maxima in the valence shell charge concentration of N, O, and F, while only bonding ones were found for the C atoms. The nonbonding maxima related to the sites for electrophilic attack and H bonding in O and N, while sites of nucleophilic attack were suggested by the holes in the valence shell of the C atoms of the carbonyl groups.

  10. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E. [Indiana Univ., Bloomington, IN (United States)

    1992-03-25

    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  11. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    Science.gov (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  12. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    Science.gov (United States)

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  13. New conception in the theory of chemical bonding; the role of core and valence atomic orbitals in formation of chemical bonds

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Kostikov, Yu.P.; Korol'kov, D.V.

    1986-01-01

    An analysis of x-ray photoelectron spectra leads to a simple and consistent conception in the theory of chemical bonding, which satisfies (unlike the simple MO-LCAO theory) the virial theorem and defines the roles of the core and valence atomic orbitals in the formation of chemical bonds. Its essence is clear from the foregoing: the exothermic effects of the formation of complexes are caused by the lowering of the energies of the core levels of the central atoms with simultaneous small changes in the energies of the core levels of the ligands despite the significant destabilization of the delocalized valence MO's in comparison to the orbital energies of the corresponding free atoms. In order to confirm these ideas, they recorded the x-ray photoelectron spectra of the valence region and the inner levels of single-crystal silicon carbide, silicon, and graphite

  14. Identification of the formation of metal-vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling.

    Science.gov (United States)

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei

    2016-10-07

    Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

  15. Role of dispersion corrected hybrid GGA class in accurately calculating the bond dissociation energy of carbon halogen bond: A benchmark study

    Science.gov (United States)

    Kosar, Naveen; Mahmood, Tariq; Ayub, Khurshid

    2017-12-01

    Benchmark study has been carried out to find a cost effective and accurate method for bond dissociation energy (BDE) of carbon halogen (Csbnd X) bond. BDE of C-X bond plays a vital role in chemical reactions, particularly for kinetic barrier and thermochemistry etc. The compounds (1-16, Fig. 1) with Csbnd X bond used for current benchmark study are important reactants in organic, inorganic and bioorganic chemistry. Experimental data of Csbnd X bond dissociation energy is compared with theoretical results. The statistical analysis tools such as root mean square deviation (RMSD), standard deviation (SD), Pearson's correlation (R) and mean absolute error (MAE) are used for comparison. Overall, thirty-one density functionals from eight different classes of density functional theory (DFT) along with Pople and Dunning basis sets are evaluated. Among different classes of DFT, the dispersion corrected range separated hybrid GGA class along with 6-31G(d), 6-311G(d), aug-cc-pVDZ and aug-cc-pVTZ basis sets performed best for bond dissociation energy calculation of C-X bond. ωB97XD show the best performance with less deviations (RMSD, SD), mean absolute error (MAE) and a significant Pearson's correlation (R) when compared to experimental data. ωB97XD along with Pople basis set 6-311g(d) has RMSD, SD, R and MAE of 3.14 kcal mol-1, 3.05 kcal mol-1, 0.97 and -1.07 kcal mol-1, respectively.

  16. Formation of Conjugated Double Bonds to Induce Polystyrene Conductivity by using Different Concentrations of Methoxo-Oxo Bis (8-Quinolyloxo Vanadium (V

    Directory of Open Access Journals (Sweden)

    Basim Mohamad Hasan

    2017-02-01

    Full Text Available The effect of different concentrations of additive compound methoxo–oxo bis (8-quinolyloxo vanadium (v on formation of conjugated double bonds as part of photo transformation of polystyrene has been investigated. The UV-Vis spectrophotometery has been used in this work. The results are show that additive concentrations applied increase the formation of conjugated double bond as compared with polystyrene. In this study methoxo – oxo bis (8-quinolyloxo vanadium (v indicates great activity to enhance the conductivity of polystyrene by formation of conjugated double bonds.

  17. Shielding and mediating of hydrogen bonding in amide-based (macro)molecules

    NARCIS (Netherlands)

    Harings, J.A.W.

    2009-01-01

    Polymers are long chain molecules comprising continuously repeating building blocks, monomers, which are chemically linked via covalent bonds, for example the C-C bond in polyethylene. A distinction can be made in biopolymers that are made in nature and synthetic polymers that are produced by the

  18. Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd-C Bond Insertion Reactions with Coordinated Alkynylphosphanes

    KAUST Repository

    Chen, Shuli

    2013-09-17

    Phenylbis(phenylethynyl)phosphane PhP(C≡CPh)2 coordinates regiospecifically to the α-methyl-chiral ortho-platinated and -palladated naphthylamine units at the positions trans to the nitrogen donors. The P→Pt coordination bond is kinetically inert, whereas the P→Pd bond is labile. Upon heating of these phosphane complexes at 70 °C, one of the C≡C bonds in the coordinated PhP(C≡CPh)2 was activated towards an intermolecular Pd-C bond insertion reaction with an external ortho-palladated naphthylamine ring. No intramolecular insertion reaction occurred. In contrast to its palladium analogue, the ortho-platinated ring is not reactive towards coordinated PhP(C≡CPh)2, although it can promote the Pd-C bond insertion reaction. However, despite the high kinetic stability of the P→Pt coordination, the organoplatinum unit is a noticeably weaker activator than its organopalladium counterpart. The chirality of the reacting ortho-metallated naphthylamine ligand exhibited high stereochemical influence on the formation of the new stereogenic phosphorus center during the course of these C-C bond-formation reactions. The coordination chemistry and the absolute stereochemistry of the dimetallic products were determined by single-crystal X-ray crystallographic analysis. The asymmetric monoinsertion of PhP(C≡CPh)2 coordinated to a cyclometallated N,N-dimethyl naphthyl/benzylamine template into the Pd-C bonds of N,N-dimethylnaphthylamine palladacycles has been demonstrated for the synthesis of a variety of new P-stereogenic homo- or heterodimetallic complexes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials

    NARCIS (Netherlands)

    Jongsma, Marije A.; Pelser, Floris D. H.; van der Mei, Henny C.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.; Ren, Yijin

    OBJECTIVE: Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on

  20. Spectroscopic Identification of the Au-C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold.

    Science.gov (United States)

    Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan

    2016-11-08

    Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.

  1. Influência da adição de carga inorgânica aos sistemas adesivos na resistência adesiva à dentina = Influence of filler addition to bonding agents on dentin bond strength

    Directory of Open Access Journals (Sweden)

    Cesar, Patricia Desiderio

    2005-01-01

    Full Text Available O objetivo desse estudo foi avaliar o papel da presença ou não de partículas de carga nos sistemas adesivos sobre a resistência adesiva à dentina. Foram utilizados 70 dentes bovinos, divididos em 7 grupos, que foram embutidos em resina acrílica e desgastados até a exposição de uma área plana de dentina. Todos os espécimes receberam o condicionamento ácido e aplicação dos sistemas adesivos, contendo ou não as partículas de carga, de acordo com as instruções do fabricante: Prime & Bond 2. 1 (sem carga – SC, Prime & Bond NT (com carga – CC, Prime & Bond 2. 1 + 10% de SiO² (CC, One Step (SC, One Step Plus (CC, Sigle Bond (SC e Single Bond +10% de SiO² (CC. Cilindros de resina composta TPH Spectrum foram realizados sobre a área de adesão. Os espécimes foram armazenados por 24 a 37C°, e então submetidos ao teste de cisalhamento. Os dados obtidos foram submetidos à análise estatística, empregando- se o teste de análise de variância paramétrica, seguida pelo teste de Tukey a um nível de significância de 5%. Concluiu-se que, para todos os sistemas adesivos testados, a adição de partículas de carga não resultou em diferenças significativas na força de adesão. Porém, entre as marcas comerciais, observamos diferenças significativas, o que demonstra a influência dos demais componentes na eficiência adesiva

  2. Learning Based on CC1 and CC4 Neural Networks

    OpenAIRE

    Kak, Subhash

    2017-01-01

    We propose that a general learning system should have three kinds of agents corresponding to sensory, short-term, and long-term memory that implicitly will facilitate context-free and context-sensitive aspects of learning. These three agents perform mututally complementary functions that capture aspects of the human cognition system. We investigate the use of CC1 and CC4 networks for use as models of short-term and sensory memory.

  3. A DFT study of cyclopropane adsorption on Pt(1 1 1). Electronic structure and bonding

    International Nuclear Information System (INIS)

    Germán, E.; López-Corral, I.; Pirillo, S.; Juan, A.; Brizuela, G.

    2014-01-01

    We have studied the adsorption of cyclopropane (c-C 3 H 6 ) on Pt(1 1 1) by means of the density functional theory (DFT). We have investigated the preferential adsorption geometry, considering different adsorption sites and bonding configurations for the molecular adsorbate. We have also computed the electronic structure and bonding interactions by means of density of states (DOS), crystal orbital overlap population (OPDOS), and overlap population (OP) analysis. Our results show a small preference for Bridge and Top adsorption sites with the cyclopropane ring parallel to the surface. Pt-C equilibrium distance is ∼3.5 Å and a weak bond is formed during adsorption. The main bonding interaction comes from the Pt-H overlap population. Pt 5p z orbitals play an important role in the bonding between c-C 3 H 6 and the surface. We have found that Van der Waals (vdW) corrections to the energies improve the adsorption values without changing the preferential site geometries.

  4. First North American 50 cc Total Artificial Heart Experience: Conversion from a 70 cc Total Artificial Heart.

    Science.gov (United States)

    Khalpey, Zain; Kazui, Toshinobu; Ferng, Alice S; Connell, Alana; Tran, Phat L; Meyer, Mark; Rawashdeh, Badi; Smith, Richard G; Sweitzer, Nancy K; Friedman, Mark; Lick, Scott; Slepian, Marvin J; Copeland, Jack G

    2016-01-01

    The 70 cc total artificial heart (TAH) has been utilized as bridge to transplant (BTT) for biventricular failure. However, the utilization of 70 cc TAH has been limited to large patients for the low output from the pulmonary as well as systemic vein compression after chest closure. Therefore, the 50 cc TAH was developed by SynCardia (Tucson, AZ) to accommodate smaller chest cavity. We report the first TAH exchange from a 70 to 50 cc due to a fit difficulty. The patient failed to be closed with a 70 cc TAH, although the patient met the conventional 70 cc TAH fit criteria. We successfully closed the chest with a 50 cc TAH.

  5. Development of unidirectional C/C composite with high thermal conductivity and its application to plasma facing materials

    International Nuclear Information System (INIS)

    Ioki, Kimihiro; Onozuka, Masanori; Ikeda, Takeshi; Akiba, Masato.

    1994-01-01

    Unidirectional C/C composite named 'MFC-1' with high conductivity was developed, and full-scale armor tiles were fabricated. The thermal conductivity in the direction perpendicular to the plasma-side surface is more than 300-500 W/m·degC, which is higher than those of other C/C composites ever made, even superior to that of pyrolytic carbon. It was shown by high heat load tests done using an electron beam test facility that the unidirectional C/C composite was very resistant against both surface erosion as well as severe thermal shock. The 'MFC-1' was successfully brazed to copper substrate, and its high thermal shock resistance was observed in heat load tests (20 MW/m 2 , 3s, not cooled). A functionally gradient material has been also developed as compliant layer for the MFC-1 bonded to copper. (author)

  6. Extremely efficient catalysis of carbon-carbon bond formation using "click" dendrimer-stabilized palladium nanoparticles.

    Science.gov (United States)

    Astruc, Didier; Ornelas, Cátia; Diallo, Abdou K; Ruiz, Jaime

    2010-07-20

    This article is an account of the work carried out in the authors' laboratory illustrating the usefulness of dendrimer design for nanoparticle palladium catalysis. The "click" synthesis of dendrimers constructed generation by generation by 1-->3 C connectivity, introduces 1,2,3-triazolyl ligands insides the dendrimers at each generation. Complexation of the ligands by Pd(II) followed by reduction to Pd(0) forms dendrimer-stabilized Pd nanoparticles (PdNPs) that are extremely reactive in the catalysis of olefin hydrogenation and C-C bond coupling reactions. The stabilization can be outer-dendritic for the small zeroth-generation dendrimer or intra-dendritic for the larger first- and second-generation dendrimers. The example of the Miyaura-Suzuki reaction that can be catalyzed by down to 1 ppm of PdNPs with a "homeopathic" mechanism (the less, the better) is illustrated here, including catalysis in aqueous solvents.

  7. Induction of heat-labile sites in DNA of mammalian cells by the antitumor alkylating drug CC-1065

    International Nuclear Information System (INIS)

    Zsido, T.J.; Woynarowski, J.M.; Baker, R.M.; Gawron, L.S.; Beerman, T.A.

    1991-01-01

    CC-1065 is a very potent antitumor antibiotic capable of covalent and noncovalent binding to the minor groove of naked DNA. Upon thermal treatment, covalent adducts formed between CC-1065 and DNA generate strand break. The authors have shown that this molecular damage can be detected following CC-1065 treatment of mammalian whole cells. Using alkaline sucrose gradient analysis, They observe thermally induced breakage of [ 14 C]thymidine-prelabeled DNA from drug-treated African green monkey kidney BSC-1 cells. Very little damage to cellular DNA by CC-1065 can be detected without first heating the drug-treated samples. CC-1065 can also generate heat-labile sites within DNA during cell lysis and heating, subsequent to the exposure of cells to drug, suggesting that a pool of free and noncovalently bound drug is available for posttreatment adduct formation. This effect was controlled for by mixing [ 3 H]thymidine-labeled untreated cells with the [ 14 C]thymidine-labeled drug-treated samples. The lowest drug dose at which heat-labile sites were detected was 3 nM CC-1065 (3 single-stranded breaks/10 6 base pairs). This concentration reduced survival of BSC-1 cells to 0.1% in cytotoxicity assays. The generation of CC-1065-induced lesions in cellular DNA is time dependent (the frequency of lesions caused by a 60 nM treatment reaching a plateau at 2 h) and is not readily reversible. The results of this study demonstrate that CC-1065 does generate heat-labile sites with the cellular DNA of intact cells and suggest that a mechanism of cytotoxic action of CC-1065 involves formation of covalent adducts to DNA

  8. Dreamweaver CC for dummies

    CERN Document Server

    Warner, Janine

    2013-01-01

    Turn your wonderful website dreams into robust realities with the help of Dreamweaver CC For Dummies! Creating dynamic websites is easy with Dreamweaver CC and this friendly, full-color guide. Updated for the latest version of Adobe's world-renowned web development tool, Dreamweaver CC For Dummies covers all aspects of creating websites, from understanding web design basics to using style sheets, integrating multimedia, implementing responsive design, testing and publishing your sites, and more. With the professional guidance of Web design expert Jan

  9. Persistent local chemical bonds in intermetallic phase formation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yanwen [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Xubo [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang, Shuo; Huang, Yuying [Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2014-05-01

    We found a direct evidence for the existence of the local chemical Bi–In bonds in the BiIn{sub 2} melt. These bonds are strong and prevail, dominating the structure evolution of the intermetallic clusters. From the local structure of the melt-quenched BiIn{sub 2} ribbon, the chemical Bi–In bonds strengthen compared with those in the equilibrium solidified alloy. The chemical bonds in BiIn{sub 2} melt retain to solid during a rapid quenching process. The results suggest that the intermetallic clusters in the melt evolve into the as-quenched intermetallic phase, and the intermetallic phase originates from the chemical bonds between unlike atoms in the melt. The chemical bonds preserve the chemical ordered clusters and dominate the clusters evolution.

  10. Economical and accurate protocol for calculating hydrogen-bond-acceptor strengths.

    Science.gov (United States)

    El Kerdawy, Ahmed; Tautermann, Christofer S; Clark, Timothy; Fox, Thomas

    2013-12-23

    A series of density functional/basis set combinations and second-order Møller-Plesset calculations have been used to test their ability to reproduce the trends observed experimentally for the strengths of hydrogen-bond acceptors in order to identify computationally efficient techniques for routine use in the computational drug-design process. The effects of functionals, basis sets, counterpoise corrections, and constraints on the optimized geometries were tested and analyzed, and recommendations (M06-2X/cc-pVDZ and X3LYP/cc-pVDZ with single-point counterpoise corrections or X3LYP/aug-cc-pVDZ without counterpoise) were made for suitable moderately high-throughput techniques.

  11. Ring-opening of cyclic ethers with carbon–carbon bond formation by Grignard reagents

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    The ring-opening of cyclic ethers with concomitant C–C bond formation was studied with a number of Grignard reagents. The transformation was performed in a sealed vial by heating to ∼160 °C in an aluminum block or at 180 °C in a microwave oven. Good yields of the product alcohols were obtained...

  12. Development of unidirectional C/C composite with high thermal conductivity and its application to plasma facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, Kimihiro (Mitsubishi Atomic Power Industries, Inc., Tokyo (Japan)); Onozuka, Masanori; Ikeda, Takeshi; Akiba, Masato

    1994-03-01

    Unidirectional C/C composite named 'MFC-1' with high conductivity was developed, and full-scale armor tiles were fabricated. The thermal conductivity in the direction perpendicular to the plasma-side surface is more than 300-500 W/m[center dot]degC, which is higher than those of other C/C composites ever made, even superior to that of pyrolytic carbon. It was shown by high heat load tests done using an electron beam test facility that the unidirectional C/C composite was very resistant against both surface erosion as well as severe thermal shock. The 'MFC-1' was successfully brazed to copper substrate, and its high thermal shock resistance was observed in heat load tests (20 MW/m[sup 2], 3s, not cooled). A functionally gradient material has been also developed as compliant layer for the MFC-1 bonded to copper. (author).

  13. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  14. Optoelectronic properties of CC2TA towards a good TADF material

    Science.gov (United States)

    Mishra, Ashok Kumar

    2018-05-01

    2,4-bis{f3-(9H-carbazol-9-yl)-9H-carbazol-9-yl}-6-phenyl-1,3,5-triazine (CC2TA) is a triazine derivatives in which the acceptor phenyltriazine unit is used as the central skeleton and donor bicarbazole units are bonded to both ends of the skeleton. Molecular orbital calculations exhibit that the HOMO and LUMO are locally allocated chiefly in the bicarbazole and phenyltriazine units, respectively. There are a class of organic molecules and polymers which exhibit semiconductor behavior because of nearly free conjugate π-electrons. Hopping of these electrons in molecules forms different excited singlet and triplet states named as excitons. Some of these organic molecules can be set to emit photons by triplet-singlet excitonic transition via a process called Thermally Activated Delayed Fluorescence (TADF) which is exploited for designing the Organic Light Emitting diode (OLED.) CC2TA is one of these reported noble metal-free TADF molecules which offers unique opto electronic properties arising from the reverse intersystem crossing between the lowest singlet (S) and triplet (T) excited states. Its ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T→S) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic device. In the present study, the CC2TA compounds have been taken up for the investigation of various optoelectronic properties including the thermally activated delayed fluorescence (TADF) by using the Koopmans Method and Density Functional Theory. The present study discusses the utility of the CC2TA organic semiconductor as a suitable TADF material essential for developing an efficient Organic Light Emitting Diode (OLED).

  15. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  16. Basis set effects on coupled cluster benchmarks of electronically excited states: CC3, CCSDR(3) and CC2

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Sauer, Stephan P. A.; Schreiber, Marko

    2010-01-01

    Vertical electronic excitation energies and one-electron properties of 28 medium-sized molecules from a previously proposed benchmark set are revisited using the augmented correlation-consistent triple-zeta aug-cc-pVTZ basis set in CC2, CCSDR(3), and CC3 calculations. The results are compared...... to those obtained previously with the smaller TZVP basis set. For each of the three coupled cluster methods, a correlation coefficient greater than 0.994 is found between the vertical excitation energies computed with the two basis sets. The deviations of the CC2 and CCSDR(3) results from the CC3 reference...... values are very similar for both basis sets, thus confirming previous conclusions on the intrinsic accuracy of CC2 and CCSDR(3). This similarity justifies the use of CC2- or CCSDR(3)-based corrections to account for basis set incompleteness in CC3 studies of vertical excitation energies. For oscillator...

  17. Formation of metal-F bonds during frictional sliding : Influence of water and applied load

    NARCIS (Netherlands)

    Shen, J. T.; Pei, Y. T.; De Hosson, J. Th. M.

    2016-01-01

    Effects of water lubrication and applied load on the formation of PTFE transfer films and metal-F bonds during sliding when PTFE filled composites sliding against steel and Al2O3 are investigated. In water lubricated conditions, XPS analysis reveals that a thin layer of water molecules at the

  18. Molecular-dynamics simulation of crystalline 18-crown-6: thermal shortening of covalent bonds

    NARCIS (Netherlands)

    van Eerden, J.; Harkema, Sybolt; Feil, D.

    1990-01-01

    Molecular-dynamics simulations of crystalline 18-crown-6 have been performed in a study of the apparent thermal shortening of covalent bonds observed in crystal structures. At 100 K, a shortening of 0.006 _+ 0.001 A for C----C and C----O bonds was obtained. This result was found to be independent of

  19. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  20. DHAP-dependent aldolases from (hyper)thermophiles: biochemistry and applications

    NARCIS (Netherlands)

    Falcicchio, P.; Wolterink-van Loo, S.; Franssen, M.C.R.; Oost, van der J.

    2014-01-01

    Generating new carbon-carbon (C-C) bonds in an enantioselective way is one of the big challenges in organic synthesis. Aldolases are a natural tool for stereoselective C-C bond formation in a green and sustainable way. This review will focus on thermophilic aldolases in general and on

  1. Tetrafluorophenolate of HBED-CC: a versatile conjugation agent for 68Ga-labeled small recombinant antibodies

    International Nuclear Information System (INIS)

    Eder, Matthias; Waengler, Bjoern; Eisenhut, Michael; Knackmuss, Stefan; LeGall, Fabrice; Little, Melvyn; Haberkorn, Uwe; Mier, Walter

    2008-01-01

    The success of 68 Ga-labeled peptides for positron emission tomography of neuroendocrine tumors is mainly depending on the complex chemistry of this radioisotope. 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), the chelator of choice has however limitations if its application is expanded to heat-sensitive proteins. Recombinant antibodies like single chain Fv or diabodies belong to this class of proteins. They are suited to provide imaging contrast despite the short-lived 68 Ga because of their rapid blood clearances and nanomolar affinities. The heterobifunctional agent N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC) was chosen as an alternative ligand because this agent is complexing [ 68 Ga]Ga 3+ much faster than DOTA at ambient temperatures. A versatile technology for HBED-CC conjugation of proteins and 68 Ga-labeling has been developed. This included HBED-CC-tetrafluorophenol (TFP) ester synthesis, coupling to the antibody at various pH and complexation reactions performed in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer under different conditions. The synthesis of the monoreactive 2,3,5,6-tetrafluorophenolate of HBED-CC at a carboxyl group not participating in complex formation used [Fe(HBED-CC)] - for ester formation. The removal of Fe 3+ from purified (HBED-CC)TFP ester was achieved with RP 18 cartridge technology. The conjugation chemistry was performed with mAb425 which binds to the epidermal growth factor receptor (EGFR). This protein was used for optimizing purposes only. The influence of complexation parameters like temperature, pH, reaction time, and HBED-CC/antibody ratio on the biological activity of this model antibody was investigated. Furthermore, the outcome of this labeling procedure on the biological activity of a recombinant diabody (50 kDa) was studied. It is known that small HBED-CC/antibody ratios are prerequisites for minimal interference of labels with antigen

  2. Hydrogen peroxide coordination to cobalt(II) facilitated by second-sphere hydrogen bonding

    Czech Academy of Sciences Publication Activity Database

    Wallen, C.M.; Palatinus, Lukáš; Bacsa, J.; Scarborough, C.C.

    2016-01-01

    Roč. 55, č. 39 (2016), s. 11902-11906 ISSN 0044-8249 Institutional support: RVO:68378271 Keywords : cobalt * hydrogen bonds * peroxides * peroxido ligands * second-sphere interactions Subject RIV: CC - Organic Chemistry

  3. Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.0(2,6)]decane.

    Science.gov (United States)

    Hudzik, Jason M; Castillo, Álvaro; Bozzelli, Joseph W

    2015-09-24

    Exo-tricyclo[5.2.1.0(2,6)]decane (TCD) or exo-tetrahydrodicyclopentadiene is an interesting strained ring compound and the single-component high-energy density hydrocarbon fuel known as JP-10. Important initial reactions of TCD at high temperatures could cleave a strained carbon-carbon (C-C) bond in the ring system creating diradicals also constrained by the remaining ring system. This study determines the thermochemical properties of these diradicals (TCD-H2 mJ-nJ where m and n correspond to the cleaved carbons sites) including the carbon-carbon bond dissociation energy (C-C BDE) corresponding to the cleaved TCD site. Thermochemical properties including enthalpies (ΔH°f298), entropies (S(T)), heat capacities (Cp(T)), and C-H and C-C BDEs for the parent (TCD-H2 m-n), radical (TCD-H2 mJ-n and m-nJ), diradical (TCD-H2 mJ-nJ), and carbene (TCD-H2 mJJ-n and m-nJJ) species are determined. Structures, vibrational frequencies, moments of inertia, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level of theory. Standard enthalpies of formation in the gas phase for the TCD-H2 m-n parent and radical species are determined using the B3LYP density functional theory and the higher level G3MP2B3 and CBS-QB3 composite methods. For singlet and triplet TCD diradicals and carbenes, M06-2X, ωB97X-D, and CCSD(T) methods are included in the analysis to determine ΔH°f298 values. The C-C BDEs are further calculated using CASMP2(2,2)/aug-cc-pvtz//CASSCF(2,2)/cc-pvtz and with the CASMP2 energies extrapolated to the complete basis set limit. The bond energies calculated with these methods are shown to be comparable to the other calculation methods. Isodesmic work reactions are used for enthalpy analysis of these compounds for effective cancelation of systematic errors arising from ring strain. C-C BDEs range from 77.4 to 84.6 kcal mol(-1) for TCD diradical singlet species. C-H BDEs for the parent TCD-H2 m-n carbon sites range from 93 to 101 kcal mol(-1) with a

  4. Super-pnicogen bonding in the radical anion of the fluorophosphine dimer

    Science.gov (United States)

    Setiawan, Dani; Cremer, Dieter

    2016-10-01

    The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.

  5. Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides.

    Science.gov (United States)

    Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun

    2018-05-18

    Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.

  6. Why is the Bond Multiplicity in C2 so Elusive?

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Penotti, F.E.; Ponec, Robert

    2015-01-01

    Roč. 1053, SI (2015), s. 189-194 ISSN 2210-271X Institutional support: RVO:67985858 Keywords : bond multiplicity in C2 * spin correlation matrices * full GVB and spin-coupled Subject RIV: CC - Organic Chemistry Impact factor: 1.403, year: 2015

  7. Global spread of mouse-adapted Staphylococcus aureus lineages CC1, CC15, and CC88 among mouse breeding facilities.

    Science.gov (United States)

    Mrochen, Daniel M; Grumann, Dorothee; Schulz, Daniel; Gumz, Janine; Trübe, Patricia; Pritchett-Corning, Kathleen; Johnson, Sarah; Nicklas, Werner; Kirsch, Petra; Martelet, Karine; Brandt, Jens van den; Berg, Sabine; Bröker, Barbara M; Wiles, Siouxsie; Holtfreter, Silva

    2017-11-20

    We previously reported that laboratory mice from all global vendors are frequently colonized with Staphylococcus aureus (S. aureus). Genotyping of a snap sample of murine S. aureus isolates from Charles River, US, showed that mice were predominantly colonized with methicillin-sensitive CC88 strains. Here, we expanded our view and investigated whether laboratory mice from other global animal facilities are colonized with similar strains or novel S. aureus lineages, and whether the murine S. aureus isolates show features of host adaptation. In total, we genotyped 230 S. aureus isolates from various vendor facilities of laboratory mice around the globe (Charles River facilities in the USA, Canada, France, and Germany; another US facility) and university- or company-associated breeding facilities in Germany, China and New Zealand. Spa typing was performed to analyse the clonal relationship of the isolates. Moreover, multiplex PCRs were performed for human-specific virulence factors, the immune-evasion cluster (IEC) and superantigen genes (SAg). We found a total of 58 different spa types that clustered into 15 clonal complexes (CCs). Three of these S. aureus lineages had spread globally among laboratory mice and accounted for three quarters of the isolates: CC1 (13.5%), CC15 (14.3%), and CC88 (47.0%). Compared to human colonizing isolates of the same lineages, the murine isolates frequently lacked IEC genes and SAg genes on mobile genetic elements, implying long-term adaptation to the murine host. In conclusion, laboratory mice from various vendors are colonized with host-adapted S. aureus-strains of a few lineages, predominantly the CC88 lineage. S. aureus researchers must be cautioned that S. aureus colonization might be a relevant confounder in infection and vaccination studies and are therefore advised to screen their mice before experimentation. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Synthesis of Aromatic Compounds by Catalytic C-C Bond Activation of Biphenylene or Angular [3]Phenylene

    Czech Academy of Sciences Publication Activity Database

    Korotvička, A.; Císařová, I.; Roithová, J.; Kotora, Martin

    2012-01-01

    Roč. 18, č. 14 (2012), s. 4200-4207 ISSN 0947-6539 Grant - others:GA UK(CZ) SVV 263205/2011; GA ČR(CZ) GAP207/11/0338; GA MŠk(CZ) LC06070 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : arenes * cleavage reactions * iridium * reaction mechanisms * rhodium Subject RIV: CC - Organic Chemistry Impact factor: 5.831, year: 2012

  9. 78 FR 56842 - Arbitrage Restrictions on Tax-Exempt Bonds

    Science.gov (United States)

    2013-09-16

    ... working capital. This accounting rule recognizes that sources of funds are fungible and treats bond..., DC 20044. Submissions may be hand delivered to: CC:PA:LPD:PR Monday through Friday between the hours.... Estimated total annual recordkeeping burden: 232 hours. Estimated average annual burden hours per respondent...

  10. A dual role of extracellular DNA during biofilm formation of Neisseria meningitidis

    DEFF Research Database (Denmark)

    Lappann, M.; Claus, H.; van Alen, T.

    2010-01-01

    formation, whereas biofilm formation of cc with low point prevalence (ST-8 cc and ST-11 cc) was eDNA-independent. For initial biofilm formation, a ST-32 cc type strain, but not a ST-11 type strain, utilized eDNA. The release of eDNA was mediated by lytic transglycosylase and cytoplasmic N......-acetylmuramyl-l-alanine amidase genes. In late biofilms, outer membrane phospholipase A-dependent autolysis, which was observed in most cc, but not in ST-8 and ST-11 strains, was required for shear force resistance of microcolonies. Taken together, N. meningitidis evolved two different biofilm formation strategies, an e....... On the contrary, spreaders (ST-11 and ST-8 cc) are unable to use eDNA for biofilm formation and might compensate for poor colonization properties by high transmission rates....

  11. Recognition and repair of the CC-1065-(N3-Adenine)-DNA adduct by the UVRABC nuclease

    International Nuclear Information System (INIS)

    Tang, M.; Lee, C.S.; Doisy, R.; Ross, L.; Needham-VanDevanter, D.R.; Hurley, L.H.

    1988-01-01

    The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with phi X174RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mp1. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1 nuclease activity. Using a viral DNA-Escherichia coli transfection system, the authors have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified phi X174RFI DNA. Using a site-directed and multiple CC-1065 modified (MspI-BstNI) 117 base pair fragment from M13mp1, they have found that UVRABC nuclease incises at the eight phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure

  12. Insights into the Diels-Alder Reaction between 3-Vinylindoles and Methyleneindolinone without and with the Assistance of Hydrogen-Bonding Catalyst Bisthiourea: Mechanism, Origin of Stereoselectivity, and Role of Catalyst.

    Science.gov (United States)

    Yan, Chao-Xian; Yang, Fan; Yang, Xing; Zhou, Da-Gang; Zhou, Pan-Pan

    2017-03-17

    The Diels-Alder reaction between 3-vinylindoles and methyleneindolinone can proceed both under catalyst-free conditions and with bisthiourea as the catalyst. The reaction with bisthiourea is much faster and results in higher stereoselectivity of the product. The reaction mechanism, origin of stereoselectivity, and role of the catalyst were elaborated based on quantum mechanical calculations and theoretical methods of reactivity indices, NCI, QTAIM, and distortion/interaction models. In the uncatalyzed reaction, the two C-C bonds that are formed undergo conversion from noncovalent to covalent bonding via a concerted asynchronous mechanism. The weak intermolecular interactions formed in the transition state play important roles. The difference between the interaction and distortion energies is responsible for the stereoselectivity. In the catalyzed reaction, bisthiourea induces both the diene and dienophile to approach it via weak intermolecular interactions, which greatly lowers the energy barrier of the reaction and leads to the product with excellent stereoselectivity. The possible pathways of this reaction were explored, which suggested that the formation of the two C-C bonds goes through either a stepwise or concerted asynchronous mechanism. These results detail the reaction mechanism and shed light on both the significant role of the bisthiourea catalyst and the origin of stereoselectivity for this type of Diels-Alder reaction and related ones.

  13. Staphylococcus aureus CC398

    DEFF Research Database (Denmark)

    Price, Lance B.; Stegger, Marc; Hasman, Henrik

    2012-01-01

    Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection...... of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected...... among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock...

  14. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  15. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    International Nuclear Information System (INIS)

    Li, Yang; Gong, Hao; Sun, Yue; Yan, Juan; Cheng, Biao; Zhang, Xin; Huang, Jing; Yu, Mengying; Guo, Yu; Zheng, Ling; Huang, Kun

    2012-01-01

    Highlights: ► We dissect how individual disulfide bond affects the amyloidogenicity of insulin. ► A controlled reduction system for insulin is established in this study. ► Disulfide breakage is associated with unfolding and increased amyloidogenicity. ► Breakage of A6-A11 is associated with significantly increased cytotoxicity. ► Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7-B7 induced more unfolding of the insulin structure and a higher amyloidogenicity than breakage of A6-A11, but breakage of A6

  16. C-C Coupling on Single-Atom-Based Heterogeneous Catalyst.

    Science.gov (United States)

    Zhang, Xiaoyan; Sun, Zaicheng; Wang, Bin; Tang, Yu; Nguyen, Luan; Li, Yuting; Tao, Franklin Feng

    2018-01-24

    Compared to homogeneous catalysis, heterogeneous catalysis allows for ready separation of products from the catalyst and thus reuse of the catalyst. C-C coupling is typically performed on a molecular catalyst which is mixed with reactants in liquid phase during catalysis. This homogeneous mixing at a molecular level in the same phase makes separation of the molecular catalyst extremely challenging and costly. Here we demonstrated that a TiO 2 -based nanoparticle catalyst anchoring singly dispersed Pd atoms (Pd 1 /TiO 2 ) is selective and highly active for more than 10 Sonogashira C-C coupling reactions (R≡CH + R'X → R≡R'; X = Br, I; R' = aryl or vinyl). The coupling between iodobenzene and phenylacetylene on Pd 1 /TiO 2 exhibits a turnover rate of 51.0 diphenylacetylene molecules per anchored Pd atom per minute at 60 °C, with a low apparent activation barrier of 28.9 kJ/mol and no cost of catalyst separation. DFT calculations suggest that the single Pd atom bonded to surface lattice oxygen atoms of TiO 2 acts as a site to dissociatively chemisorb iodobenzene to generate an intermediate phenyl, which then couples with phenylacetylenyl bound to a surface oxygen atom. This coupling of phenyl adsorbed on Pd 1 and phenylacetylenyl bound to O ad of TiO 2 forms the product molecule, diphenylacetylene.

  17. Structures and heats of formation of simple alkaline earth metal compounds: fluorides, chlorides, oxides, and hydroxides for Be, Mg, and Ca.

    Science.gov (United States)

    Vasiliu, Monica; Feller, David; Gole, James L; Dixon, David A

    2010-09-02

    Geometry parameters, frequencies, heats of formation, and bond dissociation energies are predicted for the simple alkaline earth (Be, Mg and Ca) fluorides, chlorides, oxides, and hydroxides at the coupled cluster theory [CCSD(T)] level including core-valence correlation with the aug-cc-pwCVnZ basis sets up to n = 5 in some cases. Additional corrections (scalar relativistic effects, vibrational zero-point energies, and atomic spin-orbit effects) were necessary to accurately calculate the total atomization energies and heats of formation. The calculated geometry parameters, frequencies, heats of formation, and bond dissociation energies are compared with the available experimental data. For a number of these alkaline earth compounds, the experimental geometries and energies are not reliable. MgF(2) and BeF(2) are predicted to be linear and CaF(2) is predicted to be bent. BeOH is predicted to be bent, whereas MgOH and CaOH are linear. The OBeO angle in Be(OH)(2) is not linear, and the molecule has C(2) symmetry. The heat of formation at 298 K for MgO is calculated to be 32.3 kcal/mol, and the bond dissociation energy at 0 K is predicted to be 61.5 kcal/mol.

  18. Structures, Bonding, and Energetics of Potential Triatomic Circumstellar Molecules Containing Group 15 and 16 Elements.

