WorldWideScience

Sample records for cavity receivers

  1. Reducing the convective losses of cavity receivers

    Science.gov (United States)

    Flesch, Robert; Grobbel, Johannes; Stadler, Hannes; Uhlig, Ralf; Hoffschmidt, Bernhard

    2016-05-01

    Convective losses reduce the efficiency of cavity receivers used in solar power towers especially under windy conditions. Therefore, measures should be taken to reduce these losses. In this paper two different measures are analyzed: an air curtain and a partial window which covers one third of the aperture opening. The cavity without modifications and the usage of a partial window were analyzed in a cryogenic wind tunnel at -173°C. The cryogenic environment allows transforming the results from the small model cavity to a large scale receiver with Gr≈3.9.1010. The cavity with the two modifications in the wind tunnel environment was analyzed with a CFD model as well. By comparing the numerical and experimental results the model was validated. Both modifications are capable of reducing the convection losses. In the best case a reduction of about 50 % was achieved.

  2. Reduction of convective losses in solar cavity receivers

    Science.gov (United States)

    Hughes, Graham; Pye, John; Kaufer, Martin; Abbasi-Shavazi, Ehsan; Zhang, Jack; McIntosh, Adam; Lindley, Tim

    2016-05-01

    Two design innovations are reported that can help improve the thermal performance of a solar cavity receiver. These innovations utilise the natural variation of wall temperature inside the cavity and active management of airflow in the vicinity of the receiver. The results of computational fluid dynamics modelling and laboratory-scale experiments suggest that the convective loss from a receiver can be reduced substantially by either mechanism. A further benefit is that both radiative and overall thermal losses from the cavity may be reduced. Further work to assess the performance of such receiver designs under operational conditions is discussed.

  3. Thermal Model of a Dish Stirling Cavity-Receiver

    OpenAIRE

    Rubén Gil; Carlos Monné; Nuria Bernal; Mariano Muñoz; Francisco Moreno

    2015-01-01

    This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to deter...

  4. Thermal Model of a Dish Stirling Cavity-Receiver

    Directory of Open Access Journals (Sweden)

    Rubén Gil

    2015-01-01

    Full Text Available This paper presents a thermal model for a dish Stirling cavity based on the finite differences method. This model is a theoretical tool to optimize the cavity in terms of thermal efficiency. One of the main outcomes of this work is the evaluation of radiative exchange using the radiosity method; for that purpose, the view factors of all surfaces involved have been accurately calculated. Moreover, this model enables the variation of the cavity and receiver dimensions and the materials to determine the optimal cavity design. The tool has been used to study the cavity optimization regarding geometry parameters and material properties. Receiver absorptivity has been identified as the most influential property of the materials. The optimal aperture height depends on the minimum focal space.

  5. Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering

    1993-09-01

    Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.

  6. Effects of Absorber Emissivity on Thermal Performance of a Solar Cavity Receiver

    Directory of Open Access Journals (Sweden)

    Jiabin Fang

    2014-01-01

    Full Text Available Solar cavity receiver is a key component to realize the light-heat conversion in tower-type solar power system. It usually has an aperture for concentrated sunlight coming in, and the heat loss is unavoidable because of this aperture. Generally, in order to improve the thermal efficiency, a layer of coating having high absorptivity for sunlight would be covered on the surface of the absorber tubes inside the cavity receiver. As a result, it is necessary to investigate the effects of the emissivity of absorber tubes on the thermal performance of the receiver. In the present work, the thermal performances of the receiver with different absorber emissivity were numerically simulated. The results showed that the thermal efficiency increases and the total heat loss decreases with increasing emissivity of absorber tubes. However, the thermal efficiency increases by only 1.6% when the emissivity of tubes varies from 0.2 to 0.8. Therefore, the change of absorber emissivity has slight effect on the thermal performance of the receiver. The reason for variation tendency of performance curves was also carefully analyzed. It was found that the temperature reduction of the cavity walls causes the decrease of the radiative heat loss and the convective heat loss.

  7. Thermal performance and stress analyses of the cavity receiver tube in the parabolic trough solar collector

    Science.gov (United States)

    Cao, F.; Li, Y.; Wang, L.; Zhu, T. Y.

    2016-08-01

    A light ray tracing model and a heat transfer model were built to analyse the heat flux distribution and heat transfer in a 1m cavity receiver tube with Parabolic Trough Collectors as the concentrator. The numerical methods were used to simulate the thermal stress and deformation of the receiver tube. The temperature fields of the receiver tube and the thermal stress distribution in the steel tube at the cross section and along the fluid flowing direction were presented. It is obtained from this study that non-uniform heat flux distribution is absorbed at the receiver tube outer surface due to the structure of the cavity receiver tube. Temperature fields in the steel receiver tube at the inlet and the outlet match well with the incident solar radiation. An eccentric circle temperature gradient is observed at cross section of the outlet fluid. The equivalent stress is a complex result of solar heating flux, energy transfer inside the PTC and the fluid and steel characteristics. Highest deformation is 3.1mm at 0.82m. On increasing the fluid mass flow rate, higher fluid mass flow rate results in higher equivalent stress along the absorber tube.

  8. Optical design and optimization of parabolic dish solar concentrator with a cavity hybrid receiver

    Science.gov (United States)

    Blázquez, R.; Carballo, J.; Silva, M.

    2016-05-01

    One of the main goals of the BIOSTIRLING-4SKA project, funded by the European Commission, is the development of a hybrid Dish-Stirling system based on a hybrid solar-gas receiver, which has been designed by the Swedish company Cleanergy. A ray tracing study, which is part of the design of this parabolic dish system, is presented in this paper. The study pursues the optimization of the concentrator and receiver cavity geometry according to the requirements of flux distribution on the receiver walls set by the designer of the hybrid receiver. The ray-tracing analysis has been performed with the open source software Tonatiuh, a ray-tracing tool specifically oriented to the modeling of solar concentrators.

  9. A detailed radiation heat transfer study of a dish-Stirling receiver: The impact of cavity wall radiation properties and cavity shapes

    Science.gov (United States)

    Garrido, Jorge; Wang, Wujun; Nilsson, Martin; Laumert, Björn

    2016-05-01

    A detailed 3-D radiation analysis of a dish-Stirling cavity receiver is carried out to estimate the cavity steady-state temperatures in order to assess the receiver integrity, lifetime and efficiency performance. For this purpose, a parabolic dish was modeled with 5.2 m focal length, 8.85 m aperture diameter and 2 mrad surface error. Three generic cavity shapes (cylindrical, diamond-shaped and reverse-conical) with three different emissivities (0.2, 0.4 and 0.7) are studied. Worst-case scenario heat generations (total absorbed radiation), maximum steady-state temperatures and energy balances of the cavities are calculated to evaluate the receiver performance. The results show that reverse-conical cavities can significantly reduce cavity wall peak temperatures (by 40-120 K), improve the temperature evenness and decrease the radiation losses by 4-5%. Regarding radiation properties, low reflectivities present lower steady-state temperatures even for low/moderate direct solar fluxes. Due to the lower temperatures, lower total thermal losses are also expected.

  10. Optimal spacing within a tubed, volumetric, cavity receiver suitable for modular molten salt solar towers

    Science.gov (United States)

    Turner, Peter

    2016-05-01

    A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.

  11. Numerical research of dynamic characteristics in tower solar cavity receiver based on step-change radiation flux

    Science.gov (United States)

    Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi

    2013-07-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.

  12. Investigation of free-forced convection flows in cavity-type receivers. Final yearly report, 1979-1980

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, J.A.C.

    1982-01-01

    A summary is provided of the first of three years of experimental and theoretical research on free-forced convection flows in cavity-type solar receivers. New experimental and theoretical results are presented and discussed. The implication of these findings, with respect to the future thrust of the research program, is clarified as well as is possible at the present time. Following various related conclusions a summary and tentative schedule of work projected for year two of research are presented.

  13. A final report on the Phase 1 testing of a molten-salt cavity receiver

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J M [ed.; Smith, D C [Babcock and Wilcox Co., Barberton, OH (United States). Nuclear Equipment Div.

    1992-05-01

    This report describes the design, construction, and testing of a solar central receiver using molten nitrate salt as a heat exchange fluid. Design studies for large commercial plants (30--100 MWe) have shown molten salt to be an excellent fluid for solar thermal plants as it allows for efficient thermal storage. Plant design studies concluded that an advanced receiver test was required to address uncertainties not covered in prior receiver tests. This recommendation led to the current test program managed by Sandia National Laboratories for the US Department of Energy. The 4.5 MWt receiver is installed at Sandia National Laboratories' Central Receiver Test Facility in Albuquerque, New Mexico. The receiver incorporates features of large commercial receiver designs. This report describes the receiver's configuration, heat absorption surface (design and sizing), the structure and supporting systems, and the methods for control. The receiver was solar tested during a six-month period at the Central Receiver Test Facility in Albuquerque, NM. The purpose of the testing was to characterize the operational capabilities of the receiver under a number of solar operating and stand-by conditions. This testing consisted of initial check-out of the systems, followed by steady-state performance, transient receiver operation, receiver operation in clouds, receiver thermal loss testing, receiver start-up operation, and overnight thermal conditioning tests. This report describes the design, fabrication, and results of testing of the receiver.

  14. Development of a higher-efficiency tubular cavity receiver for direct steam generation on a dish concentrator

    Science.gov (United States)

    Pye, John; Hughes, Graham; Abbasi, Ehsan; Asselineau, Charles-Alexis; Burgess, Greg; Coventry, Joe; Logie, Will; Venn, Felix; Zapata, José

    2016-05-01

    An integrated model for an axisymmetric helical-coil tubular cavity receiver is presented, incorporating optical ray-tracing for incident solar flux, radiosity analysis for thermal emissions, computational fluid dynamics for external convection, and a one-dimensional hydrodynamic model for internal flow-boiling of water. A receiver efficiency of 98.7% is calculated, for an inlet/outlet temperature range of 60-500 °C, which is the ratio of fluid heating to receiver incident irradiance. The high-efficiency design makes effective use of non-uniform flux in its non-isothermal layout, matching lower temperature regions to areas of lower flux. Full-scale testing of the design will occur in late 2015.

  15. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Gang; TANG Da-Wei; LI Tie; DU Jing-Long

    2011-01-01

    @@ We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing.Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results,we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.%We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.

  16. Free convective heat loss from cavity-type solar furnace; Solar receiver kara no shizen tairyu ni yoru netsusonshitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I.; Ito, N. [Meiji University, Tokyo (Japan)

    1996-10-27

    Free convective heat loss from solar heat receivers was studied, using three laboratory model receivers (different in depth L and aperture diameter d) heated by electric heaters. Most of the heat produced by heaters was transmitted to the air inside. The cylindrical vessel walls were fully insulated against heat. Heat loss being supposed to result mainly from transfer by free convection, the experiment results were edited by use of Nusselt number Nu and Rayley number Ra. Relations between Nu(D/d){sup m1} and Ra(L/D){sup m2} were plotted in a chart. Here, D is the receiver inner diameter, and m1 and m2 are constants that can be determined by computation. Tests points were provided approximately lineally, irrespective of D, L, or receiver inclination. Air currents were found to produce one or more swirls inside, thanks to the current visualization technique, when the receiver inclination was not sharper than 120{degree} (except 0{degree}). The number of swirls increased as the inner wall temperature rose. This kind of behavior of air currents directly affects the degree of heat loss. 9 refs., 4 figs.

  17. The optical performance of the cavity receiver in the solar thermal power system%太阳能热发电系统中腔式吸热器的光学性能

    Institute of Scientific and Technical Information of China (English)

    毛青松; 龙新峰

    2012-01-01

    建立了球形、圆柱形、圆锥形和平顶圆锥形4种典型腔式吸热器与抛物面聚光器的三维模型,利用蒙特卡洛光线追踪法预测了4种典型腔式吸热器内部辐射能流的分布,其中球形吸热器内部的辐射能流分布均匀性最好,且辐射峰值最小,具有较好的光学性能.通过统计逸出腔口的反射光计算出这4种腔式吸热器的反 射光损,其中球形吸热器的反射光损最小.在聚光器反射率为0.9,腔体内壁吸收率为0.9时,球形吸热器反射光损仅为0.66%,聚光器/球形吸热器的光学效率为88.9%.%The 3D model of four typical cavity receivers (spherical,cylindrical,conical,flat -topped cone) and a parabolic concentrator are established. The Monte Carlo ray tracing method is applied to predict the radiation flux distribution in the four cavity receivers.The results reveal that the spherical receiver has the best optical performace because owe to the optimal uniform radiation flux distribution and the lowest peak value of radiation.Through the statistics of the reflected rays leaking from the aperture of the cavity receivers was used to calculate the light loss , the loss of reflected rays from the spherical receiver is the least. The reflected loss ratio is only 0.66% by spherical receiver when the reflectance of the concentrator is 0.9 and the absorptance of the cavity receiver inner surface is 0.9.The concentrator-receiver system finally get a high optical efficency of 88.9%.

  18. THEORETICAL ANALYSIS OF HEAT REMOVAL FACTOR OF LINEAR CONCENTRATING SOLAR COLLECTOR USING CAVITY RECEIVER%太阳能线聚焦腔体结构吸收器热迁移因子理论分析

    Institute of Scientific and Technical Information of China (English)

    白涛; 代彦军; 王如竹

    2011-01-01

    对4种用于线聚焦太阳集热器的腔体吸收器的热迁移因子和效率因子进行理论分析,获得热迁移因子的理论表达公式.搭建了以菲涅尔透镜为聚光器和以抛物槽式反射镜为聚光器的聚焦太阳能集热系统实验台,通过实验验证了热迁移因子理论公式的合理性.结果表明,三角形腔体吸收器具有最好的集热性能.在理论指导下对三角形腔体进行了优化:直接利用管道作为吸收器管道从而提高了热传导;选择合适的管道内径;聚焦比保证在40以上;加大流速强化对流换热.当采用菲涅尔透镜为聚光器时,其热迁移因子为0.834;采用抛物槽式反射镜为聚光器时,优化后的三角形腔体吸收器的热迁移因子可达到0.940.%The heat removal factor and the efficiency factor of four kinds of cavity receivers were analyzed by the theory, which could be used in linear concentrating collectors, and then the theoretical- formula of the heat removal factor FR was obtained. The testing system of parabolic trough collector and fresnel lens using cavity receiver were set up and many tests had been done, the experiment result is in accordance with the theoretical prediction. The results show that the triangle cavity receiver has the best performance, and was improved according to the theoretical model; the pipe was used as cavity wall directly to improve heat conduction; the best inner diameter was chosen; the concentrating ratio was not less than 40; the convection heat transfer was strengthened by increasing the mass flow. The heat removal factor was 0. 834 when the fresnel lens was used as the concentrator; while it could reach 0.940 when parabolic trough collctor was used as the concentrator with the improved triangle cavity receiver.

  19. Compound parabolic concentrator with cavity for tubular absorbers

    Science.gov (United States)

    Winston, Roland

    1983-01-01

    A compond parabolic concentrator with a V-shaped cavity is provided in which an optical receiver is emplaced. The cavity redirects all energy entering between the receiver and the cavity structure onto the receiver, if the optical receiver is emplaced a distance from the cavity not greater than 0.27 r (where r is the radius of the receiver).

  20. Numerical Simulation of Different Start-up Performance of a Solar Cavity Receiver%太阳能腔式吸热器不同启动状态下启动性能研究

    Institute of Scientific and Technical Information of China (English)

    屠楠; 方嘉宾; 魏进家

    2012-01-01

    由于太阳能在时间上的非连续性使得太阳能腔式吸热器要频繁地经历不同的启动过程,对腔式吸热器在冷态启动、温态启动和热态启动过程中的热性能进行了模拟。计算得到了吸热器在三种启动过程中入口处所需的太阳光能量,可为定日镜场的布置及控制提供理论指导,同时还得到了吸热器在启动过程中热效率及辐射热损失、对流热损失随时间变化的曲线。%A solar cavity receiver frequently experiences different start-up processes because of the noncontimfity of solar energy in time. The thermal performance during three start-up processes, including cold start-up, warm start-up and hot start-up, was numerically simulated. The solar energy that the aperture of cavity receiver required was calculated during three start-up processes, and it can provide theoretical guidance for the layout and control of heliostat field. The curves of thermal efficiency, radiative thermal loss and convective thermal loss were also gained.

