WorldWideScience

Sample records for cavity shaping loop

  1. Cosmic string loop shapes

    CERN Document Server

    Blanco-Pillado, Jose J; Shlaer, Benjamin

    2015-01-01

    We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational back reaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.

  2. Integrated closed-loop cavity of a tunable laser

    Science.gov (United States)

    Ren, M.; Cai, H.; Gu, Y. D.; Chin, L. K.; Radhakrishnan, K.; Ser, W.; Sun, H. D.; Liang, Q. X.; Kwong, D.-L.; Liu, A. Q.

    2016-10-01

    In this paper, a closed-loop cavity of a tunable laser integrated onto a silicon chip is demonstrated. The closed-loop cavity consists of a semiconductor optical amplifier chip, two separated micro-ring resonators, and a U-shaped waveguide sub-loop, enabling dominating lasing in the counterclockwise direction. The lasing wavelength is tuned by varying the effective refractive index of the thermal ring-resonators. It has achieved wide tuning range (55.4 nm), high spectral purity (50-dB side mode suppression ratio), ˜1-mW output power, and 36-dB counter-propagation power suppression ratio. The integrated tunable laser has high potential in applications such as optical network, optical sensing, and integrated optoelectronic systems.

  3. A COMPARATIVE STUDY ON COPPER-PLATED UTERINE CAVITY SHAPED IUD AND NON-COPPER BEARING UTERINE CAVITY SHAPED IUD

    Institute of Scientific and Technical Information of China (English)

    ZENGQing-Gu; etal

    1989-01-01

    A comparative randomized clinical trial was carried out between two uterine cavity shaped IUDs: the copper-plated uterine cavity shaped IUD(UCDCu) and non-copper bearing uterine cavity shaped IUD(UCD). The IUDs were used by 1004 and 1005 women

  4. S0 Tight Loop Studies on ICHIRO 9-Cell Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Fumio [KEK; Konomi, T. [KEK; Saito, Kenji [KEK; Bice, Damon [Fermilab; Crawford, Anthony C. [JLAB; Geng, Rongli [JLAB

    2009-11-01

    We have continued high gradient R&D of ICHIRO 9-cell cavities at KEK. ICHIRO 9-cell cavity #5 (I9#5) that has no end groups on beam tube to focus on high gradient sent to Jlab as S0 tight loop study. Surface treatments and vertical test were repeated 3 times at Jlab, and then I9#5 sent back to KEK. We also repeated surface treatments and test at KEK. Maximum gradients were 36.5MV/m at Jlab, and 33.7MV/m at KEK so far. Now we are struggling with the puzzle why the results of singles do not work well on 9-cell cavities.

  5. Tunable bistability and asymmetric line shape in ring cavity-coupled Michelson interferometer

    Science.gov (United States)

    Li, Li; Zhang, Xinlu; Chen, Lixue

    2008-01-01

    A novel configuration of ring cavity-coupled Michelson interferometer is proposed to create sharp asymmetric multiple-resonance line shape, in which a ring cavity is side-coupled to one arm and a phase shifter is introduced into the other arm for static phase compensation. Such asymmetric line shape allows the tuning of the system between zero and complete transmission, with a phase offset much narrower than the full width of the cavity resonance itself. As tuning between resonance peak and notch of such asymmetric profile, optical transmission becomes much more sensitive to the round-trip phase shift of ring cavity than that in the case of symmetric Lorentzian line shape. By cooperating Kerr nonlinearity and cavity feedback, novel hysteresis loops and intrinsic bistability are achievable by adjusting incident power. The shapes of hysteresis curves associated with asymmetric resonance line shape are different from those arising from symmetric line shape. By adjusting the static phase compensation of phase shifter, tunable hysteresis loop and asymmetric multiple-resonance transmission can be easy performed. The simply constructed device is a good reference for sensitive optical switch, filter and sensor.

  6. Transfigured Loop Shaping Controller and its Application to Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    Xian-Ku Zhang; Yi-Cheng Jin

    2005-01-01

    A kind of transfigured loop shaping controller is presented in this paper. A transfigured loop shaping system puts a controller K in a feedback loop, while putting the dc gain of the controller K on the reference signal line. It is shown through frequency domain analysis and simulation that a transfigured controller can improve the dynamic behavior of a system. The transfigured loop shaping controller method is simple and effective and corresponds to the mixed sensitivity method of robust control theory, which improves the behavior of a system by iterative tuning of weighting functions. Satisfactory control results are obtained when it is applied to the design of an underwater vehicle.

  7. Pulse shape control in a dual cavity laser: numerical modeling

    Science.gov (United States)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  8. Spatio-temporal wavefront shaping in a microwave cavity

    CERN Document Server

    del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy

    2016-01-01

    Controlling waves in complex media has become a major topic of interest, notably through the concepts of time reversal and wavefront shaping. Recently, it was shown that spatial light modulators can counter-intuitively focus waves both in space and time through multiple scattering media when illuminated with optical pulses. In this letter we transpose the concept to a microwave cavity using flat arrays of electronically tunable resonators. We prove that maximizing the Green's function between two antennas at a chosen time yields diffraction limited spatio-temporal focusing. Then, changing the photons' dwell time inside the cavity, we modify the relative distribution of the spatial and temporal degrees of freedom (DoF), and we demonstrate that it has no impact on the field enhancement: wavefront shaping makes use of all available DoF, irrespective of their spatial or temporal nature. Our results prove that wavefront shaping using simple electronically reconfigurable arrays of reflectors is a viable approach to...

  9. Study of the cavity-magnon-polariton transmission line shape

    Science.gov (United States)

    Harder, Michael; Bai, LiHui; Match, Christophe; Sirker, Jesko; Hu, CanMing

    2016-11-01

    We experimentally and theoretically investigate the microwave transmission line shape of the cavity-magnon-polariton (CMP) created by inserting a low damping magnetic insulator into a high quality 3D microwave cavity. While fixed field measurements are found to have the expected Lorentzian characteristic, at fixed frequencies the field swept line shape is in general asymmetric. Such fixed frequency measurements demonstrate that microwave transmission can be used to access magnetic characteristics of the CMP, such as the field line width Δ H. By developing an effective oscillator model of the microwave transmission we show that these line shape features are general characteristics of harmonic coupling. At the same time, at the classical level the underlying physical mechanism of the CMP is electrodynamic phase correlation and a second model based on this principle also accurately reproduces the experimental line shape features. In order to understand the microscopic origin of the effective coupled oscillator model and to allow for future studies of CMP phenomena to extend into the quantum regime, we develop a third, microscopic description, based on a Green's function formalism. Using this method we calculate the transmission spectra and find good agreement with the experimental results.

  10. Shape of the human nasal cavity promotes retronasal smell

    Science.gov (United States)

    Trastour, Sophie; Melchionna, Simone; Mishra, Shruti; Zwicker, David; Lieberman, Daniel E.; Kaxiras, Efthimios; Brenner, Michael P.

    2015-11-01

    Humans are exceptionally good at perceiving the flavor of food. Flavor includes sensory input from taste receptors but is dominated by olfactory (smell) receptors. To smell food while eating, odors must be transported to the nasal cavity during exhalation. Olfactory performance of this retronasal route depends, among other factors, on the position of the olfactory receptors and the shape of the nasal cavity. One biological hypothesis is that the derived configuration of the human nasal cavity has resulted in a greater capacity for retronasal smell, hence enhanced flavor perception. We here study the air flow and resulting odor deposition as a function of the nasal geometry and the parameters of exhalation. We perform computational fluid dynamics simulations in realistic geometries obtained from CT scans of humans. Using the resulting flow fields, we then study the deposition of tracer particles in the nasal cavity. Additionally, we derive scaling laws for the odor deposition rate as a function of flow parameters and geometry using boundary layer theory. These results allow us to assess which changes in the evolution of the human nose led to significant improvements of retronasal smell.

  11. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    Science.gov (United States)

    Lal, Shankar; Pant, K. K.

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  12. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient.

    Science.gov (United States)

    Lal, Shankar; Pant, K K

    2016-08-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  13. Spatiotemporal Wave Front Shaping in a Microwave Cavity

    Science.gov (United States)

    del Hougne, Philipp; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2016-09-01

    Controlling waves in complex media has become a major topic of interest, notably through the concepts of time reversal and wave front shaping. Recently, it was shown that spatial light modulators can counterintuitively focus waves both in space and time through multiple scattering media when illuminated with optical pulses. In this Letter, we transpose the concept to a microwave cavity using flat arrays of electronically tunable resonators. We prove that maximizing the Green's function between two antennas at a chosen time yields diffraction limited spatiotemporal focusing. Then, changing the photons' dwell time inside the cavity, we modify the relative distribution of the spatial and temporal degrees of freedom (DOF), and we demonstrate that it has no impact on the field enhancement: wave front shaping makes use of all available DOF, irrespective of their spatial or temporal nature. Our results prove that wave front shaping using simple electronically reconfigurable arrays of reflectors is a viable approach to the spatiotemporal control of microwaves, with potential applications in medical imaging, therapy, telecommunications, radar, or sensing. They also offer new fundamental insights regarding the coupling of spatial and temporal DOF in complex media.

  14. Feedback Control Systems Loop Shaping Design with Practical Considerations

    Science.gov (United States)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  15. Influence of Er:YAG laser ablation on cavity surface and cavity shape

    Science.gov (United States)

    Jelinkova, Helena; Dostalova, Tatjana; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-04-01

    The cavity surface and shape after Er:YAG laser ablation at different energies, number of pulses and at a different repetition rate were observed. Longitudinal sections of extracted human incisors and transverse sections of ivory tusk were cut and polished to flat and glazed surfaces. The samples thickness was from 3 to 5 mm. The Er:YAG laser was operating in a free-running (long pulse) mode. The laser radiation was focused onto the tooth surface by CaF2 lens (f equals 55 mm). During the experiment, the teeth were steady and the radiation was delivered by a special mechanical arm fixed in a special holder; fine water mist was also used (water-mJ/min, a pressure of two atm, air-pressure three atm). The shapes of the prepared cavities were studied either by using a varying laser energies (from 70 mJ to 500 mJ) for a constant number of pulses, or a varying number of pulses (from one to thirty) for constant laser energy. The repetition rate was changed from 1 to 2 Hz. For evaluating the surfaces, shapes, and profiles, scanning electron microscopy and photographs from a light microscope were used. The results were analyzed both quantitatively and qualitatively. It is seen that there is no linear relation between the radiation pulse energy and the size of the prepared holes. With increasing the incident energy the cavity depth growth is limited. There exists some saturation not only in the enamel and dentin but especially in the homogeneous ivory.

  16. Uterine Cavity-shaped Device Used in China

    Institute of Scientific and Technical Information of China (English)

    Yan CHE; Ke-juan FANG; Wei-jin ZHOU; Yong-gang DING; Yue-lian SUN; Yao-ling HAN; Olav Merick; Peter Fajans

    2007-01-01

    Objective To assess the effectiveness, side effects, and acceptability of copper uterine cavity - shaped intrauterine devices (UCD) with and without indomethacin.Methods We used electronic search and hand search to identify relevant literatures.Included papers were systematically reviewed according to previous established guidelines.Results A total of 39 related papers were identified. Of them, 9 papers were included in this review: 4 associated with medicated or non-medicated UCD200 (containing copper 200 mm2) and 5 associated with medicated or non-medicated UCD300(containing copper 300 mm2). The contraceptive effectiveness, cumulative one-year and two-year continuation rates were similar between medicated UCD200, non-medicated UCD200 and TCu220C. The effectiveness of non-medicated UCD300 was similar to that of TCu220C and TCu200. The effectiveness of medicated UCD300 was similar to that of MLCu375 and TCu220C but lower than that of TCu380A. The cumulative one-year, three-year and five-year continuation rates were similar between medicated,non-medicated UCD300 and TCu380A or MLCu375. The problem of bleeding was less common among medicated UCD users than among non-medicated devices.Conclusions Uterine cavity-shaped devices should continue to be used in the National Family Planning Proramme. However, priority should be given to the 300 mm2 copper containing device. A large multicenter randomized comparative trial of UCD300 and TCu380A is needed.

  17. Partial discharge pulse shape recognition using an inductive loop sensor

    Science.gov (United States)

    Martínez-Tarifa, J. M.; Robles, G.; Rojas-Moreno, M. V.; Sanz-Feito, J.

    2010-10-01

    Partial discharges (PD) are a clear ageing agent on insulating materials used in high-voltage electrical machines and cables. For this reason, there is increasing interest in measuring this phenomenon in an effort to forecast unexpected failures in electrical equipment. In order to focus on harmful discharges, PD pulse shape analysis is being used as an insulation defect identification technique. In this paper, a simple, inexpensive and high-frequency inductive loop sensor will be used to detect and acquire PD pulses. Several measurements will be made on some controlled test cell geometries in order to characterize PD pulse shapes for different discharge sources. The sensor identification capability has been checked in an insulation system where two simultaneous PD sources were active.

  18. Investigations on the internal shape of Constructal cavities intruding a heat generating body

    Directory of Open Access Journals (Sweden)

    Pouzesh Abouzar

    2015-01-01

    Full Text Available This paper deals with the influence that the internal shape of open ‘cavities’ exerts on the Constructal design of a heat generating body. Several shapes of cavity are studied; triangular, elliptical, trapezoidal and Y-shaped cavities intruding into a trapezoidal shaped solid with uniform heat generation. The trapezoidal solid is commonly used in round electronic devices. The geometric aspect ratios of the cavities and the solid are free to vary while the total volume occupied by the solid and the cavity are fixed. The objective is minimizing the peak (hot spot temperature with respect to the geometrical parameters of the system. Finite element method is employed to calculate the peak temperature of the solid. With respect to the Constructal thermal design, the numerical results prove that, utilizing the triangular and Y-Shaped cavities can result more reliable and effective rather than other studied cavities.

  19. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Long; TAO Tian-Jiong; CHENG Bing; WU Bin; XU Yun-Fei; WANG Zhao-Ying; LIN Qiang

    2011-01-01

    @@ A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry.The setup involves alldigital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking.The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs.The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  20. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Science.gov (United States)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  1. Optimising Blackbody Cavity Shape for Spatially Uniform Integrated Emissivity

    Science.gov (United States)

    Saunders, P.

    2017-01-01

    The emissivity of a blackbody cavity, as seen by a radiation thermometer viewing the cavity, depends on both the field of view of the thermometer and the distribution of local effective emissivity values within the field of view. For cylindro-conical cavities, the local effective emissivity generally attains a maximum value at the apex of the cone and drops along the conical section. Thus, radiation thermometers with different fields of view see different blackbody emissivity values. This impacts, particularly, on the calibration of wide-angle low-temperature radiation thermometers and thermal imaging systems where each pixel responds to a different radiance. The spatial uniformity of the effective emissivity profile depends principally on the cone angle, with a weaker dependence on the length-to-diameter ratio of the cavity, the intrinsic emissivity of the cavity surfaces, and the temperature gradient along the cavity. In this paper, a nonlinear least-squares method is used to determine the optimal cone angle as a function of the cavity parameters. It is concluded that full cone angles close to 160° provide the flattest effective emissivity profile across the conical section of the cavity for typical cavity parameters. A method is also described for calculating the value of integrated emissivity, which includes the umbral and penumbral regions seen by an imaging radiation thermometer.

  2. Deflection and focusing of charged particles by cavities of general shape

    Science.gov (United States)

    Hinderer, G.

    1991-04-01

    The integrated transverse momentum change of a charged particle in the rf field of a cavity can be related to the change of its voltage gain due to a virtual transverse displacement of its orbit. Formulas for the particle deflection are derived, which are a generalisation of the Panofsky-Wenzel theorem to an arbitrary cavity shape and to curved orbits through the cavity. In addition, some useful formulas for the transverse and longitudinal focusing are presented.

  3. Similar extrusion and mapping optimization of die cavity modeling for special-shaped products

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; WANG Shuang-xin; ZHU Heng-jun

    2006-01-01

    Aimed at the modeling issues in design and quick processing of extruding die for special-shaped products, with the help of Conformal Mapping theory, Conformal Mapping function is determined by the given method of numerical trigonometric interpolation. Three-dimensional forming problems are transformed into two-dimensional problems, and mathematical model of die cavity surface is established based on different kinds of vertical curve, as well as the mathematical model of plastic flow in extruding deformation of special-shaped products gets completed. By upper bound method, both vertical curves of die cavity and its parameters are optimized. Combining the optimized model with the latest NC technology, NC Program of die cavity and its CAM can be realized. Taking the similar extrusion of square-shaped products with arc radius as instance, both metal plastic similar extrusion and die cavity optimization are carried out.

  4. Effect of cathode shape on vertical buffered electropolishing for niobium SRF cavities

    Science.gov (United States)

    Jin, S.; Wu, A. T.; Lu, X. Y.; Rimmer, R. A.; Lin, L.; Zhao, K.; Mammosser, J.; Gao, J.

    2013-09-01

    This paper reports the research results of the effect of cathode shape during vertical buffered electropolishing (BEP) by employing a demountable single cell niobium (Nb) superconducting radio frequency (SRF) cavity. Several different cathode shapes such as, for instance, bar, ball, ellipsoid, and wheels of different diameters have been tested. Detailed electropolishing parameters including I-V characteristic, removal rate, surface roughness, and polishing uniformity at different locations inside the demountable cavity are measured. Similar studies are also done on conventional electropolishing (EP) for comparison. It is revealed that cathode shape has dominant effects for BEP especially on the obtaining of a suitable polishing condition and a uniform polishing rate in an Nb SRF single cell cavity. EP appears to have the same tendency. This paper demonstrates that a more homogeneous polishing result can be obtained by optimizing the electric field distribution inside the cavity through the modification of the cathode shape given the conditions that temperature and electrolyte flow are kept constant. Electric field distribution and electrolyte flow patterns inside the cavity are simulated via Poisson-Superfish and Solidworks respectively. With the optimal cathode shape, BEP shows a much faster polishing rate of ∼2.5 μm/min and is able to produce a smoother surface finish in the treatments of single cell cavities in comparison with EP.

  5. Studies on high order mode of bell-shaped prototype cavities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aluminium and copper prototype cavities were designed to study higher order modes(HOM).An automatic field mapping system was developed with LabVIEW to measure the adiofrequency(RF)charac teristics,such as resonant frequency,Q-value,shunt impedance and electromagnetic field distribution of the higher-order modes in a model RF cavity.Two kinds of the bell-shaped cavities were measured using the field mapping system,their frequencies are 1.5 GHz and 800 MHz respectively.The fields' distributions of the monopole modes and dipole modes,as well the R/Q values,were measured.

  6. Special-shaped tube drawing forming and conformal optimization of die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2006-01-01

    Aiming at the issues in quick processing and modeling design of drawing special-shaped tube die, by Conformal Mapping Theory and the numerical trigonometry method of interpolation between odd points and even points, the conformal mapping function is obtained. As the result, three-dimension drawing forming were converted into that of two-dimension problems, and the plastic stream function was analyzed, die cavity modeling and its optimized function were set up. Combining with modern processing technology, NC program and CAM of die cavity can be realized. Taking the drawing forming of hexagon tube with arc radii r and ellipse-shaped tube as instances, the drawing die cavity optimization of special-shaped tube was achieved, as well as, the changing principle of wall thickness was analyzed.

  7. AN EVALUATION OF UTERINE CAVITY-SHAPED STAINLESS STEEL IUD IN 400 CHINESE WOMEN IN BEIJING

    Institute of Scientific and Technical Information of China (English)

    ZHAOJi-Zeng; MENLing

    1989-01-01

    Hince 1986, a uterine cavity-shaped stainless steel IUD was used by 400 women in Anshan city, north China. Among them 200 were workers and 200 peasents. 1. Follow up: women were followed at 3rd, 6th, and 12th month after insertion. 3 cases lost follow

  8. Interpolating gain-scheduled H∞ loop shaping design for high speed ball screw feed drives.

    Science.gov (United States)

    Dong, Liang; Tang, WenCheng; Bao, DaFei

    2015-03-01

    This paper presents a method to design servo controllers for flexible ball screw drives with time-varying dynamics, which are mainly due to the time-varying table position and the workpiece mass. A gain-scheduled H∞ loop shaping controller is designed to achieve high tracking performance against the dynamic variations. H∞ loop shaping design procedure incorporates open loop shaping by a set of compensators to obtain performance/robust stability tradeoffs. The interpolating gain-scheduled controller is obtained by interpolating the state space model of the linear time-invariant (LTI) controllers estimated for fixed values of the scheduling parameters and a linear least squares problem can be solved. The proposed controller has been compared with P/PI with velocity and acceleration feedforward and adaptive backstepping sliding mode control experimentally. The experimental results indicate that the tracking performance has been improved and the robustness for time-varying dynamics has been achieved with the proposed scheme.

  9. Multivariable robust controller design of ACLS using loop-shaping approach

    Science.gov (United States)

    Dong, Chaoyang; Cui, Haihua; Wang, Qing

    2008-10-01

    In this paper a multivariable robust controller design approach of the ACLS is accomplished by using robust loop-shaping techniques. In order to avoid the inefficient way of choosing the weight functions by trial-and-error method, the structured genetic algorithm (SGA) approach is introduced, which is capable of simultaneously searching the orders and coefficients of the pre- and post-compensator for weight matrices. According to this approach, engineers can achieve an ideal loop-shape which lies in an appropriate region relating to the desired performance specifications. The effectiveness of this approach is illustrated by the longitudinal equations of a carrier-based aircraft's motion design example.

  10. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    CERN Document Server

    Yagisawa, Yui; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamics, bubbling and cavity regimes. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by consid...

  11. Conformal mapping modeling of metal plastic deformation and die cavity in special-shaped extrusion

    Institute of Scientific and Technical Information of China (English)

    齐红元; 朱衡君; 杜凤山; 刘才

    2002-01-01

    With the help of Complex Function Mapping studied results, the analysis function of Conformal Mapping is set up. Since the complicated three dimension's deformation problems are transferred into two dimension problems, both the stream function and strain ratio field are analyzed in the metal plastic deformation. Using the upper-bound principles, the theory of metal deformation and die cavity optimized modeling is established for random special-shaped product extrusion. As a result, this enables the realization of intelligent technique target in the die cavity of CAD/CAM integration.

  12. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    Science.gov (United States)

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  13. RELATIONSHIP OF FIRST STEP HEIGHT, STEP SLOPE AND CAVITY IN X-SHAPED FLARING GATE PIERS

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; WU Chao; HU Yao-hua; MO Zheng-yu

    2007-01-01

    The energy dissipation of X-shaped flaring gate piers ahead of a stepped spillway was adopted in the Suofengying Hydroplant. Under the circumstance that the first step is higher than others, at the step surface an aerated cavity occured behind piers. The interaction of the weir head, the elevation difference between crest and chamber outlet, the first step height, the slopes of weir end and step, and the size of cavity, was investigated, the expression was derived to characterize their relationship, and the corresponding curves were plotted. The comparison of the calculated and simulated results with the measured data was performed. When the slopes of step and weir end are equivalent, the relative height difference between the first and second steps becomes the main factor influencing the aerated cavity. These findings may be useful in practical applications.

  14. Precise force measurement method by a Y-shaped cavity dual-frequency laser

    Institute of Scientific and Technical Information of China (English)

    Guangzong Xiao; Xingwu Long; Bin Zhang; Geng Li

    2011-01-01

    A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed. The principle of force measurement with this method is analyzed, and the analytic relation expression between the input force and the change in the output beat frequency is derived. Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed; they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range. The maximum scale factor is observed as 5.02×109 Hz/N, with beat frequency instability equivalent resolution of 10-5 N. By optimizing the optical and geometrical parameters of the laser sensor, a force measurement resolution of 10-6i N could be expected.%A novel precise force measurement based on a Y-shaped cavity dual-frequency laser is proposed.The principle of force measurement with this method is analyzed,and the analytic relation expression between the input force and the change in the output beat frequency is derived.Experiments using a 632.8-nm Y-shaped cavity He-Ne dual-frequency laser are then performed;they demonstrate that the force measurement is proportional to a high degree over almost five decades of input signal range.The maximum scale factor is observed as 5.02× 109 Hz/N,with beat frequency instability equivalent resolution of 10-5 N.By optimizing the optical and geometrical parameters of the laser sensor,a force measurement resolution of 10 -6 N could be expected.Precise measurement of force and force-related nagnitudes,such as acceleration,pressure,and mass,is an often demanded task in modern engineering and science[1-3].In recent decades,some research efforts have been intensified to utilize optical measnrement procedures for obtaining precise force measurement.

  15. The Impact of Magnetomechanical Effects on Ferrite B-H Loop Shapes

    DEFF Research Database (Denmark)

    Baguley, C. A.; Madawala, U. K.; Carsten, B.;

    2012-01-01

    Under high dc bias conditions, experimental observations show B-H loops can exhibit a figure-eight shape, as energy is returned from the magnetic core back to the magnetic excitation supply during a portion of the excitation cycle. However, an explanation for this phenomenon is yet to be reported....... In this paper, experimental evidence is presented showing a correlation between the asymmetrical nature of vibration due to magnetostriction and figure-eight B-H loops. Based on this evidence, it is proposed that mechanical energy generated during part of a magnetization cycle can be converted to magnetic...

  16. Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids

    Directory of Open Access Journals (Sweden)

    Sourtiji Ehsan

    2012-01-01

    Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame­ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray­leigh numbers. The influence of the magnetic field has been also studied and de­duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.

  17. Signal line shapes of Fourier transform cavity-enhanced frequency modulation spectroscopy with optical frequency combs

    CERN Document Server

    Johansson, Alexandra C; Khodabakhsh, Amir; Foltynowicz, Aleksandra

    2016-01-01

    We present a thorough analysis of the signal line shapes of Fourier transform-based noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS). We discuss the signal dependence on the ratio of the modulation frequency, f${_m}$, to the molecular line width, {\\Gamma}. We compare a full model of the signals and a simplified absorption-like analytical model that has high accuracy for low f${_m}$/{\\Gamma} ratios and is much faster to compute. We verify the theory experimentally by measuring and fitting NICE-OFCS spectra of CO${_2}$ at 1575 nm using a system based on an Er:fiber femtosecond laser and a cavity with a finesse of ~11000.

  18. IMC-PID design based on model matching approach and closed-loop shaping.

    Science.gov (United States)

    Jin, Qi B; Liu, Q

    2014-03-01

    Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability.

  19. Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy

    Science.gov (United States)

    Jiang, Meng; Zhang, Weigang; Zhang, Qi; Liu, Yaping; Liu, Bo

    2010-01-01

    An improved ring-down measurement principle for optical waveguides is presented. Fiber loop ring-down spectroscopy allows for measurement of minute optical losses in high-finesse fiber-optic cavities and immunity to the fluctuation of laser source. The evanescent wave absorption losses dependent on the absorption and the refractive index of ambient solution have been theoretically analyzed. The complex refractive index is introduced into our model and extinction coefficient can be calculated accurately through finite element analysis by setting the boundaries of the fiber and the ambient conditions. Using this method, the refractive index of environment can be taken into consideration. Our principle is validated by the highly-sensitive measurement of evanescent wave absorption loss. By chemically processing the surface of sensing segment along an extending ring-down cavity, the concentration of small volume Diethyl Sulphoxide solution where the etched fiber immersed into has been successfully measured and discussed.

  20. Quantum-enhanced metrology with the single-mode coherent states of an optical cavity inside a quantum feedback loop

    Science.gov (United States)

    Clark, Lewis A.; Stokes, Adam; Beige, Almut

    2016-08-01

    In this paper, we use the nonlinear generator of dynamics of the individual quantum trajectories of an optical cavity inside an instantaneous quantum feedback loop to measure the phase shift between two pathways of light with a precision above the standard quantum limit. The feedback laser provides a reference frame and constantly increases the dependence of the state of the resonator on the unknown phase. Since our quantum metrology scheme can be implemented with current technology and does not require highly efficient single photon detectors, it should be of practical interest until highly entangled many-photon states become more readily available.

  1. A detailed radiation heat transfer study of a dish-Stirling receiver: The impact of cavity wall radiation properties and cavity shapes

    Science.gov (United States)

    Garrido, Jorge; Wang, Wujun; Nilsson, Martin; Laumert, Björn

    2016-05-01

    A detailed 3-D radiation analysis of a dish-Stirling cavity receiver is carried out to estimate the cavity steady-state temperatures in order to assess the receiver integrity, lifetime and efficiency performance. For this purpose, a parabolic dish was modeled with 5.2 m focal length, 8.85 m aperture diameter and 2 mrad surface error. Three generic cavity shapes (cylindrical, diamond-shaped and reverse-conical) with three different emissivities (0.2, 0.4 and 0.7) are studied. Worst-case scenario heat generations (total absorbed radiation), maximum steady-state temperatures and energy balances of the cavities are calculated to evaluate the receiver performance. The results show that reverse-conical cavities can significantly reduce cavity wall peak temperatures (by 40-120 K), improve the temperature evenness and decrease the radiation losses by 4-5%. Regarding radiation properties, low reflectivities present lower steady-state temperatures even for low/moderate direct solar fluxes. Due to the lower temperatures, lower total thermal losses are also expected.

  2. Cardiac looping may be driven by compressive loads resulting from unequal growth of the heart and pericardial cavity. Observations on a physical simulation model

    Directory of Open Access Journals (Sweden)

    Jörg eMänner

    2014-04-01

    Full Text Available The transformation of the straight embryonic heart tube into a helically wound loop is named cardiac looping. Such looping is regarded as an essential process in cardiac morphogenesis since it brings the building blocks of the developing heart into an approximation of their definitive topographical relationships. During the past two decades, a large number of genes have been identified which play important roles in cardiac looping. However, how genetic information is physically translated into the dynamic form changes of the looping heart is still poorly understood. The oldest hypothesis of cardiac looping mechanics attributes the form changes of the heart loop (ventral bending → simple helical coiling → complex helical coiling to compressive loads resulting from growth differences between the heart and the pericardial cavity. In the present study, we have tested the physical plausibility of this hypothesis, which we call the growth-induced buckling hypothesis, for the first time. Using a physical simulation model, we show that growth-induced buckling of a straight elastic rod within the confined space of a hemispherical cavity can generate the same sequence of form changes as observed in the looping embryonic heart. Our simulation experiments have furthermore shown that, under bilaterally symmetric conditions, growth-induced buckling generates left- and right-handed helices (D-/L-loops in a 1:1 ratio, while even subtle left- or rightward displacements of the caudal end of the elastic rod at the pre-buckling state are sufficient to direct the buckling process towards the generation of only D-loops or L-loops, respectively. Our data are discussed with respect to observations made in biological ‘models’. We conclude that compressive loads resulting from unequal growth of the heart and pericardial cavity play important roles in cardiac looping. Asymmetric positioning of the venous heart pole may direct these forces towards a biased

  3. Plasmonic band-pass filter device using coupled asymmetric cross-shaped cavity

    Science.gov (United States)

    Geng, Xiao-Meng; Mi, Si-Chen; Wang, Tie-Jun; He, Lin-Yan; Wang, Chuan

    2017-01-01

    In this paper, a novel plasmonic band-pass filter by using the system consisting four waveguides and an asymmetric cross-shaped resonator is proposed. The plasmonic system is based on the metal-insulator-metal (MIM) structure which could overcome the diffraction limit and exhibit various promising applications. Here, we investigate the transmission spectra of the cross-shaped resonator by using finite-different-time-domain (FDTD) method and we find that the peak-wavelength on different ports show redshift or blueshift behaviors which are linearly changed with the length of cavity or the coupling distance. Moreover, the wavelength filter could be achieved and further applied in optical signal integrated circuits.

  4. FREQ: A computational package for multivariable system loop-shaping procedures

    Science.gov (United States)

    Giesy, Daniel P.; Armstrong, Ernest S.

    1989-01-01

    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.

  5. [Studies on relationship between shape of uterine cavity on hysterosalpingography and menstrual disorder].

    Science.gov (United States)

    Nakamura, M; Douchi, T; Nozaki, M; Yoshimitsu, K; Otsuka, H; Nagata, Y

    1983-07-01

    Eight hundred and twenty five infertility patients were investigated to reassess the association between uterine mild anomaly and menstrual disorder proposed as a new syndrome by Sørensen. A hysterosalpingogram we classified the shape of the uterine cavity into 4 types: Normal uterus, T-shaped uterus, arcuate uterus and others (included septate uterus, bicornuate uterus,--), and also classified the size of the uterine cavity into 3 groups; large uterus, medium-sized uterus and small uterus. After classification of uterine shape and size, menstrual disorder in each patient was reviewed and the correlation between uterine anomaly and menstrual disorder was examined. Five hundred and twenty eight out of 770 patients (68.6%) were assigned to normal uterus, 75(7.9%) to T-shape uterus, 148(19.2%) to arcuate uterus and 19(2.5%) to others. Their incidences of menstrual disorder were 31.4%, 37.2%, 39.2% and 42.1%, respectively, and no significant difference was found among them. There were 55 patients (7.3%) with a large uterus, 655(87.2%) with a medium-sized uterus and 41(5.5%) with a small uterus. The incidences of menstrual disorder were 16.4%, 35% and 34.1%, respectively, and there was significant difference in incidence between large uterus and medium-sized uterus. The uterine fundal depression index (FDI) was used as a parameter to evaluate uterine mild anomaly. The incidences of menstrual disorder were 29.8% in the FDI-0 group, 32.9% in the FDI-1 approximately 10 group, 42.7% in the FDI-11 approximately 20 group, 45.5% in the FDI-21 approximately 30 group and 22.2% in the FDI-over 31 group. However, it was difficult to find a difference in the pregnancy rate or delivery rate among different classifications of uterine shape, size or FDI. From these results, it can be said that mild uterine anomaly is hardly associated at all with menstrual disorder clinically.

  6. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  7. QFT Based Robust Positioning Control of the PMSM Using Automatic Loop Shaping with Teaching Learning Optimization

    Directory of Open Access Journals (Sweden)

    Nitish Katal

    2016-01-01

    Full Text Available Automation of the robust control system synthesis for uncertain systems is of great practical interest. In this paper, the loop shaping step for synthesizing quantitative feedback theory (QFT based controller for a two-phase permanent magnet stepper motor (PMSM has been automated using teaching learning-based optimization (TLBO algorithm. The QFT controller design problem has been posed as an optimization problem and TLBO algorithm has been used to minimize the proposed cost function. This facilitates designing low-order fixed-structure controller, eliminates the need of manual loop shaping step on the Nichols charts, and prevents the overdesign of the controller. A performance comparison of the designed controller has been made with the classical PID tuning method of Ziegler-Nichols and QFT controller tuned using other optimization algorithms. The simulation results show that the designed QFT controller using TLBO offers robust stability, disturbance rejection, and proper reference tracking over a range of PMSM’s parametric uncertainties as compared to the classical design techniques.

  8. Measuring the performance of the coaxial HOM coupler on a 2-cell TESLA-shape copper cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; WANG Er-Dong; ZHANG Bao-Cheng; ZHAO Kui

    2009-01-01

    Coaxial High Order Mode (HOM) couplers have been fabricated at Peking University and their RF performance has been measured on a test device consisting of a coaxial transmission line and a 2-cellTESLA-shape copper cavity. The test results on the 2-cell TESLA-shape copper cavity with HOM couplers indicate that the coupler can cut off the fundamental mode TM010 and absorb HOMs effectively after a careful adjustment. The optimal angle of the HOM coupler with the beam tube is found. The initial test results of HOM couplers are presented in this paper.