    Science.gov (United States)

    Turner, Walter E; Agarwal, Jay; Schaefer, Henry F

    2015-12-03

    The recent discovery of PN in the oxygen-rich shell of the supergiant star VY Canis Majoris points to the formation of several triatomic molecules involving oxygen, nitrogen, and phosphorus; these are also intriguing targets for main-group synthetic inorganic chemistry. In this research, high-level ab initio electronic structure computations were conducted on the potential circumstellar molecule OPN and several of its heavier group 15 and 16 congeners (SPN, SePN, TePN, OPP, OPAs, and OPSb). For each congener, four isomers were examined. Optimized geometries were obtained with coupled cluster theory [CCSD(T)] using large Dunning basis sets [aug-cc-pVQZ, aug-cc-pV(Q+d)Z, and aug-cc-pVQZ-PP], and relative energies were determined at the complete basis set limit of CCSDT(Q) from focal point analyses. The linear phosphorus-centered molecules were consistently the lowest in energy of the group 15 congeners by at least 6 kcal mol(-1), resulting from double-triple and single-double bond resonances within the molecule. The linear nitrogen-centered molecules were consistently the lowest in energy of the group 16 congeners by at least 5 kcal mol(-1), due to the electronegative central nitrogen atom encouraging electron delocalization throughout the molecule. For OPN, OPP, and SPN, anharmonic vibrational frequencies and vibrationally corrected rotational constants are predicted; good agreement with available experimental data is observed.

  19. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    Science.gov (United States)

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photosynthetic water oxidation: binding and activation of substrate waters for O-O bond formation.

    Science.gov (United States)

    Vinyard, David J; Khan, Sahr; Brudvig, Gary W

    2015-01-01

    Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as S(i) states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism.

  1. Pressure bonding molybdenum alloy (TZM) to reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Huffsmith, S.A.; Landingham, R.L.

    1978-01-01

    Topping cycles could boost the energy efficiencies of a variety of systems by using what is now waste heat. One such topping cycle uses a ceramic helical expander and would require that a reaction-bonded silicon nitride (RBSN) rotor be bonded to a shaft of TZM (Mo-0.5 wt % Ti-0.08 wt % Zr). Coupon studies show that TZM can be bonded to RBSN at 1300 0 C and 69 MPa if there is an interlayer of MoSi 2 . A layer of finely ground (10 μm) MoSi 2 facilitates bond formation and provides a thicker bond interface. The hardness and grain structure of the TZM and RBSN were not affected by the temperature and pressure required to bond the coupons

  2. Bridging and bonding interactions in higher education: social capital and students’ academic and professional identity formation

    Science.gov (United States)

    Jensen, Dorthe H.; Jetten, Jolanda

    2015-01-01

    It is increasingly recognized that graduates’ achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students’ socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students’ professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students’ parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students’ professional identity

  3. Bridging and bonding interactions in higher education: social capital and students' academic and professional identity formation.

    Science.gov (United States)

    Jensen, Dorthe H; Jetten, Jolanda

    2015-01-01

    It is increasingly recognized that graduates' achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students' socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students' professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students' parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students' professional identity development.

  4. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  5. Bond Formation in Diatomic Transition Metal Hydrides: Insights from the Analysis of Domain-Averaged Fermi Holes

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert

    2013-01-01

    Roč. 113, č. 2 (2013), s. 102-111 ISSN 0020-7608 R&D Projects: GA ČR GA203/09/0118 Institutional support: RVO:67985858 Keywords : transition metal hydrides * bond formation * analysis of domain averaged Fermi holes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.166, year: 2013

  6. Possible Existence of (cc¯)–Nucleus Bound States

    International Nuclear Information System (INIS)

    Yokota, Akira; Oka, Makoto; Hiyama, Emiko

    2014-01-01

    Charmonium (cc¯) bound states in few-nucleon systems, 2 H, 4 He and 8 Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective (cc¯)–nucleon (N) interaction. The relation between two-body (cc¯)–N scattering length a cc¯−N and the binding energies B of (cc¯)–nucleus bound states are given. Recent lattice QCD data of a cc¯−N corresponds to B≃0.5 MeV for (cc¯)− 4 He and 2 MeV for (cc¯)− 8 Be in our results. (author)

  7. Formation of III–V-on-insulator structures on Si by direct wafer bonding

    International Nuclear Information System (INIS)

    Yokoyama, Masafumi; Iida, Ryo; Ikku, Yuki; Kim, Sanghyeon; Takenaka, Mitsuru; Takagi, Shinichi; Takagi, Hideki; Yasuda, Tetsuji; Yamada, Hisashi; Ichikawa, Osamu; Fukuhara, Noboru; Hata, Masahiko

    2013-01-01

    We have studied the formation of III–V-compound-semiconductors-on-insulator (III–V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III–V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O 2 plasma-assisted DWB process with ECR sputtered SiO 2 BOX layers and a DWB process based on atomic-layer-deposition Al 2 O 3 (ALD-Al 2 O 3 ) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO 2 and ALD-Al 2 O 3 BOX layers are desorption of Ar and H 2 O gas, respectively. In order to suppress micro-void generation in the ECR-SiO 2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al 2 O 3 BOX layers to increase the deposition temperature of the ALD-Al 2 O 3 BOX layers. It is also another possible solution to deposit ALD-Al 2 O 3 BOX layers on thermally oxidized SiO 2 layers, which can absorb the desorption gas from ALD-Al 2 O 3 BOX layers. (invited paper)

  8. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state

    Energy Technology Data Exchange (ETDEWEB)

    Osterman, Ilya A.; Khabibullina, Nelli F.; Komarova, Ekaterina S.; Kasatsky, Pavel; Kartsev, Victor G.; Bogdanov, Alexey A.; Dontsova, Olga A.; Konevega, Andrey L.; Sergiev, Petr V.; Polikanov, Yury S. (InterBioScreen); (UIC); (MSU-Russia); (Kurchatov)

    2017-05-13

    The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.

  9. Formation of the market of high-bond (junk bonds in the United States in 1970–1980 years

    Directory of Open Access Journals (Sweden)

    Moshenskyi S.Z.

    2017-03-01

    Full Text Available Market of high-yield bonds (also known as «junk bonds» began to emerge in the US in the mid-1970s and was associated with the activities of «junk bond king» Michael Milken from Drexel investment company. Junk bonds emitents are small and newly established companies which cannot get a high credit rating. Emission of high-yield (8–10 % bond was their only chance to find its place in the financial market. Michael Milken realized the potential of these bonds, which, in fact, were often quite reliable securities, and started organizing their emissions by selling junk bonds to Savings and Loan Associations and other investors. In the 1980 issue of such bonds used for aggressive corporate takeovers, which supplied the capital from junk bonds market. Some of takeovers carried out in violation of laws that led to the arrest of Michael Milken, Drexel bankruptcy and the collapse of the entire junk bonds market.

  10. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  11. SOCIAL BONDING: REGULATION BY NEUROPEPTIDES

    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth

    2014-06-01

    Full Text Available Affiliative social relationships (e.g., among spouses, family members, and friends play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT and arginine vasopressin (AVP, in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.

  12. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  13. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  14. A theoretical model investigation of peptide bond formation involving two water molecules in ribosome supports the two-step and eight membered ring mechanism

    International Nuclear Information System (INIS)

    Wang, Qiang; Gao, Jun; Zhang, Dongju; Liu, Chengbu

    2015-01-01

    Highlights: • We theoretical studied peptide bond formation reaction mechanism with two water molecules. • The first water molecule can decrease the reaction barriers by forming hydrogen bonds. • The water molecule mediated three-proton transfer mechanism is the favorable mechanism. • Our calculation supports the two-step and eight membered ring mechanism. - Abstract: The ribosome is the macromolecular machine that catalyzes protein synthesis. The kinetic isotope effect analysis reported by Strobel group supports the two-step mechanism. However, the destination of the proton originating from the nucleophilic amine is uncertain. A computational simulation of different mechanisms including water molecules is carried out using the same reaction model and theoretical level. Formation the tetrahedral intermediate with proton transfer from nucleophilic nitrogen, is the rate-limiting step when two water molecules participate in peptide bond formation. The first water molecule forming hydrogen bonds with O9′ and H15′ in the A site can decrease the reaction barriers. Combined with results of the solvent isotope effects analysis, we conclude that the three-proton transfer mechanism in which water molecule mediate the proton shuttle between amino and carbon oxygen in rate-limiting step is the favorable mechanism. Our results will shield light on a better understand the reaction mechanism of ribosome

  15. Illustrator CC digital classroom

    CERN Document Server

    Smith, Jennifer

    2013-01-01

    A complete training package lets you learn Adobe Illustrator CC at your own speed Adobe Illustrator is the leading drawing and illustration software used to create artwork for a variety of media. This book-and-DVD package provides 13 self-paced lessons that get you up to speed on the latest version of Illustrator (Creative Cloud). Step-by-step instructions in the full-color book are supported by video tutorials on the DVD. Together, these tools will help you learn Adobe Illustrator basics, essential skills, and all the new capabilities in Illustrator CC-in no time.  Includes step-by-step in

  16. Photoshop CC for dummies

    CERN Document Server

    Bauer, Peter

    2013-01-01

    Stretch your creativity beyond the cloud with this fully-updated Photoshop guide!Photoshop puts amazing design and photo-editing tools in the hands of creative professionals and hobbyists everywhere, and the latest version - Photoshop CC - is packed with even more powerful tools to help you manage and enhance your images. This friendly, full-color guide introduces you to the basics of Photoshop CC and provides clear explanations of the menus, panels, tools, options, and shortcuts you'll use the most. Plus, you'll learn valuable tips for fixing common photo flaws, improvin

  17. Replacement of Neisseria meningitidis C cc11/ET-15 variant by a cc103 hypervirulent clone, Brazil 2005-2011.

    Science.gov (United States)

    Sardinha, Guilherme; Cordeiro, Soraia; Gomes, Erica; Romanelli, Cinthia; Andrade, Claudia; Reis, Joice; de Filippis, Ivano

    2013-08-01

    Outbreaks caused by serogroup C meningococci in the northeast region of Brazil from 2005 to 2011 were associated to the emergence of variant ET-15 of cc11, which has been replaced by cc103 from 2006 to date. The increase of cc103 should be closely monitored to prevent the spread of this clone to neighbouring regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Resin cements formulated with thio-urethanes can strengthen porcelain and increase bond strength to ceramics.

    Science.gov (United States)

    Bacchi, Atais; Spazzin, Aloisio Oro; de Oliveira, Gabriel Rodrigues; Pfeifer, Carmem; Cesar, Paulo Francisco

    2018-06-01

    The use of thio-urethane oligomers has been shown to significantly improve the mechanical properties of resin cements (RCs). The aim of this study was to use thio-urethane-modified RC to potentially reinforce the porcelain-RC structure and to improve the bond strength to zirconia and lithium disilicate. Six oligomers were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP, P) or trimethylol-tris-3-mercaptopropionate (TMP, T) - with di-functional isocyanates - 1,6-Hexanediol-diissocyante (HDDI) (aliphatic, AL) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic, AR) or Dicyclohexylmethane 4,4'-Diisocyanate (HMDI) (cyclic, CC). Thio-urethanes (20 wt%) were added to a BisGMA/UDMA/TEGDMA organic matrix. Filler was introduced at 60 wt%. The microshear bond strength (μSBS), Weibull modulus (m), and failure pattern of RCs bonded to zirconia (ZR) and lithium disilicate (LD) ceramics was evaluated. Biaxial flexural test and fractographic analysis of porcelain discs bonded to RCs were also performed. The biaxial flexural strength (σ bf ) and m were calculated in the tensile surfaces of porcelain and RC structures (Z = 0 and Z = -t 2 , respectively). The μSBS was improved with RCs formulated with oligomers P_AL or T_AL bonded to LD and P_AL, P_AR or T_CC bonded to zirconia in comparison to controls. Mixed failures predominated in all groups. σ bf had superior values at Z = 0 with RCs formulated with oligomers P_AL, P_AR, T_AL, or T_CC in comparison to control; σ bf increased with all RCs composed by thio-urethanes at Z = -t 2 . Fractographic analysis revealed all fracture origins at Z = 0. The use of specific thio-urethane oligomers as components of RCs increased both the biaxial flexural strength of the porcelain-RC structure and the μSBS to LD and ZR. The current investigation suggests that it is possible to reinforce the porcelain-RC pair and obtain higher bond strength to LD and ZR with RCs

  19. Organosulfate Formation through the Heterogeneous Reaction of Sulfur Dioxide with Unsaturated Compounds

    Science.gov (United States)

    George, C.; Passananti, M.; Kong, L.; Shang, J.; Perrier, S.; Jianmin, C.; Donaldson, D. J.

    2016-12-01

    The atmospheric formation of organosulfur derivatives through reaction with SO2 is generally mediated by oxidants such as O3, OH; recently we have proposed a direct reaction between SO2 and unsaturated compounds as another possible pathway for organosulfate formation in the troposphere. For the first time it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds on various unsaturated compounds, and may therefore have a general environmental impact. We used different experimental strategies i.e., a coated flow tube (CFT), an aerosol flow tube (AFT) and a DRIFT (diffuse reflectance infrared Fourier transform) cell. The reaction products were analyzed by means of liquid chromatography coupled to a high resolution mass spectrometer (LC-HR-MS). We report indeed that SO2 reacts with large variety of C=C unsaturations and that even in the presence of ozone, SO2 reacts with OA leading to organosulfur products. A strong enhancement in product formation is observed under actinic illumination, increases the atmospheric significance of this chemical pathway. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could be in excess of 5%. The detection in atmospheric aerosols of organosulfur compounds with the same chemical formulae as the products identified here seems to confirm the importance of this reaction in the atmosphere.

  20. Preparation of catalytically active, covalent α-polylysine-enzyme conjugates via UV/vis-quantifiable bis-aryl hydrazone bond formation.

    Science.gov (United States)

    Grotzky, Andrea; Manaka, Yuichi; Kojima, Taisuke; Walde, Peter

    2011-01-10

    Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.

  1. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  2. Reactivity differences of Pt0 phosphine complexes in C-C bond activation of asymmetric acetylenes

    NARCIS (Netherlands)

    Gunay, A.; Müller, C.; Lachicotte, R.J.; Brennessel, W.W.; Jones, W.D.

    2009-01-01

    Carbon-carbon bond activation reactions of asymmetric acetylene derivatives of the type L2Pt(PhC=CR) were studied with 1,2-bis(diisopropylphosphino)ethane (dippe), 1,2-bis(di-tert-butylphosphino)ethane (dtbpe), and 1-diisopropylphosphino-2-dimethylaminoethane (dippdmae) chelates.

  3. Neutronic Analysis of the RSG-GAS Compact Core without CIP Silicide 3.55 g U/cc and 4.8 g U/cc

    International Nuclear Information System (INIS)

    Jati S; Lily S; Tukiran S

    2004-01-01

    Fuel conversion from U 3 O 8 -Al to U 3 Si 2 -Al 2.96 g U/cc density in the RSG-GAS core had done successfully step by step since 36 th core until 44 th core. So that, since the 45 th core until now (48 th core) had been using full of silicide 2.96 g U/cc. Even though utilization program of silicide fuel with high density (3.55 g U/cc and 4.8 g U/cc) and optimize operation of RSG-GAS core under research. Optimalitation of core with increasing operation cycle have been analyzing about compact core. The mean of compact core is the RSG-GAS core with decrease number of IP or CIP position irradiation. In this research, the neutronic calculation to cover RSG-GAS core and RSG-GAS core without CIP that are using U 3 Si 2 -Al 2.96 g U/cc, 3.55 g U/cc and 4.8 g U/cc had done. Two core calculation done at 15 MW power using SRAC-ASMBURN code. The calculation result show that fuel conversion from 2.96 g U/cc density to 3.55 g U/cc and 4.8 g U/cc will increasing cycle length for both RSG-GAS core and RSG-GAS compact core without CIP. However, increasing of excess reactivity exceeded from nominal value of first design that 9.2%. Change of power peaking factor is not show significant value and still less than 1.4. Core fuelled with U 3 Si 2 -Al 4.8 g U/cc density have maximum discharge burn-up which exceeded from licensing value (70%). RSG-GAS compact core without CIP fuelled U 3 Si 2 -Al 2.96 g U/cc have longer cycle operation then RSG-GAS core and fulfil limitation neutronic parameter at the first design value. (author)

  4. Halogen Bonding Involving CO and CS with Carbon as the Electron Donor

    Directory of Open Access Journals (Sweden)

    Janet E. Del Bene

    2017-11-01

    Full Text Available MP2/aug’-cc-pVTZ calculations have been carried out to investigate the halogen-bonded complexes formed when CO and CS act as electron-pair donors through C to ClF, ClNC, ClCl, ClOH, ClCN, ClCCH, and ClNH2. CO forms only complexes stabilized by traditional halogen bonds, and all ClY molecules form traditional halogen-bonded complexes with SC, except ClF which forms only an ion-pair complex. Ion-pair complexes are also found on the SC:ClNC and SC:ClCl surfaces. SC:ClY complexes stabilized by traditional halogen bonds have greater binding energies than the corresponding OC:ClY complexes. The largest binding energies are found for the ion-pair SC–Cl+:−Y complexes. The transition structures which connect the complex and the ion pair on SC:ClNC and SC:ClCl potential surfaces provide the barriers for inter-converting these structures. Charge-transfer from the lone pair on C to the σ-hole on Cl is the primary charge-transfer interaction stabilizing OC:ClY and SC:ClY complexes with traditional halogen bonds. A secondary charge-transfer occurs from the lone pairs on Cl to the in-plane and out-of-plane π antibonding orbitals of ClY. This secondary interaction assumes increased importance in the SC:ClNH2 complex, and is a factor leading to its unusual structure. C–O and C–S stretching frequencies and 13C chemical shieldings increase upon complex formation with ClY molecules. These two spectroscopic properties clearly differentiate between SC:ClY complexes and SC–Cl+:−Y ion pairs. Spin–spin coupling constants 1xJ(C–Cl for OC:ClY complexes increase with decreasing distance. As a function of the C–Cl distance, 1xJ(C–Cl and 1J(C–Cl provide a fingerprint of the evolution of the halogen bond from a traditional halogen bond in the complexes, to a chlorine-shared halogen bond in the transition structures, to a covalent bond in the ion pairs.

  5. Per-2,3-O-alkylated beta-cyclodextrin duplexes connected with disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Tatar, Ameneh; Grishina, Anastasia; Buděšínský, Miloš; Kraus, Tomáš

    2017-01-01

    Roč. 29, č. 1 (2017), s. 40-48 ISSN 1061-0278 R&D Projects: GA MŠk LD12019 Grant - others:COST(XE) CM1005 Institutional support: RVO:61388963 Keywords : cyclodextrins * inclusion complexes * disulfide bonds Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 1.264, year: 2016

  6. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  7. Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'

    International Nuclear Information System (INIS)

    Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.

    1987-01-01

    A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)

  8. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation.

    Science.gov (United States)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  9. Formation of porous surface layers in reaction bonded silicon nitride during processing

    Science.gov (United States)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  10. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    Science.gov (United States)

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  11. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens.

    Science.gov (United States)

    Jongsma, Marije A; van der Mei, Henny C; Atema-Smit, Jelly; Busscher, Henk J; Ren, Yijin

    2015-03-23

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased pocket depth and bleeding on probing. This study compares in vivo biofilm formation on single-strand and multi-strand retention wires with different oral health-care regimens. Two-centimetre wires were placed in brackets that were bonded to the buccal side of the first molars and second premolars in the upper arches of 22 volunteers. Volunteers used a selected toothpaste with or without the additional use of a mouthrinse containing essential oils. Brushing was performed manually. Regimens were maintained for 1 week, after which the wires were removed and the oral biofilm was collected to quantify the number of organisms and their viability, determine the microbial composition and visualize the bacteria by electron microscopy. A 6-week washout period was employed between regimens. Biofilm formation was reduced on single-strand wires compared with multi-strand wires; bacteria were observed to adhere between the strands. The use of antibacterial toothpastes marginally reduced the amount of biofilm on both wire types, but significantly reduced the viability of the biofilm organisms. Additional use of the mouthrinse did not result in significant changes in biofilm amount or viability. However, major shifts in biofilm composition were induced by combining a stannous fluoride- or triclosan-containing toothpaste with the mouthrinse. These shifts can be tentatively attributed to small changes in bacterial cell surface hydrophobicity after the adsorption of the toothpaste components, which stimulate bacterial adhesion to the hydrophobic oil, as illustrated for a Streptococcus mutans strain.

  12. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    Science.gov (United States)

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.

  13. INVESTIGATING THE fFORMATION OF INTERMETALLIC COMPOUNDS AND THE VARIATION OF BOND STRENGTH BETWEEN Al-Cu LAYERS AFTER ANNEALING IN PRESENCE OF NICKEL BETWEEN LAYERS

    Directory of Open Access Journals (Sweden)

    A. Shabani

    2016-06-01

    Full Text Available In the present study, the effect of post-rolling annealing heat treatment on the formation of intermetallic compounds between Al-Cu strips, in the presence of nickel coating on the Cu strips, was investigated. In addition, the effect of post-rolling annealing and intermetallic compounds on the bond strength of Al-Cu strips was evaluated. In order to prepare samples, Cu strips were coated with nickel by electroplating process. After surface preparing, Cu strips were placed between two Al strips and roll bonded. This method is used for producing Al-Ni-Cu composites. Then the samples were annealed at 773K for 2 h. The formation of intermetallic compounds was studied using energy dispersive spectroscopy (EDS and X-ray diffraction (XRD. Also, in order to investigate bond strength of Al-Cu after post-rolling annealing heat treatment, samples were produced using nickel powder and nickel coating. Then bond strength of strips was investigated using peeling test. The results revealed that by post-rolling annealing of layers, the bond strength between Al-Cu strips decreases dramatically.

  14. Energy Materials Coordinating Committee (EMaCC)

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-31

    This report summarizes EMaCC activities for fiscal year 1990 and describes the materials research programs of various offices and divisions within the department. The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the department. (JL)

  15. Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A-IRMOF-1 (A = Be, Mg, Ca, Sr, Ba).

    Science.gov (United States)

    Yang, Li-Ming; Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer; Tilset, Mats

    2011-06-07

    Formation energies, chemical bonding, electronic structure, and optical properties of metal-organic frameworks of alkaline earth metals, A-IRMOF-1 (where A = Be, Mg, Ca, Sr, or Ba), have been systemically investigated with DFT methods. The unit cell volumes and atomic positions were fully optimized with the Perdew-Burke-Ernzerhof functional. By fitting the E-V data into the Murnaghan, Birch and Universal equation of states (UEOS), the bulk modulus and its pressure derivative were estimated and provided almost identical results. The data indicate that the A-IRMOF-1 series are soft materials. The estimated bandgap values are all ca. 3.5 eV, indicating a nonmetallic behavior which is essentially metal independent within this A-IRMOF-1 series. The calculated formation energies for the A-IRMOF-1 series are -61.69 (Be), -62.53 (Mg), -66.56 (Ca), -65.34 (Sr), and -64.12 (Ba) kJ mol(-1) and are substantially more negative than that of Zn-based IRMOF-1 (MOF-5) at -46.02 kJ mol(-1). From the thermodynamic point of view, the A-IRMOF-1 compounds are therefore even more stable than the well-known MOF-5. The linear optical properties of the A-IRMOF-1 series were systematically investigated. The detailed analysis of chemical bonding in the A-IRMOF-1 series reveals the nature of the A-O, O-C, H-C, and C-C bonds, i.e., A-O is a mainly ionic interaction with a metal dependent degree of covalency. The O-C, H-C, and C-C bonding interactions are as anticipated mainly covalent in character. Furthermore it is found that the geometry and electronic structures of the presently considered MOFs are not very sensitive to the k-point mesh involved in the calculations. Importantly, this suggests that sampling with Γ-point only will give reliable structural properties for MOFs. Thus, computational simulations should be readily extended to even more complicated MOF systems.

  16. Are Orbital-Resolved Shared-Electron Distribution Indices and Cioslowski Covalent Bond Orders Useful for Molecules?

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert; Kohout, M.

    2015-01-01

    Roč. 113, 13-14 (2015), s. 1682-1689 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : domain averaged fermi holes * shared electron-distribution indices * Cioslowski covalent bond orders Subject RIV: CC - Organic Chemistry Impact factor: 1.837, year: 2015

  17. Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, I.; Jankowski, A.F.; Terminello, L.J. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Boron nitride is an interesting material for technological applications and for fundamental solid state physics investigations. It is a compound isoelectronic with carbon and, like carbon can possess sp{sup 2} and sp{sup 3} bonded phases resembling graphite and diamond. BN crystallizes in the sp{sup 2}-bonded hexagonal (h-BN), rhombohedral (r-BN) and turbostratic phases, and in the sp{sup 3}-bonded cubic (c-BN) and wurtzite (w-BN) phases. A new family of materials is obtained when replacing C-C pairs in graphite with isoelectronic B-N pairs, resulting in C{sub 2}BN compounds. Regarding other boron compounds, BN is exceptional in the sense that it has standard two-center bonds with conventional coordination numbers, while other boron compounds (e.g. B{sub 4}C) are based on the boron icosahedron unit with three-center bonds and high coordination numbers. The existence of several allotropic forms and fullerene-like structures for BN suggests a rich variety of local bonding and poses the questions of how this affects the local electronic structure and how the material accommodates the stress induced in the transition regions between different phases. One would expect point defects to play a crucial role in stress accommodation, but these must also have a strong influence in the electronic structure, since the B-N bond is polar and a point defect will thus be a charged structure. The study of point defects in relationship to the electronic structure is of fundamental interest in these materials. Recently, the authors have shown that Near-Edge X-ray Absorption Fine Structure (NEXAFS) is sensitive to point defects in h-BN, and to the formation of metastable phases even in amorphous materials. This is significant since other phase identification techniques like vibrational spectroscopies or x-ray diffraction yield ambiguous results for nanocrystalline and amorphous samples. Serendipitously, NEXAFS also combines chemical selectivity with point defect sensitivity.

  18. Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber

    NARCIS (Netherlands)

    Chin, Yeen; Busscher, HJ; Evans, R; Noar, J; Pratten, J

    Decalcification is a commonly recognized complication of orthodontic treatment with fixed appliances. A technology, based on a parallel plate flow chamber, was developed to investigate early biofilm formation of a strain of Streptococcus sanguis on the surface of four orthodontic bonding materials:

  19. Evaluating the accuracy of theoretical one-bond 13 C─13 C scalar couplings and their ability to predict structure in a natural product.

    Science.gov (United States)

    Powell, Jacob; Valenti, Domenic; Bobnar, Harley; Drain, Erika; Elliott, Blaine; Frank, Sydney; McCullough, Tyler; Moore, Sean; Kettring, Andrew; Iuliucci, Robbie; Harper, James K

    2017-11-01

    This study explores the feasibility of using a combination of experimental and theoretical 1-bond 13 C─ 13 C scalar couplings ( 1 J CC ) to establish structure in organic compounds, including unknowns. Historically, n J CC and n J CH studies have emphasized 2 and 3-bond couplings, yet 1 J CC couplings exhibit significantly larger variations. Moreover, recent improvements in experimental measurement and data processing methods have made 1 J CC data more available. Herein, an approach is evaluated in which a collection of theoretical structures is created from a partial nuclear magnetic resonance structural characterization. Computed 1 J CC values are compared to experimental data to identify candidates giving the best agreement. This process requires knowledge of the error in theoretical methods, thus the B3LYP, B3PW91, and PBE0 functionals are evaluated by comparing to 27 experimental values from INADEQUATE. Respective errors of ±1.2, ±3.8, and ±2.3 Hz are observed. An initial test of this methodology involves the natural product 5-methylmellein. In this case, only a single candidate matches experimental data with high statistical confidence. This analysis establishes the intramolecular hydrogen-bonding arrangement, ring heteroatom identity, and conformation at one position. This approach is then extended to hydroheptelidic acid, a natural product not fully characterized in prior studies. The experimental/theoretical approach proposed herein identifies a single best-fit structure from among 26 candidates and establishes, for the first time, 1 configuration and 3 conformations to complete the characterization. These results suggest that accurate and complete structural characterizations of many moderately sized organic structures (<800 Da) may be possible using only 1 J CC data. Copyright © 2017 John Wiley & Sons, Ltd.

  20. H2XP:OH2 Complexes: Hydrogen vs. Pnicogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2016-02-01

    Full Text Available A search of the Cambridge Structural Database (CSD was carried out for phosphine-water and arsine-water complexes in which water is either the proton donor in hydrogen-bonded complexes, or the electron-pair donor in pnicogen-bonded complexes. The range of experimental P-O distances in the phosphine complexes is consistent with the results of ab initio MP2/aug’-cc-pVTZ calculations carried out on complexes H2XP:OH2, for X = NC, F, Cl, CN, OH, CCH, H, and CH3. Only hydrogen-bonded complexes are found on the H2(CH3P:HOH and H3P:HOH potential surfaces, while only pnicogen-bonded complexes exist on H2(NCP:OH2, H2FP:OH2, H2(CNP:OH2, and H2(OHP:OH2 surfaces. Both hydrogen-bonded and pnicogen-bonded complexes are found on the H2ClP:OH2 and H2(CCHP:OH2 surfaces, with the pnicogen-bonded complexes more stable than the corresponding hydrogen-bonded complexes. The more electronegative substituents prefer to form pnicogen-bonded complexes, while the more electropositive substituents form hydrogen-bonded complexes. The H2XP:OH2 complexes are characterized in terms of their structures, binding energies, charge-transfer energies, and spin-spin coupling constants 2hJ(O-P, 1hJ(H-P, and 1J(O-H across hydrogen bonds, and 1pJ(P-O across pnicogen bonds.

  1. Carbon monoxide protonation in condensed phases and bonding to surface superacidic Brønsted centers.

    Science.gov (United States)

    Stoyanov, Evgenii S; Malykhin, Sergei E

    2016-02-14

    Using infrared (IR) spectroscopy and density functional theory (DFT) calculations, interaction of CO with the strongest known pure Brønsted carborane superacids, H(CHB11Hal11) (Hal = F, Cl), was studied. CO readily interacted at room temperature with H(CHB11F11) acid, forming a mixture of bulk salts of formyl and isoformyl cations, which were in equilibrium An(-)H(+)CO COH(+)An(-). The bonding of CO to the surface Brønsted centers of the weaker acid, H(CHB11Cl11), resulted in breaking of the bridged H-bonds of the acid polymers without proton transfer (PT) to CO. The binding occurred via the C atom (blue shift ΔνCO up to +155-167 cm(-1), without PT) or via O atom (red shift ΔνCO up to -110 cm(-1), without PT) always simultaneously, regardless of whether H(+) is transferred to CO. IR spectra of all species were interpreted by B3LYP/cc-pVQZ calculations of the simple models, which adequately mimic the ability of carborane acids to form LH(+)CO, LH(+)CO, COH(+)L, and COH(+)L compounds (L = bases). The CO bond in all compounds was triple. Acidic strength of the Brønsted centers of commonly used acid catalysts, even so-called superacidic catalysts, is not sufficient for the formation of the compounds studied.

  2. A long symmetric N· · ·H· · ·N hydrogen bond inbis(4-aminopyridinium)(1+) azide(1−): redetermination from the original data

    Czech Academy of Sciences Publication Activity Database

    Fábry, Jan

    2017-01-01

    Roč. 73, č. 9 (2017), s. 1344-1347 ISSN 2056-9890 R&D Projects: GA ČR(CZ) GA15-12653S Institutional support: RVO:68378271 Keywords : hydrogen bonding * symmetric hydrogen bonds * primary amine group Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry

  3. Repression of CC16 by cigarette smoke (CS exposure.

    Directory of Open Access Journals (Sweden)

    Lingxiang Zhu

    Full Text Available Club (Clara Cell Secretory Protein (CCSP, or CC16 is produced mainly by non-ciliated airway epithelial cells including bronchiolar club cells and the change of its expression has been shown to associate with the progress and severity of Chronic Obstructive Pulmonary Disease (COPD. In an animal model, the lack of CC16 renders the animal susceptible to the tumorigenic effect of a major CS carcinogen. A recent population-based Tucson Epidemiological Study of Airway Obstructive Diseases (TESAOD has indicated that the low serum CC16 concentration is closely linked with the smoke-related mortality, particularly that driven by the lung cancer. However, the study of CC16 expression in well-defined smoke exposure models has been lacking, and there is no experimental support for the potential causal link between CC16 and CS-induced pathophysiological changes in the lung. In the present study, we have found that airway CC16 expression was significantly repressed in COPD patients, in monkey CS exposure model, and in CS-induced mouse model of COPD. Additionally, the lack of CC16 exacerbated airway inflammation and alveolar loss in the mouse model. Therefore, CC16 may play an important protective role in CS-related diseases.

  4. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6AI-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A. M.; Khan, T. I.

    2013-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20 micro m) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg/sub 2/ and Mg/sub 3/AlNi/sub 2/ was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement. (author)

  5. Effect of interlayer configurations on joint formation in TLP bonding of Ti-6Al-4V to Mg-AZ31

    International Nuclear Information System (INIS)

    Atieh, A M; Khan, T I

    2014-01-01

    In this research work, the transient liquid phase (TLP) bonding process was utilized to fabricate joints using thin (20μm) nickel and copper foils placed between two bonding surfaces to help facilitate joint formation. Two joint configurations were investigated, first, Ti-6Al-4V/CuNi/Mg-AZ31 and second, Ti-6Al-4V/NiCu/Mg-AZ3L The effect of bonding time on microstructural developments across the joint and the changes in mechanical properties were studied as a function of bonding temperature and pressure. The bonded specimens were examined by metallographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD). In both cases, intermetallic phase of CuMg 2 and Mg 3 AlNi 2 was observed inside the joint region. The results show that joint shear strengths for the Ti-6Al-4V/CuNi/Mg-AZ31 setup produce joints with shear strength of 57 MPa compared to 27MPa for joints made using the Ti-6Al-4V/NiCu/Mg-AZ31 layer arrangement

  6. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    Science.gov (United States)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  7. The adsorption of acrolein on a Pt (1 1 1): A study of chemical bonding and electronic structure

    International Nuclear Information System (INIS)

    Pirillo, S.; López-Corral, I.; Germán, E.; Juan, A.

    2012-01-01

    Highlights: ► Study of acrolein/Pt (1 1 1) adsorption using ab-initio and semiempirical methods. ► Geometry optimization and DOS curves were carried out using VASP code. ► Study of chemical bonding evolution using COOP and OP analysis. ► After adsorption Pt-Pt, C=O and C=C bonds are weakened. ► η 3 -cis and η 4 -trans most stable adsorption modes, η 1 -trans less favored one. - Abstract: The adsorption of acrolein on a Pt (1 1 1) surface was studied using ab-initio and semiempirical calculations. Geometry optimization and densities of states (DOS) curves were carried out using the Vienna Ab-initio Simulation Package (VASP) code. We started our study with the preferential geometries corresponding to the different acrolein/Pt (1 1 1) adsorption modes previously reported. Then, we examined the evolution of the chemical bonding in these geometries, using the crystal orbital overlap population (COOP) and overlap population (OP) analysis of selected pairs of atoms. We analyzed the acrolein intramolecular bonds, Pt (1 1 1) superficial bonds and new molecule-surface formed bonds after adsorption. We found that Pt-Pt bonds interacting with the molecule and acrolein C=O and C=C bonds are weakened after adsorption; this last bond is significantly linked to the surface. The obtained C-Pt and O-Pt OP values suggest that the most stable adsorption modes are η 3 -cis and η 4 -trans, while the η 1 -trans is the less favored configuration. We also found that C p z orbital and Pt p z and d z 2 orbitals participate strongly in the adsorption process.

  8. The ModelCC Model-Driven Parser Generator

    Directory of Open Access Journals (Sweden)

    Fernando Berzal

    2015-01-01

    Full Text Available Syntax-directed translation tools require the specification of a language by means of a formal grammar. This grammar must conform to the specific requirements of the parser generator to be used. This grammar is then annotated with semantic actions for the resulting system to perform its desired function. In this paper, we introduce ModelCC, a model-based parser generator that decouples language specification from language processing, avoiding some of the problems caused by grammar-driven parser generators. ModelCC receives a conceptual model as input, along with constraints that annotate it. It is then able to create a parser for the desired textual syntax and the generated parser fully automates the instantiation of the language conceptual model. ModelCC also includes a reference resolution mechanism so that ModelCC is able to instantiate abstract syntax graphs, rather than mere abstract syntax trees.

  9. Immune response CC Chemokines, CCL2 and CCL5 are associated with Pulmonary Sarcoidosis

    LENUS (Irish Health Repository)

    Palchevskiy, Vyacheslav

    2011-04-04

    Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  10. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis.

    Science.gov (United States)

    Palchevskiy, Vyacheslav; Hashemi, Nastran; Weigt, Stephen S; Xue, Ying Ying; Derhovanessian, Ariss; Keane, Michael P; Strieter, Robert M; Fishbein, Michael C; Deng, Jane C; Lynch, Joseph P; Elashoff, Robert; Belperio, John A

    2011-04-04

    Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  11. Activation of a Carbon-Oxygen Bond of Benzofuran by Precoordination of Manganese to the Carbocyclic Ring: A Model for Hydrodeoxygenation.

    Science.gov (United States)

    Zhang; Watson; Dullaghan; Gorun; Sweigart

    1999-08-01

    Stable unsaturated heterocycles such as benzofuran are difficult to remove from petroleum by conventional catalytic hydrotreating. However, in a model system, coordination of Mn(CO)(3)(+) to the aromatic ring of benzofuran activates the C-O bond towards insertion of [Pt(PPh(3))(2)] [Eq. (1)]. The insertion is preceded by precoordination to the furan C=C bond; thus, the 2,3-dihydro analogue of 1, which lacks this double bond, does not undergo insertion of the Pt moiety.