  1. Numerical Research on Dynamic Characteristics in Solar Cavity Receiver Based on Step-Change Radiation Flux%瞬态阶跃热流密度下腔式吸热器动态特性研究

    Institute of Scientific and Technical Information of China (English)

    陈政伟; 王跃社; 陈开拓; 王启志; 李迪

    2012-01-01

    The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux of the inner surface in the receiver will present the characteristics of non-continuous change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore it will seriously affect the stability and safe operation of the receiver. In this paper, on the basis of the non-continuous step change of the radiation flux, we established a non-linear dynamic model by sequential modular approach, which gives a comprehensive consideration of flash or condensation in the two-phase flow. This study has obtained the dynamic responses of the characteristic parameters under step change radiation flux. The results can provide scientific guidance to the safe operation and control of the cavity receiver system.%腔式吸热器是塔式太阳能热发电系统光热转换的关键部件,云层遮挡等非正常瞬态气象条件会引起腔体内热流密度呈现出瞬态阶跃扰动的非连续性特点,易造成腔式吸热器状态参数有较大的动态扰动,严重影响了吸热器的稳定和安全运行。本文基于辐照强度阶跃变化的非连续性特点,综合考虑了压力变动时两相流中的闪蒸和闪凝现象,采用序贯模块法构建了腔式吸热器的动态特性非线性数学模型,获得了辐照强度阶跃扰动时腔式吸热器各耦合输出参数的动态响应规律。这些规律对于腔式吸热器的热力系统及控制系统的设计具有重要的指导意义。

  2. Numerical Simulation of Mixed Convection in Solar Cavity Receiver for Hydrogen Production%太阳能制氢腔式吸热器混合对流的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    肖鹏; 郭烈锦; 吕友军

    2012-01-01

    Mixed convection heat loss is the key factor to determine the thermal efficiency of solar cavity receiver for hydrogen production by biomass gasification using concentrated solar energy. In this paper, the solar cavity receiver, built by State Key Laboratory of Multiphase Flow in Power Engineering, was numerically modeled to study the characteristics of mixed convection heat loss. The RNG k - ε turbulence model was adopted to investigate the flow pattern and mixed convection heat transfer characteristics around the solar cavity with external wind effect. The correlation for Nusselt number was obtained with various wind directions and wind velocity. The result showed that, the side towards wind and semi-side towards wind have the most significant effects on convection heat loss. When the wind velocity was big enough to make Richardson greater than 1, the forced convection drive by external wind is dominated, and mixed convection heat loss increases with augmentation of Re and the increase of wind velocity.%混合对流热损失是影响太阳能与生物质超临界水气化耦合制氢腔式吸热器热效率的关键因素之一。本文以动力工程多相流实验室建成的生物质超临界水与太阳能聚集供热耦合制氢腔式吸热器为研究对象,对腔式吸热器混合对流换热进行了数值模拟研究。通过使用RNG惫一£湍流模型,研究了制氢吸热器在外界风吹掠环境下的混合对流热损失,获得了腔式吸热器在不同风速、风向吹掠下的混合对流换热准则Nusselt数。模拟结果表明,侧向风与侧迎向风对腔内对流热损失影响最大,当风速超过某一数值(Richardson数〉1),外界风诱发的强制对流会在对流热损失中占主导作用,且随着风速增加,混合对流热损失随Re提高而增大。

  3. Feedwater Control System Design of Cavity Type Solar Water/Steam Receiver%腔式太阳能水/蒸汽吸热器给水全程控制系统的设计

    Institute of Scientific and Technical Information of China (English)

    郭铁铮; 刘国耀; 刘德有; 许昌; 郭苏

    2012-01-01

    Feedwater control system of a cavity type water/steam receiver for solar power tower plant was introduced,as well as control requirements of feedwater control system were put forward.Besides,feedwater pressure control system of receiver and speed control system of feedwater pump were designed and developed.At the meantime,in order to avoid interference with each other between two systems and make two systems cooperation in harmony,speed deviation feed-forward signal of feedwater pump was imported to feedwater pressure control system,and pressure deviation feed-forward signal was add to speed control system.By using above mentioned methods to make adjustment for feedwater pressure and speed control of feedwater pump combined and cooperated,so that adjustment speed for drum water level can be quicken.%介绍了一种应用于塔式太阳能热发电系统中的腔式水/蒸汽吸热器给水全程控制系统。提出了系统运行对控制系统的控制要求,给出了吸热器的给水压力控制系统和给水泵转速控制系统的设计和研制方法。同时指出,为了避免两个系统之间的互相干扰,使各系统尽可能地协调动作,在给水压力控制系统中引入了水泵转速偏差前馈信号,在转速系统中引入压力偏差前馈信号,使系统的给水压力调节和给水泵转速控制互相联系起来,加快汽包水位的调节速度。

  4. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  5. accelerating cavity

    CERN Multimedia

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  6. Solar receiver performance of point focusing collector system

    Science.gov (United States)

    Wu, Y. C.; Wen, L. C.

    1978-01-01

    The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.

  7. Cavity magnomechanics

    Science.gov (United States)

    Zou, Chang-Ling; Zhang, Xufeng; Jiang, Liang; Tang, Hong

    2016-05-01

    Recently, cavity magnonics has attracted much attention for potential applications of coherent information transduction and hybrid quantum devices. The magnon is a collective spin wave excitation in ferromagnetic material. It is magnetically tunability, with long coherence time and non-reciprocical interaction with electro-magnetic fields. We report the coherent coupling between magnon, microwave photon and phonon. First, we demonstrate strong coupling and ultrastrong coupling between the magnon in YIG sphere and microwave photon in three-dimensional cavity. Then, based on the hybridized magnon-photon modes, we observe the triply resonant magnon-mcirowave photon-phonon coupling, where the ultrahigh-Q mechanical vibration of YIG sphere is dispersively coupled with the magnon via magnetostrictive interaction. We observe interesting phenomena, including electromagnetically induced transparency/absorption and parametric amplification. In particular, benefit from the large tunability of the magnon, we demonstrate a tunable microwave amplifier with gain as high as 30 dB. The single crystal YIG also has excellent optical properties, and thus provide a unique platform bridging MHz, GHz and THz information carriers. Finally, we present the latest progress towards coherent magnon to optical photon conversion.

  8. Lack of survival advantage in patients with advanced, resectable squamous cell carcinoma of the oral cavity receiving induction chemotherapy with cisplatin (CDDP), docetaxel (TXT) and 5-fluorouracil (5FU).

    Science.gov (United States)

    Umeda, Masahiro; Komatsubara, Hideki; Ojima, Yasutaka; Minamikawa, Tsutomu; Shigeta, Takashi; Shibuya, Yasuyuki; Yokoo, Satoshi; Komori, Takahide

    2004-01-01

    Cisplatin-based neoadjuvant chemotherapy (NAC) has been reported to increase survival of patients with nasopharyngeal carcinoma, and organ preservation in those with laryngeal carcinoma, but its efficacy for other head and neck carcinomas is still controversial. We examined the effects of NAC for patients with stage III-IV squamous cell carcinoma of the oral cavity. The patients were divided into two groups; 9 patients who underwent NAC consisting of one course of cisplatin (CDDP), docetaxel (TXT) and 5-fluorouracil (5FU) followed by surgery (NAC group), and 18 patients who underwent surgery alone (control group). Complete response (CR) was not observed, but partial response (PR) was obtained in 6 of 9 patients (33%) of the NAC group. The 3-year survival rate was 29.6% in the NAC group and 81.5% in the control group. Although any valid conclusions could not be drawn because of the small number of patients examined here, NAC with CDDP, TXT and 5FU offered no advantages over standard treatment for advanced oral cancer in terms of survival.

  9. Crab Cavity Development

    CERN Document Server

    Calaga, R; Burt, G; Ratti, A

    2015-01-01

    The HL-LHC upgrade will use deflecting (or crab) cavities to compensate for geometric luminosity loss at low β* and non-zero crossing angle. A local scheme with crab cavity pairs across the IPs is used employing compact crab cavities at 400 MHz. Design of the cavities, the cryomodules and the RF system is well advanced. The LHC crab cavities will be validated initially with proton beam in the SPS.

  10. Dawn of Cavity Spintronics

    OpenAIRE

    Hu, Can-Ming

    2015-01-01

    Merging the progress of spintronics with the advancement in cavity quantum electrodynamics and cavity polaritons, a new field of Cavity Spintronics is forming, which connects some of the most exciting modern physics, such as quantum information and quantum optics, with one of the oldest science on the earth, the magnetism.

  11. Beam cavity interaction

    CERN Document Server

    Gamp, A

    2011-01-01

    We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  12. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  13. RESONANT CAVITY EXCITATION SYSTEM

    Science.gov (United States)

    Baker, W.R.; Kerns, Q.A.; Riedel, J.

    1959-01-13

    An apparatus is presented for exciting a cavity resonator with a minimum of difficulty and, more specifically describes a sub-exciter and an amplifier type pre-exciter for the high-frequency cxcitation of large cavities. Instead of applying full voltage to the main oscillator, a sub-excitation voltage is initially used to establish a base level of oscillation in the cavity. A portion of the cavity encrgy is coupled to the input of the pre-exciter where it is amplified and fed back into the cavity when the pre-exciter is energized. After the voltage in the cavity resonator has reached maximum value under excitation by the pre-exciter, full voltage is applied to the oscillator and the pre-exciter is tunned off. The cavity is then excited to the maximum high voltage value of radio frequency by the oscillator.

  14. Cavity turnover and equilibrium cavity densities in a cottonwood bottomland

    Science.gov (United States)

    Sedgwick, James A.; Knopf, Fritz L.

    1992-01-01

    A fundamental factor regulating the numbers of secondary cavity nesting (SCN) birds is the number of extant cavities available for nesting. The number of available cavities may be thought of as being in an approximate equilibrium maintained by a very rough balance between recruitment and loss of cavities. Based on estimates of cavity recruitment and loss, we ascertained equilibrium cavity densities in a mature plains cottonwood (Populus sargentii) bottomland along the South Platte River in northeastern Colorado. Annual cavity recruitment, derived from density estimates of primary cavity nesting (PCN) birds and cavity excavation rates, was estimated to be 71-86 new cavities excavated/100 ha. Of 180 active cavities of 11 species of cavity-nesting birds found in 1985 and 1986, 83 were no longer usable by 1990, giving an average instantaneous rate of cavity loss of r = -0.230. From these values of cavity recruitment and cavity loss, equilibrium cavity density along the South Platte is 238-289 cavities/100 ha. This range of equilibrium cavity density is only slightly above the minimum of 205 cavities/100 ha required by SCN's and suggests that cavity availability may be limiting SCN densities along the South Platte River. We submit that snag management alone does not adequately address SCN habitat needs, and that cavity management, expressed in terms of cavity turnover and cavity densities, may be more useful.

  15. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  16. Heat loss from an open cavity

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  17. SPS accelerating cavity

    CERN Multimedia

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  18. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  19. Cavity spin optodynamics

    CERN Document Server

    Brahms, N

    2010-01-01

    The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenonmena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent amplification and damping of spin, and the spin optodynamic squeezing of light.

  20. SPS accelerating cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  1. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  2. SPS RF Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X, 7505074.

  3. Large Grain Niobium Cavity R&D in Asia and the Future

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K; Furuta, F; Saeki, T; Inoue, H; Shim, J; Ahn, J; Kim, E S; Xu, Q; Zong, Z; Gao, J; Kneisel, P; Myneni, G R

    2007-09-01

    The status of the large grain niobium cavity R&D in Asia and the future scope are presented. Recently KEK has received CBMM and NingXia large grain niobium sheets through collaborations. KEK has fabricated 1.3 GHz single cell cavities using these materials and measured the cavity performance. Those results are presented in this paper.

  4. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  5. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  6. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  7. SPS accelerating cavity

    CERN Multimedia

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  8. Electronic warfare receivers and receiving systems

    CERN Document Server

    Poisel, Richard A

    2014-01-01

    Receivers systems are considered the core of electronic warfare (EW) intercept systems. Without them, the fundamental purpose of such systems is null and void. This book considers the major elements that make up receiver systems and the receivers that go in them.This resource provides system design engineers with techniques for design and development of EW receivers for modern modulations (spread spectrum) in addition to receivers for older, common modulation formats. Each major module in these receivers is considered in detail. Design information is included as well as performance tradeoffs o

  9. Analysis of mechanical fabrication experience with CEBAF`s production SRF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Mammosser, J.; Kneisel, P.; Benesch, J.

    1993-06-01

    CEBAF has received a total of 360 five-cell niobium cavities, the largest group of industrially fabricated superconducting cavities so far. An extensive data base exists on the fabrication, surface treatment, assembly and cavity performance parameters. Analysis of the mechanical features of the cavities includes the following: the spread in fabrication tolerances of the cells derived from field profiles of the ``as fabricated`` cavities and the ``as fabricated`` external Q-values of the fundamental power coupler compared to dimensional deviations. A comparison is made of the pressure sensitivity of cavities made of materials from different manufacturers between 760 torr (4.2 K) and 23 torr (2 K).

  10. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  11. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  12. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  13. Experimental investigation of cavity flows

    Energy Technology Data Exchange (ETDEWEB)

    Loeland, Tore

    1998-12-31

    This thesis uses LDV (Laser Doppler Velocimetry), PIV (Particle Image Velocimetry) and Laser Sheet flow Visualisation to study flow inside three different cavity configurations. For sloping cavities, the vortex structure inside the cavities is found to depend upon the flow direction past the cavity. The shape of the downstream corner is a key factor in destroying the boundary layer flow entering the cavity. The experimental results agree well with numerical simulations of the same geometrical configurations. The results of the investigations are used to find the influence of the cavity flow on the accuracy of the ultrasonic flowmeter. A method to compensate for the cavity velocities is suggested. It is found that the relative deviation caused by the cavity velocities depend linearly on the pipe flow. It appears that the flow inside the cavities should not be neglected as done in the draft for the ISO technical report on ultrasonic flowmeters. 58 refs., 147 figs., 2 tabs.

  14. Dusty plasma cavities: probe-induced and natural

    CERN Document Server

    Harris, B J; Hyde, T W

    2014-01-01

    A comprehensive exploration of regional dust evacuation in complex plasma crystals is presented. Voids created in 3D crystals on the International Space Station have provided a rich foundation for experiments, but cavities in dust crystals formed in ground-based experiments have not received as much attention. Inside a modified GEC RF cell, a powered vertical probe was used to clear the central area of a dust crystal, producing a cavity with high cylindrical symmetry. Cavities generated by three mechanisms are examined. First, repulsion of micrometer-sized particles by a negatively charged probe is investigated. A model of this effect developed for a DC plasma is modified and applied to explain new experimental data in RF plasma. Second, the formation of natural cavities is surveyed; a radial ion drag proposed to occur due to a curved sheath is considered in conjunction with thermophoresis and a flattened confinement potential above the center of the electrode. Finally, cavity formation unexpectedly occurs up...

  15. Benchmarking Microwave Cavity Dark Matter Searches using a Radioactive Source

    CERN Multimedia

    Caspers, F

    2014-01-01

    A radioactive source is proposed as a calibration device to verify the sensitivity of a microwave dark matter search experiment. The interaction of e.g., electrons travelling in an arbitrary direction and velocity through an electromagnetically “empty” microwave cavity can be calculated numerically. We give an estimation of the energy deposited by a charged particle into a particular mode. Numerical examples are given for beta emitters and two particular cases: interaction with a field free cavity and interaction with a cavity which already contains an electromagnetic field. Each particle delivers a certain amount of energy related to the modal R/Q value of the cavity. The transferred energy is a function of the particles trajectory and its velocity. It results in a resonant response of the cavity, which can be observed using a sensitive microwave receiver, provided that the deposited energy is significantly above the single photon threshold.

  16. Niobium superconducting cavity

    CERN Multimedia

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  17. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  18. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  19. Melatonin and oral cavity.

    Science.gov (United States)

    Cengiz, Murat İnanç; Cengiz, Seda; Wang, Hom-Lay

    2012-01-01

    While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  20. Melatonin and Oral Cavity

    Directory of Open Access Journals (Sweden)

    Murat İnanç Cengiz

    2012-01-01

    Full Text Available While initially the oral cavity was considered to be mainly a source of various bacteria, their toxins and antigens, recent studies showed that it may also be a location of oxidative stress and periodontal inflammation. Accordingly, this paper focuses on the involvement of melatonin in oxidative stress diseases of oral cavity as well as on potential therapeutic implications of melatonin in dental disorders. Melatonin has immunomodulatory and antioxidant activities, stimulates the proliferation of collagen and osseous tissue, and acts as a protector against cellular degeneration associated with aging and toxin exposure. Arising out of its antioxidant actions, melatonin protects against inflammatory processes and cellular damage caused by the toxic derivates of oxygen. As a result of these actions, melatonin may be useful as a coadjuvant in the treatment of certain conditions of the oral cavity. However, the most important effect of melatonin seems to result from its potent antioxidant, immunomodulatory, protective, and anticancer properties. Thus, melatonin could be used therapeutically for instance, locally, in the oral cavity damage of mechanical, bacterial, fungal, or viral origin, in postsurgical wounds caused by tooth extractions and other oral surgeries. Additionally, it can help bone formation in various autoimmunological disorders such as Sjorgen syndrome, in periodontal diseases, in toxic effects of dental materials, in dental implants, and in oral cancers.

  1. Finemet cavity impedance studies

    CERN Document Server

    Persichelli, S; Migliorati, M; Salvant, B

    2013-01-01

    The aim of the study is to evaluate the impedance of the Finemet kicker cavity to be installed in the PS straight section 02 during LS1, under realistic assumptions of bunch length. Time domain simulations with CST Particle Studio have been performed in order to get the impedance of the cavity and make a comparison with the longitudinal impedance measured for a single cell prototype. The study has been performed on simplified 3D geometries imported from a mechanical CATIA drawing, assuming that the simplications have small impact on the nal results. Simulations confirmed that the longitudinal impedance observed with measurements can be excited by bunches circulating in the PS. In the six-cells Finemet cavity, PS bunches circulating in the center can excite a longitudinal impedance, the real part of which has a maximum of 2 kOhm at 4 MHz. This mode does not seem to have any transverse component. All the eigenmodes of the cavity are strongly damped by the Finemet rings: we predict to have no issues regarding tr...

  2. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased choic

  3. Filling a Conical Cavity

    Science.gov (United States)

    Nye, Kyle; Eslam-Panah, Azar

    2016-11-01

    Root canal treatment involves the removal of infected tissue inside the tooth's canal system and filling the space with a dense sealing agent to prevent further infection. A good root canal treatment happens when the canals are filled homogeneously and tightly down to the root apex. Such a tooth is able to provide valuable service for an entire lifetime. However, there are some examples of poorly performed root canals where the anterior and posterior routes are not filled completely. Small packets of air can be trapped in narrow access cavities when restoring with resin composites. Such teeth can cause trouble even after many years and lead the conditions like acute bone infection or abscesses. In this study, the filling of dead-end conical cavities with various liquids is reported. The first case studies included conical cavity models with different angles and lengths to visualize the filling process. In this investigation, the rate and completeness at which a variety of liquids fill the cavity were observed to find ideal conditions for the process. Then, a 3D printed model of the scaled representation of a molar with prepared post spaces was used to simulate the root canal treatment. The results of this study can be used to gain a better understanding of the restoration for endodontically treated teeth.

  4. Teleportation of Cavity Field States via Cavity QED

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss two schemes of teleportation of cavity field states. In the first scheme we consider cavities prepared in a coherent state and in the second scheme we consider cavities prepared in a superposition of zero and one Fock states.

  5. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  6. Colloquium: cavity optomechanics

    CERN Multimedia

    2011-01-01

    Monday 14 November 2011, 17:00 Ecole de Physique, Auditoire Stueckelberg Université de Genève Cavity optomechanics: controlling micro mechanical oscillators with laser light Prof. Tobias Kippenberg EPFL, Lausanne Laser light can be used to cool and to control trapped ions, atoms and molecules at the quantum level. This has lead to spectacular advances such as the most precise atomic clocks. An outstanding frontier is the control with lasers of nano- and micro-mechancial systems. Recent advances in cavity optomechanics have allowed such elementary control for the first time, enabling mechanical systems to be ground state cooled leading to readout with quantum limited sensitivity and permitting to explore new device concepts resulting from radiation pressure.  