  9. Uniaxial Compressive Constitutive Relationship of Concrete Confined by Special-Shaped Steel Tube Coupled with Multiple Cavities

    Directory of Open Access Journals (Sweden)

    Haipeng Wu

    2016-01-01

    Full Text Available A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes.

  10. Chaotic escape from an open vase-shaped cavity. I. Numerical and experimental results

    Science.gov (United States)

    Novick, Jaison; Keeler, Matthew L.; Giefer, Joshua; Delos, John B.

    2012-01-01

    We present part I in a two-part study of an open chaotic cavity shaped as a vase. The vase possesses an unstable periodic orbit in its neck. Trajectories passing through this orbit escape without return. For our analysis, we consider a family of trajectories launched from a point on the vase boundary. We imagine a vertical array of detectors past the unstable periodic orbit and, for each escaping trajectory, record the propagation time and the vertical detector position. We find that the escape time exhibits a complicated recursive structure. This recursive structure is explored in part I of our study. We present an approximation to the Helmholtz equation for waves escaping the vase. By choosing a set of detector points, we interpolate trajectories connecting the source to the different detector points. We use these interpolated classical trajectories to construct the solution to the wave equation at a detector point. Finally, we construct a plot of the detector position versus the escape time and compare this graph to the results of an experiment using classical ultrasound waves. We find that generally the classical trajectories organize the escaping ultrasound waves.

  11. Chaotic escape from an open vase-shaped cavity. II. Topological theory.

    Science.gov (United States)

    Novick, Jaison; Delos, John B

    2012-01-01

    We present part II of a study of chaotic escape from an open two-dimensional vase-shaped cavity. A surface of section reveals that the chaotic dynamics is controlled by a homoclinic tangle, the union of stable and unstable manifolds attached to a hyperbolic fixed point. Furthermore, the surface of section rectifies escape-time graphs into sequences of escape segments; each sequence is called an epistrophe. Some of the escape segments (and therefore some of the epistrophes) are forced by the topology of the dynamics of the homoclinic tangle. These topologically forced structures can be predicted using the method called homotopic lobe dynamics (HLD). HLD takes a finite length of the unstable manifold and a judiciously altered topology and returns a set of symbolic dynamical equations that encode the folding and stretching of the unstable manifold. We present three applications of this method to three different lengths of the unstable manifold. Using each set of dynamical equations, we compute minimal sets of escape segments associated with the unstable manifold, and minimal sets associated with a burst of trajectories emanating from a point on the vase's boundary. The topological theory predicts most of the early escape segments that are found in numerical computations.

  12. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang

    2013-01-01

    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  13. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  14. Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity

    Science.gov (United States)

    Noguchi, Atsushi; Yamazaki, Rekishu; Ataka, Manabu; Fujita, Hiroyuki; Tabuchi, Yutaka; Ishikawa, Toyofumi; Usami, Koji; Nakamura, Yasunobu

    2016-10-01

    Cavity electro-(opto-)mechanics gives us a quantum tool to access mechanical modes in a massive object. Here we develop a quantum electromechanical system in which a vibrational mode of a SiN x membrane are coupled to a three-dimensional loop-gap superconducting microwave cavity. The tight confinement of the electric field across a mechanically compliant narrow-gap capacitor realizes the quantum strong coupling regime under a red-sideband pump field and the quantum ground state cooling of the mechanical mode. We also demonstrate strong coupling between two mechanical modes, which is induced by two-tone parametric drives and mediated by a virtual photon in the cavity.

  15. Regulation of flow through a T-Shaped open cavity by temperature dependent P, PI, and PID controllers

    Science.gov (United States)

    Saha, Sourav; Mojumder, Satyajit; Saha, Sumon

    2016-07-01

    P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (kp), integral gain (ki), and derivative gain (kd) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.

  16. 589-nm yellow laser generation by intra-cavity sum-frequency mixing in a T-shaped Nd:YAG laser cavity

    Institute of Scientific and Technical Information of China (English)

    Xiuyan Chen; Xiu Li; Haolei Zhang; Haowei Chen; Jintao Bai; Zhaoyu Ren

    2009-01-01

    To obtain high power 589-nm yellow laser,a T-shaped thermal-insensitive cavity is designed.The optimal power ratio of 1064- and 1319-nm beams is considered and the fundamental spot size distribution from the output mirror to the two laser rods are calculated and simulated,respectively.As a result,a 589-nm yellow laser with the average output power of 5.7 W is obtained in the experiment when the total pumping power is 695 W.The optical-to-optical conversion efficiency from the fundamental waves to the sum frequency generation is about 15.2% and the pulse width is 150 ns at the repetition rate of 18 kHz.The instability of the yellow laser is also measured,which is less than 2% within 3 h.The beam quality factors are M2x =4.96 and M2y= 5.08.

  17. Intensity-only measurement of partially uncontrollable transmission matrix: demonstration with wave-field shaping in a microwave cavity

    CERN Document Server

    del Hougne, Philipp; Daudet, Laurent; Lerosey, Geoffroy

    2016-01-01

    Transmission matrices (TMs) have become a powerful and widely used tool to describe and control wave propagation in complex media. In certain scenarios the TM is partially uncontrollable, complicating its identification and use. In standard optical wavefront shaping experiments, uncontrollable reflections or additional sources may be the cause; in reverberating cavities, uncontrollable reflections off the walls have that effect. Here we employ phase retrieval techniques to identify such a partially uncontrollable system's TM solely based on random intensity-only reference measurements. We demonstrate the feasibility of our method by focusing both on a single target as well as on multiple targets in a microwave cavity, using a phase-binary Spatial-Microwave-Modulator.

  18. Symbolic-numeric hybrid optimization for plant/controller integrated design in H_∞ loop-shaping design

    OpenAIRE

    Kanno, Masaaki; Hara, Shinji

    2012-01-01

    This paper proposes a plant/controller design integration method for H_∞ loop-shaping design based on symbolic-numeric hybrid optimization. This approach firstly employs parametric polynomial spectral factorization to accomplish parametric optimization and derive an expression for the optimal cost. Owing to the obtained expression, sensitivity analysis of the achievable performance level with respect to plant parameters is amenable, which allows numerical optimization methods to seek the opti...

  19. Waveguide and articulated arm for Er:YAG laser system: shape and depth of laser cavity in hard dental tissues

    Science.gov (United States)

    Jelinkova, Helena; Dostalova, Tatjana; Miyagi, Mitsunobu; Wang, You; Shi, Yi-Wei; Dolezalova, Libuse; Hamal, Karel; Krejsa, Otakar; Kubelka, Jiri; Prochazka, Stanislav

    1998-04-01

    The aim of our study was to verify the efficiency of delivery systems for Er:YAG laser radiation which could be used in dentistry. The influence of increasing energy and number of pulses on a profile and depth of drilled holes was investigated. Er:YAG laser was operating in a free-running mode, generating a length of pulses 200 microsecond with a maximum energy of 500 mJ. The delivery systems investigated were an articulated arm and a fluorocarbon polymer-coated silver hollow glass waveguide. The prepared hard tissues were a sliced part of enamel, dentine and ivory. The laser radiation was directed on them by focusing optics (CaF2 lens) together with the cooling water to ensure that the tissues will not be burned. For the evaluation of shapes, depth and profiles of the prepared cavities the metallographic microscope, x-ray microtomograph and scanning electron microscope were used. From the results it was observed that the profile and depth of the cavities prepared by the laser radiation delivered by the various systems (waveguide or articulated arm) are not the same. The laser radiation delivered by waveguide produces a larger diameter cavity with a lower depth. The holes are smoother and without side effects.

  20. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  1. Eye rotation induced dynamics of a Newtonian fluid within the vitreous cavity: the effect of the chamber shape

    Energy Technology Data Exchange (ETDEWEB)

    Stocchino, Alessandro [Department of Environmental Engineering, University of Genoa (Italy); Repetto, Rodolfo [Department of Engineering of Structures, Water and Soil, University of L' Aquila (Italy); Cafferata, Chiara [Department of Environmental Engineering, University of Genoa (Italy)

    2007-04-07

    The dynamics of the vitreous body induced by eye rotations is studied experimentally. In particular, we consider the case in which the vitreous cavity is filled by a Newtonian fluid, either because the vitreous is liquefied or because it has been replaced, after vitrectomy, by a viscous fluid. We employ a rigid Perspex container which models, in a magnified scale, the vitreous cavity of the human eye. The shape of the cavity closely resembles that of the real vitreous chamber; in particular, the anterior part of the container is concave in order to model the presence of the eye lens. The container is filled with glycerol and is mounted on the shaft of a computer-controlled motor which rotates according to a periodic time law. PIV (particle image velocimetry) measurements are taken on the equatorial plane orthogonal to the axis of rotation. The experimental measurements show that the velocity field is strongly influenced by the deformed geometry of the domain. In particular, the formation of a vortex in the vicinity of the lens, which migrates in time towards the core of the domain, is invariably observed. The vortex path is tracked in time by means of a vortex identification technique and it is found that it is significantly influenced by the Womersley number of the flow. Particle trajectories are computed from the PIV measurements. Particles initially located at different positions on the equatorial horizontal plane (perpendicular to the axis of rotation) tend to concentrate in narrow regions adjacent to the lens, thus suggesting the existence, in such regions, of a vertical fluid ejection. Such a strong flow three-dimensionality, which is essentially induced by the irregular shape of the domain, may play a significant role in the mixing processes taking place inside the eye globe. The tangential stresses acting on the rigid boundary of the domain are also computed from the experimental measurements showing that regions subject to particularly intense stresses

  2. Silica nanowire conjugated with loop-shaped oligonucleotides: A new structure to silence cysteine proteinase gene in Leishmania tropica.

    Science.gov (United States)

    Bafghi, Ali Fatahi; Jebali, Ali; Daliri, Karim

    2015-12-01

    The main aim of this study was to evaluate the capability of silica nanowire conjugated with loop-shaped oligonucleotides (SNWCLSOs) to silence cysteine proteinase b (Cpb) gene in Leishmania (L) tropica. On the other hand, its toxicity on amastigotes and mouse peritoneal macrophages was evaluated by 5-diphenyl-tetrazolium bromide (MTT) assay. For control, two loop-shaped oligonucleotides (LSO) were considered. LSO1 and LSO2 were 5'-NH2-cccccaaaaaaaaaaaaaaaaaaaaaaaaaggggg-COOH-3' and LSO2: 5'-NH2-cccccttttttttttttttttttttttttttttttttttttttggggg-COOH-3', respectively. After 72 h incubation at 37 °C, AMSNW, LSO1, and LSO2 had no remarkable toxicity on L. tropica amastigote (2 × 10(5)/mL) and mouse peritoneal macrophages (2 × 10(5)/mL). In case of SNWCLSOs, they had high toxicity on L. tropica amastigote, but they had no effect on mouse peritoneal macrophages. At concentrations of 1, 10, and 25 μg/mL, AMSNW, LSO1 and LSO2 had no effect on the gene expression. But, at concentration of 50 and 100 μg/mL, decrease of gene expression was observed. In case of SNWCLSOs, they could dramatically decrease the gene expression. It could be concluded that since SNWCLSOs could silence Cpb gene with no remarkable toxicity, they are good choice for treat cutaneous leishmaniasis in future. As a new agent, it must be checked in vivo.

  3. Intra-cavity gain shaping of mode-locked Ti:Sapphire laser oscillations

    CERN Document Server

    Yefet, Shai; Pe'er, Avi

    2015-01-01

    The gain properties of an oscillator strongly affect its behavior. When the gain is homogeneous, different modes compete for gain resources in a `winner takes all' manner, whereas with inhomogeneous gain, modes can coexist if they utilize different gain resources. We demonstrate precise control over the mode competition in a mode locked Ti:sapphire oscillator by manipulation and spectral shaping of the gain properties, thus steering the competition towards a desired, otherwise inaccessible, oscillation. Specifically, by adding a small amount of spectrally shaped inhomogeneous gain to the standard homogeneous gain oscillator, we selectively enhance a desired two-color oscillation, which is inherently unstable to mode competition and could not exist in a purely homogeneous gain oscillator. By tuning the parameters of the additional inhomogeneous gain we flexibly control the center wavelengths, relative intensities and widths of the two colors.

  4. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    Directory of Open Access Journals (Sweden)

    Andrea Ehrmann

    2014-08-01

    Full Text Available The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  5. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, Andrea [Niederrhein University of Applied Sciences, Faculty of Textile and Clothing Technology, 41065 Mönchengladbach (Germany); Blachowicz, Tomasz [Silesian University of Technology, Institute of Physics, Center for Science and Education, 44-100 Gliwice (Poland)

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  6. Surface quality of extruding metal special-shape products and frictional behavior in optimized die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2004-01-01

    With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.

  7. H∞ Loop Shaping Control for Plasma Vertical Position Instability on QUEST

    Science.gov (United States)

    Liu, Xiaolong; Kazuo, Nakamura; Tatsuya, Yoshisue; Osamu, Mitarai; Makoto, Hasegawa; Kazutoshi, Tokunaga; Xue, Erbing; Hideki, Zushi; Kazuaki, Hanada; Akihide, Fujisawa; Hiroshi, Idei; Shoji, Kawasaki; Hisatoshi, Nakashima; Aki, Higashijima; Kuniaki, Araki

    2013-03-01

    QUEST has a divertor configuration with a high and a negative n-index, and the problem of plasma vertical position instability control in QUEST is still under extensive study for achieving high efficiency plasma. The instability we considered is that the toroidal plasma moves either up or down in the vacuum chamber until it meets the vessel wall and is extinguished. The actively controlled coils (HCU and HCL) outside the vacuum vessel are serially connected in feedback with a measurement of the plasma vertical position to provide stabilizing control. In this work, a robust controller is employed by using the loop synthesis method, and provides robust stability over a wide range of n-index. Moreover, the gain of the robust controller is lower than that of a typical proportional derivative (PD) controller in the operational frequency range; it indicates that the robust controller needs less power consumption than the PD controller does.

  8. Messenger RNA Fluctuations and Regulatory RNAs Shape the Dynamics of Negative Feedback Loop

    CERN Document Server

    Martínez, María Rodríguez; Tlusty, Tsvi; Pilpel, Yitzhak; Furman, Itay; 10.1103/PhysRevE.81.031924

    2010-01-01

    Single cell experiments of simple regulatory networks can markedly differ from cell population experiments. Such differences arise from stochastic events in individual cells that are averaged out in cell populations. For instance, while individual cells may show sustained oscillations in the concentrations of some proteins, such oscillations may appear damped in the population average. In this paper we investigate the role of RNA stochastic fluctuations as a leading force to produce a sustained excitatory behavior at the single cell level. Opposed to some previous models, we build a fully stochastic model of a negative feedback loop that explicitly takes into account the RNA stochastic dynamics. We find that messenger RNA random fluctuations can be amplified during translation and produce sustained pulses of protein expression. Motivated by the recent appreciation of the importance of non--coding regulatory RNAs in post--transcription regulation, we also consider the possibility that a regulatory RNA transcri...

  9. Electromagnetic fields backscattered from an s-shaped inlet cavity with an absorber coating on its inner walls

    Science.gov (United States)

    Burkholder, R. J.; Chuang, C. W.; Pathak, P. H.

    1987-01-01

    The EM backscatter from a two-dimensional S-shaped inlet cavity is analyzed using three different techniques, namely a hybrid combination of asymptotic high frequency and modal methods, an integral equation method, and the geometrical optics ray method, respectively. This inlet has a thin absorber coating on its perfectly conducting inner walls and the planar interior termination is made perfectly conducting. The effect of the absorber on the inner wall is treated via a perturbation scheme in the hybrid approach where it is assumed that the loss is sufficiently small for the method to be valid. The results are compared with the backscatter from a straight inlet cavity to evaluate the effect of offsetting the termination in the S-bend configuration such that it is not visible from the open end of the inlet. The envelope of the backscatter pattern for the straight inlet is always seen to peak around the forward axis due to the large return from the directly visible termination, and the pattern envelope tapers off away from the forward axis. Offsetting the termination causes the envelope of the backscatter pattern to flatten out, thereby reducing the return near the forward axis by several dB. The absorber coating reduces the pattern level of the straight inlet in directions away from the forward axis but has little effect on the peak near the axis; furthermore, the absorber coating is seen to consistently reduce the backscatter from the S-bend inlet for almost all incidence angles. The hybrid method gives excellent agreement with experimental data and with the integral equation solution, whereas, the geometrical optics ray tracing method is able to generally predict the average of the bachscatter pattern but not the pattern details.

  10. Rise time reduction of thermal actuators operated in air and water through optimized pre-shaped open-loop driving

    Science.gov (United States)

    Larsen, T.; Doll, J. C.; Loizeau, F.; Hosseini, N.; Peng, A. W.; Fantner, G. E.; Ricci, A. J.; Pruitt, B. L.

    2017-04-01

    Electrothermal actuators have many advantages compared to other actuators used in micro-electro-mechanical systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10–90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10–90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.

  11. QUANTITATIVE CHARACTERIZATION OF STRESS-STRAIN HYSTERESIS LOOPS OF Cu-Zn-Al SHAPE MEMORY ALLOY

    Institute of Scientific and Technical Information of China (English)

    Y.F. Guo; Y.Z. Huo; G.T. Zeng; X.T. Zu

    2001-01-01

    A six-parameter mathematical model was introduced to simulate the stress-strain hysteresis and the inner hysteresis of polycrystalline shape memory alloys (SMAs). By comparing with experiments of Cu-Zn-Al SMA, it was shown that the model could be used to calculate the stress-strain relations with rather good accuracy. Moreover,it was found that the six parameters introduced in this paper represented the characteristics of the stress-strain hysteresis of polycrystalline SMA and can be used to characterize the hysteresis quantitatively.

  12. Graded index profiles and loss-induced single-mode characteristics in vertical-cavity surface-emitting lasers with petal-shape holey structure

    Institute of Scientific and Technical Information of China (English)

    Liu An-Jin; Qu Hong-Wei; Chen Wei; Jiang Bin; Zhou Wen-Jun; Xing Ming-Xin; Zheng Wan-Hua

    2011-01-01

    The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.

  13. An analytical model for the scattering of guided waves by partly through-thickness cavities with irregular shapes in 3D

    OpenAIRE

    Moreau, Ludovic; Caleap, Mihaï; Velichko, Alexander; Wilcox, Paul D.

    2012-01-01

    International audience; This paper presents an analytical model for the three-dimensional scattering of Lamb and SH waves by a partly through-thickness, flat-bottomed cavity with an irregular shape. In this model, both the scattered field and the standing field in the thinner plate beneath the cavity are decomposed on the basis of Lamb and SH waves, by including propagating and evanescent modes. The amplitude of the modes is calculated after writing the nullity of the total stress at the boun...

  14. Optimizing the control system of cement milling: process modeling and controller tuning based on loop shaping procedures and process simulations

    Directory of Open Access Journals (Sweden)

    D. C. Tsamatsoulis

    2014-03-01

    Full Text Available Based on a dynamical model of the grinding process in closed circuit mills, efficient efforts have been made to optimize PID controllers of cement milling. The process simulation is combined with an autoregressive model of the errors between the actual process values and the computed ones. Long term industrial data have been used to determine the model parameters. The data include grinding of various cement types. The M - Constrained Integral Gain Optimization (MIGO loop shaping method is utilized to determine PID sets satisfying a certain robustness constraint. The maximum sensitivity is considered as such a criterion. Both dynamical parameters and PID sets constitute the inputs of a detailed simulator which involves all the main process characteristics. The simulation is applied over all the PID sets aiming to find the parameter region that provides the minimum integral of absolute error, which functions as a performance criterion. For each cement type a PID set is selected and put in operation in a closed circuit cement mill. The performance of the regulation is evaluated after a sufficient time period, concluding that the developed design combining criteria of both robustness and performance leads to PID controllers of high efficiency.

  15. An unstructured finite-volume method to analyze the impact of shape on natural convection and melting inside cavities

    CERN Document Server

    Omari, Kamal El; Guer, Yves Le

    2010-01-01

    The present paper numerically analyzes a passive cooling system using cavities with different geometries filled with thermal conductivity-enhanced phase change material (PCM). A numerical code is developed using an unstructured finite-volume method and an enthalpy-porosity technique to solve for natural convection coupled to a solid-liquid phase change. Five geometries containing the same volume of PCM are compared while cooling the same surface. The unsteady evolution of the melting front and the velocity and temperature fields is detailed. Other indicators of cooling efficiency are monitored, including the maximum temperature reached at the cooled surface. The computational results show the high impact of varying geometry: a maximum temperature difference as high as 40 degrees Celsius is observed between two of the cavities. The best efficiency is obtained for a cavity shifted vertically relative to the cooled surface. Other findings and recommendations are made for the design of PCM-filled cavities.

  16. Assessment of uterine cavity size and shape: a systematic review addressing relevance to intrauterine procedures and events.

    Science.gov (United States)

    Goldstuck, Norman

    2012-09-01

    Uterine cavity measurement began with evaluation of post-mortem and surgical specimens. It has been extended in vivo by use of mechanical instruments and visualization techniques. This is a systematic review of the range of values for the uterine cavity and the practical implications of these measurements, Following a review of multiple data bases & a QUORUM analysis. Only articles with clearly defined quantitative measurements were included. Mechanical cavity measurements with a variety of instruments gave a mean endometrial cavity length (ECL) of 33.73 mm (18-22.1) and a mean endometrial cavity width (ECW) of 25.1 mm (17.8-32.2) for nulliparae. The values for multiparae were mean ECL 38.6mm(20.61-40.3) and mean ECW 34.9 mm (23.4-53). Imaging measurements for the uterine cavity by hysterography and ultrasound were mean ECL 44.3 mm (29-64) for multiparae and ECL 37 mm for nulliparae. Mean ECW was 28.2 mm (21-33) for nulliparae and 32.1 mm (26-38) for multiparae. There were wide variations due to parity, ethnicity and gestational states. Accurate measurement of intrauterine parameters is valuable for improving and enhancing many intrauterine procedures including IUD insertion, endometrial ablation, embryo placement in IVF and management of spontaneous and therapeutic abortion.

  17. Characteristics of entropy generation and heat transfer in a microchannel with fan-shaped reentrant cavities and internal ribs

    Institute of Scientific and Technical Information of China (English)

    XIA; GuoDong; ZHAI; YuLing; CUI; ZhenZhen

    2013-01-01

    Three-dimensional laminar fluid flow and heat transfer in a micro heat sink with cavities and internal ribs are investigated us-ing numerical methods. Moreover, according to the second law of thermodynamics, the model of entropy generation is also established for variable cross section of the microchannel. The simulation encompasses Reynolds number of 198-600, relative cavity height e1/Dhvalues of 0-0.65, relative rib height e2/Dhrange of 0-0.2167. The results show that the effect of relative rib height on entropy generation is significant, while the relative cavity height has little effect on it. The combined effect of cavities and ribs in the microchannel has better performance of heat transfer than the smooth microchannel under similar conditions. Extensive simulations are conducted to collect data on the characteristics of heat transfer and fluid flow in a micro heat sink with cavities and internal ribs. Using these data, correlations for Nusselt number and friction factor in terms of Reynolds number and the geometry of cavity and rib have been developed.

  18. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Nanyu Han

    Full Text Available Neuraminidase (NA of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1 was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150 of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  19. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    Science.gov (United States)

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  20. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  1. Synthesis of new tren-based tris-macrocycles. Anion cluster assembling inside the cavity generated by a bowl-shaped receptor.

    Science.gov (United States)

    Bazzicalupi, Carla; Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Ciattini, Samuele; Giorgi, Claudia; Maoggi, Sauro; Paoletti, Piero; Valtancoli, Barbara

    2002-12-13

    The synthesis of three new tris-macrocycles, containing three [12]aneN(4) (L1), [12]aneN(3)O (L2), or [14]aneN(4) (L3) moieties appended to a tren unit, is reported. The crystal structure of the [(Na(ClO(4))(6)) subset L1(2)H(13)]Na(6)Cl(2)(ClO(4))(12) compound shows the anionic cluster [Na(ClO(4))(6)](5)(-) assembled inside the cavity defined by two bowl-shaped polyammonium receptors, held by multiple charge-charge and hydrogen bond interactions.

  2. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty, Babu A.; Halavaty, Andrei S.; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F.; Joachimiak, Andrzej

    2016-04-01

    Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56 Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices a4 and a7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix a4 is stabilized by the hydrogen bond between Glu67 (helix a4) and Gln130 (helix a7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix a4. This local conformational switch of helix a4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution smallmolecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.

  3. 5.5 W continuous-wave TEM00-mode Nd:YAG solar laser by a light-guide/2V-shaped pump cavity

    Science.gov (United States)

    Almeida, J.; Liang, D.; Vistas, C. R.; Bouadjemine, R.; Guillot, E.

    2015-12-01

    A significant progress in TEM00-mode solar laser power and efficiency with heliostat-parabolic mirror system is reported here. A double-stage light-guide/2V-shaped pump cavity is used to efficiently couple and redistribute the concentrated pump light from a 2-m-diameter parabolic mirror to a 4-mm-diameter, 30-mm-length, 1.1 at.% Nd:YAG single-crystal rod. The light guide with large rectangular cross section enables a stable uniform pumping profile along the laser rod, resulting also in an enhanced tracking error compensation capacity. 5.5 W cw TEM00-mode solar laser power was measured at the output of a thermally near unstable asymmetric resonator. 150 and 157 % improvement in TEM00-mode solar laser collection efficiency and slope efficiency were obtained, respectively.

  4. Shaping the cavity of the macrocyclic ligand in metallocalix[4]arenes: the role of the ligand sphere.

    Science.gov (United States)

    Radius, U

    2001-12-17

    The coordination form of calix[4]arene ligands and therefore the cavity of the macrocyclic ligand can be controlled by other ligands in transition metal calix[4]arene complexes, if strong directing coligands such as oxo groups are used. This paper describes the synthesis and characterization of the d(0) transition metal complexes [Cax(OMe)(2)O(2)TiCl(2)] 1 (monoclinic, space group P2(1)/c, lattice constants a = 21.639(4), b = 20.152(3), c = 12.750(3) A, beta = 95.68(3), V = 5532.6(19) A(3)) and [Cax(OMe)(2)O(2)MoO(2)] 2 (monoclinic, space group P2/c, lattice constants a = 12.433(3), b = 16.348(3), c = 24.774(5) A, beta = 99.15(3), V = 4971.6(17) A(3)). Whereas in 1 the calix[4]arene ligand adopts an elliptically distorted cone conformation, the macrocyclic ligand binds in a paco-like conformation to the metal center of 2, in the solid state and in solution. This was predicted by density functional theory calculations on models of different isomers of 1 and 2: cis,cone-1',2', trans,cone-1',2', and cis,paco-1',2'. According to these calculations, the energetic difference of 72.9 kJ/mol between both cis-dioxomolybdenum compounds is quite pronounced in favor of the cis,paco isomer, and 28.0 kJ/mol for the titanium compounds in favor of the cis,cone isomer.

  5. Design of low order controller using the loop shaping design procedure. Stabilizing control of a two-wheeled vehicle; Loop seikei sekkei shuho ni yoru teijigen seigyoki no sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Murata, T.; Kawatani, R. [Nagaoka University of Technology, Nagaoka (Japan)

    1998-01-31

    This paper proposes one design method of low order controllers using a loop shaping design procedure (LSDP). The order of a controller using the central solution of LSDP becomes the sum of the order of a design model and 2 times the order of a weight transfer function, while that using this method becomes the sum of 1 and the order of a weight transfer function. Since this method uses no approximation in order reduction, the proper shaping performance of LSDP is retained. This method was applied to the stabilizing control problem of a two-wheeled vehicle as typical unstable mechanical system to verify its effectiveness. Measured tilt angles to a floor and truck positions of a two-wheeled vehicle are inputted into a computer, and calculated control inputs are sent to the servo module of a speed control system through a D/A convertor. The DC motor-driven truck of a two- wheeled vehicle thus moves in a direction to stabilize a two- wheeled vehicle. A good agreement was obtained between the simulation and experimental results of this design. 8 refs., 10 figs.

  6. HOM Couplers for CERN SPL Cavities

    CERN Document Server

    Papke, Kai; Van Rienen, U

    2013-01-01

    Higher-Order-Modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the SPL, which is studied at CERN as the driver for future neutrino facilities. In order to limit beam-induced HOM effects, CERN considers the use of HOM couplers on the cut-off tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to modes of a specific frequency range. In this paper the design process is presented and a comparison is made between various design options for the medium and high-beta SPL cavities, both operating at 704.4 MHz. The RF characteristics and thermal behaviour of the various designs are discussed.

  7. Stabilizing control of a triple type inverted pendulum system based on the loop shaping design procedure; Loop seikei sekkei shuho ni motozuku chokuretsu 3 ju gata toritsu shinshi kei no anteika seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawatani, R.; Murata, T.; Heltha, F.; Bushimata, S. [Nagaoka University of Technology, Nagaoka.]|[Niigata (Japan)

    1997-08-31

    As the inverted pendulum system has (1) distinct and easy-understanding for the beginner control aim, (2) simple, easy-making and low-cost apparatus constitution, (3) comparatively correct acquirement of the state space model, and so forth, the system is one of experimental apparatus best known in the field of control. This is used in a wide range for verification of the theory constructed newly. Hitherto, as various forms of the pendulum system are constructed for different control aims, difficulty of stabilization control in experiment is widely different by number and arrangement of the pendulum constructing the system. In this paper, design of the stabilization controller was conducted by using Loop Shaping Design Procedure (LSDP). And, one trial of the stabilization control system design method for triple type pendulum systems was described, and actual possibility of the stabilization was shown. In future, it is necessary to investigate realization possibility and rational design method of the stabilization control for the pendulum system with more complex constitution. 3 refs., 5 figs., 1 tab.

  8. Recent Progress on High-Current SRF Cavities at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand

    2010-05-01

    JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, a practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.

  9. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, J. D. (John D.); Brown, R. L. (Richard L.); Brown, S. K. (Stanley K.); Bustos, G. R. (Gerald R.); Crow, M.L. (Martin L.); Gregory, W. S.; Hood, M. E. (Michael E.); Jurney, J. D. (James D.); Medalen, I. (Ivan); Owen, A. C. (Albert C.); Weiss, Robert E.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems.

  10. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  11. Analysis of tail-slaps of supercavitating vehicle influenced by distortion of cavity shape%空泡摆动对超空泡航行体尾拍影响分析

    Institute of Scientific and Technical Information of China (English)

    何乾坤; 魏英杰; 尤天庆; 张嘉钟

    2012-01-01

    The tail-slaps of supercavitating vehicle and the distortion of cavity shape are coupling with each other.The coupling motion equation of supercavitating vehicle was established and the tail-slaps of the vehicle influenced by the distortion of cavity shape were also analyzed in different conditions of velocity and initial angel velocity.The research results show that the vehicle's rotating angel,movement cycle,lift force of tail-slaps and drag force of tail-slaps increase by the effect of the distortion of cavity shape.In different velocities,the vehicle's rotating angel,movement cycle and tail-slap cycle,which are influenced by the distortion of cavity shape,decrease by the increment of velocity.In different angel velocities,the vehicle's rotating angel,movement cycle and tail-slap cycle,which are influenced by the distortion of cavity shape,increase by the increment of angel velocity.%针对超空泡航行体存在尾拍运动与空泡形态变化互相耦合作用的特点,建立了超空泡航行体尾拍耦合运动方程,并对超空泡摆动对超空泡航行体尾拍相互作用过程进行了数值研究,对比分析了不同速度和角速度的超空泡航行体运动过程及空泡摆动对尾拍的影响规律.研究结果表明:空泡摆动使航行体转角、整体运动周期、尾拍升力和阻力增大;在不同速度下,空泡摆动对航行体转角、整体运动周期及尾拍周期的影响随速度增大而逐渐减小;不同初始角速度下,空泡摆动对航行体转角、整体运动周期、航行体尾拍升力和阻力的影响随角速度增大而逐渐增大.

  12. The Development of Hysteresis Loop Measurement Instrument of Various Kinds of Magnetic Materials with Different Shape%不同形态磁性材料磁滞回线测量仪的研制

    Institute of Scientific and Technical Information of China (English)

    王宗篪; 林博强; 黄思俞; 肖波齐

    2014-01-01

    为了实现在实验室测量磁性膜、条带或丝等多种形态磁性材料的磁滞回线,设计并研制了磁滞回线测量仪。该测量仪的磁感应强度探测器采用双线圈反相连接的设计,磁性材料的样品可以放于任一个探测线圈中,样品的更换方便、快捷。该测量仪通过调试后,对钴基非晶条带和铁基纳米晶条带等多个样品测量出了分辨率高且图形清晰的磁滞回线。%In order to measure hysteresis loop of various kinds of magnetic materials with different shape, a hysteresis loop measurement instrument was developed. Its detector of magnetic induction density was composed of two coils with re-verse connection and magnetic material can be placed in any detection coil. The replacement of samples is convenient and fast. The hysteresis loop of Co-based amorphous ribbons and Fe-based nanocrystalline ribbons were measured by using hysteresis loop measurement instrument. The experimental results showed that this device had clear output figure and high sensitivity.

  13. Analytical research on structural-acoustic coupling of a cavity surrounded by flexible panel

    Institute of Scientific and Technical Information of China (English)

    JIN Guoyong; YANG Tiejun; LIU Zhigang; JI Zhenlin; LI Wanyou

    2007-01-01

    The structural-acoustic coupling characteristics, mechanisms, effect of structuralacoustic coupling on natural mode and natural frequencies of the system are analyzed theoretically and numerically. Formulae for the natural frequencies of the coupled system are derived. Some new conclusions are obtained. Analytical results demonstrate that the strongly coupled system indicates obvious closed-loop feedback characteristics, whereas the weakly coupled system indicates obvious feedforward characteristics, and it is because of the presence of the feedback loop that the natural characteristics and natural frequencies are changed. Cluster coupling characteristic between the structural and acoustic modes for the regular cavity and panel system is found, which determines the coupling interaction between the flexible panel and cavity. Any mode in one mode cluster only interferes the modes and the modal natural frequencies in the same cluster independently. The modal cluster coupling changes not only the natural frequencies of the system but also the modal order and structural mode shape.

  14. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    Science.gov (United States)

    Chen, Yu-Hui; Fernandez-Gonzalvo, Xavier; Longdell, Jevon J.

    2016-08-01

    We experimentally demonstrate the coupling at zero magnetic field of an isotopically pure erbium-doped yttrium orthosilicate crystal (167Er:YSO ) to a three-dimensional superconducting cavity with a Q factor of 105. A tunable loop-gap resonator is used and its resonance frequency is tuned to observe the hyperfine transitions of the erbium sample. The observed spectrum differs from what is predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observation of asymmetric line shapes for these hyperfine transitions. Such a broadly tunable superconducting cavity (from 1.6 to 4.0 GHz in the current design) is a promising device for building hybrid quantum systems.

  15. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  16. Access cavity preparation.