  12. $\\Xi_{cc}$ decays and properties

    CERN Multimedia

    Traill, Murdo Thomas

    2018-01-01

    The $\\Xi$ particles are baryons contains 2 constituent charm quarks in their structure which are expected to decay to high multi-body final states. The LHCb detector is ideally designed for studies of them due to its excellent particle identification and vertex reconstruction. Its capabilities in this area of physics was firmly demonstrated when LHCb announced the discovery of the first ever doubly charmed baryon, $\\Xi^{++}_{cc}$, in decays of $\\Xi^{++}_{cc} \\to \\Lambda^+K^-\\pi^+\\pi^+$ in 2017. This doubly charmed baryon was observed as a highly significant structure in the $\\Lambda^+_c K^-\\pi^+\\pi^+$ mass spectrum from proton-proton collision data recorded by the LHCb detector in Run2. A yield of 313 $\\pm$ 33 $\\Xi^{++}_{cc}$ candidates is measured and the local significances is in excess of 12 $\\sigma$ in the 13 TeV data. The properties of the peak suggest it is inconsistent with being a strongly decaying state. From the 13 TeV data, the mass is measured to be $3621.40\\pm 0.72(stat.) \\pm 0.27(syst....

  13. Molecular and ionic hydrogen bond formation in fluorous solvents.

    Science.gov (United States)

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-08

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  14. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    Science.gov (United States)

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. InDesign CC digital classroom

    CERN Document Server

    Smith, Christopher

    2013-01-01

    Learn the newest version of Adobe's premiere page design software-InDesign CC- with this complete package Written by a team of expert instructors, this complete book-and-DVD package teaches even the most inexperienced beginner how to design eye-popping layouts for brochures, magazines, e-books, and flyers. Step-by-step instructions in the full-color book are enhanced by video tutorials on the companion DVD. Thirteen self-paced lessons let you learn Adobe InDesign CC (Creative Cloud) at your own speed; it's like having your own personal tutor teaching you the hottest new version of this leadi

  16. Backbone dynamics of the human CC-chemokine eotaxin

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jiqing; Mayer, Kristen L.; Stone, Martin J. [Indiana University, Department of Chemistry (United States)

    1999-10-15

    Eotaxin is a CC chemokine with potent chemoattractant activity towards eosinophils. {sup 15}N NMR relaxation data have been used to characterize the backbone dynamics of recombinant human eotaxin. {sup 15}N longitudinal (R{sub 1}) and transverse (R{sub 2}) auto relaxation rates, heteronuclear {sup 1}H-{sup 15}N steady-state NOEs, and transverse cross-relaxation rates ({eta}{sub xy}) were obtained at 30 deg. C for all resolved backbone secondary amide groups using {sup 1} H-detected two-dimensional NMR experiments. Ratios of transverse auto and cross relaxation rates were used to identify NH groups influenced by slow conformational rearrangement. Relaxation data were fit to the extended model free dynamics formalism, yielding parameters describing axially symmetric molecular rotational diffusion and the internal dynamics of each NH group. The molecular rotational correlation time ({tau}{sub m}) is 5.09{+-}0.02 ns, indicating that eotaxin exists predominantly as a monomer under the conditions of the NMR study. The ratio of diffusion rates about unique and perpendicular axes (D{sub parallel}/D{sub perpendicular}) is 0.81{+-}0.02. Residues with large amplitudes of subnanosecond motion are clustered in the N-terminal region (residues 1-19), the C-terminus (residues 68-73) and the loop connecting the first two {beta}-strands (residues 30-37). N-terminal flexibility appears to be conserved throughout the chemokine family and may have implications for the mechanism of chemokine receptor activation. Residues exhibiting significant dynamics on the microsecond-millisecond time scale are located close to the two conserved disulfide bonds, suggesting that these motions may be coupled to disulfide bond isomerization.

  17. High-resolution synchrotron terahertz investigation of the large-amplitude hydrogen bond librational band of (HCN)2

    DEFF Research Database (Denmark)

    Mihrin, Dmytro; Jakobsen, P. W.; Voute, A.

    2018-01-01

    experimental value for the vibrational zero-point energy of 2.50 ± 0.05 kJ mol−1 arising from the entire class of large-amplitude intermolecular modes. The spectroscopic findings are complemented by CCSD(T)-F12b/aug-cc-pV5Z (electronic energies) and CCSD(T)-F12b/aug-cc-pVQZ (force fields) electronic structure...... calculations, providing a (semi)-experimental value of 17.20 ± 0.20 kJ mol−1 for the dissociation energy D0 of this strictly linear weak intermolecular CH⋯N hydrogen bond....

  18. Effect of Adhesive Cementation Strategies on the Bonding of Y-TZP to Human Dentin.

    Science.gov (United States)

    Alves, Mll; Campos, F; Bergoli, C D; Bottino, M A; Özcan, M; Souza, Roa

    2016-01-01

    This study evaluated the effects of different adhesive strategies on the adhesion of zirconia to dentin using conventional and self-adhesive cements and their corresponding adhesive resins. The occlusal parts of human molars (N=80) were sectioned, exposing the dentin. The teeth and zirconia cylinders (N=80) (diameter=3.4 mm; height=4 mm) were randomly divided into eight groups according to the factors "surface conditioning" and "cement type" (n=10 per group). One conventional cement (CC: RelyX ARC, 3M ESPE) and one self-adhesive cement (SA: RelyX U200, 3M ESPE) and their corresponding adhesive resin (for CC, Adper Single Bond Plus; for SA, Scotchbond Universal Adhesive-SU) were applied on dentin. Zirconia specimens were conditioned either using chairside (CJ: CoJet, 30 μm, 2.5 bar, four seconds), laboratory silica coating (RC: Rocatec, 110 μm, 2.5 bar, four seconds), or universal primer (Single Bond Universal-UP). Nonconditioned groups for both cements acted as the control (C). Specimens were stored in water (37°C, 30 days) and subjected to shear bond strength (SBS) testing (1 mm/min). Data (MPa) were analyzed using two-way analysis of variance and a Tukey test (α=0.05). While surface conditioning significantly affected the SBS values (p=0.0001) (Cadhesive. Air-abrasion and the use of the universal primer improved the bond strength of zirconia to dentin compared to the control group, regardless of the type of resin cement used.

  19. Energy Materials Coordinating Committee (EMaCC), Fiscal year 1990

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1991-05-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. Four topical subcommittees are established and are continuing their own programs: Structural Ceramics, Electrochemical Technologies, Radioactive Waste Containment, and Superconductivity. In addition, the EMaCC aids in obtaining materialsrelated inputs for both intra- and inter-agency compilations. Membership in the EMaCC is open to any Department organizational unit; participants are appointed by Division or Office Directors. The current active membership is listed on the following four pages. The EMaCC reports to the Director of the Office of Energy Research in his capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1990 and describes the materials research programs of various offices and divisions within the Department. The Chairman of EMaCC for FY 1990 was Scott L. Richlen; the Executive Secretary was Dr. Jerry Smith.

  20. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    Science.gov (United States)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  2. Redox noninnocence of carbene ligands: carbene radicals in (catalytic) C-C bond formation

    NARCIS (Netherlands)

    Dzik, W.I.; Zhang, X.P.; de Bruin, B.

    2011-01-01

    In this Forum contribution, we highlight the radical-type reactivities of one-electron-reduced Fischer-type carbenes. Carbene complexes of group 6 transition metals (Cr, Mo, and W) can be relatively easily reduced by an external reducing agent, leading to one-electron reduction of the carbene ligand

  3. Theoretical study of C-C bond formation in the methanol to gasoline process

    NARCIS (Netherlands)

    Blaszkowski, S.R.; Santen, van R.A.

    1997-01-01

    Density functional theory is used to study one of the most successful routes to the production of synthetic fuels, the conversion of methanol to gasoline (MTG process) with an acidic zeolite. With our calculations we have determined transition states and adsorption complexes of reactants,

  4. Trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Suzuki, Sachiko; Wang, Wanjing; Kurata, Rie; Kida, Katsuya; Oya, Yasuhisa; Okuno, Kenji; Ashikawa, Naoko; Sagara, Akio; Yoshida, Naoaki

    2009-01-01

    The trapping behaviour of deuterium ions implanted into tungsten simultaneously with carbon ions was investigated by thermal desorption spectroscopy (TDS) and x-ray photoelectron spectroscopy (XPS). The D 2 TDS spectrum consisted of three desorption stages, namely desorption of deuterium trapped by intrinsic defects, ion-induced defects and carbon with the formation of the C-D bond. Although the deuterium retention trapped by intrinsic defects was almost constant, that by ion-induced defects increased as the ion fluence increased. The retention of deuterium with the formation of the C-D bond was saturated at an ion fluence of 0.5x10 22 D + m -2 , where the major process was changed from the sputtering of tungsten with the formation of a W-C mixture to the formation of a C-C layer, and deuterium retention as the C-D bond decreased. It was concluded that the C-C layer would enhance the chemical sputtering of carbon with deuterium with the formation of CD x and the chemical state of carbon would control the deuterium retention in tungsten under C + -D 2 + implantation.

  5. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  6. Search for the doubly charmed baryon $\\Xi_{cc}^+$

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S -F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    A search for the doubly charmed baryon $\\Xi_{cc}^{+}$ in the decay mode $\\Xi_{cc}^{+} \\to \\Lambda_c^+ K^- \\pi^+$ is performed with a data sample, corresponding to an integrated luminosity of 0.65 fb$^{-1}$, of $pp$ collisions recorded at a centre-of-mass energy of 7 TeV. No significant signal is found in the mass range 3300--3800 MeV$/c^2$. Upper limits at the 95\\% confidence level on the ratio of the $\\Xi_{cc}^{+}$ production cross-section times branching fraction to that of the $\\Lambda_c^+$, $R$, are given as a function of the $\\Xi_{cc}^{+}$ mass and lifetime. The largest upper limits range from $R<1.5 \\times 10^{-2}$ for a lifetime of 100 fs to $R<3.9 \\times 10^{-4}$ for a lifetime of 400 fs.

  7. Structural requirements of cholesterol for binding to Vibrio cholerae hemolysin.

    Science.gov (United States)

    Ikigai, Hajime; Otsuru, Hiroshi; Yamamoto, Koichiro; Shimamura, Tadakatsu

    2006-01-01

    Cholesterol is necessary for the conversion of Vibrio cholerae hemolysin (VCH) monomers into oligomers in liposome membranes. Using different sterols, we determined the stereochemical structures of the VCH-binding active groups present in cholesterol. The VCH monomers are bound to cholesterol, diosgenin, campesterol, and ergosterol, which have a hydroxyl group at position C-3 (3betaOH) in the A ring and a C-C double bond between positions C-5 and C-6 (C-C Delta(5)) in the B ring. They are not bound to epicholesterol and dihydrocholesterol, which form a covalent link with a 3alphaOH group and a C-C single bond between positions C-5 and C-6, respectively. This result suggests that the 3betaOH group and the C-CDelta(5) bond in cholesterol are required for VCH monomer binding. We further examined VCH oligomer binding to cholesterol. However, this oligomer did not bind to cholesterol, suggesting that the disappearance of the cholesterol-binding potential of the VCH oligomer might be a result of the conformational change caused by the conversion of the monomer into the oligomer. VCH oligomer formation was observed in liposomes containing sterols with the 3betaOH group and the C-C Delta(5) bond, and it correlated with the binding affinity of the monomer to each sterol. Therefore, it seems likely that monomer binding to membrane sterol leads to the assembly of the monomer. However, since oligomer formation was induced by liposomes containing either epicholesterol or dihydrocholesterol, the 3betaOH group and the C-C Delta(5) bond were not essential for conversion into the oligomer.

  8. Human and Swine Hosts Share Vancomycin-Resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 Clonal Clusters Harboring Tn1546 on Indistinguishable Plasmids

    DEFF Research Database (Denmark)

    Freitas, Ana R.; Coque, Teresa M.; Novais, Carla

    2011-01-01

    clonally related Enterococcus faecium clonal complex 5 (CC5) isolates (17 sequence type 6 [ST6], 6 ST5, 5 ST185, 1 ST147, and 1 ST493) were obtained from feces of swine and healthy humans. This collection included isolates widespread among pigs of European Union (EU) countries since the mid-1990s. Each ST...... comprised isolates showing similar pulsed-field gel electrophoresis (PFGE) patterns (≤6 bands difference; >82% similarity). Some CC5 PFGE subtype strains from swine were indistinguishable from hospital vancomycin-resistant enterococci (VRE) causing infections. A truncated variant of Tn1546 (encoding...... resistance to vancomycin) and tcrB (coding for resistance to copper) were consistently located on 150- to 190-kb plasmids (rep(pLG1)). E. faecium CC17 (ST132) isolates from pig manure and two clinical samples showed identical PFGE profiles and contained a 60-kb mosaic plasmid (rep(Inc18) plus rep...

  9. Analyzing velocity map images to distinguish the primary methyl photofragments from those produced upon C-Cl bond photofission in chloroacetone at 193 nm

    Science.gov (United States)

    Alligood, Bridget W.; Straus, Daniel B.; Butler, Laurie J.

    2011-07-01

    We use a combination of crossed laser-molecular beam scattering experiments and velocity map imaging experiments to investigate the three primary photodissociation channels of chloroacetone at 193 nm: C-Cl bond photofission yielding CH3C(O)CH2 radicals, C-C bond photofission yielding CH3CO and CH2Cl products, and C-CH3 bond photofission resulting in CH3 and C(O)CH2Cl products. Improved analysis of data previously reported by our group quantitatively identifies the contribution of this latter photodissociation channel. We introduce a forward convolution procedure to identify the portion of the signal, derived from the methyl image, which results from a two-step process in which C-Cl bond photofission is followed by the dissociation of the vibrationally excited CH3C(O)CH2 radicals to CH3 + COCH2. Subtracting this from the total methyl signal identifies the methyl photofragments that result from the CH3 + C(O)CH2Cl photofission channel. We find that about 89% of the chloroacetone molecules undergo C-Cl bond photofission to yield CH3C(O)CH2 and Cl products; approximately 8% result in C-C bond photofission to yield CH3CO and CH2Cl products, and the remaining 2.6% undergo C-CH3 bond photofission to yield CH3 and C(O)CH2Cl products.

  10. Les cardiopathies congenitales (cc) au Togo aspects ...

    African Journals Online (AJOL)

    The petrology of the. Follot (16.96%) and the CIA (06.25%) 112 patients have been transferred to foreign countries of which 74.10% Suisse 107 CC have been operated. The evolution has been favourable in 89.18%. In Togo, the discovery of the CC has been done lately posing therefore a problem of therapeutic choice.

  11. DNA degradation by bleomycin: evidence for 2'R-proton abstraction and for C-O bond cleavage accompanying base propenal formation

    International Nuclear Information System (INIS)

    Ajmera, S.; Wu, J.C.; Worth, L. Jr.; Rabow, L.E.; Stubbe, J.; Kozarich, J.W.

    1986-01-01

    Reaction of poly(dA-[2'S- 3 H]dU) with activated bleomycin yields [ 3 H] uracil propenal that completely retains the tritium label. In contrast, the authors have previously shown that reaction of poly(dA-[2'R- 3 H]dU) with activated bleomycin affords unlabeled uracil propenal. They have also prepared both cis- and trans-thymine propenals by chemical synthesis and have observed that the trans isomer is the exclusive product of the bleomycin reaction. Moreover, the cis isomer was found to be stable to the conditions of bleomycin-induced DNA degradation. Taken together, these results establish that the formation of trans-uracil propenal occurs via an anti-elimination mechanism with the stereospecific abstraction of the 2R proton. The question of phosphodiester bond cleavage during base propenal formation has also been addressed by the analysis of the fate of oxygen-18 in poly(dA-[3'- 18 O]dT) upon reaction with activated bleomycin. The 5'-monophosphate oligonucleotide ends produced from thymine propenal formation have been converted to inorganic phosphate by the action of alkaline phosphatase, and the phosphate has been analyzed for 18 O content by 31 P NMR spectroscopy. The oxygen-18 is retained in the inorganic phosphate, establishing that the formation of thymine propenal by activated bleomycin proceeds with C-O bond cleavage at the 3-position

  12. A New Characterization of ACC0 and Probabilistic CC0

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucký, Michal

    2010-01-01

    Barrington, Straubing & Thérien (1990) conjectured that the Boolean And function can not be computed by polynomial size constant depth circuits built from modular counting gates, i.e., by CC0 circuits. In this work we show that the And function can be computed by uniform probabilistic CC0 circuits...... that use only O(log n) random bits. This may be viewed as evidence contrary to the conjecture. As a consequence of our construction we get that all of ACC0 can be computed by probabilistic CC0 circuits that use only O(log n) random bits. Thus, if one were able to derandomize such circuits, one would obtain...... a collapse of circuit classes giving ACC0 = CC0. We present a derandomization of probabilistic CC0 circuits using And and Or gates to obtain ACC0 = And ο Or ο CC0 = Or ο And ο CC0. (And and Or gates of sublinear fan-in suffice in non-uniform setting.) Both these results hold for uniform as well as non...

  13. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    Science.gov (United States)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  14. Biocide Susceptibility of Staphylococcus aureus CC398 and CC30 Isolates from Pigs and Identification of the Biocide Resistance Genes, qacG and qacC

    DEFF Research Database (Denmark)

    Seier-Petersen, Maria Amalie; Nielsen, Lene Nørby; Ingmer, Hanne

    2015-01-01

    Objectives: Methicillin-resistant Staphylococcus aureus (MRSA), in particular clonal complex (CC) 398, is increasingly found in livestock. Recently, MRSA CC30 was identified in Danish pigs. We determined the susceptibility of porcine S. aureus isolates of CC398 and CC30 to disinfectants used in pig......)-encoding virulence factors were investigated. Methods: Susceptibilities to biocides and antimicrobial agents of 79 porcine S. aureus isolates were determined by the microdilution method. Isolates comprised 21 methicillin-sensitive S. aureus (MSSA) and 40 MRSA isolates belonging to CC398 and 13 MSSA and 5 MRSA...... isolates belonging to CC30. The presence of quaternary ammonium compound (QAC) resistance efflux pumps was analyzed using an ethidium bromide accumulation assay. The presence of qac resistance genes in active efflux pump positive isolates was determined by whole-genome sequencing data. All isolates were...

  15. Fullerene–Carbene Lewis Acid–Base Adducts

    KAUST Repository

    Li, Huaping

    2011-08-17

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths similar to those of n-doped fullerenes were observed for the product, consistent with a net transfer of electron density to the C60 core. Corroborating information was obtained using UV photoelectron spectroscopy, which revealed that the adduct has an ionization potential ∼1.5 eV lower than that of C60. Density functional theory calculations showed that the C-C bond is polarized, with a total charge of +0.84e located on the NHC framework and -0.84e delocalized on the C 60 cage. The combination of reactivity, characterization, and theoretical studies demonstrates that fullerenes can behave as Lewis acids that react with C-based Lewis bases and that the overall process describes n-doping via C-C bond formation. © 2011 American Chemical Society.

  16. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Directory of Open Access Journals (Sweden)

    Boaz Galdino Oliveira

    2009-08-01

    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  17. Interface structure of Be/DSCu diffusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Makino, T.; Iwadachi, T. [NGK Insulators Ltd., Nagoya (Japan)

    1998-01-01

    Beryllium is used as plasma facing components of the first wall on ITER. Dispersion-Strengthened Copper (DSCu) is used as heat sink material by joining to Be because DSCu has high thermal conductivity and strength. In this study, Be/DSCu diffusion bonding tests using the interlayer of Al, Ni, Nb, Ti, Zr and Be-Cu alloy have been conducted to choose the suitable interlayer materials. As a result of the shear strength tests, Be/DSCu joints by using Be-Cu alloy interlayer showed the strength of about 200 MPa. Diffusion bonding tests using Be-Cu alloy interlayer or no interlayer (direct bonding) at the range of temperature from 600degC to 850degC have been conducted to identify the effect of bonding temperature and time on interface formation and strength. The thickness of diffusion layer was proportional to a square root of bonding time by diffusion controlled process. The shear strength is controlled by the formation of intermetallic layer at Be side. (author)

  18. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Justine P. [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  19. Exploring the C-X…π Halogen Bonding Motif: An Infrared and Raman Study of the Complexes of CF3X (X = Cl, Br and I with the Aromatic Model Compounds Benzene and Toluene

    Directory of Open Access Journals (Sweden)

    Wouter A. Herrebout

    2013-06-01

    Full Text Available The formation of halogen bonded complexes formed between the trifluorohalomethanes CF3Cl, CF3Br and CF3I and the Lewis bases benzene and toluene at temperatures below 150K was investigated using FTIR and Raman spectroscopy. Experiments using liquid krypton as solvent show that for both CF3Br and CF3I substantial fractions of the monomers can be involved in 1:1 complexes. In addition, weak absorptions illustrating the formation of 2:1 complexes between CF3I and benzene are observed. Using spectra recorded at temperatures between 120 and 140 K, observed information on the relative stability was obtained for all complexes by determining the complexation enthalpies in solution. The resulting values for CF3Br.benzene, CF3I.benzene and (CF3I2.benzene are −6.5(3, −7.6(2 and −14.5(9 kJ mol−1. The values for CF3Br.toluene and CF3I.toluene are −6.2(5 and −7.4(5 kJ mol−1. The experimental complexation enthalpies are compared with theoretical data obtained by combining results from MP2/aug-cc-pVDZ(-PP and MP2/aug-cc-pVTZ(-PP ab initio calculations, from statistical thermodynamical calculations and from Monte Carlo Free Energy Perturbation simulations. The data are also compared with results derived for other C-X···π halogen bonded complexes involving unsaturated Lewis bases such as ethene and ethyne.

  20. New Type of Halogen Bond: Multivalent Halogen Interacting with π- and σ-Electrons

    Directory of Open Access Journals (Sweden)

    Sławomir J. Grabowski

    2017-12-01

    Full Text Available MP2/aug-cc-pVTZ calculations were performed for complexes of BrF3 and BrF5 acting as Lewis acids through the bromine centre, with species playing a role of Lewis base: dihydrogen, acetylene, ethylene, and benzene. The molecular hydrogen donates electrons by its σ-bond, while in remaining moieties—in complexes of hydrocarbons; such an electron transfer follows from π-electrons. The complexes are linked by a kind of the halogen bond that is analyzed for the first time in this study, i.e., it is the link between the multivalent halogen and π or σ-electrons. The nature of such a halogen bond is discussed, as well as various dependencies and correlations are presented. Different approaches are applied here, the Quantum Theory of Atoms in Molecules, Natural Bond Orbital method, the decomposition of the energy of interaction, the analysis of electrostatic potentials, etc.

  1. On the Mechanism of the Copper-Mediated C-S Bond Formation in the Intramolecular Disproportionation of Imine Disulfides

    Czech Academy of Sciences Publication Activity Database

    Rokob, Tibor András; Rulíšek, Lubomír; Šrogl, Jiří; Révész, Agnes; Zins, Emilie-Laure; Schröder, Detlef

    2011-01-01

    Roč. 50, č. 20 (2011), s. 9968-9979 ISSN 0020-1669 R&D Projects: GA MŠk LC512 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : collision-induced dissociation * DFT calculations * C-S bond formation * Cu(I) catalysis * infrared multiphoton spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.601, year: 2011

  2. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  3. [Comporison Sduty of Microstructure by Metallographicalk on the Polarized Light and Texture by XRD of CC 5083 and CC 5182 Aluminium Alloy after Cold Rolling and Recrystallization].

    Science.gov (United States)

    Chen, Ming-biao; Li, Yong-wei; Tan, Yuan-biao; Ma, Min; Wang, Xue-min; Liu, Wen-chang

    2015-03-01

    At present the study of relation between microstructure, texture and performance of CC 5083 aluminium alloy after cold tolling and recrystallization processes is still finitude. So that the use of the CC 5083 aluminium alloy be influenced. Be cased into electrical furnace, hot up with unlimited speed followed the furnace hot up to different temperature and annealed 2h respectively, and be cased into salt-beth furnace, hot up quickly to different temperature and annealed 30 min respectively for CC 5083 and CC 5182 aluminum alloy after cold roling with 91.5% reduction. The microstructure be watched use metallographic microscope, the texture be inspected by XRD. The start temperature of recrystallization and grain grow up temperature within annealing in the electric furnace of CC 5083 aluminum alloy board is 343 degrees C, and the shap of grain after grow up with long strip (the innovation point ); The start temperature of recrystallization within annealling in the salt bath furnace of CC 5083 is 343 degrees C. The start temperature and end temperature of recrystallization within annealling of CC 5083 and CC 5182 aluminum alloy is 371 degrees C. The grain grow up outstanding of cold rooled CC 5152 aluminum alloy after annealed with 454 degrees C in the electric furnace and salt bath furnace. The start temperature of grain grow up of CC 5083 alluminurn alloy annealed in the electric furnace and salt bath furnace respectively is higher than the start temperature of grain grow up of CC 5182 alluminum alloy annealed in the electric furnace and salt bath furnace respectively. The strat temperature of recrystallization grain grow up is higher than which annealled with other three manner annealing process. The recrystallization temperature of CC 5182 annealed in the salt bath furnace is higher than which annealed in the electric furnace. The recrystallization temperature of the surface layer of CC 5083 and CC 5182 aluminum alloy is higher than the inner layer (the innovation

  4. Bone bonding at natural and biomaterial surfaces.

    Science.gov (United States)

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  5. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments.

    Science.gov (United States)

    Calado, Carlos; Camões, Aires; Monteiro, Eliana; Helene, Paulo; Barkokébas, Béda

    2015-03-27

    Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  6. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  7. Synthesis of Reusable Silica Nanosphere-Supported Pt(IV Complex for Formation of Disulfide Bonds in Peptides

    Directory of Open Access Journals (Sweden)

    Xiaonan Hou

    2017-02-01

    Full Text Available Some peptide-based drugs, including oxytocin, vasopressin, ziconotide, pramlintide, nesiritide, and octreotide, contain one intramolecular disulfide bond. A novel and reusable monodispersed silica nanosphere-supported Pt(IV complex (SiO2@TPEA@Pt(IV; TPEA: N-[3-(trimethoxysilylpropyl]ethylenediamine was synthesized via a four-step procedure and was used for the formation of intramolecular disulfide bonds in peptides. Transmission electron microscopy (TEM and chemical mapping results for the Pt(II intermediates and for SiO2@TPEA@Pt(IV show that the silica nanospheres possess a monodisperse spherical structure and contain uniformly-distributed Si, O, C, N, Cl, and Pt. The valence state of Pt on the silica nanospheres was characterized by X-ray photoelectron spectroscopy (XPS. The Pt(IV loaded on SiO2@TPEA@Pt(IV was 0.15 mmol/g, as determined by UV-VIS spectrometry. The formation of intramolecular disulfides in six dithiol-containing peptides of variable lengths by the use of SiO2@TPEA@Pt(IV was investigated, and the relative oxidation yields were determined by high-performance liquid chromatography (HPLC. In addition, peptide 1 (Ac-CPFC-NH2 was utilized to study the reusability of SiO2@TPEA@Pt(IV. No significant decrease in the relative oxidation yield was observed after ten reaction cycles. Moreover, the structure of SiO2@TPEA@Pt(IV after being used for ten cycles was determined to be similar to its initial one, demonstrating the cycling stability of the complex.

  8. Structure phenomena in the bond zone of explosively bonded plates

    International Nuclear Information System (INIS)

    Livne, Z.

    1979-12-01

    In the bond areas of couples of explosively bonded plates, there are often zones, generally designated as ''molten pockets'', which have undergone melting and solidification. The object of the present study was to investigate molten pockets, which have a decisive effect on bond quality. The experimental samples for the study were chosen in consideration of the mutual behaviour of the plates constituting the couples, according to their equilibrium phase diagrams. To facilitate the investigation, large plates were bonded under conditions that enabled to to obtain wavy bond zones that included relatively large molten pockets. To clarify the complex nature of molten pockets and their surroundings, a wide variety of methods were employed. It was found that the shape and composition of molten pockets largely depend upon the mechanism of formation of both the bond wave and the molten pockets. It was also found that the composition of molten pockets is not homogeneous, which is manifest in the modification of the composition of the pockets, the solidification morphology, the phases, which have been identified by X-ray diffraction, and the bond strenght and hardness. Moreover, the different solidification morphologies revealed by metallography were found to depend upon the types of plates bonded, the bonding conditions and the location of pockets in the wavy interface. For molten pockets, cooling rates of 10 4 to 10 5 (degC/sec) have been deduced from interdendritic spacing, and found to be in good agreement with calculations after a mathematical model. It seems that the fast cooling rates and the steep temperature gradients are at the origin of the particular solidification phenomena observed in molten pockets

  9. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  10. Insertion reactions into Pd[bond]O and Pd[bond]N bonds: preparation of alkoxycarbonyl, carbonato, carbamato, thiocarbamate, and thioureide complexes of palladium(II).

    Science.gov (United States)

    Ruiz, José; Martínez, M Teresa; Florenciano, Félix; Rodríguez, Venancio; López, Gregorio; Pérez, José; Chaloner, Penny A; Hitchcock, Peter B

    2003-06-02

    Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh

  11. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation.

    Science.gov (United States)

    Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K

    2015-09-18

    The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy.

  12. Nonperfect synchronization of bond-forming and bond-rupturing processes in the reaction H + H2 → H2 + H

    International Nuclear Information System (INIS)

    Chandra, A.K.; Rao, V.S.

    1996-01-01

    The simplest prototypical hydrogen transfer reaction, i.e., H + H 2 → H 2 + H, is studied by the quantum-mechanical ab initio methods. Results reveal that during this reaction free valence which almost equals the square of the spin density develops on the migrating hydrogen atom. Bond orders are calculated using Mayer's formalism. Both the variations of bond orders and bond lengths along the reaction path are examined. This analysis reveals that the bond formation and bond cleavage processes in this reaction are not perfectly synchronous. The bond clevage process is slightly more advanced on the reaction path. 38 refs., 6 figs., 2 tabs

  13. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials.

    Science.gov (United States)

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin

    2013-05-01

    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  14. Measurements of psi -> K-Lambda(Xi)over-bar(+) + c.c. and psi -> gamma K-Lambda(Xi)over-bar(+) + c.c.

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Duan, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2015-01-01

    Using a sample of 1.06 x 10(8) psi(3686) events produced in e(+)e(-) collisions at root s = 3.686 GeV and collected with the BESIII detector at the BEPCII collider, we present studies of the decays psi(3686) -> K-Lambda(Xi) over bar (+) + c.c. and psi(3686) -> gamma K-Lambda(Xi) over bar (+) + c.c.

  15. Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments

    Directory of Open Access Journals (Sweden)

    Carlos Calado

    2015-03-01

    Full Text Available Self-compacting concrete (SCC demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC. This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.

  16. Catalytic routes to fuels from C1 and oxygenate molecules

    KAUST Repository

    Wang, Shuai

    2017-02-23

    This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C-1 and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C-1 molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O-2 and H2O molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH4 reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni2+ active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C-1 homologation selectively forms C-4 and C-7 chains with a specific backbone (isobutane, triptane) on solid

  17. Catalytic routes to fuels from C1 and oxygenate molecules

    KAUST Repository

    Wang, Shuai; Agirrezabal-Telleria, Iker; Bhan, Aditya; Simonetti, Dante; Takanabe, Kazuhiro; Iglesia, Enrique

    2017-01-01

    This account illustrates concepts in chemical kinetics underpinned by the formalism of transition state theory using catalytic processes that enable the synthesis of molecules suitable as fuels from C-1 and oxygenate reactants. Such feedstocks provide an essential bridge towards a carbon-free energy future, but their volatility and low energy density require the formation of new C-C bonds and the removal of oxygen. These transformations are described here through recent advances in our understanding of the mechanisms and site requirements in catalysis by surfaces, with emphasis on enabling concepts that tackle ubiquitous reactivity and selectivity challenges. The hurdles in forming the first C-C bond from C-1 molecules are illustrated by the oxidative coupling of methane, in which surface O-atoms form OH radicals from O-2 and H2O molecules. These gaseous OH species act as strong H-abstractors and activate C-H bonds with earlier transition states than oxide surfaces, thus rendering activation rates less sensitive to the weaker C-H bonds in larger alkane products than in CH4 reactants. Anhydrous carbonylation of dimethyl ether forms a single C-C bond on protons residing within inorganic voids that preferentially stabilize the kinetically-relevant transition state through van der Waals interactions that compensate for the weak CO nucleophile. Similar solvation effects, but by intrapore liquids instead of inorganic hosts, also become evident as alkenes condense within MCM-41 channels containing isolated Ni2+ active sites during dimerization reactions. Intrapore liquids preferentially stabilize transition states for C-C bond formation and product desorption, leading to unprecedented reactivity and site stability at sub-ambient temperatures and to 1-alkene dimer selectivities previously achieved only on organometallic systems with co-catalysts or activators. C-1 homologation selectively forms C-4 and C-7 chains with a specific backbone (isobutane, triptane) on solid

  18. C-H Bond Functionalization via Hydride Transfer: Formation of α-Arylated Piperidines and 1,2,3,4-Tetrahydroisoquinolines via Stereoselective Intramolecular Amination of Benzylic C-H Bonds

    OpenAIRE

    Vadola, Paul A.; Carrera, Ignacio; Sames, Dalibor

    2012-01-01

    We here report a study of the intramolecular amination of sp3 C-H bonds via the hydride transfer cyclization of N-tosylimines (HT-amination). In this transformation, 5-aryl-aldehydes are subjected to N-toluenesulfonamide in the presence of BF3•OEt2 to effect imine formation and HT-cyclization, leading to 2-aryl-piperidines and 3-aryl-1,2,3,4-tetrahydroisoquinolines in a one-pot procedure. We examined the reactivity of a range of aldehyde substrates as a function of their conformational flexib...

  19. Quantification of C=C and C=O Surface Carbons in Detonation Nanodiamond by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J -F; Fang, X -W; Schmidt-Rohr, K

    2014-05-08

    The ability of solid-state 13C NMR to detect and quantify small amounts of sp2-hybridized carbon on the surface of ~5 nm diameter nanodiamond particles is demonstrated. The C=C carbon fraction is only 1.1 ± 0.4% in pristine purified detonation nanodiamond, while a full single-layer graphitic or “bucky diamond” shell would contain ca. 25% of all C in a 5 nm diameter particle. Instead of large aromatic patches repeatedly proposed in the recent literature, sp3-hybridized CH and COH carbons cover most of the nanodiamond particle surface, accounting for ~5% each. C=O and COO groups also seen in X-ray absorption near-edge structure spectroscopy (XANES) but not detected in previous NMR studies make up ca. 1.5% of all C. They are removed by heat treatment at 800 °C, which increases the aromatic fraction. 13C{1H} NMR demonstrates that the various sp2-hybridized carbons are mostly not protonated, but cross-polarization shows that they are separated from 1H by only a few bond lengths, which proves that they are near the protonated surface. Together, the observed C–H, C–OH, C=O, and C=C groups account for 12–14% of all C, which matches the surface fraction expected for bulk-terminated 5 nm diameter diamond particles.

  20. Adobe Edge Animate CC for dummies

    CERN Document Server

    Rohde, Michael

    2013-01-01

    The easy way to build HTML5 mobile and web apps using Adobe's new Edge Animate CC Edge Animate CC is an approachable WYSIWYG alternative for leveraging the power of languages like HTML5, CSS3, and JavaScript to design and develop for the web and mobile devices, even if you have no programming experience. Written by Michael Rohde, the book calls on this seasoned web developer's wealth of experience using Edge Animate CC, and a companion website includes all code from the book to help you apply what you learn as you go. Features an easy-to-use interface, with a propert

  1. Cold pressure welding - the mechanisms governing bonding

    DEFF Research Database (Denmark)

    Bay, Niels

    1979-01-01

    Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks...... of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression in a specially...

  2. A new approach to construct a fused 2-ylidene chromene ring: highly regioselective synthesis of novel chromeno quinoxalines.

    Science.gov (United States)

    Kumar, K Shiva; Rambabu, D; Prasad, Bagineni; Mujahid, Mohammad; Krishna, G Rama; Rao, M V Basaveswara; Reddy, C Malla; Vanaja, G R; Kalle, Arunasree M; Pal, Manojit

    2012-06-28

    Regioselective construction of a fused 2-ylidene chromene ring was achieved for the first time by using AlCl(3)-induced C-C bond formation followed by Pd/C-Cu mediate coupling-cyclization strategy. A number of chromeno[4,3-b]quinoxaline derivatives were prepared by using this strategy. Single crystal X-ray diffraction study of a representative compound e.g. 6-(2,2-dimethylpropylidene)-4-methyl-6H-chromeno[4,3-b]quinoxalin-3-ol confirmed the presence of an exocyclic C-C double bond with Z-geometry. The crystal structure analysis and hydrogen bonding patterns of the same compound along with its structure elaboration via propargylation followed by Sonogashira coupling of the resulting terminal alkyne is presented. A probable mechanism for the formation of 2-ylidene chromene ring is discussed. Some of the compounds synthesized showed anticancer properties when tested in vitro.

  3. Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents

    NARCIS (Netherlands)

    Vila, Carlos; Giannerini, Massimo; Hornillos, Valentin; Fananas-Mastral, Martin; Feringa, Ben L.