  7. Access cavity preparation.

    Science.gov (United States)

    Adams, N; Tomson, P L

    2014-03-01

    Each stage of root canal treatment should be carried out to the highest possible standard. The access cavity is arguably the most important technical stage, as subsequent preparation of the root canal(s) can be severely comprised if this is not well executed. Inadequate access can lead to canals being left untreated, poorly disinfected, difficult to shape and obturate, and may ultimately lead to the failure of the treatment. This paper highlights common features in root canal anatomy and outlines basic principles for locating root canals and producing a good access cavity. It also explores each phase of the preparation in detail and offers suggestions of instruments that have been specifically designed to overcome potential difficulties in the process. Good access design and preparation will result in an operative environment which will facilitate cleaning, shaping and obturation of the root canal system in order to maximise success.

  8. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  9. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  10. Bioengineering in the oral cavity: our experience

    Directory of Open Access Journals (Sweden)

    Catalfamo L

    2013-10-01

    Full Text Available L Catalfamo,1 E Belli,2 C Nava,1 E Mici,1 A Calvo,1 B D'Alessandro,1 FS De Ponte1 1Unit of Maxillofacial Surgery, University of Messina, Azienda Ospedaliera Universitaria, Policlinico G Martino, Messina, Italy; 2Unit of Maxillofacial Surgery, University Rome Sapienza, Azienda Ospedaliera Sant Andrea, Rome, Italy Background: To date, there are no studies reported in the literature on the possible use of bovine collagen, oxidized regenerated cellulose, or synthetic hyaluronic acid medications in the oral cavity. The aim of this paper is to report the use of bovine collagen, oxidized regenerated cellulose, and synthetic hyaluronic acid medications to improve wound healing in the oral cavity by stimulating granulomatous tissue. Methods: From 2007 to 2011, 80 patients (median age 67 years suffering from oral mucosal lesions participated in this double-blind study. The patients were divided into two groups, each consisting of 40 patients. One group received conventional medications, while the other group of patients were treated with the advanced medications. Results: Advanced medications allowed re-epithelialization of the wound margin in 2–20 days, whereas patients receiving conventional medication showed a median healing duration of 45 days. Conclusion: The results of this study demonstrate that treating oral mucosal wounds with advanced medication has an advantage with regard to wound healing time, allowing patients to have a rapid, functional, and esthetic recovery. Keywords: bioengineering, oral cavity, mucosal recovery

  11. Cavity enhanced atomic magnetometry

    OpenAIRE

    Herbert Crepaz; Li Yuan Ley; Rainer Dumke

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage...

  12. Cavity QED by the Numbers

    Science.gov (United States)

    Kimble, H. J.; Boca, A.; Boozer, A. D.; Bowen, W. P.; Buck, J. R.; Chou, C. W.; Duan, L.-M.; Kuzmich, A.; McKeever, J.

    2004-12-01

    Observations of cooling and trapping of N = 1,2,3,... atoms inside a small optical cavity are described. The atom-cavity system operates in a regime of strong coupling for which single photons are sufficient to saturate the atomic response. New theoretical protocols for the efficient engineering of multi-atom entanglement within the setting of cavity QED are described. By trapping a single atom within the cavity mode, a one-atom laser is experimentally realized in a regime of strong coupling. Beyond the setting of cavity QED, quantum correlations have been observed for photon pairs emitted from an atomic ensemble and with a programmable time offset.

  13. Crab Cavities for Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; /Daresbury; Shulte, D.; /CERN; Jones, Roger M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; /Fermilab; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  14. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  15. [Oral cavity pathology by renal failure].

    Science.gov (United States)

    Maĭborodin, I V; Minikeev, I M; Kim, S A; Ragimova, T M

    2014-01-01

    The analysis of the scientific literature devoted to organ and tissue changes of oral cavity at the chronic renal insufficiency (CRI)is made. The number of patients in an end-stage of CRI constantly increases and patients receiving renal replacement therapy including hemodialysis, peritoneal dialysis or renal transplantation will comprise an enlarging segment of the dental patient population. Owing to CRI and its treatment there is a set of changes of teeth and oral cavity fabrics which remain even in a end-stage. Renal replacement therapy can affect periodontal tissues including gingival hyperplasia in immune suppressed renal transplantation patients and increased levels of bacterial contamination, gingival inflammation, formation of calculus, and possible increased prevalence and severity of destructive periodontal diseases. Besides, the presence of undiagnosed periodontitis may have significant effects on the medical management of the patients in end-stage of CRI.

  16. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  17. ISR RF cavities

    CERN Multimedia

    1983-01-01

    In each ISR ring the radiofrequency cavities were installed in one 9 m long straight section. The RF system of the ISR had the main purpose to stack buckets of particles (most of the time protons)coming from the CPS and also to accelerate the stacked beam. The installed RF power per ring was 18 kW giving a peak accelerating voltage of 20 kV. The system had a very fine regulation feature allowing to lower the voltage down to 75 V in a smooth and well controlled fashion.

  18. Cavity Optomechanical Magnetometer

    CERN Document Server

    Forstner, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H

    2011-01-01

    A cavity optomechanical magnetometer is demonstrated where the magnetic field induced expansion of a magnetostrictive material is transduced onto the physical structure of a highly compliant optical microresonator. The resulting motion is read out optically with ultra-high sensitivity. Detecting the magnetostrictive deformation of Terfenol-D with a toroidal whispering gallery mode (TWGM) resonator a peak sensitivity of 400 nT/Hz^.5 was achieved with theoretical modelling predicting that sensitivities of up to 500 fT/Hz^.5 may be possible. This chip-based magnetometer combines high-sensitivity and large dynamic range with small size and room temperature operation.

  19. Cavity optomechanical magnetometer.

    Science.gov (United States)

    Forstner, S; Prams, S; Knittel, J; van Ooijen, E D; Swaim, J D; Harris, G I; Szorkovszky, A; Bowen, W P; Rubinsztein-Dunlop, H

    2012-03-23

    A cavity optomechanical magnetometer is demonstrated. The magnetic-field-induced expansion of a magnetostrictive material is resonantly transduced onto the physical structure of a highly compliant optical microresonator and read out optically with ultrahigh sensitivity. A peak magnetic field sensitivity of 400  nT  Hz(-1/2) is achieved, with theoretical modeling predicting the possibility of sensitivities below 1  pT  Hz(-1/2). This chip-based magnetometer combines high sensitivity and large dynamic range with small size and room temperature operation.

  20. Applications of cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Metcalfe, Michael [Booz Allen Hamilton, 3811 Fairfax Drive, Arlington, Virginia 22203 (United States)

    2014-09-15

    Cavity-optomechanics” aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  1. Applications of cavity optomechanics

    Science.gov (United States)

    Metcalfe, Michael

    2014-09-01

    "Cavity-optomechanics" aims to study the quantum properties of mechanical systems. A common strategy implemented in order to achieve this goal couples a high finesse photonic cavity to a high quality factor mechanical resonator. Then, using feedback forces such as radiation pressure, one can cool the mechanical mode of interest into the quantum ground state and create non-classical states of mechanical motion. On the path towards achieving these goals, many near-term applications of this field have emerged. After briefly introducing optomechanical systems and describing the current state-of-the-art experimental results, this article summarizes some of the more exciting practical applications such as ultra-sensitive, high bandwidth accelerometers and force sensors, low phase noise x-band integrated microwave oscillators and optical signal processing such as optical delay-lines, wavelength converters, and tunable optical filters. In this rapidly evolving field, new applications are emerging at a fast pace, but this article concentrates on the aforementioned lab-based applications as these are the most promising avenues for near-term real-world applications. New basic science applications are also becoming apparent such as the generation of squeezed light, testing gravitational theories and for providing a link between disparate quantum systems.

  2. Low complexity MIMO receivers

    CERN Document Server

    Bai, Lin; Yu, Quan

    2014-01-01

    Multiple-input multiple-output (MIMO) systems can increase the spectral efficiency in wireless communications. However, the interference becomes the major drawback that leads to high computational complexity at both transmitter and receiver. In particular, the complexity of MIMO receivers can be prohibitively high. As an efficient mathematical tool to devise low complexity approaches that mitigate the interference in MIMO systems, lattice reduction (LR) has been widely studied and employed over the last decade. The co-authors of this book are world's leading experts on MIMO receivers, and here they share the key findings of their research over years. They detail a range of key techniques for receiver design as multiple transmitted and received signals are available. The authors first introduce the principle of signal detection and the LR in mathematical aspects. They then move on to discuss the use of LR in low complexity MIMO receiver design with respect to different aspects, including uncoded MIMO detection...

  3. JLEIC SRF cavity RF Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The initial design of a low higher order modes (HOM) impedance superconducting RF (SRF) cavity is presented in this paper. The design of this SRF cavity is for the proposed Jefferson Lab Electron Ion Collider (JLEIC). The electron ring of JLEIC will operate with electrons of 3 to 10 GeV energy. The ion ring of JLEIC will operate with protons of up to 100 GeV energy. The bunch lengths in both rings are ~12 mm (RMS). In order to maintain the short bunch length in the ion ring, SRF cavities are adopted to provide large enough gradient. In the first phase of JLEIC, the PEP II RF cavities will be reused in the electron ring to lower the initial cost. The frequency of the SRF cavities is chosen to be the second harmonic of PEP II cavities, 952.6 MHz. In the second phase of JLEIC, the same frequency SRF cavities may replace the normal conducting PEP II cavities to achieve higher luminosity at high energy. At low energies, the synchro-tron radiation damping effect is quite weak, to avoid the coupled bunch instability caused by the intense closely-spaced electron bunches, low HOM impedance of the SRF cavities combined with longitudinal feedback sys-tem will be necessary.

  4. Nanofriction in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.

  5. Cavity coalescence in superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  6. Delphi Accounts Receivable Module -

    Data.gov (United States)

    Department of Transportation — Delphi accounts receivable module contains the following data elements, but are not limited to customer information, cash receipts, line of accounting details, bill...

  7. A Scanning Cavity Microscope

    CERN Document Server

    Mader, Matthias; Hänsch, Theodor W; Hunger, David

    2014-01-01

    Imaging of the optical properties of individual nanosystems beyond fluorescence can provide a wealth of information. However, the minute signals for absorption and dispersion are challenging to observe, and only specialized techniques requiring sophisticated noise rejection are available. Here we use signal enhancement in a scanning optical microcavity to demonstrate ultra-sensitive imaging. Harnessing multiple interactions of probe light with a sample within an optical resonator, we achieve a 1700-fold signal enhancement compared to diffraction-limited microscopy. We demonstrate quantitative imaging of the extinction cross section of gold nanoparticles with a sensitivity below 1 nm2, we show a method to improve spatial resolution potentially below the diffraction limit by using higher order cavity modes, and we present measurements of the birefringence and extinction contrast of gold nanorods. The demonstrated simultaneous enhancement of absorptive and dispersive signals promises intriguing potential for opt...

  8. Shock induced cavity collapse

    Science.gov (United States)

    Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas

    2016-10-01

    Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.

  9. Frequency Tuning for a DQW Crab Cavity

    CERN Document Server

    Verdú-Andrés, Silvia; Ben-Zvi, Ilan; Calaga, Rama; Capatina, Ofelia; Leuxe, Raphael; Skaritka, John; Wu, Qiong; Xiao, Binping; Zanoni, Carlo

    2016-01-01

    The nominal operating frequency for the HL-LHC crab cavities is 400.79 MHz within a bandwidth of ±60kHz. Attaining the required cavity tune implies a good understanding of all the processes that influence the cavity frequency from the moment when the cavity parts are being fabricated until the cavity is installed and under operation. Different tuning options will be available for the DQW crab cavity of LHC. This paper details the different steps in the cavity fabrication and preparation that may introduce a shift in the cavity frequency and introduces the different tuning methods foreseen to bring the cavity frequency to meet the specifications.

  10. Vertebrate pressure-gradient receivers.

    Science.gov (United States)

    Christensen-Dalsgaard, Jakob

    2011-03-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and strongly dependent on interaural transmission attenuation. Even though the tympanic middle ear has originated independently in the major tetrapod groups, in each group the ancestral condition probably was that the two middle ears were exposed in the mouth cavity with relatively high interaural transmission. Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural transmission and functionally isolated pressure receiver ears in the mammals. Since some of the binaural interaction already takes place at the eardrum in animals with strongly coupled ears, producing enhanced interaural time and level differences, the subsequent neural processing may be simpler. In robotic simulations of lizards, simple binaural subtraction (EI cells, found in brainstem nuclei of both frogs and lizards) produces strongly lateralized responses that are sufficient for steering the animal robustly to sound sources.

  11. LEP radio-frequency cavity

    CERN Multimedia

    1991-01-01

    One of the copper radio-frequency accelerating cavities installed for the first phase of LEP (1989-1995). Bunches of electrons and positrons circulated in LEP in opposite directions and were accelerated in eight different sets of 16 cavities (situated on either side of the four experiments), gaining 400 million volts of accelerating power per turn.

  12. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  13. Quantum entanglement purification in cavities

    CERN Document Server

    Romero, J L; Saavedra, C; Retamal, J C

    2002-01-01

    A physical implementation of an entanglement purification protocol is studied using a cavity quantum electrodynamic based proposal, where, the quantum information is stored in quantum field sates inside cavities. Also a procedure is given for quantifying the degree of entanglement between quantum fields. (Author)

  14. Superconducting cavity model for LEP

    CERN Multimedia

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  15. Evaluation of thermal cycling creep-fatigue damage for a molten salt receiver

    Science.gov (United States)

    Grossman, James W.; Jones, Wendell B.; Veers, Paul S.

    1990-01-01

    A molten salt cavity receiver was solar tested at Sandia National Laboratories during a year-long test program. Upon completion of testing, an analysis was performed to determine the effect of thermal cycling on the receiver. The results indicate a substantial fatigue damage accumulation for the receiver when the relatively short test time is considered. This paper describes the methodology used to analyze the cycling, the results as they pertain to this receiver, and how they affect future receiver design.

  16. Facet Reflection Coefficient of Phase-locked Diode Laser Array in an External Cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C0). Considering the fact that|C0/S| should be larger than unity if the external cavity is effective,and|C1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.

  17. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer

    Science.gov (United States)

    Shahmohammadi, Mohsen; Sample, Alanson P.

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power. PMID:28199321

  18. Quasistatic Cavity Resonance for Ubiquitous Wireless Power Transfer.

    Science.gov (United States)

    Chabalko, Matthew J; Shahmohammadi, Mohsen; Sample, Alanson P

    2017-01-01

    Wireless power delivery has the potential to seamlessly power our electrical devices as easily as data is transmitted through the air. However, existing solutions are limited to near contact distances and do not provide the geometric freedom to enable automatic and un-aided charging. We introduce quasistatic cavity resonance (QSCR), which can enable purpose-built structures, such as cabinets, rooms, and warehouses, to generate quasistatic magnetic fields that safely deliver kilowatts of power to mobile receivers contained nearly anywhere within. A theoretical model of a quasistatic cavity resonator is derived, and field distributions along with power transfer efficiency are validated against measured results. An experimental demonstration shows that a 54 m3 QSCR room can deliver power to small coil receivers in nearly any position with 40% to 95% efficiency. Finally, a detailed safety analysis shows that up to 1900 watts can be transmitted to a coil receiver enabling safe and ubiquitous wireless power.

  19. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  20. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-01-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  1. Niobium LEP 2 accelerating cavities

    CERN Multimedia

    An accelerating cavity from LEP. This could be cut open to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities were used in an upgrade of the LEP accelerator to double the energy of the particle beams.

  2. Vibration insensitive optical ring cavity

    Institute of Scientific and Technical Information of China (English)

    Miao Jin; Jiang Yan-Yi; Fang Su; Bi Zhi-Yi; Ma Long-Sheng

    2009-01-01

    The mounting configuration of an optical ring cavity is optimized for vibration insensitivity by finite element analysis. A minimum response to vertical accelerations is found by simulations made for different supporting positions.

  3. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  4. Imaging of the oral cavity.

    Science.gov (United States)

    Meesa, Indu Rekha; Srinivasan, Ashok

    2015-01-01

    The oral cavity is a challenging area in head and neck imaging because of its complex anatomy and the numerous pathophysiologies that involve its contents. This challenge is further compounded by the ubiquitous artifacts that arise from the dental amalgam, which compromise image quality. In this article, the anatomy of the oral cavity is discussed in brief, followed by a description of the imaging technique and some common pathologic abnormalities.

  5. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  6. TESLA superconducting RF cavity development

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, K. [Fermi National Accelerator Lab., Batavia, IL (United States); TESLA Collaboration

    1995-05-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.).

  7. An Elementary Quantum Network of Single Atoms in Optical Cavities

    CERN Document Server

    Ritter, Stephan; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Jörg; Rempe, Gerhard

    2012-01-01

    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way: by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in independent laboratories. The created nonlocal state is manipulated by local qubit rotation. This efficient cavity-based approach to quantum networking is particularly promising as it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applicati...

  8. Zero-power receiver

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W.

    2016-10-04

    An unpowered signal receiver and a method for signal reception detects and responds to very weak signals using pyroelectric devices as impedance transformers and/or demodulators. In some embodiments, surface acoustic wave devices (SAW) are also used. Illustrative embodiments include satellite and long distance terrestrial communications applications.

  9. Polishing Difficult-To-Reach Cavities

    Science.gov (United States)

    Malinzak, R. Michael; Booth, Gary N.

    1990-01-01

    Springy abrasive tool used to finish surfaces of narrow cavities made by electrical-discharge machining. Robot arm moves vibrator around perimeters of cavities, polishing walls of cavities as it does so. Tool needed because such cavities inaccessible or at least difficult to reach with most surface-finishing tools.

  10. 3D cavity detection technique and its application based on cavity auto scanning laser system

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ling; LI Xi-bing; LI Fa-ben; ZHAO Guo-yan; QIN Yu-hui

    2008-01-01

    Ground constructions and mines are severely threatened by underground cavities especially those unsafe or inaccessible ones. Safe and precise cavity detection is vital for reasonable cavity evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.