    Science.gov (United States)

    Adams, N; Tomson, P L

    2014-03-01

    Each stage of root canal treatment should be carried out to the highest possible standard. The access cavity is arguably the most important technical stage, as subsequent preparation of the root canal(s) can be severely comprised if this is not well executed. Inadequate access can lead to canals being left untreated, poorly disinfected, difficult to shape and obturate, and may ultimately lead to the failure of the treatment. This paper highlights common features in root canal anatomy and outlines basic principles for locating root canals and producing a good access cavity. It also explores each phase of the preparation in detail and offers suggestions of instruments that have been specifically designed to overcome potential difficulties in the process. Good access design and preparation will result in an operative environment which will facilitate cleaning, shaping and obturation of the root canal system in order to maximise success.

  17. 高速航行体通气空泡形态%Investigation of Ventilated Cavity Shapes of a High Speed Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    张素宾; 鲁传敬; 陈鑫

    2012-01-01

    The ventilated cavitating flow in a longitudinal gravity force field was studied by using numerical simulation method during vertical launch submarine missile rising.Based on the Mixture multiphase model and coupled with the natural cavitation model,the Reynolds-averaged Navier-Stokes equations were solved and the mathematical model of multiphase cavitating flow of gas,vapor and water was established.A dynamic mesh technique was utilized,combined with UDF program,the underwater motion process of a submarine vertically launched missile was simulated,and the evolution of the ventilated cavity and the effect of the partial cavity on the hydrodynamics were achieved.%采用数值模拟方法,对高速航行体垂直发射上升过程重力场中的通气空泡流进行了研究.基于Mixture多相流模型和耦合自然空化模型,建立气、汽、液多相空泡流数学模型,求解整个流场域内的Reynolds平均Navier-Stokes方程.使用动网格技术(Dynamic Mesh Method)结合用户自定义函数(UDF)的程序,数值模拟了重力影响下高速航行体垂直发射水下运动过程,揭示了通气空泡的演化规律及流动载荷变化特征.

  18. Cavity enhanced atomic magnetometry

    OpenAIRE

    Herbert Crepaz; Li Yuan Ley; Rainer Dumke

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage...

  19. Closed-Loop Signal Shaping Attitude Maneuvering Control for Flexible Spacecraft Subject to Actuator Saturation%控制受限柔性航天器姿态机动内闭环成形控制

    Institute of Scientific and Technical Information of China (English)

    孔宪仁; 杨正贤; 董晓光; 廖俊

    2011-01-01

    The problem of attitude maneuvering control of flexible spacecraft subject to actuator saturation is dealt with in this paper. To satisfy pointing requirement and simultaneously suppress vibration, a feedhack controller combined with closed-loop signal shaping is designed. The closed-loop aignal shaping partially delayed, is located within the feedback loop to reduce the residual vibration. This type of control architecture can be used advantageously to reject sensor disturbances and discontinuoua nonlinearities such as actuator saturation. Physical experiment results demonstrate that the proposed approach can significantly reduce the vibration of the flexible appendages during the fast angle maneuver subject to actuator saturation; the results also show that the presented control algorithm has the advantages of simplicity and efficiency for practical on-board computer operation.%针对柔性航天器带有执行机构饱和的姿态控制问题,提出了一种将反馈控制与内闭环信号成形相结合的控制方法.将成形器作用于系统内闭环回路中,通过人为引人控制延时达到抑制振动的目的,避免敏感器扰动、执行机构饱和等非线性影响控制器振动抑制效果.全物理实验结果表明,在反作用飞轮存在控制力矩饱和的情况下,该方法不仅使航天器快速地、平稳地完成高精度姿态机动,而且显著地减少了柔性结构的弹性振动,具有算法简单、易于在轨实时计算的优点.

  20. 连续搅拌反应釜过程的闭环增益成形PID控制器设计%PID controller design of closed-loop gain shaping in CSTR process

    Institute of Scientific and Technical Information of China (English)

    李述清; 张胜修; 张煜东; 胡波

    2011-01-01

    针对连续搅拌反应釜(CSTR)系统控制问题,设计了一种基于闭环增益成形算法的PID控制器,以提高PID控制器设计的简洁性和鲁棒性.首先假设期望闭环回路传递函数有一阶形式,同时将受控对象的一阶传递函数和PID控制器构成实际闭环回路传递函数.然后,比较期望闭环回路传递函数和实际闭环回路传递函数,即可确定PJD参数.最后,以某CSTR系统为例,利用该方法设计了PID控制器,并通过仿真结果比较,检验了该方法所得PID控制器的良好鲁棒稳定性和动态品质.%To solve the control problem of Continuous-Stirred-Tank-Reactor (CSTR), a straightforward PID design based on closed-loop gain shaping algorithm was proposed in this paper to enhance the simplicity and robustness of PID controller.Firstly, the transfer function of the anticipant closed-loop control system was assumed as a 1st order system, and the actual closed-loop transfer function was consisted of the 1 st order transfer function and PID controller.Then, the anticipated closedloop transfer function was compared with that of the actual closed-loop, thus the PID controller coefficients could be calculated.Finally, the robust PID controller was designed in a CSTR system.The simulation results demonstrate that the PID controller has better robust stability and dynamic performance.

  1. Compound parabolic concentrator with cavity for tubular absorbers

    Science.gov (United States)

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  2. Dynamic PID loop control

    CERN Document Server

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  3. Dynamic PID loop control

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  4. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  5. Evaluation of sentinel lymph node size and shape as a predictor of occult metastasis in patients with squamous cell carcinoma of the oral cavity

    DEFF Research Database (Denmark)

    Langhans, Linnea; Bilde, Anders; Charabi, Birgitte;

    2013-01-01

    node axis lengths were compared with the histopathological results. Data were analysed using Microsoft Excel 2008 for Mac, version 12.0. A total of 167 sentinel nodes was excised with a median of 3.3 per patient. Following SNB 18% of the patients was upstaged at the subsequent histopathological......The aim of the study was to evaluate sentinel lymph node size as a predictor of metastasis in N0 patients with oral squamous cell carcinoma treated by individual sentinel node biopsy (SNB) guided neck dissection. In addition, to evaluate lymph node shape as an indicator of malignancy....... A retrospective study based on data from 50 patients with clinically N0 neck and oral squamous cell carcinoma stage T1-2N0M0, SNB and consecutive neck dissection was performed. Excised sentinel nodes were measured in three axes by the surgeons before undergoing histopathological examination. Measured sentinel...

  6. Cavity Ring-Down Spectroscopy of Hydrogen in the 784-852 NM Region and Corresponding Line Shape Implementation Into HITRAN

    Science.gov (United States)

    Tan, Yan; Wang, Jin; Cheng, Cunfeng; Liu, An-Wen; Hu, Shui-Ming; Wcislo, Piotr; Kochanov, Roman V.; Gordon, Iouli E.; Rothman, Laurence S.

    2016-06-01

    The hydrogen molecule as the most abundant neutral molecule in the universe is an important object of studies in different areas of science, especially astrophysics. The precision spectroscopy of the hydrogen molecule is particularly useful to verify the quantum electrodynamics theory (QED) in a molecular system. The electric quadrupole transitions of the second overtone of H_2 have been recorded with a high precision cavity ring-down spectrometer. A total of eight lines including the extremely weak S3(5) line in the 784-852 nm range have been observed. The line positions have been determined to an accuracy of 3 × 10-4 cm-1 and the line intensities were determined with a relative accuracy of about 1%. The deviations between the experimental and theoretical frequencies are less than 5 × 10-4 cm-1, which is much smaller than the claimed theoretical uncertainty of 0.0025cm-1. The data from this experiment along with other high-quality H_2 spectra have also been analyzed by the Hartmann-Tran profile as a test case for incorporating parametrization of this profile in the HITRAN database. It was incorporated in the new relational structure of the HITRAN database (www.hitran.org) and into the HITRAN Application Programming Interface (HAPI) for the case of H_2 spectra. Tan Y, Wang J, Cheng C-F, Zhao X-Q, Liu A-W, Hu S-M, J Mol Spectrosc 2014;300:60-4; Tran H, Ngo NH, Hartmann J-M, J Quant Spectrosc Radiat Transf 2013;129:199-203; Wcislo P, Gordon IE, Tran H, Tan Y, Hu S-M, Campargue A, et al., Accepted J Quant Spectrosc Radiat Transf HighRus Special Issue, 2015 Rothman LS, Gordon IE, Babikov Y, Barbe A, Chris Benner D, Bernath PF, et al., J Quant Spectrosc Radiat Transf 2013;130:4-50; Kochanov RV, Gordon IE, Rothman LS, Wcislo P, Hill C, Wilzewski JS, Submitted to J Quant Spectrosc Radiat Transf HighRus Special Issue, 2015.

  7. Simulation of nanosecond square pulse fiber laser based on nonlinear amplifying loop mirror

    Institute of Scientific and Technical Information of China (English)

    Guoliang Chen; Chun Gu; Lixin Xu; Huan Zheng; Hai Ming

    2011-01-01

    A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror (NALM) is numerically analyzed by the nonlinear Schrodinger equation. The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM, and the nanosecond square pulse is generated by the pulse shaping effect. The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately. The generated square pulses have flat top and no internal structure.%@@ A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror(NALM)is numerically analyzed by the nonlinear Schr6dinger equation.The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM,and the nanosecond square pulse is generated by the pulse shaping effect.The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately.The generated square pulses have flat top and no internal structure.

  8. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-04-24

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  9. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  10. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  11. Quantum Dynamics of Nonlinear Cavity Systems

    OpenAIRE

    Nation, Paul D.

    2010-01-01

    We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...

  12. A STUDY OF RAPID CAVITY TUNING.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2001-07-12

    An FFAG moot likely requires rapid cavity tuning. The cavity must also have a very high gradient. To satisfy both the high power and rapid tuning requirements is a big challenge. Detailed investigation of the possibility is addressed. Included are general thoughts, dual-loop and simple loop analyses, and a study of using ferrite or PIN diodes. Also proposed is a phase control scheme, which may be a better solution if the needed components can be developed. Finally, an energy analysis reveals the difficult of high power tuning.

  13. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  14. Cavity magnomechanics

    Science.gov (United States)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  15. Loop-to-loop coupling.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  16. Design of the ILC Crab Cavity System

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin,; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  17. Shapes of interacting RNA complexes

    DEFF Research Database (Denmark)

    Fu, Benjamin Mingming; Reidys, Christian

    2014-01-01

    Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops.This shape-projection preserves the topological core of the RNA complex and for fixed topological...... genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows to compute the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform...... sampling algorithm for shapes of RNA complexes of fixed topological genus....

  18. Empirical potential simulations of interstitial dislocation loops in uranium dioxide

    Science.gov (United States)

    Le Prioux, Arno; Fossati, Paul; Maillard, Serge; Jourdan, Thomas; Maugis, Philippe

    2016-10-01

    Stoichiometric circular shaped interstitial dislocation loop energies are calculated in stoichiometric UO2 by empirical potential simulation. The Burgers vector directions studied are and . The main structural properties of each type of interstitial dislocation loop are determined, including stacking fault energy. Defect energies are compared and a maximum size for stable dislocation loops before transition to dislocation loops is given. A model of dislocation loop energy based on elasticity theory is then fitted on the basis of these simulation results.

  19. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  20. 两种斜面修复术治疗楔状缺损临床脱落率疗效观察%Investigation on the expulsion rate of two types of cavities for repairing wedged-shaped defects

    Institute of Scientific and Technical Information of China (English)

    巩蕾; 邱勋定; 郝春波

    2016-01-01

    目的:比较制备短斜面、凹斜面两种洞缘斜配合FiltekA350流体树脂修复楔状缺损后一年内的脱落率。方法收集2011年7月至2012年7月来我科门诊就诊的楔状缺损患者58例,患牙106颗,采用随机数字表将患者随机分为短斜面组和凹斜面组,每组53颗,分别在釉质合面制备短斜面、凹斜面后流体树脂进行充填,观察充填治疗一年内的脱落率。结果凹斜面组与短斜面组患者修复1年内充填体的脱落率分别为4.3%(2/46)和8.0%(4/50),凹斜面组的脱落率低于短斜面组,但差异无统计学意义(P>0.05)。结论凹斜面组配合流体树脂修复楔状缺损,相比短斜面组,修复一年内充填体的脱落率更低。%Objective To investigate the expulsion rate of two restoring methods, the short bevel and the hol-low-ground bevel, using the flowable composite to repair the wedged-shaped defects, within one year after restoring. Methods A total of 58 cases of patients with 106 teeth of wedge-shaped defects, who admitted to Department of Stoma-tology of our hospital from July 2011 to July 2012, were randomly divided into two groups with 53 teeth in each group. After preparing two types of cavities, the short bevel and the hollow-ground bevel, and using the flowable composite to repair the wedged-shaped defects, expulsion rates of two restoring methods during one year after restoring were investi-gated. Results The expulsion rates of the hollow-ground and the short bevel are respectively 8.0% and 4.3%. There was no significant difference between two bevels by using the flowable composite to restore the defect in the expulsion rate. Conclusion Compared with the short bevel, the hollow-ground by using the flowable composite to restore the de-fect has the lower expulsion rate within one year after restoring.

  1. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  2. Crab Cavity Development

    CERN Document Server

    Calaga, R; Burt, G; Ratti, A

    2015-01-01

    The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.

  3. Accelerating RF cavity of the Booster

    CERN Multimedia

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  4. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  5. Optical fiber loops and helices: tools for integrated photonic device characterization and microfluidic trapping

    Science.gov (United States)

    Ren, Yundong; Zhang, Rui; Ti, Chaoyang; Liu, Yuxiang

    2016-09-01

    Tapered optical fibers can deliver guided light into and carry light out of micro/nanoscale systems with low loss and high spatial resolution, which makes them ideal tools in integrated photonics and microfluidics. Special geometries of tapered fibers are desired for probing monolithic devices in plane as well as optical manipulation of micro particles in fluids. However, for many specially shaped tapered fibers, it remains a challenge to fabricate them in a straightforward, controllable, and repeatable way. In this work, we fabricated and characterized two special geometries of tapered optical fibers, namely fiber loops and helices, that could be switched between one and the other. The fiber loops in this work are distinct from previous ones in terms of their superior mechanical stability and high optical quality factors in air, thanks to a post-annealing process. We experimentally measured an intrinsic optical quality factor of 32,500 and a finesse of 137 from a fiber loop. A fiber helix was used to characterize a monolithic cavity optomechanical device. Moreover, a microfluidic "roller coaster" was demonstrated, where microscale particles in water were optically trapped and transported by a fiber helix. Tapered fiber loops and helices can find various applications ranging from on-the-fly characterization of integrated photonic devices to particle manipulation and sorting in microfluidics.

  6. Gravitational back reaction on piecewise linear cosmic string loops

    CERN Document Server

    Wachter, Jeremy M

    2016-01-01

    We calculate the metric and affine connection due to a piecewise linear cosmic string loop, and the effect of gravitational back reaction for the Garfinkle-Vachaspati loop with four straight segments. As expected, back reaction reduces the size of the loop, in accord with the energy going into gravitational waves. The "square" loop whose generators lie at right angles evaporates without changing shape, but in all other cases, the kinks become less sharp and segments between kinks become curved. If the loop is close to the square case, the loop will evaporate before its kinks are significantly changed; if it is far from square, the opening out of the kinks is much faster than evaporation of the loop. In more realistic loops, the curvature of the straight segments due to gravitational back reaction may lead to cusps which did not exist in the original shape with the bending of the string concentrated at kinks.

  7. The rapid reverse design of excavator bucket teeth with both complex inner cavity and outer shapes%具有复杂内腔和外形的斗齿快速逆向设计

    Institute of Scientific and Technical Information of China (English)

    王春香; 孟凡娟

    2012-01-01

    To obtain physical models and CAD drawings of the point cloud reverse modeling of a bucket tooth of a certain excavator, quickly materialized method of the bucket tooth point cloud was studied. Reverse design approach which based on the "surface reconstruction-materialized-drawings" was adopted, reverse strategy include using Imageware software to complete surface reconstruction of the cavity and pin hole area which have high precision, and using Geomagic Studio software to complete surface reconstruction of the general shape of the bucket tooth, and u-sing Pro/E software to complete the surface merger and materialization was proposed. The main processes and methods included tooth point cloud data segmentation, surface reconstruction and consolidation, as well as materialization and the access to get engineering drawing was described. The results show that: for bucket teeth with many and complicated molded surfaces, the selection of the tools of reverse the surface and the data methods to segment the point cloud determine the efficiency of reconstruction of the surface and entity and if its success or failure. It will significantly improve the efficiency of the reverse design if we select appropriate strategies and tools to reverse, simplify rational point cloud segmentation, and surface reconstruction and consolidation, and the process of building physical models.%为了获得某型挖掘机斗齿点云逆向造型的实体化模型和CAD工程图样,研究了斗齿点云快速实体化的方法.采用基于“曲面重构实体化-工程图”的逆向设计途径,提出把对精度要求高的内腔和销孔部位及对精度要求一般的斗齿外形分别用Imageware及Geomagic Studio软件完成曲面重构和基于Pro/E软件完成曲面合并和实体化的逆向策略,介绍了斗齿点云的数据分割、曲面重构与合并、实体化以及其工程图获取过程中的主要过程和方法.研究结果表明:对于型面数量多而复杂的斗齿,

  8. Gravitational Smoothing of Kinks on Cosmic String Loops

    Science.gov (United States)

    Wachter, Jeremy M.; Olum, Ken D.

    2017-02-01

    We analyze the effect of gravitational backreaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the Universe today. Kinks are not rounded off, but may be straightened out. This means that backreaction will only cause loops with kinks to develop cusps after some potentially large fraction of their lifetimes. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we discuss backreaction on the rectangular Garfinkle-Vachaspati loop.

  9. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  10. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  11. Dawn of Cavity Spintronics

    OpenAIRE

    Hu, Can-Ming

    2015-01-01

    Merging the progress of spintronics with the advancement in cavity quantum electrodynamics and cavity polaritons, a new field of Cavity Spintronics is forming, which connects some of the most exciting modern physics, such as quantum information and quantum optics, with one of the oldest science on the earth, the magnetism.

  12. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    of the cases, the output of the laser shows a periodic oscillation corresponding to a single roundtrip external-cavity loop, but the dynamic behavior disappears in some case; when the zero-order lateral-mode is selected, periodic oscillation corresponding to a double roundtrip external-cavity loop is observed....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....

  13. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  14. RESONANT CAVITY EXCITATION SYSTEM

    Science.gov (United States)

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  15. Stafne bone cavity--magnetic resonance imaging.

    Science.gov (United States)

    Segev, Yoram; Puterman, Max; Bodner, Lipa

    2006-07-01

    A case of Stafne bone cavity (SBC) affecting the body of the mandible of a 51-year-old female is reported. The imaging modalities included panoramic radiograph, computed tomography (CT) and magnetic resonance (MR) imaging. Panoramic radiograph and CT were able to determine the outline of the cavity and its three dimensional shape, but failed to precisely diagnose the soft tissue content of the cavity. MR imaging demonstrated that the bony cavity is filled with soft tissue that is continuous and identical in signal with that of the submandibular salivary gland. Based on the MR imaging a diagnosis of SBC was made and no further studies or surgical treatment were initiated. MR imaging should be considered the diagnostic technique in cases where SBC is suspected. Recognition of the lesion should preclude any further treatment or surgical exploration.

  16. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    Science.gov (United States)

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  17. Blasting practices in a quarry with karstic cavities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The blasting practices in a limestone quarry with karstic cavities have been presented. The existence of karstic cavities in the quarry has reduced blasting efficiency significantly. In order to improve blasting efficiency different blasting strategies (loading holes with ANFO in plastic bag, recording cavity location along the holes and charging the holes according to this information, and modifying blasting pattern according to karstic cavities) had been implemented and the results were evaluated on per ton cost basis. It was concluded that efficient blasting in such aquarries requires determining the size and shape of karstic cavities and based on this information, to modify the blast pattern and charge the holes. The suggested method is to record the cavity along the drill hole and to generate 3D model of cavities. By doing this, the production cost in the limestone quarry has decreased from 0.407 $/t to 0.354 $/t.

  18. Basketballs as spherical acoustic cavities

    Science.gov (United States)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  19. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  20. The finite Bruck Loops

    CERN Document Server

    Baumeister, Barbara

    2009-01-01

    We continue the work by Aschbacher, Kinyon and Phillips [AKP] as well as of Glauberman [Glaub1,2] by describing the structure of the finite Bruck loops. We show essentially that a finite Bruck loop $X$ is the direct product of a Bruck loop of odd order with either a soluble Bruck loop of 2-power order or a product of loops related to the groups $PSL_2(q)$, $q= 9$ or $q \\geq 5$ a Fermat prime. The latter possibillity does occur as is shown in [Nag1, BS]. As corollaries we obtain versions of Sylow's, Lagrange's and Hall's Theorems for loops.

  1. Gravitational smoothing of kinks on cosmic string loops

    CERN Document Server

    Wachter, Jeremy M

    2016-01-01

    We analyze the effect of gravitational back reaction on cosmic string loops with kinks, which is an important determinant of the shape, and thus the potential observability, of string loops which may exist in the universe today. Kinks are not rounded off, but may be straightened out. In some loops, symmetries prevent even this process, so that the loop evaporates in a self-similar fashion and the kinks are unchanged. As an example, we give results for the rectangular Garfinkle-Vachaspati loop.

  2. Retention proposal in complex cavities.

    Directory of Open Access Journals (Sweden)

    Pedro Alvarez Rodríguez

    2003-12-01

    Full Text Available Background: Dental Operatory is the main structure in which Odontology lies. It is not an easy discipline that gives enjoyable results with little effort due to the difficulties that a correct reconstruction of a destroyed dental element offers.The frequency with which pulpar injury occurs while anchoring additional retainers in complex cavities, the technical difficulties the lack of these devices cause and the need to simplify dental procedures lead this study to show the advantages to substitute additional retainers for a retainer surcus. Method: An observational descriptive study was applied to 53 patients(42% of the universe , sample which was selected by means of a simple randomized sample . From a proximal-occlusal cavity, the preparations were extended in a box-like shape towards the bucal or lingual region and the additional retainers were substituted for a surcus which was performed in the gingival wall of the preparation. Calcium Hydroxide of rapid dryness was used as a cavity cover and Policarboxilate cement as a base; then the amalgam restoration was performed. The number of restorations were studied taking into account the patient´s age and the failures due to fractures of amalgam, loss of vitality and periapical changes were assessed taking into consideration the patient´s age and a one- year follow up. Results: Most of the amalgam restorations were performed in patients aged from 35 to 59 years and the relative frequencies due to fractures of amalgam, loss of vitality and periapical changes were very low. Conclusion: The substitution of additional retainers for a retainer surcus in complex cavities of vital molars showed to be advantageous because it guarantees a less degree of pulpar damage and less pulpar damage.

  3. Unidirectional superscattering by multilayered cavities of effective radial anisotropy

    CERN Document Server

    Liu, Wei; Shi, Jianhua; Hu, Haojun

    2016-01-01

    We achieve unidirectional forward superscattering by multilayered spherical cavities which are effectively radially anisotropic. It is demonstrated that, relying on the large effective anisotropy, the electric and magnetic dipoles can be tuned to spectrally overlap in such cavities, which satisfies the Kerker's condition of simultaneous backward scattering suppression and forward scattering enhancement. We show such scattering pattern shaping can be obtained in both all-dielectric and plasmonic multilayered cavities, and believe that the mechanism we have revealed provides extra freedom for scattering shaping, which may play a significant role in many scattering related applications and also in optoelectronic devices made up of intrinsically anisotropic two dimensional materials.

  4. Millimeter-long fiber Fabry-Perot cavities.

    Science.gov (United States)

    Ott, Konstantin; Garcia, Sebastien; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-05-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5 mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

  5. Millimeter-long Fiber Fabry-Perot cavities

    CERN Document Server

    Ott, Konstantin; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-01-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem.

  6. Study of Cavity Imperfection Impact on RF-Parameters and Multipole Components in a Superconducting RF-Dipole Cavity

    CERN Document Server

    Olave, R G; Delayen, Jean Roger; De Silva, S U; Li, Z

    2014-01-01

    The ODU/SLAC superconducting rf-dipole cavity is under consideration for the crab-crossing system in the upcoming LHC luminosity upgrade. While the proposed cavity complies well within the rf-parameters and multipolar component restrictions for the LHC system, cavity imperfections arising from cavity fabrication, welding and frequency tuning may have a significant effect in these parameters. We report on an initial study of the impact of deviation from the ideal shape on the cavity’s performance in terms of rf-parameters and multipolar components.

  7. "Fine grain Nb tube for SRF cavities"

    Energy Technology Data Exchange (ETDEWEB)

    Robert E. Barber

    2012-07-08

    Superconducting radio frequency (SRF) cavities used in charged particle linear accelerators, are currently fabricated by deep drawing niobium sheets and welding the drawn dishes together. The Nb sheet has a non-uniform microstructure, which leads to unpredictable cavity shape and surface roughness, and inconsistent "spring-back" during forming. In addition, weld zones cause hot spots during cavity operation. These factors limit linear accelerator performance and increase cavity manufacturing cost. Equal channel angular extrusion (ECAE) can be used to refine and homogenize the microstructure of Nb tube for subsequent hydroforming into SRF cavities. Careful selection of deformation and heat treatment conditions during the processing steps can give a uniform and consistent microstructure in the tube, leading to improved deformability and lower manufacturing costs. Favorable microstructures were achieved in short test samples of RRR Nb tube, which may be particularly suitable for hydroforming into SRF cavity strings. The approach demonstrated could be applicable to microstructure engineering of other tube materials including tantalum, titanium, and zirconium.

  8. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  9. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  10. Cavity spin optodynamics

    CERN Document Server

    Brahms, N

    2010-01-01

    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.

  11. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  12. Pseudonoise code tracking loop

    Science.gov (United States)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  13. Glucocorticoid-Induced Changes in the Geometry of Osteoclast Resorption Cavities Affect Trabecular Bone Stiffness

    DEFF Research Database (Denmark)

    Vanderoost, Jef; Søe, Kent; Merrild, Ditte Marie Horslev;

    2012-01-01

    Bone fracture risk can increase through bone microstructural changes observed in bone pathologies, such as glucocorticoid-induced osteoporosis. Resorption cavities present one of these microstructural aspects. We recently found that glucocorticoids (GCs) affect the shape of the resorption cavities...... is closely related to the shape of the cavities, highly determines the stiffness effect. The lumbar spine was the anatomic site most affected by the GC-induced changes on the shape of the cavities. These findings might explain the clinical observation that the prevalence of vertebral fractures during GC...

  14. Morita Duality and Noncommutative Wilson Loops in Two Dimensions

    CERN Document Server

    Cirafici, M; Seminara, D; Szabó, R J; Cirafici, Michele; Griguolo, Luca; Seminara, Domenico; Szabo, Richard J.

    2005-01-01

    We describe a combinatorial approach to the analysis of the shape and orientation dependence of Wilson loop observables on two-dimensional noncommutative tori. Morita equivalence is used to map the computation of loop correlators onto the combinatorics of non-planar graphs. Several nonperturbative examples of symmetry breaking under area-preserving diffeomorphisms are thereby presented. Analytic expressions for correlators of Wilson loops with infinite winding number are also derived and shown to agree with results from ordinary Yang-Mills theory.

  15. Prominence Mass Supply and the Cavity

    Science.gov (United States)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  16. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  17. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  18. Capillary fluid loop developments in Astrium

    Energy Technology Data Exchange (ETDEWEB)

    Figus, C.; Ounougha, L.; Bonzom, P. [Astrium SAS, Toulouse (France); Supper, W. [ESA/ESTEC, Noordwijk (Netherlands); Puillet, C. [CNES, Toulouse (France)

    2003-06-01

    Over the past decade, Astrium has been involved in the development of capillary pumped fluid loops. In the frame of the French technological demonstrator spacecraft called STENTOR, Astrium has gained experience on capillary fluid loop design and manufacturing. After the STENTOR cylindrical evaporator type was successfully tested and qualified, Astrium has developed miniaturised fluid loops for thermal dissipation of electronic devices. For such applications, the use of a flat shape evaporator is very promising, limiting the volume and the mass of the thermal hardware. Both technologies have been submitted to a comprehensive one-g test program and will be flight-tested in the near future. Through a comparative of the reached performances, some main advantages and drawbacks of each design are listed and a definition of what should be the next generation of Astrium fluid loops is given. (author)

  19. Analysis and Design of the Mold Cavity CNC Milling Process of NACA4412 Airfoil Shape%NACA4412翼型模具型腔数控铣削工艺分析与设计

    Institute of Scientific and Technical Information of China (English)

    范彩霞; 胡瑞华; 尹点点

    2013-01-01

    Nowadays, most of the computer-aided manufacturing technology considers cutter location path generation from the geometric view, but seldom considers the physical properties of processing resource in real machining, such as machine tool, fixtures, work piece, cutters, etc, and the reason for the high-quality process planning is fewer in production practice. Here the example given is process parameters analysis and design of NACA4412 Die-cavity; first, fittings airfoil section curve of NACA4412 based on data point of back and basin of blade, builds the 3D model of die-cavity of back blade; second, it analyses the metal removal rate and its applications in roughing process design;last, it inclines the work piece in fixture, and increases the diameter of the cutting tool and the effective cutting speed to obtain a higher finishing quality and processing efficiency.%现有的计算机辅助制造(Computer-aided manufacturing,CAM)技术大多只从几何角度考虑加工轨迹的生成,极少考虑实际加工时机床、夹具、工件、刀具等加工资源的物理特性,造成生产实践中高质量的工艺规划较少.以NACA4412翼型模具型腔数控工艺参数的分析与设计为例,首先基于叶背和叶盆数据点拟合NACA4412叶片翼剖面曲线,建立叶背模具型腔三维模型;其次分析金属去除率及其在粗加工工艺设计的应用;最后,将工件倾斜装夹,增大刀具直径和有效切削速度,获得较高的精加工质量和加工效率.

  20. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  1. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  2. Mitotic chromosome compaction via active loop extrusion

    Science.gov (United States)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  3. Gravitational backreaction on piecewise linear cosmic string loops

    Science.gov (United States)

    Wachter, Jeremy M.; Olum, Ken D.

    2017-01-01

    We calculate the metric and affine connection due to a piecewise linear cosmic string loop, and the effect of gravitational backreaction for the Garfinkle-Vachaspati loop with four straight segments. As expected, backreaction reduces the size of the loop, in accord with the energy going into gravitational waves. The "square" (maximally symmetric) loop evaporates without changing shape, but for all other loops in this class, the kinks become less sharp and segments between kinks become curved. If the loop is close to the square case, it will evaporate before its kinks are significantly changed; if it is far from square, the opening out of the kinks is much faster than evaporation of the loop.

  4. Cavity-Based Single-Atom Quantum Memory

    CERN Document Server

    Dilley, Jerome; Shore, Bruce W; Kuhn, Axel

    2011-01-01

    We show how to capture a single photon of arbitrary temporal shape with one atom coupled to an optical cavity. Our model applies to Raman transitions in three-level atoms with one branch of the transition controlled by a (classical) laser pulse, and the other coupled to the cavity. Photons impinging on the cavity normally exhibit partial reflection, transmission, and/or absorption by the atom. Only a control pulse of suitable temporal shape ensures impedance matching throughout the pulse, resulting in complete state mapping from photon to atom. For most possible photon shapes, we derive an unambiguous analytic expression for the temporal shape of the required control pulse. The process is subject to some inherent limitations, which we also discuss briefly.

  5. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  6. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  7. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  8. The Test of LLRF control system on superconducting cavity

    CERN Document Server

    Zhu, Zhenglong; Wen, Lianghua; Chang, Wei; Zhang, Ruifeng; Gao, Zheng; Chen, Qi

    2014-01-01

    The first generation Low-Level radio frequency(LLRF) control system independently developed by IMPCAS, the operating frequency is 162.5MHz for China ADS, which consists of superconducting cavity amplitude stability control, phase stability control and the cavity resonance frequency control. The LLRF control system is based on four samples IQ quadrature demodulation technique consisting an all-digital closed-loop feedback control. This paper completed the first generation of ADS LLRF control system in the low-temperature superconducting cavities LLRF stability and performance online tests. Through testing, to verify the performance of LLRF control system, to analysis on emerging issues, and in accordance with the experimental data, to summarize LLRF control system performance to accumulate experience for the future control of superconducting cavities.

  9. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  10. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  11. Coxeter-Chein Loops

    CERN Document Server

    Blok, Rieuwert J

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give amalgam presentations for Coxeter-Chein loops. This is to our knowledge the first such presentation for a Moufang loop.

  12. Open-loop versus closed-loop control of MEMS devices: choices and issues

    Science.gov (United States)

    Borovic, B.; Liu, A. Q.; Popa, D.; Cai, H.; Lewis, F. L.

    2005-10-01

    From a controls point of view, micro electromechanical systems (MEMS) can be driven in an open-loop and closed-loop fashion. Commonly, these devices are driven open-loop by applying simple input signals. If these input signals become more complex by being derived from the system dynamics, we call such control techniques pre-shaped open-loop driving. The ultimate step for improving precision and speed of response is the introduction of feedback, e.g. closed-loop control. Unlike macro mechanical systems, where the implementation of the feedback is relatively simple, in the MEMS case the feedback design is quite problematic, due to the limited availability of sensor data, the presence of sensor dynamics and noise, and the typically fast actuator dynamics. Furthermore, a performance comparison between open-loop and closed-loop control strategies has not been properly explored for MEMS devices. The purpose of this paper is to present experimental results obtained using both open- and closed-loop strategies and to address the comparative issues of driving and control for MEMS devices. An optical MEMS switching device is used for this study. Based on these experimental results, as well as computer simulations, we point out advantages and disadvantages of the different control strategies, address the problems that distinguish MEMS driving systems from their macro counterparts, and discuss criteria to choose a suitable control driving strategy.

  13. Mechanical evaluation of space closure loops in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Uggeri Rodrigues

    2011-02-01

    Full Text Available This study evaluated the mechanical performance of teardrop-shaped loops and teardrop-shaped loops with helix used in orthodontic space closure. Sixty retraction loops made with 0.019" x 0.025" stainless steel (SS and beta-titanium (BT wires were used. They were attached to a testing machine to measure the magnitudes of the sagittal force and the load-deflection ratio necessary for 1 mm, 2 mm and 3 mm activation. The results demonstrated that the BT alloy presented significantly smaller mean values (p < 0.01 of sagittal force and load-deflection than the SS alloy. The loop with the highest mean value of sagittal force and load-deflection was the teardrop-shaped loop (p < 0.01. Differences were observed in the mean values of sagittal force and load-deflection among activations, and the highest mean value was found in the activation of 3 mm, while the smallest mean value was evident in the activation of 1 mm (p < 0.01. It could be concluded that the metallic alloy used and the presence of a helix in configuration of the loops may have a strong influence on the sagittal force produced and on the load-deflection ratio; the teardrop-shaped loops and teardrop-shaped loops with helix in BT presented the release of lighter forces; the teardrop-shaped loop in SS generated a high load-deflection ratio, providing high magnitudes of horizontal force during its deactivation.

  14. Coxeter-Chein Loops

    OpenAIRE

    Blok, Rieuwert J.; Gagola III, Stephen

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give am...