    2014-01-01

    Palladium-catalysed cross-coupling of secondary C(sp(3)) organometallic reagents has been a long-standing challenge in organic synthesis, due to the problems associated with undesired isomerisation or the formation of reduction products. Based on our recently developed catalytic C-C bond formation

  4. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting

    2015-01-01

    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  5. A new paradigm for carbon-carbon bond formation: Aerobic, copper-templated cross-coupling

    Czech Academy of Sciences Publication Activity Database

    Villalobos, J. M.; Šrogl, Jiří; Liebeskind, L. S.

    2007-01-01

    Roč. 129, č. 51 (2007), s. 15734-15735 ISSN 0002-7863 Institutional research plan: CEZ:AV0Z40550506 Keywords : cross-coupling * copper * palladium Subject RIV: CC - Organic Chemistry Impact factor: 7.885, year: 2007

  6. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  7. Search for the doubly charmed baryon Ξcc +

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, P.R.; Andrews, J.E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M-O.; Van Beuzekom, Martin; Bien, A.; Bifani, S.; Bird, T.D.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; Van Den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch; Cenci, R.; Charles, M.; Charpentier, Ph; Cheung, S-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca-Pelaz, A.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; David, P.; David, P.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; da-Silva, W.S.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, Mark; Fontanelli, F.; Forty, R.; De Aguiar Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Carvalho-Gaspar, M.; Gauld, Rhorry; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gorbounov, P.; Head-Gordon, Teresa; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, G.E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, J.T.; Hussain, N.; Hutchcroft, D. E.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; Van Leerdam, J.; Lees, J. P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Di Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, S.C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli-Boneschi, F.; Martinez-Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B. T.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Molina Rodriguez, J.; Monteil, S.; Moran-Zenteno, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, Karl; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, R.P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, Y.W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M.; dos Reis, A. C.; Ricciardi, S.; Richards, Al.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, L.E.T.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, van Hapere; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; Van Tilburg, J.; Tisserand, V.; Tobin, M. N.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, N.T.M.T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M.P.; Williams, M.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.J.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2013-01-01

    A search for the doubly charmed baryon Ξcc + in the decay mode Ξcc + → Λc +K-π+ is performed with a data sample, corresponding to an integrated luminosity of 0.65 fb-1, of pp collisions recorded at a centre-of-mass energy of 7TeV. No significant signal is found in the mass range 3300-3800 MeV/c2.

  8. On analogy between surface fracture energy and activaiton energy of bonding in solid phase

    International Nuclear Information System (INIS)

    Shatinsky, V.F.; Kopylov, V.I.

    1976-01-01

    This article makes an attempt on the basis of experimental data to compare the processes of failure and formation of a bond by comparing the energy consumptions going in one case or another into initial plastic deformation of a certain volume and the further interatomic interaction at the boundary (separation, formation of the bond). Two values characterizing the different processes - the unit failure energy γ and the activation energy for the formation of a bond Q - are compared. It has been established that the energy consumed for plastic deformation and adhesion interaction of atoms on the surface of microprojections and providing the formation of a bond in the solid-phase condition is close to the specific failure energy. The equality of energies consumed for the formation of a bond and failure allows to make use of any of those characteristics to calculate parameters of processes of the formation of a bond and failure. It seems to be convenient in the analysis of the failure process at a temperature when the ductility is high and methodically, the crack propagation is hard to investigate, in particular to estimate the volume of the preliminary failure zone. Having determined γ from the contact interaction data, the strength characteristics can be evaluated. (author)

  9. Formation of a hydrogen-bonded barbiturate [2]-rotaxane.

    Science.gov (United States)

    Tron, Arnaud; Thornton, Peter J; Rocher, Mathias; Jacquot de Rouville, Henri-Pierre; Desvergne, Jean-Pierre; Kauffmann, Brice; Buffeteau, Thierry; Cavagnat, Dominique; Tucker, James H R; McClenaghan, Nathan D

    2014-03-07

    Interlocked structures containing the classic Hamilton barbiturate binding motif comprising two 2,6-diamidopyridine units are reported for the first time. Stable [2]-rotaxanes can be accessed either through hydrogen-bonded preorganization by a barbiturate thread followed by a Cu(+)-catalyzed "click" stoppering reaction or by a Cu(2+)-mediated Glaser homocoupling reaction.

  10. Adhesives with wood materials : bond formation and performance

    Science.gov (United States)

    Charles R. Frihart; Christopher G. Hunt

    2010-01-01

    Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing our timber resource. The main use of adhesives is in the manufacture of building materials, including plywood, oriented strandboard, particleboard, fiberboard, structural composite lumber, doors, windows and frames, and factory-laminated wood...

  11. Dangling bonds and crystalline inclusions in amorphous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, L [Ferrara Univ. (Italy). Ist. di Matematica; Russo, G [Bologna Univ. (Italy). Ist. di Fisica

    1981-02-07

    It is suggested that on the surface of crystalline inclusions dangling bond formation is favoured due to unbalanced local stresses. The energy for bond tearings is probably originated from the exothermic process leading to the crystalline inclusion configuration which is more stable than the original amorphous one. A thermodynamical calculation is performed giving the ratio nsub(k) of crystalline inclusions having k dangling bonds on their surface.

  12. Efficient C/C++ programming smaller, faster, better

    CERN Document Server

    Heller, Steve

    1994-01-01

    Efficient C/C++ Programming describes a practical, real-world approach to efficient C/C++ programming. Topics covered range from how to save storage using a restricted character set and how to speed up access to records by employing hash coding and caching. A selective mailing list system is used to illustrate rapid access to and rearrangement of information selected by criteria specified at runtime.Comprised of eight chapters, this book begins by discussing factors to consider when deciding whether a program needs optimization. In the next chapter, a supermarket price lookup system is used to

  13. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi

    2018-01-15

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  14. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi; Liao, Hsuan-Hung; Chatupheeraphat, Adisak; Rueping, Magnus

    2018-01-01

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  15. Cohort Profile: Antiretroviral Therapy Cohort Collaboration (ART-CC)

    Science.gov (United States)

    May, Margaret T; Ingle, Suzanne M; Costagliola, Dominique; Justice, Amy C; de Wolf, Frank; Cavassini, Matthias; D’Arminio Monforte, Antonella; Casabona, Jordi; Hogg, Robert S; Mocroft, Amanda; Lampe, Fiona C; Dabis, François; Fätkenheuer, Gerd; Sterling, Timothy R; del Amo, Julia; Gill, M John; Crane, Heidi M; Saag, Michael S; Guest, Jodie; Brodt, Hans-Reinhard; Sterne, Jonathan AC

    2014-01-01

    The advent of effective combination antiretroviral therapy (ART) in 1996 resulted in fewer patients experiencing clinical events, so that some prognostic analyses of individual cohort studies of human immunodeficiency virus-infected individuals had low statistical power. Because of this, the Antiretroviral Therapy Cohort Collaboration (ART-CC) of HIV cohort studies in Europe and North America was established in 2000, with the aim of studying the prognosis for clinical events in acquired immune deficiency syndrome (AIDS) and the mortality of adult patients treated for HIV-1 infection. In 2002, the ART-CC collected data on more than 12,000 patients in 13 cohorts who had begun combination ART between 1995 and 2001. Subsequent updates took place in 2004, 2006, 2008, and 2010. The ART-CC data base now includes data on more than 70 000 patients participating in 19 cohorts who began treatment before the end of 2009. Data are collected on patient demographics (e.g. sex, age, assumed transmission group, race/ethnicity, geographical origin), HIV biomarkers (e.g. CD4 cell count, plasma viral load of HIV-1), ART regimen, dates and types of AIDS events, and dates and causes of death. In recent years, additional data on co-infections such as hepatitis C; risk factors such as smoking, alcohol and drug use; non-HIV biomarkers such as haemoglobin and liver enzymes; and adherence to ART have been collected whenever available. The data remain the property of the contributing cohorts, whose representatives manage the ART-CC via the steering committee of the Collaboration. External collaboration is welcomed. Details of contacts are given on the ART-CC website (www.art-cohort-collaboration.org). PMID:23599235

  16. Application of C/C composites to the combustion chamber of rocket engines. Part 1: Heating tests of C/C composites with high temperature combustion gases

    Science.gov (United States)

    Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori

    1995-04-01

    Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.

  17. Binding matter with antimatter: the covalent positron bond.

    Science.gov (United States)

    Charry, Jorge Alfonso; Varella, Marcio T Do N; Reyes, Andrés

    2018-05-16

    We report sufficient theoretical evidence of the energy stability of the e⁺H₂²⁻ molecule, formed by two H⁻ anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e⁺H₂²⁻ molecule is 74 kJ/mol (0.77 eV), accounting for the zero-point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Infrared matrix isolation study of hydrogen bonds involving C-H bonds: Substituent effects

    International Nuclear Information System (INIS)

    Jeng, M.L.H.; Ault, B.S.

    1989-01-01

    The matrix isolation technique combined with infrared spectroscopy has been employed to isolate and characterize hydrogen-bonded complexes between a series of substituted alkynes and several oxygen and nitrogen bases. Distinct evidence for hydrogen bond formation was observed in each case, with a characteristic red shift of the hydrogen stretching motion ν r . Shifts between 100 and 300 cm -1 were observed, the largest being for the complex of CF 3 CCH with (CH 3 ) 3 N. The perturbed carbon-carbon triple bond stretching vibration was observed for most complexes, as was the alkynic hydrogen bending motion. Attempts were made to correlate the magnitude of the red shift of ν s with substituent constants for the different substituted alkynes; a roughly linear correlation was found with the Hammett σ parameter. Lack of correlation Δν s with either σ 1 or σ R alone suggests that both inductive and resonance contributions to the strength of the hydrogen-bonding interaction are important

  19. Eutectic and solid-state wafer bonding of silicon with gold

    International Nuclear Information System (INIS)

    Abouie, Maryam; Liu, Qi; Ivey, Douglas G.

    2012-01-01

    Highlights: ► Eutectic and solid-state Au-Si bonding are compared for both a-Si and c-Si samples. ► Exchange of a-Si and Au layer was observed in both types of bonded samples. ► Use of c-Si for bonding resulted in formation of craters at the Au/c-Si interface. ► Solid-state Au-Si bonding produces better bonds in terms of microstructure. - Abstract: The simple Au-Si eutectic, which melts at 363 °C, can be used to bond Si wafers. However, faceted craters can form at the Au/Si interface as a result of anisotropic and non-uniform reaction between Au and crystalline silicon (c-Si). These craters may adversely affect active devices on the wafers. Two possible solutions to this problem were investigated in this study. One solution was to use an amorphous silicon layer (a-Si) that was deposited on the c-Si substrate to bond with the Au. The other solution was to use solid-state bonding instead of eutectic bonding, and the wafers were bonded at a temperature (350 °C) below the Au-Si eutectic temperature. The results showed that the a-Si layer prevented the formation of craters and solid-state bonding not only required a lower bonding temperature than eutectic bonding, but also prevented spill out of the solder resulting in strong bonds with high shear strength in comparison with eutectic bonding. Using amorphous silicon, the maximum shear strength for the solid-state Au-Si bond reached 15.2 MPa, whereas for the eutectic Au-Si bond it was 13.2 MPa.

  20. Asymmetrical bonding in cold spraying of dissimilar materials

    Science.gov (United States)

    Nikbakht, R.; Seyedein, S. H.; Kheirandish, S.; Assadi, H.; Jodoin, B.

    2018-06-01

    Characteristics of particle bonding, especially for dissimilar materials, remains a key question in cold spray deposition. There are limited reports in direct correlation to particle/substrate bonding and peripheral shear zones. Cold spraying experiments and numerical simulations are conducted to characterise and analyse the correlation between bonding and peripheral shear zones for asymmetric particle/substrate pairs of intermetallic-forming elements of nickel and titanium. The correlation between metallic bonding and highly strained areas is explored in view of the growth of the intermetallic phase at the particle/substrate interface during subsequent heat treatments. Characterisation of the as-sprayed samples reveal that for the Ni(particle)/Ti(substrate) pair, plastic deformation of the particle is dominating over substrate deformation. However, for the Ti(particle)/Ni(substrate) pair, it is observed that the substrate and particle deform to similar extents. Characterisation of the samples after a brief heat treatment at 700 °C indicate that intermetallic formation, and hence metallurgical bonding of the pairs is more likely to occur at the particle peripheries where the interface areas are highly strained, and rarely achieved at the particle base. Results also reveal that bonding extends from peripheries toward the central part of the interfaces with increasing the impact velocity. The kinetics of interfacial intermetallic formation at peripheral areas and its correlation to particle bonding is discussed in view of deformation-enhanced interdiffusion.

  1. Reductive coupling of carbon monoxide in a rhenium carbonyl complex with pendant Lewis acids.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2008-09-10

    Phosphinoborane ligands impart unique reactivity to a rhenium carbonyl cation relative to simple phosphine complexes. Addition of either triethylborohydride or a platinum hydride (that can be formed from H2) forms a rhenium boroxycarbene. This carbene, which crystallizes as a dimer, disproportionates over a period of days to afford the starting cation and a structurally unprecedented boroxy(boroxymethyl)carbene, in which a new C-C bond has been formed between two reduced CO ligands. This product of C-C bond formation can be independently synthesized by addition of 2 equiv of hydride to the rhenium carbonyl cation.

  2. Cell volume regulation in hemoglobin CC and AA erythrocytes

    International Nuclear Information System (INIS)

    Berkowitz, L.R.; Orringer, E.P.

    1987-01-01

    Swelling hemoglobin CC erythrocytes stimulates a ouabain-insensitive K flux that restores original cell volume. Studies were performed with the K analog, 86 Rb. This volume regulatory pathway was characterized for its anion dependence, sensitivity to loop diuretics, and requirement for Na. The swelling-induced K flux was eliminated if intracellular chloride was replaced by nitrate and both swelling-activated K influx and efflux were partially inhibited by 1 mM furosemide or bumetanide. K influx in swollen hemoglobin CC cells was not diminished when Na in the incubation medium was replaced with choline, indicating Na independence of the swelling-induced flux. Identical experiments with hemoglobin AA cells also demonstrated a swelling-induced increase in K flux, but the magnitude and duration of this increase were considerably less than that seen with hemoglobin CC cells. The increased K flux in hemoglobin AA cells was likewise sensitive to anion replacement and to loop diuretics and did not require the presence of Na. These data indicate that a volume-activated K pathway with similar transport characteristics exists in both hemoglobin CC and AA red cells

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A novel and facile one-pot synthesis of 1-substituted tetrahydro--carbolines by cyclocondensation of ketene ,–acetals with tryptamine in presence of InCl3 and TFA as co-catalysts by Bischler-Napieralski cyclization is described. The reaction involves formation of one C-N bond, one C-C bond and a new ring annulation ...

  4. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  5. Analysis of the variation of the compressibility index (Cc of volcanic clays and its application to estimate subsidence in lacustrine areas

    Directory of Open Access Journals (Sweden)

    D. Carreón-Freyre

    2015-11-01

    Full Text Available An analysis of the deformation conditions of lacustrine materials deposited at three sites in the volcanic valley of the Mexico City is presented. Currently geotechnical studies assume that compressibility of granular materials decreases in depth due to the lithostatic load. That means that the deeper the sample the more rigid is supposed to be, this assumption should be demonstrated by a decreased Compression Index (Cc in depth. Studies indicate that Mexico City clays exhibit brittle behaviour, and have high water content, low shear strength and variable Cc values. Furthermore, groundwater withdrawal below the city causes a differential decrease in pore pressure, which is related to the physical properties of granular materials (hydraulic conductivity, grain size distribution and conditions of formation. Our results show that Cc for fine grain materials (lacustrine can be vertically variable, particularly when soils and sediments are the product of different volcanic materials. Lateral and vertical variations in the distribution of the fluvio-lacustrine materials, especially in basins with recent volcanic activity, may be assessed by Cc index variations. These variations can also be related to differential deformation, nucleation and propagation of fractures and need to be considered when modelling land subsidence.

  6. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    Science.gov (United States)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  7. Improving Forecast Skill by Assimilation of AIRS Cloud Cleared Radiances RiCC

    Science.gov (United States)

    Susskind, Joel; Rosenberg, Robert I.; Iredell, Lena

    2015-01-01

    ECMWF, NCEP, and GMAO routinely assimilate radiosonde and other in-situ observations along with satellite IR and MW Sounder radiance observations. NCEP and GMAO use the NCEP GSI Data Assimilation System (DAS).GSI DAS assimilates AIRS, CrIS, IASI channel radiances Ri on a channel-by-channel, case-by-case basis, only for those channels i thought to be unaffected by cloud cover. This test excludes Ri for most tropospheric sounding channels under partial cloud cover conditions. AIRS Version-6 RiCC is a derived quantity representative of what AIRS channel i would have seen if the AIRS FOR were cloud free. All values of RiCC have case-by-case error estimates RiCC associated with them. Our experiments present to the GSI QCd values of AIRS RiCC in place of AIRS Ri observations. GSI DAS assimilates only those values of RiCC it thinks are cloud free. This potentially allows for better coverage of assimilated QCd values of RiCC as compared to Ri.

  8. Spectroscopic identification of ethanol-water conformers by large-amplitude hydrogen bond librational modes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Larsen, René Wugt

    2015-01-01

    ⋯HO hydrogen bond acceptor in the two most stable conformations. In the most stable conformation, the water subunit forces the ethanol molecule into its less stable gauche configuration upon dimerization owing to a cooperative secondary weak O⋯HC hydrogen bondinteraction evidenced by a significantly blue......-shift of the low-frequency in-plane donor OH librational band origin. The strong correlation between the low-frequency in-plane donor OH librational motion and the secondary intermolecular O⋯HC hydrogen bond is demonstrated by electronic structure calculations. The experimental findings are further supported...... by CCSD(T)-F12/aug-cc-pVQZ calculations of the conformationalenergy differences together with second-order vibrational perturbation theory calculations of the large-amplitude donor OH librational band origins....

  9. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark

    2014-01-01

    In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation...... of ether linkages between lignin and titanium coupling agent. In the present work, changes were found in the attenuated total reflectance-Fourier transform IR (ATR-FTIR) spectra of lignin and wood mixed with silane, and titanium coupling agents, and to a lesser extent for a zirconium coupling agent...

  10. Identification and expression analysis of a CC chemokine from cobia (Rachycentron canadum).

    Science.gov (United States)

    Feng, Juan; Su, Youlu; Guo, Zhixun; Xu, Liwen; Sun, Xiuxiu; Wang, Yunxin

    2013-06-01

    Chemokines are small, secreted cytokine peptides known principally for their ability to induce migration and activation of leukocyte populations and regulate the immune response mechanisms. The cobia (Rachycentron canadum), a marine finfish species, has a great potential for net cage aquaculture in the South China Sea. We isolated and characterized a CC chemokine cDNA from cobia-designated RcCC2. Its cDNA is 783 bp in length and encodes a putative protein of 110 amino acids. Homology and phylogenetic analysis revealed that the RcCC2 gene, which contains four conserved cysteine residues, shares a high degree of similarity with other known CC chemokine sequences and is closest to the CCL19/21 clade. The mRNA of RcCC2 is expressed constitutively in all tested tissues, including gill, liver, muscle, spleen, kidney, head kidney, skin, brain, stomach, intestine and heart, but not blood, with the highest level of expression in gill and liver. The reverse transcription quantitative polymerase chain reaction was used to examine the expression of the RcCC2 gene in immune-related tissues, including head kidney, spleen and liver, following intraperitoneal injection of the viral mimic polyriboinosinic polyribocytidylic acid, formalin-killed Vibrio carchariae (bacterial vaccine) and phosphate-buffered saline as a control. RcCC2 gene expression was up-regulated differentially in head kidney, spleen and liver during 12 h after challenge. These results indicate that the RcCC2 gene is inducible and is involved in immune responses, suggesting RcCC2 has an important role in the early stage of viral and bacterial infections.

  11. A DFT Study on Selected Physical Organic Aspects of the Fischer Carbene Intermediates [(M(CO4(C(OMeMe

    Directory of Open Access Journals (Sweden)

    Tareq Irshaidat

    2010-01-01

    Full Text Available Fischer carbenes are important starting materials for C-C bond formation via coupling reactions between carbene and wide variety of substituted alkenes or alkynes. This DFT study shed light on unique fundamental organic/organometallic aspects for the C(OMeMe carbene in the free form and in case of bonding with M(CO4 (M= Cr, Mo, W. The data illustrate that the structures of the title intermediates include a unique structure stabilizing intramolecular M…C-H interaction (agostic interaction. This conclusion was made based on calculated NMR data (for carbon and hydrogen, structural parameters, energy calculations of conformers (C-C conformation, selected IR stretching frequencies (C-O, C-C, and C-H, and atomic charges. The agostic interaction is most efficient in case of chromium and in general is described as an overlap between the σ-bond electron pair of C-H with an empty d-orbital of the metal. These characterized examples are new addition to the orbital interaction theory.

  12. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    Science.gov (United States)

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  13. Theoretical study of the Diels-Alder reaction between o-benzoquinone and norbornadiene

    Science.gov (United States)

    Quijano-Quiñones, Ramiro F.; Quesadas-Rojas, M.; Cuevas, Gabriel; Mena-Rejón, Gonzalo J.

    2013-06-01

    The reaction between norbornadiene and o-benzoquinone is an important step in polyalicyclic rigid structures synthesis. It has been considered that this reaction is an example of Diels-Alder (DA) and hetero-Diels-Alder (HDA) cycloadditions with o-benzoquinone acting as diene (forming C-C bonds) and heterodiene (forming O-C bonds). We have performed a Density Functional Theory study of this reaction, employing B3LYP, mPW1PW91, and B1B95 functionals and 6-31G(d,p) and 6-31+G(d,p) Gaussian type basis sets. The results indicate that Diels-Alder is a feasible mechanism for both reactions, but should not be the main route to the formation of products with C-C bonds.

  14. Theoretical study of the Diels-Alder reaction between o-benzoquinone and norbornadiene

    International Nuclear Information System (INIS)

    Quijano-Quiñones, Ramiro F; Quesadas-Rojas, M; Mena-Rejón, Gonzalo J; Cuevas, Gabriel

    2013-01-01

    The reaction between norbornadiene and o-benzoquinone is an important step in polyalicyclic rigid structures synthesis. It has been considered that this reaction is an example of Diels-Alder (DA) and hetero-Diels-Alder (HDA) cycloadditions with o-benzoquinone acting as diene (forming C-C bonds) and heterodiene (forming O-C bonds). We have performed a Density Functional Theory study of this reaction, employing B3LYP, mPW1PW91, and B1B95 functionals and 6-31G(d,p) and 6-31+G(d,p) Gaussian type basis sets. The results indicate that Diels-Alder is a feasible mechanism for both reactions, but should not be the main route to the formation of products with C-C bonds.

  15. Interfacial micromorphological differences in hybrid layer formation between water- and solvent-based dentin bonding systems.

    Science.gov (United States)

    Gregoire, Geneviève L; Akon, Bernadette A; Millas, Arlette

    2002-06-01

    Many dentin bonding systems of different compositions, and in particular containing different solvents, have been introduced to the market. Their effect on the quality of the interface requires clarification by means of comparative trials. This study investigated micromorphological differences in hybrid layer formation with a variety of commercially available water- or solvent-based dentin bonding products and their recommended compomers. Five bonding systems were used on groups of 10 teeth each as follows: group I, acetone-based system used with 36% phosphoric acid; group II, a different acetone-based system containing nano-sized particles for filler loading and used with a non-rinsing conditioner containing maleic acid; group III, the acetone-based system of group II used with 36% phosphoric acid (the only difference in the treatment for groups II and III was the acid etching system); group IV, a mixed-solvent-based system (water/ethanol) used with 37% phosphoric acid; and group V, a water-based system used with 37% phosphoric acid. Each bonding system was covered with the recommended compomer. Class I occlusal preparations were made in extracted teeth and restored with one of the above systems. Five specimens of each group were studied with optical microscopy after staining. Scanning electron microscopy was used to examine the interface of the bonding system/dentin of the other 5 teeth in each group. The optical microscopy measurements were made with a 10 x 10 reticle. A micron mark with scale was used for the scanning electron microscope. All measurements were made in microm. The following criteria were used to define a good interface: absence of voids between the different parts of the interface, uniformity of the hybrid layer, good opening of the tubuli orifices, and tag adherence to the tubuli walls. Morphological differences were found at the interface depending on dentin treatment and adhesive composition. The acetone-containing systems were associated

  16. Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles

    Science.gov (United States)

    Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng

    2017-04-01

    Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.

  17. Radiological diagnosis and intervention of cholangiocarcinomas (CC); Radiologische Diagnostik und Intervention von Cholangiokarzinomen (CC)

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.J.; Zangos, S.; Eichler, K.; Gruber-Rouh, T.; Hammerstingl, R.M.; Weisser, P. [Frankfurt Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Trojan, J. [Frankfurt Univ. (Germany). Medizinische Klinik I: Gastroenterologie, Endokrinologie, Pneumologie/Allergologie

    2012-10-15

    To present current data on diagnosis, indication and different therapy options in patients with cholangiocarcinoma (CC) based on an analysis of the current literature and clinical experience. The diagnostic routine includes laboratory investigations with parameters of cholestasis and also serum tumor markers CA19 - 9 and CEA. After ultrasound for clarifying a tumor and/or dilated bile ducts, contrast-enhanced magnetic resonance imaging (MRI) should be performed with magnetic resonance cholangiography (MRCP). The accuracy (positive predictive value) for diagnosing a CC is 37 - 84 % (depending on the location) for ultrasound, 79 - 94 % for computed tomography (CT), and 95 % for MRI and MRCP. An endoscopic retrograde cholangiography (ERCP) can then be planned, especially if biliary drainage or cytological or histological specimen sampling is intended. A curative approach can be achieved by surgical resection, rarely by liver transplantation. However, many patients are not eligible for surgery. In addition to systemic chemotherapy, locoregional therapies such as transarterial chemoembolization (TACE), hepatic arterial infusion (HAI) - also known as chemoperfusion -, drug eluting beads-therapy (DEB) as well as thermoablative procedures, such as laser-induced thermotherapy (LITT), microwave ablation (MWA) and radiofrequency ablation (RFA) can be provided with a palliative intention.

  18. Formation of conjugated delta8,delta10-double bonds by delta12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid.

    Science.gov (United States)

    Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J

    2001-01-26

    Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.

  19. Hydrogen-bond-driven electrophilic activation for selectivity control: scope and limitations of fluorous alcohol-promoted selective formation of 1,2-disubstituted benzimidazoles and mechanistic insight for rationale of selectivity.

    Science.gov (United States)

    Chebolu, Rajesh; Kommi, Damodara N; Kumar, Dinesh; Bollineni, Narendra; Chakraborti, Asit K

    2012-11-16

    Hydrogen-bond-driven electrophilic activation for selectivity control during competitive formation of 1,2-disubstituted and 2-substituted benzimidazoles from o-phenylenediamine and aldehydes is reported. The fluorous alcohols trifluoroethanol and hexafluoro-2-propanol efficiently promote the cyclocondensation of o-phenylenediamine with aldehydes to afford selectively the 1,2-disubstituted benzimidazoles at rt in short times. A mechanistic insight is invoked by NMR, mass spectrometry, and chemical studies to rationalize the selectivity. The ability of the fluorous alcohols in promoting the reaction and controlling the selectivity can be envisaged from their better hydrogen bond donor (HBD) abilities compared to that of the other organic solvents as well as of water. Due to the better HBD values, the fluorous alcohols efficiently promote the initial bisimine formation by electrophilic activation of the aldehyde carbonyl. Subsequently the hydrogen-bond-mediated activation of the in situ-formed bisimine triggers the rearrangement via 1,3-hydride shift to form the 1,2-disubstituted benzimidazoles.

  20. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  1. Energy Materials Coordinating Committee (EMaCC): Fiscal year 1996. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. The EMaCC reports to the Director of the Office of Energy Research in his or her capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1996 and describes the materials research programs of various offices and divisions within the Department.

  2. Energy Materials Coordinating Committee (EMaCC): Fiscal year 1996. Annual technical report

    International Nuclear Information System (INIS)

    1997-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. The EMaCC reports to the Director of the Office of Energy Research in his or her capacity as overseer of the technical programs of the Department. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1996 and describes the materials research programs of various offices and divisions within the Department

  3. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  4. {sup 68}Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Sathekge, Mike; Lengana, Thabo; Modiselle, Moshe; Vorster, Mariza; Zeevaart, JanRijn; Ebenhan, Thomas [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); Maes, Alex [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); AZ Groeninge, Department of Nuclear Medicine, Kortrijk (Belgium); Wiele, Christophe van de [University of Pretoria and Steve Biko Academic Hospital, Department of Nuclear Medicine, Pretoria (South Africa); University Ghent, Department of Radiology and Nuclear Medicine, Ghent (Belgium)

    2017-04-15

    To report on imaging findings using {sup 68}Ga-PSMA-HBED-CC PET in a series of 19 breast carcinoma patients. {sup 68}Ga-PSMA-HBED-CC PET imaging results obtained were compared to routinely performed staging examinations and analyzed as to lesion location and progesterone receptor status. Out of 81 tumor lesions identified, 84% were identified on {sup 68}Ga-PSMA-HBED-CC PET. {sup 68}Ga-PSMA-HBED-CC SUVmean values of distant metastases proved significantly higher (mean, 6.86, SD, 5.68) when compared to those of primary or local recurrences (mean, 2.45, SD, 2.55, p = 0.04) or involved lymph nodes (mean, 3.18, SD, 1.79, p = 0.011). SUVmean values of progesterone receptor-positive lesions proved not significantly different from progesterone receptor-negative lesions. SUV values derived from FDG PET/CT, available in seven patients, and {sup 68}Ga-PSMA-HBED-CC PET/CT imaging proved weakly correlated (r = 0.407, p = 0.015). {sup 68}Ga-PSMA-HBED-CC PET/CT imaging in breast carcinoma confirms the reported considerable variation of PSMA expression on human solid tumors using immunohistochemistry. (orig.)

  5. Self-assembly of a [2 x 2] hydrogen bonded grid

    NARCIS (Netherlands)

    Lipkowski, P.R.; Bielejewska, A.G.; Kooijman, Huub; Spek, Anthony L.; Timmerman, P.; Reinhoudt, David

    1999-01-01

    Formation of 24 cooperative hydrogen bonds drives the spontaneous assembly of a rigid bifunctional trimelamine and bis(barbituric acid) to give selectively the [2 × 2] hydrogen-bonded grid, in preference to the corresponding [1 × 1] or polymeric assemblies.

  6. Observation of the Doubly Charmed Baryon Ξ_{cc}^{++}.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Bjoern, M B; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Borysova, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddock, B; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombacher, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-09-15

    A highly significant structure is observed in the Λ_{c}^{+}K^{-}π^{+}π^{+} mass spectrum, where the Λ_{c}^{+} baryon is reconstructed in the decay mode pK^{-}π^{+}. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ_{cc}^{++}. The difference between the masses of the Ξ_{cc}^{++} and Λ_{c}^{+} states is measured to be 1334.94±0.72(stat.)±0.27(syst.)  MeV/c^{2}, and the Ξ_{cc}^{++} mass is then determined to be 3621.40±0.72(stat.)±0.27(syst.)±0.14(Λ_{c}^{+})  MeV/c^{2}, where the last uncertainty is due to the limited knowledge of the Λ_{c}^{+} mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7  fb^{-1}, and confirmed in an additional sample of data collected at 8 TeV.

  7. Self-assembly and glass-formation in a lattice model of telechelic polymer melts: Influence of stiffness of the sticky bonds

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: freed@uchicago.edu [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)

    2016-06-07

    Telechelic polymers are chain macromolecules that may self-assemble through the association of their two mono-functional end groups (called “stickers”). A deep understanding of the relation between microscopic molecular details and the macroscopic physical properties of telechelic polymers is important in guiding the rational design of telechelic polymer materials with desired properties. The lattice cluster theory (LCT) for strongly interacting, self-assembling telechelic polymers provides a theoretical tool that enables establishing the connections between important microscopic molecular details of self-assembling polymers and their bulk thermodynamics. The original LCT for self-assembly of telechelic polymers considers a model of fully flexible linear chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)], while our recent work introduces a significant improvement to the LCT by including a description of chain semiflexibility for the bonds within each individual telechelic chain [W.-S. Xu and K. F. Freed, J. Chem. Phys. 143, 024901 (2015)], but the physically associative (or called “sticky”) bonds between the ends of the telechelics are left as fully flexible. Motivated by the ubiquitous presence of steric constraints on the association of real telechelic polymers that impart an additional degree of bond stiffness (or rigidity), the present paper further extends the LCT to permit the sticky bonds to be semiflexible but to have a stiffness differing from that within each telechelic chain. An analytical expression for the Helmholtz free energy is provided for this model of linear telechelic polymer melts, and illustrative calculations demonstrate the significant influence of the stiffness of the sticky bonds on the self-assembly and thermodynamics of telechelic polymers. A brief discussion is also provided for the impact of self-assembly on glass-formation by combining the LCT description for this extended model of telechelic polymers with

  8. Self-assembly and glass-formation in a lattice model of telechelic polymer melts: Influence of stiffness of the sticky bonds

    International Nuclear Information System (INIS)

    Xu, Wen-Sheng; Freed, Karl F.

    2016-01-01

    Telechelic polymers are chain macromolecules that may self-assemble through the association of their two mono-functional end groups (called “stickers”). A deep understanding of the relation between microscopic molecular details and the macroscopic physical properties of telechelic polymers is important in guiding the rational design of telechelic polymer materials with desired properties. The lattice cluster theory (LCT) for strongly interacting, self-assembling telechelic polymers provides a theoretical tool that enables establishing the connections between important microscopic molecular details of self-assembling polymers and their bulk thermodynamics. The original LCT for self-assembly of telechelic polymers considers a model of fully flexible linear chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)], while our recent work introduces a significant improvement to the LCT by including a description of chain semiflexibility for the bonds within each individual telechelic chain [W.-S. Xu and K. F. Freed, J. Chem. Phys. 143, 024901 (2015)], but the physically associative (or called “sticky”) bonds between the ends of the telechelics are left as fully flexible. Motivated by the ubiquitous presence of steric constraints on the association of real telechelic polymers that impart an additional degree of bond stiffness (or rigidity), the present paper further extends the LCT to permit the sticky bonds to be semiflexible but to have a stiffness differing from that within each telechelic chain. An analytical expression for the Helmholtz free energy is provided for this model of linear telechelic polymer melts, and illustrative calculations demonstrate the significant influence of the stiffness of the sticky bonds on the self-assembly and thermodynamics of telechelic polymers. A brief discussion is also provided for the impact of self-assembly on glass-formation by combining the LCT description for this extended model of telechelic polymers with

  9. Image-guided brachytherapy for cervical cancer: analysis of D2 cc hot spot in three-dimensional and anatomic factors affecting D2 cc hot spot in organs at risk.

    Science.gov (United States)

    Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui

    2014-01-01

    To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Irradiation effects on C/C composite materials for high temperature nuclear applications

    International Nuclear Information System (INIS)

    Eto, M.; Ugachi, H.; Baba, S.I.; Ishiyama, S.; Ishihara, M.; Hayashi, K.

    2000-01-01

    Excellent characteristics such as high strength and high thermal shock resistance of C/C composite materials have led us to try to apply them to the high temperature components in nuclear facilities. Such components include the armour tile of the first wall and divertor of fusion reactor and the elements of control rod for the use in HTGR. One of the most important aspects to be clarified about C/C composites for nuclear applications is the effect of neutron irradiation on their properties. At the Japan Atomic Energy Research Institute (JAERI), research on the irradiation effects on various properties of C/C composite materials has been carried out using fission reactors (JRR-3, JMTR), accelerators (TANDEM, TIARA) and the Fusion Neutronics Source (FNS). Additionally, strength tests of some neutron-irradiated elements for the control rod were carried out to investigate the feasibility of C/C composites. The paper summarises the R and D activities on the irradiation effects on C/C composites. (authors)

  11. Effect of iodine on the corrosion of Au-Al wire bonds

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Müller, Lutz; Jellesen, Morten Stendahl

    2015-01-01

    Corrosion study was performed on Au-Al wire bonds, thin layers of sputter deposited Au and Al, and Au-Al intermetallic nuggets. The test environment was iodine-vapour in air (1. mg/L) at 85 °C with varying relative humidity, and 500 mg/L of KI in water. GDOES, XRD, SEM EDS, wire bond shear......, and electrochemical testing were used to characterize the samples. Failures of Au-Al wire bonds were found to be primarily attributed to the corrosion of Al via formation of Al iodides and consequent formation of Al oxides and/or hydroxides. Most susceptible to corrosion are Al metallization and Al rich intermetallic...

  12. Effect of hydroxyl bond formation on the adhesion improvement of a polyethylene copper thin film system

    International Nuclear Information System (INIS)

    Camacho, M.; Blantocas, G.; Ramos, H.

    2009-01-01

    Formation of hydroxyl bonds on the surface of a gas plasma treated high density polyethylene (HDPE) sheets significantly enhanced the adhesion strength of the polyethylene copper thin film system. Surface treatments using oxygen gas plasmas at varying plasma parameters are applied in this study to identify the most effective plasma parameters that would promote the best adhesion strength. Analysis of gas plasma adulterated HDPE sheets showed best enhancement of polyethylene copper adhesion after an oxygen gas plasma treatment for 60 minutes at 5mA discharge current. Scanning Electron Microscopy Analysis, Fourier Transform Infrared Spectroscopy and Adhesion measurements using Pull out Force Analysis were used to measure the changes in the surface chemistry and surface topology of the HDPE sheets. (author)

  13. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    Directory of Open Access Journals (Sweden)

    Ashraf eEl-Kereamy

    2015-11-01

    Full Text Available Glutaredoxins (GRXs are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs, 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1 were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants.