  11. Fabrication of elliptical SRF cavities

    Science.gov (United States)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  12. Digital Receiver Phase Meter

    Science.gov (United States)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  13. RRR Characteristics for SRF Cavities

    CERN Document Server

    Jung, Yoochul; Joung, Mijoung

    2015-01-01

    The first heavy ion accelerator is being constructed by the rare isotope science project (RISP) launched by the Institute of Basic Science (IBS) in South Korea. Four different types of superconducting cavities were designed, and prototypes were fabricated such as a quarter wave resonator (QWR), a half wave resonator (HWR) and a single spoke resonator (SSR). One of the critical factors determining performances of the superconducting cavities is a residual resistance ratio (RRR). The RRR values essentially represent how much niobium is pure and how fast niobium can transmit heat as well. In general, the RRR degrades during electron beam welding due to the impurity incorporation. Thus it is important to maintain RRR above a certain value at which a niobium cavity shows target performance. In this study, RRR degradation related with electron beam welding conditions, for example, welding power, welding speed, and vacuum level will be discussed.

  14. Pressure difference receiving ears

    DEFF Research Database (Denmark)

    Michelsen, Axel; Larsen, Ole Næsbye

    2007-01-01

    of such pressure difference receiving ears have been hampered by lack of suitable experimental methods. In this review, we review the methods for collecting reliable data on the binaural directional cues at the eardrums, on how the eardrum vibrations depend on the direction of sound incidence, and on how sound...... waves behave in the air spaces leading to the interior surfaces of eardrums. A linear mathematical model with well-defined inputs is used for exploring how the directionality varies with the binaural directional cues and the amplitude and phase gain of the sound pathway to the inner surface...

  15. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    K. Heremans

    2005-08-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  16. A micropillar for cavity optomechanics

    CERN Document Server

    Kuhn, A G; Ducloux, O; Chartier, C; Traon, O Le; Briant, T; Cohadon, P -F; Heidmann, A; Michel, C; Pinard, L; Flaminio, R

    2011-01-01

    We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-$\\mu$m diameter low-loss dielectric mirror on top of the pillar and are planning to use this micromirror as part of a high-finesse Fabry-Perot cavity, to laser cool the resonator down to its quantum ground state and to monitor its quantum position fluctuations by quantum-limited optical interferometry.

  17. Entanglement swapping between atom and cavity and generation of entangled state of cavity fields

    Institute of Scientific and Technical Information of China (English)

    Chen Ai-Xi; Deng Li

    2007-01-01

    This paper proposes a scheme where entanglement swapping between atom and cavity can be realized. A-type three-level atoms interacting resonantly with cavity field are considered. By detecting atom and cavity field, it realizes entanglement swapping between atom and cavity. It uses the technique of entanglement swapping to generate an entangled state of two cavity fields by measuring on atoms. It discusses the experimental feasibility of the proposed scheme and application of entangled state of cavity fields.

  18. Techno-economic assessment of a hybrid solar receiver and combustor

    Science.gov (United States)

    Lim, Jin Han; Nathan, Graham; Dally, Bassam; Chinnici, Alfonso

    2016-05-01

    A techno-economic analysis is performed to compare two different configurations of hybrid solar thermal systems with fossil fuel backup to provide continuous electricity output. The assessment compares a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device with a reference conventional solar thermal system using a regular solar cavity receiver with a backup boiler, termed the Solar Gas Hybrid (SGH). The benefits of the integration is assessed by varying the size of the storage capacity and heliostat field while maintaining the same overall thermal input to the power block.

  19. On cavity modification of stimulated Raman scattering

    CERN Document Server

    Matsko, A B; Letargat, R J; Ilchenko, V S; Maleki, L

    2003-01-01

    We study theoretically stimulated Raman scattering (SRS) in a nonlinear dielectric microcavity and compare SRS thresholds for the cavity and the bulk material it is made of. We show that cavity SRS enhancement results solely from the intensity build up in the cavity and from the differences of the SRS dynamics in free and confined space. There is no significant modification of the Raman gain due to cavity QED effects. We show that the SRS threshold depends significantly on the nature of the dominating cavity decay as well as on the coupling technique with the cavity used for SRS measurements.

  20. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...

  1. Sterility of the uterine cavity

    DEFF Research Database (Denmark)

    Møller, Birger R.; Kristiansen, Frank V.; Thorsen, Poul;

    1995-01-01

    from the same sites. Nearly a quarter of all the patients harbored one or more microorganisms in the uterus, mostly Gardnerella vaginalis, Enterobacter and Streptococcus agalactiae. We found that in a significant number of cases, the uterine cavity is colonized with potentially pathogenic organisms...

  2. Droplet based cavities and lasers

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Kristensen, Anders; Mortensen, Asger

    2009-01-01

    The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also d...

  3. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  4. A STUDY OF FERRITE CAVITY.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2002-04-19

    This note addresses the general concerns for the design of a ferrite cavity. The parameters are specified for the RCMS, for which the frequency ramp is in the range of 1.27 MHz to 6.44 MHz, or a ratio of 1:5.

  5. A 200 MHz prebunching cavity

    CERN Multimedia

    1977-01-01

    This cavity was installed in the PS ring and proved very efficient in providing a modulation on the PS beam before it is injected into the SPS machine. Moreover it allowed longitudinal instabilities studies at high intensities. Roberto Cappi stands on the left.

  6. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  7. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  8. Teleportation of a two-atom entangled state using a single EPR pair in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Li Ke; Zhang Shou

    2006-01-01

    We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.

  9. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  10. 21 CFR 872.3260 - Cavity varnish.

    Science.gov (United States)

    2010-04-01

    ... DENTAL DEVICES Prosthetic Devices § 872.3260 Cavity varnish. (a) Identification. Cavity varnish is a... restorative materials. The device is intended to prevent penetration of restorative materials, such as...

  11. GNSS Software Receiver for UAVs

    DEFF Research Database (Denmark)

    Olesen, Daniel Madelung; Jakobsen, Jakob; von Benzon, Hans-Henrik

    2016-01-01

    This paper describes the current activities of GPS/GNSS Software receiver development at DTU Space. GNSS Software receivers have received a great deal of attention in the last two decades and numerous implementations have already been presented. DTU Space has just recently started development of ...... of our own GNSS software-receiver targeted for mini UAV applications, and we will in in this paper present our current progress and briefly discuss the benefits of Software Receivers in relation to our research interests....

  12. CERN apprentice receives award

    CERN Multimedia

    2008-01-01

    Another CERN apprentice has received an award for the quality of his work. Stéphane Küng (centre), at the UIG ceremony last November, presided over by Geneva State Councillor Pierre-François Unger, Head of the Department of Economics and Health. Electronics technician Stéphane Küng was honoured in November by the Social Foundation of the Union Industrielle Genevoise (UIG) as one of Geneva’s eight best apprentices in the field of mechatronics. The 20-year-old Genevan obtained his Federal apprentice’s certificate (Certificat fédéral de capacité - CFC) in June 2007, achieving excellent marks in his written tests at the Centre d’Enseignement Professionnel Technique et Artisanal (CEPTA). Like more than 200 youngsters before him, Stéphane Küng spent part of his four-year sandwich course working at CERN, where he followed many practical training courses and gained valuable hands-on experience in various technical groups and labs. "It’ always very gr...

  13. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. Ian Wilso seems to hold it in his hands. The storage cavities had 4 portholes, 1 each for: RF feed; tuning; connection to the accelerating cavity; vacuum pump. The final storage cavities were larger, to suit the lower LEP accelerating frequency of 352.2 MHz. See also 8002294, 8006510X, 8109346, 8407619X, and Annual Report 1980, p.115.

  14. Theory and technology for superconducting cavities

    CERN Document Server

    Lengeler, Herbert

    1993-01-01

    The course will address Physicist and Engineers who are newcomers in the field of accelerators and accelerating cavities. The elements of RF-Superconductivity will be presented with special relevance to accelerating cavities. The present ststus of achievable accelerating fields and RF losses will be given and their link to the special technologies for cavity fabrication and surface treatments will be stressed. Cavity auxiliaries like main couplers, higher order mode couplers and frequency tuners will be described.

  15. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  16. Power coupler for the ILC crab cavity

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Dexter, A.; Jenkins, R.; /Lancaster U.; Beard, C.; Goudket, P.; McIntosh, P.A.; /Daresbury; Bellantoni, Leo; /Fermilab

    2007-06-01

    The ILC crab cavity will require the design of an appropriate power coupler. The beam-loading in dipole mode cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

  17. Digital Cavities and Their Potential Applications

    CERN Document Server

    Karki, Khadga; Widom, Julia R; Marcus, Andrew H; Pullerits, Tonu

    2013-01-01

    The concept of a digital cavity is presented. The functionality of a tunable radio-frequency/microwave cavity with unrestricted Q-factor is implemented. The theoretical aspects of the cavity and its potential applications in high resolution spectroscopy and synchronization of clocks together with examples in signal processing and data acquisition are discussed.

  18. Cavity Voltage Phase Modulation MD

    CERN Document Server

    Mastoridis, Themistoklis; Molendijk, John; Timko, Helga; CERN. Geneva. ATS Department

    2016-01-01

    The LHC RF/LLRF system is currently configured for extremely stable RF voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal beam current since the demanded power would exceed the peak klystron power and lead to saturation. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the cavity phase modulation by the beam will not be corrected (transient beam loading), but the strong RF feedback and One-Turn Delay feedback will still be active for loop and beam stability in physics. To achieve this, the voltage set point will be adapted for each bunch. The goal of this MD was to test a new algorithm that would adjust the voltage set point to achieve the cavity phase modulation that would minimize klystron forward power.

  19. A micropillar for cavity optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Aurélien; Neuhaus, Leonhard; Deléglise, Samuel; Briant, Tristan; Cohadon, Pierre-François; Heidmann, Antoine [Laboratoire Kastler Brossel, UPMC-ENS-CNRS, Paris (France); Van Brackel, Emmanuel [Département de Physique, ENS, Paris (France); Chartier, Claude; Ducloux, Olivier; Le Traon, Olivier [Département Mesures Physiques, ONERA, Châtillon (France); Michel, Christophe; Pinard, Laurent; Flaminio, Raffaele [Laboratoire des Matériaux Avancés, IN2P3-CNRS, Lyon (France)

    2014-12-04

    Demonstrating the quantum ground state of a macroscopic mechanical object is a major experimental challenge in physics, at the origin of the rapid emergence of cavity optomechanics. We have developed a new generation of optomechanical devices, based on a microgram quartz micropillar with a very high mechanical quality factor. The structure is used as end mirror in a Fabry-Perot cavity with a high optical finesse, leading to ultra-sensitive interferometric measurement of the resonator displacement. We expect to reach the ground state of this optomechanical resonator by combining cryogenic cooling in a dilution fridge at 30 mK and radiation-pressure cooling. We have already carried out a quantum-limited measurement of the micropillar thermal noise at low temperature.

  20. Dissipative structures in optomechanical cavities

    Science.gov (United States)

    Ruiz-Rivas, Joaquín; Navarrete-Benlloch, Carlos; Patera, Giuseppe; Roldán, Eugenio; de Valcárcel, Germán J.

    2016-03-01

    Motivated by the increasing interest in the properties of multimode optomechanical devices, here we study a system in which a driven longitudinal mode of a large-area optical cavity is dispersively coupled to a deformable mechanical element. Two different models naturally appear in such scenario, for which we predict the formation of periodic patterns, localized structures (cavity solitons), and domain walls, among other complex nonlinear phenomena. Further, we propose a realistic design based on intracavity membranes where our models can be studied experimentally. Apart from its relevance to the field of nonlinear optics, the results put forward here are a necessary step towards understanding the quantum properties of optomechanical systems in the multimode regime of both the optical and the mechanical degrees of freedom.

  1. Retention proposal in complex cavities.

    Directory of Open Access Journals (Sweden)

    Pedro Alvarez Rodríguez

    2003-12-01

    Full Text Available Background: Dental Operatory is the main structure in which Odontology lies. It is not an easy discipline that gives enjoyable results with little effort due to the difficulties that a correct reconstruction of a destroyed dental element offers.The frequency with which pulpar injury occurs while anchoring additional retainers in complex cavities, the technical difficulties the lack of these devices cause and the need to simplify dental procedures lead this study to show the advantages to substitute additional retainers for a retainer surcus. Method: An observational descriptive study was applied to 53 patients(42% of the universe , sample which was selected by means of a simple randomized sample . From a proximal-occlusal cavity, the preparations were extended in a box-like shape towards the bucal or lingual region and the additional retainers were substituted for a surcus which was performed in the gingival wall of the preparation. Calcium Hydroxide of rapid dryness was used as a cavity cover and Policarboxilate cement as a base; then the amalgam restoration was performed. The number of restorations were studied taking into account the patient´s age and the failures due to fractures of amalgam, loss of vitality and periapical changes were assessed taking into consideration the patient´s age and a one- year follow up. Results: Most of the amalgam restorations were performed in patients aged from 35 to 59 years and the relative frequencies due to fractures of amalgam, loss of vitality and periapical changes were very low. Conclusion: The substitution of additional retainers for a retainer surcus in complex cavities of vital molars showed to be advantageous because it guarantees a less degree of pulpar damage and less pulpar damage.

  2. Angioleiomyoma of the Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Arruda, Milena Moreira

    2014-01-01

    Full Text Available Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis.

  3. Angioleiomyoma of the Nasal Cavity

    Science.gov (United States)

    Arruda, Milena Moreira; Monteiro, Daniela Yasbek; Fernandes, Atilio Maximino; Menegatti, Vanessa; Thomazzi, Emerson; Hubner, Ricardo Arthur; Lima, Luiz Guilherme Cernaglia Aureliano de

    2014-01-01

    Introduction Vascular leiomyoma of the nasal cavity is an extremely rare tumor that represents less than 1% of all vascular leiomyomas. It is more prevalent in women between the fourth and sixth decades, reaching primarily the inferior nasal turbinates. Objectives Reporting and assisting the systematization of more accurate diagnostic methods in clinical and complementary investigation of vascular leiomyoma in the nasal cavity. Resumed Report We present the case of a 49-year-old woman diagnosed with vascular leiomyoma in the nasal cavity, which manifested mainly with nasal obstruction. During investigation, computer tomography was not diagnostic, the cytologic study was not conclusive, and according to the biopsy, it was a squamous papilloma. Conclusion We suggest that the technical difficulty in obtaining an adequate amount of material for preoperative biopsy, associated with the topography of the lesion in the vestibular nasal region, may have contributed to changing the postoperative diagnosis. Thus, pathologic study of the surgical fragment is the more accurate method for diagnosis. PMID:25992133

  4. Optomechanic interactions in phoxonic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Djafari-Rouhani, Bahram; Oudich, Mourad; Pennec, Yan [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); El-Jallal, Said [Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, UFR de physique, Université Lille1, Cité Scientifique, 59652, Villeneuve d’Ascq (France); Physique du Rayonnement et de l’Interaction Laser Matière, Faculté des sciences, Université de Moulay Ismail, Meknès (Morocco)

    2014-12-15

    Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips) phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  5. Optomechanic interactions in phoxonic cavities

    Directory of Open Access Journals (Sweden)

    Bahram Djafari-Rouhani

    2014-12-01

    Full Text Available Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  6. Differential cavity mode spectroscopy: A new cavity enhanced technique for the detection of weak transitions

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Glenn de [Centre for Gravitational Physics, Faculty of Science, The Australian National University, Canberra ACT 0200 (Australia)], E-mail: glenn.devine@jpl.nasa.gov; McClelland, David E.; Gray, Malcolm B. [Centre for Gravitational Physics, Faculty of Science, The Australian National University, Canberra ACT 0200 (Australia)

    2008-06-16

    We present a new cavity enhanced, continuous wave spectroscopic technique for the detection of weak atomic and molecular transitions. Differential Cavity Mode Spectroscopy (DCMS) measures the difference in absorption between two adjacent cavity longitudinal modes to yield a highly sensitive, yet relatively simple, cavity enhanced spectroscopic technique. In addition this relative absorption measurement is, to first order, independent of both laser frequency noise and cavity acoustic noise. Here we present both a theoretical description of this new technique and an initial experimental demonstration.

  7. LHC crab-cavity aspects and strategy

    Energy Technology Data Exchange (ETDEWEB)

    Calaga, R.; Tomas, R.; Zimmermann, F.

    2010-05-23

    The 3rd LHC Crab Cavity workshop (LHC-CC09) took place at CERN in October 2009. It reviewed the current status and identified a clear strategy towards a future crab-cavity implementation. Following the success of crab cavities in KEK-B and the strong potential for luminosity gain and leveling, CERN will pursue crab crossing for the LHC upgrade. We present a summary and outcome of the variousworkshop sessions which have led to the LHC crab-cavity strategy, covering topics like layout, cavity design, integration, machine protection, and a potential validation test in the SPS.

  8. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hall, B. [Lancaster Univ. (United Kingdom); Burt, G. [Lancaster Univ. (United Kingdom); Smith, J. D.A. [Lancaster Univ. (United Kingdom); Rimmer, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, H. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Delayen, J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Calaga, R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2009-05-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme but the frequency cannot be increased any higher due to the long bunch length of the LHC beam. This will require a novel compact crab cavity design. A superconducting version of a two rod coaxial deflecting cavity as a suitable design is proposed in this paper.

  9. Plasmonic Coupled Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) coupled cavity modes on Moire surfaces. An experimental study has been made of the propagation of SPPs on a thin silver surface that is textured with Moire surface pattern using interference lithography. The Moire surface contains periodic array of one dimensional cavities. The distance between the cavities can be controlled by changing the periodicities of Moire surface. When the SPP cavity separation is sufficiently small, we show splitting of strongly coupled plasmonic cavity modes through numerical simulations. Conversely, when the SPP cavity separation is sufficiently large, SPP cavity modes are found to be localized and do not show splitting of SPP cavity modes . This splitting of SPP cavity modes are well explained with a tight binding model that has been succesfully applied in photonic coupled cavities. Reflection measurements and numerical simulation of a large number of adjacent SPP cavities have shown a coupled resonator optical waveguide (CROW) type plasmonic waveguide band formation within the band gap region of unperturbed uniform grating.

  10. CHECHIA cavity driving with FPGA controller

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T.; Koprek, W.; Pozniak, K.T.; Romaniuk, R.S. [Technical Univ. Warsaw (Poland). ELHEP Laboratory, ISE; Simrock, S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). TESLA

    2005-07-01

    The initial control of the superconductive cavity has recently been performed by applying the FPGA (Field Programmable Gate Array) technology system in DESY Hamburg. This first experiment turned attention to the general recognition of the cavity features and projected control methods. The electrical model of the cavity is taken as a consideration origin. The calibration of the signal channel is considered as a key preparation for an efficient cavity driving. The cavity parameters identification is confirmed as a proper approach for the required performance: driving on resonance during filling and field stabilization during flattop time with reasonable power consumption. The feed-forward and feedback modes were applied successfully for the CHECHIA cavity driving. Representative results of experiments are presented for different levels of the cavity field gradient. (orig.)