  15. Unpacking of a Crumpled Wire from Two-Dimensional Cavities.

    Directory of Open Access Journals (Sweden)

    Thiago A Sobral

    Full Text Available The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.

  16. Mode-locked pulse oscillation of a self-resonating enhancement optical cavity

    CERN Document Server

    Hosaka, Yuji; Kosuge, Atsushi; Omori, Tsunehiko; Sakaue, Kazuyuki; Takahashi, Tohru; Uesugi, Yuuki; Urakawa, Junji; Washio, Masakazu

    2016-01-01

    A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and a high repetition frequency, which is not feasible by using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity, and has become a major technical issue in developing such cavities. We developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstration of a mode-locked pulse oscillation using the new system.

  17. RESEARCH ON THE FLOW PROPERTY IN THREE DIMENSIONAL CAVITY OF MICRO-CHANNEL

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The vortical property in a three dimensional cavity of micro-channel flow, which is very important, was investigated numerically. The results show that the rotation direction of vortex in the cavity depends on the dimension and shape of the cavity as well as the viscosity of the fluid. With the dimension and shape of the cavity fixed, there exists a critical inlet velocity. When the inlet velocity is less than the critical value, the rotation direction of vortex in the cavity will change. The critical velocity is directly proportional to the viscosity of the fluid, and inversely proportional to square of the thickness, length and depth of cavity. For the ratio of length and depth of cavity equals to one, there is a critical dimensionless parameter Re(cr), when R(e) is less than Re(cr), the rotation direction of vortex will change too. Re(cr) is equal to 11.8 approximately.

  18. Equilibrium models of coronal loops that involve curvature and buoyancy

    CERN Document Server

    Hindman, Bradley W

    2013-01-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  19. Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy

    Science.gov (United States)

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  20. Apparatus and method for plasma processing of SRF cavities

    CERN Document Server

    Upadhyay, J; Peshl, J; Bašović, M; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vuškovića, L

    2015-01-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segment...

  1. Loops in canonical RNA pseudoknot structures

    CERN Document Server

    Nebel, Markus E; Wang, Rita R

    2009-01-01

    In this paper we compute the limit distributions of the numbers of hairpin-loops, interior-loops and bulges in k-noncrossing RNA structures. The latter are coarse grained RNA structures allowing for cross-serial interactions, subject to the constraint that there are at most k-1 mutually crossing arcs in the diagram representation of the molecule. We prove central limit theorems by means of studying the corresponding bivariate generating functions. These generating functions are obtained by symbolic inflation of Ik5-shapes.

  2. Temperature switching of cavity modes in InN microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kazanov, D. R., E-mail: kazanovdr@gmail.com; Kaibyshev, V. H.; Davydov, V. Yu.; Smirnov, A. N.; Jmerik, V. N.; Kuznetsova, N. V.; Kopiev, P. S.; Ivanov, S. V.; Shubina, T. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2015-11-15

    InN optical cavities supporting low-order whispering-gallery modes up to room temperature are formed by molecular-beam epitaxy on patterned substrates. The observed switching of the mode type with increasing temperature is explained in terms of changes in the optical parameters due to a shift of the absorption edge and modification of its shape. Modeling taking into account a variation in the refractive index reproduces the typical distributions of the electromagnetic-field intensity in the cavities.

  3. What Controls DNA Looping?

    Directory of Open Access Journals (Sweden)

    Pamela J. Perez

    2014-08-01

    Full Text Available The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein—the nonspecific nucleoid protein HU—increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.

  4. Using active resonator impedance matching for shot-noise limited, cavity enhanced amplitude modulated laser absorption spectroscopy.

    Science.gov (United States)

    Chow, Jong H; Littler, Ian C M; Rabeling, David S; McClelland, David E; Gray, Malcolm B

    2008-05-26

    We introduce a closed-loop feedback technique to actively control the coupling condition of an optical cavity, by employing amplitude modulation of the interrogating laser. We show that active impedance matching of the cavity facilitates optimal shot-noise sensing performance in a cavity enhanced system, while its control error signal can be used for intra-cavity absorption or loss signal extraction. We present the first demonstration of this technique with a fiber ring cavity, and achieved shot-noise limited loss sensitivity. We also briefly discuss further use of impedance matching control as a tool for other applications.

  5. Study of Thermocurrents in ILC cavities via measurements of the Seebeck Effect in niobium, titanium, and stainless steel thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-01-01

    The goals of Fermilab’s Superconductivity and Radio Frequency Development Department are to engineer, fabricate, and improve superconducting radio frequency (SCRF) cavities in the interest of advancing accelerator technology. Improvement includes exploring possible limitations on cavity performance and mitigating such impediments. This report focuses on investigating and measuring the Seebeck Effect observed in cavity constituents titanium, niobium, and stainless steel arranged in thermocouples. These junctions exist between cavities, helium jackets, and bellows, and their connection can produce a loop of electrical current and magnetic flux spontaneously during cooling. The experimental procedure and results are described and analyzed. Implications relating the results to cavity performance are discussed.

  6. A method based on potential theory for calculating air cavity formation of an air cavity resistance reduction ship

    Institute of Scientific and Technical Information of China (English)

    LI Yun-bo; WU Xiao-yu; MA Yong; WANG Jin-guang

    2008-01-01

    This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship's resistance through an air-cavity.On the basis of potential theory and on the assumption of an ideal and irrotational fluid,this paper drives a method for calculating air cavity formation using slender ship theory then points out the parameters directly related to the formation of air cavities and their interrelationships.Simulations showed that the formation of an air cavity is affected by cavitation number,velocity,groove geometry and groove size.When the ship's velocity and groove structure are given,the cavitation number must be within range to form a steady air cavity.The interface between air and water forms a wave shape and could be adjustedby an air injection system.

  7. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  8. Heat Transfer with Flow and Phase Change in an Evaporator of Miniature Flat Plate Capillary Pumped Loop

    Institute of Scientific and Technical Information of China (English)

    Zhongmin WAN; Wei LIU; Zhaoqing ZHENG; A. Nakayama

    2007-01-01

    An overall two-dimensional numerical model of the miniature flat plate capillary pumped loop (CPL) evaporator is developed to describe the liquid and vapor flow, heat transfer and phase change in the porous wick structure,liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall.The entire evaporator is solved with SIMPLE algorithm as a conjugate problem. The effect of heat conduction of metallic side wall on the performance of miniature flat plate CPL evaporator is analyzed, and side wall effect heat transfer limit is introduced to estimate the performance of evaporator. The shape and location of vapor-liquid interface inside the wick are calculated and the influences of applied heat flux, liquid subcooling, wick material and metallic wall material on the evaporator performance are investigated in detail. The numerical results obtained are useful for the miniature flat plate evaporator performance optimization and design of CPL.

  9. Decreased vibrational susceptibility of Fabry-Perot cavities via designs of geometry and structural support

    Institute of Scientific and Technical Information of China (English)

    Yang Tao; Li Wen-Bo; Zang Er-Jun; Chen Li-Sheng

    2007-01-01

    Ultra-stable optical cavities are widely used for laser frequency stabilization. In these experiments the laser performance relies on the length stability of the Fabry-Perot cavities. Vibration-induced deformation is one of the dominant factors that affect the stability of ultra-stable optical cavities. We have quantitatively analysed the elastic deformation of Fabry-Perot cavities with various shapes and mounting configurations. Our numerical result facilitates a novel approach for the design of ultra-stable cavities that are insensitive to vibrational perturbations. This approach can be applied to many experiments such as laser frequency stabilization, high-precision laser spectroscopy, and optical frequency standards.

  10. Three-dimensional self-consistent simulations of multipacting in superconducting radio frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Chet Nieter

    2010-12-01

    Superconducting radio frequency (SRF) cavities are a popular choice among researchers designing new accelerators because of the reduced power losses due to surface resistance. However, SRF cavities still have unresolved problems, including the loss of power to stray electrons. Sources of these electrons are field emission from the walls and ionization of background gas, but the predominant source is secondary emission yield (SEY) from electron impact. When the electron motion is in resonance with the cavity fields the electrons strike the cavity surface repeatedly creating a resonant build up of electrons referred to as multipacting. Cavity shaping has successfully reduced multipacting for cavities used in very high energy accelerators. However, multipacting is still a concern for the cavity power couplers, where shaping is not possible, and for cavities used to accelerate particles at moderate velocities. This Phase II project built upon existing models in the VORPAL simulation framework to allow for simulations of multipacting behavior in SRF cavities and their associated structures. The technical work involved allowed existing models of secondary electron generation to work with the complex boundary conditions needed to model the cavity structures. The types of data produced by VORPAL were also expanded to include data common used by cavity designers to evaluate cavity performance. Post-processing tools were also modified to provide information directly related to the conditions that produce multipacting. These new methods were demonstrated by running simulations of a cavity design being developed by researchers at Jefferson National Laboratory to attempt to identify the multipacting that would be an issue for the cavity design being considered. These simulations demonstrate that VORPAL now has the capabilities to assist researchers working with SRF cavities to understand and identify possible multipacting issues with their cavity designs.

  11. Niobium superconducting cavity

    CERN Multimedia

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  12. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  13. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  14. Melatonin and oral cavity.

    Science.gov (United States)

    Cengiz, Murat İnanç; Cengiz, Seda; Wang, Hom-Lay

    2012-01-01

    While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  15. Melatonin and Oral Cavity

    Directory of Open Access Journals (Sweden)

    Murat İnanç Cengiz

    2012-01-01

    Full Text Available While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  16. Finemet cavity impedance studies

    CERN Document Server

    Persichelli, S; Migliorati, M; Salvant, B

    2013-01-01

    The aim of the study is to evaluate the impedance of the Finemet kicker cavity to be installed in the PS straight section 02 during LS1, under realistic assumptions of bunch length. Time domain simulations with CST Particle Studio have been performed in order to get the impedance of the cavity and make a comparison with the longitudinal impedance measured for a single cell prototype. The study has been performed on simplified 3D geometries imported from a mechanical CATIA drawing, assuming that the simplications have small impact on the nal results. Simulations confirmed that the longitudinal impedance observed with measurements can be excited by bunches circulating in the PS. In the six-cells Finemet cavity, PS bunches circulating in the center can excite a longitudinal impedance, the real part of which has a maximum of 2 kOhm at 4 MHz. This mode does not seem to have any transverse component. All the eigenmodes of the cavity are strongly damped by the Finemet rings: we predict to have no issues regarding tr...

  17. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased choic

  18. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  19. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  20. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  1. Natively unstructured loops differ from other loops.

    Science.gov (United States)

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  2. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  3. Teleportation of Cavity Field States via Cavity QED

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss two schemes of teleportation of cavity field states. In the first scheme we consider cavities prepared in a coherent state and in the second scheme we consider cavities prepared in a superposition of zero and one Fock states.

  4. Blind Loop Syndrome

    Science.gov (United States)

    ... more commonly result from other conditions such as short bowel syndrome or chronic pancreatitis. Small intestine aspirate and fluid ... people with severe blind loop syndrome resulting in short bowel syndrome. References Townsend CM Jr, et al. Sabiston Textbook ...

  5. A loop quantum multiverse?

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  6. Blind loop syndrome

    Science.gov (United States)

    ... part of the stomach) and operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  7. Diffusion of Wilson Loops

    CERN Document Server

    Brzoska, A M; Negele, J W; Thies, M

    2004-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory.

  8. V-shaped resonators for addition of broad-area laser diode arrays

    Science.gov (United States)

    Liu, Bo; Liu, Yun; Braiman, Yehuda Y.

    2012-12-25

    A system and method for addition of broad-area semiconductor laser diode arrays are described. The system can include an array of laser diodes, a V-shaped external cavity, and grating systems to provide feedback for phase-locking of the laser diode array. A V-shaped mirror used to couple the laser diode emissions along two optical paths can be a V-shaped prism mirror, a V-shaped stepped mirror or include multiple V-shaped micro-mirrors. The V-shaped external cavity can be a ring cavity. The system can include an external injection laser to further improve coherence and phase-locking.

  9. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  10. Morphology Of A Hot Prominence Cavity Observed with Hinode/XRT and SDO/AIA

    Science.gov (United States)

    Weber, Mark A.; Reeves, K. K.; Gibson, S. E.; Kucera, T. A.

    2012-01-01

    Prominence cavities appear as circularly shaped voids in coronal emission over polarity inversion lines where a prominence channel is straddling the solar limb. The presence of chromospheric material suspended at coronal altitudes is a common but not necessary feature within these cavities. These voids are observed to change shape as a prominence feature rotates around the limb. We use a morphological model projected in cross-sections to fit the cavity emission in Hinode/XRT passbands, and then apply temperature diagnostics to XRT and SDO/AIA data to investigate the thermal structure. We find significant evidence that the prominence cavity is hotter than the corona immediately outside the cavity boundary. This investigation follows upon "Thermal Properties of A Solar Coronal Cavity Observed with the X-ray Telescope on Hinode" by Reeves et al., 2012, ApJ, in press.

  11. Morphology of a Hot Coronal Cavity Core as Observed by Hinode/XRT

    Science.gov (United States)

    Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.

    2010-01-01

    We follow a coronal cavity that was observed by Hinode/XRT during the summer of 2008. This cavity has a persistent area of relatively bright X-ray emission in its center. We use multifilter data from XRT to study the thermal emission from this cavity, and find that the bright center is hotter than the surrounding cavity plasma with temperatures of about 1.6 MK. We follow the morphology of this hot feature as the cavity structure rotates over the limb during the several days between July 19 - 23 2008. We find that the hot structure at first looks fairly circular, then appears to expand and elongate, and then shrinks again to a compact circular shape. We interpret this apparent change in shape as being due to the morphology of the filament channel associated with the cavity, and the change in viewing angle as the structure rotates over the limb of the Sun.

  12. Widely tunable linear-cavity multiwavelength fiber laser with distributed Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    M. Ajiya; M. H. Al-Mansoori; M. A. Mahdi

    2011-01-01

    We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration. The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end. Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity. At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.%@@ We demonstrate a multiple wavelength Brillouin/erbium fiber laser in a linear cavity configuration.The laser cavity is made up of a fiber loop mirror on one end of the resonator and a virtual mirror generated from the distributed stimulated Brillouin scattering effect on the other end.Due to the weak reflectivity provided by the virtual mirror, self-lasing cavity modes are completely suppressed from the laser cavity.At Brillouin pump and 1480-nm pump powers of 2 and 130 mW, respectively, 11 channels of the demonstrated laser with an average total power of 7.13 dBm can freely be tuned over a span of 37-nm wavelength from 1530 to 1567 nm.

  13. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  14. Models for the Infrared Cavity of HH 46/47

    Science.gov (United States)

    Raga, A. C.; Noriega-Crespo, A.; Gonzalez, R. F.; Velazquez, P. F.

    2004-01-01

    We have modeled the limb-brightened cavity seen in the new Spitzer Space Telescope IR images of the southwest lobe of HH 46/47 as the bow shock driven by an outflow from a young, low-mass star. We present models in which the outflow is a perfectly collimated, straight jet, models in which the jet precesses, and finally a model in which the outflow takes the form of a latitude-dependent wind. We study cases in which the outflow moves into a constant-density cloud and into a stratified cloud. We find that the best agreement with the observed cavity is obtained for the precessing jet in a stratified cloud. However, the straight jet (traveling in a stratified cloud) also gives cavity shapes close to the observed one. The latitude-dependent wind model that we have computed gives cavity shapes that are substantially wider than the observed cavity. We therefore conclude that the cavity seen in the Spitzer observations of the southwest lobe of the HH 46/47 outflow do not seem to imply the presence of a latitude-dependent wind, as it can be modeled successfully with a perfectly collimated jet model.

  15. Conformal optimal design and processing of extruding die cavity

    Institute of Scientific and Technical Information of China (English)

    齐红元; 陈科山; 杜凤山

    2008-01-01

    Aimed at the optimal analysis and processing technology of die cavity of special-shaped products extrusion, by numerical analysis of trigonometric interpolation and Conformal Mapping theory, on the non-circle cross-section of special-shaped products, the conformal mapping function can be set up to translate the cross-section region into unit dish region, over numerical finite interpolation points between even and odd. Products extrusion forming can be turned into two-dimension problem, and plastic stream function can be deduced, as well as the mathematical model of the die cavity surface is established based on deferent kinds of vertical curve. By applying Upper-bound Principle, the vertical curves and related parameters of die cavity are optimized. Combining with electrical discharge machining (EDM) process and numerical control (NC) milling machine technology, the optimal processing of die cavity can be realized. Taking ellipse-shaped products as an instance, the optimal analysis and processing of die cavity including extruding experiment are carried out.

  16. Cavity QED by the Numbers

    Science.gov (United States)

    Kimble, H. J.; Boca, A.; Boozer, A. D.; Bowen, W. P.; Buck, J. R.; Chou, C. W.; Duan, L.-M.; Kuzmich, A.; McKeever, J.

    2004-12-01

    Observations of cooling and trapping of N = 1,2,3,... atoms inside a small optical cavity are described. The atom-cavity system operates in a regime of strong coupling for which single photons are sufficient to saturate the atomic response. New theoretical protocols for the efficient engineering of multi-atom entanglement within the setting of cavity QED are described. By trapping a single atom within the cavity mode, a one-atom laser is experimentally realized in a regime of strong coupling. Beyond the setting of cavity QED, quantum correlations have been observed for photon pairs emitted from an atomic ensemble and with a programmable time offset.

  17. Genetic Programming with Simple Loops

    Institute of Scientific and Technical Information of China (English)

    QI Yuesheng; WANG Baozhong; KANG Lishan

    1999-01-01

    A kind of loop function LoopN inGenetic Programming (GP) is proposed.Different from other forms of loopfunction, such as While-Do and Repeat-Until, LoopNtakes only oneargument as its loop body and makes its loop body simply run N times,soinfinite loops will never happen. The problem of how to avoid too manylayers ofloops in Genetic Programming is also solved. The advantage ofLoopN in GP is shown bythe computational results in solving the mowerproblem.

  18. Observations of a Coronal Cavity and Prominence with Hinode, IRIS, and AIA

    Science.gov (United States)

    Jibben, Patricia R.; Reeves, Katharine

    2015-04-01

    Coronal cavities are low emission regions above quiescent prominences. The interaction of the prominence material and coronal cavity is still poorly understood. We present observations of a coronal cavity and prominence system observed on 9 October 2014. The observations are part of a joint observation program (HOP264) including Hinode and the Interface Region Imaging Spectrograph (IRIS). A small cavity is seen just above the prominence in the Hinode X-ray Telescope (XRT) images. Using data from the Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA), Hinode Solar Optical Telescope (SOT) and IRIS, multi-thermal plasma can be seen traveling along the cavity loops. During this time, a brightening is seen near the center of the cavity in the XRT images suggesting hot material has been trapped inside the cavity. In addition to presenting the cavity dynamics, we characterize the cavity velocity structures using the Hinode EUV Imaging Spectrometer (EIS) and discuss the magnetic structure of the cavity using data from the Coronal Multichannel Polarimeter (CoMP). This work is supported by under contract SP02H1701R from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and grant number NNX12AI30G from NASA to SAO.

  19. RF and Data Acquisition Systems for Fermilab's ILC SRF Cavity Vertical Test Stand

    Energy Technology Data Exchange (ETDEWEB)

    Joseph P. Ozelis; Roger Nehring; Christiana Grenoble; Thomas J. Powers

    2007-06-01

    Fermilab is developing a facility for vertical testing of SRF cavities as part of a program to improve cavity performance reproducibility for the ILC. The RF system for this facility, using the classic combination of oscillator, phase detector/mixer, and loop amplifier to detect the resonant cavity frequency and lock onto the cavity, is based on the proven production cavity test systems used at Jefferson Lab for CEBAF and SNS cavity testing. The design approach is modular in nature, using commercial-off-the-shelf (COTS) components. This yields a system that can be easily debugged and modified, and with ready availability of spares. Data acquisition and control is provided by a PXI-based hardware platform in conjunction with software developed in the LabView programming environment. This software provides for amplitude and phase adjustment of incident RF power, and measures all relevant cavity power levels, cavity thermal environment parameters, as well as field emission-produced radiation. It also calculates the various cavity performance parameters and their associated errors. Performance during system commissioning and initial cavity tests will be presented.

  20. Crab Cavities for Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; /Daresbury; Shulte, D.; /CERN; Jones, Roger M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; /Fermilab; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  1. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  2. Grid Window Tests on an 805-MHz Pillbox Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Torun, Y. [IIT, Chicago; Moretti, A. [Fermilab

    2015-06-01

    Muon ionization cooling channel designs use pillbox shaped RF cavities for improved power efficiency and fine control over phasing of individual cavities. For minimum scattering of the muon beam, the ends should be made out of a small thickness of high radiation length material. Good electrical and thermal conductivity are required to reduce power dissipation and remove the heat efficiently. Thin curved beryllium windows with TiN coating have been used successfully in the past. We have built an alternative win- dow set consisting of grids of tubes and tested these on a pillbox cavity previously used with both thin Be and thick Cu windows. The cavity was operated with a pair of grids as well as a single grid against a flat endplate.

  3. Low- to medium-β cavities for heavy ion acceleration

    Science.gov (United States)

    Facco, Alberto

    2017-02-01

    Acceleration of low- and medium-β heavy ions by means of superconducting (SC) linear accelerators (linacs) was made possible by the development, during four decades, of a particular class of cavities characterized by low operation frequency, several different shapes and different electromagnetic modes of operation. Their performance, initially rather poor in operating accelerators, have steadily increased along with the technological progress and nowadays the gap with the high-β, elliptical cavities is close to be filled. Initially confined to a very small number of applications, this family of cavities evolved in many directions becoming one of the most widespread in linacs. Nowadays it is present in the majority of superconducting radio-frequency ion linac projects worldwide. An overview of low- and medium-β SC cavities for heavy ions, focused on their recent evolution and achievements, will be given.

  4. Waveguide-coupled cavities for energy recovery linacs

    Science.gov (United States)

    Kurennoy, S. S.; Nguyen, D. C.; Young, L. M.

    2004-08-01

    A novel scheme for energy recovery linacs used as FEL drivers is proposed. It consists of two parallel beam lines, one for electron beam acceleration and the other for the used beam that is bent after passing through a wiggler. The used beam is decelerated by the structure and feeds the cavity fields. The main feature of the scheme is that RF cavities are coupled with waveguides between these two linacs. The waveguide cut through the two beam pipes provides an efficient mechanism for energy transfer. The superconducting RF cavities in the two accelerators can be shaped differently, with an operating mode at the same frequency. This provides HOM detuning and therefore reduces the beam break-up effects. Another advantage of the proposed two-beam scheme is easy tuning of the cavity coupling by changing the waveguide length.

  5. Design and Optimization of Thermophotovoltaic System Cavity with Mirrors

    Directory of Open Access Journals (Sweden)

    Tian Zhou

    2016-09-01

    Full Text Available Thermophotovoltaic (TPV systems can convert radiant energy into electrical power. Here we explore the design of the TPV system cavity, which houses the emitter and the photovoltaic (PV cells. Mirrors are utilized in the cavity to modify the spatial and spectral distribution within. After discussing the basic concentric tubular design, two novel cavity configurations are put forward and parametrically studied. The investigated variables include the shape, number, and placement of the mirrors. The optimization objectives are the optimized efficiency and the extended range of application of the TPV system. Through numerical simulations, the relationship between the design parameters and the objectives are revealed. The results show that careful design of the cavity configuration can markedly enhance the performance of the TPV system.

  6. Loop electrosurgical excisional procedure.

    Science.gov (United States)

    Mayeaux, E J; Harper, M B

    1993-02-01

    Loop electrosurgical excisional procedure, or LEEP, also known as loop diathermy treatment, loop excision of the transformation zone (LETZ), and large loop excision of the transformation zone (LLETZ), is a new technique for outpatient diagnosis and treatment of dysplastic cervical lesions. This procedure produces good specimens for cytologic evaluation, carries a low risk of affecting childbearing ability, and is likely to replace cryotherapy or laser treatment for cervical neoplasias. LEEP uses low-current, high-frequency electrical generators and thin stainless steel or tungsten loops to excise either lesions or the entire transformation zone. Complication rates are comparable to cryotherapy or laser treatment methods and include bleeding, incomplete removal of the lesion, and cervical stenosis. Compared with other methods, the advantages of LEEP include: removal of abnormal tissue in a manner permitting cytologic study, low cost, ease of acquiring necessary skills, and the ability to treat lesions with fewer visits. Patient acceptance of the procedure is high. Widespread use of LEEP by family physicians can be expected.

  7. The statistical physics of cosmological networks of string loops

    CERN Document Server

    Magueijo, J; Steer, D; Magueijo, Joao; Sandvik, Haavard; Steer, Daniele

    1999-01-01

    We solve numerically the Boltzmann equation describing the evolution of a cosmic string network which contains only loops. In Minkowski space time the equilibrium solution predicted by statistical mechanics is recovered, and we prove that this solution is stable to non-linear perturbations provided that their energy does not exceed the critical energy for the Hagedorn transition. In expanding Einstein - de Sitter Universes we probe the distribution of loops with length much smaller than the horizon. For these loops we discover stable scaling solutions both in the radiation and matter dominated epochs. The shape of these solutions is very different in the two eras, with much higher energy density in the radiation epoch, and a larger average loop length in the matter epoch. These results suggest that if the conditions for formation of loop networks are indeed satisfied, these could in principle be good candidates for structure formation.

  8. Schapiro Shapes

    Science.gov (United States)

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  9. Crater and cavity depth in hypervelocity impact

    Science.gov (United States)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  10. The Energy Landscape of Hyperstable LacI-DNA Loops

    Science.gov (United States)

    Kahn, Jason

    2009-03-01

    The Escherichia coli LacI protein represses transcription of the lac operon by blocking access to the promoter through binding at a promoter-proximal DNA operator. The affinity of tetrameric LacI (and therefore the repression efficiency) is enhanced by simultaneous binding to an auxiliary operator, forming a DNA loop. Hyperstable LacI-DNA loops were previously shown to be formed on DNA constructs that include a sequence-directed bend flanked by operators. Biochemical experiments showed that two such constructs (9C14 and 11C12) with different helical phasing between the operators and the DNA bend form different DNA loop shapes. The geometry and topology of the loops and the relevance of alternative conformations suggested by probable flexible linkers in LacI remain unclear. Bulk and single molecule fluorescence resonance energy transfer (SM-FRET, with D. English) experiments on a dual fluorophore-labeled 9C14-LacI loop demonstrate that it adopts a single, stable, rigid closed-form loop conformation. Here, we characterize the LacI-9C14 loop by SM-FRET as a function of inducer isopropyl-β,D-thiogalactoside (IPTG) concentration. Energy transfer measurements reveal partial but incomplete destabilization of loop formation by IPTG. Surprisingly, there is no change in the energy transfer efficiency of the remaining looped population. Models for the regulation of the lac operon often assume complete disruption of LacI-operator complexes upon inducer binding to LacI. Our work shows that even at saturating IPTG there is still a significant population of LacI-DNA complexes in a looped state, in accord with previous in vivo experiments that show incomplete induction (with J. Maher). Finally, we will report progress on characterizing the ``energy landscape'' for DNA looping upon systematic variation of the DNA linkers between the operators and the bending locus. Rod mechanics simulations (with N. Perkins) provide testable predictions on loop stability, topology, and FRET.

  11. Energy Transfer of a Shaped Charge.

    Energy Technology Data Exchange (ETDEWEB)

    Milinazzo, Jared Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    A cylinder of explosive with a hollow cavity on one and a detonator at the other is considered a hollow charge. When the explosive is detonated the detonation products form a localized intense force. If the hollow charge is placed near or in contact with a steel plate then the damage to the plate is greater than a solid cylinder of explosive even though there is a greater amount of explosive in the latter charge. The hollow cavity can take almost any geometrical shape with differing amounts of damage associated with each shape. This phenomenon is known in the United States as the Munroe effect.

  12. Morita duality and noncommutative Wilson loops in two dimensions

    Science.gov (United States)

    Cirafici, Michele; Griguolo, Luca; Seminara, Domenico; Szabo, Richard J.

    2005-10-01

    We describe a combinatorial approach to the analysis of the shape and orientation dependence of Wilson loop observables on two-dimensional noncommutative tori. Morita equivalence is used to map the computation of loop correlators onto the combinatorics of non-planar graphs. Several strong nonperturbative evidences of symmetry breaking under area-preserving diffeomorphisms are thereby presented. Analytic expressions for correlators of Wilson loops with infinite winding number are also derived and shown to agree with results from ordinary Yang-Mills theory.

  13. Loop Quantum Gravity

    CERN Document Server

    Chiou, Dah-Wei

    2014-01-01

    This article presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) -- a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the article, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.

  14. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  15. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  16. Cavity Optomechanical Magnetometer

    CERN Document Server

    Forstner, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H

    2011-01-01

    A cavity optomechanical magnetometer is demonstrated where the magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. Detecting the magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may be possible. This chip-based magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation.

  17. Cavity optomechanical magnetometer.

    Science.gov (United States)

    Forstner, S; Prams, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H

    2012-03-23

    A cavity optomechanical magnetometer is demonstrated. The magnetic-field-induced expansion of a magnetostrictive material is resonantly transduced onto the physical structure of a highly compliant optical microresonator and read out optically with ultrahigh sensitivity. A peak magnetic field sensitivity of 400  nT  Hz(-1/2) is achieved, with theoretical modeling predicting the possibility of sensitivities below 1  pT  Hz(-1/2). This chip-based magnetometer combines high sensitivity and large dynamic range with small size and room temperature operation.

  18. Uniqueness and local stability for the inverse scattering problem of determining the cavity

    Institute of Scientific and Technical Information of China (English)

    FENG; Lixin; MA; Fuming

    2005-01-01

    Considering a time-harmonic electromagnetic plane wave incident on an arbitrarily shaped open cavity embedded in infinite ground plane, the physical process is modelled by Maxwell's equations. We investigate the inverse problem of determining the shape of the open cavity from the information of the measured scattered field. Results on the uniqueness and the local stability of the inverse problem in the 2-dimensional TM (transverse magnetic) polarization are proved in this paper.

  19. Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.

    Science.gov (United States)

    Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas

    2013-01-01

    We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.

  20. An all-optical buffer based on temporal cavity solitons operating at 10 Gb/s

    CERN Document Server

    Jang, Jae K; Schröder, Jochen; Eggleton, Benjamin J; Murdoch, Stuart G; Coen, Stéphane

    2016-01-01

    We demonstrate the operation of an all-optical buffer based on temporal cavity solitons stored in a nonlinear passive fiber ring resonator. Unwanted acoustic interactions between neighboring solitons are suppressed by modulating the phase of the external laser driving the cavity. A new locking scheme is presented that allows the buffer to operate with an arbitrarily large number of cavity solitons in the loop. Experimentally, we are able to demonstrate the storage of 4536 bits of data, written all-optically into the fiber ring at 10 Gb/s, for 1 minute.

  1. A Comprehensive study of Cavities on the Sun: Structure, Formation, and Evolution

    Science.gov (United States)

    Karna, Nishu; Zhang, Jie; Pesnell, William D.

    2016-05-01

    Coronal cavities are large-scale structures in the Sun's corona that are closely related with the long-term evolution of the magnetic field in the photosphere as well as associated with the energetic solar activity such as prominence eruptions and coronal mass ejections. They are observed as circular or elliptical-shaped relatively low-density dark regions above the solar limb in EUV, X-ray, and white-light coronal images. We used SDO/AIA limb synoptic maps, constructed from annuli above the solar limb, to systematically identify cavities. We observed 429 coronal prominence cavities between May 20, 2010 and Feb 1, 2015. We examined correlations between height, width, and length of the cavities. Based on the fitting of the shape of the cross section, we classified cavities in three types: prolate (38%), oblate (27%) and circular (35%). We found that the cavities of all shapes are common in shorter length while circular and oblate cavities are more common in the longer length. In general, we found that the overall 3-D topology of long stable cavities can be characterized as a long tube with an elliptical cross-section. Next, we investigated the pattern of cavity location and found that cavity systematically drifts towards the pole. We found that cavities form a belt by making a plot using SDO/HMI surface magnetogram similar to classical buttery diagram of sunspots, we call that the cavity belt. Our analysis showed that the cavity belts migrated towards higher latitude with time and the cavity belts disappeared after the polar magnetic field reversal. This result shows that cavity evolution provides new insight into the solar cycle. Moreover, we studied the underlying magnetic field of a circumpolar crown cavity (Mar 21, 2013- Oct 25, 2013) that was observed for several Carrington Rotations. Our results showed that the underlying polarity inversion line of cavities is formed between the trailing part of decayed active regions and the unipolar magnetic field in the

  2. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  3. Application of Fractal Theory in Simulation of Ferromagnetic Elements' Hysteresis Loop in Transformer

    Institute of Scientific and Technical Information of China (English)

    毕军; 付梦印; 张宇河

    2003-01-01

    The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the treatment of ferromagnetic elements' loop. Thus the shapes of the primary hysteresis loop and each internal secondary hysteresis loop in the identical magnetism conducting are analyzed, and then it is proposed that there are some fractal characteristics in the relation between them. The fractal phenomenon of the ferromagnetic elements' hysteresis loop in the transformer's transient simulation is first brought forward, the mutuality between the ferromagnetic elements' primary hysteresis loop and its secondary hysteresis loops is revealed in mechanism by using the fractal theory. According to the iterated function system of fractal theory, the secondary hysteresis loops can be generated by the iterative calculation of the primary loop. The simulation results show the validity of this idea.

  4. Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces

    Science.gov (United States)

    Czarske, Jürgen; Möbius, Jasper; Moldenhauer, Karsten

    2005-09-01

    A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry-Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

  5. Applications of cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Michael [Booz Allen Hamilton, 3811 Fairfax Drive, Arlington, Virginia 22203 (United States)

    2014-09-15

    Cavity-optomechanics” aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  6. Applications of cavity optomechanics

    Science.gov (United States)

    Metcalfe, Michael

    2014-09-01

    "Cavity-optomechanics" aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  7. Energy Release in Driven Twisted Coronal Loops

    Science.gov (United States)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  8. JLEIC SRF cavity RF Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the first phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.

  9. Nanofriction in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  10. Cavity coalescence in superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  11. An improved equivalent circuit model of a four rod deflecting cavity

    Science.gov (United States)

    Apsimon, R.; Burt, G.

    2017-03-01

    In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RT/Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT/Q differs between the model and CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.

  12. Principal Component Analysis reveals correlation of cavities evolution and functional motions in proteins.

    Science.gov (United States)

    Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud

    2015-02-01

    Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities.

  13. Impact of Trapped Flux and Thermal Gradients on the SRF Cavity Quality Factor

    CERN Document Server

    Kugeler, O; Knobloch, J; Aull, S

    2012-01-01

    The obtained Q0 value of a superconducting niobium cavity is known to depend on various factors like the RRR of the Niobium material, crystallinity, chemical treatment history, the high-pressure rinsing process, or effectiveness of the magnetic shielding. We have observed that spatial thermal gradients over the cavity length during cool-down appear to contribute to a degradation of Q0. Measurements were performed in the Horizontal Bi-Cavity Test Facility (HoBiCaT) at HZB on TESLA type cavities as well as on disc- and rod-shaped niobium samples equipped with thermal, electrical and magnetic diagnostics. Possible explanations for the effect are discussed.