  14. Volume of blood suctioned during vacuum-assisted breast biopsy predicts later hematoma formation

    Directory of Open Access Journals (Sweden)

    Panopoulou Effrosyni

    2010-03-01

    Full Text Available Abstract Background To evaluate whether the volume of blood suctioned during vacuum-assisted breast biopsy (VABB is associated with hematoma formation and progression, patient's age and histology of the lesion. Findings 177 women underwent VABB according to standardized protocol. The volume of blood suctioned and hematoma formation were noted at the end of the procedure, as did the subsequent development and progression of hematoma. First- and second-order logistic regression was performed, where appropriate. Cases with hematoma presented with greater volume of blood suctioned (63.8 ± 44.7 cc vs. 17.2 ± 32.9 cc; p Conclusion The likelihood of hematoma is increasing along with increasing amount of blood suctioned, reaching a plateau approximately at 80 cc of blood lost.

  15. Suggestion for search of ethylene oxide (c-C2H4O) in a cosmic object

    Science.gov (United States)

    Sharma, M. K.; Sharma, M.; Chandra, S.

    2018-05-01

    Ethylene oxide (c-C2H4O) and its isomer acetaldehyde (CH3CHO) are important organic molecules because of their potential role in the formation of amino acids. The c-C2H4O molecule is a b-type asymmetric top molecule and owing to half-spin of each of the four hydrogen atoms, it has two distinct ortho (nuclear spin one) and para (nuclear spin zero and two) species. It has been detected in the Sgr B2N. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of c-C2H4O molecule and the Einstein A-coefficients for radiative transitions between the levels. The values of Einstein A-coefficients along with the scaled values for the collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer. Brightness-temperatures of five rotational transitions of each of the ortho and para species of c-C2H4O molecule are investigated. Out of these ten transitions, three transitions are found to show the anomalous absorption and rest seven are found to show the emission feature. We have also investigated seven transitions observed unblended in the Sgr B2(N). We have found that the transitions 3_{3 0} - 3_{2 1} (23.134 GHz), 2_{2 0} - 2_{1 1} (15.603 GHz), 3_{3 1} - 3_{2 2} (39.680 GHz) and 1_{1 1} - 0_{0 0} (39.582 GHz) may play important role for the identification of ethylene oxide in a cosmic object.

  16. Asymmetric C-C Bond-Formation Reaction with Pd: How to Favor Heterogeneous or Homogeneous Catalysis?

    DEFF Research Database (Denmark)

    Reimann, S.; Grunwaldt, Jan-Dierk; Mallat, T.

    2010-01-01

    The enantioselective allylic alkylation of (E)-1,3-diphenylallyl acetate was studied to clarify the heterogeneous or homogeneous character of the Pd/Al2O3-(R)-BINAP catalyst system. A combined approach was applied: the catalytic tests were completed with in situ XANES measurements to follow...

  17. Sequential C-Si Bond Formations from Diphenylsilane: Application to Silanediol Peptide Isostere Precursors

    DEFF Research Database (Denmark)

    Nielsen, Lone; Skrydstrup, Troels

    2008-01-01

    and the first new carbon-silicon bond. The next step is the reduction of this hydridosilane with lithium metal providing a silyl lithium reagent, which undergoes a highly diastereoselective addition to an optically active tert-butanesulfinimine, thus generating the second C-Si bond. This method allows...

  18. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.

    2005-01-01

    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  19. Experimental evidence for the blue-shifted hydrogen-bonded complexes of CHF3 with π-electron donors.

    Science.gov (United States)

    Gopi, R; Ramanathan, N; Sundararajan, K

    2017-06-15

    Blue-shifted hydrogen-bonded complexes of fluoroform (CHF 3 ) with benzene (C 6 H 6 ) and acetylene (C 2 H 2 ) have been investigated using matrix isolation infrared spectroscopy and ab initio computations. For CHF 3 -C 6 H 6 complex, calculations performed at the B3LYP and MP2 levels of theory using 6-311++G (d,p) and aug-cc-pVDZ basis sets discerned two minima corresponding to a 1:1 hydrogen-bonded complex. The global minimum correlated to a structure, where the interaction is between the hydrogen of CHF 3 and the π-electrons of C 6 H 6 and a weak local minimum was stabilized through H…F interaction. For the CHF 3 -C 2 H 2 complex, computation performed at MP2/aug-cc-pVDZ level of theory yielded two minima, corresponding to the cyclic C-H…π complex A (global) and a linear C-H…F (n-σ) complex B (local). Experimentally a blue-shift of 32.3cm -1 and 7.7cm -1 was observed in the ν 1 C-H stretching mode of CHF 3 sub-molecule in Ar matrix for the 1:1 C-H…π complexes of CHF 3 with C 6 H 6 and C 2 H 2 respectively. Natural bond orbital (NBO), Atoms-in-molecule (AIM) and energy decomposition (EDA) analyses were carried out to explain the blue-shifting and the nature of the interaction in these complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  1. Variational RRKM calculation of thermal rate constant for C–H bond fission reaction of nitro methane

    Directory of Open Access Journals (Sweden)

    Afshin Taghva Manesh

    2017-02-01

    Full Text Available The present work provides quantitative results for the rate constants of unimolecular C–H bond fission reactions in the nitro methane at elevated temperatures up to 2000 K. In fact, there are three different hydrogen atoms in the nitro methane. The potential energy surface for each C–H bond fission reaction of nitro methane was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C–H bond fission channel is a barrierless reaction, we have used variational RRKM theory to predict rate coefficients. By means of calculated rate coefficients at different temperatures, the Arrhenius expression of the channel over the temperature range of 100–2000 K is k(T = 5.9E19∗exp(−56274.6/T.

  2. Carbamoyl anion-initiated cascade reaction for stereoselective synthesis of substituted α-hydroxy-β-amino amides.

    Science.gov (United States)

    Lin, Chao-Yang; Ma, Peng-Ju; Sun, Zhao; Lu, Chong-Dao; Xu, Yan-Jun

    2016-01-18

    A carbamoyl anion-initiated cascade reaction with acylsilanes and imines has been used to rapidly construct substituted α-hydroxy-β-amino amides. The Brook rearrangement-mediated cascade allows the formation of two C-C bonds and one O-Si bond in a single pot. Using this approach, a range of α-aryl α-hydroxy-β-amino amides has been synthesized in high yields with excellent diastereoselectivities.

  3. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2013-03-01

    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  4. Identification of a cobia (Rachycentron canadum) CC chemokine gene and its involvement in the inflammatory response.

    Science.gov (United States)

    Su, Youlu; Guo, Zhixun; Xu, Liwen; Jiang, Jingzhe; Wang, Jiangyong; Feng, Juan

    2012-01-01

    The chemokines regulate immune cell migration under inflammatory and physiological conditions. We investigated a CC chemokine gene (RcCC1) from cobia (Rachycentron canadum). The full-length RcCC1 cDNA is comprised 673 nucleotides and encodes a four-cysteine arrangement 99-amino-acid protein typical of known CC chemokines. The genomic DNA of RcCC1 consists of three exons and two introns. Phylogenetic analysis showed that RcCC1 was closest to the MIP group of CC chemokines. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed RcCC1 was constitutively expressed in all tissues examined, with relative strong expression in gill, blood, kidney, spleen, and head kidney. The RcCC1 transcripts in the head kidney, spleen, and liver were quickly up-regulated after stimulation with formalin-inactivated Vibrio carchariae (bacterial vaccine) or polyriboinosinic polyribocytidylic acid (poly I:C). These results indicate RcCC1 not only plays a role in homeostasis, but also may be involved in inflammatory responses to bacterial and viral infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Identification and cloning of an NADPH-dependent hydroxycinnamoyl-CoA double bond reductase involved in dihydrochalcone formation in Malus×domestica Borkh.

    Science.gov (United States)

    Ibdah, Mwafaq; Berim, Anna; Martens, Stefan; Valderrama, Andrea Lorena Herrera; Palmieri, Luisa; Lewinsohn, Efraim; Gang, David R

    2014-11-01

    The apple tree (Malus sp.) is an agriculturally and economically important source of food and beverages. Many of the health beneficial properties of apples are due to (poly)phenolic metabolites that they contain, including various dihydrochalcones. Although many of the genes and enzymes involved in polyphenol biosynthesis are known in many plant species, the specific reactions that lead to the biosynthesis of the dihydrochalcone precursor, p-dihydrocoumaroyl-CoA (3), are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for apple genes with significant sequence similarity to Arabidopsis alkenal double bond reductases. Herein described are the isolation and characterization of a Malus hydroxycinnamoyl-CoA double bond reductase, which catalyzed the NADPH-dependent reduction of p-coumaroyl-CoA and feruloyl-CoA to p-dihydrocoumaroyl-CoA and dihydroferuloyl-CoA, respectively. Its apparent Km values for p-coumaroyl-CoA, feruloyl-CoA and NADPH were 96.6, 92.9 and 101.3μM, respectively. The Malus double bond reductase preferred feruloyl-CoA to p-coumaroyl-CoA as a substrate by a factor of 2.1 when comparing catalytic efficiencies in vitro. Expression analysis of the hydroxycinnamoyl-CoA double bond reductase gene revealed that its transcript levels showed significant variation in tissues of different developmental stages, but was expressed when expected for involvement in dihydrochalcone formation. Thus, the hydroxycinnamoyl-CoA double bond reductase appears to be responsible for the reduction of the α,β-unsaturated double bond of p-coumaroyl-CoA, the first step of dihydrochalcone biosynthesis in apple tissues, and may be involved in the production of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A reactive empirical bond order (REBO) potential for hydrocarbon-oxygen interactions

    International Nuclear Information System (INIS)

    Ni, Boris; Lee, Ki-Ho; Sinnott, Susan B

    2004-01-01

    The expansion of the second-generation reactive empirical bond order (REBO) potential for hydrocarbons, as parametrized by Brenner and co-workers, to include oxygen is presented. This involves the explicit inclusion of C-O, H-O, and O-O interactions to the existing C-C, C-H, and H-H interactions in the REBO potential. The details of the expansion, including all parameters, are given. The new, expanded potential is then applied to the study of the structure and chemical stability of several molecules and polymer chains, and to modelling chemical reactions among a series of molecules, within classical molecular dynamics simulations

  7. JACoW SIP4C/C++ at CERN - Status and lessons learned

    CERN Document Server

    Jensen, Steen; Dworak, Andrzej; Gourber-Pace, Marine; Hoguin, Frederic; Lauener, Joel; Locci, Frank; Sigerud, Katarina; Sliwinski, Wojciech

    2018-01-01

    After 4 years of promoting the Software Improvement Process for C/C++ (SIP4C/C++) initiative at CERN, we describe the current status for tools and procedures along with how they have been integrated into our environment. Based on feedback from four project teams, we present reasons for and against their adoption. Finally, we show how SIP4C/C++ has improved development and delivery processes as well as the first-line support of delivered products.

  8. [Cleavage time for a hydrogen bond under a load].

    Science.gov (United States)

    Bespalov, S V; Tolpygo, K B

    1993-01-01

    Statistics of the hydrogen bond formation and break in a bundle of actin and myosin filaments realizing the attractive force in the sarcomere of a muscle is studied. Purely mechanical problem of the attractive-force formation and motion of myosin heads and action globules under their action is supplemented by accounting for the irreversible processes: 1. Thermal de-excitation of the latter in the chain of hydrogen bond during the elementary act of the ATP energy use resulting in fixing the extended actin filament. 2. Break of the hydrogen bonds, realizing this fixing, due to thermal fluctuations for the time tau. The average life-time turns out to be the order of time necessary for the movement of z-membrane sarcomere for the value of action filament extension delta 1, which is necessary for the process of muscle contraction to be continued.

  9. Hydrocarbon formation mechanism during uranium monocarbide hydrolysis

    International Nuclear Information System (INIS)

    Ermolaev, M.I.; Tishchenko, G.V.

    1979-01-01

    The hydrolysis of uranium monocarbide in oxidative media and in the presence of excessive hydrogen in statu nascendi has been investigated. It was found that oxydants promote the formation of elementary carbon, while in the presence of hydrogen the yield of light C-C hydrocarbons increases. EPR data confirm the radical mechanism of hydrocarbons formation during the decomposition of uranium monocarbide

  10. Interfacial crystalline structures in injection over-molded polypropylene and bond strength.

    Science.gov (United States)

    Yan, Bowen; Wu, Hong; Jiang, Genjie; Guo, Shaoyun; Huang, Jian

    2010-11-01

    This paper describes interfacial crystalline structures found in injection overmolded polypropylene components and the relationship of these structures to bond strength between the components. The combined effects of the development of hierarchical gradient structures and the particular thermomechanical environment near the interface on the interfacial crystalline structures were investigated in detail by PLM, SEM, DSC, WAXD, and infrared dichroism spectroscopy. The experimental results showed that during molding there was competitive formation of interfacial crystalline structures consisted of "shish-kebab" layer (SKL) and a transcrystalline layers (TCL). Variation in shear stress (controlled by injection pressure and injection speed) plays an important role in the formation of the SKL. The formation of TCL is influenced by the thermal environment, namely melt temperature and mold temperature. Increasing within certain limits, interfacial temperature and the thermal gradient near the interface promotes β-iPP growth. The relationship between interfacial crystalline structures and interfacial bond strength was established by lap shear measurement. The interfacial bond strength is improved by enhancing the formation of TCL, but reduced if SKL predominates.

  11. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    Summers, T.S.E.

    1992-01-01

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  12. Fullerene–Carbene Lewis Acid–Base Adducts

    KAUST Repository

    Li, Huaping; Risko, Chad; Seo, Jung Hwa; Campbell, Casey; Wu, Guang; Brédas, Jean-Luc; Bazan, Guillermo C.

    2011-01-01

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths

  13. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    Science.gov (United States)

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  14. Programming Recognition Arrays through Double Chalcogen-Bonding Interactions.

    Science.gov (United States)

    Biot, Nicolas; Bonifazi, Davide

    2018-04-11

    In this work, we have programmed and synthesized a recognition motif constructed around a chalcogenazolo-pyridine scaffold (CGP) that, through the formation of frontal double chalcogen-bonding interactions, associates into dimeric EX-type complexes. The reliability of the double chalcogen-bonding interaction has been shown at the solid-state by X-ray analysis, depicting the strongest recognition persistence for a Te-congener. The high recognition fidelity, chemical and thermal stability and easy derivatization at the 2-position makes CGP a convenient motif for constructing supramolecular architectures through programmed chalcogen-bonding interactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of conditioners on microshear bond strength to enamel after carbamide peroxide bleaching and/or casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) treatment.

    Science.gov (United States)

    Adebayo, O A; Burrow, M F; Tyas, M J

    2007-11-01

    To evaluate (a) the enamel microshear bond strength (MSBS) of a universal adhesive and (b) the effects of conditioning with a self-etching primer adhesive with/without prior bleaching and/or casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) application. Thirty-five molars were cut into four sections, assigned randomly to four groups (no treatment; 16% carbamide peroxide bleaching; CPP-ACP-containing paste (Tooth Mousse, TM); bleaching and TM) and treated accordingly. Specimens were divided into two for bonding with either a self-etching primer (Clearfil SE Bond, CSE) or a total-etch adhesive (Single Bond, SB). Specimens for CSE bonding were subdivided for one of four preconditioning treatments (no conditioning; 30-40% phosphoric acid (PA); 15% EDTA; 20% polyacrylic acid conditioner (Cavity conditioner, CC) and treated. The adhesives were applied and resin composite bonded to the enamel using microtubes (internal diameter 0.75mm). Bonds were stressed in shear until failure, mean MSBS calculated and data analysed using ANOVA with Tukey's HSD test (alpha=0.05). The modes of bond failure were assessed and classified. Two-way ANOVA revealed significant differences between treatments (Padhesive system on treated enamel may significantly improve bond strengths.

  16. Cloning and bioinformatics analysis of CcPILS gene of Hickory (Carya cathayensis)

    Science.gov (United States)

    Guo, Wenbin; Yuan, Huwei; Gao, Liuxiao; Guo, Haipeng; Qiu, Lingling; Xu, Dongbin; Yan, Daoliang; Zheng, Bingsong

    2017-04-01

    PILS is a key auxin efflux carrier protein in the auxin signal transduction. A CcPILS gene related to hickory (Carya carthayensis) grafting process was obtained by RACE techniques. The full length of CcPILS gene was1541bp contained a 1263bp length open reading flame (ORF). The CcPILS encoded 294 amino acids with molecular weight of 46 kDa, PI 5.38 and localized at endoplasmic reticulum membrane. The gene contained a central hydrophilic loop separating two hydrophobic domains of about five transmembrane regions each. The gene of CcPILS belonged to Clade III sub-family of PILS and its sequence had high homology with Arabidopsis. Real Time RT-PCR analysis showed that the gene expressions were weakly induced in bud, inflorescence, fruit, leaf and stem, while strongly in root. The expression levels were strongly induced and reached a peak at the third day of grafting in scion and rootstock of hickory, which were 1.45 and 3.45 times higher, respectively, compared to that of control. The results indicated that CcPILS may be involved in regulating the expression of genes related to auxin signal transduction during hickory graft process.

  17. Formation of cyclobutanones by the photolytic reaction of (CO)/sub 5/Cr/double bond/C(OMe)Me with electron-rich olefins

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, M.A.; Hegedus, L.S.

    1989-03-15

    Recent research has centered on the development of useful organic synthetic methodology based on the photolytic reactions of chromium Fischer carbene complexes, particularly in regards to the development of new /beta/-lactam syntheses. In the course of these studies it became evident that photolysis of chromium-carbene complexes resulted in the reversible production of chromium-ketene complexes, by a photochemically driven CO insertion into the chromium-carbene carbon double bond and that this unstable intermediate was responsible for /beta/-lactam formation.

  18. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2003

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2004-10-18

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed.

  19. Fluorescent and Colorimetric Molecular Recognition Probe for Hydrogen Bond Acceptors

    OpenAIRE

    Pike, Sarah Jane; Hunter, Christopher Alexander

    2018-01-01

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish sel...

  20. Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part II interfacial bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steve Xunhu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Among glass-ceramic compositions modified with a variety of oxidants (AgO, FeO, NiO, PbO, SnO, CuO, CoO, MoO3 and WO3) only CuO and CoO doped glass-ceramics showed existence of bonding oxides through reduction-oxidation (redox) at the GC-SS interface. The CuO-modified glass-ceramics demonstrate the formation of a continuous layer of strong bonding Cr2O3 at the interface in low partial oxygen (PO2) atmosphere. However, in a local reducing atmosphere, the CuO is preferentially reduced at the surface of glass-ceramic rather than the GC-SS interface for redox. The CoO-modified glass-ceramics demonstrate improved GC-SS bonding. But the low mobility of Co++ ions in the GC limited the amount of CoO that can diffuse to and participate in redox at the interface.

  1. Energy Materials Coordinating Committee (EMaCC): Annual technical report, Fiscal year 1987

    International Nuclear Information System (INIS)

    1988-09-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further the effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. This annual technical report is mandated by the EMaCC terms of reference. This report summarizes EMaCC activities for FY 1987 and describes the materials research programs of various offices and divisions within the Department

  2. Longitudinal study on transmission of MRSA CC398 within pig herds

    Directory of Open Access Journals (Sweden)

    Broens Els M

    2012-05-01

    Full Text Available Abstract Background Since the detection of MRSA CC398 in pigs in 2004, it has emerged in livestock worldwide. MRSA CC398 has been found in people in contact with livestock and thus has become a public health issue. Data from a large-scale longitudinal study in two Danish and four Dutch pig herds were used to quantify MRSA CC398 transmission rates within pig herds and to identify factors affecting transmission between pigs. Results Sows and their offspring were sampled at varying intervals during a production cycle. Overall MRSA prevalence of sows increased from 33% before farrowing to 77% before weaning. Overall MRSA prevalence of piglets was > 60% during the entire study period. The recurrent finding of MRSA in the majority of individuals indicates true colonization or might be the result of contamination. Transmission rates were estimated using a Susceptible-Infectious-Susceptible (SIS-model, which resulted in values of the reproduction ratio (R0 varying from 0.24 to 8.08. Transmission rates were higher in pigs treated with tetracyclins and β-lactams compared to untreated pigs implying a selective advantage of MRSA CC398 when these antimicrobials are used. Furthermore, transmission rates were higher in pre-weaning pigs compared to post-weaning pigs which might be explained by an age-related susceptibility or the presence of the sow as a primary source of MRSA CC398. Finally, transmission rates increased with the relative increase of the infection pressure within the pen compared to the total infection pressure, implying that within-pen transmission is a more important route compared to between-pen transmission and transmission through environmental exposure. Conclusion Our results indicate that MRSA CC398 is able to spread and persist in pig herds, resulting in an endemic situation. Transmission rates are affected by the use of selective antimicrobials and by the age of pigs.

  3. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  4. Influence of heat-pretreatments on the microstructural and mechanical properties of galfan-coated metal bonds

    Science.gov (United States)

    Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen

    2018-05-01

    In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.

  5. CC1, a novel crenarchaeal DNA binding protein.

    Science.gov (United States)

    Luo, Xiao; Schwarz-Linek, Uli; Botting, Catherine H; Hensel, Reinhard; Siebers, Bettina; White, Malcolm F

    2007-01-01

    The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.

  6. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur

    DEFF Research Database (Denmark)

    Du, Lin; Tang, Shanshan; Hansen, Anne Schou

    2017-01-01

    complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...

  7. A 19F NMR study of C-I....pi- halogen bonding

    DEFF Research Database (Denmark)

    Hauchecorne, Dieter; vand er Veken, Benjamin J.; Herrebout, Wouter A.

    2011-01-01

    The formation of halogen bonded complexes between toluene-d8 and the perfluoroiodopropanes 1-C3F7I and 2-C3F7I has been investigated using 19F NMR spectroscopy. For both Lewis acids, evidence was found for the formation of a C–I⋯π halogen bonded complex. The complex formed is a 1:1 type. Using sp...... results are supported by ab initio calculations at the B3LYP-PCM/6-311++G(d,p) + LanL2DZ∗ level....

  8. Characterization of Dentine to Assess Bond Strength of Dental Composites

    Directory of Open Access Journals (Sweden)

    Saad Liaqat

    2015-04-01

    Full Text Available This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable “self–bonding” composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively.

  9. Cleavage of thymine N3-H bonds by low-energy electrons attached to base π* orbitals

    International Nuclear Information System (INIS)

    Theodore, Magali; Sobczyk, Monika; Simons, Jack

    2006-01-01

    In this work, we extend our earlier studies on single strand break (SSB) formation in DNA to consider the possibility of cleaving a thymine N 3 -H bond to generate a nitrogen-centered anion and a hydrogen radical which might proceed to induce further bond cleavages. In earlier studies, we considered SSBs induced by low-energy electrons that attach to DNA bases' π* orbitals or to phosphate P=O π* orbitals to cleave sugar-phosphate C-O bonds or base-sugar N 1 -C bonds. We also studied the effects of base π-stacking on the rates of such bond cleavages. To date, our results suggest that sugar-phosphate C-O bonds have the lowest barriers to cleavage, that attachment of electrons with energies below 2 eV most likely occurs at the base π* orbitals, that electrons with energy above 2 eV can also attach to phosphate P=O π* orbitals, and that base π stacking has a modest but slowing effect on the rates of SSB formation. However, we had not yet examined the possibility that base N 3 -H bonds could rupture subsequent to base π* orbital capture. In the present work, the latter possibility is considered and it is found that the barrier to cleavage of the N 3 -H bond in thymine is considerably higher than for cleaving sugar-phosphate C-O bonds, so our prediction that SSB formation is dominated by C-O bond cleavage remains intact

  10. Stress analysis of two-dimensional C/C composite components for HTGR's core restraint techanism

    International Nuclear Information System (INIS)

    Satoshi Hanawa; Taiju Shibata; Jyunya Sumita; Masahiro Ishihara; Tatsuo Iyoku; Kazuhiro Sawa

    2005-01-01

    Carbon fiber reinforced carbon matrix composite (C/C composite) is one of the most promising materials for HTGRs core components due to their high strength as well as high temperature resistibility. One of the most attractive applications of C/C composite is the core restraint mechanism. The core restraint mechanism is located around the reflector block and it works to tighten reactor core blocks so as to restrict un-supposition flow pass of coolant gas (bypass flow) in the core. The restriction of bypass flow reads to the high efficiency of coolant flow rate inside of the reactor core. For the future HTGRs and VHTR (Very High Temperature Reactor), it is important to develop the core restraint mechanism with C/C composite substitute for metallic materials as used for HTTR. For the application of C/C composite to core restraint mechanism, it is important to investigate the applicability of C/C composite in viewpoint of structural integrity. In the present study, supposing the application of 2D-C/C composite to core restraint mechanism, thermal stress behavior was analyzed by considering the thickness of the C/C composite and the gap between reflector block and core restraint. It was shown from the thermal stress analysis that the circumferential stress decreases with increasing the gap and that the restraint force increases with increasing the thickness. By optimizing the thickness of C/C composite and gap between reflector block and core restraint, the C/C composite is applicable to the core restraint mechanism. (authors)

  11. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  12. Photo-induced cooperative covalent-bond switching in amorphous arsenic selenide

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Balitska, V [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Filipecki, J [Institute of Physics of Jan Dlugosz University, 13/15, Al. Armii Krajowej, Czestochowa, PL-42201 (Poland)

    2005-01-01

    A microstructural mechanism of photoinduced transformations in amorphous arsenic selenide films was studied with IR Fourier-spectroscopy technique in 300-100 cm{sup -1} region. It was shown that stage of irreversible photostructural changes was connected with cooperative process of coordination defect formation accompanied by homopolar chemical bonds switching in heteropolar ones. On the contrary, reversible photoinduced effects were caused by heteropolar chemical bonds switching in homopolar ones, as well as additional channel of bridge heteropolar bonds switching in short-layer ones. The both processes were associated with formation of anomalously coordinated defect pairs and accompanying atomic displacements at the level of medium-range ordering. The developed mathematical simulation procedure testified in a favour of defect-related origin of the reversible photo-thermallyinduced transformations, since their kinetics corresponded to known stretched-exponential dependence, tending to bimolecular behaviour rather then to single-exponential one.

  13. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  14. Microwave-assisted Ullmann C-S bond formation: synthesis of the P38alpha MAPK clinical candidate VX-745.

    Science.gov (United States)

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Fusillo, Vincenzo; Pigeaux, Morgane; Rokicki, Michal J; Kipling, David

    2009-11-06

    Microwave irradiation promotes the rapid and efficient reaction of a thiophenol and aryl or heteroaryl halide using a copper or palladium catalyst and a range of ligands, depending upon substrate. Of particular utility is the use of copper(I) iodide (5 mol %) and trans-cyclohexane-1,2-diol as ligand under basic conditions and microwave irradiation to give the corresponding sulfide in high yield. This method for C-S bond formation is applied in the four-step synthesis of the clinical candidate VX-745 in 38% overall yield. The inhibitory activity of VX-745 against p38alpha MAPK is confirmed in Werner syndrome dermal fibroblasts at 1.0 microM concentration by immunoblot assay.

  15. Energy Materials Coordinating Committee (EMaCC) Fiscal Year 1999 annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-10-31

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1999 and describes the materials research programs of various offices and divisions within the Department.

  16. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride.

    Science.gov (United States)

    Guo, Chengchen; Jordan, Jacob S; Yarger, Jeffery L; Holland, Gregory P

    2017-05-24

    In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

  17. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  18. Symmetry breaking and spectral considerations of the surprisingly floppy c-C3H radical and the related dipole-bound excited state of c-C3H-

    Science.gov (United States)

    Bassett, Matthew K.; Fortenberry, Ryan C.

    2017-06-01

    The C3H radical is believed to be prevalent throughout the interstellar medium and may be involved in the formation of polycyclic aromatic hydrocarbons. C3H exists as both a linear and a cyclic isomer. The C2 v cyclopropenylidenyl radical isomer was detected in the dark molecular cloud TMC-1, and the linear propenylidenyl radical isomer has been observed in various dark molecular clouds. Even though the c-C3H radical has been classified rotationally, the vibrational frequencies of this seemingly important interstellar molecule have never been directly observed. Established, highly accurate quartic force field methodologies are employed here to compute useful geometrical data, spectroscopic constants, and vibrational frequencies. The computed rotational constants are consistent with the experimental results. Consequently, the three a1 (ν1, ν2, and ν3) and one b1 (ν6) anharmonic vibrational frequencies at 3117.7 cm-1, 1564.3 cm-1, 1198.5 cm-1, and 826.7 cm-1, respectively, are reliable predictions for these, as of yet unseen, observables. Unfortunately, the two b2 fundamentals (ν4 and ν5) cannot be treated adequately in the current approach due to a flat and possible double-well potential described in detail herein. The dipole-bound excited state of the anion suffers from the same issues and may not even be bound. However, the trusted fundamental vibrational frequencies described for the neutral radical should not be affected by this deformity and are the first robustly produced for c-C3H. The insights gained here will also be applicable to other structures containing three-membered bare and exposed carbon rings that are surprisingly floppy in nature.

  19. Dynamical analysis of critical assembly CC-1

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The computer code CC-1, elaborated for the analysis of transients in Critical Assemblies is described. The results by the program are compared with the ones presented in the Safety Report for the Critical Assembly of ''La Quebrada'' Nuclear Research Centre (CIN). 7 refs

  20. Rapid Differentiation between Livestock-Associated and Livestock-Independent Staphylococcus aureus CC398 Clades

    Science.gov (United States)

    Larsen, Jesper; Soldanova, Katerina; Aziz, Maliha; Contente-Cuomo, Tania; Petersen, Andreas; Vandendriessche, Stien; Jiménez, Judy N.; Mammina, Caterina; van Belkum, Alex; Salmenlinna, Saara; Laurent, Frederic; Skov, Robert L.; Larsen, Anders R.; Andersen, Paal S.; Price, Lance B.

    2013-01-01

    Staphylococcus aureus clonal complex 398 (CC398) isolates cluster into two distinct phylogenetic clades based on single-nucleotide polymorphisms (SNPs) revealing a basal human clade and a more derived livestock clade. The scn and tet(M) genes are strongly associated with the human and the livestock clade, respectively, due to loss and acquisition of mobile genetic elements. We present canonical single-nucleotide polymorphism (canSNP) assays that differentiate the two major host-associated S. aureus CC398 clades and a duplex PCR assay for detection of scn and tet(M). The canSNP assays correctly placed 88 S. aureus CC398 isolates from a reference collection into the human and livestock clades and the duplex PCR assay correctly identified scn and tet(M). The assays were successfully applied to a geographically diverse collection of 272 human S. aureus CC398 isolates. The simple assays described here generate signals comparable to a whole-genome phylogeny for major clade assignment and are easily integrated into S. aureus CC398 surveillance programs and epidemiological studies. PMID:24244535

  1. Charmonium formation and suppression in nuclear matter

    International Nuclear Information System (INIS)

    Xu Jiajun; Wang Jia; Zhuang Chao; Zhuang Pengfei

    2005-01-01

    The coupling Schroedinger equations describing the evolution of cc-bar states in nuclear matter are analytically and systematically solved via perturbation method, and the correlation between charmonium formation and nuclear absorption is investigated. After calculating J/Ψ and Ψ' suppression in nucleon-nucleus collisions and comparing with experiment data, it is found that the formation time effect plays an important rule in charmonium suppression, especially in Ψ' suppression. (authors)

  2. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.

    Science.gov (United States)

    Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T

    2010-02-21

    Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.

  3. Development of C/C composite for the core component of the high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H

    2005-01-15

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite.

  4. Development of C/C composite for the core component of the high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, W. J.; Ryu, W. S.; Jang, J. H.

    2005-01-01

    This report reviewed a state of the art on development of C/C composite for the core components for VHTR and described the followings items. The fabrication methods of C/C composites. Summary on the JAERI report (JAERI-Res 2002-026) on the process screening test for the selection of a proper C/C composite material. Review of the proceedings presented at the GEN-IV VHTR material PMB meeting. A status of the domestic commercial C/C composite. The published property data and the characteristics of the commercial C/C composite

  5. Bond strengths of different orthodontic adhesives after enamel conditioning with the same self-etching primer.

    Science.gov (United States)

    Scougall-Vilchis, Rogelio J; Zárate-Díaz, Chrisel; Kusakabe, Shusuke; Yamamoto, Kohji

    2010-05-01

    To determine the shear bond strengths (SBS) of stainless steel brackets bonded with seven light-cured orthodontic adhesives after the enamel was conditioned with the same self-etching primer. A total of 140 extracted human molars were randomly divided into seven groups (N = 20). In all the groups, the enamel was conditioned with Transbond Plus SEP (TPSEP). Stainless steel brackets were bonded with the following orthodontic adhesives: Group I, Transbond XT; Group II, Blūgloo; Group III, BeautyOrtho Bond; Group IV, Enlight; Group V, Light Bond; Group VI, Transbond CC; Group VII, Xeno Ortho. The teeth were stored in distilled water at 37 degrees C for 24 hours and debonded with a universal testing machine. The modified adhesive remnant index (ARI) was also recorded. There were no significant differences in the SBS values among the groups: I (18.0 +/- 7.4 MPa); II (18.3 +/- 5.1 MPa); III (14.8 +/- 4.3 MPa); IV (18.3 +/- 7.0 MPa); V (16.4 +/- 4.3 MPa); VI (20.3 +/- 5.3 MPa); VII (15.9 +/- 6.4 MPa), but significant differences in ARI were found. The seven orthodontic adhesives evaluated in this study can be successfully used for bonding stainless steel brackets when the enamel is conditioned with TPSEP, however, the differences among some groups might influence the clinical bond strengths. In addition, the amount of residual adhesive remaining on the teeth after debonding differed among the adhesives. Further studies are required to better understand the differences in SBS and ARI.

  6. Adsorption configurations of hydrocarbon ring molecules on GaAs(001)-c(4 x 4)

    Energy Technology Data Exchange (ETDEWEB)

    Passmann, R.; Bruhn, T.; Esser, N.; Vogt, P. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); ISAS, Institute for Analytical Sciences, Department Berlin, Berlin (Germany); Nilsen, T.A.; Fimland, B.O. [Department of Electronics and Telecomunications, Norwegian University of Science and Technology, Trondheim (Norway); Kneissl, M. [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany)

    2009-07-15

    The understanding of self-assembly and bonding mechanisms of organic molecules on semiconductor surfaces represents a central research aspect in the investigation of novel organic/inorganic interfaces and their technological applicability. Here, we investigated the adsorption and bond formation of cyclopentene and 1,4-cyclohexadiene on a GaAs(001)-c(4 x 4) surface in order to clarify the influence of the number of intra-molecular C=C double bonds on the respective adsorption sites. For a determination of the adsorption configuration, the interfaces were characterized electronically and optically by synchrotron based X-ray photoelectron spectroscopy (SXPS), low energy electron diffraction (LEED) and reflectance anisotropy spectroscopy (RAS). The results reveal significantly different adsorption configurations for the two molecules. While cyclopentene bonds with a single covalent bond to the surface, 1,4-cyclohexadiene adsorbs onto the surface by the formation of multiple covalent bonds, e.g. bridge bonds. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Bacillus velezensis CC09: A Potential 'Vaccine' for Controlling Wheat Diseases.

    Science.gov (United States)

    Kang, Xingxing; Zhang, Wanling; Cai, Xunchao; Zhu, Tong; Xue, Yarong; Liu, Changhong

    2018-04-11

    Biocontrol bacteria that can act like a "vaccine", stimulating plant resistance to pathogenic diseases, are still not fully elucidated. In this study, an endophytic bacterium, Bacillus velezensis CC09, labeled with green fluorescent protein, was tested for its colonization, migration, and expression of genes encoding iturin A synthetase within wheat tissues and organs as well as for protective effects against wheat take-all and spot blotch diseases. The results showed that strain CC09 not only formed biofilm on the root surface but was also widely distributed in almost every tissue, including the epidermis, cortex, and xylem vessels, and even migrated to stems and leaves, resulting in 66.67% disease-control efficacy (DCE) of take-all and 21.64% DCE of spot blotch. Moreover, the gene cluster encoding iturin A synthase under the control of the p itu promoter is expressed in B. velezensis CC09 in wheat tissues, which indicates that iturin A might contribute to the in-vivo antifungal activity and leads to the disease control. All these data suggested that strain CC09 can act like a 'vaccine' in the control of wheat diseases, with a single treatment inoculated on roots through multiple mechanisms.

  8. Efficient detection of dangling pointer error for C/C++ programs

    Science.gov (United States)

    Zhang, Wenzhe

    2017-08-01

    Dangling pointer error is pervasive in C/C++ programs and it is very hard to detect. This paper introduces an efficient detector to detect dangling pointer error in C/C++ programs. By selectively leave some memory accesses unmonitored, our method could reduce the memory monitoring overhead and thus achieves better performance over previous methods. Experiments show that our method could achieve an average speed up of 9% over previous compiler instrumentation based method and more than 50% over previous page protection based method.