  11. Novel Geometries for the LHC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    B. Hall, G. Burt, C. Lingwood, R. Rimmer, H. Wang

    2010-05-23

    The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

  12. SPS RF System an Accelerating Cavity

    CERN Multimedia

    1975-01-01

    The picture shows one of the two initially installed cavities. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also gradually increased: by end 1980 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412017X, 7411048X.

  13. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  14. Cavities

    Science.gov (United States)

    ... Information Drug Information, Search Drug Names, Generic and Brand Natural Products, Search Pill Identifier News & Commentary ALL NEWS > Resources First Aid Videos Figures Images Audio Pronunciations The One-Page Manual of Health ...

  15. Dynamical tunneling in optical cavities

    CERN Document Server

    Hackenbroich, G; Hackenbroich, Gregor; Noeckel, Jens U.

    1998-01-01

    The lifetime of whispering gallery modes in a dielectric cavity with a metallic inclusion is shown to fluctuate by orders of magnitude when size and location of the inclusion are varied. We ascribe these fluctuations to tunneling transitions between resonances quantized in different regions of phase space. This interpretation is confirmed by a comparison of the classical phase space structure with the Husimi distribution of the resonant modes. A model Hamiltonian is introduced that describes the phenomenon and shows that it can be expected in a more general class of systems.

  16. Basketballs as spherical acoustic cavities

    Science.gov (United States)

    Russell, Daniel A.

    2010-06-01

    The sound field resulting from striking a basketball is found to be rich in frequency content, with over 50 partials in the frequency range of 0-12 kHz. The frequencies are found to closely match theoretical expectations for standing wave patterns inside a spherical cavity. Because of the degenerate nature of the mode shapes, explicit identification of the modes is not possible without internal investigation with a microphone probe. A basketball proves to be an interesting application of a boundary value problem involving spherical coordinates.

  17. Acoustic transfer admittance of cylindrical cavities

    Science.gov (United States)

    Guianvarc'h, C.; Durocher, J.-N.; Bruneau, M.; Bruneau, A.-M.

    2006-05-01

    The reciprocity calibration method uses two microphones acoustically connected by a coupler, a cylindrical cavity closed at each end by the diaphragms of the transmitting and receiving microphones. The acoustic transfer admittance of the coupler, including the thermal conductivity effect of the fluid, must be modelled precisely to obtain the accurate sensitivity of the microphones from the electrical transfer impedance measurement. It appears that the analytical model quoted in the current standard [International Electrotechnical Commission IEC 61064-2, Measurement Microphones, Part 2: Primary Method for Pressure Calibration of Laboratory Standard Microphones by the Reciprocity Technique, 1992] is not the appropriate one and that it should be revised, as also suggested by a recent EUROMET project report [K. Rasmussen, Datafiles simulating a pressure reciprocity calibration of microphones, EUROMET Project 294 Report PL-13, 2001]. Thus, it is the aim of the paper to investigate analytically the acoustic field inside the coupler, revisiting the assumptions of the earlier work, leading to a coherent description and therefore providing clarity which should facilitate discussion of a possible revised standard.

  18. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  19. Rationale for designing cavity preparations.

    Science.gov (United States)

    Laswell, H R; Welk, D A

    1985-04-01

    Increased resistance to caries, increased dental awareness, superior diagnostic capabilities, better illumination, optical aids that significantly enhance vision, improved and standardized materials for restoration, and a deeper understanding of the caries process enable a far more conservative approach to tooth preparation. The dentist can concentrate on preserving as much sound tooth structure as possible with less attention being devoted to resistance and retention form that previously demanded in bulk restorations and massive channels and locks that are no longer appropriate. Although caries inhibitory effects have been shown with materials such as silicate cement, glass ionomers, and resins that leach fluoride, in general, dentists should not rely on restorative materials to inhibit the development of future decay. Characteristics of the carious lesion are unique for each tooth according to many factors centering around the plaque pattern for that tooth and not according to zones of natural susceptibility or immunity strictly dictated by morphology. Therefore, no single cavity preparation duplicated from a textbook is likely to be satisfactory for an individual tooth. Furthermore, novices learning the subject of cavity preparation often leave decalcified enamel when they attempt to replicate under clinical conditions that which they have learned in technique courses. This is the major invitation to future caries reappearing adjacent to restorations. Also, failure to duplicate the exact morphology of the tooth surface that has been replaced is likely to alter the pattern of plaque accumulation and create other caries prone areas.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Cavity QED-based quantum walk

    Science.gov (United States)

    di, Tiegang; Hillery, Mark; Zubairy, M. Suhail

    2004-09-01

    We discuss a possible experimental scheme for the implementation of a quantum walk. The scheme is based on the passage of an atom inside a high- Q cavity. The chirality is characterized by the atomic states and the displacement is characterized by the photon number inside the cavity. The quantum steps are described by appropriate interactions with a sequence of classical and quantized cavity fields.

  1. Ray splitting in paraxial optical cavities

    CERN Document Server

    Puentes, G; Woerdman, J P

    2003-01-01

    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  2. Tunable Cavity Optomechanics with Ultracold Atoms

    CERN Document Server

    Purdy, T P; Botter, T; Brahms, N; Ma, Z -Y; Stamper-Kurn, D M

    2010-01-01

    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.

  3. Continuously tunable, split-cavity gyrotrons

    Science.gov (United States)

    Brand, G. F.; Gross, M.

    1985-12-01

    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  4. Dither Cavity Length Controller with Iodine Locking

    Directory of Open Access Journals (Sweden)

    Lawson Marty

    2016-01-01

    Full Text Available A cavity length controller for a seeded Q-switched frequency doubled Nd:YAG laser is constructed. The cavity length controller uses a piezo-mirror dither voltage to find the optimum length for the seeded cavity. The piezo-mirror dither also dithers the optical frequency of the output pulse. [1]. This dither in optical frequency is then used to lock to an Iodine absorption line.

  5. Pulp response to the combined effects of cavity preparation and periodontal ligament injection.

    Science.gov (United States)

    Plamondon, T J; Walton, R; Graham, G S; Houston, G; Snell, G

    1990-01-01

    Thirteen random-source dogs provided 54 experimental and 50 control teeth. Controls received either a periodontal ligament (PDL) injection only, or no injection, with deep cavities prepared and restored. Experimental teeth received both a PDL injection and the deep cavity preparation and were then restored with an IRM base and acid-etched composite. Teeth were surgically removed for observation periods of one and 18 weeks and prepared for histologic evaluation. Results indicated that, in this model system, there was little additive effect to the pulpal reaction due to the PDL injection. Controls that were prepared had essentially the same pulpal response as did the experimental teeth (PDL injection/preparation). In both experimental and control pulps, the effects were primarily related to the depth of the cavity preparation.

  6. Mechanical Properties of Ingot Nb Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  7. Novel Geometries for the LHC CRAB Cavity

    CERN Document Server

    Hall, Ben

    2010-01-01

    In 2017 the LHC is envisioned to increase its luminosity via an upgrade. This upgrade is likely to require a large crossing angle hence a crab cavity is required to align the bunches prior to collision. There are two possible schemes for crab cavity implementation, global and local. In a global crab cavity the crab cavity is far from the IP and the bunch rotates back and forward as it traverses around the accelerator in a closed orbit. For this scheme a two-cell elliptical squashed cavity at 800 MHz is preferred. To avoid any potential beam instabilities all the parasitic modes of the cavities must be damped strongly, however crab cavities have lower order and same order modes in addition to the usual higher order modes and hence a novel damping scheme must be used to provide sufficient damping of these modes. In the local scheme two crab cavities are placed at each side of the IP two start and stop rotation of the bunches. This would require crab cavities much smaller transversely than in the global scheme b...

  8. Cavity quantum electrodynamics: coherence in context.

    Science.gov (United States)

    Mabuchi, H; Doherty, A C

    2002-11-15

    Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.

  9. Design of the ILC Crab Cavity System

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, C.; Beard, C.; Bellantoni, L.; Burt, G.; Carter, R.; Chase, B.; Church, M.; Dexter, A.; Dykes, M.; Edwards, H.; Goudket, P; Jenkins, R.; Jones, R.M.; Kalinin,; Khabiboulline, T.; Ko, K.; Latina, A.; Li, Z.; Ma, L.; McIntosh, P.; Ng, C.; /SLAC /Daresbury /Fermilab /Cockcroft Inst. Accel. Sci. Tech. /CERN

    2007-08-15

    The International Linear Collider (ILC) has a 14 mrad crossing angle in order to aid extraction of spent bunches. As a result of the bunch shape at the interaction point, this crossing angle at the collision causes a large luminosity loss which can be recovered by rotating the bunches prior to collision using a crab cavity. The ILC baseline crab cavity is a 9-cell superconducting dipole cavity operating at a frequency of 3.9 GHz. In this paper the design of the ILC crab cavity and its phase control system, as selected for the RDR in February 2007 is described in fuller detail.

  10. Engineering topological materials in microwave cavity arrays

    CERN Document Server

    Anderson, Brandon M; Owens, Clai; Schuster, David I; Simon, Jonathan

    2016-01-01

    We present a scalable architecture for the exploration of interacting topological phases of photons in arrays of microwave cavities, using established techniques from cavity and circuit quantum electrodynamics. A time-reversal symmetry breaking (non-reciprocal) flux is induced by coupling the microwave cavities to ferrites, allowing for the production of a variety of topological band structures including the $\\alpha=1/4$ Hofstadter model. Effective photon-photon interactions are included by coupling the cavities to superconducting qubits, and are sufficient to produce a $\

  11. State of the Art SRF Cavity Performance

    CERN Document Server

    Lilje, L

    2004-01-01

    The paper will review superconducting RF cavity performance for β=1 cavities used in both linear and circular accelerators. These superconducting cavities are used in two kinds of applications: High current storage rings and efficient high duty cycle linacs. In recent years the performance of those cavities has been improving steadily. High accelerating gradients have been achieved using advanced surface preparation techniques like electropolishing and surface cleaning methods like high pressure water rinsing. High intensity beams can be handled with advanced higher-order-mode damping schemes.

  12. Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.

    Science.gov (United States)

    Kocaman, Serdar; Sayan, Gönül Turhan

    2016-12-12

    Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

  13. Stability of heterodyne terahertz receivers

    NARCIS (Netherlands)

    Kooi, J.W.; Baselmans, J.J.A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T.M.; Voronov, B.; Gol'tsman, G.

    2006-01-01

    In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) s

  14. Noise Stability of SIS Receivers

    Science.gov (United States)

    Kooi, J. W.; Chattopadhyay, G.; Thielman, M.; Phillips, T. G.; Schieder, R.

    2000-05-01

    There is a strong interest in the submillimeter astronomy community to increase the IF bandwidth of SIS receivers in order to better facilitate broad spectral linewidth and continuum observations of extragalactic sources. However, with an increase in receiver IF bandwidth there is a decrease in the mixer stability. This in turn effects the integration efficiency and quality of the measurement. In order to better understand the noise mechanisms responsible for reducing the receiver stability, we employed a technique first described by D.W. Allan and later elaborated upon by Schieder et al. In this paper we address a variety of factors that degrade the noise stability of SIS receivers. The goal of this exercise is to make recommendations aimed at maximizing SIS receiver stability.

  15. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  16. Characterization of a low noise microwave receiver for the detection of vacuum photons

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy)], E-mail: braggio@pd.infn.it; Bressi, G. [INFN, Sez. di Pavia, Via Bassi 6, 27100 Pavia (Italy); Carugno, G. [INFN, Sez. di Padova, Via Marzolo 8, 35131 Padova (Italy); Della Valle, F. [INFN, Sez. di Trieste, Via A. Valerio 2, 34127 Trieste (Italy); Galeazzi, G.; Ruoso, G. [Laboratori Nazionali di Legnaro, Via dell' Universita 1, 35020 Legnaro (Italy)

    2009-05-21

    In this work we present measurements of the sensitivity of a low noise microwave receiver developed with the aim to detect a feeble quantum electrodynamics effect known as dynamical Casimir effect. We study the performance of the receiver when it is connected to a transmission line ending with an antenna coupled to a resonant microwave cavity. The noise temperature of the receiver is measured with the method of the variable temperature load resistor. The noise generated by the cavity is measured in a similar way. An equivalent input noise of (2.0{+-}0.2)x10{sup -22}W/Hz is measured at the receiver input. This is equivalent to a sensitivity of approximately 100 photons, well below the expected signal from the quantum vacuum photons.

  17. Slow plasmons in grating cavities

    Science.gov (United States)

    Aydinli, Atilla; Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun

    2016-03-01

    Recent research on surface plasmon polaritons and their applications have brought forward a wealth of information and continues to be of interest to many. In this report, we concentrate on propagating surface plasmon polaritons (SPPs) and their interaction with matter. Using grating based metallic structures, it is possible to control the electrodynamics of propagating SPPs. Biharmonic gratings loaded with periodic Si stripes allow excitation of SPPs that are localized inside the band gap with grating coupling. The cavity state is formed due to periodic effective index modulation obtained by one harmonic of the grating and loaded Si stripes. More complicated grating structures such as metallic Moiré surfaces have also been shown to form a localized state inside the band gap when excited with Kretschmann configuration.

  18. Primary leiomyosarcoma of peritoneal cavity

    Directory of Open Access Journals (Sweden)

    Jyotsna Naresh Bharti

    2014-03-01

    Full Text Available Leiomyosarcomas of soft tissue are the rare tumors and the retroperitoneum is the most common site involved. We report a case of primary leiomyosarcoma of the peritoneal cavity which clinically presented with suprapubic, freely mobile, nontender mass which measured 10×10 cm in size. Contrast enhanced computed tomography revealed well defined heterogenous hypodense solid cystic mass. The mass was surgically excised out in its entirety. The histopathological examination revealed spindle cells arranged in alternating fascicles having pleomorphic nuclei, indistinct margin and eosinophilic cytoplasm with foci of haemorrhage, necrosis and 5-6 mitosis/HPF. The spindle cells were immunoreactive for smooth muscle actin, desmin and negative for S-100, CD-34 and c-kit. Histopathology and immunohistochemistry were helpful in making the final confirmatory diagnosis. Leiomyosarcomas are aggressive tumors, with poor prognosis and often difficult to treat. The survival rates are lowest among all soft tissue sarcomas.

  19. Leaky Modes of Dielectric Cavities

    CERN Document Server

    Mansuripur, Masud; Jakobsen, Per

    2016-01-01

    In the absence of external excitation, light trapped within a dielectric medium generally decays by leaking out (and also by getting absorbed within the medium). We analyze the leaky modes of a parallel-plate slab, a solid glass sphere, and a solid glass cylinder, by examining those solutions of Maxwell's equations (for dispersive as well as non-dispersive media) which admit of a complex-valued oscillation frequency. Under certain circumstances, these leaky modes constitute a complete set into which an arbitrary distribution of the electromagnetic field residing inside a dielectric body can be expanded. We provide completeness proofs, and also present results of numerical calculations that illustrate the relationship between the leaky modes and the resonances of dielectric cavities formed by a simple parallel-plate slab, a glass sphere, and a glass cylinder.

  20. Influence of void ratio on phase change of thermal energy storage for heat pipe receiver

    Directory of Open Access Journals (Sweden)

    Xiaohong Gui

    2015-01-01

    Full Text Available In this paper, influence of void ratio on phase change of thermal storage unit for heat pipe receiver under microgravity is numerically simulated. Accordingly, mathematical model is set up. A solidification-melting model upon the enthalpy-porosity method is specially provided to deal with phase changes. The liquid fraction distribution of thermal storage unit of heat pipe receiver is shown. The fluctuation of melting ratio in PCM canister is indicated. Numerical results are compared with experimental ones in Japan. The results show that void cavity prevents the process of phase change greatly. PCM melts slowly during sunlight periods and freezes slowly during eclipse periods as void ratio increases. The utility ratio of PCM during both sunlight periods and eclipse periods decreases obviously with the improvement of void ratio. The thermal resistance of void cavity is much higher than that of PCM canister wall. Void cavity prevents the heat transfer between PCM zone and canister wall.

  1. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  2. Scheme for Implementation of Quantum Game in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Chun; CAO Shu-Ai; WU Yue-Qin; FANG Mao-Fa; LI Huai-Fan; ZHENG Xiao-Juan; ZHAO Ren; WANG Xin-Wen; LI Ze-Hua

    2008-01-01

    We propose an experimentally feasible scheme to implement two-player quantum game in cavity quantum electrodynamics (QED). During the process, the cavity is only virtually excited, thus our scheme is insensitive to the cavity field states and cavity decay. The scheme can be realized in the range of current cavity QED techniques.

  3. A scheme for implementing quantum game in cavity QED

    Institute of Scientific and Technical Information of China (English)

    CaoShuai; Fang Mao-Fa; Liu Jian-Bin; Wang Xin-Wen; Zheng Xiao-juan

    2009-01-01

    In this paper, we propose a scheme fot implementing quantum game (QG) in cavity quantum electrodynam-ics(QED). In the scheme, the cavity is only virtually excited and thus the proposal is insensitive to the cavity fields states and cavity decay. So our proposal can be experimentally realized in the range of current cavity QED techniques.

  4. The ADMX Microwave Cavity: Present and future

    Science.gov (United States)

    Woollett, Nathan; ADMX Collaboration

    2017-01-01

    The Axion Dark Matter eXperiment (ADMX), a direct-detection axion search, uses a tunable resonant cavity to enhance axion to photon conversion rates to a detectable level when the cavity resonance matches the mass of the axion. It has successfully taken data in the 460 - 890 MHz frequency range and is now probing a similar range with much higher sensitivity. However the axion mass is unknown and may be at higher frequencies than the currently operating system. In anticipation of future runs with an increased mass range, ADMX is conducting extensive research and development of microwave cavities. These developments include photonic band-gap cavities, multi-vane cavities, partitioned cavities, in-phase coupled cavities, and superconducting hybrid cavities. Many of these projects are in different stages between simulations and testing of physical prototypes. The status and current objectives of these projects will be presented. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.

  5. Collapsing cavities in reactive and nonreactive media

    Science.gov (United States)

    Bourne, Neil K.; Field, John E.