  14. Dynamics of dust-free cavities behind fast projectiles in a dusty plasma under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caliebe, D.; Arp, O.; Piel, A. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet, Kiel (Germany)

    2011-07-15

    The penetration of a dusty plasma by fast charged projectiles is studied under microgravity conditions. The mass and charge of the projectiles are larger than those of the target particles. A projectile generates a dust-free cavity in its wake, whose shape strongly depends on the projectile velocity. The faster the projectile the more elongated becomes the cavity while its cross-section decreases. The opening time of the cavity is found independent of the projectile velocity. For supersonic projectiles, the dynamics of the cavity can be decomposed into an initial impulse and a subsequent elastic response that can be modeled by a damped harmonic oscillator.

  15. Two-loop and n-loop eikonal vertex corrections

    OpenAIRE

    Kidonakis, Nikolaos

    2003-01-01

    I present calculations of two-loop vertex corrections with massive and massless partons in the eikonal approximation. I show that the $n$-loop result for the UV poles can be given in terms of the one-loop calculation.

  16. Analytical approach for resolving stress states around elliptical cavities

    Directory of Open Access Journals (Sweden)

    Lukić Dragan

    2005-01-01

    Full Text Available The determination of stress states around cavities in the stressed elastic body, regardless of cavity shapes, that may be spherical, cylindrical elliptical etc. in its analytical approach has to be based on selection of a stress function that will satisfy biharmonic equation, under given boundary conditions. This paper is concerned with formulation and solution of the cited differential equation using elliptical coordinates in conformity with the cavity shape of oblong ellipsoid [1]. It is therefore considered that the formulation of the stress tensor will be done in conformity to the cited coordinates. The paper describes basic statements and definitions in connection to harmonic functions used for determination of stress states around cavities formed in the stressed homogeneous space. The particular attention has been paid to the use of Legendre`s functions, with definitions and derivation of recurrent formulas, that have been used for determination of stress states around an oblong ellipsoidal cavity, [1]. The paper also includes the description of procedures used in forming series based on Legendre`s functions of the first order.

  17. Local loop near-rings

    OpenAIRE

    Franetič, Damir

    2015-01-01

    We study loop near-rings, a generalization of near-rings, where the additive structure is not necessarily associative. We introduce local loop near-rings and prove a useful detection principle for localness.

  18. Loop Subdivision Surface Based Progressive Interpolation

    Institute of Scientific and Technical Information of China (English)

    Fu-Hua (Frank) Cheng; Feng-Tao Fan; Shu-Hua Lai; Cong-Lin Huang; Jia-Xi Wang; Jun-Hai Yong

    2009-01-01

    A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to iteratively upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M. It can be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes. The meshes considered here can be open or closed.

  19. Cell cavities increase tortuosity in brain extracellular space.

    Science.gov (United States)

    Tao, A; Tao, L; Nicholson, C

    2005-06-21

    Brain extracellular space (ECS) forms hindered pathways for molecular diffusion in chemical signaling and drug delivery. Hindrance is quantified by the tortuosity lambda; the tortuosity obtained from simulations using uniformly spaced convex cells is significantly lower than that measured experimentally. To attempt to account for the difference in results, this study employed a variety of ECS models based on an array of cubic cells containing open rectangular cavities that provided the ECS with dead-space microdomains. Monte Carlo simulations demonstrated that, in such ECS models, lambda can equal or exceed the typical experimental value of about 1.6. The simulations further revealed that lambda is relatively independent of cavity shape and the number of cavities per cell. It mainly depends on the total ECS volume fraction alpha, the cavity volume fraction alpha(c), and whether the cavity is located at the center of a cell face or formed at the junction of multiple cells. To describe the results from the different ECS models, an expression was obtained that related lambda to alpha, alpha(c), and an empirical exit factor beta that correlated with the ease with which a molecule could leave a cavity and its vicinity.

  20. A Scanning Cavity Microscope

    CERN Document Server

    Mader, Matthias; Hänsch, Theodor W; Hunger, David

    2014-01-01

    Imaging of the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1700-fold signal enhancement compared to diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross section of gold nanoparticles with a sensitivity below 1 nm2, we show a method to improve spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for opt...

  1. Shock induced cavity collapse

    Science.gov (United States)

    Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas

    2016-10-01

    Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.

  2. Frequency Tuning for a DQW Crab Cavity

    CERN Document Server

    Verdú-Andrés, Silvia; Ben-Zvi, Ilan; Calaga, Rama; Capatina, Ofelia; Leuxe, Raphael; Skaritka, John; Wu, Qiong; Xiao, Binping; Zanoni, Carlo

    2016-01-01

    The nominal operating frequency for the HL-LHC crab cavities is 400.79 MHz within a bandwidth of ±60kHz. Attaining the required cavity tune implies a good understanding of all the processes that influence the cavity frequency from the moment when the cavity parts are being fabricated until the cavity is installed and under operation. Different tuning options will be available for the DQW crab cavity of LHC. This paper details the different steps in the cavity fabrication and preparation that may introduce a shift in the cavity frequency and introduces the different tuning methods foreseen to bring the cavity frequency to meet the specifications.

  3. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    Science.gov (United States)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  4. On the extended loop calculus

    CERN Document Server

    Griego, J R

    1995-01-01

    Some features of extended loops are considered. In particular, the behaviour under diffeomorphism transformations of the wavefunctions with support on the extended loop space are studied. The basis of a method to obtain analytical expressions of diffeomorphism invariants via extended loops are settled. Applications to knot theory and quantum gravity are considered.

  5. LEP radio-frequency cavity

    CERN Multimedia

    1991-01-01

    One of the copper radio-frequency accelerating cavities installed for the first phase of LEP (1989-1995). Bunches of electrons and positrons circulated in LEP in opposite directions and were accelerated in eight different sets of 16 cavities (situated on either side of the four experiments), gaining 400 million volts of accelerating power per turn.

  6. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  7. Quantum entanglement purification in cavities

    CERN Document Server

    Romero, J L; Saavedra, C; Retamal, J C

    2002-01-01

    A physical implementation of an entanglement purification protocol is studied using a cavity quantum electrodynamic based proposal, where, the quantum information is stored in quantum field sates inside cavities. Also a procedure is given for quantifying the degree of entanglement between quantum fields. (Author)

  8. Superconducting cavity model for LEP

    CERN Multimedia

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  9. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  10. PAR Loop Schedule Review

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, Jr.; W.F.

    1958-04-30

    The schedule for the installation of the PAR slurry loop experiment in the South Facility of the ORR has been reviewed and revised. The design, fabrications and Installation is approximately two weeks behind schedule at this time due to many factors; however, indications are that this time can be made up. Design is estimated to be 75% complete, fabrication 32% complete and installation 12% complete.

  11. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  12. Verification of Loop Diagnostics

    Science.gov (United States)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  13. Null Zig-Zag Wilson Loops in N=4 SYM

    CERN Document Server

    Xie, Zhifeng

    2009-01-01

    In planar ${\\cal N}=4$ supersymmetric Yang-Mills theory we have studied supersymmetric Wilson loops composed of a large number of light-like segments, i.e., null zig-zags. These contours oscillate around smooth underlying spacelike paths. At one-loop in perturbation theory we have compared the finite part of the expectation value of null zig-zags to the finite part of the expectation value of non-scalar-coupled Wilson loops whose contours are the underlying smooth spacelike paths. In arXiv:0710.1060 [hep-th] it was argued that these quantities are equal for the case of a rectangular Wilson loop. Here we present a modest extension of this result to zig-zags of circular shape and zig-zags following non-parallel, disconnected line segments and show analytically that the one-loop finite part is indeed that given by the smooth spacelike Wilson loop without coupling to scalars which the zig-zag contour approximates. We make some comments regarding the generalization to arbitrary shapes.

  14. Null Zig-Zag Wilson Loops in {N}=4 Sym

    Science.gov (United States)

    Xie, Zhifeng

    In planar {N}=4 supersymmetric Yang-Mills theory we have studied one kind of (locally) BPS Wilson loops composed of a large number of light-like segments, i.e. null zig-zags. These contours oscillate around smooth underlying spacelike paths. At one-loop in perturbation theory, we have compared the finite part of the expectation value of null zig-zags to the finite part of the expectation value of non-scalar-coupled Wilson loops whose contours are the underlying smooth spacelike paths. In arXiv:0710.1060 [hep-th] it was argued that these quantities are equal for the case of a rectangular Wilson loop. Here we present a modest extension of this result to zig-zags of circular shape and zig-zags following non-parallel, disconnected line segments and show analytically that the one-loop finite part is indeed that given by the smooth spacelike Wilson loop without coupling to scalars which the zig-zag contour approximates. We make some comments regarding the generalization to arbitrary shapes.

  15. Design, prototyping and testing of a compact superconducting double quarter wave crab cavity

    CERN Document Server

    Xiao, Binping; Belomestnykh, Sergey; Ben-Zvi, Ilan; Calaga, Rama; Cullen, Chris; Capatina, Ofelia; Hammons, Lee; Li, Zenghai; Marques, Carlos; Skaritka, John; Verdú-Andres, Silvia; Wu, Qiong

    2015-01-01

    A novel design of superconducting Crab Cavity was proposed and designed at Brookhaven National Laboratory. The new cavity shape is a Double Quarter Wave or DQWCC. After fabrication and surface treatments, the niobium proof-of-principle cavity was cryogenically tested in a vertical cryostat. The cavity is extremely compact yet has a low frequency of 400 MHz, an essential property for service for the Large Hadron Collider luminosity upgrade. The electromagnetic properties of the cavity are also well matched for this demanding task. The demonstrated deflecting voltage of 4.6 MV is well above the requirement for a crab cavity in the future High Luminosity LHC of 3.34 MV. In this paper we present the design, prototyping and test results of the DQWCC.

  16. Preparation and Testing of the SRF Cavities for the CEBAF 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, A. V.; Bass, T.; Burrill, A.; Davis, G. K.; Marhauser, F.; Reece, C. E.; Stirbet, M.

    2011-07-01

    Eighty new 7-cell, low-loss cell-shaped cavities are required for the CEBAF 12 GeV Upgrade project. In addition to ten pre-production units fabricated at JLab, the full set of commercially-produced cavities have been delivered. An efficient processing routine, which includes a controlled 30 micron electropolish, has been established to transform these cavities into qualified 8-cavity strings. This work began in 2010 and will run through the end of 2011. The realized cavity performance consistently exceeds project requirements and also the maximum useful gradient in CEBAF: 25 MV/m. We will describe the cavity processing and preparation protocols and summarize test results obtained to date.

  17. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities

    CERN Document Server

    Liberal, Iñigo

    2015-01-01

    Controlling the emission and interaction properties of quantum emitters (QEs) embedded within an optical cavity is a key technique in engineering light-matter interactions at the nanoscale, as well as in the development of quantum information processing. State-of-the-art optical cavities are based on high Q photonics crystals and dielectric resonators. However, wealthier responses might be attainable with cavities carved in more exotic materials. Here, we theoretically investigate the emission and interaction properties of QEs embedded in open epsilon-near-zero (ENZ) cavities. Using analytical methods and numerical simulations, it is demonstrated that open ENZ cavities present the unique property of supporting nonradiating modes independently of the geometry of the external boundary of the cavity (shape, size, topology...). Moreover, the possibility of switching between radiating and nonradiating modes enables a dynamic control of both the emission by, and the interaction between, QEs. These phenomena provide...

  18. Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; Chan, Kwok-Chi Dominic [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Turchi, Peter J. [Los Alamos National Laboratory

    2011-01-01

    An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate at vacuum or under pressure to 100 atmospheres, at room temperature or in a liquid nitrogen bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Current status of the cavity prepared for initial conditioning and operation in the external magnetic field is discussed.

  19. High Finesse Fiber Fabry-Perot Cavities: Stabilization and Mode Matching Analysis

    CERN Document Server

    Gallego, Jose; Alavi, Seyed Khalil; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter; Ratschbacher, Lothar

    2015-01-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background ph...

  20. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  1. Teenagers’ Shape

    Institute of Scientific and Technical Information of China (English)

    亚玲

    2007-01-01

    <正>Teenagers have been of a new shape these days. They are about 20 pounds heavier than teenagers were 60 years ago. They are about four inches taller, too. These facts come from J. M. Tanner, a professor in England.

  2. A Culture-Behavior-Brain Loop Model of Human Development.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2015-11-01

    Increasing evidence suggests that cultural influences on brain activity are associated with multiple cognitive and affective processes. These findings prompt an integrative framework to account for dynamic interactions between culture, behavior, and the brain. We put forward a culture-behavior-brain (CBB) loop model of human development that proposes that culture shapes the brain by contextualizing behavior, and the brain fits and modifies culture via behavioral influences. Genes provide a fundamental basis for, and interact with, the CBB loop at both individual and population levels. The CBB loop model advances our understanding of the dynamic relationships between culture, behavior, and the brain, which are crucial for human phylogeny and ontogeny. Future brain changes due to cultural influences are discussed based on the CBB loop model.

  3. A study of resonant-cavity and fiberglass-filled parallel baffles as duct silencers. [for wind tunnels

    Science.gov (United States)

    Soderman, P. T.

    1982-01-01

    Acoustical performance and pressure drop were measured for two types of splitters designed to attenuate sound propagating in ducts - resonant-cavity baffles and fiberglass-filled baffles. Arrays of four baffles were evaluated in the 7- by 10-foot wind tunnel number 1 at Ames Research Center at flow speeds from 0 to 41 m/sec. The baffles were 2.1 m high, 305 to 406 mm thick, and 3.1 to 4.4 m long. Emphasis was on measurements of silencer insertion loss as affected by variations of such parameters as baffle length, baffle thickness, perforated skin geometry, cavity size and shape, cavity damping, wind speed, and acoustic field directivity. An analytical method for predicting silencer performance is described and compared with measurements. With the addition of cavity damping in the form of 25-mm foam linings, the insertion loss above 250 Hz of the resonant-cavity baffles was improved 2 to 7 db compared with the undamped baffles; the loss became equal to or greater than the insertion loss of comparable size fiberglass baffles at frequencies above 250 Hz. Variations of cavity size and shape showed that a series of cavities with triangular cross-sections (i.e., variable depth) were superior to cavities with rectangular cross sections (i.e., constant depth). In wind, the undamped, resonant-cavity baffles generated loud cavity-resonance tones; the tones could be eliminated by cavity damping.

  4. A Moral Experience Feedback Loop: Modeling a System of Moral Self-Cultivation in Everyday Life

    Science.gov (United States)

    Sherblom, Stephen A.

    2015-01-01

    This "systems thinking" model illustrates a common feedback loop by which people engage the moral world and continually reshape their moral sensibility. The model highlights seven processes that collectively form this feedback loop: beginning with (1) one's current moral sensibility which shapes processes of (2) perception, (3)…

  5. Elastic Rod Model of a DNA Loop in the Lac Operon

    Science.gov (United States)

    Balaeff, Alexander; Mahadevan, L.; Schulten, Klaus

    1999-12-01

    We use the theory of elasticity to compute the shape of the DNA loop bridging the gap in the crystal structure of the lac repressor-DNA complex. The Kirchhoff system of equations with boundary conditions derived from the crystal structure is solved using a continuation method. This approach can be applied effectively to find coarse-grained conformational minima of DNA loops.

  6. A Generalized Theory of DNA Looping and Cyclization

    Science.gov (United States)

    Wilson, David; Lillian, Todd; Perkins, Noel; Tkachenko, Alexei; Meiners, Jens-Christian

    2010-03-01

    We have developed a semi-analytic method for calculating the Stockmayer Jacobson J-factor for protein mediated DNA loops. The formation of DNA loops on the order of a few persistence lengths is a key component in many biological regulatory functions. The binding of LacI protein within the Lac Operon of E.coli serves as the canonical example for loop regulated transcription. We use a non-linear rod model to determine the equilibrium shape of the inter-operator DNA loop under prescribed binding constraints while taking sequence-dependent curvature and elasticity into account. Then we construct a Hamiltonian that describes thermal fluctuations about the open and looped equilibrium states, yielding the entropic and enthalpic costs of loop formation. Our work demonstrates that even for short sequences of the order one persistence length, entropic terms contribute substantially to the J factor. We also show that entropic considerations are able to determine the most favorable binding topology. The J factor can be used to compare the relative loop lifetimes of various DNA sequences, making it a useful tool in sequence design. A corollary of this work is the computation of an effective torsional persistence length, which demonstrates how torsion bending coupling in a constrained geometry affects the conversion of writhe to twist.

  7. The Role of Entropic Effects on DNA Loop Formation

    Science.gov (United States)

    Wilson, David; Tkachenko, Alexei; Lillian, Todd; Perkins, Noel; Meiners, Jens Christian

    2009-03-01

    The formation of protein mediated DNA loops often regulates gene expression. Typically, a protein is simultaneously bound to two DNA operator sites. An example is the lactose repressor which binds to the Lac operon of E. coli. We characterize the mechanics of this system by calculating the free energy cost of loop formation. We construct a Hamiltonian that describes the change in DNA bending energy due to linear perturbations about the looped and open states, starting from a non-linear mechanical rod model that determines the shape and bending energy of the inter-operator DNA loop while capturing the intrinsic curvature and sequence-dependent elasticity of the DNA. The crystal structure of the LacI protein provides the boundary conditions for the DNA. We then calculate normal modes of the open and closed loops to account for the thermal fluctuations. The ratio of determinants of the two Hamiltonians yields the partition function, and the enthalphic and entropic cost of looping. This calculation goes beyond standard elastic energy models because it fully accounts for the substantial entropic differences between the two states. It also includes effects of sequence dependent curvature and stiffness and allows anisotropic variations in persistence length. From the free energy we then calculate the J-factor and ratio of loop lifetimes.

  8. Robust Hitting with Dynamics Shaping

    Science.gov (United States)

    Yashima, Masahito; Yamawaki, Tasuku

    The present paper proposes the trajectory planning based on “the dynamics shaping” for a redundant robotic arm to hit a target robustly toward the desired direction, of which the concept is to shape the robot dynamics appropriately by changing its posture in order to achieve the robust motion. The positional error of the end-effector caused by unknown disturbances converges onto near the singular vector corresponding to its maximum singular value of the output controllability matrix of the robotic arm. Therefore, if we can control the direction of the singular vector by applying the dynamics shaping, we will be able to control the direction of the positional error of the end-effector caused by unknown disturbances. We propose a novel trajectory planning based on the dynamics shaping and verify numerically and experimentally that the robotic arm can robustly hit the target toward the desired direction with a simple open-loop control system even though the disturbance is applied.

  9. All-Optical Switching in Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Heuck, Mikkel

    All-Optical switching in photonic crystal waveguide-cavity structures is studied predominantly theoretically and numerically, but also from an experimental point of view. We have calculated the first order perturbations to the resonance frequency and decay rate of cavity modes, using a mathematical...... separated. This device was fabricated and characterized by colleagues within the group, and it was shown to perform very well in terms of cross-talk between the signal and pump. Theoretical investigations as well as practical design proposals have resulted from a study of waveguide-cavity structures...... exhibiting Fano resonances. These devices were predicted to be superior to structures with the more well-known Lorentzian line shape in terms of energy consumption and switching contrast. Finally, the mathematical framework of optimal control theory was employed as a general setting, in which the optical...

  10. Fano resonance engineering in slanted cavities with hyperbolic metamaterials

    Science.gov (United States)

    Vaianella, Fabio; Maes, Bjorn

    2016-09-01

    We present the possibility to engineer Fano resonances using multilayered hyperbolic metamaterials. The proposed cavity designs are composed of multilayers with a central slanted part. The highly tunable resonances originate from the interference between a propagating and an evanescent mode inside the slanted section. The propagating mode can reach an extremely high effective index, making the realization of deeply subwavelength cavities possible, as small as 5 nm. The evanescent mode is rarely analyzed but plays an important role here, as its contribution determines the particular shape of the cavity characteristic. Moreover, these phenomena cannot be described using effective medium theory, and we provide a more rigorous analysis. The reported resonances are very sensitive to any structural changes and could be used for sensing applications.

  11. Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Phillips, L; Vušković, L

    2014-01-01

    Plasma based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF) cavities. The development of the technology based on Cl2/Ar plasma etching has to address several crucial parameters which influence the etching rate and surface roughness, and eventually, determine cavity performance. This includes dependence of the process on the frequency of the RF generator, gas pressure, power level, the driven (inner) electrode configuration, and the chlorine concentration in the gas mixture during plasma processing. To demonstrate surface layer removal in the asymmetric non-planar geometry, we are using a simple cylindrical cavity with 8 ports symmetrically distributed over the cylinder. The ports are used for diagnosing the plasma parameters and as holders for the samples to be etched. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (RF) circuit elements, chlorine concentration in the Cl2/Ar gas mixtures, residence...

  12. Toroid cavity/coil NMR multi-detector

    Science.gov (United States)

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  13. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin of the m...

  14. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  15. Closing the loop.

    Science.gov (United States)

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  16. Loop expansion and the bosonic representation of loop quantum gravity

    Science.gov (United States)

    Bianchi, E.; Guglielmon, J.; Hackl, L.; Yokomizo, N.

    2016-10-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  17. Loop expansion and the bosonic representation of loop quantum gravity

    CERN Document Server

    Bianchi, Eugenio; Hackl, Lucas; Yokomizo, Nelson

    2016-01-01

    We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.

  18. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  19. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-01-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  20. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  1. Vibration insensitive optical ring cavity

    Institute of Scientific and Technical Information of China (English)

    Miao Jin; Jiang Yan-Yi; Fang Su; Bi Zhi-Yi; Ma Long-Sheng

    2009-01-01

    The mounting configuration of an optical ring cavity is optimized for vibration insensitivity by finite element analysis. A minimum response to vertical accelerations is found by simulations made for different supporting positions.

  2. Imaging of the oral cavity.

    Science.gov (United States)

    Meesa, Indu Rekha; Srinivasan, Ashok

    2015-01-01

    The oral cavity is a challenging area in head and neck imaging because of its complex anatomy and the numerous pathophysiologies that involve its contents. This challenge is further compounded by the ubiquitous artifacts that arise from the dental amalgam, which compromise image quality. In this article, the anatomy of the oral cavity is discussed in brief, followed by a description of the imaging technique and some common pathologic abnormalities.

  3. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  4. Coupling erbium spins to a three-dimensional superconducting cavity at zero magnetic field

    CERN Document Server

    Chen, Yu-Hui; Longdell, Jevon J

    2015-01-01

    We experimentally demonstrate the coupling of an erbium doped crystal to a three-dimensional superconducting cavity of a $10^5$ $Q$-factor at zero magnetic field. A tunable loop-gap resonator is used to match the cavity frequency to the hyperfine transitions of an erbium sample. The observed spectrum differs from what predicted by the published spin Hamiltonian parameters. The narrow cavity linewidth also enables the observations of asymmetric lineshapes of these hyperfine transitions, which are understood as the super-hyperfine interactions between the erbium ions and their adjacent yttrium ions. Such a broadly tunable superconducting cavity architecture, from 1.6 GHz to 4.0 GHz in the current design, is promising in building hybrid quantum systems.

  5. Analytically computed rates of seepage flow into drains and cavities

    Science.gov (United States)

    Fujii, N.; Kacimov, A. R.

    1998-04-01

    The known formulae of Freeze and Cherry, Polubarinova-Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are inverted using the Schulgasser theorem from the Polubarinova-Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction.

  6. Optimization of the Low Loss SRF Cavity for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Sekutowicz, J.S.; /DESY; Kneisel, P.; /Jefferson Lab; Higo, T.; Morozumi, Y.; Saito, K.; /KEK, Tsukuba; Ge, L.; Ko, Yong-kyu; Lee, L.; Li, Z.; Ng, C.K.; Schussman, G.L.; Xiao, L.; /SLAC

    2008-01-18

    The Low-Loss shape cavity design has been proposed as a possible alternative to the baseline TESLA cavity design for the ILC main linacs. The advantages of this design over the TESLA cavity are its lower cryogenic loss, and higher achievable gradient due to lower surface fields. High gradient prototypes for such designs have been tested at KEK (ICHIRO) and TJNAF (LL). However, issues related to HOM damping and multipacting still need to be addressed. Preliminary numerical studies of the prototype cavities have shown unacceptable damping factors for some higher-order dipole modes if the typical TESLA HOM couplers are directly adapted to the design. The resulting wakefield will dilute the beam emittance thus reducing the machine luminosity. Furthermore, high gradient tests on a 9-cell prototype at KEK have experienced multipacting barriers although a single LL cell had achieved a high gradient. From simulations, multipacting activities are found to occur in the end-groups of the cavity. In this paper, we will present the optimization results of the end-groups for the Low-Loss designs for effective HOM damping and alleviation of multipacting.

  7. Superconducting Accelerating Cavity Pressure Sensitivity Analysis and Stiffening

    Energy Technology Data Exchange (ETDEWEB)

    Rodnizki, J [Soreq NRC, Yavne, Israel; Ben Aliz, Y [Soreq NRC, Yavne, Israel; Grin, A [Soreq NRC, Yavne, Israel; Horvitz, Z [Soreq NRC, Yavne, Israel; Perry, A [Soreq NRC, Yavne, Israel; Weissman, L [Soreq NRC, Yavne, Israel; Davis, G Kirk [JLAB; Delayen, Jean R. [Old Dominion Universtiy

    2014-12-01

    The Soreq Applied Research Accelerator Facility (SARAF) design is based on a 40 MeV 5 mA light ions superconducting RF linac. Phase-I of SARAF delivers up to 2 mA CW proton beams in an energy range of 1.5 - 4.0 MeV. The maximum beam power that we have reached is 5.7 kW. Today, the main limiting factor to reach higher ion energy and beam power is related to the HWR sensitivity to the liquid helium coolant pressure fluctuations. The HWR sensitivity to helium pressure is about 60 Hz/mbar. The cavities had been designed, a decade ago, to be soft in order to enable tuning of their novel shape. However, the cavities turned out to be too soft. In this work we found that increasing the rigidity of the cavities in the vicinity of the external drift tubes may reduce the cavity sensitivity by a factor of three. A preliminary design to increase the cavity rigidity is presented.

  8. Condition Monitoring of Control Loops

    OpenAIRE

    Horch, Alexander

    2000-01-01

    The main concern of this work is the development of methodsfor automatic condition monitoring of control loops withapplication to the process industry. By condition monitoringboth detection and diagnosis of malfunctioning control loops isunderstood, using normal operating data and a minimum amount ofprocess knowledge. The use of indices for quantifying loop performance is dealtwith in the first part of the thesis. The starting point is anindex proposed by Harris (1989). This index has been mo...

  9. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  10. Fine Extruding Deformation and Modeling Optimization of Die Cavityin Special-Shaped Products

    Institute of Scientific and Technical Information of China (English)

    Qi Hongyuan; Zhu Hengjun

    2004-01-01

    On the basis of Conformal Mapping theory, using approaches of numerical trigonometric interpolation and vector normal convergence, region function of three-dimension deforming, surface function of die cavity, and mapping function between the plastic flow model and the axis-symmetry model were set up respectively for fine extruding special-shaped products with different arc radius ri. Then the stream function and both fields of velocity and strain ratio are inferred for special-shaped plastic deformation; meanwhile, with the help of Upper-Bound principle, the parameter of die cavity gets optimized. Taking square-shaped and hexagon-shaped products with different arc radius ri as examples,the velocity field gets analyzed, the parameter of die cavity is optimized and the die cavity gets depicted as well. Consequently, above study provides theoretical support for achieving the technical goal of CAD/CAM integration in die cavity of fine extrusion.

  11. T-bulge-shaped quantum router

    Science.gov (United States)

    Liu, Lin; Lu, Jing

    2017-01-01

    The transport properties of a single photon scattered by a two-level system (TLS) in a T-bulge-shaped waveguide have been studied, which is made of two coupled-resonator waveguides (CRWs), an infinite CRW and a semi-infinite CRW with N-1 FP cavities below the node. The spontaneous emission of the TLS directs single photons from one CRW to the other. The N-1 FP cavities effect the extreme point's value and location of the propagation coefficient and incident energy curve.

  12. Loop Heat Pipe Startup Behaviors

    Science.gov (United States)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  13. Hinode and IRIS Observations of a Prominence-Cavity System

    Science.gov (United States)

    Jibben, Patricia R.; Reeves, Kathy; Su, Yingna

    2016-05-01

    Long-lived solar prominences often have a coronal cavity enclosing the prominence. Within the cavity, hot X-ray emission can persist above the prominence and in the central regions of the cavity. We present the results of an Interface Region Imaging Spectrograph (IRIS) and Hinode coordinated Observation Program (IHOP 264) study of a prominence-cavity system. The X-ray Telescope (XRT) observes an inflow of bright X-ray emission that strikes and envelops the prominence-cavity system causing an eruption of chromospheric plasma near the base of the prominence. During and after the eruption, an increase in X-ray emission forms within the cavity and above the prominence. IRIS and the EUV Imaging Spectrometer (EIS) observe strong blue shifts in both chromosphere and coronal lines during the eruption. The Solar Optical Telescope (SOT) Ca II H-line data show bright emission along the eruption path with complex turbulent plasma motions. The IRIS Si IV 1394 Angstrom spectra along the on-disk portion of the prominence show a region of decreased emission near the base of the prominence, suggesting a magnetic field bald-patch topology along the Polarity Inversion Line (PIL). Combined, these observations imply a cylindrical flux rope best represents the prominence-cavity system. A model of the magnetic structure of the prominence-cavity system comprised of a weakly twisted flux rope can explain the observed loops in the X-ray and EUV data. Observations from the Coronal Multichannel Polarimeter (CoMP) are compared to predicted models and are inconclusive. We find that more sensitive measurements of the magnetic field strength along the line-of-sight are needed to verify this configuration.Patricia Jibben and Kathy Reeves are supported by under contract 80111112705 from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO, grant number NNX12AI30G from NASA to SAO, and contract Z15-12504 from HAO to SAO under a grant from AFOSR. Yingna Su is supported by the Youth Fund of

  14. Polishing Difficult-To-Reach Cavities

    Science.gov (United States)

    Malinzak, R. Michael; Booth, Gary N.

    1990-01-01

    Springy abrasive tool used to finish surfaces of narrow cavities made by electrical-discharge machining. Robot arm moves vibrator around perimeters of cavities, polishing walls of cavities as it does so. Tool needed because such cavities inaccessible or at least difficult to reach with most surface-finishing tools.

  15. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  16. Vortex loops and Majoranas

    Energy Technology Data Exchange (ETDEWEB)

    Chesi, Stefano [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Jaffe, Arthur [Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, University of Basel, Basel (Switzerland); Institute for Theoretical Physics, ETH Zürich, Zürich (Switzerland); Loss, Daniel [CEMS, RIKEN, Wako, Saitama 351-0198 (Japan); Department of Physics, University of Basel, Basel (Switzerland); Pedrocchi, Fabio L. [Department of Physics, University of Basel, Basel (Switzerland)

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  17. Minor hysteresis loops model based on exponential parameters scaling of the modified Jiles-Atherton model

    Energy Technology Data Exchange (ETDEWEB)

    Hamimid, M., E-mail: Hamimid_mourad@hotmail.com [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Mimoune, S.M., E-mail: s.m.mimoune@mselab.org [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Feliachi, M., E-mail: mouloud.feliachi@univ-nantes.fr [IREENA-IUT, CRTT, 37 Boulevard de l' Universite, BP 406, 44602 Saint Nazaire Cedex (France)

    2012-07-01

    In this present work, the minor hysteresis loops model based on parameters scaling of the modified Jiles-Atherton model is evaluated by using judicious expressions. These expressions give the minor hysteresis loops parameters as a function of the major hysteresis loop ones. They have exponential form and are obtained by parameters identification using the stochastic optimization method 'simulated annealing'. The main parameters influencing the data fitting are three parameters, the pinning parameter k, the mean filed parameter {alpha} and the parameter which characterizes the shape of anhysteretic magnetization curve a. To validate this model, calculated minor hysteresis loops are compared with measured ones and good agreements are obtained.

  18. Multipacting Analysis for the Half-Wave Spoke Resonator Crab Cavity for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Lixin; Li, Zenghai; /SLAC

    2011-06-23

    A compact 400-MHz half-wave spoke resonator (HWSR) superconducting crab cavity is being developed for the LHC upgrade. The cavity shape and the LOM/HOM couplers for such a design have been optimized to meet the space and beam dynamics requirements, and satisfactory RF parameters have been obtained. As it is known that multipacting is an issue of concern in a superconducting cavity which may limit the achievable gradient. Thus it is important in the cavity RF design to eliminate the potential MP conditions to save time and cost of cavity development. In this paper, we present the multipacting analysis for the HWSR crab cavity using the Track3P code developed at SLAC, and to discuss means to mitigate potential multipacting barriers. Track3P was used to analyze potential MP in the cavity and the LOM, HOM and FPC couplers. No resonances were found in the LOM couplers and the coaxial beam pipe. Resonant trajectories were identified on various locations in cavity, HOM and FPC couplers. Most of the resonances are not at the peak SEY of Nb. Run-away resonances were identified in broader areas on the cavity end plate and in the HOM coupler. The enhancement counter for run-away resonances does not show significant MP. HOM coupler geometry will be optimized to minimize the high SEY resonance.

  19. The Loop Algorithm

    Science.gov (United States)

    Evertz, Hans Gerd

    1998-03-01

    Exciting new investigations have recently become possible for strongly correlated systems of spins, bosons, and fermions, through Quantum Monte Carlo simulations with the Loop Algorithm (H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70, 875 (1993).) (For a recent review see: H.G. Evertz, xxx.lanl.gov/abs/cond-mat/9707221>cond- mat/9707221.) and its generalizations. A review of this new method, its generalizations and its applications is given, including some new results. The Loop Algorithm is based on a formulation of physical models in an extended ensemble of worldlines and graphs, and is related to Swendsen-Wang cluster algorithms. It performs nonlocal changes of worldline configurations, determined by local stochastic decisions. It overcomes many of the difficulties of traditional worldline simulations. Computer time requirements are reduced by orders of magnitude, through a corresponding reduction in autocorrelations. The grand-canonical ensemble (e.g. varying winding numbers) is naturally simulated. The continuous time limit can be taken directly. Improved Estimators exist which further reduce the errors of measured quantities. The algorithm applies unchanged in any dimension and for varying bond-strengths. It becomes less efficient in the presence of strong site disorder or strong magnetic fields. It applies directly to locally XYZ-like spin, fermion, and hard-core boson models. It has been extended to the Hubbard and the tJ model and generalized to higher spin representations. There have already been several large scale applications, especially for Heisenberg-like models, including a high statistics continuous time calculation of quantum critical exponents on a regularly depleted two-dimensional lattice of up to 20000 spatial sites at temperatures down to T=0.01 J.

  20. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    2008-07-01

    Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  1. 3D cavity detection technique and its application based on cavity auto scanning laser system

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ling; LI Xi-bing; LI Fa-ben; ZHAO Guo-yan; QIN Yu-hui

    2008-01-01

    Ground constructions and mines are severely threatened by underground cavities especially those unsafe or inaccessible ones. Safe and precise cavity detection is vital for reasonable cavity evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.