  9. RB1CC1 Protein Suppresses Type II Collagen Synthesis in Chondrocytes and Causes Dwarfism*

    Science.gov (United States)

    Nishimura, Ichiro; Chano, Tokuhiro; Kita, Hiroko; Matsusue, Yoshitaka; Okabe, Hidetoshi

    2011-01-01

    RB1-inducible coiled-coil 1 (RB1CC1) functions in various processes, such as cell growth, differentiation, senescence, apoptosis, and autophagy. The conditional transgenic mice with cartilage-specific RB1CC1 excess that were used in the present study were made for the first time by the Cre-loxP system. Cartilage-specific RB1CC1 excess caused dwarfism in mice without causing obvious abnormalities in endochondral ossification and subsequent skeletal development from embryo to adult. In vitro and in vivo analysis revealed that the dwarf phenotype in cartilaginous RB1CC1 excess was induced by reductions in the total amount of cartilage and the number of cartilaginous cells, following suppressions of type II collagen synthesis and Erk1/2 signals. In addition, we have demonstrated that two kinds of SNPs (T-547C and C-468T) in the human RB1CC1 promoter have significant influence on the self-transcriptional level. Accordingly, human genotypic variants of RB1CC1 that either stimulate or inhibit RB1CC1 transcription in vivo may cause body size variations. PMID:22049074

  10. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    Directory of Open Access Journals (Sweden)

    Tyo Keith EJ

    2012-03-01

    Full Text Available Abstract Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor or a larger protein (α-amylase. Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a degradation of protein/recycling amino acids, (b overall transcription/translation repression, and (c oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases.

  11. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite.

    Science.gov (United States)

    Gackowska, Alicja; Przybyłek, Maciej; Studziński, Waldemar; Gaca, Jerzy

    2016-01-01

    In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography-mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdown products identification than n-hexane. Reaction of EHMC with HOCl lead to the formation of C=C bridge cleavage products such as 2-ethylhexyl chloroacetate, 1-chloro-4-methoxybenzene, 1,3-dichloro-2-methoxybenzene, and 3-chloro-4-methoxybenzaldehyde. High reactivity of C=C bond attached to benzene ring is also characteristic for MCA, since it can be converted in the presence of HOCl to 2,4-dichlorophenole, 2,6-dichloro-1,4-benzoquinone, 1,3-dichloro-2-methoxybenzene, 1,2,4-trichloro-3-methoxybenzene, 2,4,6-trichlorophenole, and 3,5-dichloro-2-hydroxyacetophenone. Surprisingly, in case of EHMC/HOCl/UV, much less breakdown products were formed compared to non-UV radiation treatment. In order to describe the nature of EHMC and MCA degradation, local reactivity analysis based on the density functional theory (DFT) was performed. Fukui function values showed that electrophilic attack of HOCl to the C=C bridge in EHMC and MCA is highly favorable (even more preferable than phenyl ring chlorination). This suggests that HOCl electrophilic addition is probably the initial step of EHMC degradation.

  12. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  13. Physical-chemical model of nanodiamond formation at explosion

    International Nuclear Information System (INIS)

    Chernyshev, A.P.; Lukyanchikov, L.A.; Lyakhov, N.Z.; Pruuel, E.R.; Sheromov, M.A.; Ten, K.A.; Titov, V.M.; Tolochko, B.P.; Zhogin, I.L.; Zubkov, P.I.

    2007-01-01

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state

  14. Physical-chemical model of nanodiamond formation at explosion

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, A.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Lukyanchikov, L.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Lyakhov, N.Z. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Pruuel, E.R. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Sheromov, M.A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ten, K.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Titov, V.M. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Tolochko, B.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)]. E-mail: b.p.tolochko@inp.nsk.su; Zhogin, I.L. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Zubkov, P.I. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation)

    2007-05-21

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state.

  15. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers

    Science.gov (United States)

    Tong, Q.-Y.; Gan, Q.; Fountain, G.; Enquist, P.; Scholz, R.; Gösele, U.

    2004-10-01

    The bonding energy of bonded native-oxide-covered silicon wafers treated in the HNO3/H2O/HF or the HNO3/HF solution prior to room-temperature contact is significantly higher than bonded standard RCA1 cleaned wafer pairs after low-temperature annealing. The bonding energy reaches over 2000mJ/m2 after annealing at 100 °C. The very slight etching and fluorine in the chemically grown oxide are believed to be the main contributors to the enhanced bonding energy. Transmission-electron-microscopic images have shown that the chemically formed native oxide at bonding interface is embedded with many flake-like cavities. The cavities can absorb the by-products of the interfacial reactions that result in covalent bond formation at low temperatures allowing the strong bond to be retained.

  16. Pharmacokinetics and Pharmacodynamics with Extended Dosing of CC-486 in Patients with Hematologic Malignancies.

    Directory of Open Access Journals (Sweden)

    Eric Laille

    Full Text Available CC-486 (oral azacitidine is an epigenetic modifier in development for patients with myelodysplastic syndromes and acute myeloid leukemia. In part 1 of this two-part study, a 7-day CC-486 dosing schedule showed clinical activity, was generally well tolerated, and reduced DNA methylation. Extending dosing of CC-486 beyond 7 days would increase duration of azacitidine exposure. We hypothesized that extended dosing would therefore provide more sustained epigenetic activity. Reported here are the pharmacokinetic (PK and pharmacodynamic (PD profiles of CC-486 extended dosing schedules in patients with myelodysplastic syndromes (MDS, chronic myelomonocytic leukemia (CMML or acute myeloid leukemia (AML from part 2 of this study. PK and/or PD data were available for 59 patients who were sequentially assigned to 1 of 4 extended CC-486 dosing schedules: 300mg once-daily or 200mg twice-daily for 14 or 21 days per 28-day cycle. Both 300mg once-daily schedules and the 200mg twice-daily 21-day schedule significantly (all P < .05 reduced global DNA methylation in whole blood at all measured time points (days 15, 22, and 28 of the treatment cycle, with sustained hypomethylation at cycle end compared with baseline. CC-486 exposures and reduced DNA methylation were significantly correlated. Patients who had a hematologic response had significantly greater methylation reductions than non-responding patients. These data demonstrate that extended dosing of CC-486 sustains epigenetic effects through the treatment cycle.ClinicalTrials.gov NCT00528983.

  17. Experimental and theoretical investigation of the production of cations containing C-N bonds in the reaction of benzene with atomic nitrogen ions

    International Nuclear Information System (INIS)

    Di Stefano, Marco; Rosi, Marzio; Sgamellotti, Antonio; Ascenzi, Daniela; Bassi, Davide; Franceschi, Pietro; Tosi, Paolo

    2003-01-01

    In the last few years, astronomical spectra have revealed the presence of aromatic and polyaromatic molecules in extraterrestrial environments, near carbon stars, in molecular clouds and meteorites. Moreover, the recent observation of benzene in interstellar space has noticeably increased the interest in the entire class of molecules and in their chemical behavior. In this work, we have investigated the reaction between the benzene molecule and the atomic nitrogen cation and, in particular, the mechanisms by which the reactants are converted into cationic products containing at least one C-N bond, according to the general scheme C 6 H 6 +N + →H m C n N + +C x H y . We have measured the energy dependence of the cross section in a guided ion beam tandem mass spectrometer. Relevant stationary points of the potential energy surface have been studied by using the density functional theory hybrid functional B3LYP with the 6-31G* basis set. Thermochemical calculations, and the comparison with experimental results, allow us to distinguish between exoergic and endoergic processes and to obtain a detailed description of the reaction mechanisms. We show that aromatic hydrocarbons may be converted into organic-nitrogen compounds via the insertion of N + into the benzene ring and the formation of C-N bonds from C-C ring reactants

  18. Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-06-01

    We show in the current study carried out in solid phase at cryogenic temperatures that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC, and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN-, and three nitrogen hydrides NH, NH2, and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2, and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects, and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species, such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  19. Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Okamoto, Itaru; Dairaku, Takenori; Tanaka, Yoshiyuki; Ono, Akira; Kozasa, Tetsuo

    2012-11-01

    Metal ion-nucleic acid interactions have attracted considerable interest for their involvement in structure formation and catalytic activity of nucleic acids. Although interactions between metal ion and mismatched base pair duplex are important to understand mechanism of gene mutations related to heavy metal ions, they have not been well-characterized. We recently found that the Ag(+) ion stabilized a C:C mismatched base pair duplex DNA. A C-Ag-C metal-mediated base pair was supposed to be formed by the binding between the Ag(+) ion and the C:C mismatched base pair to stabilize the duplex. Here, we examined specificity, thermodynamics and structure of possible C-Ag-C metal-mediated base pair. UV melting indicated that only the duplex with the C:C mismatched base pair, and not of the duplexes with the perfectly matched and other mismatched base pairs, was specifically stabilized on adding the Ag(+) ion. Isothermal titration calorimetry demonstrated that the Ag(+) ion specifically bound with the C:C base pair at 1:1 molar ratio with a binding constant of 10(6) M(-1), which was significantly larger than those for nonspecific metal ion-DNA interactions. Electrospray ionization mass spectrometry also supported the specific 1:1 binding between the Ag(+) ion and the C:C base pair. Circular dichroism spectroscopy and NMR revealed that the Ag(+) ion may bind with the N3 positions of the C:C base pair without distorting the higher-order structure of the duplex. We conclude that the specific formation of C-Ag-C base pair with large binding affinity would provide a binding mode of metal ion-DNA interactions, similar to that of the previously reported T-Hg-T base pair. The C-Ag-C base pair may be useful not only for understanding of molecular mechanism of gene mutations related to heavy metal ions but also for wide variety of potential applications of metal-mediated base pairs in various fields, such as material, life and environmental sciences. Copyright © 2012 Elsevier

  20. Theoretical estimation of pnicogen bonds and hydrogen bonds in small heterocyclic complexes: Red-shifts and blue-shifts ruled by polarization effects

    International Nuclear Information System (INIS)

    Oliveira, Boaz G.

    2014-01-01

    Graphical abstract: - Highlights: • This paper definitively discusses the interaction strength. • Analyses of the red-shifts and blue-shift. • Stretch frequencies of the hydrogen bonds and pnicogen bonds in heterocyclic compounds. • Theoretical calculations derived from topological parameters of the Quantum Theory of Atoms in Molecules (QTAIM). • The analysis of the Natural Bond Orbital (NBO) in line with the Bent’s rule of the chemical bonding. - Abstract: The occurrence of pnicogen bonds (N⋯P) and hydrogen bonds (F⋯H or Cl⋯H) in heterocyclic complexes formed by C 2 H 5 N⋯PH 3 , C 2 H 5 N⋯PH 2 F and C 2 H 5 N⋯PH 2 Cl was investigated at the B3LYP/6-311++G(d,p) level of theory. Analysis of the infrared spectra revealed the appearance of both red and blue shifts for the P–H bonds. However, in the case of the P–F and P–Cl bonds only red shifts were observed. The phenomenology of these vibration modes was interpreted on the basis of the QTAIM atomic radii as well as the contributions of the s and p orbitals determined via NBO calculations. The results of this latter investigation are consistent with the rehybridization theory and the Bent rule for chemical bonding. The charge transfer between N and P was determined in order to verify whether these atoms present an acid or base profile upon the formation of the pnicogen bonds

  1. Mechanical properties of dynamic diffusion bonded joints in a mild alloy steel

    International Nuclear Information System (INIS)

    Gomez de Salazar, J. M.; Urena, A.; Menendez, M.

    2001-01-01

    Mechanical properties in Dynamic Diffusion Bonded (DDB) in a A.S.T.M. 1045 steel (=.45%C) joints were studied. The thermomechanical cycle added to the process, favours both the initial deformation stage and probably the diffusion mechanisms which participate in bond formation. (Author) 11 refs

  2. Effects of differently hardened brass foil laminate on the electromechanical property of externally laminated CC tapes

    Energy Technology Data Exchange (ETDEWEB)

    Bautista, Zhierwinjay; Shin, Hyung Seop [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of); Mean, Byoung Jean; Lee, Jae Hun [SuNAM Co Ltd., Anseong (Korea, Republic of)

    2016-12-15

    The mechanical properties of REBCO coated conductor (CC) wires under uniaxial tension are largely determined by the thick component layers in the architecture, namely, the substrate and the stabilizer or even the reinforcement layer. Depending on device applications of the CC tapes, it is necessary to reinforce thin metallic foils externally to one-side or both sides of the CC tapes. Due to the external reinforcement of brass foils, it was found that this could increase the reversible strain limit from the Cu-stabilized CC tapes. In this study, the effects of differently hardened brass foil laminate on the electromechanical property of CC tapes were investigated under uniaxial tension loading. The tensile strain dependence of the critical current (I{sub c}) was measured at 77 K and self-field. Depending on whether the I{sub c} of CC tapes were measured during loading or after unloading, a reversible strain (or stress) limit could be determined, respectively. The both-sides of the Cu-stabilized CC tapes were laminated with brass foils with different hardness, namely 1/4H, 1H and EH. From the obtained results, it showed that the yield strength of the brass laminated CC tapes with EH brass foil laminate was comparable to the one of the Cu-stabilized CC tape due to its large yield strength even though its large volume fraction. It was found that the brass foil with different hardness was mainly sensitive on the stress dependence of I{sub c}, but not on the strain sensitivity due to the residual strain induced in the laminated CC tapes during unloading.

  3. Evidence for phosphorus bonding in phosphorus trichloride-methanol adduct: a matrix isolation infrared and ab initio computational study.

    Science.gov (United States)

    Joshi, Prasad Ramesh; Ramanathan, N; Sundararajan, K; Sankaran, K

    2015-04-09

    The weak interaction between PCl3 and CH3OH was investigated using matrix isolation infrared spectroscopy and ab initio computations. In a nitrogen matrix at low temperature, the noncovalent adduct was generated and characterized using Fourier transform infrared spectroscopy. Computations were performed at B3LYP/6-311++G(d,p), B3LYP/aug-cc-pVDZ, and MP2/6-311++G(d,p) levels of theory to optimize the possible geometries of PCl3-CH3OH adducts. Computations revealed two minima on the potential energy surface, of which, the global minimum is stabilized by a noncovalent P···O interaction, known as a pnictogen bonding (phosphorus bonding or P-bonding). The local minimum corresponded to a cyclic adduct, stabilized by the conventional hydrogen bonding (Cl···H-O and Cl···H-C interactions). Experimentally, 1:1 P-bonded PCl3-CH3OH adduct in nitrogen matrix was identified, where shifts in the P-Cl modes of PCl3, O-C, and O-H modes of CH3OH submolecules were observed. The observed vibrational frequencies of the P-bonded adduct in a nitrogen matrix agreed well with the computed frequencies. Furthermore, computations also predicted that the P-bonded adduct is stronger than H-bonded adduct by ∼1.56 kcal/mol. Atoms in molecules and natural bond orbital analyses were performed to understand the nature of interactions and effect of charge transfer interaction on the stability of the adducts.

  4. Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.

    Science.gov (United States)

    Borkar, Santosh Ramdas; Aidhen, Indrapal Singh

    2017-04-18

    Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.

  5. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  6. Teach yourself visually Photoshop CC

    CERN Document Server

    Wooldridge, Mike

    2013-01-01

    Get savvy with the newest features and enhancements of Photoshop CC The newest version of Photoshop boasts enhanced and new features that afford you some amazing and creative ways to create images with impact, and this popular guide gets visual learners up to speed quickly. Packed with colorful screen shots that illustrate the step-by-step instructions, this visual guide is perfect for Photoshop newcomers as well as experienced users who are looking for some beginning to intermediate-level techniques to give their projects the ""wow"" factor! Veteran and bestselling authors Mik

  7. Adobe Photoshop CC for photographers

    CERN Document Server

    Evening, Martin

    2014-01-01

    Adobe Photoshop for Photographers 2014 Release by Photoshop hall-of-famer and acclaimed digital imaging professional Martin Evening has been fully updated to include detailed instruction for all of the updates to Photoshop CC 2014 on Adobe's Creative Cloud, including significant new features, such as Focus Area selections, enhanced Content-Aware filling, and new Spin and Path blur gallery effects. This guide covers all the tools and techniques photographers and professional image editors need to know when using Photoshop, from workflow guidance to core skills to advanced techniques for profess

  8. Advanced multivariate data analysis to determine the root cause of trisulfide bond formation in a novel antibody–peptide fusion

    Science.gov (United States)

    Goldrick, Stephen; Holmes, William; Bond, Nicholas J.; Lewis, Gareth; Kuiper, Marcel; Turner, Richard

    2017-01-01

    ABSTRACT Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody–peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high‐throughput (HT) micro‐bioreactor system (AmbrTM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on‐line and off‐line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale‐up. Biotechnol. Bioeng. 2017;114: 2222–2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28500668

  9. Does Core Length Taken per cc of Prostate Volume in Prostate Biopsy Affect the Diagnosis of Prostate Cancer?

    Science.gov (United States)

    Deliktas, Hasan; Sahin, Hayrettin; Cetinkaya, Mehmet; Dere, Yelda; Erdogan, Omer; Baldemir, Ercan

    2016-08-01

    The aim of this study was to determine the minimal core length to be taken per cc of prostate volume for an effective prostate biopsy. A retrospective analysis was performed on the records of 379 patients who underwent a first prostate biopsy with 12 to 16 cores under transrectal ultrasound guidance between September 2012 and April 2015. For each patient, the core length per cc of the prostate and the percentage of sampled prostate volume were calculated, and these values were compared between the patients with and without prostate cancer. A total of 348 patients were included in the study. Cancer was determined in 26.4% of patients. The mean core length taken per cc of prostate and the percentage of sampled prostate volume were determined to be 3.40 ± 0.15 mm/cc (0.26%; range, 0.08-0.63 cc) in patients with cancer and 2.75 ± 0.08 mm/cc (0.20%; range, 0.04-0.66 cc) in patients without cancer (P = .000 and P = .000), respectively. Core length taken per cc of prostate of > 3.31 mm/cc was found to be related to an increase in the rates of prostate cancer diagnosis (odds ratio, 2.84; 95% confidence interval, 1.68-4.78). The rate of cancer determination for core length taken per cc of prostate of  3.31 mm/cc, 41.1%. Core length taken per cc of prostate and the percentage of sampled prostate volume are important morphometric parameters in the determination of prostate cancer. The results of study suggest a core length per cc of the prostate of > 3.31 mm/cc as a cutoff value for quality assurance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Rotational Isomers, Intramolecular Hydrogen Bond, and IR Spectra of o-Vinylphenol Homologs

    Science.gov (United States)

    Glazunov, V. P.; Berdyshev, D. V.; Balaneva, N. N.; Radchenko, O. S.; Novikov, V. L.

    2018-03-01

    The ν(OH) stretching-mode bands in solution IR spectra of five o-vinylphenol (o-VPh) homologs in the slightly polar solvents CCl4 and n-hexane were studied. Several rotamers with free OH groups were found in solutions of o-VPh and its methyl-substituted derivatives in n-hexane. The proportion of rotamers in o-VPh homologs with intramolecular hydrogen bonds (IHBs) O-H...π varied from 22 to 97% in the gas and cyclohexane according to B3LYP/cc-pVTZ calculations. The theoretically estimated effective enthalpies -ΔH of their IHBs varied in the range 0.20-2.24 kcal/mol.

  11. {alpha}-Man monolayer formation via Si-C bond formation and protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Funato, Koji [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Shirahata, Naoto [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Yoshiko, E-mail: miuray@jaist.ac.j [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2009-11-30

    An acetylenyl-terminated saccharide was synthesized and the thin layer formation on the hydrogen-terminated silicon was investigated. The acetylenyl-terminated saccharide was synthesized by the condensation reaction of hexynoic acid and p-aminophenyl saccharide. This was reacted with hydrogen-terminated silicon (Si-H) by a photochemical reaction. The resulting saccharide modified substrate was analyzed by ellipsometry and X-ray photoelectron spectroscopy, which showed the formation of a uniform monolayer. The surface's ability to recognize proteins was analyzed by fluorescent microscopy, and showed specific interactions with sugar recognition proteins.

  12. Clonal spread of MRSA CC398 sublineages within and between Danish pig farms

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Jesper; Moodley, Arshnee

    Background: Methicillin-resistant Staphylococcus aureus (MRSA) CC398 is non-typeable by standard pulsed-field gel electrophoresis (PFGE) due to methylation of the SmaI site. This makes it difficult to study the epidemiology of this livestock-associated MRSA clone. In this study, we employed...... a recently developed PFGE protocol using Cfr9I, a neoschizomer of SmaI, to investigate the diversity of MRSA CC398 in Danish pig farms. The PFGE profiles displayed by isolates from pigs, environmental samples and farm workers were compared in order to understand whether farms are contaminated with multiple...... MRSA CC398 sublineages and whether specific sublineages may occur on different farms. Methods: A cross sectional study was performed in five Danish pig farms where farm workers had been shown to carry MRSA CC398 in the previous year. A total of 75 environmental and 308 animal samples were collected...

  13. Programmer's guide for the CC3 computer models of the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dougan, K.D.

    1996-11-01

    Atomic Energy of Canada Limited (AECL) is assessing a concept for disposing of CANDU reactor fuel waste in a vault deep in plutonic rock of the Canadian Shield. A computer program called the Systems Variability Analysis Code (SYVAC) was developed as an analytical tool for the postclosure (long-term) assessment of the concept, and for environmental assessments of other systems. SYVAC3, the third generation of the code, is an executive program that directs repeated simulation of the disposal system, which is described by the CC3 (Canadian Concept, generation 3) model. The CC3 model is comprised of the disposal vault submodel, the local geosphere submodel and the biosphere submodel. The CC3 Proarammer's Guide describes the programming philosophy and programming conventions not covered in the project standards. The guide includes a description of the overall logic for the CC3 vault, geosphere, and biosphere submodels. Each of the CC3 submodels is also isolated from the other two submbdels to create autonomous or 'stand-alone' submodels. The techniques used to isolate a CC3 submodel, and in particular to determine the submodells input and output data interface, are described. Structure charts are provided for the CC3 model and stand-alone submodels. This guide is meant as a companion document to the CC3 User's Manual. This guide does not describe how to use the CC3 software. The user should consult the CC3 User's Manual to determine how to configure, compile, link, and run the CC3 source code, as well as how to modify the data in the input files. It is intended that the CC3 code version CC305 be executed with SYVAC3 version SV309 and the Modelling Algorithm Library (ML3) version ML303, both developed for the assessment of the concept. SYVAC3-CC3-ML3 (also referred to as 'SC3') can be run on any platform containing an ANSI FORTRAN 77 compliant compiler. Recommended hardware environments are specified in the CC3 User's Manual. (author)

  14. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    NARCIS (Netherlands)

    Jongsma, Marije A.; van der Mei, Henny C.; Atema-Smit, Jelly; Busscher, Henk I.; Ren, Yijin

    2015-01-01

    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased

  15. Role of gamma radiation on spore germination and infectivity of Frankia strains CeI523 and CcI6 isolated from Egyptian Casuarina

    International Nuclear Information System (INIS)

    Mansour, S.R.; Moussa, L.A.A.

    2005-01-01

    The potential effect of gamma radiation on spore germination and infectivity was studied by using two types of Frankia strains, CeI523 and CcI6, isolated from two different Casuarina species. Exposure of Frankia strains to low doses of gamma radiation (50-500 Gy) significantly increased the percentages of germinated spores and their infectivity, which were recorded at 450 Gy and reached the highest value at 500 Gy. For Frankia strain CeI523, significant increase in the percentage spore germination was recorded on solid medium. However, in vicinity of Casuarina roots, both irradiated hyphae and hyphae resulted from germinated spores showed capability to re-infect its host. Alternation in host specificity of Frankia strain CeI523 was recorded by formation of nodules along the roots of Casuarina seedlings. First nodule observation was recorded at 0.75 KGy followed by 0.5 KGy. Frankia strain CcI6 was also affected by high doses in which irradiated spores showed significant high rate of spore germination and enhanced earlier observation of nodule formation. Exposure to 2 KGy showed dramatic decrease in the measured parameters for both Frankia strains

  16. Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network

    Science.gov (United States)

    Yang, Junbo; Su, Xianyu

    2007-07-01

    CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.

  17. Disulfide bond within mu-calpain active site inhibits activity and autolysis.

    Science.gov (United States)

    Lametsch, René; Lonergan, Steven; Huff-Lonergan, Elisabeth

    2008-09-01

    Oxidative processes have the ability to influence mu-calpain activity. In the present study the influence of oxidation on activity and autolysis of mu-calpain was examined. Furthermore, LC-MS/MS analysis was employed to identify and characterize protein modifications caused by oxidation. The results revealed that the activity of mu-calpain is diminished by oxidation with H2O2 in a reversible manner involving cysteine and that the rate of autolysis of mu-calpain concomitantly slowed. The LC-MS/MS analysis of the oxidized mu-calpain revealed that the amino acid residues 105-133 contained a disulfide bond between Cys(108) and Cys(115). The finding that the active site cysteine in mu-calpain is able to form a disulfide bond has, to our knowledge, not been reported before. This could be part of a unique oxidation mechanism for mu-calpain. The results also showed that the formation of the disulfide bond is limited in the control (no oxidant added), and further limited in a concentration-dependent manner when beta-mercaptoethanol is added. However, the disulfide bond is still present to some extent in all conditions indicating that the active site cysteine is potentially highly susceptible to the formation of this intramolecular disulfide bond.

  18. Discovery of the doubly charmed baryon $\\Xi_{cc}^{++}$ at LHCb

    CERN Document Server

    Spradlin, Patrick

    2017-01-01

    The LHCb collaboration announced the first observation of the doubly charmed baryon $\\Xi_{cc}^{++}$, which was discovered decaying to a $\\Lambda_{c}^{+}K^{-}\\pi^{+}\\pi^{+}$ final state. A highly significant structure is found in the $\\Lambda_{c}^{+}K^{-}\\pi^{+}\\pi^{+}$ mass spectrum in proton-proton collision data collected by the LHCb experiment at center-of-mass energies of 13 TeV and 8 TeV. The peak contains $313 \\pm 33$ decays in the 13 TeV sample and $113 \\pm 21$ decays in the 8 TeV, with local significances in excess of $12\\sigma$ and $7\\sigma$ respectively. The narrow structure has a width that is consistent with experimental resolution, and its properties are consistent with those of a weakly decaying state and inconsistent with those of a strongly decaying state. The difference between the masses of the structure, identified as $\\Xi_{cc}^{++}$, and the $\\Lambda_{c}^{+}$ baryon is $1334.94 \\pm 0.72(\\mbox{stat.}) \\pm 0.27(\\mbox{syst.})\\,\\mbox{MeV}/c^{2}$, and the mass of the $\\Xi_{cc}^{++}$ baryon ...

  19. Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement

    CERN Document Server

    Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos

    2001-01-01

    For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...

  20. Evidence of amino acid precursors: C-N bond coupling in simulated interstellar CO2/NH3 ices

    Science.gov (United States)

    Esmaili, Sasan

    2015-08-01

    Low energy secondary electrons are abundantly produced in astrophysical or planetary ices by the numerous ionizing radiation fields typically encountered in space environments and may thus play a role in the radiation processing of such ices [1]. One approach to determine their chemical effect is to irradiate nanometer thick molecular solids of simple molecular constituents, with energy selected electron beams and to monitor changes in film chemistry with the surface analytical techniques [2].Of particular interest is the formation of HCN, which is a signature of dense gases in interstellar clouds, and is ubiquitous in the ISM. Moreover, the chemistry of HCN radiolysis products such as CN- may be essential to understand of the formation of amino acids [3] and purine DNA bases. Here we present new results on the irradiation of multilayer films of CO2 and NH3 with 70 eV electrons, leading to CN bond formations. The electron stimulated desorption (ESD) yields of cations and anions are recorded as a function of electron fluence. The prompt desorption of cationic reaction/scattering products [4], is observed at low fluence (~4x1013 electrons/cm2). Detected ions include C2+, C2O2+, C2O+, CO3+, C2O3+ or CO4+ from pure CO2, and N+, NH+, NH2+, NH3+, NH4+, N2+, N2H+ from pure NH3, and NO+, NOH+ from CO2/NH3 mixtures. Most saliently, increasing signals of negative ion products desorbing during prolonged irradiation of CO2/NH3 films included C2-, C2H-, C2H2-, as well as CN-, HCN- and H2CN-. The identification of particular product ions was accomplished by using 13CO2 and 15NH3 isotopes. The chemistry induced by electrons in pure films of CO2 and NH3 and mixtures with composition ratios (3:1), (1:1), and (1:3), was also studied by X-ray photoelectron spectroscopy (XPS). Irradiation of CO2/NH3 mixed films at 22 K produces species containing the following bonds/functional groups identified by XPS: C=O, O-H, C-C, C-O, C=N and N=O. (This work has been funded by NSERC).

  1. Cross-correlation Doppler global velocimetry (CC-DGV)

    Science.gov (United States)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  2. Intra- und intermolecular hydrogen bonds. Spectroscopic, quantum chemical and molecular dynamics studies

    International Nuclear Information System (INIS)

    Simperler, A.

    1999-03-01

    Intra- and intermolecular H-bonds have been investigated with spectroscopic, quantum chemical, and molecular dynamics methods. The work is divided into the following three parts: 1. Intramolecular interactions in ortho-substituted phenols. Theoretical and experimental data that characterizes the intramolecular hydrogen bonds in 48 different o-substituted phenols are discussed. The study covers various kinds of O-H ... Y -type interactions (Y= N, O, S, F, Cl, Br, I, C=C, C=-C, and C-=N). The bond strength sequences for several series of systematically related compounds as obtained from IR spectroscopy data (i.e., v(OH) stretching frequencies) are discussed and reproduced with several theoretical methods (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-31++G(d,p), B3LYP/DZVP, MP2/6-31G(d,p), and MP2/6-31++G(d,p) levels of theory). The experimentally determined sequences are interpreted in terms of the intrinsic properties of the molecules: hydrogen bond distances, Mulliken partial charges, van der Waals radii, and electron densities of the Y-proton acceptors. 2. Competitive hydrogen bonds and conformational equilibria in 2,6-disubstituted phenols containing two different carbonyl substituents. The rotational isomers of ten unsymmetrical 2,6-disubstituted phenols as obtained by combinations of five different carbonyl substituents (COOH, COOCH 3 , CHO, COCH 3 , and CONH 2 ) have been theoretically investigated at the B3LYP/6-31G(d,p) level of theory. The relative stability of four to five conformers of each compound were determined by full geometry optimization for free molecules as well as for molecules in reaction fields with dielectric constants up to ε=37.5. A comparison with IR spectroscopic data of available compounds revealed excellent agreement with the theoretically predicted stability sequences and conformational equilibria. The stability of a conformer could be interpreted to be governed by the following two contributions: (i) an attractive hydrogen bond

  3. Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivity

    OpenAIRE

    Berke, Allison Paige

    2013-01-01

    Abstract Engineering of Olfactory Receptor OlfCc1 for Directed Ligand Sensitivityby Allison Paige Berke Joint Doctor of Philosophywith the University of California San FranciscoUniversity of California, Berkeley Professor Song Li, ChairDue to structural similarity, OlfCc1and its mammalian analogue V2R2 are hypothesized to respond to amino acid ligands in a calcium-mediated fashion. By analyzing receptor structure and making targeted mutations, the specificity and sensitivity of the receptor s...

  4. Formation of RNA phosphodiester bond by histidine-containing dipeptides

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Chotera, Agata

    2013-01-01

    A new scenario for prebiotic formation of nucleic acid oligomers is presented. Peptide catalysis is applied to achieve condensation of activated RNA monomers into short RNA chains. As catalysts, L-dipeptides containing a histidine residue, primarily Ser-His, were used. Reactions were carried out...... in self-organised environment, a water-ice eutectic phase, with low concentrations of reactants. Incubation periods up to 30 days resulted in the formation of short oligomers of RNA. During the oligomerisation, an active intermediate (dipeptide-mononucleotide) is produced, which is the reactive species...... by a transamination mechanism. Because peptides are much more likely products of spontaneous condensation than nucleotide chains, their potential as catalysts for the formation of RNA is interesting from the origin-of-life perspective. Finally, the formation of the dipeptide-mononucleotide intermediate and its...

  5. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds.

    Science.gov (United States)

    Bhowmick, Ranadeep; Rajasekaran, Srivats; Friebel, Daniel; Beasley, Cara; Jiao, Liying; Ogasawara, Hirohito; Dai, Hongjie; Clemens, Bruce; Nilsson, Anders

    2011-04-13

    Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake. © 2011 American Chemical Society

  6. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    International Nuclear Information System (INIS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-01-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  7. Instantaneous fluxless bonding of Au with Pb-Sn solder in ambient atmosphere

    International Nuclear Information System (INIS)

    Lee, T.K.; Zhang, Sam; Wong, C.C.; Tan, A.C.

    2005-01-01

    A fluxless bonding technique has been developed as a method of flip-chip bonding for microelectronic packaging. The fluxless bonding technique can be achieved instantaneously in an ambient environment between metallic stud bumps and predefined molten solder. This paper describes the mechanics of the bonding action and verifies the effectiveness of this bonding method through wetting balance tests and scanning electron microscope and energy dispersive x-ray analysis. This technique has been demonstrated by using a gold stud bump to break the tin oxide layer over molten solder. This allows for a fast, solid liquid interdiffusion between gold (Au) and the fresh molten eutectic lead-tin (Pb-Sn) solder for joint formation during solidification. This bonding method has been successfully tested with 130-μm-pitch flip-chip bond pads on a joint-in-via flex substrate architecture

  8. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  9. The inclusive decay b→cc{sup ¯}s revisited

    Energy Technology Data Exchange (ETDEWEB)

    Krinner, Fabian, E-mail: fabian-krinner@mytum.de [Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany); Lenz, Alexander [Institute for Particle Physics and Phenomenology, Durham University, Durham DH1 3LE (United Kingdom); CERN – Theory Division, PH-TH, Case C01600, CH-1211 Geneva 23 (Switzerland); Rauh, Thomas [Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching (Germany)

    2013-11-01

    The inclusive decay rate b→cc{sup ¯}s is enhanced considerably due to perturbative QCD corrections. We recalculate the dominant part of the NLO–QCD corrections, because they cannot be reconstructed from the literature and we give the full expressions in this paper. Further we include some previously neglected corrections originating from penguin diagrams. Combined with the impressive progress in the accurate determination of input parameters like charm quark mass, bottom quark mass and CKM parameters, this enables us to make a very precise prediction of the corresponding branching ratio Br(b→cc{sup ¯}s)=(23±2)%. This result is an essential ingredient for a model and even decay channel independent search for new physics effects in B decays.

  10. Transient Liquid Phase Behavior of Sn-Coated Cu Particles and Chip Bonding using Paste Containing the Particles

    Directory of Open Access Journals (Sweden)

    Hwang Jun Ho

    2017-06-01

    Full Text Available Sn-coated Cu particles were prepared as a filler material for transient liquid phase (TLP bonding. The thickness of Sn coating was controlled by controlling the number of plating cycles. The Sn-coated Cu particles best suited for TLP bonding were fabricated by Sn plating thrice, and the particles showed a pronounced endothermic peak at 232°C. The heating of the particles for just 10 s at 250°C destroyed the initial core-shell structure and encouraged the formation of Cu-Sn intermetallic compounds. Further, die bonding was also successfully performed at 250°C under a slight bonding pressure of around 0.1 MPa using a paste containing the particles. The bonding time of 30 s facilitated the bonding of Sn-coated Cu particles to the Au surface and also increased the probability of network formation between particles.

  11. Synthesis and structure of unprecedented samarium complex with bulky bis-iminopyrrolyl ligand via intramolecular C=N bond activation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suman; Anga, Srinivas; Harinath, Adimulam; Panda, Tarun K. [Department of Chemistry, Indian Institute of Technology, Hyderabad (India); Pada Nayek, Hari [Department of Applied Chemistry, Indian Institute of Technology, (ISM) Dhanbad, Jharkhand (India)

    2017-12-29

    An unprecedentate samarium complex of the molecular composition [{κ"3-{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N}{κ"3-{(Ph_2CHN=CH)(Ph_2CHNCH)C_4H_2N}Sm}{sub 2}] (2), which was isolated by the reaction of a potassium salt of 2,5-bis{N-(diphenylmethyl)-iminomethyl}pyrrolyl ligand [K(THF){sub 2}{(Ph_2CH)N=CH}{sub 2}C{sub 4}H{sub 2}N] (1) with anhydrous samarium diiodide in THF at 60 C through the in situ reduction of imine bond is presented. The homoleptic samarium complex [[κ{sup 3}-{(Ph_2CH)-N=CH}{sub 2}C{sub 4}H{sub 2}N]{sub 3}Sm] (3) can also be obtained from the reaction of compound 1 with anhydrous samarium triiodide (SmI{sub 3}) in THF at 60 C. The molecular structures of complexes 2 and 3 were established by single-crystal X-ray diffraction analysis. The molecular structure of complex 2 reveals the formation of a C-C bond in the 2,5-bis{N-(diphenylmethyl)iminomethyl}pyrrole ligand moiety (Ph{sub 2}Py{sup -}). However, complex 3 is a homoleptic samarium complex of three bis-iminopyrrolyl ligands. In complex 2, the samarium ion adopts an octahedral arrangement, whereas in complex 3, a distorted three face-centered trigonal prismatic mode of nine coordination is observed around the metal ion. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Enthalpy of formation of anisole: implications for the controversy on the O-H bond dissociation enthalpy in phenol.