    1991-04-01

    This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.

  6. A spherical cavity in an Einstein universe

    Energy Technology Data Exchange (ETDEWEB)

    Kofinti, N.K.

    1980-03-01

    Suitable metric forms for the regions and a outside a sperical cavity in an Einstein universe are derived by means of perturbation. It is shown that for low proper pressure, the cavity behaves like ''negative'' Schwarzchild mass. Finally, the possibility of carrying over to the exact theory a proposed definition of the gravitational field in a matter is examined.

  7. Dissipative preparation of entanglement in optical cavities

    DEFF Research Database (Denmark)

    Kastoryano, Michael James; Reiter, Florentin; Sørensen, Anders Søndberg

    2011-01-01

    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer...

  8. Cavity-enhanced absorption for optical refrigeration

    CERN Document Server

    Seletskiy, Denis V; Sheik-Bahae, Mansoor

    2009-01-01

    A 20-fold increase over the single path optical absorption is demonstrated with a low loss medium placed in a resonant cavity. This has been applied to laser cooling of Yb:ZBLAN glass resulting in 90% absorption of the incident pump light. A coupled-cavity scheme to achieve active optical impedance matching is analyzed.

  9. Temperature stabilization of optofluidic photonic crystal cavities

    DEFF Research Database (Denmark)

    Kamutsch, Christian; Smith, Cameron L.C.; Graham, Alexandra;

    2009-01-01

    We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally demon...

  10. Coupled-cavity traveling-wave tubes

    Science.gov (United States)

    Connolly, D. J.; Omalley, T. A.

    1980-01-01

    Computer program is developed for analysis of coupled cavity traveling waves tubes (TWT's) which are used in variety of radar and communications applications. Programmers can simulate tubes of arbitrary complexity such as input and output couplers and other features peculiar to one or few cavities which may be modeled by correct choices of input data.

  11. Large grain cavities from pure niobium ingot

    Science.gov (United States)

    Myneni, Ganapati Rao [Yorktown, VA; Kneisel, Peter [Williamsburg, VA; Cameiro, Tadeu [McMurray, PA

    2012-03-06

    Niobium cavities are fabricated by the drawing and ironing of as cast niobium ingot slices rather than from cold rolled niobium sheet. This method results in the production of niobium cavities having a minimum of grain boundaries at a significantly reduced cost as compared to the production of such structures from cold rolled sheet.

  12. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.; Williams, D. R.; Zhang, M.

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  13. Superconducting accelerating four-cell cavity

    CERN Multimedia

    1980-01-01

    A close view of the four-cell cavity. This was a prototype designed for LEP2 (LEP1 had warm copper cavities as accelerating elements). The first successful tests were made in December 1980 - reaching a Q = 10^6. (see photo 8012650X)

  14. Continuous optical discharge in a laser cavity

    Science.gov (United States)

    Chivel', Yu. A.

    2016-08-01

    Optical discharge in a laser cavity is experimentally studied. A significant increase in the absorption of laser radiation (up to total absorption) is revealed. Optical schemes for initiation and maintaining of optical discharge in the cavity are proposed for technological applications of the optical discharge.

  15. Prototype storage cavity for LEP accelerating RF

    CERN Multimedia

    1980-01-01

    The principle of an RF storage cavity was demonstrated with this prototype, working at 500 MHz. The final storage cavities were larger, to suit the LEP accelerating frequency of 352.2 MHz. Cu-tubes for watercooling are brazed onto the upper half, the lower half is to follow. See also 8006061, 8109346, 8407619X, and Annual Report 1980, p.115.

  16. Subglacial Silicic Eruptions: Wet Cavities and Moist Cavities.

    Science.gov (United States)

    Stevenson, J. A.; McGarvie, D. W.; Gilbert, J. S.; Smellie, J. L.

    2007-05-01

    ice produces water, however in the Kerlingarfjöll eruption (which is thought to have been relatively brief and the vesicular magma is likely to have contained less heat per unit volume) the volumes were small and the subglacial cavity could be appropriately described as 'moist'. The Prestahnúkur eruption occurred in a 'wet' cavity but 'lacustrine' conditions were never developed and the ice was always close to the edifice. Poor sorting and structure in the subglacial deposits are due to a lack of time and space for sorting to occur. In contrast to more mafic eruptions, which are characterised by very strong meltwater-ice interactions, the main influence of the ice during subglacial rhyolite eruptions is reflected in the confinement of eruptive products.

  17. Design requirements, challenges, and solutions for high-temperature falling particle receivers

    Science.gov (United States)

    Christian, Joshua; Ho, Clifford

    2016-05-01

    Falling particle receivers (FPR) utilize small particles as a heat collecting medium within a cavity receiver structure. Previous analysis for FPR systems include computational fluid dynamics (CFD), analytical evaluations, and experiments to determine the feasibility and achievability of this CSP technology. Sandia National Laboratories has fabricated and tested a 1 MWth FPR that consists of a cavity receiver, top hopper, bottom hopper, support structure, particle elevator, flux target, and instrumentation. Design requirements and inherent challenges were addressed to enable continuous operation of flowing particles under high-flux conditions and particle temperatures over 700 °C. Challenges include being able to withstand extremely high temperatures (up to 1200°C on the walls of the cavity), maintaining particle flow and conveyance, measuring temperatures and mass flow rates, filtering out debris, protecting components from direct flux spillage, and measuring irradiance in the cavity. Each of the major components of the system is separated into design requirements, associated challenges and corresponding solutions. The intent is to provide industry and researchers with lessons learned to avoid pitfalls and technical problems encountered during the development of Sandia's prototype particle receiver system at the National Solar Thermal Test Facility (NSTTF).

  18. Air flow in a collapsing cavity

    CERN Document Server

    Peters, Ivo R; Lohse, Detlef; van der Meer, Devaraj

    2013-01-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disk on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  19. Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Wilmsen, Carl W.; Temkin, Henryk; Coldren, Larry A.

    2002-01-01

    1. Introduction to VCSELs L. A. Coldren, C. W. Wilmsen and H. Temkin; 2. Fundamental issues in VCSEL design L. A. Coldren and Eric R. Hegblom; 3. Enhancement of spontaneous emission in microcavities E. F. Schubert and N. E. J. Hunt; 4. Epitaxy of vertical-cavity lasers R. P. Schneider Jr and Y. H. Young; 5. Fabrication and performance of vertical-cavity surface-emitting lasers Kent D. Choquette and Kent Geib; 6. Polarization related properties of vertical cavity lasers Dmitri Kuksenkov and Henryk Temkin; 7. Visible light emitting vertical cavity lasers Robert L. Thornton; 8. Long-wavelength vertical-cavity lasers Dubrakovo I. Babic, Joachim Piprek and John E. Bowers; 9. Overview of VCSEL applications Richard C. Williamson; 10. Optical interconnection applications and required characteristics Kenichi Kasahara; 11. VCSEL-based fiber-optic data communications Kenneth Hahn and Kirk Giboney; 12. VCSEL-based smart pixels for free space optoelectronic processing C. W. Wilmsen.

  20. Performance of 3-cell Seamless Niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, Peter K. [JLAB; Ciovati, Gianluigi [JLBA; Jelezov, I. [DESY, Hamburg; Singer, W. [DESY, Hamburg; Singer, X. [DESY, Hamburg

    2009-11-01

    In the last several months we have surface treated and cryogenically tested three TESLA-type 3-cell cavities, which had been manufactured at DESY as seamless assemblies by hydroforming. The cavities were completed at JLab with beam tube/flange assemblies. All three cavities performed very well after they had been post-purified with titanium at 1250C for 3 hrs. The cavities, two of which consisted of an end cell and 2 center cells and one was a center cell assembly, achieved gradients of Eacc = 32 MV/m, 34 MV/m and 35 MV/m without quenches. The performance was limited by the appearance of the “Q-drop” in the absence of field emission. This contribution reports about the various measurements undertaken with these cavities.

  1. A gas jet impacting a cavity

    Science.gov (United States)

    Stiffler, A. Kent; Bakhsh, Hazoor

    1986-11-01

    A subsonic jet impinging upon a cavity is studied to explain the resultant heating phenomenon. Flow visualization within the cavity shows a large central vortex dominating the flow pattern. Velocity measurements inside the cavity are made using a hot-wire anemometer. Temperature is measured with a copper-constantan thermocouple. The velocity field within the cavity is described by a modified Rankine combined vortex. An uncommon form of the energy equation is used to account for turbulent heating in adverse pressure gradients. A theoretical solution is developed to model the temperature field in the cavity. There is a good agreement between the calculated and measured temperatures. The heating effect is related to Ranque-Hilsch tubes.

  2. Cavity cooling below the recoil limit.

    Science.gov (United States)

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-06

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.

  3. Niobium Cavity Electropolishing Modelling and Optimisation

    CERN Document Server

    Ferreira, L M A; Forel, S; Shirra, J A

    2013-01-01

    It’s widely accepted that electropolishing (EP) is the most suitable surface finishing process to achieve high performance bulk Nb accelerating cavities. At CERN and in preparation for the processing of the 704 MHz high-beta Superconducting Proton Linac (SPL) cavities a new vertical electropolishing facility has been assembled and a study is on-going for the modelling of electropolishing on cavities with COMSOL® software. In a first phase, the electrochemical parameters were taken into account for a fixed process temperature and flow rate, and are presented in this poster as well as the results obtained on a real SPL single cell cavity. The procedure to acquire the data used as input for the simulation is presented. The modelling procedure adopted to optimise the cathode geometry, aimed at a uniform current density distribution in the cavity cell for the minimum working potential and total current is explained. Some preliminary results on fluid dynamics is also briefly described.

  4. Optomechanical photon shuttling between photonic cavities

    CERN Document Server

    Li, Huan

    2014-01-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave-mixing between photons and phonons and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong nonlocal effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a novel multi-cavity optomechanical device: a "photon see-saw", in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of the see-saw, are modulated anti-symmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation which strongly modulates the inter-cavity coupling and shuttles photons to the other...

  5. Optomechanical photon shuttling between photonic cavities.

    Science.gov (United States)

    Li, Huan; Li, Mo

    2014-11-01

    Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, extended mechanical modes can also induce strong non-local effects on propagating optical fields or multiple localized optical modes at distances. Here, we demonstrate a multicavity optomechanical device in which torsional optomechanical motion can shuttle photons between two photonic crystal nanocavities. The resonance frequencies of the two cavities, one on each side of this 'photon see-saw', are modulated antisymmetrically by the device's rotation. Pumping photons into one cavity excites optomechanical self-oscillation, which strongly modulates the inter-cavity coupling and shuttles photons to the other empty cavity during every oscillation cycle in a well-regulated fashion.

  6. Proven procedures guide cavity VCO design

    Science.gov (United States)

    Lefrak, F.

    1981-05-01

    The design of a high performance voltage-tuned cavity oscillator is discussed. The circuit is to be modeled with an equivalent inductance and capacitance. Close attention is to be given to the influence of cavity loading. Center frequency and impedance are computed on the basis of the model's L and C values. The last step is particularly important, since the size of a cavity-based oscillator, such as the Gunn/varactor version is directly related to operating frequency. Attention is given to the parallel L-C circuit representing the cavity, parameter relations concerning the height, higher-order TE modes, and effects of post inductance. The basic oscillator consists of a hollow cavity with metal walls, and diodes mounted on posts.

  7. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira

    2007-01-01

    This study evaluated, in vitro, the loss of tooth substance after cavity preparation for direct and indirect restorations and its relationship with fracture strength of the prepared teeth. Sixty sound human maxillary first premolars were assigned to 6 groups (n=10). MOD direct composite cavities......) or 1/2 (Groups III and VI) of the intercuspal distance. Teeth were weighed (digital balance accurate to 0.001 g) before and after preparation to record tooth substance mass lost during cavity preparation. The prepared teeth were submitted to occlusal loading to determine their fracture strength using...... mass loss (13.91%) than composite resin preparations with the same width (10.02%). 1/2-inlay cavities had 21.34% of mass loss versus 16.19% for the 1/2-composite resin cavities. Fracture strength means (in kgf) were: GI = 187.65; GII = 143.62; GIII = 74.10; GIV = 164.22; GV = 101.92; GVI = 50...

  8. Vertical external cavity surface emitting semiconductor lasers

    CERN Document Server

    Holm, M

    2001-01-01

    Active stabilisation showed a relative locked linewidth of approx 3 kHz. Coarse tuning over 7 nm was achieved using a 3-plate birefingent filter plate while fine-tuning using cavity length change allowed tuning over 250 MHz. Vertical external cavity semiconductor lasers have emerged as an interesting technology based on current vertical cavity semiconductor laser knowledge. High power output into a single transverse mode has attracted companies requiring good fibre coupling for telecommunications systems. The structure comprises of a grown semiconductor Bragg reflector topped with a multiple quantum well gain region. This is then included in an external cavity. This device is then optically pumped to promote laser action. Theoretical modelling of AIGaAs based VECSEL structures was undertaken, showing the effect of device design on laser characteristics. A simple 3-mirror cavity was constructed to assess the static characteristics of the structure. Up to 153 mW of output power was achieved in a single transver...

  9. Cavity solitons and localized patterns in a finite-size optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Kozyreff, G. [Optique Nonlineaire Theorique, Universite Libre de Bruxelles (U.L.B.), CP 231 (Belgium); Gelens, L. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel (Belgium)

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  10. Cavity solitons and localized patterns in a finite-size optical cavity

    Science.gov (United States)

    Kozyreff, G.; Gelens, L.

    2011-08-01

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  11. Cavity solitons in vertical-cavity surface-emitting lasers

    CERN Document Server

    Vladimirov, A G; Gurevich, S V; Panajotov, K; Averlant, E; Tlidi, M

    2014-01-01

    We investigate a control of the motion of localized structures of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary localized structure that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally relevant system namely the Vertical-Cavity Surface-Emitting Laser (VCSEL). In the absence of the delay feedback we present experimental evidence of stationary localized structures in a 80 $\\mu$m aperture VCSEL. The spontaneous formation of localized structures takes place above the lasing threshold and under optical injection. Then, we consider the effect of the time-delayed optical feedback and investigate analytically the role of the phase of the feedback and the carrier lifetime on the self-mobility properties of the localized structures. We show that these two parameters affect strongly the space time dynamics of two-dimensional localized structures...

  12. HIGH-EFFICIENCY INFRARED RECEIVER

    Directory of Open Access Journals (Sweden)

    A. K. Esman

    2016-01-01

    Full Text Available Recent research and development show promising use of high-performance solid-state receivers of the electromagnetic radiation. These receivers are based on the low-barrier Schottky diodes. The approach to the design of the receivers on the basis of delta-doped low-barrier Schottky diodes with beam leads without bias is especially actively developing because for uncooled receivers of the microwave radiation these diodes have virtually no competition. The purpose of this work is to improve the main parameters and characteristics that determine the practical relevance of the receivers of mid-infrared electromagnetic radiation at the operating room temperature by modifying the electrodes configuration of the diode and optimizing the distance between them. Proposed original design solution of the integrated receiver of mid-infrared radiation on the basis of the low-barrier Schottky diodes with beam leads allows to effectively adjust its main parameters and characteristics. Simulation of the electromagnetic characteristics of the proposed receiver by using the software package HFSS with the basic algorithm of a finite element method which implemented to calculate the behavior of electromagnetic fields on an arbitrary geometry with a predetermined material properties have shown that when the inner parts of the electrodes of the low-barrier Schottky diode is performed in the concentric elliptical convex-concave shape, it can be reduce the reflection losses to -57.75 dB and the standing wave ratio to 1.003 while increasing the directivity up to 23 at a wavelength of 6.09 μm. At this time, the rounded radii of the inner parts of the anode and cathode electrodes are equal 212 nm and 318 nm respectively and the gap setting between them is 106 nm. These parameters will improve the efficiency of the developed infrared optical-promising and electronic equipment for various purposes intended for work in the mid-infrared wavelength range. 

  13. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  14. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  15. Dispersion of coupled mode-gap cavities

    CERN Document Server

    Lian, Jin; Yüce, Emre; De Rossi, Sylvain Combrié Alfredo; Mosk, Allard P

    2015-01-01

    The dispersion of a CROW made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the fact that the cavity mode profile itself is dispersive, i.e., the mode wave function depends on the driving frequency, not the eigenfrequency. This occurs because the photonic crystal cavity resonances do not form a complete set. By taking into account the dispersive mode profile, we formulate a mode coupling model that accurately describes the asymmetric dispersion without introducing any new free parameters.

  16. Piezoelectric Voltage Coupled Reentrant Cavity Resonator

    CERN Document Server

    Carvalho, Natalia C; Floch, Jean-Michel Le; Tobar, Michael Edmund

    2014-01-01

    A piezoelectric voltage coupled microwave reentrant cavity has been developed. The central cavity post is bonded to a piezoelectric actuator allowing the voltage control of small post displacements over a high dynamic range. We show that such a cavity can be implemented as a voltage tunable resonator, a transducer for exciting and measuring mechanical modes of the structure and a transducer for measuring comparative sensitivity of the piezoelectric material. Experiments were conducted at room and cryogenic temperatures with results verified using Finite Element software.

  17. LHC Crab Cavity Coupler Test Boxes

    CERN Document Server

    Mitchell, James; Burt, Graeme; Calaga, Rama; Macpherson, Alick; Montesinos, Eric; Silva, Subashini; Tutte, Adam; Xiao, Binping

    2016-01-01

    The LHC double quarter wave (DQW) crab cavities have two different types of Higher Order Mode (HOM) couplers in addition to a fundamental power coupler (FPC). The FPC requires conditioning, so to achieve this we have designed a radio-frequency (RF) quarter wave resonator to provide high transmission between two opposing FPCs. For the HOM couplers we must ensure that the stop-band filter is positioned at the cavity frequency and that peak transmission occurs at the same frequencies as the strongest HOMs. We have designed two test boxes which preserve the cavity spectral response in order to test the couplers.

  18. Receiver-exciter controller design

    Science.gov (United States)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  19. UWB communication receiver feedback loop

    Science.gov (United States)

    Spiridon, Alex; Benzel, Dave; Dowla, Farid U.; Nekoogar, Faranak; Rosenbury, Erwin T.

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  20. Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 2. Central receiver optical model users manual. CDRL item 2. [HELIAKI code

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist's concept of this plant is shown.