  2. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  3. A practical guide to endodontic access cavity preparation in molar teeth.

    Science.gov (United States)

    Patel, S; Rhodes, J

    2007-08-11

    The main objective of access cavity preparation is to identify the root canal entrances for subsequent preparation and obturation of the root canal system. Access cavity preparation can be one of the most challenging and frustrating aspects of endodontic treatment, but it is the key to successful treatment. Inadequate access cavity preparation may result in difficulty locating or negotiating the root canals. This may result in inadequate cleaning, shaping and filling of the root canal system. It may also contribute to instrument separation and aberrations of canal shape. These factors may ultimately lead to failure of treatment. Good access cavity design and preparation is therefore imperative for quality endodontic treatment, prevention of iatrogenic problems, and prevention of endodontic failure.

  4. Self-cavity lasing in optically pumped single crystals of p-sexiphenyl

    Directory of Open Access Journals (Sweden)

    Hisao Yanagi

    2016-08-01

    Full Text Available Organic single-crystal self-cavities are prepared by solution growth of p-sexiphenyl (p-6P. Based on Fabry-Pérot feedback inside a quasi-lozenge-shaped platelet crystal, edge-emitting laser is obtained under optical pumping. The multimode lasing band appears at the 0-1 or 0-2 vibronic progressions depending on the excitation conditions which affect the self-absorption effect. Cavity-size dependence of amplified spontaneous emission (ASE is investigated with laser-etched single crystals of p-6P. As the cavity length of square-shaped crystal is reduced from 100 to 10 μm, ASE threshold fluence is decreased probably due to size-dependent light confinement in the crystal cavity.

  5. Hardware-in-the-Loop Simulation for Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Jinjun Shan

    2010-01-01

    Full Text Available This paper presents a hardware-in-the-loop (HITL simulation approach for multiple spacecraft formation flying. Considering a leader-follower formation flying configuration, a Fuzzy Logic controller is developed first to maintain the desired formation shape under external perturbations and the initial position offsets. Cold-gas on/off thrusters are developed to be introduced to the simulation loop, and the HITL simulations are conducted to validate the effectiveness of the proposed simulation configuration and Fuzzy Logic control.

  6. Expulsion of the intrauterine devices Lippes loop size 30 mm.

    Science.gov (United States)

    el-Zeneiny, A H; Ammar, A R; Badawi, S Z

    1969-01-01

    To determine the factors controlling IUD expulsion (Lippes loop 30 mm), Cairo's Ain-Shams Birth Control Clinic investigated 25 women with regard to the following: 1) detailed obstetric history; 2) hystergram; 3) Lipiodol hysterosalpinography (postmenstrual cases); 4) measurement of uterine cavity; 5) dilation (Hegar's No. 8) to determine internal os integrity. In 40% of the expulsions congenital abnormalities of the uterus was found while another 40% revealed a patulous internal os. In septate and arcuate uteruses, continuous pressure on the upper part of the loop found to cause expulsion. Uterine contractions occurring during menstruation were also seen to increase chances of expulsion, particularly in cases of patulous internal os. In 20% of the cases, no anomoly was detected and expulsion was thought to have resulted from faulty insertion or irrigation of the uterus by a foreign body.

  7. Improved code-tracking loop

    Science.gov (United States)

    Laflame, D. T.

    1980-01-01

    Delay-locked loop tracks pseudonoise codes without introducing dc timing errors, because it is not sensitive to gain imbalance between signal processing arms. "Early" and "late" reference codes pass in combined form through both arms, and each arm acts on both codes. Circuit accomodates 1 dB weaker input signals with tracking ability equal to that of tau-dither loops.

  8. Loop groups and noncommutative geometry

    CERN Document Server

    Carpi, Sebastiano

    2015-01-01

    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LG. The construction is based on certain supersymmetric conformal field theory models associated with LG.

  9. Phenomenology of loop quantum cosmology

    CERN Document Server

    Sakellariadou, Mairi

    2010-01-01

    After introducing the basic ingredients of Loop Quantum Cosmology, I will briefly discuss some of its phenomenological aspects. Those can give some useful insight about the full Loop Quantum Gravity theory and provide an answer to some long-standing questions in early universe cosmology.

  10. Brane Couplings from Bulk Loops

    OpenAIRE

    Georgi, Howard; Grant, Aaron K.; Hailu, Girma

    2000-01-01

    We compute loop corrections to the effective action of a field theory on a five-dimensional $S_1/Z_2$ orbifold. We find that the quantum loop effects of interactions in the bulk produce infinite contributions that require renormalization by four-dimensional couplings on the orbifold fixed planes. Thus bulk couplings give rise to renormalization group running of brane couplings.

  11. Effectiveness of Er:YAG laser in cavity preparation for retrograde filling--in vitro study.

    Science.gov (United States)

    Karlović, Zoran; Grgurević, Lovro; Verzak, Zeljko; Modrić, Vesna-Erika; Sorić, Pjetra; Grgurević, Josko

    2014-06-01

    The purpose of this study was to determine the sealing quality of Super EBA cement in laser prepared root-end cavities in comparison with root-end cavities classically prepared with steel burrs. Two groups of three millimeter root sections were prepared. The first group was prepared with the Er:YAG laser and the second group with a steel burr mounted on a surgical handpiece. The sections were filled with Super EBA cement and tested for leakage with fluid transport techniques. The sealing quality of Super EBA cement in the classically prepared root-end cavities was better, but there was no statistically significant difference between the two preparation techniques. The possible reason for greater leakage in the laser prepared root-end cavities was probably the irregular shape of the root-end cavity.

  12. Effects of various thermal boundary conditions on natural convection in porous cavities

    Science.gov (United States)

    Cheong, H. T.; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Z.

    2015-10-01

    The present work analyzes numerically the effects of various thermal boundary conditions and the geometry of the cavity on natural convection in cavities with fluid-saturated porous medium. Cavity of square, right-angled trapezium and right-angled triangle shapes are considered. The different temperature profiles are imposed on the left wall of the cavity and the right wall is maintained at a lower constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for the porous medium. The finite difference method is used to solve the governing equations and boundary conditions over a range of Darcy-Rayleigh numbers. Streamlines, isotherms and Nusselt numbers are used for presenting the results. The heat transfer of the square cavity is more enhanced at high Darcy-Rayleigh number for all the thermal boundary conditions considered.

  13. On the electrostatic equilibrium of charges and cavities in a conductor

    CERN Document Server

    Pathak, Aritro

    2016-01-01

    We consider a charged conductor of arbitrary shape, in electrostatic equilibrium, with one or more cavities inside it, and with fixed charges placed outside the conductors and inside the cavities. The field inside a particular cavity is then only due to charges within that cavity itself and to the surface charge induced on the surface of the same cavity. A similar statement holds for the exterior of the conductor. Although this is an elementary property of conductors, it is not a trivial statement, as explained in this article. Undergraduate texts in electrodynamics do not discuss at length or provide a complete argument for an important problem such as this. Two simple and complete proofs are provided in this note with the help of the standard electrostatic uniqueness theorems.

  14. A novel experiment for coupling a Bose-Einstein condensate with two crossed cavity modes

    Science.gov (United States)

    Leonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman

    2015-05-01

    Over the last decade, combining cavity quantum electrodynamics and quantum gases made it possible to explore the coupling of quantized light fields to coherent matter waves, leading e.g. to new optomechanical phenomena and the realization of quantum phase transitions. Triggered by the interest to study setups with more complex cavity geometries, we built a novel, highly flexible experimental system for coupling a Bose-Einstein condensate (BEC) with optical cavities, which allows to switch the cavity setups by means of an interchangeable science platform. report on our latest results on coupling a Bose-Einstein condensate with two crossed cavity modes intersecting under an angle of 60°. The mirrors have been machined in a way to spatially approach them, thus obtaining maximum single atom coupling rates of several MHz. This setup will allow the study of self-ordered phases in different lattice shapes, such as hexagonal and triangular geometries.

  15. THE FLUCTUATION CHARACTERISTICS OF NATURAL AND VENTILATED CAVITIES ON AN AXISYMMETRIC BODY

    Institute of Scientific and Technical Information of China (English)

    FENG Xue-mei; LU Chuan-jing; HU Tian-qun; WU Lei; LI Jie

    2005-01-01

    Natural and ventilated cavitations generated on a smooth-nosed axisymmetric body were studied experimental-ly. The characteristics of small scale and localized fluctuations of "steady cavities" were measured by pressure transducers. Comparisons between natural and ventilated cavities at differ-ent measured points for several cavitation numbers were done. It was observed that the dominant fluctuations were concen-trated in the frequency range of OHz-50Hz for all the cavitati-on cases, Similar shapes and magnitudes of the frequency spectra were detected for both natural and ventilated cavities. Much larger spectral amplitude in the cavity closure region suggested as fluctuations source. From partial cavitating flow to supercavitating flow, the dominat frequency and the corre-sponding amplitude decreased with decrasing cavitation num-ber, which meant that cavity became more steady while devel-oping.

  16. Higher dimensional loop quantum cosmology

    Science.gov (United States)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  17. Ultra-low noise optical phase-locked loop

    Science.gov (United States)

    Ayotte, Simon; Babin, André; Costin, François

    2014-03-01

    The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.

  18. Uranyl Nitrate Flow Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ladd-Lively, Jennifer L [ORNL

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion

  19. Diagnostics of Coronal Heating in Active-region Loops

    Science.gov (United States)

    Fludra, A.; Hornsey, C.; Nakariakov, V. M.

    2017-01-01

    Understanding coronal heating remains a central problem in solar physics. Many mechanisms have been proposed to explain how energy is transferred to and deposited in the corona. We summarize past observational studies that attempted to identify the heating mechanism and point out the difficulties in reproducing the observations of the solar corona from the heating models. The aim of this paper is to study whether the observed extreme ultraviolet (EUV) emission in individual coronal loops in solar active regions can provide constraints on the volumetric heating function, and to develop a diagnostic for the heating function for a subset of loops that are found close to static thermal equilibrium. We reconstruct the coronal magnetic field from Solar Dynamics Observatory/HMI data using a nonlinear force-free magnetic field model. We model selected loops using a one-dimensional stationary model, with a heating rate dependent locally on the magnetic field strength along the loop, and we calculate the emission from these loops in various EUV wavelengths for different heating rates. We present a method to measure a power index β defining the dependence of the volumetric heating rate EH on the magnetic field, {E}H\\propto {B}β , and controlling also the shape of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints. The diagnostic is based on the dependence of the electron density on the index β. This method is free from the assumptions of the loop filling factor but requires spectroscopic measurements of the density-sensitive lines. The range of applicability for loops of different length and heating distributions is discussed, and the steps to solving the coronal heating problem are outlined.

  20. Higher Order Modes in Coupled Cavities of the Flash Module ACC39

    CERN Document Server

    Shinton, I R R; Li, Z; Zhang, P

    2011-01-01

    We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  1. Higher order modes HOMs in coupled cavities of the FLASH module ACC39

    CERN Document Server

    Shinton, I R R; Li, Z; Zhang, P

    2011-01-01

    We analyse the higher order modes (HOM’s) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  2. Conditioning effects of cavities prepared with an Er,Cr:YSGG laser and an air-turbine.

    Science.gov (United States)

    Kato, Chikage; Taira, Yoshihisa; Suzuki, Masaya; Shinkai, Koichi; Katoh, Yoshiroh

    2012-07-01

    The purpose of this study was to examine, morphologically and histochemically, five types of conditioning effects on cavities prepared with an Er,Cr:YSGG laser and an air-turbine. Cavities were prepared using a Waterlase(®) MD turbo handpiece (W) and an air-turbine (AT) on human extracted molars. The cavity conditionings used were non-conditioned (G1), K-etchant Gel (G2), K-etchant Gel + AD Gel (G3), Clearfil SE Bond primer (G4) and Clearfil S(3) Bond (G5). On naked eye observations, enamel of G1, G2 and G3 in the W cavities and etched enamel of G2 and G3 in the AT cavities were observed as rough and dull in appearance. G4 and G5 in W and AT cavities were observed as shiny surfaces. On SEM observations, no smeared layer was observed in W cavities, while a smeared layer and bur-scratches were observed in AT cavities. In W cavities, rough surfaces were observed on enamel. That is, cracks and minute rough surfaces were observed. In contrast, equally etched scale-shaped enamel rods were observed in AT cavities. Widely opened dentinal tubules and protruding peritubular matrices of dentin were observed in W cavities. A few remaining smeared plugs could be observed at the AT cavities. On LM observations, 13-16 μm layers of the dentin in G1, G2, G4 and G5 of W cavities were stained red in color by the Azan staining method, while redness was not observed in G3. No groups were stained red in AT cavities. It was considered that layers stained red in color were thermal degeneration layers of dentin induced by W. Namely 30 s etching of 40% phosphoric acid gel followed by 90 s treatment of 10% NaClO gel should be recommended for use when combined with an Er,Cr:YSGG laser for cavity preparation.

  3. RRR Characteristics for SRF Cavities

    CERN Document Server

    Jung, Yoochul; Joung, Mijoung

    2015-01-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes were fabricated such as a quarter wave resonator (QWR), a half wave resonator (HWR) and a single spoke resonator (SSR). One of the critical factors determining performances of the superconducting cavities is a residual resistance ratio (RRR). The RRR values essentially represent how much niobium is pure and how fast niobium can transmit heat as well. In general, the RRR degrades during electron beam welding due to the impurity incorporation. Thus it is important to maintain RRR above a certain value at which a niobium cavity shows target performance. In this study, RRR degradation related with electron beam welding conditions, for example, welding power, welding speed, and vacuum level will be discussed.

  4. Investigation on the fabrication of the 3rd harmonic superconducting cavity for the SSRF storage ring

    Institute of Scientific and Technical Information of China (English)

    MA Zhen-Yu; MA Guang-Ming; YU Hai-Bo; MAO Dong-Qing; FENG Zi-Qiang; HOU Hong-Tao; LIU Jian-Fei

    2009-01-01

    A third harmonic superconducting niobium cavity has been proposed for installation in the Shang-hai Synchrotron Radiation Facility (SSRF) storage ring to improve the Touschek lifetime. In order to investigate the feasibility of the superconducting cavity fabrication indigenously and the possibility to master the fabrica-tion techniques, cavities were fabricated from copper and niobium sheets by deep drawing and electron-beam welding, and a series of measurements, such as resonant frequency, shape dimensions and wall thickness, were carried out during this process. After analysis of various problems existing in the fabrication process, tech-nique improvements were proposed, and finally the precise shape as designed and resonant frequency within 1.2 MHz were achieved for the new completed cavities. In addition, full annealing was finally proved to be a good cure for niobium sheets' tearing up during deep drawing. By fabricating niobium cavities successfully, some problems to the next step were cleared. This paper introduces the process of cavity fabrication and its technique improvements towards forming, and the initial vertical test result of niobium cavity is also presented.

  5. The loop gravity string

    CERN Document Server

    Freidel, Laurent; Pranzetti, Daniele

    2016-01-01

    In this work we study canonical gravity in finite regions for which we introduce a generalisation of the Gibbons-Hawking boundary term including the Immirzi parameter. We study the canonical formulation on a spacelike hypersuface with a boundary sphere and show how the presence of this term leads to an unprecedented type of degrees of freedom coming from the restoration of the gauge and diffeomorphism symmetry at the boundary. In the presence of a loop quantum gravity state, these boundary degrees of freedom localize along a set of punctures on the boundary sphere. We demonstrate that these degrees of freedom are effectively described by auxiliary strings with a 3-dimensional internal target space attached to each puncture. We show that the string currents represent the local frame field, that the string angular momenta represent the area flux and that the string stress tensor represents the two dimensional metric on the boundary of the region of interest. Finally, we show that the commutators of these broken...

  6. Modeling loop entropy.

    Science.gov (United States)

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  7. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    K. Heremans

    2005-08-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  8. A micropillar for cavity optomechanics

    CERN Document Server

    Kuhn, A G; Ducloux, O; Chartier, C; Traon, O Le; Briant, T; Cohadon, P -F; Heidmann, A; Michel, C; Pinard, L; Flaminio, R

    2011-01-01

    We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-$\\mu$m diameter low-loss dielectric mirror on top of the pillar and are planning to use this micromirror as part of a high-finesse Fabry-Perot cavity, to laser cool the resonator down to its quantum ground state and to monitor its quantum position fluctuations by quantum-limited optical interferometry.

  9. Gross morphology of rhea oropharyngeal cavity

    Directory of Open Access Journals (Sweden)

    Marcio N. Rodrigues

    2012-12-01

    Full Text Available The rhea (Rhea americana americana is an american bird belonging to Ratite's family. Studies related to its morphology are still scarce. This study aims to describe the macroscopic structures of the oropharyngeal cavity. Five heads (2 to 6 months old formalin preserved were anatomically dissected to expose the oropharynx. The oropharynx of the rhea was "bell-shaped" composed by the maxillary and mandibular rhamphotheca. The roof and floor presented two distinct regions different in colour of the mucosa. The rostral region was pale pink contrasting to grey coloured caudal region. The median longitudinal ridge extended rostrally from the apex of the choana to the tip of the beak in the roof and it is clearly more prominent and rigid than the homolog in the floor that appeared thin and stretched merely along the rostral portion of the regio interramalis. The floor was formed by the interramal region, (regio interramalis tongue and laryngeal mound containing glove-shaped glottis. This study confirmed the basic morphology of the oropharinx of the rhea. However, important morphological information not previously described is highlighted and contradictory information present in the literature is clarified.

  10. Control Loops for the J-PARC RCS Digital Low-Level RF Control

    CERN Document Server

    Schnase, Alexander; Ezura, Eizi; Hara, Keigo; Nomura, Masahiro; Ohmori, Chihiro; Takagi, Akira; Tamura, Fumihiko; Yamamoto, Masanobu; Yoshii, Masahito

    2005-01-01

    The low-level radiofrequency control for the Rapic Cycling Synchrotron of J-PARC is based on digital signal processing. This system controls the acceleration voltages of 12 magnetic alloy loaded cavities. To achive a short overall delay, mandatory for stable loop operation, the data-processing is based on distributed arithmetics in FPGA. Due to the broadband characteristic of the acceleration cavities, no tuning loop is needed. To handle the large beam current, the RF system operates simultaneously with dual harmonics (h=2) and (h=4). The stability of the amplitude loops is limited by the delay of the FIR filters used after downconversion. The phase loop offers several operation modes to define the phase relation of (h=2) and (h=4) between the longitudinal beam signal and the vector-sum of the cavity voltages. Besides the FIR filters, we provide cascaded CIC filters with smoothly varying coefficients. Such a filter tracks the revolution frequency and has a substantially shorter delay, thereby increasing the s...

  11. Entanglement swapping between atom and cavity and generation of entangled state of cavity fields

    Institute of Scientific and Technical Information of China (English)

    Chen Ai-Xi; Deng Li

    2007-01-01

    This paper proposes a scheme where entanglement swapping between atom and cavity can be realized. A-type three-level atoms interacting resonantly with cavity field are considered. By detecting atom and cavity field, it realizes entanglement swapping between atom and cavity. It uses the technique of entanglement swapping to generate an entangled state of two cavity fields by measuring on atoms. It discusses the experimental feasibility of the proposed scheme and application of entangled state of cavity fields.

  12. Klystron 'efficiency loop' for the ALS storage ring RF system

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-05-20

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron.

  13. Hard Loops, Soft Loops, and High Density Effective Field Theory

    CERN Document Server

    Schäfer, T

    2003-01-01

    We study several issues related to the use of effective field theories in QCD at large baryon density. We show that the power counting is complicated by the appearance of two scales inside loop integrals. Hard dense loops involve the large scale $mu^2$ and lead to phenomena such as screening and damping at the scale $gmu$. Soft loops only involve small scales and lead to superfluidity and non-Fermi liquid behavior at exponentially small scales. Four-fermion operators in the effective theory are suppressed by powers of $1/mu$, but they get enhanced by hard loops. As a consequence their contribution to the pairing gap is only suppressed by powers of the coupling constant, and not powers of $1/mu$. We determine the coefficients of four-fermion operators in the effective theory by matching quark-quark scattering amplitudes. Finally, we introduce a perturbative scheme for computing corrections to the gap parameter in the superfluid phase

  14. Transverse, Propagating Velocity Perturbations in Solar Coronal Loops

    CERN Document Server

    De Moortel, I; Wright, A N; Hood, A W

    2015-01-01

    This short review paper gives an overview of recently observed transverse, propagating velocity perturbations in coronal loops. These ubiquitous perturbations are observed to undergo strong damping as they propagate. Using 3D numerical simulations of footpoint-driven transverse waves propagating in a coronal plasma with a cylindrical density structure, in combination with analytical modelling, it is demonstrated that the observed velocity perturbations can be understood in terms of coupling of different wave modes in the inhomogeneous boundaries of the loops. Mode coupling in the inhomogeneous boundary layers of the loops leads to the coupling of the transversal (kink) mode to the azimuthal (Alfven) mode, observed as the decay of the transverse kink oscillations. Both the numerical and analytical results show the spatial profile of the damped wave has a Gaussian shape to begin with, before switching to exponential decay at large heights. In addition, recent analysis of CoMP (Coronal Multi-channel Polarimeter)...

  15. A preliminary quadrupole asymmetry study of a β=0.12 superconducting single spoke cavity

    Science.gov (United States)

    Yang, Zi-Qin; Lu, Xiang-Yang; Yang, Liu; Luo, Xing; Zhou, Kui; Quan, Sheng-Wen

    2014-10-01

    An Accelerator Driven System (ADS) has been launched in China for nuclear waste transmutation. For the application of high intensity proton beam acceleration, the quadrupole asymmetry effect needs to be carefully evaluated for cavities. Single spoke cavities are the main accelerating structures in the low energy front-end. The single spoke cavity has small transverse electromagnetic field asymmetry, which may lead to transverse RF defocusing asymmetry and beam envelope asymmetry. A superconducting single spoke resonator (PKU-2 Spoke) of β=0.12 and f=325 MHz with a racetrack-shaped inner conductor has been designed at Peking university. The study of its RF field quadrupole asymmetry and its effect on transverse momentum change has been performed. The quadrupole asymmetry study has also been performed on a β=0.12 and f=325 MHz ring-shaped single spoke cavity. Our results show that the quadrupole asymmetry is very small for both the racetrack-shaped and the ring-shaped single spoke cavity.

  16. On cavity modification of stimulated Raman scattering

    CERN Document Server

    Matsko, A B; Letargat, R J; Ilchenko, V S; Maleki, L

    2003-01-01

    We study theoretically stimulated Raman scattering (SRS) in a nonlinear dielectric microcavity and compare SRS thresholds for the cavity and the bulk material it is made of. We show that cavity SRS enhancement results solely from the intensity build up in the cavity and from the differences of the SRS dynamics in free and confined space. There is no significant modification of the Raman gain due to cavity QED effects. We show that the SRS threshold depends significantly on the nature of the dominating cavity decay as well as on the coupling technique with the cavity used for SRS measurements.

  17. Radial propagators and Wilson loops

    CERN Document Server

    Leupold, S; Leupold, Stefan; Weigert, Heribert

    1996-01-01

    We present a relation which connects the propagator in the radial (Fock-Schwinger) gauge with a gauge invariant Wilson loop. It is closely related to the well-known field strength formula and can be used to calculate the radial gauge propagator. The result is shown to diverge in four-dimensional space even for free fields, its singular nature is however naturally explained using the renormalization properties of Wilson loops with cusps and self-intersections. Using this observation we provide a consistent regularization scheme to facilitate loop calculations. Finally we compare our results with previous approaches to derive a propagator in Fock-Schwinger gauge.

  18. Gain and Efficiency of a Superconducting Microwave Compressor with a Switching Cavity in an Interference Switch

    Science.gov (United States)

    Artemenko, S. N.; Samoylenko, G. M.

    2016-11-01

    We study the processes of radiation output from a microwave storage cavity through a superconducting interference switch, which is based on a H-junction with a superconducting switching cavity connected to the side branch of the junction for various ways of controlling the parameters of the switching cavity. It is shown that efficient control over radiation output in such a switch can be achieved by varying the resonance frequency or Q-factor of the switching cavity, as well as by varying these parameters simultaneously. It is found that in the case of controlling the resonance frequency of the switching cavity, there exists an optimal interval of the frequency variation, within which the total efficiency and extraction efficiency are maximum. When the Q-factor of the switching cavity changes, the dependence of the total efficiency and extraction efficiency on the Q-factor has the monotonic character. The mixed regime of radiation output control is also studied. The envelopes of the output compressor pulses are plotted on the basis of recurrent relationships between the amplitudes of the waves in the system for three regimes of switch operation. It is shown that pulses with an almost rectangular shape of the envelope can be formed in the regime of controlling the switching cavity by varying the Q-factor. An example of possible realization of the switching cavity is considered.

  19. Middle ear cavity morphology is consistent with an aquatic origin for testudines.

    Directory of Open Access Journals (Sweden)

    Katie L Willis

    Full Text Available The position of testudines in vertebrate phylogeny is being re-evaluated. At present, testudine morphological and molecular data conflict when reconstructing phylogenetic relationships. Complicating matters, the ecological niche of stem testudines is ambiguous. To understand how turtles have evolved to hear in different environments, we examined middle ear morphology and scaling in most extant families, as well as some extinct species, using 3-dimensional reconstructions from micro magnetic resonance (MR and submillimeter computed tomography (CT scans. All families of testudines exhibited a similar shape of the bony structure of the middle ear cavity, with the tympanic disk located on the rostrolateral edge of the cavity. Sea Turtles have additional soft tissue that fills the middle ear cavity to varying degrees. When the middle ear cavity is modeled as an air-filled sphere of the same volume resonating in an underwater sound field, the calculated resonances for the volumes of the middle ear cavities largely fell within testudine hearing ranges. Although there were some differences in morphology, there were no statistically significant differences in the scaling of the volume of the bony middle ear cavity with head size among groups when categorized by phylogeny and ecology. Because the cavity is predicted to resonate underwater within the testudine hearing range, the data support the hypothesis of an aquatic origin for testudines, and function of the middle ear cavity in underwater sound detection.

  20. RF properties of 700 MHz, = 0.42 elliptical cavity for high current proton acceleration

    Indian Academy of Sciences (India)

    Amitava Roy; J Mondal; K C Mittal

    2008-12-01

    BARC is developing a technology for the accelerator-driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator-driven subcritical system project. We have studied RF properties of 700 MHz, = 0.42 single cell elliptical cavity for possible use in high current proton acceleration. The cavity shape optimization studies have been done using SUPERFISH code. A calculation has been done to find out the velocity range over which this cavity can accelerate protons efficiently and to select the number of cells/cavity. The cavity's peak electric and magnetic fields, power dissipation c, quality factor and effective shunt impedance 2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameters for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  1. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  2. Sterility of the uterine cavity

    DEFF Research Database (Denmark)

    Møller, Birger R.; Kristiansen, Frank V.; Thorsen, Poul;

    1995-01-01

    from the same sites. Nearly a quarter of all the patients harbored one or more microorganisms in the uterus, mostly Gardnerella vaginalis, Enterobacter and Streptococcus agalactiae. We found that in a significant number of cases, the uterine cavity is colonized with potentially pathogenic organisms...

  3. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  4. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  5. A STUDY OF FERRITE CAVITY.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2002-04-19

    This note addresses the general concerns for the design of a ferrite cavity. The parameters are specified for the RCMS, for which the frequency ramp is in the range of 1.27 MHz to 6.44 MHz, or a ratio of 1:5.

  6. A 200 MHz prebunching cavity

    CERN Multimedia

    1977-01-01

    This cavity was installed in the PS ring and proved very efficient in providing a modulation on the PS beam before it is injected into the SPS machine. Moreover it allowed longitudinal instabilities studies at high intensities. Roberto Cappi stands on the left.

  7. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  8. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  9. Application of Shape Lock-on Method in Plate Rolling

    Institute of Scientific and Technical Information of China (English)

    HU Xian-lei; WANG Jun; WANG Zhao-dong; LIU Xiang-hua; WANG Guo-dong

    2004-01-01

    AGC system can improve the plate gauge precision, and damage the plate shape if the shape control loop is left quite open. This damage will cause wave during rolling wide-thin plate. A control strategy named shape lock-on method is afforded for plate shape control. This method requires APC instead of AGC at last one or two passes during rolling wide-thin plate. Approved by theory and on-line application, this method is good for the plate shape and crown control with small effect on gauge control.

  10. Vertical cavity lasing from melt-grown crystals of cyano-substituted thiophene/phenylene co-oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yosuke; Yanagi, Hisao, E-mail: yanagi@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Goto, Kaname; Yamashita, Kenichi; Yamao, Takeshi; Hotta, Shu [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-10-19

    Vertical-cavity organic lasers are fabricated with melt-grown crystals of a cyano-substituted thiophene-phenylene co-oligomer. Due to lying molecular orientation, surface-emitting lasing is achieved even in the half-cavity crystal grown on a distributed Bragg reflector (DBR) under optical pumping at room temperature. Anticrossing splits in angle-resolved photoluminescence spectra suggest the formation of exciton-polaritons between the cavity photons and the confined Frenkel excitons. By constructing the full-cavity structure sandwiched between the top and bottom DBRs, the lasing threshold is reduced to one order, which is as low as that of the half cavity. Around the threshold, the time profile of the full-cavity emission is collapsed to a pulsed shape accompanied by a finite turn-on delay. We discuss these observed characteristics in terms of a polariton contribution to the conventional photon lasing.

  11. An update on the study of high-gradient elliptical SRF cavities at 805 MHz for proton and other applications

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Tsuyoshi [Los Alamos National Laboratory; Haynes, Brian [Los Alamos National Laboratory; Krawczyk, Frank [Los Alamos National Laboratory; Madrid, Mike [Los Alamos National Laboratory; Roybal, Ray [Los Alamos National Laboratory; Simakov, Evgenya [Los Alamos National Laboratory; Clemens, Bob [TJNAF; Macha, Jurt [TJNAF; Manus, Bob [TJNAF; Rimmer, Bob [TJNAF; Rimmer, Bob [TJNAF; Turlington, Larry [TJNAF

    2010-09-09

    An update on the study of 805 MHz elliptical SRF cavities that have been optimized for high gradient will be presented. An optimized cell shape, which is still appropriate for easy high pressure water rinsing, has been designed with the ratios of peak magnetic and electric fields to accelerating gradient being 3.75 mT/(MV/m) and 1.82, respectively. A total of 3 single-cell cavities have been fabricated. Two of the 3 cavities have been tested so far. The second cavity achieved an E{sub acc} of {approx}50 MV/m at Q{sub 0} of 1.4 x 10{sup 10}. This result demonstrates that 805 MHz cavities can, in principle, achieve as high as, or could even be better than, 1.3 GHz high-gradient cavities.

  12. LIGHT SOURCE: RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Shi, Jia-Ru; Chen, Huai-Bi; Tang, Chuan-Xiang; Huang, Wen-Hui; Du, Ying-Chao; Zheng, Shu-Xin; Ren, Li

    2009-06-01

    An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.

  13. Thermal fluctuations in loop cosmology

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Singh, Parampreet

    2007-01-01

    Quantum gravitational effects in loop quantum cosmology lead to a resolution of the initial singularity and have the potential to solve the horizon problem and generate a quasi scale-invariant spectrum of density fluctuations. We consider loop modifications to the behavior of the inverse scale factor below a critical scale in closed models and assume a purely thermal origin for the fluctuations. We show that the no-go results for scale invariance in classical thermal models can be evaded even if we just consider modifications to the background (zeroth order) gravitational dynamics. Since a complete and systematic treatment of the perturbed Einstein equations in loop cosmology is still lacking, we simply parameterize their expected modifications. These change quantitatively, but not qualitatively, our conclusions. We thus urge the community to more fully work out this complex aspect of loop cosmology, since the full picture would not only fix the free parameters of the theory, but also provide a model for a no...

  14. Loop Quantum Cosmology Gravitational Baryogenesis

    CERN Document Server

    Odintsov, S D

    2016-01-01

    Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...

  15. Product Integrals and Wilson loops

    CERN Document Server

    Karp, R L

    2001-01-01

    Using product integrals we review the unambiguous mathematical representation of Wilson line and Wilson loop operators, including their behavior under gauge transformations and the non-abelian Stokes theorem. Interesting consistency conditions among Wilson lines are also presented.

  16. Evaluation of tensile strength of different configurations of orthodontic retraction loops for obtaining optimized forces.

    Science.gov (United States)

    Blaya, Miceli Beck Guimaraes; Westphalen, Graziela Henriques; Guimaraes, Magali Beck; Hirakata, Luciana Mayumi

    2009-01-01

    The aim of this study was to analyze the mechanical behavior of different orthodontic retraction loops. Two designs of orthodontic loops for closing space were analyzed: teardrop-shaped (T) and circle-shaped loop (C), of two different heights (6 and 8 mm), and two types of orthodontic wires (stainless steel - 0.19' x 0.25'; TMA - titanium molybdenum alloy - 0.016' x 0.016'). The sample consisted of 80 loops, divided into 8 groups determined by the combination shape/height/type of wire, which were submitted to tensile testing at a speed of 2 mm/min., to measure the quantity of force generated when activated in the interval of 0.75 mm and 2.25 mm. The results were submitted to the ANOVA and Tukey statistical tests to compare the groups, and the Student's-t test to compare the means of two groups. Statistically higher values were observed for the size 6 mm, circle shape and stainless steel composition. The group "teardrop-8 mm-TMA" together with the group "circle-8 mm-TMA" presented the lowest mean value, differing statistically from all of the other groups. It was concluded that the alloy of the wire and the height of the loop would be more important than the loop design.

  17. Bifurcations of nontwisted heteroclinic loop

    Institute of Scientific and Technical Information of China (English)

    田清平; 朱德明

    2000-01-01

    Bifurcations of nontwisted and fine heteroclinic loops are studied for higher dimensional systems. The existence and its associated existing regions are given for the 1-hom orbit and the 1-per orbit, respectively, and bifurcation surfaces of the two-fold periodic orbit are also obtained. At last, these bifurcation results are applied to the fine heteroclinic loop for the planar system, which leads to some new and interesting results.

  18. Mainz two-loop methods

    Energy Technology Data Exchange (ETDEWEB)

    Bruecher, L.; Franzkowski, J.; Frink, A.; Kreimer, D. [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz, Mainz (Germany)

    1997-03-01

    In the recent past procedures for the calculation of two-loop Feynman diagrams were developed at the University of Mainz. They solve self-energy and vertex diagrams involving arbitrary massive particles. The procedures are bound to a program package called XLOOPS which is designed to treat Feynman diagrams up to the two-loop level in a completely automatic way. (author) 14 refs, 3 figs

  19. The Projectile inside the Loop

    OpenAIRE

    Varieschi, Gabriele U.

    2005-01-01

    In this paper we describe an alternative use of the loop-the-loop apparatus, which can be used to study an interesting case of projectile motion. We also present an effective way to perform and analyze these experiments, by using video capture software together with a digital video camera. These experiments can be integrated into classroom demonstrations for general physics courses, or become part of laboratory activities.