    Science.gov (United States)

    Simões, Ricardo G; Agapito, Filipe; Diogo, Hermínio P; da Piedade, Manuel E Minas

    2014-11-20

    Significant discrepancies in the literature data for the enthalpy of formation of gaseous anisole, ΔfHmo(PhOCH3, g), have fueled an ongoing controversy regarding the most reliable enthalpy of formation of the phenoxy radical and of the gas phase O-H bond dissociation enthalpy, DHo(PhO-H), in phenol. In the present work ΔfHmo(PhOCH3, g) was reassessed using a combination of calorimetric determinations and high-level (W2-F12) ab initio calculations. Static-bomb combustion calorimetry led to the standard molar enthalpy of formation of liquid anisole at 298.15 K, ΔfHmo(PhOCH3, l) = −(117.1 ± 1.4) kJ·mol(-1). The corresponding enthalpy of vaporization was obtained as, ΔvapHmo(PhOCH3) = 46.41 ± 0.26 kJ·mol(-1), by Calvet-drop microcalorimetry. These results give ΔfHmo(PhOCH3, g) = −(70.7 ± 1.4) kJ·mol(-1), in excellent agreement with ΔfHmo(PhOCH3, g) = −(70.8 ± 3.2) kJ·mol(-1), obtained from the W2-F12 calculations. The ΔfHmo(PhOCH3, g) here recommended leads to ΔfHmo(PhO•, g) = 55.5 ± 2.4 kJ·mol(-)1 and DH°(PhO-H) = 368.1 ± 2.6 kJ·mol(-1).

  13. Quantum mechanical study on hydrogen bonds between 3-aminophenol and CH{sub x}Cl{sub 4-}x (x=1, 2, 3): Effect of the number of halogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Young; Kang, Hyuk [Dept. of Chemistry, Ajou University, Suwon (Korea, Republic of)

    2015-03-15

    Hydrogen bonds between 3-aminophenol and three chlorine-substituted methanes (CHCl{sub 3}, CH{sub 2}Cl{sub 2}, and CH{sub 3}Cl) were quantum mechanically studied at MP2/aug-cc-pVDZ level. Several low-energy structures with a hydrogen bond were identified for all chlorinated methanes, and the properties of their C[BOND]H stretching vibrations were investigated. When it is hydrogen-bonded to 3-aminophenol (3AP), the C[BOND]H stretching frequency of CHCl{sub 3} is blue-shifted by 18–54 cm−1, and its IR absorption intensity is 48–74 times increased, depending on the isomer. The symmetric and antisymmetric C[BOND]H stretches of CH{sub 2}Cl{sub 2} and CH{sub 3}Cl are shifted in either direction by a few cm−1 upon hydrogen-bonding to 3AP, and their IR intensity was increased by a few times. It is concluded that all chlorinated methanes can make a π-hydrogen bond to 3AP but only CHCl{sub 3}, the one with the most chlorine atoms, makes a blue-shifting hydrogen bond, or an “antihydrogen bond”.

  14. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes.

    Science.gov (United States)

    Armitt, David J; Bruce, Michael I; Gaudio, Maryka; Zaitseva, Natasha N; Skelton, Brian W; White, Allan H; Le Guennic, Boris; Halet, Jean-François; Fox, Mark A; Roberts, Rachel L; Hartl, Frantisek; Low, Paul J

    2008-12-21

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) and RuCl(dppe)Cp' [Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C[triple bond, length as m-dash]CC(6)F(5))(dppe)Cp' [Cp' = Cp (); Cp* ()], which are related to the known compound Ru(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3))(2)Cp (). Treatment of Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) with Pt(2)(mu-dppm)(2)Cl(2) in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt(2)(mu-dppm)(2)(C[triple bond, length as m-dash]CC(6)F(5))(2) (). The Pd(0)/Cu(i)-catalysed reactions between Au(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3)) and Mo( identical withCBr)(CO)(2)Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co(3)(mu(3)-CBr)(mu-dppm)(CO)(7) or IC[triple bond, length as m-dash]CFc [Fc = (eta(5)-C(5)H(4))FeCp] afford Mo( identical withCC[triple bond, length as m-dash]CC(6)F(5))(CO)(2)Tp* (), Co(3)(mu(3)-CC[triple bond, length as m-dash]CC(6)F(5))(mu-dppm)(CO)(7) () and FcC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC(6)F(5) (), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)F(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()] are prepared from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)F(4) in a manner similar to that described for the monoruthenium complexes -. The non-fluorinated complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)H(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()], prepared for comparison, are obtained from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)H(4). Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes - and -, together with DFT-based computational

  15. Quantitative assessment of Al-to-N bonding in dilute Al0.33Ga0.67As1-yNy

    International Nuclear Information System (INIS)

    Wagner, J.; Geppert, T.; Koehler, K.; Ganser, P.; Maier, M.

    2003-01-01

    A quantitative assessment of the group III-nitrogen bonding in low N-content Al 0.33 Ga 0.67 As 1-y N y with y≤0.04 has been performed, using vibrational mode Raman spectroscopy for the quantitative analysis of local bond formation in combination with energy dispersive x-ray analysis and secondary ion mass spectrometry for chemical analysis. Clear evidence is obtained for the preferential bonding of nitrogen to Al with one nitrogen atom being coordinated to, at the average, 3.4 Al neighbors. This strong preference for Al-to-N bond formation can be understood in terms of the much larger cohesive energy of the Al-N bond compared to the Ga-N chemical bond. In spite of this phase-separation-like formation of local Al-N complexes, the fundamental band gap and the E 1 /E 1 +Δ 1 band gaps show a continuous low-energy and high-energy shift, respectively, upon the addition of nitrogen as already known from dilute GaAsN

  16. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura; Poater, Albert; Cazin, Catherine S J; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  17. Incorporating User-oriented Security into CC

    DEFF Research Database (Denmark)

    Sharp, Robin

    2009-01-01

    Current versions of the Common Criteria concentrate very heavily on technical security issues which are relevant for the design of secure systems. This approach largely ignores a number of questions which can have great significance for whether or not the system can be operated securely in an env...... not currently dealt with in CC. Tentative proposals for extensions to the current classes of SFRs will be made on the basis of the analysis of the case....

  18. Operational Aspects of C/C++ Concurrency

    OpenAIRE

    Podkopaev, Anton; Sergey, Ilya; Nanevski, Aleksandar

    2016-01-01

    In this work, we present a family of operational semantics that gradually approximates the realistic program behaviors in the C/C++11 memory model. Each semantics in our framework is built by elaborating and combining two simple ingredients: viewfronts and operation buffers. Viewfronts allow us to express the spatial aspect of thread interaction, i.e., which values a thread can read, while operation buffers enable manipulation with the temporal execution aspect, i.e., determining the order in...

  19. Development of HIP bonding procedure and mechanical properties of HIP bonded joints for reduced activation ferritic steel F-82H

    International Nuclear Information System (INIS)

    Oda, Masahiro; Kurasawa, Toshimasa; Kuroda, Toshimasa; Hatano, Toshihisa; Takatsu, Hideyuki

    1997-03-01

    Structural materials of blanket components in fusion DEMO reactors will receive a neutron wall load more than 3-5MW/m 2 as well as exposed by surface heat flux more than 0.5MW/m 2 . A reduced activation ferritic steel F-82H has been developed by JAERI in collaboration with NKK from viewpoints of resistance for high temperature and neutron loads and lower radioactivity. This study intends to obtain basic performance of F-82H to establish the fabrication procedure of the first wall and blanket box by using Hot Isostatic Pressing (HIP) bonding. Before HIP bonding tests, effects of heat treatment temperature and surface roughness on mechanical properties of joints were investigated in the heat treatment tests and diffusion bonding tests, respectively. From these results, the optimum HIP bonding conditions and the post heat treatment were selected. Using these conditions, the HIP bonding tests were carried out to evaluate HIP bondability and to obtain mechanical properties of the joints. Sufficient HIP bonding performance was obtained under the temperature of 1040degC, the compressive stress of 150MPa, the holding time of 2h, and the surface roughness ∼μ m. Mechanical properties of HIP bonded joints with these conditions were similar to those of as-received base metal. An oxide formation on the surface to be bonded would need to be avoided for sufficient bonding. The bonding ratio, Charpy impact value and fatigue performance of the joints strongly depended on the HIP conditions, especially temperature, while micro-structure, Vickers hardness and tensile properties had little dependence on the HIP temperature. The surface roughness strongly affected the bonding ratio and would be required to be in the level of a few μ m. In the HIP bonding test of the welded material, the once-melted surface could be jointed by the HIP bonding under the above-mentioned procedure. (J.P.N.)

  20. A DAQ system for CAMAC controller CC/NET using DAQ-Middleware

    International Nuclear Information System (INIS)

    Inoue, E; Yasu, Y; Nakayoshi, K; Sendai, H

    2010-01-01

    DAQ-Middleware is a framework for the DAQ system which is based on RT-Middleware (Robot Technology Middleware) and dedicated to making DAQ systems. DAQ-Middleware has come into use as a one of the DAQ system framework for the next generation Particle Physics experiment at KEK in recent years. DAQ-Middleware comprises DAQ-Components with all necessary basic functions of the DAQ and is easily extensible. So, using DAQ-Middleware, you are able to construct easily your own DAQ system by combining these components. As an example, we have developed a DAQ system for a CC/NET [1] using DAQ-Middleware by the addition of GUI part and CAMAC readout part. The CC/NET, the CAMAC controller was developed to accomplish high speed read-out of CAMAC data. The basic design concept of CC/NET is to realize data taking through networks. So, it is consistent with the DAQ-Middleware concept. We show how it is convenient to use DAQ-Middleware.

  1. Molecular and functional roles of 6C CC chemokine 19 in defense system of striped murrel Channa striatus.

    Science.gov (United States)

    Arockiaraj, Jesu; Bhatt, Prasanth; Harikrishnan, Ramasamy; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah

    2015-08-01

    In this study, we have reported the molecular information of chemokine-19 (Chem19) from striped murrel Channa striatus (Cs). CsCC-Chem19 cDNA sequence was 555 base pair (bp) in length which is 68bp 5' untranslated region (UTR), 339bp translated region and 149bp 3' UTR. The translated region is encoded for a polypeptide of 112 amino acids. CsCC-Chem19 peptide contains a signal sequence between 1 and 26 and an interleukin (IL) 8 like domain between 24 and 89. The multiple sequence alignment showed a 'DCCL' motif, an indispensable motif present in all CC chemokines which was conserved throughout the evolution. Phylogenetic tree showed that CsCC-Chem19 formed a cluster with chemokine 19 from fishes. Secondary structure of CsCC-Chem19 revealed that the peptide contains maximum amount of coils (61.6%) compared to α-helices (25.9%%) and β-sheet (12.5%). Further, 3D analysis indicated that the cysteine residues at 33, 34, 59 and 75 making the disulfide bridges as 33 = 59 and 34 = 75. Significantly (P coding region of CsCC-Chem19, recombinant CsCC-Chem19 protein was produced. The recombinant CsCC-Chem19 protein induced the cellular proliferation and respiratory burst activity of C. striatus peripheral blood leukocytes (PBL) in a concentration dependent manner. Moreover, the chemotactic activity showed that the recombinant CsCC-Chem19 significantly (P < 0.05) enhanced the movement of PBL of C. striatus. Conclusively, CsCC-Chem19 is a 6C CC chemokine having an ability to perform both inflammatory and homeostatic functions. However, further research is necessary to understand the potential of 6C CC chemokine 19 of C. striatus, particularly their regulatory ability on different cellular components in the defense system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Advanced multivariate data analysis to determine the root cause of trisulfide bond formation in a novel antibody-peptide fusion.

    Science.gov (United States)

    Goldrick, Stephen; Holmes, William; Bond, Nicholas J; Lewis, Gareth; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S

    2017-10-01

    Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody-peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high-throughput (HT) micro-bioreactor system (Ambr TM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on-line and off-line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale-up. Biotechnol. Bioeng. 2017;114: 2222-2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  3. Influência da adição de carga inorgânica aos sistemas adesivos dentinários na microinfiltração marginal = Influence of inorganic filler addition to dentin bonding systemson marginal microleakage

    Directory of Open Access Journals (Sweden)

    Yoshida, Kellyn Roberta Ayumi

    2005-01-01

    Full Text Available O objetivo deste estudo foi avaliar os efeitos da adição de carga inorgânica aos adesivos dentinários sobre a microinfiltração marginal. Para tal, oitenta incisivos bovinos receberam preparos classe V na junção amelo-cementária e foram divididos em oito grupos, cada qual recebendo versões com e sem carga de diferentes sistemas adesivos, segundo as recomendações dos fabricantes. Os seguintes Grupos foram avaliados: OS – One Step (Sem Carga – SC, OSP – One Step Plus (Com Carga – CC, PB – Prime & Bond 2. 1 (SC, PBNT – Prime & Bond NT (CC, ST – Stae (SC, STM – Stae + 10% de partículas SiO2 com tamanho de 0,01 µm (CC, SB – Single Bond (SC, SBC – Single Bond 10% de partículas SiO2 com tamanho de 0,01 µm (CC. As cavidades foram restauradas com dois incrementos de Z250. Os dentes foram imersos em água destilada a 37ºC por 24 horas e submetidos a 500 ciclos térmicos (5 e 55ºC. A microinfiltração foi avaliada quantitativamente pelo método do nitrato de prata seguido pela diafanização. Os dados foram submetidos à ANOVA paramétrica a um fator e ao teste de Tukey (a = 5%, obtendo-se um valor de p = 0,00. As médias (± desvio padrão observadas para cada Grupo foram: SB: 1,07 (± 0,20a; OS: 1,25 (± 0,49ab; OSP: 1,64 (± 0,59ab; SBC: 1,69 (± 1,07ab; PBNT: 2,21 (± 0,98ab; PB: 2,60 (± 1,45bc; ST: 3,70 (± 1,29c; STC: 3,86 (± 1,11c. Os Grupos acompanhados das mesmas letras não apresentam diferenças significantes. Podemos concluir que a adição de partículas de carga não influenciou de forma significativa a microinfiltração marginal. Foram constatadas diferenças significativas entre os sistemas adesivos de diferentes marcas

  4. Chemical Bond Energies of 3d Transition Metals Studied by Density Functional Theory

    DEFF Research Database (Denmark)

    Moltved, Klaus A.d; Kepp, Kasper P.

    2018-01-01

    Despite their vast importance to inorganic chemistry, materials science and catalysis, the accuracy of modelling the formation or cleavage of metal-ligand (M-L) bonds depends greatly on the chosen functional and the type of bond in a way that is not systematically understood. In order to approach...

  5. Determination of the conformation of 2-hydroxy- and 2-aminobenzoic acid dimers using 13C NMR and density functional theory/natural bond order analysis: the central importance of the carboxylic acid carbon.

    Science.gov (United States)

    Burnette, Ronald R; Weinhold, Frank

    2006-07-20

    The 13C chemical shift for the carboxylic acid carbon provides a powerful diagnostic probe to determine the preferred isomeric dimer structures of benzoic acid derivatives undergoing intra- and intermolecular H-bonding in the gas, solution and crystalline phases. We have employed hybrid density functional calculations and natural bond orbital analysis to elucidate the electronic origins of the observed 13C shieldings and their relationship to isomeric stability. We find that delocalizing interactions from the carbonyl oxygen lone pairs (nO) into vicinal carbon-oxygen and carbon-carbon antibonds (sigmaCO*,sigmaCC*) make critical contributions to the 13C shieldings, and these nO --> sigmaCO*, nO --> sigmaCC* interactions are in turn sensitive to the intramolecular interactions that dictate dimer structure and stability. The carboxyl carbon atom can thus serve as a useful detector of subtle structural and conformational features in this pharmacologically important class of carboxylic acid interactions.

  6. A Comparison of the Behavior of Functional/Basis Set Combinations for Hydrogen-Bonding in the Water Dimer with Emphasis on Basis Set Superposition Error

    OpenAIRE

    Plumley, Joshua A.; Dannenberg, J. J.

    2011-01-01

    We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimenta...

  7. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    International Nuclear Information System (INIS)

    Inaba, Kenji

    2008-01-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Complexes 1 and 2 react with dioxygen at ambient condition to form the corresponding hydroxo- or oxo-bridged dinuclear cobalt(III) or iron(III) complexes. On the other hand, the iron(III)-catecholate complex (3) activate dioxygen to undergo oxidative C-C bond cleavage of catechol. The selective formation of extradiol ...

  9. Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97.

    Directory of Open Access Journals (Sweden)

    Kathleen E Budd

    Full Text Available Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126 was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52% demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST. In total, 18 different sequence types (STs were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup.

  10. Theoretical characterizations of novel C2H5O+ reactions

    Science.gov (United States)

    Hudson, Charles E.; McAdoo, David J.

    2004-03-01

    Assorted reactions of C2H5O+ isomers are characterized by theory, including tracing their courses by means of intrinsic reaction coordinate computations. We establish that CH3CH=OH+ eliminates methane by transferring H from oxygen to a methyl hydrogen and then to the CC bond to produce CHO++CH4. This adds to the limited knowledge of the involvement of hypervalent structures in the reactions of cations in the gas phase. Second, we characterized the course of CH3CH=OH+-->H3O++HC[triple bond; length as m-dash]CH. In this dissociation, H first migrates from the methyl to the oxygen to give O-protonated vinyl alcohol, a stable intermediate. Then the H2O swings outward to over the middle of the CC bond while one of the two hydrogens on the non-O-bearing carbon revolves to between the oxygen and the two carbons, leading to formation of a [H3O+ HC[triple bond; length as m-dash]CH] complex. This complex contains sufficient energy to dissociate its partners because a high barrier is crossed in its formation. Third, we found that methane elimination from CH3O+=CH2 involves stretching of the CH3---O bond and then rotation of the methyl so that a methyl hydrogen is pointed directly toward the oxygen. This reaction is completed by further rotation of the methyl to abstract a methylene hydrogen to the opposite side of the methyl from that initially bonded to oxygen. This clearly establishes that this dissociation takes place through an ion-neutral complex. Each of the reaction coordinates for the three preceding reactions traverses a novel bonding stage involving H, evidence that such are not unusual in gas phase ion chemistry. Finally, we showed that in the rearrangement CH3O+=CH2-->CH2=O+CH3, before Ht is transferred CH2 rotates around the C=C bond from being in the skeletal plane to being perpendicular to it, and Ht remains in the skeletal plane throughout its transfer. This pathway appears to balance avoiding an orbital symmetry-forbidden suprafacial transition state with

  11. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  12. Correlation between GDF-15 gene polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction.

    Science.gov (United States)

    Chen, Xiao-Ping; Shang, Xiao-Sen; Wang, Yan-Bin; Fu, Zhi-Hua; Gao, Yu; Feng, Tao

    2017-12-01

    To explore the correlation between growth differentiation factor 15 (GDF-15) -3148C/G polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction (STEMI) in Han population of Taiyuan area. The present study included 92 STEMI patients and 56 normal controls based on coronary angiography; STEMI group was divided into collateral group and non-collateral group according to Rentrop's grading method. Polymerase chain reaction (PCR) and DNA sequencing methods were used to detect and analyze the GDF-15 -3148C/G polymorphism in all participants. There was significant difference in GDF-15 -3148C/G CC and GC distribution between STEMI group and control group (p=0.009); the allele frequencies between these two groups were also significant different (p=0.016); and the risk genotype for STEMI was CC with increased OR=2.660. For STEMI group, GDF-15 -3148C/G CC and GC distribution was also significantly different between patients with and without collateral (p=0.048), and CC genotype significantly promote the formation of collateral circulation. However, there were no significant differences in allele frequencies between these two subgroups of STEMI. There was correlation between GDF-15-3148C/G polymorphism and the formation of collateral circulation in patients with acute STEMI.

  13. The X40×10 Halogen Bonding Benchmark Revisited: Surprising Importance of (n-1)d Subvalence Correlation.

    Science.gov (United States)

    Kesharwani, Manoj K; Manna, Debashree; Sylvetsky, Nitai; Martin, Jan M L

    2018-03-01

    We have re-evaluated the X40×10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)-MP2 "high-level corrections" (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies and turns out to be more important for noncovalent interactions than is generally realized; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40×10 data and the present revision.

  14. MRSA CC398 in the pig production chain

    NARCIS (Netherlands)

    Broens, E.M.; Graat, E.A.M.; Wolf, van der P.J.; Giessen, van de A.W.; Duijkeren, van E.; Wagenaar, J.A.; Nes, van A.; Mevius, D.J.; Jong, de M.C.M.

    2011-01-01

    In 2005, a distinct clone of methicillin resistant Staphylococcus aureus (MRSA CC398) was found in pigs and people in contact with pigs. The structure of the pig production chain in high technology pig husbandry enables pathogens to spread during animal trading, with an increasing prevalence in

  15. Morphology, topography, and hardness of diffusion bonded sialon to AISI 420 at different bonding time

    Science.gov (United States)

    Ibrahim, Nor Nurulhuda Md.; Hussain, Patthi; Awang, Mokhtar

    2015-07-01

    Sialon and AISI 420 martensitic stainless steel were diffusion bonded in order to study the effect of bonding time on reaction layer's growth. Joining of these materials was conducted at 1200°C under a uniaxial pressure of 17 MPa in a vacuum ranging from 5.0 to 8.0×10-6 Torr with bonding time varied for 0.5, 2, and 3 h. Thicker reaction layer was formed in longer bonded sample since the elements from sialon could diffuse further into the steel. Sialon retained its microstructure but it was affected at the initial contact with the steel to form the new interface layer. Diffusion layer grew toward the steel and it was segregated with the parent steel as a result of the difference in properties between these regions. The segregation formed a stream-like structure and its depth decreased when the bonding time was increased. The microstructure of the steel transformed into large grain size with precipitates. Prolonging the bonding time produced more precipitates in the steel and reduced the steel thickness as well. Interdiffusions of elements occurred between the joined materials and the concentrations were decreasing toward the steel and vice versa. Silicon easily diffused into the steel because it possessed lower ionization potential compared to nitrogen. Formation of silicide and other compounds such as carbides were detected in the interface layer and steel grain boundary, respectively. These compounds were harmful due to silicide brittleness and precipitation of carbides in the grain boundary might cause intergranular corrosion cracking. Sialon retained its hardness but it dropped very low at the interface layer. The absence of crack at the joint in all samples could be contributed from the ductility characteristic of the reaction layer which compensated the residual stress that was formed upon the cooling process.

  16. Hydrogen-bonding behavior of various conformations of the HNO3…(CH3OH)2 ternary system.

    Science.gov (United States)

    Özsoy, Hasan; Uras-Aytemiz, Nevin; Balcı, F Mine

    2017-12-21

    Nine minima were found on the intermolecular potential energy surface for the ternary system HNO 3 (CH 3 OH) 2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO 3 …(CH 3 OH) 2 . The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO 3 …(CH 3 OH) 2 , meaning that it cannot be neglected in simulations in which the pair-additive potential is applied. Graphical abstract The H-bonding behavior of various conformations of the HNO 3 (CH 3 OH) 2 trimer was investigated.

  17. Association of Children’s Urinary CC16 Levels with Arsenic Concentrations in Multiple Environmental Media

    Directory of Open Access Journals (Sweden)

    Paloma I. Beamer

    2016-05-01

    Full Text Available Arsenic exposure has been associated with decreased club cell secretory protein (CC16 levels in adults. Further, both arsenic exposure and decreased levels of CC16 in childhood have been associated with decreased adult lung function. Our objective was to determine if urinary CC16 levels in children are associated with arsenic concentrations in environmental media collected from their homes. Yard soil, house dust, and tap water were taken from 34 homes. Urine and toenail samples were collected from 68 children. All concentrations were natural log-transformed prior to data analysis. There were associations between urinary CC16 and arsenic concentration in soil (b = −0.43, p = 0.001, R2 = 0.08, water (b = −0.22, p = 0.07, R2 = 0.03, house dust (b = −0.37, p = 0.07, R2 = 0.04, and dust loading (b = −0.21, p = 0.04, R2 = 0.04. In multiple analyses, only the concentration of arsenic in soil was associated with urinary CC16 levels (b = −0.42, p = 0.02, R2 = 0.14 (full model after accounting for other factors. The association between urinary CC16 and soil arsenic may suggest that localized arsenic exposure in the lungs could damage the airway epithelium and predispose children for diminished lung function. Future work to assess this possible mechanism should examine potential associations between airborne arsenic exposures, CC16 levels, lung function, and other possible confounders in children in arsenic-impacted communities.

  18. Thermal fatigue behavior of C/C composites modified by SiC-MoSi2-CrSi2 coating

    International Nuclear Information System (INIS)

    Chu Yanhui; Fu Qiangang; Li Hejun; Li Kezhi

    2011-01-01

    Highlights: → The low-density C/C composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation. → The thermal fatigue behavior of the modified C/C composites was studied after undergoing thermal cycling for 20 times under the different environments. → The decrease of the flexural strength of the modified C/C composites during thermal cycle in air was primarily attributed to the partial oxidation of the modified C/C samples. - Abstract: Carbon/carbon (C/C) composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation, and their thermal fatigue behavior under thermal cycling in Ar and air environments was investigated. The modified C/C composites were characterized by scanning electron microscopy and X-ray diffraction. Results of tests show that, after 20-time thermal cycles between 1773 K and room temperature in Ar environment, the flexural strength of modified C/C samples decreased lightly and the percentage of remaining strength was 94.92%. While, after thermal cycling between 1773 K and room temperature in air for 20 times, the weight loss of modified C/C samples was 5.1%, and the flexural strength of the modified C/C samples reduced obviously and the percentage of remaining strength was only 75.22%. The fracture mode of modified C/C samples changed from a brittle behavior to a pseudo-plastic one as the service environment transformed from Ar to air. The decrease of the flexural strength during thermal cycle in air was primarily attributed to the partial oxidation of modified C/C samples.

  19. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions.

    Science.gov (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2018-03-14

    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  20. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C–H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants

    KAUST Repository

    Fabry, David C.; Rueping, Magnus

    2016-01-01

    ConspectusThe development of efficient catalytic systems for direct aromatic C-H bond functionalization is a long-desired goal of chemists, because these protocols provide environmental friendly and waste-reducing alternatives to classical methodologies for C-C and C-heteroatom bond formation. A key challenge for these transformations is the reoxidation of the in situ generated metal hydride or low-valent metal complexes of the primary catalytic bond forming cycle. To complete the catalytic cycle and to regenerate the C-H activation catalyst, (super)stoichiometric amounts of Cu(II) or Ag(I) salts have often been applied. Recently,

  1. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C–H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants

    KAUST Repository

    Fabry, David C.

    2016-08-24

    ConspectusThe development of efficient catalytic systems for direct aromatic C-H bond functionalization is a long-desired goal of chemists, because these protocols provide environmental friendly and waste-reducing alternatives to classical methodologies for C-C and C-heteroatom bond formation. A key challenge for these transformations is the reoxidation of the in situ generated metal hydride or low-valent metal complexes of the primary catalytic bond forming cycle. To complete the catalytic cycle and to regenerate the C-H activation catalyst, (super)stoichiometric amounts of Cu(II) or Ag(I) salts have often been applied. Recently,

  2. Straightforward Entry toward Highly Substituted 2,3-Dihydrobenz[ b]oxepines by Ring Expansion of Benzopyryliums with Donor-Acceptor Diazo Compounds.

    Science.gov (United States)

    Courant, Thibaut; Pasco, Morgane; Lecourt, Thomas

    2018-05-04

    Ylide-type reactivity of diazo compounds is exploited in a new way to prepare benzo[ b]oxepines thanks to the formation of three chemical bonds and two contiguous and highly substituted stereocenters in a single pot. This cationic reaction cascade first involves addition of a donor-acceptor-substituted diazo compound to a benzopyrylium. Selective 1,2 migration of the endocyclic C-C bond then results in a ring-expansion and generates a second oxocarbenium that is trapped by a nucleophile added sequentially.

  3. Energy materials coordinating committee (EMaCC). Annual technical report, fiscal year 2002

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-08-08

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. Topical subcommittees of the EMaCC are responsible for conducting seminars and otherwise facilitating information flow between DOE organizational units in materials areas of particular importance to the Department. The EMaCC Terms of Reference were recently modified and developed into a Charter that was approved on June 5, 2003. As a result of this reorganization, the existing subcommittees were disbanded and new subcommittees are being formed. The EMaCC Charter and the memorandum approving it are presented in the Appendix of this report. The FY 2002 budget summary for DOE Materials Activities is presented on page 8. The distribution of these funds between DOE laboratories, private industry, academia and other organizations is presented in tabular form on page 10. Following the budget summary is a set of detailed program descriptions for the FY 2002 DOE Materials activities. These descriptions are presented according to the organizational structure of the Department. A mission statement, a budget summary listing the project titles and FY 2002 funding, and detailed project summaries are presented for each Assistant Secretary office, the Office of Science, and the National Nuclear Security Administration. The project summaries also provide DOE, laboratory, academic and industrial contacts for each project, as appropriate.

  4. Energy Materials Coordinating Committee (EMaCC): Annual technical report, fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department`s materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations. This report summarizes EMaCC activities for FY 1993 and describes the materials research programs of various offices and divisions within the Department. The program descriptions consist of a funding summary for each Assistant Secretary office and the Office of Energy Research, and detailed project summaries with project goals and accomplishments. The FY 1993 budget summary table for DOE Materials Activities in each of the programs is presented.

  5. Oxidative electrochemical aryl C-C coupling of spiropyrans

    NARCIS (Netherlands)

    Ivashenko, Oleksii; van Herpt, Jochem T.; Rudolf, Petra; Feringa, Ben L.; Browne, Wesley R.

    2013-01-01

    The isolation and definitive assignment of the species formed upon electrochemical oxidation of nitro-spiropyran (SP) is reported. The oxidative aryl C-C coupling at the indoline moiety of the SP radical cation to form covalent dimers of the ring-closed SP form is demonstrated. The coupling is

  6. Oxytocin promotes social bonding in dogs.

    Science.gov (United States)

    Romero, Teresa; Nagasawa, Miho; Mogi, Kazutaka; Hasegawa, Toshikazu; Kikusui, Takefumi

    2014-06-24

    Recent evidence suggests that enduring social bonds have fitness benefits. However, very little is known about the neural circuitry and neurochemistry underlying the formation and maintenance of stable social bonds outside reproductive contexts. Oxytocin (OT), a neuropeptide synthetized by the hypothalamus in mammals, regulates many complex forms of social behavior and cognition in both human and nonhuman animals. Animal research, however, has concentrated on monogamous mammals, and it remains unknown whether OT also modulates social bonds in nonreproductive contexts. In this study we provide behavioral evidence that exogenous OT promotes positive social behaviors in the domestic dog toward not only conspecifics but also human partners. Specifically, when sprayed with OT, dogs showed higher social orientation and affiliation toward their owners and higher affiliation and approach behaviors toward dog partners than when sprayed with placebo. Additionally, the exchange of socio-positive behaviors with dog partners triggered the release of endogenous OT, highlighting the involvement of OT in the development of social relationships in the domestic dog. These data provide new insight into the mechanisms that facilitate the maintenance of close social bonds beyond immediate reproductive interest or genetic ties and complement a growing body of evidence that identifies OT as one of the neurochemical foundations of sociality in mammalian species.

  7. Z-H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H2 Evolution.

    Science.gov (United States)

    Belkova, Natalia V; Filippov, Oleg A; Shubina, Elena S

    2018-02-01

    The ability of neutral transition-metal hydrides to serve as a source of hydride ion H - or proton H + is well appreciated. The hydride ligands possessing a partly negative charge are proton accepting sites, forming a dihydrogen bond, M-H δ- ⋅⋅⋅ δ+ HX (M=transition metal or metalloid). On the other hand, some metal hydrides are able to serve as a proton source and give hydrogen bond of M-H δ+ ⋅⋅⋅X type (X=organic base). In this paper we analyse recent works on transition-metal and boron hydrides showing i) how formation of an intermolecular complex between the reactants changes the Z-H (M-H and X-H) bond polarity and ii) what is the implication of such activation in the mechanisms of hydrides reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    International Nuclear Information System (INIS)

    Lee, Sangho; Chung, Yong-Chae

    2013-01-01

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metal–graphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: • Nitrogen defects changed the bonding mechanism between metal and graphene. • Bonding character and binding results were investigated using DFT calculations. • Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. • Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene

  9. Neutron diffraction of α, β and γ cyclodextrins: hydrogen bonding patterns

    International Nuclear Information System (INIS)

    Hingerty, B.E.; Klar, B.; Hardgrove, G.; Betzel, C.; Saenger, W.

    1983-01-01

    Cyclodextrins (CD's) are torus-shaped molecules composed of six (α), seven (β) or eight (γ) (1 → 4) linked glucoses. α-CD has been shown to have two different structures with well-defined hydrogen bonds, one tense and the other relaxed. An induced-fit-like mechanism for α-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for α-CD due to the energetically favored cooperative effect. β-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H H-O representing an equilibrium between two states; O-H O reversible H-O. γ-CD with a disordered water structure similar to β-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state

  10. Emergence of a novel subpopulation of CC398 Staphylococcus aureus infecting animals is a serious hazard for humans

    Directory of Open Access Journals (Sweden)

    Nathalie Laure Van Der Mee-Marquet

    2014-12-01

    Full Text Available Until recently, Staphylococcus aureus from clonal complex (CC398 were mostly described as colonizing asymptomatic raised pigs and pig-farmers. Currently, the epidemiology of the CC398 lineage is becoming more complex. CC398 human-adapted isolates are increasingly being identified in bloodstream infections in humans living in animal-free environments. In addition, CC398 isolates are increasingly responsible for invasive infections in various animals. CC398 isolates that colonize asymptomatic pigs and the isolates that infect humans living in animal-free environments (human-adapted isolates both lack several clinically important S. aureus–associated virulence factors but differ on the basis of their prophage content. Recent findings have provided insight into the influence of a φMR11-like helper prophage on the ability of CC398 isolates to infect humans. To assess the recent spread of the CC398 lineage to various animal species and to investigate the links between the φMR11-like prophage and the emergence of CC398 isolates infecting animals, we studied 277 isolates causing infections in unrelated animals. The prevalence of CC398 isolates increased significantly between 2007 and 2013 (p<0.001; 31.8 % of the animal isolates harbored the φMR11-like prophage. High-density DNA microarray experiments with 37 representative infected-animal isolates positive for φMR11-like DNA established that most infected-animal isolates carried many genetic elements related to antimicrobial resistance and virulence genes, and a φ3 prophage encoding immune-modulating proteins and associated with animal-to-human jumps. Our findings suggest recent clonal expansion and dissemination of a new subpopulation of CC398 isolates, responsible for invasive infections in various animals, with a considerable potential to colonize and infect humans, probably greater than that of human-adapted CC398 isolates, justifying active surveillance.

  11. A novel disulfide bond in the SH2 Domain of the C-terminal Src kinase controls catalytic activity.

    Science.gov (United States)

    Mills, Jamie E; Whitford, Paul C; Shaffer, Jennifer; Onuchic, Jose N; Adams, Joseph A; Jennings, Patricia A

    2007-02-02

    The SH2 domain of the C-terminal Src kinase [Csk] contains a unique disulfide bond that is not present in other known SH2 domains. To investigate whether this unusual disulfide bond serves a novel function, the effects of disulfide bond formation on catalytic activity of the full-length protein and on the structure of the SH2 domain were investigated. The kinase activity of full-length Csk decreases by an order of magnitude upon formation of the disulfide bond in the distal SH2 domain. NMR spectra of the fully oxidized and fully reduced SH2 domains exhibit similar chemical shift patterns and are indicative of similar, well-defined tertiary structures. The solvent-accessible disulfide bond in the isolated SH2 domain is highly stable and far from the small lobe of the kinase domain. However, reduction of this bond results in chemical shift changes of resonances that map to a cluster of residues that extend from the disulfide bond across the molecule to a surface that is in direct contact with the small lobe of the kinase domain in the intact molecule. Normal mode analyses and molecular dynamics calculations suggest that disulfide bond formation has large effects on residues within the kinase domain, most notably within the active-site cleft. Overall, the data indicate that reversible cross-linking of two cysteine residues in the SH2 domain greatly impacts catalytic function and interdomain communication in Csk.

  12. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  13. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  14. Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis.

    Science.gov (United States)

    Twilton, Jack; Christensen, Melodie; DiRocco, Daniel A; Ruck, Rebecca T; Davies, Ian W; MacMillan, David W C

    2018-05-04

    The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C-H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C-H bonds while simultaneously suppressing C-O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C-H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Extended model of bond charges and its application in calculation of optical properties of crystals with different types of chemical bonds

    International Nuclear Information System (INIS)

    Tsirelson, V.G.; Korolkova, O.V.; Rez, I.S.; Ozerov, R.P.