  1. Perturbing open cavities: Anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system

    CERN Document Server

    Ruesink, Freek; Hendrikx, Ruud; Koenderink, A Femius; Verhagen, Ewold

    2015-01-01

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a non-trivial phase relation between cavity and nanoparticle radiation, allowing back-action via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.

  2. Perturbing Open Cavities: Anomalous Resonance Frequency Shifts in a Hybrid Cavity-Nanoantenna System

    Science.gov (United States)

    Ruesink, Freek; Doeleman, Hugo M.; Hendrikx, Ruud; Koenderink, A. Femius; Verhagen, Ewold

    2015-11-01

    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.

  3. Frequency combs for cavity cascades: OPO combs and graphene-coupled cavities

    Science.gov (United States)

    Lee, Kevin F.; Kowzan, Grzegorz; Lee, C.-C.; Mohr, C.; Jiang, Jie; Schunemann, Peter G.; Schibli, T. R.; Maslowski, Piotr; Fermann, M. E.

    2017-01-01

    Frequency combs can be used directly, for example as a highly precise spectroscopic light source. They can also be used indirectly, as a bridge between devices whose high precision requirements would normally make them incompatible. Here, we demonstrate two ways that a frequency comb enables new technologies by matching optical cavities. One cavity is the laser oscillator. A second cavity is a low-threshold doubly-resonant optical parametric oscillator (OPO). Extending optical referencing to the doubly-resonant OPO turns the otherwise unstable device into an extremely precise midinfrared frequency comb. Another cavity is an optical enhancement cavity for amplifying spectral absorption in a gas. With the high speed of a graphene-modulated frequency comb, we can couple a frequency comb directly into a high-finesse cavity for trace gas detection.

  4. Interference and Chaos in Metamaterials Cavities

    Science.gov (United States)

    Litchinitser, Natalia; Jose, Jorge

    2014-03-01

    Optical metamaterials are engineered artificial nanostructures that possess optical properties not available in nature. As metamaterials research continues to mature, their practical applications as well as fundamental questions on wave propagation in these materials attract significant interest. In this talk we focus on wave propagation and interference in chaotic wave cavities with negative or near-zero index of refraction and in double-slit configurations. In this context, we explicitly consider an incomplete two-dimensional D-cavity previously studied, which shows chaotic ray propagation together with scars. We have addressed the question as to how that type of wave propagation is modified by adding metamaterials in these chaotic cavities. We find that the wave interference patterns show significant qualitatively and quantitative changes depending on the effective parameters of the cavity, illumination conditions (planes waves versus beams), and geometry of the system. We will discuss possible experimental setups where these results may be validated.

  5. Cavity-enhanced spectroscopy and sensing

    CERN Document Server

    Loock, Hans-Peter

    2014-01-01

    The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing.  It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperat...

  6. Pulp response to bases and cavity depths.

    Science.gov (United States)

    Lee, S J; Walton, R E; Osborne, J W

    1992-04-01

    In cavities of ferret canines, preparation depth and bases were compared as to their effect on odontoblasts and to rate of dentin formation. These were measured by injecting 3H-proline at 0, 20 and 40 days post-preparation. Odontoblast activity was determined by label density in each band; inter-band distances indicated the amount of dentin formed. Correlations were by Pearson's coefficient. The following were determined: 1) cavity depth (remaining dentin thickness) was the major factor in odontoblast response and in dentin formation; deeper cavities suppressed odontoblasts with less subsequent dentin formation at all time periods; 2) basing materials had little effect on odontoblast activity or on the rate of dentin formation. An exception was in deep cavities, with Ca(OH)2 showing more label; this activity was temporary with no increased dentin formation; 3) there was no evidence of a "rebound" response.

  7. section of an accelerating cavity from LEP

    CERN Multimedia

    This is a section of an accelerating cavity from LEP, cut in half to show the layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  8. Prominence Mass Supply and the Cavity

    CERN Document Server

    Schmit, Donald; Luna, Manuel; Karpen, Judy; Innes, Davina

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system: the cavity is under-dense because it is evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolution of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model with diagnostics of dynamic extreme ultraviolet emission (EUV) surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prominence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the SDO/AIA 171\\AA\\ bandpass near the prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset ...

  9. Stafne bone cavity--magnetic resonance imaging.

    Science.gov (United States)

    Segev, Yoram; Puterman, Max; Bodner, Lipa

    2006-07-01

    A case of Stafne bone cavity (SBC) affecting the body of the mandible of a 51-year-old female is reported. The imaging modalities included panoramic radiograph, computed tomography (CT) and magnetic resonance (MR) imaging. Panoramic radiograph and CT were able to determine the outline of the cavity and its three dimensional shape, but failed to precisely diagnose the soft tissue content of the cavity. MR imaging demonstrated that the bony cavity is filled with soft tissue that is continuous and identical in signal with that of the submandibular salivary gland. Based on the MR imaging a diagnosis of SBC was made and no further studies or surgical treatment were initiated. MR imaging should be considered the diagnostic technique in cases where SBC is suspected. Recognition of the lesion should preclude any further treatment or surgical exploration.

  10. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  11. Two Dimensional Plasmonic Cavities on Moire Surfaces

    Science.gov (United States)

    Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla

    2010-03-01

    We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.

  12. Development of rebunching cavities at IAP

    CERN Document Server

    Welsch, C P; Schempp, A

    2000-01-01

    A focus of work at IAP has been the development and optimization of spiral loaded cavities since the 1970s [A. Schempp et al, NIM 135, 409 (1976)]. These cavities feature a high efficiency, a compact design and a big variety of possible fields of application. They find use both as bunchers and post accelerators to vary the final energy of the beam. In comparison to other available designs, the advantage of these structures lies in their small size. Furthermore they can easily be tuned to the required resonance frequency by varying the length of the spiral. Due to the small size of the cavities the required budget can also be kept low. Here, two slightly different types of spiral loaded cavities, which were built for the REX-ISOLDE project at CERN and the intensity upgrade program at GSI are being discussed.

  13. Stable planar mesoscopic photonic crystal cavities

    CERN Document Server

    Magno, Giovanni; Grande, Marco; Lozes-Dupuy, Françoise; Gauthier-Lafaye, Olivier; Calò, Giovanna; Petruzzelli, Vincenzo

    2014-01-01

    Mesoscopic self-collimation in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high-Q factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, due to a beam focusing effect that stabilises the cavity even for small beam sizes, resembling the focusing behaviour of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness. A Q factor higher than 10^4 has been achieved for an optimized 5-period-long mirror cavity. The optimization of the Q factor and the performances in terms of energy storage, field enhancement and confinement are detailed.

  14. Cavity loss induced generation of W states

    Institute of Scientific and Technical Information of China (English)

    Wu Huai-Zhi; Yang Zhen-Biao; Su Wan-Jun; Zhong Zhi-Rong; Zheng Shi-Biao

    2008-01-01

    The existence of decoherence-free subspace (DFS) has been discussed widely.In this paper,we propose an alternative scheme for generating the four-atom W states by manipulating DF qubits.The atoms are divided into two pairs and trapped in two separate optical cavities.Manipulation of atoms within DFS may generate a two-atom maximally entangled state in an individual cavity,which is a stable state.After driving the system out of DFS,the atoms will interact resonantly with the cavity field.The photons leaking from the cavities interfere at the beamsplitter,which destroys which-path information,and are finally detected by one of the detectors,leading to the generation of a W state.In addition,the numerical simulation indicates that the fidelity of the prepared state can,for a very wide parameter regime,be very close to unity.

  15. Heat pipe central solar receiver. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1979-04-01

    The objective of this project was the conceptual design of a Central Solar Receiver Gas Turbine Plant which utilizes a high temperature heat pipe receiver. Technical and economic feasibility of such a plant was to be determined and preliminary overall cost estimates obtained. The second objective was the development of the necessary heat pipe technology to meet the requirements of this receiver. A heat pipe receiver is ideally suited for heating gases to high temperatures. The heat pipes are essentially loss free thermal diffusers which accept a high solar flux and transform it to a lower flux which is compatible with heat transferred to gases. The high flux capability reduces receiver heating surface, thereby reducing receiver heat losses. An open recuperative air cycle with a turbine inlet temperature of 816/sup 0/C (1500/sup 0/F) was chosen as the baseline design. This results in peak metal temperatures of about 870/sup 0/C (1600/sup 0/F). The receiver consists of nine modular panels which form the semicircular backwall of a cavity. Gas enters the panels at the bottom and exits from the top. Each panel carries 637 liquid metal heat pipes which are mounted at right angle to the gas flow. The evaporators of the heat pipes protrude from the flux absorbing front surface of the panels, and the finned condensors traverse the gas stream. Capital cost estimates were made for a 10 MW(e) pilot plant. The total projected costs, in mid-1978 dollars, range from $1,947 to $2,002 per electrical kilowatt. On the same basis, the cost of a water/steam solar plant is approximately 50% higher.

  16. Quantum Dynamics of Nonlinear Cavity Systems

    OpenAIRE

    Nation, Paul D.

    2010-01-01

    We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...

  17. Cavity QED: applications to quantum computation

    Science.gov (United States)

    Xiong, Han; Zubairy, M. Suhail

    2004-10-01

    Possible schemes to implement the basic quantum gates for quantum computation have been presented based on cavity quantum electrodynamics (QED) systems. We then discuss schemes to implement several important quantum algorithms such as the discrete quantum fourier transform (QFT) algorithm and Grover's quantum search algorithm based on these quantum gates. Some other applications of cavity QED based systems including the implementations of a quantum disentanglement eraser and an entanglement amplifier are also discussed.

  18. Open safety pin in the nasal cavity.

    Science.gov (United States)

    Sen, I; Sikder, B; Sinha, R; Paul, R

    2004-04-01

    Foreign bodies in the nasal cavity are common-day occurrences in Otolaryngologic practice. But an open safety pin in nose with it' s sharp end directed towards roof is a rare incidence, and available literature is silent about this presentation; it is probably, the first of it' s kind being reported. Two cases of safety pins inside the nasal cavity, one open and the other closed, have been presented here with a brief review of literature.

  19. Open safety pin in the nasal cavity

    OpenAIRE

    Sen, I; Sikder, B.; R. Sinha; Paul, R

    2004-01-01

    Foreign bodies in the nasal cavity are common-day occurrences in Otolaryngologic practice. But an open safety pin in nose with it’ s sharp end directed towards roof is a rare incidence, and available literature is silent about this presentation; it is probably, the first of it’ s kind being reported. Two cases of safety pins inside the nasal cavity, one open and the other closed, have been presented here with a brief review of literature.

  20. Cavity QED with Multiple Hyperfine Levels

    CERN Document Server

    Birnbaum, K M; Kimble, H J

    2006-01-01

    We calculate the weak-driving transmission of a linearly polarized cavity mode strongly coupled to the D2 transition of a single Cesium atom. Results are relevant to future experiments with microtoroid cavities, where the single-photon Rabi frequency g exceeds the excited-state hyperfine splittings, and photonic bandgap resonators, where g is greater than both the excited- and ground-state splitting.

  1. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  2. Cavity QED on a nanofiber using a composite photonic crystal cavity

    CERN Document Server

    Yalla, Ramachandrarao; Nayak, Kali P; Hakuta, Kohzo

    2014-01-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. Using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  3. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity.

    Science.gov (United States)

    Yalla, Ramachandrarao; Sadgrove, Mark; Nayak, Kali P; Hakuta, Kohzo

    2014-10-01

    We demonstrate cavity QED conditions in the Purcell regime for single quantum emitters on the surface of an optical nanofiber. The cavity is formed by combining an optical nanofiber and a nanofabricated grating to create a composite photonic crystal cavity. By using this technique, significant enhancement of the spontaneous emission rate into the nanofiber guided modes is observed for single quantum dots. Our results pave the way for enhanced on-fiber light-matter interfaces with clear applications to quantum networks.

  4. The emission properties of an atom inside a cavity when manipulating the atoms outside the cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; YE Liu; XIONG Kuang-wei; ZHANG Jin

    2003-01-01

    Considering three two-level atoms initially in the GHZ state, then one atom of them is put into an initially empty cavity and made resonant interaction. It is shown that the emission properties of the atom inside the cavity can be affected only when both of the atoms outside the cavity have been manipulated. This conclusion can also be generalized to n two-level atoms.

  5. LU Peizhang receives Golay Award

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Prof. LU Peizhang, an analytical chemist with the CAS Dalian Institute of Chemical Physics, received the prestigious Golay Award at the 30th International Symposium on Capillary Chromatography opened on 5 June in Dalian, a port city in northeast China's Liaoning Province.

  6. RFID receiver apparatus and method

    Science.gov (United States)

    Scott, Jeffrey Wayne

    2006-12-26

    An RFID backscatter interrogator for transmitting data to an RFID tag, generating a carrier for the tag, and receiving data from the tag modulated onto the carrier, the interrogator including a single grounded-coplanar wave-guide circuit board and at least one surface mount integrated circuit supported by the circuit board.

  7. Absorption Efficiency of Receiving Antennas

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...

  8. The CEBAF Separator Cavity Resonance Control System

    CERN Document Server

    Wissmann, Mark J; Hovater, Curt; Plawski, Tomasz

    2005-01-01

    The CEBAF energy upgrade from 6 GeV to 12GeV will increase the range of beam energies available to the experimental halls. RF deflection cavities (separators) are used to direct the electron beam to the three experimental halls. Consequently with the increase in RF separator cavity gradient needed for the higher energies, RF power will also increase requiring the cavities to have active resonance control. At the 6 GeV energy, the cavities are tuned mechanically and then stabilized with Low Conductivity Water (LCW), which is maintained at constant temperature of 95o Fahrenheit. This is no longer feasible and an active resonance control system, that controls both water temperature and flow has been built. The system uses a commercial PLC with embedded PID controls to control water temperature and flow to the cavities. The system allows the operator to remotely adjust temperature/flow and consequently cavity resonance for the full range of beam energies. Ultimately closed loop control will be maintained by monit...

  9. "Fine grain Nb tube for SRF cavities"

    Energy Technology Data Exchange (ETDEWEB)

    Robert E. Barber

    2012-07-08

    Superconducting radio frequency (SRF) cavities used in charged particle linear accelerators, are currently fabricated by deep drawing niobium sheets and welding the drawn dishes together. The Nb sheet has a non-uniform microstructure, which leads to unpredictable cavity shape and surface roughness, and inconsistent "spring-back" during forming. In addition, weld zones cause hot spots during cavity operation. These factors limit linear accelerator performance and increase cavity manufacturing cost. Equal channel angular extrusion (ECAE) can be used to refine and homogenize the microstructure of Nb tube for subsequent hydroforming into SRF cavities. Careful selection of deformation and heat treatment conditions during the processing steps can give a uniform and consistent microstructure in the tube, leading to improved deformability and lower manufacturing costs. Favorable microstructures were achieved in short test samples of RRR Nb tube, which may be particularly suitable for hydroforming into SRF cavity strings. The approach demonstrated could be applicable to microstructure engineering of other tube materials including tantalum, titanium, and zirconium.

  10. Cavity Mode Frequencies and Large Optomechanical Coupling in Two-Membrane Cavity Optomechanics

    CERN Document Server

    Li, J; Malossi, N; Vitali, D

    2015-01-01

    We study the cavity mode frequencies of a Fabry-Perot cavity containing two vibrating dielectric membranes and the corresponding optomechanical coupling. Due to optical interference, extremely large optomechanical coupling of the membrane relative motion is achieved when the two membranes are placed very close to a resonance of the inner cavity formed by the two membranes, and in the limit of highly reflective membranes. The upper bound of the coupling strength is given by the optomechanical coupling associated with the much shorter inner cavity, consistently with the analysis of A. Xuereb et al., Phys. Rev. Lett. 109, 223601 (2012).

  11. Scheme for implementing quantum secret sharing via cavity QED

    Institute of Scientific and Technical Information of China (English)

    Chen Zhi-Hua; Lin Xiu-Min

    2005-01-01

    An experimentally feasible scheme for implementing quantum secret sharing via cavity quantum electrodynamics (QED) is proposed. The scheme requires the large detuning of the cavity field from the atomic transition, the cavity is only virtually excited, thus the requirement on the quality factor of the cavity is greatly loosened.

  12. Teleportation of atomic states with a weak coherent cavity field

    Institute of Scientific and Technical Information of China (English)

    Zheng Shi-Biao

    2005-01-01

    A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another adwntage of the scheme is that only one cavity is required.

  13. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  14. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  15. Dual-cavity basket promotes encapsulation in water in an allosteric fashion.

    Science.gov (United States)

    Chen, Shigui; Yamasaki, Makoto; Polen, Shane; Gallucci, Judith; Hadad, Christopher M; Badjić, Jovica D

    2015-09-30

    We prepared dual-cavity basket 1 to carry six (S)-alanine residues at the entrance of its two juxtaposed cavities (289 Å(3)). With the assistance of (1)H NMR spectroscopy and calorimetry, we found that 1 could trap a single molecule of 4 (K1 = 1.45 ± 0.40 × 10(4) M(-1), ITC), akin in size (241 Å(3)) and polar characteristics to nerve agent VX (289 Å(3)). The results of density functional theory calculations (DFT, M06-2X/6-31G*) and experiments ((1)H NMR spectroscopy) suggest that the negative homotropic allosterism arises from the guest forming C-H···π contacts with all three of the aromatic walls of the occupied basket's cavity. In response, the other cavity increases its size and turns rigid to prevent the formation of the ternary complex. A smaller guest 6 (180 Å(3)), akin in size and polar characteristics to soman (186 Å(3)), was also found to bind to dual-cavity 1, although giving both binary [1⊂6] and ternary [1⊂62] complexes (K1 = 7910 M(-1) and K2 = 2374 M(-1), (1)H NMR spectroscopy). In this case, the computational and experimental ((1)H NMR spectroscopy) results suggest that only two aromatic walls of the occupied basket's cavity form C-H···π contacts with the guest to render the singly occupied host flexible enough to undergo additional structural changes necessary for receiving another guest molecule. The structural adaptivity of dual-cavity baskets of type 1 is unique and important for designing multivalent hosts capable of effectively sequestering targeted guests in an allosteric manner to give stable supramolecular polymers.

  16. First on-sun test of NaK pool-boiler solar receiver

    Science.gov (United States)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.; Cordeiro, P. G.; Dudley, V. E.; Rawlinson, K. S.