  20. Helicoids, wrinkles, and loops in twisted ribbons.

    Science.gov (United States)

    Chopin, Julien; Kudrolli, Arshad

    2013-10-25

    We investigate the instabilities of a flat elastic ribbon subject to twist under tension and develop an integrated phase diagram of the observed shapes and transitions. We find that the primary buckling mode switches from being localized longitudinally along the length of the ribbon to transverse above a triple point characterized by a crossover tension that scales with ribbon elasticity and aspect ratio. Far from threshold, the longitudinally buckled ribbon evolves continuously into a self-creased helicoid with focusing of the curvature along the triangular edges. Further twist causes an anomalous transition to loops compared with rods due to the self-rigidity induced by the creases. When the ribbon is twisted under high tension, transverse wrinkles are observed due to the development of compressive stresses with higher harmonics for greater width-to-length ratios. Our results can be used to develop functional structures using a wide range of elastic materials and length scales.

  1. Compressible vortex loops: Effect of nozzle geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zare-Behtash, H. [School of MACE, University of Manchester, M60 1QD (United Kingdom)], E-mail: h.zare-behtash@postgrad.manchester.ac.uk; Kontis, K. [School of MACE, University of Manchester, M60 1QD (United Kingdom)], E-mail: k.kontis@manchester.ac.uk; Gongora-Orozco, N. [School of MACE, University of Manchester, M60 1QD (United Kingdom); Takayama, K. [Tohoku University, Shock Wave Research Centre, Sendai 980-8577 (Japan)

    2009-06-15

    Vortex loops are fundamental building blocks of supersonic free jets. Isolating them allows for an easier study and better understanding of such flows. The present study looks at the behaviour of compressible vortex loops of different shapes, generated due to the diffraction of a shock wave from a shock tube with different exit nozzle geometries. These include a 15 mm diameter circular nozzle, two elliptical nozzles with minor to major axis ratios of 0.4 and 0.6, a 30 x 30 mm square nozzle, and finally two exotic nozzles resembling a pair of lips with minor to major axis ratios of 0.2 and 0.5. The experiments were performed for diaphragm pressure ratios of P{sub 4}/P{sub 1}=4, 8, and 12, with P{sub 4} and P{sub 1} being the pressures within the high pressure and low pressure compartments of the shock tube, respectively. High-speed schlieren photography as well as PIV measurements of both stream-wise and head-on flows have been conducted.

  2. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  3. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a... restorative materials. The device is intended to prevent penetration of restorative materials, such as...

  4. Actively controlled tuning of an external cavity diode laser by polarization spectroscopy.

    Science.gov (United States)

    Führer, Thorsten; Stang, Denise; Walther, Thomas

    2009-03-30

    We report on an universal method to achieve and sustain a large mode-hop free tuning range of an external cavity diode laser. By locking one of the resonators using a closed loop control based on polarization spectroscopy while tuning the laser we achieved mode-hop free tuning of up to 130 GHz with a non AR-coated, off-the-shelf laser diode.

  5. Multiple harmonic frequencies resonant cavity design and half-scale prototype measurements for a fast kicker

    Science.gov (United States)

    Huang, Yulu; Wang, Haipeng; Rimmer, Robert A.; Wang, Shaoheng; Guo, Jiquan

    2016-12-01

    Quarter wavelength resonator (QWR) based deflecting cavities with the capability of supporting multiple odd-harmonic modes have been developed for an ultrafast periodic kicker system in the proposed Jefferson Lab Electron Ion Collider (JLEIC, formerly MEIC). Previous work on the kicking pulse synthesis and the transverse beam dynamics tracking simulations show that a flat-top kicking pulse can be generated with minimal emittance growth during injection and circulation of the cooling electron bunches. This flat-top kicking pulse can be obtained when a DC component and 10 harmonic modes with appropriate amplitude and phase are combined together. To support 10 such harmonic modes, four QWR cavities are used with 5, 3, 1, and 1 modes, respectively. In the multiple-mode cavities, several slightly tapered segments of the inner conductor are introduced to tune the higher order deflecting modes to be harmonic, and stub tuners are used to fine tune each frequency to compensate for potential errors. In this paper, we summarize the electromagnetic design of the five-mode cavity, including the geometry optimization to get high transverse shunt impedance, the frequency tuning and sensitivity analysis, and the single loop coupler design for coupling to all of the harmonic modes. In particular we report on the design and fabrication of a half-scale copper prototype of this proof-of-principle five-odd-mode cavity, as well as the rf bench measurements. Finally, we demonstrate mode superposition in this cavity experimentally, which illustrates the kicking pulse generation concept.

  6. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. Ian Wilso seems to hold it in his hands. The storage cavities had 4 portholes, 1 each for: RF feed; tuning; connection to the accelerating cavity; vacuum pump. The final storage cavities were larger, to suit the lower LEP accelerating frequency of 352.2 MHz. See also 8002294, 8006510X, 8109346, 8407619X, and Annual Report 1980, p.115.

  7. Theory and technology for superconducting cavities

    CERN Document Server

    Lengeler, Herbert

    1993-01-01

    The course will address Physicist and Engineers who are newcomers in the field of accelerators and accelerating cavities. The elements of RF-Superconductivity will be presented with special relevance to accelerating cavities. The present ststus of achievable accelerating fields and RF losses will be given and their link to the special technologies for cavity fabrication and surface treatments will be stressed. Cavity auxiliaries like main couplers, higher order mode couplers and frequency tuners will be described.

  8. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  9. Power coupler for the ILC crab cavity

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Dexter, A.; Jenkins, R.; /Lancaster U.; Beard, C.; Goudket, P.; McIntosh, P.A.; /Daresbury; Bellantoni, Leo; /Fermilab

    2007-06-01

    The ILC crab cavity will require the design of an appropriate power coupler. The beam-loading in dipole mode cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

  10. Digital Cavities and Their Potential Applications

    CERN Document Server

    Karki, Khadga; Widom, Julia R; Marcus, Andrew H; Pullerits, Tonu

    2013-01-01

    The concept of a digital cavity is presented. The functionality of a tunable radio-frequency/microwave cavity with unrestricted Q-factor is implemented. The theoretical aspects of the cavity and its potential applications in high resolution spectroscopy and synchronization of clocks together with examples in signal processing and data acquisition are discussed.

  11. Stereoscopic Observation of Slipping Reconnection in A Double Candle-Flame-Shaped Solar Flare

    CERN Document Server

    Gou, Tingyu; Wang, Yuming; Liu, Kai; Zhuang, Bin; Chen, Jun; Zhang, Quanhao; Liu, Jiajia

    2016-01-01

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory (SDO). The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ~ 10 MK temperatures, hotter than the arch-shaped loops underneath. The "Ahead" satellite of the Solar Terrestrial Relations Observatory (STEREO) provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performing stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems, and that the reconstructed loops share similarity with the magne...

  12. Radiation by cavity-backed antennas on a circular cylinder

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.; Sliva, Randy

    1994-01-01

    Conformal antenna arrays are popular antennas for aircraft, spacecraft and land vehicle platforms due to their inherent low weight, cost and drag properties. However, to date there has been a dearth of rigorous analytical or numerical solutions to aid the designer. In fact, it has been common practice to use limited measurements and planar approximations in designing such non-planar antennas. The finite element-boundary integral method is extended to radiation by cavity-backed structures in an infinite, metallic cylinder. The formulation is used to investigate the effect of cavity size on the radiation pattern for typical circumferentially and axially polarized patch antennas. Curvature effect on the gain, pattern shape, and input impedance is also studied. Finally, the accuracy of the FE-BI approach for a microstrip patch array is demonstrated.

  13. Development of high purity niobium used in SRF accelerating cavity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Niobium is widely used in SRF(Superconducting Radio Frequency)cavities due to its excellent superconductivity and workability.With the continuous development of technology,higher demands of material are raised.One of the key issues is that RRR(Residual Resistance Ratio)of the Nb material should be more than 300.which requires that the Nb ingot have even higher RRR.This article introduces the development and the experimental results of high purity niobium in OTIC in Ningxia(Ningxia Orient Tantalum Industry Co.Ltd.),and the test results of the single cell TESLA(Tera Electron volt energy Superconducting Linear Accelerator)shaped cavity manufactured by Peking University using Nb material from OTIC.

  14. Development of Vertical Buffered Electropolishing for Its Post-Treatment Technology on 1.5 GHz Niobium SRF Cavities

    Institute of Scientific and Technical Information of China (English)

    JIN Song; A. T. Wu; LU Xiang-Yang; R. A. Rimmer; LIN Lin; ZHAO Kui

    2011-01-01

    We report the latest research development of vertical buffered electropolishing on its post-treatment procedure as well as the effects of several major post-treatment techniques for buffered electropolishing (BEP) processed 1.5 GHz niobium (Nb) superconducting radio frequency (SRF) cavities.With the established post-treatment procedure,an accelerating gradient of 28.4MV/m is obtained on a single cell cavity of the cebaf shape.This is the best result in the history of BEP development.The cavity is limited by quench with a high quality factor over 1.2 × 1010 at the quench point.Analyses from optical inspection and temperature-mapping show that the quench should be originated from the pits that were already present on the cavity before this BEP treatment.All of these factors indicate that this procedure will have a great potential to produce better results if cavities without intrinsic performance limiting imperfections are used.Surface condition plays a critical role in the performance of a superconducting radio frequency (SRF)cavity.[1] Since the development of SRF niobium (Nb)cavities,research on the technique of surface treatments for SRF cavities has not stopped.As the technique of surface treatments on Nb SRF cavities evolved from buffered chemical polishing (BCP) to electropolishing (EP),the performance of SRF cavities improved greatly.[2-5] However,the yield of the nine-cell cavities is still not high enough to surpass the required 35MV/m for the International Linear Collider (ILC).[6] The variability of cavity performance has emerged as a major challenge.[7]%We report the latest research development of vertical buffered electropolishing on its post-treatment procedure as well as the effects of several major post-treatment techniques for buffered electropolishing (BEP) processed 1.5 GHz niobium (Nb) superconducting radio frequency (SRF) cavities. With the established post-treatment procedure, an accelerating gradient of 28.4MV/m is obtained on a single cell

  15. Temporal tweezing of light: trapping and manipulation of temporal cavity solitons

    CERN Document Server

    Jang, Jae K; Coen, Stephane; Murdoch, Stuart G

    2014-01-01

    Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of optical fiber pumped by a continuous-wave "holding" laser beam. The cavity solitons are trapped into specific time slots through a phase-modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.

  16. Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser

    CERN Document Server

    Bohnet, Justin G; Weiner, Joshua M; Cox, Kevin C; Thompson, James K

    2012-01-01

    We experimentally study the relaxation oscillations and amplitude stability properties of an optical laser operating deep into the bad-cavity regime using a laser-cooled $^{87}$Rb Raman laser. By combining measurements of the laser light field with non-demolition measurements of the atomic populations, we infer the response of the the gain medium represented by a collective atomic Bloch vector. The results are qualitatively explained with a simple model. Measurements and theory are extended to include the effect of intermediate repumping states on the closed-loop stability of the oscillator and the role of cavity-feedback on stabilizing or enhancing relaxation oscillations. This experimental study of the stability of an optical laser operating deep into the bad-cavity regime will guide future development of superradiant lasers with ultranarrow linewidths.

  17. Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser.

    Science.gov (United States)

    Bohnet, Justin G; Chen, Zilong; Weiner, Joshua M; Cox, Kevin C; Thompson, James K

    2012-12-21

    We experimentally study the relaxation oscillations and amplitude stability properties of an optical laser operating deep into the bad-cavity regime using a laser-cooled ^{87}Rb Raman laser. By combining measurements of the laser light field with nondemolition measurements of the atomic populations, we infer the response of the gain medium represented by a collective atomic Bloch vector. The results are qualitatively explained with a simple model. Measurements and theory are extended to include the effect of intermediate repumping states on the closed-loop stability of the oscillator and the role of cavity feedback on stabilizing or enhancing relaxation oscillations. This experimental study of the stability of an optical laser operating deep into the bad-cavity regime will guide future development of superradiant lasers with ultranarrow linewidths.

  18. Classifying Finitely Generated Indecomposable RA Loops

    CERN Document Server

    Cornelissen, Mariana

    2012-01-01

    In 1995, E. Jespers, G. Leal and C. Polcino Milies classified all finite ring alternative loops (RA loops for short) which are not direct products of proper subloops. In this paper we extend this result to finitely generated RA loops and provide an explicit description of all such loops.

  19. Bol loops of odd prime exponent

    CERN Document Server

    Foguel, Tuval

    2009-01-01

    Although any finite Bol loop of odd prime exponent is solvable, we show there exist such Bol loops with trivial center. We also construct finitely generated, infinite, simple Bruck loops of odd prime exponent for sufficiently large primes. This shows that the Burnside problem for Bruck loops has a negative answer.

  20. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  1. A micropillar for cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Aurélien; Neuhaus, Leonhard; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine [Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Paris (France); Van Brackel, Emmanuel [Département de Physique, ENS, Paris (France); Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier [Département Mesures Physiques, ONERA, Châtillon (France); Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele [Laboratoire des Matériaux Avancés, IN2P3-CNRS, Lyon (France)

    2014-12-04

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  2. Dissipative structures in optomechanical cavities

    Science.gov (United States)

    Ruiz-Rivas, Joaquín; Navarrete-Benlloch, Carlos; Patera, Giuseppe; Roldán, Eugenio; de Valcárcel, Germán J.

    2016-03-01

    Motivated by the increasing interest in the properties of multimode optomechanical devices, here we study a system in which a driven longitudinal mode of a large-area optical cavity is dispersively coupled to a deformable mechanical element. Two different models naturally appear in such scenario, for which we predict the formation of periodic patterns, localized structures (cavity solitons), and domain walls, among other complex nonlinear phenomena. Further, we propose a realistic design based on intracavity membranes where our models can be studied experimentally. Apart from its relevance to the field of nonlinear optics, the results put forward here are a necessary step towards understanding the quantum properties of optomechanical systems in the multimode regime of both the optical and the mechanical degrees of freedom.

  3. Influence of the power level of an ultra-sonic system on dental cavity preparation.

    Science.gov (United States)

    Josgrilberg, Erika Botelho; Guimarães, Murilo de Sousa; Pansani, Cyneu Aguiar; Cordeiro, Rita de Cássia Loiola

    2007-01-01

    The aim of this study was to evaluate the shape of dental cavities made with the CVDentus system using different ultrasound power levels. One standard cavity was made on the buccal aspect of 15 bovine incisors with a CVDentus cylindrical bur (82142). The sample was divided into three groups: G1-ultrasound with power II; G2-ultrasound with power III; and G3-ultrasound with power IV. A standardizing device was used to obtain standardized preparations and ultrasound was applied during one minute in each dental preparation. The cavities were sectioned in the middle, allowing observation of the cavity's profile with a magnifying glass, and width and depth measurement using the Leica Qwin program. The Kruskal-Wallis (p<0.05) and Dunn statistical analyses demonstrated differences between the dental cavity shapes when powers III and IV were used. However, the cavities that were made with power III presented dimensions similar to those of the bur used for preparation. We concluded that the power recommended by the manufacturer (III) is the most adequate for use with the CVDentus system.

  4. Shape anisotropy in zero-magnetostrictive rapidly solidified amorphous nanowires

    Science.gov (United States)

    Rotărescu, C.; Atitoaie, A.; Stoleriu, L.; Óvári, T.-A.; Lupu, N.; Chiriac, H.

    2016-04-01

    The magnetic behavior of zero-magnetostrictive rapidly solidified amorphous nanowires has been investigated in order to understand their magnetic bistability. The study has been performed both experimentally - based on inductive hysteresis loop measurements - and theoretically, by means of micromagnetic simulations. Experimental hysteresis loops have shown that the amorphous nanowires display an axial magnetic bistability, characterized by a single-step magnetization reversal when the applied field reaches a critical value called switching field. The simulated loops allowed us to understand the effect of shape anisotropy on coercivity. The results are key for understanding and controlling the magnetization processes in these novel nanowires, with important application possibilities in new miniaturized sensing devices.

  5. Fréchet derivative for light-like Wilson loops

    Directory of Open Access Journals (Sweden)

    I.O. Cherednikov

    2015-02-01

    Full Text Available We address the equations of motion for the light-like QCD Wilson exponentials defined in the generalized loop space. We attribute an important class of the infinitesimal shape variations of the rectangular light-like Wilson loops to the Fréchet derivative associated to a diffeomorphism in loop space what enables the derivation of the law of the classically conformal-invariant shape variations. We show explicitly that the Fréchet derivative coincides (at least in the leading perturbative order with the area differential operator introduced in the previous works. We discuss interesting implications of this result which will allow one to relate the rapidity evolution and ultra-violet evolution of phenomenologically important quantum correlation functions (such as 3-dimensional parton distribution functions and geometrical properties of the light-like cusped Wilson loops.

  6. SUB-DOMAIN MOM FORMULATION FOR CIRCULAR AND NON-CIRCULAR LOOP ANTENNA ARRAYS

    Directory of Open Access Journals (Sweden)

    TOMÁŠ PÁLENÍK

    2011-05-01

    Full Text Available The method of moments (MoM analysis of thin-wire loop antenna arrays with multiple elements is presented in this paper. The proposed formulation provides simple algorithmic implementation that canbe applied to circular loop arrays as well as more generally shaped arrays using the Pocklington’s integral equation with simplified kernel for arbitrary shaped wires in combination with a superquadriccurve representation. This analysis leads to knowledge of the current distribution, input impedance and other electromagnetic properties of both uniform and non-uniform loop arrays. Numerical results areincluded to exhibit good agreement with various relevant references and simulation software. The data for large square and rectangular loop arrays are presented for the first time in literature.

  7. Study of the Open Loop and Closed Loop Oscillator Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imel, George R. [Idaho State Univ., Pocatello, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Tony [Knolls Atomic Power Lab. (KAPL), Schenectady, NY (United States); Langbehn, Adam [Puget Sound Naval Base, Bremerton, WA (United States); Aryal, Harishchandra [Idaho State Univ., Pocatello, ID (United States); Benzerga, M. Lamine [Idaho State Univ., Pocatello, ID (United States)

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  8. BPS Wilson Loops on S^2 at Higher Loops

    CERN Document Server

    Young, Donovan

    2008-01-01

    We consider supersymmetric Wilson loops of the variety constructed by Drukker, Giombi, Ricci, and Trancanelli, whose spatial contours lie on a two-sphere. Working to second order in the 't Hooft coupling in planar N=4 Supersymmetric Yang-Mills Theory (SYM), we compute the vacuum expectation value of a wavy-latitude and of a loop composed of two longitudes. We evaluate the resulting integrals numerically and find that the results are consistent with the zero-instanton sector calculation of Wilson loops in 2-d Yang-Mills on S^2 performed by Bassetto and Griguolo. We also consider the connected correlator of two distinct latitudes to third order in the 't Hooft coupling in planar N=4 SYM. We compare the result in the limit where the latitudes become coincident to a perturbative calculation in 2-d Yang-Mills on S^2 using a light-cone Wu-Mandelstam-Leibbrandt prescription. The two calculations produce differing results.

  9. Collapses of underground cavities and soil-structure interactions: influences of the position of the structure relative to the cavity

    CERN Document Server

    Caudron, Matthieu; Emeriault, Fabrice

    2008-01-01

    This paper is focused on soil subsidence of small extend and amplitude caused by tunnel boring or the collapse of underground cavities, whether natural or man-made. The impact of the movements of the ground on existing structures is generally dramatic. It is therefore necessary to accurately predict these movements (settlements and horizontal extension or compression displacements). Even though it is obvious that the overall stiffness and weight of the structure influences the size and shape of the soil movement, the main features of this soil-structure interaction phenomenon are not well established. Caudron et al. (2006) developed an original small-scale physical model to take the soil-structure interaction into account. It is based on the use of the frictional Schneebeli material (assembly of small diameter rods) and a modified version including cohesion in order to reproduce a cohesive layer above a cavity. The displacements of the soil are obtained from digital images processing by particle image velocim...

  10. Angioleiomyoma of the Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Arruda, Milena Moreira

    2014-01-01

    Full Text Available Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis.

  11. Angioleiomyoma of the Nasal Cavity

    Science.gov (United States)

    Arruda, Milena Moreira; Monteiro, Daniela Yasbek; Fernandes, Atilio Maximino; Menegatti, Vanessa; Thomazzi, Emerson; Hubner, Ricardo Arthur; Lima, Luiz Guilherme Cernaglia Aureliano de

    2014-01-01

    Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis. PMID:25992133

  12. Optomechanic interactions in phoxonic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); El-Jallal, Said [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); Physique du Rayonnement et de l’Interaction Laser Matière, Faculté des sciences, Université de Moulay Ismail, Meknès (Morocco)

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  13. Optomechanic interactions in phoxonic cavities

    Directory of Open Access Journals (Sweden)

    Bahram Djafari-Rouhani

    2014-12-01

    Full Text Available Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  14. New results of development on high efficiency high gradient superconducting rf cavities

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Li, Z. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hao, Z. K. [Peking Univ., Beijing (China); Liu, K. X. [Peking Univ., Beijing (China); Zhao, H. Y. [OTIC, Ningxia (China); Adolphsen, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-01

    We report on the latest results of development on high-efficiency high-gradient superconducting radio frequency (SRF) cavities. Several 1-cell cavities made of large-grain niobium (Nb) were built, processed and tested. Two of these cavities are of the Low Surface Field (LSF) shape. Series of tests were carried out following controlled thermal cycling. Experiments toward zero-field cooling were carried out. The best experimentally achieved results are Eacc = 41 MV/m at Q0 = 6.5×1010 at 1.4 K by a 1-cell 1.3 GHz large-grain Nb TTF shape cavity and Eacc = 49 MV/m at Q0 = 1.5×1010 at 1.8 K by a 1-cell 1.5 GHz large-grain Nb CEBAF upgrade low-loss shape cavity.

  15. Differential cavity mode spectroscopy: A new cavity enhanced technique for the detection of weak transitions

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Glenn de [Centre for Gravitational Physics, Faculty of Science, The Australian National University, Canberra ACT 0200 (Australia)], E-mail: glenn.devine@jpl.nasa.gov; McClelland, David E.; Gray, Malcolm B. [Centre for Gravitational Physics, Faculty of Science, The Australian National University, Canberra ACT 0200 (Australia)

    2008-06-16

    We present a new cavity enhanced, continuous wave spectroscopic technique for the detection of weak atomic and molecular transitions. Differential Cavity Mode Spectroscopy (DCMS) measures the difference in absorption between two adjacent cavity longitudinal modes to yield a highly sensitive, yet relatively simple, cavity enhanced spectroscopic technique. In addition this relative absorption measurement is, to first order, independent of both laser frequency noise and cavity acoustic noise. Here we present both a theoretical description of this new technique and an initial experimental demonstration.

  16. LHC crab-cavity aspects and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  17. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hall, B. [Lancaster Univ. (United Kingdom); Burt, G. [Lancaster Univ. (United Kingdom); Smith, J. D.A. [Lancaster Univ. (United Kingdom); Rimmer, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Delayen, J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Calaga, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  18. Plasmonic Coupled Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) coupled cavity modes on Moire surfaces. An experimental study has been made of the propagation of SPPs on a thin silver surface that is textured with Moire surface pattern using interference lithography. The Moire surface contains periodic array of one dimensional cavities. The distance between the cavities can be controlled by changing the periodicities of Moire surface. When the SPP cavity separation is sufficiently small, we show splitting of strongly coupled plasmonic cavity modes through numerical simulations. Conversely, when the SPP cavity separation is sufficiently large, SPP cavity modes are found to be localized and do not show splitting of SPP cavity modes . This splitting of SPP cavity modes are well explained with a tight binding model that has been succesfully applied in photonic coupled cavities. Reflection measurements and numerical simulation of a large number of adjacent SPP cavities have shown a coupled resonator optical waveguide (CROW) type plasmonic waveguide band formation within the band gap region of unperturbed uniform grating.

  19. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    OpenAIRE

    Marco Coïsson; Gabriele Barrera; Federica Celegato; Alessandra Manzin; Franco Vinai; Paola Tiberto

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction ...

  20. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions

    Institute of Scientific and Technical Information of China (English)

    NI Jia-Ting; LIANG Xiao-Wan; CHEN Bin; T.Koga

    2009-01-01

    We demonstrate the amplitude and spin polarization of AAS oscillation changing with Rashba spin-orbit interaction(SOI)and Dresselhaus SOI.The amplitude and spin polarization of AB oscillation changing with Rashba SOI and Dresselhaus SOI are demonstrated as well.The ideal quasi-one-dimensional square loop does not exist in reality,therefore to match the experiment better we should consider the shape of the rectangle loop in theory.

  1. CHECHIA cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Technical Univ. Warsaw (Poland). ELHEP Laboratory, ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). TESLA

    2005-07-01

    The initial control of the superconductive cavity has recently been performed by applying the FPGA (Field Programmable Gate Array) technology system in DESY Hamburg. This first experiment turned attention to the general recognition of the cavity features and projected control methods. The electrical model of the cavity is taken as a consideration origin. The calibration of the signal channel is considered as a key preparation for an efficient cavity driving. The cavity parameters identification is confirmed as a proper approach for the required performance: driving on resonance during filling and field stabilization during flattop time with reasonable power consumption. The feed-forward and feedback modes were applied successfully for the CHECHIA cavity driving. Representative results of experiments are presented for different levels of the cavity field gradient. (orig.)

  2. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  3. SPS RF System an Accelerating Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X.

  4. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  5. Solution of Cavity Resonance and Waveguide Scattering Problems Using the Eigenmode Projection Technique

    CERN Document Server

    Nasr, Mamdouh H; Eshrah, Islam A; Abuelfadl, Tamer M

    2016-01-01

    An eigenmode projection technique (EPT) is developed and employed to solve problems of electromagnetic resonance in closed cavities and scattering from discontinuities in guided-wave structures. The EPT invokes the eigenmodes of a canonical predefined cavity in the solution procedure and uses the expansion of these eigenmodes to solve Maxwell's equations, in conjunction with a convenient choice of port boundary conditions. For closed cavities, resonance frequencies of arbitrary-shaped cavities are accurately determined with a robust and efficient separation method of spurious modes. For waveguide scattering problems, the EPT is combined with the generalized scattering matrix approach to solve problems involving waveguide discontinuities with arbitrary dielectric profiles. Convergence studies show stable solutions for a relatively small number of expansion modes, and the proposed method shows great robustness over conventional solvers in analyzing electromagnetic problems with inhomogeneous materials.

  6. Light trapping in an ensemble of pointlike impurity centers in a Fabry-Perot cavity

    Science.gov (United States)

    Kuraptsev, A. S.; Sokolov, I. M.

    2016-08-01

    We report the development of quantum microscopic theory of quasiresonant dipole-dipole interaction in the ensembles of impurity atoms imbedded into transparent dielectric and located in a Fabry-Perot cavity. On the basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles. We analyze this influence depending on the size of the ensemble, its density, as well as on rms deviation of the transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium. Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially modify cooperative polyatomic effects.

  7. Light trapping in an ensemble of point-like impurity centers in Fabry-Perot cavity

    CERN Document Server

    Kuraptsev, A S

    2016-01-01

    We report the development of quantum microscopic theory of quasi-resonant dipole-dipole interaction in the ensembles of impurity atoms imbedded into transparent dielectric and located into Fabry-Perot cavity. On the basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles. We analyze this influence depending on the size of the ensemble, its density, as well as on r.m.s. deviation of the transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium. Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially modify cooperative polyatomic effects.

  8. Higher Order Modes in Third Harmonic Cavities for XFEL/FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Shinton, I.R.R.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech.; Baboi, N.; /DESY; Eddy, N.; /Fermilab; Flisgen, T.; Glock, H.W.; /Rostock U.; Jones, R.M.; Juntong, N.; /Manchester U. /DESY; Khabiboulline, T.N.; /Fermilab; van Rienen, U; /Rostock U.; Zhang, P.; /Manchester U. /DESY /Cockcroft Inst. Accel. Sci. Tech.

    2010-06-01

    We analyse higher order modes in the 3.9 GHz bunch shaping cavities recently installed in the FLASH facility at DESY. We report on recent experimental results on the frequency spectrum from probe based measurements made at CMTB at DESY. These are compared to those predicted by finite difference and finite element computer codes. This study is focused mainly on the dipole component of the multi-pole expansion of the wakefield. The modes are readily identifiable as single-cavity modes provided the frequencies of these modes are below the cut-off of the inter-connecting beam pipes. The modes above cut-off are coupled to the 4 cavities and are distinct from single cavity modes.

  9. High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)

    Science.gov (United States)

    Ratschbacher, Lothar; Gallego, Jose; Ghosh, Sutapa; Alavi, Seyed; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter

    2016-04-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal

  10. Bending of the looping heart: differential growth revisited.

    Science.gov (United States)

    Shi, Yunfei; Yao, Jiang; Xu, Gang; Taber, Larry A

    2014-08-01

    In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.

  11. Computation of high frequency fields in resonant cavities based on perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Brackebusch, Korinna; Glock, Hans-Walter; Rienen, Ursula van [Universitaet Rostock (Germany). Institut fuer Allgemeine Elektrotechnik

    2012-07-01

    The eigenmodes of an accelerator cavity are essential for the determination of its performance characteristics, comprising resonant frequencies and field distributions inside the cavity. Apart from the material properties the eigenmodes depend on the cavity geometry. Due to manufacturing tolerances and operational demands deviations of the actual cavity shape from the desired one are inevitable. Any geometry perturbation results in a shift of the resonant frequencies and modified field distributions. Slater's theorem offers an efficient way to compute the changed resonant frequencies, however, not the changed fields. In this work, we will analyse a generalisation of Slater's theorem proposed in literature. The method enables the computation of the resonant frequencies and the field distributions of a slightly perturbed cavity by using a set of eigenmodes of the unperturbed cavity. We evaluate the practicability of the method by applying it to cavity geometries for which the eigenmodes are analytically known, ascertain the effort of reasonable computation results and describe the limitations of the method.

  12. Influence of the Vapor Cavity Depth on Liquid Flow through a Microchannel Exhibiting Superhydrophobic Walls

    Science.gov (United States)

    Maynes, Daniel; Jeffs, Kevin; Woolford, Brady; Webb, Brent

    2007-11-01

    We report results of an analytical and experimental investigation of laminar flow in a parallel-plate microchannel with superhydrophobic walls. The walls are fabricated with hydrophobically coated micro-ribs and cavities that are oriented parallel to the flow direction and are modeled in an idealized fashion, with the shape of the liquid-vapor meniscus approximated as flat. An analytical model of the flow in the vapor cavity is employed and coupled with a numerical model of the liquid flow. The numerical predictions show that the effective slip length and the reduction in the classical friction factor-Reynolds number product increase with increasing relative cavity width and depth, and decreasing relative micro-rib/cavity module length. Comparisons are also made between the zero shear interface model and the liquid-vapor cavity coupled model. The results illustrate that the zero shear interface model under-predicts the overall flow resistance. Further, the deviation between the two models was found to be significantly larger for increasing values of both the relative rib/cavity module width and the cavity fraction. The trends in the frictional pressure drop predictions are in good agreement with experimental measurements made at similar conditions and a generalized expression for predicting the friction factor is proposed.

  13. Gain enhanced Fano resonance in a coupled photonic crystal cavity-waveguide structure

    Science.gov (United States)

    Zhao, Yanhui; Qian, Chenjiang; Qiu, Kangsheng; Tang, Jing; Sun, Yue; Jin, Kuijuan; Xu, Xiulai

    2016-01-01

    Systems with coupled cavities and waveguides have been demonstrated as optical switches and optical sensors. To optimize the functionalities of these optical devices, Fano resonance with asymmetric and steep spectral line shape has been used. We theoretically propose a coupled photonic crystal cavity-waveguide structure to achieve Fano resonance by placing partially reflecting elements in waveguide. To enhance Fano resonance, optical gain material is introduced into the cavity. As the gain increases, the transmission line shape becomes steepened and the transmissivity can be six times enhanced, giving a large contrast by a small frequency shift. It is prospected that the gain enhanced Fano resonance is very useful for optical switches and optical sensors. PMID:27640809

  14. Effects of convective motion in n-octane pool fires in an ice cavity

    DEFF Research Database (Denmark)

    Farahani, Harried Farmahini; Jomaas, Grunde; Rangwala, Ali S.

    2015-01-01

    performed by burning n-octane in cylindrically shaped ice cavities of 5.7 cm diameter. The first set of experiments was intended to provide a clear understanding of the geometry change of the cavity and displacement of the fuel layer. The results of these experiments showed that the rate of melting...... of the ice walls were higher in areas where the fuel layer was in contact with ice than in places where the flame was present. Due to the melting of the ice walls, a ring-shaped void was formed around the perimeter of the cavity. In the second set of experiments, the change in the temperature of the fuel...... two major convective phases; in the first half of the burning time, the buoyancy driven flows (Rayleigh) were dominant, while Marangoni convection was dominant in the second half of the burning time. The role of these mechanisms in affecting the flow and melting the ice is discussed. (C) 2015...

  15. Cavities

    Science.gov (United States)

    ... Information Drug Information, Search Drug Names, Generic and Brand Natural Products, Search Pill Identifier News & Commentary ALL NEWS > Resources First Aid Videos Figures Images Audio Pronunciations The One-Page Manual of Health ...

  16. All digital pulsewidth control loop

    Science.gov (United States)

    Huang, Hong-Yi; Jan, Shiun-Dian; Pu, Ruei-Iun

    2013-03-01

    This work presents an all-digital pulsewidth control loop (ADPWCL). The proposed system accepts a wide range of input duty cycles and performs a fast correction to the target output pulsewidth. An all-digital delay-locked loop (DLL) with fast locking time using a simplified time to digital converter and a new differential two-step delay element is proposed. The area of the delay element is much smaller than that in conventional designs, while having the same delay range. A test chip is verified in a 0.18-µm CMOS process. The measured duty cycle ranges from 4% to 98% with 7-bit resolution.

  17. Loop quantum geometry: a primer

    Energy Technology Data Exchange (ETDEWEB)

    Corichi, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, A. Postal 70-543, Mexico D.F. 04510 (Mexico)

    2005-01-15

    This is the written version of a lecture given at the 'VI Mexican School of Gravitation and Mathematical Physics' (Nov 21-27, 2004, Playa del Carmen, Mexico), introducing the basics of Loop Quantum Geometry. The purpose of the written contribution is to provide a Primer version, that is, a first entry into Loop Quantum Gravity and to present at the same time a friendly guide to the existing pedagogical literature on the subject. This account is geared towards graduate students and non-experts interested in learning the basics of the subject.

  18. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Martin Bojowald

    2004-10-01

    Aspects of the full theory of loop quantum gravity can be studied in a simpler context by reducing to symmetric models like cosmological ones. This leads to several applications where loop effects play a significant role when one is sensitive to the quantum regime. As a consequence, the structure of and the approach to classical singularities are very different from general relativity. The quantum theory is free of singularities, and there are new phenomenological scenarios for the evolution of the very early universe such as inflation. We give an overview of the main effects, focussing on recent results obtained by different groups.