    1984-01-01

    A method for calculating the optical characteristics of crystals with different types of chemical bonds within the framework of the dielectric theory of chemical bond put forward by Philips and Van Vechten is suggested. The calculating scheme which does not contain adjustable parameters is based on the bond charge model designed by Levine, which is generalized for the case of multiple bonds and modified involving the density functional method data on the spatial distribution of electrons in atoms. The structural elements of the method are: the screened Coulomb potentials and radii of the atomic core, bond lengths and charges, and the distances from the nuclei to the centers of gravity of the latter. The calculated characteristics of the crystals (dielectric permittivity, quadratic and cubic non-linear susceptibilities, electrooptical constants) are in good accordance with experimental findings. An attempt is made to predict the non-linear optical characteristics according to precision X-ray diffraction data on the electron structure of its only representative, lithium formate deuterate LiHCO 2 xD 2 O, whereby a fairly good fit with the experimental data is achieved. (author)

  16. Study in electron microscopy the formation of the hybrid layer using adhesive systems One Coat and Single Bond Universal, at the Facultad de Medicina of the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Parra Barillas, Adriana; Montoya, Michael

    2013-01-01

    The formation of the hybrid layer is observed in dental pieces in vitro, using systems of conventional adhesives (Single Bond 2 of 3M and One Coat of Coltene), with different times of acid etching, through the use of atomic force microscopy (AFM). The images of the hybrid layer obtained from samples prepared with adhesive systems are analyzed by AFM. Samples collected have been of dental pieces (molars and premolars) recently extracted and later placed in water. The pieces used have provided more surface to be observed under the microscope, greater accessibility to the be cut for its study, and to the great pieces have facilitated their placement on the Isomet low speed saw. The differences are evaluated between hybrid layers according the adhesive system used and the mode of application of the images obtained in the atomic force microscope. The adhesive system that has allowed the formation of a hybrid layer more appropriate between the adhesive system One Coat and the adhesive system Single Bond Universal is determined. The time of acid etching as variable of procedure is determined and has interfered with the formation of a hybrid layer more stable. The images evaluated that were provided by the atomic force microscope and compared with the images of electron microscopy of other studies, have determined that the AFM is without providing detailed information, as well as the appropriate images to evaluate the hybrid layer of the adhesive systems Single Bond 2 and One Coat of Coltene, or the different times of acid etching. Therefore, for this type of study, the image of choice must be of an electron microscope [es

  17. The Au/Si eutectic bonding compatibility with KOH etching for 3D devices fabrication

    Science.gov (United States)

    Liang, Hengmao; Liu, Mifeng; Liu, Song; Xu, Dehui; Xiong, Bin

    2018-01-01

    KOH etching and Au/Si eutectic bonding are cost-efficient technologies for 3D device fabrication. Aimed at investigating the process compatibility of KOH etching and Au/Si bonding, KOH etching tests have been carried out for Au/bulk Si and Au/amorphous Si (a-Si) bonding wafers in this paper. For the Au/bulk Si bonding wafer, a serious underetch phenomenon occurring on the damage layer in KOH etching definitely results in packaging failure. In the microstructure analysis, it is found that the formation of the damage layer between the bonded layer and bulk Si is attributed to the destruction of crystal Si lattices in Au/bulk Si eutectic reaction. Considering the occurrence of underetch for Au/Si bonding must meet two requirements: the superfluous Si and the defective layer near the bonded layer, the Au/a-Si bonding by regulating the a-Si/Au thickness ratio is presented in this study. Only when the a-Si/Au thickness ratio is relatively low are there not underetch phenomena, of which the reason is the full reaction of the a-Si layer avoiding the formation of the damage layer for easy underetch. Obviously, the Au/a-Si bonding via choosing a moderate a-Si/Au thickness ratio (⩽1.5:1 is suggested) could be reliably compatible with KOH etching, which provides an available and low-cost approach for 3D device fabrication. More importantly, the theory of the damage layer proposed in this study can be naturally applied to relevant analyses on the eutectic reaction of other metals and single crystal materials.

  18. Concentration-dependent multiple chirality transition in halogen-bond-driven 2D self-assembly process

    Science.gov (United States)

    Miao, Xinrui; Li, Jinxing; Zha, Bao; Miao, Kai; Dong, Meiqiu; Wu, Juntian; Deng, Wenli

    2018-03-01

    The concentration-dependent self-assembly of iodine substituted thienophenanthrene derivative (5,10-DITD) is investigated at the 1-octanic acid/graphite interface using scanning tunneling microscopy. Three kinds of chiral arrangement and transition of 2D molecular assembly mainly driven by halogen bonding is clearly revealed. At high concentration the molecules self-assembled into a honeycomb-like chiral network. Except for the interchain van der Waals forces, this pattern is stabilized by intermolecular continuous Cdbnd O⋯I⋯S halogen bonds in each zigzag line. At moderate concentration, a chiral kite-like nanoarchitecture are observed, in which the Cdbnd O⋯I⋯S and I⋯Odbnd C halogen bonds, along with the molecule-solvent Cdbnd O⋯I⋯H halogen bonds are the dominated forces to determine the structural formation. At low concentration, the molecules form a chiral cyclic network resulting from the solvent coadsorption mainly by molecule-molecule Cdbnd O⋯I⋯S halogen bonds and molecule-solvent Cdbnd O⋯I⋯H halogen bonds. The density of molecular packing becomes lower with the decreasing of the solution concentration. The solution-concentration dependent self-assembly of thienophenanthrene derivative with iodine and ester chain moieties reveals that the type of intermolecular halogen bond and the number of the co-adsorbing 1-octanic acids by molecule-solvent Cdbnd O⋯I⋯H halogen bonds determine the formation and transformation of chirality. This research emphasizes the role of different types of halogen (I) bonds in the controllable supramolecular structures and provides an approach for the fabrication of chirality.

  19. Comparison of hydrogen bonding in 1-octanol and 2-octanol as probed by spectroscopic techniques.

    Science.gov (United States)

    Palombo, Francesca; Sassi, Paola; Paolantoni, Marco; Morresi, Assunta; Cataliotti, Rosario Sergio

    2006-09-14

    Liquid 1-octanol and 2-octanol have been investigated by infrared (IR), Raman, and Brillouin experiments in the 10-90 degrees C temperature range. Self-association properties of the neat liquids are described in terms of a three-state model in which OH oscillators differently implicated in the formation of H-bonds are considered. The results are in quantitative agreement with recent computational studies for 1-octanol. The H-bond probability is obtained by Raman data, and a stochastic model of H-bonded chains gives a consistent picture of the self-association characteristics. Average values of hydrogen bond enthalpy and entropy are evaluated. The H-bond formation enthalpy is ca. -22 kJ/mol and is slightly dependent on the structural isomerism. The different degree of self-association for the two octanols is attributed to entropic factors. The more shielded 2-isomer forms larger fractions of smaller, less cooperative, and more ordered clusters, likely corresponding to cyclic structures. Signatures of a different cluster organization are also evidenced by comparing the H-bond energy dispersion (HBED) of OH stretching IR bands. A limiting cooperative H-bond enthalpy value of 27 kJ/mol is found. It is also proposed that the different H-bonding capabilities may modulate the extent of interaggregate hydrocarbon interactions, which is important in explaining the differences in molar volume, compressibility, and vaporization enthalpy for the two isomers.

  20. Ab initio computational study of reaction mechanism of peptide bond formation on HF/6-31G(d,p) level

    Science.gov (United States)

    Siahaan, P.; Lalita, M. N. T.; Cahyono, B.; Laksitorini, M. D.; Hildayani, S. Z.

    2017-02-01

    Peptide plays an important role in modulation of various cell functions. Therefore, formation reaction of the peptide is important for chemical reactions. One way to probe the reaction of peptide synthesis is a computational method. The purpose of this research is to determine the reaction mechanism for peptide bond formation on Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine by ab initio computational approach. The calculations were carried out by theory and basis set HF/6-31G(d,p) for four mechanisms (path 1 to 4) that proposed in this research. The results show that the highest of the rate determining step between reactant and transition state (TS) for path 1, 2, 3, and 4 are 163.06 kJ.mol-1, 1868 kJ.mol-1, 5685 kJ.mol-1, and 1837 kJ.mol-1. The calculation shows that the most preferred reaction of Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine are on the path 1 (initiated with the termination of H+ in proline amino acid) that produce Ac-PV-NH2.

  1. The Relative Hydrogen Bonding Strength of Oxygen and Nitrogen Atoms as a Proton Acceptor

    International Nuclear Information System (INIS)

    Hyun, Jong Cheol; Lee, Ho Jin; Kim, Nak Kyoon; Choi, Young Sang; Park, Jeung Hee; Yoon, Chang Ju

    1999-01-01

    The thermodynamic parameters for the formation of the hydrogen bonding were widely used to understand the protein- ligand interaction. We have been interested in the hydrogen bonding strength of various proton acceptors toward the amide in a nonpolar solvent, This work is in the line of our interest. In drug design, the functional group is often replaced in order to enhance or reduce the binding affinity, which is usually determined by hydrogen bonding strength. Therefore, to understand this biochemical process the knowledge of relative hydrogen bonding strength is of importance.

  2. Butterflyfishes as a System for Investigating Pair Bonding

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    For many animals, affiliative relationships such as pair bonds form the foundation of society, and are highly adaptive. Animal systems amenable for comparatively studying pair bonding are important for identifying underlying biological mechanisms, but mostly exist in mammals. Better establishing fish systems will enable comparison of pair bonding mechanisms across taxonomically distant lineages that may reveal general underlying principles. We examined the utility of wild butterflyfishes (f: Chaetodontidae; g: Chaetodon) for comparatively studying pair bonding. Stochastic character mapping inferred that within the family, pairing is ancestral, with at least seven independent transitions to group formation and seven transition to solitary behavior from the late Miocene to recent. In six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping, we then verified social systems at Lizard Island, Australia. In situ observations confirmed that Chaetodon baronessa, C. lunulatus, and C. vagabundus are predominantly pair bonding, whereas C. rainfordi, C. plebeius, and C. trifascialis are predominantly solitary. Even in the predominantly pair bonding species, C. lunulatus, a proportion of adults (15 %) are solitary. Importantly, inter- and intra-specific differences in social systems do not co-vary with other previously established attributes (geographic occurrence, parental care, diet, or territoriality). Hence, the proposed butterflyfish populations are promising for comparative analyses of pair bonding and its mechanistic underpinnings. Avenues for further developing the system are proposed, including determining whether the utility of these species applies across their geographic disruptions.

  3. New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

    Directory of Open Access Journals (Sweden)

    Pavel Nagorny

    2016-12-01

    Full Text Available Hydrogen bond donor catalysis represents a rapidly growing subfield of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds.

  4. Role of contact bonding on electronic transport in metal-carbon nanotube-metal systems

    International Nuclear Information System (INIS)

    Deretzis, I; La Magna, A

    2006-01-01

    We have investigated the effects of the interfacial bond arrangement on the electronic transport features of metal-nanotube-metal systems. The transport properties of finite, defect-free armchair and zigzag single-walled carbon nanotubes attached to Au(111) metallic contacts have been calculated by means of the non-equilibrium Green functional formalism with the tight-binding and the extended Hueckel Hamiltonians. Our calculations show that the electrode material is not the only factor which rules contact transparency. Indeed, for the same electrode, but changing nanotube helicities, we have observed an overall complex behaviour of the transmission spectra due to band mixing and interference. A comparison of the two models shows that the tight-binding approach fails to give a satisfactory representation of the transmission function when a more accurate description of the C-C and Au-C chemical bonds has to be considered. We have furthermore examined the effect of interface geometry variance on conduction and found that the contact-nanotube distance has a significant impact, while the contact-nanotube symmetry plays a marginal, yet evident role

  5. IR-UV double resonance spectroscopic investigation of phenylacetylene-alcohol complexes. Alkyl group induced hydrogen bond switching.

    Science.gov (United States)

    Singh, Prashant Chandra; Patwari, G Naresh

    2008-06-12

    The electronic transitions of phenylacetylene complexes with water and trifluoroethanol are shifted to the blue, while the corresponding transitions for methanol and ethanol complexes are shifted to the red relative to the phenylacetylene monomer. Fluorescence dip infrared (FDIR) spectra in the O-H stretching region indicate that, in all the cases, phenylacetylene is acting as a hydrogen bond acceptor to the alcohols. The FDIR spectrum in the acetylenic C-H stretching region shows Fermi resonance bands for the bare phenylacetylene, which act as a sensitive tool to probe the intermolecular structures. The FDIR spectra reveal that water and trifluoroethanol interact with the pi electron density of the acetylene C-C triple bond, while methanol and ethanol interact with the pi electron density of the benzene ring. It can be inferred that the hydrogen bonding acceptor site on phenylacetylene switches from the acetylene pi to the benzene pi with lowering in the partial charge on the hydrogen atom of the OH group. The most significant finding is that the intermolecular structures of water and methanol complexes are notably distinct, which, to the best of our knowledge, this is first such observation in the case of complexes of substituted benzenes.

  6. Energy Materials Coordinating Committee (EMaCC). Annual technical report, Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-08-01

    The DOE Energy Materials Coordinating Committee (EMaCC) serves primarily to enhance coordination among the Department's materials programs and to further effective use of materials expertise within the Department. These functions are accomplished through the exchange of budgetary and planning information among program managers and through technical meetings/workshops on selected topics involving both DOE and major contractors. In addition, EMaCC assists in obtaining materials-related inputs for both intra- and interagency compilations.

  7. The Specific Role of Childhood Abuse, Parental Bonding, and Family Functioning in Female Adolescents With Borderline Personality Disorder.

    Science.gov (United States)

    Infurna, Maria Rita; Brunner, Romuald; Holz, Birger; Parzer, Peter; Giannone, Francesca; Reichl, Corinna; Fischer, Gloria; Resch, Franz; Kaess, Michael

    2016-04-01

    This study examined a broad variety of adverse childhood experiences in a consecutive sample of female adolescent inpatients with borderline personality disorder (BPD; n = 44) compared with a clinical control (CC; n = 47) group with mixed psychiatric diagnoses. BPD was diagnosed using a structured clinical interview; different dimensions of childhood adversity were assessed using the Childhood Experiences of Care and Abuse Questionnaire, the Parental Bonding Instrument, and the Family Assessment Device. A history of childhood adversity was significantly more common in patients with BPD than in the CC group. Using a multivariate model, sexual abuse (OR = 13.8), general family functioning (OR = 8.9), and low maternal care (OR = 7.6) were specific and independent predictors of adolescent BPD. The results increase our knowledge of the specific role of different dimensions of childhood adversity in adolescent BPD. They have important implications for prevention and early intervention as they highlight the need for specific strategies for involving the family.

  8. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  9. Study of a photo-induced lysozyme-riboflavin bond

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, I; Silva, E

    1985-01-01

    Irradiation of lysozyme in the presence of riboflavin results in the formation of a lysozyme-riboflavin adduct. Reduction and carboxymethylation of the four disulfide bonds as well as the chemical modification of the Tyr residues and the photochemical alteration of the His residue in lysozyme, do not affect the formation of the photo-induced lysozyme-riboflavin bond. When the lysozyme-riboflavin adduct was subjected to mild acid hydrolysis and ion exchange chromatography, the retention of a compound containing /sup 14/C-riboflavin was observed. Free /sup 14/C-riboflavin, on the contrary is not retained by the column. The photo-oxidation of free Trp in the presence of /sup 14/C-riboflavin, gave a compound which bound to the ion exchange resin like the above-mentioned derivative. The photo-oxidation of the Trp residues in lysozyme and in peptides obtained from lysozyme showed very high quantum yields, and these values were directly related to the incorporation of /sup 14/C-riboflavin in these samples.

  10. Study of a photo-induced lysozyme-riboflavin bond

    International Nuclear Information System (INIS)

    Ferrer, I.; Silva, E.

    1985-01-01

    Irradiation of lysozyme in the presence of riboflavin results in the formation of a lysozyme-riboflavin adduct. Reduction and carboxymethylation of the four disulfide bonds as well as the chemical modification of the Tyr residues and the photochemical alteration of the His residue in lysozyme, do not affect the formation of the photo-induced lysozyme-riboflavin bond. When the lysozyme-riboflavin adduct was subjected to mild acid hydrolysis and ion exchange chromatography, the retention of a compound containing 14 C-riboflavin was observed. Free 14 C-ribboflavin, on the contrary is not retained by the column. The photo-oxidation of free Trp in the presence of 14 C-riboflavin, gave a compound which bound to the ion exchange resin like the above-mentioned derivative. The photo-oxidation of the Trp residues in lysozyme and in peptides obtained from lysozyme showed very high quantum yields, and these values were directly related to the incorporation of 14 C-riboflavin in these samples. (orig.)

  11. Effect of salt stress on the physiology of Frankia sp strain CcI6

    Indian Academy of Sciences (India)

    2013-10-01

    Oct 1, 2013 ... the strain is closely related to Frankia sp. strain CcI3. ... [Oshone R, Mansour SR and Tisa LS 2013 Effect of salt stress on the physiology of Frankia sp strain CcI6. .... This work was supported in part by US-Egypt Joint Research.

  12. Radiation-induced O-glycoside bond scission in carbohydrates

    International Nuclear Information System (INIS)

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  13. Get more control over your C/C++ service

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Are you looking for a way to better diagnose or monitor your C/C++ programs? Find out more about CMX - a neat, lightweight library (<32Kb) which targets this need. It allows to expose information from inside a process through a simple API, enabling pre-failure detection in combination with your favourite monitoring system.

  14. Rh-Catalyzed decarbonylative coupling with alkynes via C-C activation of isatins.

    Science.gov (United States)

    Zeng, Rong; Dong, Guangbin

    2015-02-04

    Herein we report a [5 + 2 - 1] transformation though catalytic decarbonylative coupling between isatins and alkynes, which provides a unique way to synthesize 2-quinolinone derivatives. A broad range of alkynes can be coupled efficiently with high regioselectivity. This reaction is proposed to go through C-C activation of isatins, followed by decarbonylation and alkyne insertion. Directing group (DG) plays a critical role in this transformation. Assisted by the DG, the C-C cleavage of isatins occurs at room temperature.

  15. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  16. Correlation between GDF-15 gene polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction

    Directory of Open Access Journals (Sweden)

    Xiao-ping Chen

    Full Text Available Summary Objective: To explore the correlation between growth differentiation factor 15 (GDF-15 -3148C/G polymorphism and the formation of collateral circulation in acute ST-elevation myocardial infarction (STEMI in Han population of Taiyuan area. Method: The present study included 92 STEMI patients and 56 normal controls based on coronary angiography; STEMI group was divided into collateral group and non-collateral group according to Rentrop's grading method. Polymerase chain reaction (PCR and DNA sequencing methods were used to detect and analyze the GDF-15 -3148C/G polymorphism in all participants. Results: There was significant difference in GDF-15 -3148C/G CC and GC distribution between STEMI group and control group (p=0.009; the allele frequencies between these two groups were also significant different (p=0.016; and the risk genotype for STEMI was CC with increased OR=2.660. For STEMI group, GDF-15 -3148C/G CC and GC distribution was also significantly different between patients with and without collateral (p=0.048, and CC genotype significantly promote the formation of collateral circulation. However, there were no significant differences in allele frequencies between these two subgroups of STEMI. Conclusion: There was correlation between GDF-15-3148C/G polymorphism and the formation of collateral circulation in patients with acute STEMI.

  17. RB1CC1 activates RB1 pathway and inhibits proliferation and cologenic survival in human cancer.

    Directory of Open Access Journals (Sweden)

    Tokuhiro Chano

    2010-06-01

    Full Text Available RB1-inducible coiled-coil 1 (RB1CC1, also known as FIP200 plays a role in the enhancement of the RB1 pathway through the direct binding to a GC-rich region 201bp upstream (from the initiation ATG of the RB1 promoter. Here, we identified hSNF5 and p53 as the binding partners of RB1CC1 by immunoprecipitation and immunofluorescence assays. Interaction between these molecules and the RB1 pathway was analyzed by the assays of chromatin immunoprecipitation, luciferase-reporter, reverse transcription-polymerase chain reaction and immunoblot. The tumor growth suppression by RB1CC1 was evaluated by flow cytometry or by a cell growth assay. The nuclear RB1CC1 complex involving hSNF5 and/or p53 activated transcription of RB1, p16 and p21, and suppressed tumor cell growth. Furthermore, nuclear RB1CC1 expression significantly correlated with those of RB1 and p16 in breast cancer tissue in vivo, and the Ki-67 proliferation index was dependent on p53 as well as RB1CC1. The present study indicates that RB1CC1 together with hSNF5 and/or p53 enhances the RB1 pathway through transcriptional activation of RB1, p16 and p21. Evaluation of RB1CC1 expression combined with RB1 and p53 status is expected to provide useful information in clinical practice and future therapeutic strategies in breast cancer.

  18. Preparation of 14-C-labelled 1,4-Dideoxy-1,4-imino-D-arabinitol: Cyanosilylation of Cyclic Imines using KCN in a One-Pot Synthesis

    DEFF Research Database (Denmark)

    Lundt, Inge; Malle, Birgitte Mølholm; Foged, Christian

    1999-01-01

    A new method for C-C bond formation was developed based on in situ cyanosilylation of cyclic Schiff bases using KCN, TMSCl, KI and ZnI2. This method was used to prepare the potent -glucosidase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol 14-C labelled at C-5.Keywords: in situ cyanosilylation; 14-C...

  19. Covalent Stabilization: A Sturdy Molecular Square from Reversible Metal-Ion-Directed Self-Assembly

    Czech Academy of Sciences Publication Activity Database

    Olive, A. G. L.; Parkan, K.; Givelet, C.; Michl, Josef

    2011-01-01

    Roč. 133, č. 50 (2011), s. 20108-20111 ISSN 0002-7863 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Grant - others:NSF(US) CHE0848477 Institutional research plan: CEZ:AV0Z40550506 Keywords : prismatic altitudinal rotors * supramolecular coordination chemistry * bond formation * macrocycles * catalysis Subject RIV: CC - Organic Chemistry Impact factor: 9.907, year: 2011

  20. A contribution to the study of metal-ceramic bonding by direct vacuum brazing with reactive metals

    International Nuclear Information System (INIS)

    Guimaraes, A.S.

    1988-01-01

    Wettability and bonding tests were utilized to evaluate the behaviour of various specials alloys, for work at high temperature under vacuum, for the inter-bonding of silicon carbide, alumina ceramic, graphite (for electrical applications) and petroleum coke and their joining with themselves as the metals titanium, molybdenum, nickel and copper. The joints exhibiting effective bonding were investigated by means of optical microscopy, scanning electron microscopy and X-rays diffraction. Elemental mapping of the constituents and quantitative chemical microanalysis were also undertaken, via the energy dispersive analysis of X-rays (SEM/EDS). On the basis of the results the possible mechanisms of bond-formation have been discussed. It was verified that: a) of the filler metals studied, those which exhibited effective wettability on all the above materials were: 49Cu-49Ti-2Be, Zircaloy4-5Be and a commercial alloy Ticusil, which consisted of a Cu-Ag eutectic with a small addition of pure Ti, of nominal composition 26.7Cu-68.8Ag-4.5Ti; b) the alloys with high levels of reactive metals such as Ti and Zr tended to form low ductility bonds due to the formation of hard, brittle phases; c) the copper suffered pronounced erosion when in direct contact with alloys of high Ti and Zr contents, due to the formation of phases whose melting points were below the brazing temperature of those materials; e) the compounds detected as reaction products were identified as, TiC in the samples rich in carbon, such as the SiC ceramic and graphite joints, or the oxides Cu2Ti2O5 and Cu3TiO4 in the bonding of alumina to alloys including Ti in their composition or in that of the filler metal, proving that the effectiveness of the bond is dependent upon an initial and indispensable chemical bonding. (author)

  1. Probability of conductive bond formation in a percolating network of nanowires with fusible tips

    Science.gov (United States)

    Rykaczewski, Konrad; Wang, Robert Y.

    2018-03-01

    Meeting the heat dissipation demands of microelectronic devices requires development of polymeric composites with high thermal conductivity. This property is drastically improved by percolation networks of metallic filler particles that have their particle-to-particle contact resistances reduced through thermal or electromagnetic fusing. However, composites with fused metallic fillers are electrically conductive, which prevents their application within the chip-board and the inter-chip gaps. Here, we propose that electrically insulating composites for these purposes can be achieved by the application of fusible metallic coatings to the tips of nanowires with thermally conductive but electrically insulating cores. We derive analytical models that relate the ratio of the coated and total nanowire lengths to the fraction of fused, and thus conductive, bonds within percolating networks of these structures. We consider two types of materials for these fusible coatings. First, we consider silver-like coatings, which form only conductive bonds when contacting the silver-like coating of another nanowire. Second, we consider liquid metal-like coatings, which form conductive bonds regardless of whether they contact a coated or an uncoated segment of another nanowire. These models were validated using Monte Carlo simulations, which also revealed that electrical short-circuiting is highly unlikely until most of the wire is coated. Furthermore, we demonstrate that switching the tip coating from silver- to liquid metal-like materials can double the fraction of conductive bonds. Consequently, this work provides motivation to develop scalable methods for fabrication of the hybrid liquid-coated nanowires, whose dispersion in a polymer matrix is predicted to yield highly thermally conductive but electrically insulating composites.

  2. Reversible Sigma C-C Bond Formation Between Phenanthroline Ligands Activated by (C5Me5)2Yb

    Energy Technology Data Exchange (ETDEWEB)

    Nocton, Gr& #233; gory; Lukens, Wayne W.; Booth, Corwin H.; Rozenel, Sergio S.; Medling, Scott A.; Maron, Laurent; Andersen, Richard A.

    2014-06-26

    The electronic structure and associated magnetic properties of the 1,10-phenanthroline adducts of Cp*2Yb are dramatically different from those of the 2,2?-bipyridine adducts. The monomeric phenanthroline adducts are ground state triplets that are based upon trivalent Yb(III), f13, and (phen ) that are only weakly exchange coupled, which is in contrast to the bipyridine adducts whose ground states are multiconfigurational, open-shell singlets in which ytterbium is intermediate valent ( J. Am. Chem. Soc 2009, 131, 6480; J. Am. Chem. Soc 2010, 132, 17537). The origin of these different physical properties is traced to the number and symmetry of the LUMO and LUMO+1 of the heterocyclic diimine ligands. The bipy has only one 1 orbital of b1 symmetry of accessible energy, but phen has two orbitals of b1 and a2 symmetry that are energetically accessible. The carbon p-orbitals have different nodal properties and coefficients and their energies, and therefore their populations change depending on the position and number of methyl substitutions on the ring. A chemical ramification of the change in electronic structure is that Cp 2Yb(phen) is a dimer when crystallized from toluene solution, but a monomer when sublimed at 180190 C. When 3,8-Me2phenanthroline is used, the adduct Cp*2Yb(3,8-Me2phen) exists in the solution in a dimer monomer equilibrium in which G is near zero. The adducts with 3-Me, 4-Me, 5-Me, 3,8-Me2, and 5,6-Me2-phenanthroline are isolated and characterized by solid state X-ray crystallography, magnetic susceptibility and LIII-edge XANES spectroscopy as a function of temperature and variable-temperature 1H NMR spectroscopy.

  3. Electronic parameters of Sr2Nb2O7 and chemical bonding

    DEFF Research Database (Denmark)

    Atuchin, V.V.; Grivel, Jean-Claude; Korotkov, A.S.

    2008-01-01

    /2)) and Delta(O-Sr) = BE(O 1s)-BE(Sr 3d(5/2)), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb...

  4. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Science.gov (United States)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  5. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  6. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    Science.gov (United States)

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  7. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    International Nuclear Information System (INIS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-01-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al 12 Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al 12 Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported

  8. Titanium Insertion into CO Bonds in Anionic Ti-CO2 Complexes.

    Science.gov (United States)

    Dodson, Leah G; Thompson, Michael C; Weber, J Mathias

    2018-03-22

    We explore the structures of [Ti(CO 2 ) y ] - cluster anions using infrared photodissociation spectroscopy and quantum chemistry calculations. The existence of spectral signatures of metal carbonyl CO stretching modes shows that insertion of titanium atoms into C-O bonds represents an important reaction during the formation of these clusters. In addition to carbonyl groups, the infrared spectra show that the titanium center is coordinated to oxalato, carbonato, and oxo ligands, which form along with the metal carbonyls. The presence of a metal oxalato ligand promotes C-O bond insertion in these systems. These results highlight the affinity of titanium for C-O bond insertion processes.

  9. Oxygen atom transfer reactions from Mimoun complexes to sulfides and sulfoxides. A bonding evolution theory analysis.

    Science.gov (United States)

    González-Navarrete, Patricio; Sensato, Fabricio R; Andrés, Juan; Longo, Elson

    2014-08-07

    In this research, a comprehensive theoretical investigation has been conducted on oxygen atom transfer (OAT) reactions from Mimoun complexes to sulfides and sulfoxides. The joint use of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool to analyze the evolution of chemical events along a reaction pathway. The progress of the reaction has been monitored by structural stability domains from ELF topology while the changes between them are controlled by turning points derived from CT which reveal that the reaction mechanism can be separated in several steps: first, a rupture of the peroxo O1-O2 bond, then a rearrangement of lone pairs of the sulfur atom occurs and subsequently the formation of S-O1 bond. The OAT process involving the oxidation of sulfides and sulfoxides is found to be an asynchronous process where O1-O2 bond breaking and S-O1 bond formation processes do not occur simultaneously. Nucleophilic/electrophilic characters of both dimethyl sulfide and dimethyl sulfoxide, respectively, are sufficiently described by our results, which hold the key to unprecedented insight into the mapping of electrons that compose the bonds while the bonds change.

  10. Amide proton temperature coefficients as hydrogen bond indicators in proteins

    International Nuclear Information System (INIS)

    Cierpicki, Tomasz; Otlewski, Jacek

    2001-01-01

    Correlations between amide proton temperature coefficients (Δσ HN /ΔT) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than -4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between -4 and -1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in α-helices are on average 1 ppb/K more negative than in β-sheets. In consequence, a number of amide protons in α-helices involved in hydrogen bonds shorter than 2 A show Δσ HN /ΔT 10 helices and 98% in β-turns have temperature coefficients more positive than -4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than -2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures

  11. Dynamics of Plug Formation in a Circular Cylinder Under Low Bond Number Conditions: Experiment and Simulation

    Science.gov (United States)

    Hallaby, Ghazi; Kizito, John P.

    2016-08-01

    The goal of the current study is to investigate the dynamics of two phase interface under a low Bond number condition. Silicone oil is injected into a cylinder under a Bond number of about 0.47 via a side tube forming a T-junction with the former. The time evolution of the interface of silicon oil in a cylinder is captured using a high speed camera. The volume at which the plug is formed is then determined using an image processing tool to analyze the captured images. A numerical simulation is carried out where fluid is injected into a cylinder, under a less than unity Bond number condition, via a side tube. Numerical and experimental results are then compared.

  12. Shear bond strength of brackets on restorative materials: Comparison on various dental restorative materials using the universal primer Monobond® Plus.

    Science.gov (United States)

    Ebert, Thomas; Elsner, Laura; Hirschfelder, Ursula; Hanke, Sebastian

    2016-03-01

    The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent). Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass-ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns. The metal brackets showed the highest mean SBS values on the glass-ceramic material (68.61 N/mm(2)) and the composite resin (67.58 N/mm(2)) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm(2)). The ceramic brackets showed the highest mean SBS on the glass-ceramic material (63.36 N/mm(2)) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm(2)). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p bracket types, fractures of the composite-resin and the glass-ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive. Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass-ceramic samples, we recommend

  13. Photoinduced Intramolecular Bifurcate Hydrogen Bond: Unusual Mutual Influence of the Components.

    Science.gov (United States)

    Sigalov, Mark V; Shainyan, Bagrat A; Sterkhova, Irina V

    2017-09-01

    A series of 7-hydroxy-2-methylidene-2,3-dihydro-1H-inden-1-ones with 2-pyrrolyl (3), 4-dimethylaminophenyl (4), 4-nitrophenyl (5), and carboxyl group (6) as substituents at the exocyclic double bond was synthesized in the form of the E-isomers (4-6) or predominantly as the Z-isomer (3) which in solution is converted to the E-isomer. The synthesized compounds and their model analogues were studied by NMR spectroscopy, X-ray analysis, and MP2 theoretical calculations. The E-isomers having intramolecular O-H···O═C hydrogen bond are converted by UV irradiation to the Z-isomers having bifurcated O-H···O···H-X hydrogen bond. Unexpected shortening (and, thus, strengthening) of the O-H···O═C component of the bifurcated hydrogen bond upon the formation of the C═O···H-X hydrogen bond was found experimentally, proved theoretically (MP2), and explained by a roundabout interaction of the H-donor (HX) and H-acceptor (C═O) via the system of conjugated bonds.

  14. An unusual cysteine VL87 affects the antibody fragment conformations without interfering with the disulfide bond formation.

    Science.gov (United States)

    Attallah, Carolina; Aguilar, María Fernanda; Garay, A Sergio; Herrera, Fernando E; Etcheverrigaray, Marina; Oggero, Marcos; Rodrigues, Daniel E

    2017-10-01

    The Cys residues are almost perfectly conserved in all antibodies. They contribute significantly to the antibody fragment stability. The relevance of two natural contiguous Cys residues of an anti-recombinant human-follicle stimulation hormone (rhFSH) in a format of single-chain variable fragment (scFv) was studied. This scFv contains 5 Cys residues: V H 22 and V H 92 in the variable heavy chain (V H ) and V L 23, V L 87 and V L 88 in the variable light chain (V L ). The influence of two unusual contiguous Cys at positions V L 87 and V L 88 was studied by considering the wild type fragment and mutant variants: V L -C88S, V L -C87S, V L -C87Y. The analysis was carried out using antigen-binding ability measurement by indirect specific ELISA and a detailed molecular modeling that comprises homology methods, long molecular dynamics simulations and docking. We found that V L -C87 affected the antibody fragment stability without interfering with the disulfide bond formation. The effect of mutating the V L -C87 by a usual residue at this position like Tyr caused distant structural changes at the V H region that confers a higher mobility to the V H -CDR2 and V H -CDR3 loops improving the scFv binding to the antigen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Characterization and antioxidant activity of gallic acid derivative

    Science.gov (United States)

    Malinda, Krissan; Sutanto, Hery; Darmawan, Akhmad

    2017-11-01

    Peroxidase enzyme was used to catalyze the dimerization process of gallic acid. The structure of the dimerization product was characterized by 1H NMR and LC-MS-MS. The mechanism of gallic acid dimerization was also discussed. It was proposed that ellagic acid was formed through an oxidative coupling mechanism that lead to the formation of a C-C bond and followed by an intramolecular Fischer esterification mechanism that lead to the formation of two C-O bonds. Moreover, the antioxidant activity of gallic acid and ellagic acid were also studied. Gallic acid and ellagic acid exhibited the DPPH radical scavenging activity with IC50 values of 13.2 μM and 15.9 μM, respectively.

  16. Potential Hazards Relating to Pyrolysis of c-C4F8O, n-C4F10 and c-C4F8 in selected gaseous diffusion plant operations

    International Nuclear Information System (INIS)

    Trowbridge, L.D.

    2000-01-01

    As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes is under way. This report summarizes studies directed at estimating the chemical and thermal stability of three candidate coolants, c-C 4 F 8 O, n-C 4 F 10 and c-C 4 4F 8 , in a few specific environments to be found in gaseous diffusion plant operations

  17. A combined experimental and theoretical approach to the study of hydrogen bond interaction in the binary mixture of N-methylimidazole with water

    International Nuclear Information System (INIS)

    Huang, Rongyi; Du, Rongbin; Liu, Guangxiang; Zhao, Xiuqin; Ye, Shiyong; Wu, Genhua

    2012-01-01

    Highlights: ► Densities of N-methylimidazole with water binary mixture were measured. ► Excess molar volumes were fitted to Redlich–Kister polynomial equation. ► Excess molar volumes are negative in the whole mole fraction range. ► 1:1 Hydrogen complex formation between the unlike components was observed. ► Formation of hydrogen bonds in the binary mixture was confirmed by DFT//B3LYP. - Abstract: The intermolecular hydrogen bond interactions in the N-methylimidazole (MeIm) with water binary mixture have been studied by a combined experimental and theoretical approach. The densities of the binary mixture have been measured at T = (288.15 to 323.15) K and at atmospheric pressure. From the experimental data, excess molar volumes were determined as a function of composition at each temperature. The results reveal the formation of 1:1 hydrogen bond complex between MeIm with water at the maximal excess molar volume. Meanwhile, the formation of hydrogen bonds in the binary mixture was further confirmed by high level theoretical calculation. The structures, interactional energies and bond characteristics of the hydrogen bond complexes were calculated in the gas phase using density functional theory (DFT) at the B3LYP/6-311++G(d, p) theory levels. The changes of thermodynamic properties from the monomers to hydrogen bond complexes with the temperature ranging from (288.15 to 323.15) K were obtained using the statistical thermodynamic method. Thermodynamic analyses have been interpreted in terms of intermolecular interactions and excess molar volume changes in the binary mixture. It was also found that the formation reaction of the hydrogen bond complex of MeIm with water was an exothermic, entropy reduced and spontaneous thermodynamic process at all the temperature studied.

  18. Effect of ethanol-wet-bonding technique on resin–enamel bonds

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar

    2014-03-01

    Conclusion: The ethanol-wet-bonding technique may increase the bond strength of commercial adhesives to enamel. The chemical composition of the adhesives can affect the bond strength of adhesives when bonding to acid-etched enamel, using the ethanol-wet-bonding technique. Some adhesive systems used in the present study may simultaneously be applied to enamel and dentin using ethanol-wet-bonding. Furthermore, deploying ethanol-wet-bonding for the tested commercial adhesives to enamel can increase the adhesion abilities of these adhesives to enamel.

  19. Hydrogen bonding interactions in PN...HX complexes: DFT and ab initio studies of structure, properties and topology.

    Science.gov (United States)

    Varadwaj, Pradeep Risikrishna

    2010-05-01

    Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN...HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (Delta E) calculated using a super-molecular model is found to be in this order: PN...HF > PN...HCl > PN...HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Delta mu) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN...HF > PN...HCl > PN...HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF 0, nabla(2)rho(c) > 0 and H(c) > 0 at the BCP) whilst the bonds in PN (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) 0, nabla(2)rho(c) BD*(HX) delocalization.

  20. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5

    Science.gov (United States)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.