  19. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  20. Cavity-Backed Dipole Antenna for Intelligent Lock Communication

    Directory of Open Access Journals (Sweden)

    Bo Yuan

    2013-01-01

    Full Text Available This paper introduces a 20*40 mm2 planar folded L-shaped dipole antenna operated under surroundings of an iron cavity for intelligent lock communication. The height of the slot antenna is shortened and the bandwidth for 2.4 GHz band has been widened. This antenna provides a solution for antenna surrounded by metal background. Good performances on return loss, radiation pattern are obtained over 2.4 GHz operating bands. The operation distance in front and back sides for the antenna has been calculated by Friis transmission equation.

  1. Impedances of azimuthally symmetric irises and cavities with semielliptical profile in a beam pipe

    Science.gov (United States)

    Gluckstern, Robert L.; Kurennoy, Sergey S.

    1997-03-01

    The beam coupling impedances of small axisymmetric obstacles having a semielliptical cross section along the beam in the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is large compared to a typical size of the obstacle. Analytical results are obtained for both the irises and the cavities with such a shape, which allows simple estimates of their broadband impedances.

  2. Probing anharmonicity of a quantum oscillator in an optomechanical cavity

    Science.gov (United States)

    Latmiral, Ludovico; Armata, Federico; Genoni, Marco G.; Pikovski, Igor; Kim, M. S.

    2016-05-01

    We present a way of measuring with high precision the anharmonicity of a quantum oscillator coupled to an optical field via radiation pressure. Our protocol uses a sequence of pulsed interactions to perform a loop in the phase space of the mechanical oscillator, which is prepared in a thermal state. We show how the optical field acquires a phase depending on the anharmonicity. Remarkably, one only needs small initial cooling of the mechanical motion to probe even small anharmonicities. Finally, by applying tools from quantum estimation theory, we calculate the ultimate bound on the estimation precision posed by quantum mechanics and compare it with the precision obtainable with feasible measurements such as homodyne and heterodyne detection on the cavity field. In particular we demonstrate that homodyne detection is nearly optimal in the limit of a large number of photons of the field and we discuss the estimation precision of small anharmonicities in terms of its signal-to-noise ratio.

  3. Fano lines in the reflection spectrum of directly coupled systems of waveguides and cavities: measurements, modeling and manipulation of the Fano asymmetry

    CERN Document Server

    Lian, Jin; Yüce, Emre; Combrié, Sylvain; De Rossi, Alfredo; Mosk, Allard P

    2016-01-01

    We measure and analyze reflection spectra of directly coupled systems of waveguides and cavities. The observed Fano lines offer insight in the reflection and coupling processes. We show their shape can be understood and manipulated by varying experimental parameters.

  4. Assessment of uterine shape and size using Kurz's Cavimeter.

    Science.gov (United States)

    de Castro, A

    1988-06-01

    The Kurz's Cavimeter was used to determine uterine shape and dimensions in 509 women prior to IUD insertion. The women were separated into six groups, depending on parity. A slight increase was noted in total uterine length due to endometrial cavity length and transverse fundal diameter in relationship to parity. However, the differences did not reach statistical significance.

  5. Dynamical tunneling in optical cavities

    CERN Document Server

    Hackenbroich, G; Hackenbroich, Gregor; Noeckel, Jens U.

    1998-01-01

    The lifetime of whispering gallery modes in a dielectric cavity with a metallic inclusion is shown to fluctuate by orders of magnitude when size and location of the inclusion are varied. We ascribe these fluctuations to tunneling transitions between resonances quantized in different regions of phase space. This interpretation is confirmed by a comparison of the classical phase space structure with the Husimi distribution of the resonant modes. A model Hamiltonian is introduced that describes the phenomenon and shows that it can be expected in a more general class of systems.

  6. Five-loop massive tadpoles

    CERN Document Server

    Luthe, T

    2016-01-01

    We provide an update on a long-term project that aims at evaluating massive vacuum integrals at the five-loop frontier, with high precision and in various space-time dimensions. A number of applications are sketched, mainly concerning the determination of anomalous dimensions, for quantum field theories in four, three and two dimensions.

  7. Ponderomotive Acceleration in Coronal Loops

    Science.gov (United States)

    Dahlburg, R. B.; Laming, J. M.; Taylor, B. D.; Obenschain, K.

    2016-11-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  8. Dirac Induction for loop groups

    NARCIS (Netherlands)

    Posthuma, H.

    2011-01-01

    Using a coset version of the cubic Dirac operators for affine Lie algebras, we give an algebraic construction of the Dirac induction homomorphism for loop group representations. With this, we prove a homogeneous generalization of the Weyl-Kac character formula and show compatibility with Dirac induc

  9. Loop quantum gravity and observations

    CERN Document Server

    Barrau, A

    2014-01-01

    Quantum gravity has long been thought to be completely decoupled from experiments or observations. Although it is true that smoking guns are still missing, there are now serious hopes that quantum gravity phenomena might be tested. We review here some possible ways to observe loop quantum gravity effects either in the framework of cosmology or in astroparticle physics.

  10. Shape-memory polymers

    Directory of Open Access Journals (Sweden)

    Marc Behl

    2007-04-01

    Full Text Available Shape-memory polymers are an emerging class of active polymers that have dual-shape capability. They can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus. While shape B is given by the initial processing step, shape A is determined by applying a process called programming. We review fundamental aspects of the molecular design of suitable polymer architectures, tailored programming and recovery processes, and the quantification of the shape-memory effect. Shape-memory research was initially founded on the thermally induced dual-shape effect. This concept has been extended to other stimuli by either indirect thermal actuation or direct actuation by addressing stimuli-sensitive groups on the molecular level. Finally, polymers are introduced that can be multifunctional. Besides their dual-shape capability, these active materials are biofunctional or biodegradable. Potential applications for such materials as active medical devices are highlighted.

  11. A generic travelling wave solution in dissipative laser cavity

    Indian Academy of Sciences (India)

    BALDEEP KAUR; SOUMENDU JANA

    2016-10-01

    A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stability region is identified. Bifurcation analysis is done by smoothly varying the cavity loss coefficient to provide insight of the system dynamics. He’s variational method is adopted to obtain the standard sech-type and the notso-explored but promising cosh-Gaussian type, travelling wave solutions. For a given set of system parameters, only one sech solution is obtained, whereas several distinct solution points are derived for cosh-Gaussian case. These solutions yield a wide variety of travelling wave profiles, namely Gaussian, near-sech, flat-top and a cosh-Gaussian with variable central dip. A split-step Fourier method and pseudospectral method have been used for direct numerical solution of the CGLE and travelling wave profiles identical to the analytical profiles have been obtained. We also identified the parametric zone that promises an extremely large family of cosh-Gaussian travelling wave solutions with tunable shape. This suggests that the cosh-Gaussian profile is quite generic and would be helpful for further theoretical as well as experimental investigation on pattern formation, pulse dynamics and localization in semiconductor laser cavity.

  12. Automated Coronal Loop Identification Using Digital Image Processing Techniques

    Science.gov (United States)

    Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.

    2003-01-01

    The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.

  13. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  14. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    CERN Document Server

    Cantergiani, E.; Léaux, F.; Perez Fontenla, A.T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-01-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulicforming (EHF). InEHF, half-cells areobtainedthrough ultrahigh-speed deformation ofblank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHFon high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half- cells produced by EHFand by spinning have been compared in terms of damage...

  15. 3D phase-field modelling of dislocation loop sink strengths

    Science.gov (United States)

    Thuinet, L.; Rouchette, H.; Legris, A.

    2017-01-01

    This work presents a 3D phase-field model to correctly evaluate dislocation loop sink strength. This method is applied to a wide range of microstructures (dislocation loops of various types with isotropic or anisotropic elasticity, like in Zr, cohabitation of different types of loop in the same calculation domain), which allows to exhibit several original results. Among them, in the case of isotropic elasticity, our model shows that the sink strength of vacancy loops is higher than that of interstitial ones for low loop radii. In the case of Zr, the effect on sink biases of the shape anisotropy of self-interstitial atoms, already exhibited in the case of straight dislocations, is enhanced for loops and stabilizes basal vacancy and prism-plane interstitial ones. Moreover, isotropic elastic interactions promote the coexistence of parallel vacancy and interstitial loops. This result is still valid in the case of prism-plane loops in Zr, which could provide explanations to several experimental facts.

  16. Rationale for designing cavity preparations.

    Science.gov (United States)

    Laswell, H R; Welk, D A

    1985-04-01

    Increased resistance to caries, increased dental awareness, superior diagnostic capabilities, better illumination, optical aids that significantly enhance vision, improved and standardized materials for restoration, and a deeper understanding of the caries process enable a far more conservative approach to tooth preparation. The dentist can concentrate on preserving as much sound tooth structure as possible with less attention being devoted to resistance and retention form that previously demanded in bulk restorations and massive channels and locks that are no longer appropriate. Although caries inhibitory effects have been shown with materials such as silicate cement, glass ionomers, and resins that leach fluoride, in general, dentists should not rely on restorative materials to inhibit the development of future decay. Characteristics of the carious lesion are unique for each tooth according to many factors centering around the plaque pattern for that tooth and not according to zones of natural susceptibility or immunity strictly dictated by morphology. Therefore, no single cavity preparation duplicated from a textbook is likely to be satisfactory for an individual tooth. Furthermore, novices learning the subject of cavity preparation often leave decalcified enamel when they attempt to replicate under clinical conditions that which they have learned in technique courses. This is the major invitation to future caries reappearing adjacent to restorations. Also, failure to duplicate the exact morphology of the tooth surface that has been replaced is likely to alter the pattern of plaque accumulation and create other caries prone areas.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Complex of myoglobin with phenol bound in a proximal cavity.

    Science.gov (United States)

    Huang, Xiao; Wang, Chunxue; Celeste, Lesa R; Lovelace, Leslie L; Sun, Shenfang; Dawson, John H; Lebioda, Lukasz

    2012-12-01

    Sperm whale myoglobin (Mb) has weak dehaloperoxidase activity and catalyzes the peroxidative dehalogenation of 2,4,6-trichlorophenol (TCP) to 2,6-dichloroquinone. Crystals of Mb and of its more active G65T variant were used to study the binding of TCP, 4-iodophenol (4-IP) and phenol. The structures of crystals soaked overnight in a 10 mM solution of phenol revealed that a phenol molecule binds in the proximal cavity, forming a hydrogen bond to the hydroxyl of Tyr146 and hydrophobic contacts which include interactions with Cβ and Cγ of the proximal histidine His93. The phenol position corresponds to the strongest xenon binding site, Xe1. It appears that the ligand enters the proximal cavity through a gate formed by the flexible loops 79-86 and 93-103. TCP and 4-IP do not bind to Mb in this manner under similar conditions; however, it appears to be likely that dimethyl sulfoxide (DMSO), which was used at a concentration of 0.8 M to facilitate 4-IP dissolution, binds in the phenol/Xe1 binding site. In this structure, a water molecule coordinated to the heme iron was replaced by an oxygen molecule, reflecting the reduction of the heme. Crystals of Mb and G65T Mb soaked for 5-10 min did not show bound phenol. Kinetic studies of TCP dechlorination showed that phenol has a dual effect: it acts as a competitive inhibitor that is likely to interfere with TCP binding at the heme edge and as a weak activator, likely through binding in the proximal cavity. The lack of phenol bound at the heme edge in the crystal structures suggests that its inhibitory binding only takes place when the heme is activated by hydrogen peroxide.

  18. Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas.

    Science.gov (United States)

    Paulillo, B; Manceau, J M; Degiron, A; Zerounian, N; Beaudoin, G; Sagnes, I; Colombelli, R

    2014-09-08

    We demonstrate subwavelength electromagnetic resonators operating in the THz spectral range, whose spectral properties and spatial/angular patterns can be engineered in a similar way to an electronic circuit. We discuss the device concept, and we experimentally study the tuning of the resonant frequency as a function of variable capacitances and inductances. We then elucidate the optical coupling properties. The radiation pattern, obtained by angle-resolved reflectance, reveals that the system mainly couples to the outside world via a magnetic dipolar interaction.

  19. Cavity QED-based quantum walk

    Science.gov (United States)

    di, Tiegang; Hillery, Mark; Zubairy, M. Suhail

    2004-09-01

    We discuss a possible experimental scheme for the implementation of a quantum walk. The scheme is based on the passage of an atom inside a high- Q cavity. The chirality is characterized by the atomic states and the displacement is characterized by the photon number inside the cavity. The quantum steps are described by appropriate interactions with a sequence of classical and quantized cavity fields.

  20. Ray splitting in paraxial optical cavities

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  1. Tunable Cavity Optomechanics with Ultracold Atoms

    CERN Document Server

    Purdy, T P; Botter, T; Brahms, N; Ma, Z -Y; Stamper-Kurn, D M

    2010-01-01

    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.

  2. Continuously tunable, split-cavity gyrotrons

    Science.gov (United States)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  3. Dither Cavity Length Controller with Iodine Locking

    Directory of Open Access Journals (Sweden)

    Lawson Marty

    2016-01-01

    Full Text Available A cavity length controller for a seeded Q-switched frequency doubled Nd:YAG laser is constructed. The cavity length controller uses a piezo-mirror dither voltage to find the optimum length for the seeded cavity. The piezo-mirror dither also dithers the optical frequency of the output pulse. [1]. This dither in optical frequency is then used to lock to an Iodine absorption line.

  4. Mechanical Properties of Ingot Nb Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  5. Novel Geometries for the LHC CRAB Cavity

    CERN Document Server

    Hall, Ben

    2010-01-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme b...

  6. Cavity quantum electrodynamics: coherence in context.

    Science.gov (United States)

    Mabuchi, H; Doherty, A C

    2002-11-15

    Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.

  7. Engineering topological materials in microwave cavity arrays

    CERN Document Server

    Anderson, Brandon M; Owens, Clai; Schuster, David I; Simon, Jonathan

    2016-01-01

    We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry breaking (non-reciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the $\\alpha=1/4$ Hofstadter model. Effective photon-photon interactions are included by coupling the cavities to superconducting qubits, and are sufficient to produce a $\

  8. State of the Art SRF Cavity Performance

    CERN Document Server

    Lilje, L

    2004-01-01

    The paper will review superconducting RF cavity performance for β=1 cavities used in both linear and circular accelerators. These superconducting cavities are used in two kinds of applications: High current storage rings and efficient high duty cycle linacs. In recent years the performance of those cavities has been improving steadily. High accelerating gradients have been achieved using advanced surface preparation techniques like electropolishing and surface cleaning methods like high pressure water rinsing. High intensity beams can be handled with advanced higher-order-mode damping schemes.

  9. Discriminative Shape Alignment

    DEFF Research Database (Denmark)

    Loog, M.; de Bruijne, M.

    2009-01-01

    The alignment of shape data to a common mean before its subsequent processing is an ubiquitous step within the area shape analysis. Current approaches to shape analysis or, as more specifically considered in this work, shape classification perform the alignment in a fully unsupervised way......, not taking into account that eventually the shapes are to be assigned to two or more different classes. This work introduces a discriminative variation to well-known Procrustes alignment and demonstrates its benefit over this classical method in shape classification tasks. The focus is on two......-dimensional shapes from a two-class recognition problem....

  10. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  11. Bayesian feedback control of a two-atom spin-state in an atom-cavity system

    CERN Document Server

    Brakhane, Stefan; Kampschulte, Tobias; Martinez-Dorantes, Miguel; Reimann, René; Yoon, Seokchan; Widera, Artur; Meschede, Dieter

    2012-01-01

    We experimentally demonstrate real-time feedback control of the joint spin-state of two neutral Caesium atoms inside a high finesse optical cavity. The quantum states are discriminated by their different cavity transmission levels. A Bayesian update formalism is used to estimate state occupation probabilities as well as transition rates. We stabilize the balanced two-atom mixed state, which is deterministically inaccessible, via feedback control and find very good agreement with Monte-Carlo simulations. On average, the feedback loops achieves near optimal conditions by steering the system to the target state marginally exceeding the time to retrieve information about its state.

  12. Experimental investigation for cavity dimensions of highly porous small bodies

    Science.gov (United States)

    Okamoto, T.; Nakamura, A.; Hasegawa, S.

    2014-07-01

    Small bodies were probably very porous during the formation of the solar system. In order to understand the surface evolution of highly porous bodies, it is necessary to investigate the impact process for targets with such high porosity. In this study, impact experiments with sintered glass-bead targets of 87 and 94 % porosities were conducted. Growth of cavities with time and the final cavity dimensions were analyzed and compared with previous studies of porous targets. Impact experiments were conducted using a two-stage light-gas gun at ISAS, Japan. The projectiles of a few millimeters were composed of titanium, aluminum, nylon, and basalt. The impact velocities ranged from 1.8 to 7.2 km s^{-1}. In order to observe the inside of the targets, we used a flash X-ray system and a micro-X-ray tomography instrument. The track shape was found to be divided into two types, elongated 'carrot' shape and short 'bulb' shape [1]. The figures on the left and right present a transmission image of the bulb shape track and a sketch of a cross section of the cavity, respectively. The results of the final maximum diameter, D_max and the final entrance-hole diameter, D_ent show that both dimensions tend to increase with impact velocity and decrease with target porosity. We adopted the scaling law of crater diameter [2] for our analysis of D_max and D_ent. The following empirical relations are obtained for targets with porosity ≥ 87 %: {D_max}/{d_p}(ρ_t/ρ_p)^{0.4} =10^{-1.52±0.27} ({Y}/ρ_t{v_0^2})^{-0.49 ± 0.07}, {D_ent}/{d_p}(ρ_t/ρ_p)^{0.4} =10^{-2.12±0.39} ({Y}/ρ_t{v_0^2})^{-0.53 ± 0.11}, where d_p, ρ_t, ρ_p, Y, and v_0 are the projectile diameter, target density, projectile density, target compressive strength, and the impact velocity, respectively. The results of the depth from the entrance hole to the maximum diameter of the cavity, L_max, shows that L_max decreases with impact velocity and increases with target porosity. If we assume that a projectile decelerates

  13. High Tc superconducting small loop antenna

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Mehler, M.J.; Maclean, T.S.M.; Lancaster, M.J.; Gough, C.E. (Univ. of Birmingham (UK)); Alford, N. (I.C.I. Advanced Materials Div., Runcorn (UK))

    1989-12-01

    The improvement in the radiation efficiency of an electrically small loop antenna is analysed when it is fabricated from a superconductor, and experimental results for a liquid nitrogen cooled, ceramic superconducting loop at 450MHz are presented. (orig.).

  14. Modified Continuous Loop Technique for microvascular anastomosis

    Directory of Open Access Journals (Sweden)

    Kumar Pramod

    2001-01-01

    Full Text Available A modified method of continuous loop technique for microvascular anastomosis is described. The handling of loop is easier & even last suture is placed under vision. This makes the microvascular anastomosis easier and simpler.

  15. Optimization of the Low-Loss SRF Cavity for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Z. Li; L. Ge; K. Ko; L. Lee; C.-K. Ng; G. L. Schussman; L. Xiao; T. Higo; Y. Morozumi; K. Saito; P. Kneisel; J. S. Sekutowicz

    2007-08-01

    The Low-Loss shape cavity design has been proposed as a possible alternative to the baseline TESLA cavity design for the ILC. The advantages of this design over the TESLA cavity are its lower cryogenic loss, and higher achievable gradient due to lower surface fields. High gradient prototypes for such designs have been tested at KEK (ICHIRO) and JLab (LL). However, issues related to HOM damping and multipacting (MP) still need to be addressed. Preliminary numerical studies of the prototype cavities have shown unacceptable damping for some higher-order dipole modes if the typical TESLA HOM couplers are directly adapted to the design. The resulting wakefield will dilute the beam emittance thus reduces the machine luminosity. Furthermore, high gradient tests on a 9-cell prototype at KEK have experienced MP barriers although a single LL cell had achieved a high gradient. From simulations, MP activities are found to occur in the end-groups of the cavity. In this paper, we will present the optimization results of the end-groups for the Low-Loss shape for effective HOM damping and alleviation of multipacting. Comparisons of simulation results with measurements will also be presented.

  16. Loop Equations in Abelian Gauge Theories

    CERN Document Server

    Di Bartolo, C; Pe~na, F; Bartolo, Cayetano Di; Leal, Lorenzo; Peña, Francisco

    2005-01-01

    The equations obeyed by the vacuum expectation value of the Wilson loop of Abelian gauge theories are considered from the point of view of the loop-space. An approximative scheme for studying these loop-equations for lattice Maxwell theory is presented. The approximation leads to a partial difference equation in the area and length variables of the loop, and certain physically motivated ansatz is seen to reproduce the mean field results from a geometrical perspective.

  17. Resumming the POPE at One Loop

    CERN Document Server

    Lam, Ho Tat

    2016-01-01

    The Pentagon Operator Product Expansion represents polygonal Wilson loops in planar $\\mathcal{N}=4$ super Yang-Mills in terms of a series of flux tube excitations for finite coupling. We demonstrate how to re-sum this series at the one loop level for the hexagonal Wilson loop dual to the six-point MHV amplitude. By summing over a series of effective excitations we find expressions which integrate to logarithms and polylogarithms, reproducing the known one-loop result.

  18. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  19. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    Science.gov (United States)

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  20. Loops and strings in a superconducting lattice gauge simulator

    CERN Document Server

    Brennen, G K; Rico, E; Stace, T M; Vodola, D

    2015-01-01

    We propose a quantum simulation of electromagnetism in (2+1) dimensions using an array of superconducting fluxonium devices. The encoding is in the integer (S=1) representation of the quantum link model formulation of compact U(1) lattice gauge theory. We show how to engineer the Gauss constraint via an ancilla mediated gadget construction and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by non-local order parameters from Wilson loops and disorder parameters from 't Hooft strings and we show how to measure these operators non-destructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Evidence for existence of the confined phase in the ground state of the simulation Hamiltonian is found by DMRG calculations on a ladder geometry.

  1. Loops and Strings in a Superconducting Lattice Gauge Simulator

    Science.gov (United States)

    Brennen, G. K.; Pupillo, G.; Rico, E.; Stace, T. M.; Vodola, D.

    2016-12-01

    We propose an architecture for an analog quantum simulator of electromagnetism in 2 +1 dimensions, based on an array of superconducting fluxonium devices. The encoding is in the integer (spin-1) representation of the quantum link model formulation of compact U (1 ) lattice gauge theory. We show how to engineer Gauss' law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by nonlocal order parameters from Wilson loops and disorder parameters from 't Hooft strings. We show how to construct such operators in this model and how to measure them nondestructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Numerical evidence is found for the existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.

  2. Uterine perforation with Lippes loop intrauterine device-associated actinomycosis: a case report and review of the literature.

    Science.gov (United States)

    Phupong, V; Sueblinvong, T; Pruksananonda, K; Taneepanichskul, S; Triratanachat, S

    2000-05-01

    A case of a 67-year-old postmenopausal woman, gravida 2, para 2, with an uterine perforation from actinomycotic infection with Lippes loop IUD is reported. She had the Lippes loop IUD inserted for 35 years, and had never had any pelvic examination nor Papanicolaou smear. She presented with acute abdominal pain. The clinical picture mimicked peptic ulcer perforation. The woman underwent laparotomy and exudative fluid was discovered in the abdominal cavity with the tip of the Lippes loop IUD at one of the two small holes of the uterine fundus. Total abdominal hysterectomy with bilateral salpingo-oophorectomy was performed. The postoperative microscopic pathological report demonstrated characteristics of actinomycosis. She was treated with parenteral high-dose penicillin for 4 weeks followed by oral penicillin for 6 months. The woman had an uneventful recovery. To our knowledge, this is the first case report of uterine perforation due to Lippes loop IUD-associated actinomycotic infection.

  3. Loop Diuretics in Clinical Practice.

    Science.gov (United States)

    Oh, Se Won; Han, Sang Youb

    2015-06-01

    Diuretics are commonly used to control edema across various clinical fields. Diuretics inhibit sodium reabsorption in specific renal tubules, resulting in increased urinary sodium and water excretion. Loop diuretics are the most potent diuretics. In this article, we review five important aspects of loop diuretics, in particular furosemide, which must be considered when prescribing this medicine: (1) oral versus intravenous treatment, (2) dosage, (3) continuous versus bolus infusion, (4) application in chronic kidney disease patients, and (5) side effects. The bioavailability of furosemide differs between oral and intravenous therapy. Additionally, the threshold and ceiling doses of furosemide differ according to the particular clinical condition of the patient, for example in patients with severe edema or chronic kidney disease. To maximize the efficiency of furosemide, a clear understanding of how the mode of delivery will impact bioavailability and the required dosage is necessary.

  4. Nucleosome repositioning via loop formation

    CERN Document Server

    Kulic, M L

    2002-01-01

    Active (catalysed) and passive (intrinsic) nucleosome repositioning is known to be a crucial event during the transcriptional activation of certain eucaryotic genes. Here we consider theoretically the intrinsic mechanism and study in detail the energetics and dynamics of DNA-loop-mediated nucleosome repositioning, as previously proposed by Schiessel et al. (H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. Gelbart. 2001. {\\it Phys. Rev. Lett.} 86:4414-4417). The surprising outcome of the present study is the inherent nonlocality of nucleosome motion within this model -- being a direct physical consequence of the loop mechanism. On long enough DNA templates the longer jumps dominate over the previously predicted local motion, a fact that contrasts simple diffusive mechanisms considered before. The possible experimental outcome resulting from the considered mechanism is predicted, discussed and compared to existing experimental findings.

  5. Mismatch-shaping switching for two-capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, U.; Temes, G.C.

    1998-01-01

    A mismatch-shaping scheme is proposed for a two-capacitor digital-to-analogue converter (DAC). It uses a delta-sigma loop for finding the optimal switching sequence for each input word. Simulations indicate that the scheme can be used for the realisation of DACs with 16 bit linearity and SNR perf...

  6. The combination of high Q factor and chirality in twin cavities and microcavity chain.

    Science.gov (United States)

    Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin

    2014-09-29

    Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities.

  7. Evaluation of ultrasonic and ErCr:YSGG laser retrograde cavity preparation.

    Science.gov (United States)

    Batista de Faria-Junior, Norberto; Tanomaru-Filho, Mário; Guerreiro-Tanomaru, Juliane Maria; de Toledo Leonardo, Renato; Camargo Villela Berbert, Fábio Luiz

    2009-05-01

    Root end cavity preparation techniques aim to create a clean and properly shaped cavity in a short time. Although the use of ultrasonics has been widely recommended, a laser can also be used. This study evaluated the time required and quality of retrograde cavity preparations using ultrasonics or ErCr:YSGG laser. Thirty single-rooted teeth were instrumented, root filled, submitted to apicectomies, and grouped. Root end cavities were prepared by using the following: group 1 (G1): CVD (6.1107-6) ultrasonic retrotips (CVD-Vale, São José dos Campos, Brazil); group 2 (G2): EMS (DT-060/Berutti) ultrasonic retrotips (EMS, LeSentier, Switzerland); and group 3 (G3): ErCr:YSGG (G6/Waterlase; Biolase Technology, San Clemente, CA) laser tips. The time taken to complete the preparation was recorded. Epoxy resin replicas of the root apices were examined under a scanning electron microscope. The parameters for evaluation were the presence of fractures, and the quality of the preparations. The Waterlase showed the highest mean time for preparation of the root end cavities (p 0.05). Fractures in the cavosurface angle occurred only in G2. G1 and G2 showed better scores for quality of preparation than G3 (p < 0.05). These results suggest that root end cavities should be prepared by ultrasonic tips.

  8. Deconfinement and virtual quark loops

    Science.gov (United States)

    Çelik, T.; Engels, J.; Satz, H.

    1983-12-01

    We calculate paer Monte Carlo evaluation on an 83 × 3 lattice the energy density ɛG of the gluon sector of QCD, including virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, we observe at T/ΛL 95 +/- 10 a rapid variation of ɛG in T, accompanied by strong fluctuations from iteration to iteration. as clear signal of the deconfinement transition.

  9. Slow plasmons in grating cavities

    Science.gov (United States)

    Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun

    2016-03-01

    Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.

  10. Primary leiomyosarcoma of peritoneal cavity

    Directory of Open Access Journals (Sweden)

    Jyotsna Naresh Bharti

    2014-03-01

    Full Text Available Leiomyosarcomas of soft tissue are the rare tumors and the retroperitoneum is the most common site involved. We report a case of primary leiomyosarcoma of the peritoneal cavity which clinically presented with suprapubic, freely mobile, nontender mass which measured 10×10 cm in size. Contrast enhanced computed tomography revealed well defined heterogenous hypodense solid cystic mass. The mass was surgically excised out in its entirety. The histopathological examination revealed spindle cells arranged in alternating fascicles having pleomorphic nuclei, indistinct margin and eosinophilic cytoplasm with foci of haemorrhage, necrosis and 5-6 mitosis/HPF. The spindle cells were immunoreactive for smooth muscle actin, desmin and negative for S-100, CD-34 and c-kit. Histopathology and immunohistochemistry were helpful in making the final confirmatory diagnosis. Leiomyosarcomas are aggressive tumors, with poor prognosis and often difficult to treat. The survival rates are lowest among all soft tissue sarcomas.

  11. Leaky Modes of Dielectric Cavities

    CERN Document Server

    Mansuripur, Masud; Jakobsen, Per

    2016-01-01

    In the absence of external excitation, light trapped within a dielectric medium generally decays by leaking out (and also by getting absorbed within the medium). We analyze the leaky modes of a parallel-plate slab, a solid glass sphere, and a solid glass cylinder, by examining those solutions of Maxwell's equations (for dispersive as well as non-dispersive media) which admit of a complex-valued oscillation frequency. Under certain circumstances, these leaky modes constitute a complete set into which an arbitrary distribution of the electromagnetic field residing inside a dielectric body can be expanded. We provide completeness proofs, and also present results of numerical calculations that illustrate the relationship between the leaky modes and the resonances of dielectric cavities formed by a simple parallel-plate slab, a glass sphere, and a glass cylinder.

  12. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  13. Ponderomotive Acceleration in Coronal Loops

    CERN Document Server

    Dahlburg, R B; Taylor, B D; Obenschain, K

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a "byproduct" of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets...

  14. Scheme for Implementation of Quantum Game in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Chun; CAO Shu-Ai; WU Yue-Qin; FANG Mao-Fa; LI Huai-Fan; ZHENG Xiao-Juan; ZHAO Ren; WANG Xin-Wen; LI Ze-Hua

    2008-01-01

    We propose an experimentally feasible scheme to implement two-player quantum game in cavity quantum electrodynamics (QED). During the process, the cavity is only virtually excited, thus our scheme is insensitive to the cavity field states and cavity decay. The scheme can be realized in the range of current cavity QED techniques.

  15. A scheme for implementing quantum game in cavity QED

    Institute of Scientific and Technical Information of China (English)

    CaoShuai; Fang Mao-Fa; Liu Jian-Bin; Wang Xin-Wen; Zheng Xiao-juan

    2009-01-01

    In this paper, we propose a scheme fot implementing quantum game (QG) in cavity quantum electrodynam-ics(QED). In the scheme, the cavity is only virtually excited and thus the proposal is insensitive to the cavity fields states and cavity decay. So our proposal can be experimentally realized in the range of current cavity QED techniques.

  16. Basic Comparison of the Properties of the Loop and Frotte Yarns, Woven and Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Ewa Grabowska Katarzyna

    2014-09-01

    Full Text Available Both loop fancy yarns and frotte fancy yarns belong to the group of yarns with continuous effects. The difference between frotte and loop yarn relies on the fact that the loop yarn is constructed with two core yarns and the frotte yarn is constructed with only one core yarn. The differences are evident in the shape of these two types of fancy yarns. These shape differences are the functions of the tensions of component yarns during the twisting process. The shape and construction of the fancy yarn influence its properties. The properties of loop and frotte fancy yarns, woven and knitted fabrics are compared in this article in order to find out the optimal yarn’s and fabric’s production condition to satisfy the final user and maintain low production costs. In terms of economy aspects only, the frotte fancy yarns are believed to be cheaper in production due to lower quantity of components utilize for their production to compare with loop fancy yarns, under conditions of the same settings of ring twisting frame.

  17. Design and experiments for the waveguide to coaxial cable adapter of a cavity beam position monitor

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; ZHENG Shu-Xin

    2011-01-01

    The waveguide to coaxial cable adapter is very important to the cavity beam position monitor(CBPM)because it determines how much of the energy in the cavity could be coupled outside.In this paper,the waveguide to coaxial cable adapter of a CBPM is designed and experiments are conducted.The curve shapes of experiments and simulations are very similar and the difference in reflection is less than 0.1.This progress provides a reliable method for designing the adapter.

  18. Magneto-induced Fano-like cavity interference in three-dimensional metamaterials

    Science.gov (United States)

    Pan, Xun-Yong; Wang, Gaofeng

    2016-08-01

    Fano-like cavity interference due to magneto-inductive coupling in metamaterial structure is demonstrated via a double Fabry-Perot cavity (DFPC) that consists of stacked multi-layered resonators. The induced magnetic field based destructive interference is observed in the transmission response of the DFPC system, which exhibits the Fano line shaped resonance. The retrieved real and imaginary parts of effective permeability and permittivity indicate strong magneto-induced dispersion with a group delay leading to the slow light effect. This finding provides an interesting mechanism to excite Fano resonances in metamaterial systems via magnetic interaction between resonators, which may enable new devices for slow light and sensing applications.

  19. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Frougier, J., E-mail: julien.frougier@thalesgroup.com; Jaffrès, H.; Deranlot, C.; George, J.-M. [Unité Mixte de Physique CNRS-Thales and Université Paris Sud 11, 1 av. Fresnel, 91767 Palaiseau (France); Baili, G.; Dolfi, D. [Thales Research and Technology, 1 av. Fresnel, 91767 Palaiseau (France); Alouini, M. [Institut de Physique de Rennes, 263 Avenue Général Leclerc, 35042 Rennes (France); Sagnes, I. [Laboratoire de Photonique et de Nanostructures, Route de Nozay, 91460 Marcoussis (France); Garnache, A. [Institut d' électronique du Sud CNRS UMR5214, Université Montpellier 2 Place Eugene Bataillon, 34095 Montpellier (France)

    2013-12-16

    We fabricated and characterized an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well Vertical External Cavity Surface Emitting Laser (VECSEL). The structure is designed to allow the integration of a Metal-Tunnel-Junction ferromagnetic spin-injector for future electrical injection. We report here the control at room temperature of the electromagnetic field polarization using optical spin injection in the active medium of the VECSEL. The switching between two highly circular polarization states had been demonstrated using an M-shaped extended cavity in multi-modes lasing. This result witnesses an efficient spin-injection in the active medium of the LASER.

  20. A Scanned Perturbation Technique For Imaging Electromagnetic Standing Wave Patterns of Microwave Cavities

    CERN Document Server

    Gokirmak, A; Bridgewater, A; Anlage, S M; Gokirmak, Ali; Wu, Dong-Ho; Anlage, Steven M.

    1998-01-01

    We have developed a method to measure the electric field standing wave distributions in a microwave resonator using a scanned perturbation technique. Fast and reliable solutions to the Helmholtz equation (and to the Schrodinger equation for two dimensional systems) with arbitrarily-shaped boundaries are obtained. We use a pin perturbation to image primarily the microwave electric field amplitude, and we demonstrate the ability to image broken time-reversal symmetry standing wave patterns produced with a magnetized ferrite in the cavity. The whole cavity, including areas very close to the walls, can be imaged using this technique with high spatial resolution over a broad range of frequencies.