    During 1989-1990, a refluxing liquid-metal pool-boiler solar receiver designed for dish/Stirling application at 75 kW(sub t) throughput was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver included (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Following this first demonstration, a second-generation pool-boiler receiver that brings the concept closer to commercialization has been designed, constructed, and successfully tested. For long life, the new receiver is built from Haynes Alloy 230. For increased safety factors against film boiling and flooding, the absorber area and vapor-flow passages have been enlarged. To eliminate the need for trace heating, sodium has been replaced by the sodium-potassium alloy NaK-78. To reduce manufacturing costs, the receiver has a powdered-metal coating instead of EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it contains a small amount of xenon. In this paper, we present the receiver design and report the results of on-sun tests using a nominal 75 kW(sub t) test-bed concentrator to characterize boiling stability, hot-restart behavior, and thermal efficiency at temperatures up to 750 C. We also report briefly on late results from an advanced-concepts pool-boiler receiver.

  17. Diversity of MMSE MIMO Receivers

    CERN Document Server

    Mehana, Ahmed Hesham

    2011-01-01

    In most MIMO systems, the family of waterfall error curves, calculated at different spectral efficiencies, are asymptotically parallel at high SNR. In other words, most MIMO systems exhibit a single diversity value for all {\\em fixed} rates. The MIMO MMSE receiver does not follow this pattern and exhibits a varying diversity in its family of error curves. This effect cannot be captured by DMT analysis, due to the fact that all fixed rates correspond to the same multiplexing gain, thus they cannot be differentiated within DMT analysis. This work analyzes this interesting behavior of the MMSE MIMO receiver and produces the MMSE MIMO diversity at each rate. The diversity of the quasi-static flat-fading MIMO channel consisting of any arbitrary number of transmit and receive antennas is fully characterized, showing that full spatial diversity is possible for all antenna configurations if and only if the rate is within a certain bound which is a function of the number of antennas. For other rate brackets, the avail...

  18. [Efficacy of oral cavity care in preventing stomatitis (mucositis) in cancer chemotherapy].

    Science.gov (United States)

    Koshino, Miki; Sakai, Chie; Ogura, Takafumi; Kawasaki, Akiko; Fukuzato, Fumiko; Miyazaki, Yasuhiro

    2009-03-01

    Stomatitis is a common side effect during cancer chemotherapy. We hypothesized that careful oral cavity care using patient guidance and cleanliness index prevents stomatitis in cancer chemotherapy. We introduced oral care patient guidance including teaching good brushing methods, O'Leary's Plaque Control Record(PCR)as a cleanliness index, and Eilers' Oral Assessment Guide(OAG)as an overall index after April 2006. We evaluated the incidence of stomatitis in 20 patients(10 patients between April 2004 to May 2006 and 10 patients after April 2006)with esophageal cancer who received chemotherapy including 5-FU and CDDP. Patients receiving brushing training after 2006 were evaluated regarding cleanliness of their oral cavities using PCR index and OAG index. The rates of stomatitis were 60%(6/10)and 40%(4/10)before and after the introduction of oral care patient guidance. The average of PCR index decreased from 82% to 46% after teaching good brushing method to the patients. The average of OAG index after brushing training was 9.14 which was better score compared with previous reports. Introduction of oral care patient guidance decreased the incidence of stomatitis. Both PCR and OAG indexes were useful in evaluating the objective condition of the oral cavity and in sharing patients' information among a medical team. These indexes encouraged the patients to clean their oral cavities.

  19. Entanglement distillation for atomic states via cavity QED

    Science.gov (United States)

    Yang, Ming; Song, Wei; Cao, Zhuo-Liang

    2004-10-01

    Following a recent proposal (Phys. Rev. Lett. 85 (2000) 2392) about quantum information processing using dispersive atom-cavity interaction, in this paper, we proposed a physical scheme to concentrate the pure non-maximally entangled atomic states via cavity QED by using atomic collision in a far-off-resonant cavity. The most distinctive advantage of our scheme is that there is no excitation of cavity mode during the distillation procedure. Therefore the requirement on the quality of cavity is greatly loosened.

  20. New Method to Improve the Accelerating Gradient of Superconducting Cavity

    CERN Document Server

    Liu, Zhenchao

    2013-01-01

    Quench is a common phenomenon in a superconducting cavity and often limits the accelerating gradient of the cavity. Accurate location of the quench site can be located by second sound detection. For multi-cell superconducting cavity, one defect may cause the cell with defect quenches and then the whole cavity quenches. Now we proposed a new method to eliminate the bad influence of the quench cell to the whole cavity.

  1. Preparation of Cluster States for Many Atoms in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHAN Zhi-Ming

    2007-01-01

    We propose a scheme for the generation of the cluster states for many atoms in cavity QED. In our scheme,the atoms are sent through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited and no quantum information will be transferred from the atoms to the cavity fields. The advantage is that the cavities are suppressed during the procedure. The scheme can also be generalized to the ion trap system.

  2. Cavity nano-optomechanics: a nanomechanical system in a high finesse optical cavity

    CERN Document Server

    Stapfner, Sebastian; Hunger, David; Paulitschke, Philipp; Reichel, Jakob; Karrai, Khaled; Weig, Eva M; 10.1117/12.705901

    2011-01-01

    The coupling of mechanical oscillators with light has seen a recent surge of interest, as recent reviews report.[1, 2] This coupling is enhanced when confining light in an optical cavity where the mechanical oscillator is integrated as back- mirror or movable wall. At the nano-scale, the optomechanical coupling increases further thanks to a smaller optomechanical interaction volume and reduced mass of the mechanical oscillator. In view of realizing such cavity nano- optomechanics experiments, a scheme was proposed where a sub-wavelength sized nanomechanical oscillator is coupled to a high finesse optical microcavity.[3] Here we present such an experiment involving a single nanomechanical rod precisely positioned into the confined mode of a miniature Fabry-P\\'erot cavity.[4] We describe the employed stabilized cavity set-up and related finesse measurements. We proceed characterizing the nanorod vibration properties using ultrasonic piezo-actuation methods. Using the optical cavity as a transducer of nanomechan...

  3. Cavity-enhanced laser cooling of solid-state materials in a standing-wave cavity

    Institute of Scientific and Technical Information of China (English)

    Youhua Jia; Biao Zhong; Jianping Yin

    2008-01-01

    We propose a new method to cool the Yba+-doped ZBLANP glass in a standing-wave cavity. There are two advantages of this cavity-enhanced technique: the pumping power is greatly enhanced and the absorption of the cooling material is greatly increased. We introduce the basic principle of the cavity-enhanced laser cooling and discuss the cooling effect of a solid-state material in a cavity. From the theoretical study, it is found that the laser cooling effect is strongly dependent on the reflectivity of the cavity mirrors, the length of the solid material, the surface scattering of the material, and so on. Some optimal parameters for efficient laser cooling are obtained.

  4. CERN Developments for 704 MHz Superconducting Cavities

    CERN Document Server

    Capatina, O; Aviles Santillana, I; Arnau Izquierdo, G; Bonomi, R; Calatroni, S; Chambrillon, J; Gerigk, F; Garoby, R; Guinchard, M; Junginger, T; Malabaila, M; Marques Antunes Ferreira, L; Mikulas, S; Parma, V; Pillon, F; Renaglia, T; Schirm, K; Tardy, T; Therasse, M; Vacca, A; Valverde Alonso, N; Vande Craen, A

    2013-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium beta=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the stat...

  5. Long Wave Infrared Cavity Enhanced Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Scott, David C.; Cannon, Bret D.; Myers, Tanya L.; Bonebrake, Christopher A.; Aker, Pam M.; Wojcik, Michael D.; Munley, John T.; Nguyen, Vinh T.; Schultz, John F.

    2004-10-01

    The principal goal of Pacific Northwest National Laboratory's (PNNL's) long wave infrared (LWIR) cavity enhanced sensor (CES) project is to explore ultra-sensitive spectroscopic techniques and apply them to the development of LWIR chemical sensors needed for detecting weapons proliferation. This includes detecting not only the weapons of mass destruction (WMDs) themselves, but also signatures of their production and/or detonation. The LWIR CES project is concerned exclusively with developing point sensors; other portions of PNNL's IR Sensors program address stand off detection. PNNL's LWIR CES research is distinguished from that done by others by the use quantum cascade lasers (QCLs) as the light source. QCLs are novel devices, and a significant fraction of our research has been devoted to developing the procedures and hardware required to implement them most effectively for chemical sensing. This report details the progress we have made on our LWIR CES sensor development. During FY02, PNNL investigated three LWIR CES implementations beginning with the easiest to implement, direct cavity-enhanced detection (simple CES), including a technique of intermediate difficulty, cavity-dithered phase-sensitive detection (FM recovery CES) through to the most complex technique, that of resonant sideband cavity-enhanced detection also known as noise-immune cavity-enhanced optical heterodyne molecular spectroscopy, or NICE-OHMS.

  6. Inflammatory oral cavity diseases of the cat.

    Science.gov (United States)

    Pedersen, N C

    1992-11-01

    There is a great deal of frustration among veterinarians about the diagnosis and treatment of inflammatory diseases of the oral cavity of the cat. This frustration is due to both the high frequency of feline oral inflammatory lesions and our poor understanding of their causes. This poor understanding can be blamed on several things: (1) a rapidly emerging, but still relatively poor, understanding of feline diseases in general and nutrition in particular; (2) a tendency to lump rather than separate specific oral inflammations; (3) a tendency not to use a thorough and systematic approach to diagnosing oral cavity disease; and (4) the reluctance of veterinarians to apply what is already known about human oral cavity diseases to cats. When problems 2 through 4 are adequately addressed, it becomes apparent that we really know more about oral cavity disease in the cat than we thought we knew and that great progress has been made. The task ahead is to define, in precise medical terms, those remaining disease entities of the oral cavity that pose the greatest health risk to cats, to apply what has been already been discovered from human disease counterparts, and to study them systematically.

  7. Plasmonic band gap cavities on biharmonic gratings

    Science.gov (United States)

    Kocabas, Askin; Seckin Senlik, S.; Aydinli, Atilla

    2008-05-01

    In this paper, we have experimentally demonstrated the formation of plasmonic band gap cavities in infrared and visible wavelength range. The cavity structure is based on a biharmonic metallic grating with selective high dielectric loading. A uniform metallic grating structure enables strong surface plasmon polariton (SPP) excitation and a superimposed second harmonic component forms a band gap for the propagating SPPs. We show that a high dielectric superstructure can dramatically perturb the optical properties of SPPs and enables the control of the plasmonic band gap structure. Selective patterning of the high index superstructure results in an index contrast in and outside the patterned region that forms a cavity. This allows us to excite the SPPs that localize inside the cavity at specific wavelengths, satisfying the cavity resonance condition. Experimentally, we observe the formation of a localized state in the band gap and measure the dispersion diagram. Quality factors as high as 37 have been observed in the infrared wavelength. The simplicity of the fabrication and the method of testing make this approach attractive for applications requiring localization of propagating SPPs.

  8. Resonant cavity monitors for charged beam measurements.

    Science.gov (United States)

    Rutledge, Gary A.

    2003-04-01

    The G_zero experiment at Jefferson Lab, will measure the strange quark content of the proton as it contributes to the proton's charge and magnetic properties. Parity violating elastic electron scattering is being used to measure the physics asymmetry to better than 1 part in 10^7. Helicity correlated properties of the electron beam used in this experiment must be measured to better than 1 in 10^7 over the course of the experiment. G_zero employs two types of beam monitors for this purpose. Standard, 4-wire, ``strip-line'' monitors measure beam positions with a resolution of 20microns. Another type of monitor, Beam Resonant Cavities are being tested. Two sets of three cavities are used to measure beam position in X and Y, as well as beam current. Presented will be the performance and evaluation of these cavities including their theoretical versus actual operation, their noise characteristics, and signal resolution. These cavities can be paired with either linear or logarithmic amplifier electronics. Overall performance of these cavity systems including amplifiers will be compared with standard 'strip-line' monitors.

  9. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  10. DISCHARGING MASTOID CAVITY: A CLINICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Praveen Kumar

    2015-05-01

    Full Text Available CONTEXT: A discharging mastoid cavity is a frustrating condition for both patient and surgeon and can occur after a canal wall down mastoidectomy operation . AIMS: To determine the percentage of patients having a discharging mastoid cavity and to establish the aetiological factors responsible for it . SETTING: Academic tertiary care referral institution . DESIGN: Prospective study MATERIALS AND METHODS: One hundred and sixty nine patie nts with chronic suppurative otitis media with cholesteatoma who underwent a canal wall down mastoidectomy were included in the study . These patients were regularly followed up to detect the occurrence of discharging mastoid cavity . RESULTS: Forty one ( 24 . 26% patients had a discharging mastoid cavity after a mean follow up of 4 . 2 years . The main causes were tympanic membrane perforation with exposed middle ear mucosa and open eustachian tube in thirty two patients ( 78 . 04% , followed by meatal stenosis in twenty five patients ( 60 . 97% and high facial ridge in twenty patients ( 48 . 78% . CONCLUSIONS: Tympanic membrane perforation with exposure of middle ear mucosa , meatal stenosis and a high facial ridge are important causes for a discharging mastoid cavity .

  11. Chip Advancer For GPS Receiver

    Science.gov (United States)

    Meehan, Thomas K.; Srinivasan, Jeffrey M.; Thomas, J. Brooks

    1989-01-01

    Instrument errors made negligible. For each integration interval, both delay and rate of change of delay initialized to small fraction of chip - for example, to order of 10 to the negative 7th power - thereby making feedback control and extraction of delay highly accurate and flexible. With appropriate selection of sampling rate relative to chip rate, commensurability errors reduced to extremely small levels. In Global Positioning System (GPS) receiver, pseudorandom code sequence generated by simple digital logic incorporating effects of time, delay, and rate of change of delay. Flexibility in starting time and sum interval very useful in aligning correlation interval with beginnings and endings of data bits.

  12. Cryogenic cavity detector for a large-scale cold dark-matter axion search

    CERN Document Server

    Peng, H; Daw, E; Golubev, N A; Hagmann, C A; Kinion, D; Laveigne, J; Moltz, D M; Nezrick, F A; Powell, J; Rosenberg, L J; Sikivie, P; Stoeffl, W; Sullivan, N S; Tanner, D B; Turner, M S; Bibber, K V

    2000-01-01

    An axion detector consisting of a tunable high-Q cavity, a superconducting magnet, and a superheterodyne receiver with an ultra-low noise pre-amplifier has been built to search for galactic halo axions in the mass range of 1.3-13 mu eV. The detector instrumentation, search process, and data analysis are described. For the first time, this class of detector has reached sufficient sensitivity to detect halo axions with high confidence.

  13. Cavity lining after excavating caries lesions

    DEFF Research Database (Denmark)

    Schwendicke, Falk; Göstemeyer, Gerd; Gluud, Christian

    2015-01-01

    OBJECTIVES: After removal of dentin caries lesions, cavity lining has been advocated. Non-clinical data support this approach, but clinical data are sparse and ambiguous. We aimed at evaluating the benefits and harms of cavity lining using meta-analysis and Trial Sequential Analysis. DATA: We...... included randomized clinical trials comparing restorations without versus with cavity lining for treating primary caries lesions. Only trials reporting failure (defined as need to re-retreat) after ≥1 year follow-up were included. Trial selection, data extraction, and risk of bias assessment were conducted....... STUDY SELECTION: From 128 studies, three randomized trials (89/130 patients or teeth), all treating primary teeth, were included. The trials had high risk of bias. All trials compared no lining versus calcium hydroxide lining after selective caries removal followed by adhesive restoration. Follow...

  14. Decoherence of mesoscopic states of cavity fields

    CERN Document Server

    Fonseca-Romero, K M; De Faria, J G P; Salgueiro, A N; De Toledo di Piza, A F R

    1998-01-01

    We show that two-atom correlation measurements of the type involved in a recent experimental study of the evolution of a mesoscopic superposition state prepared in a definite mode of a high-Q cavity can be used to determine the eigenvalues of the reduced density matrix of the field, provided the assumed dynamical conditions are actually fulfilled to experimental accuracy. These conditions involve i) a purely dispersive coupling of the field to the Rydberg atoms used to manipulate and to monitor the cavity field, and ii) the effective absence of correlations in the ground state of the system consisting of the cavity coupled to the ``reservoir'' which accounts for the decoherence and damping processes. A microscopic calculation at zero temperature is performed and compared to master equation results.

  15. Field Stabilization of Alvarez-Type Cavities

    CERN Document Server

    Du, Xiaonan; Mickat, Sascha; Seibel, Anja

    2016-01-01

    Alvarez-type cavities are commonly used to reliably accelerate high quality hadron beams. Optimization of their longitudinal field homogeneity is usually accomplished by post-couplers, i.e. additional rods being integrated into the cavity. This paper instead proposes to use the stems that keep the drift tubes for that purpose. As their individual azimuthal orientations do not change the cavity's undisturbed operational mode, they comprise a set of free parameters that can be used to modify higher mode field patterns. The latter have significant impact on the robustness of the operational mode w.r.t. eventual perturbations. Several optimized stem configurations are presented and benchmarked against each other. The path to obtain these configurations is paved analytically and worked out in detail through simulations. It is shown that the method provides for flat field distributions and very low field tilt sensitivities without insertion of post-couplers.

  16. Plasmonic coaxial waveguide-cavity devices.

    Science.gov (United States)

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  17. Coupled external cavity photonic crystal enhanced fluorescence.

    Science.gov (United States)

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-05-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ∼10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ∼10(5) × improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays.

  18. Ponderomotive light squeezing with atomic cavity optomechanics

    CERN Document Server

    Brooks, Daniel W C; Brahms, Nathan; Purdy, Thomas P; Schreppler, Sydney; Stamper-Kurn, Dan M

    2011-01-01

    Accessing distinctly quantum aspects of the interaction between light and the position of a mechanical object has been an outstanding challenge to cavity-optomechanical systems. Only cold-atom implementations of cavity optomechanics have indicated effects of the quantum fluctuations in the optical radiation pressure force. Here we use such a system, in which quantum photon-number fluctuations significantly drive the center of mass of an atomic ensemble inside a Fabry-Perot cavity. We show that the optomechanical response both amplifies and ponderomotively squeezes the quantum light field. We also demonstrate that classical optical fluctuations can be attenuated by 26 dB or amplified by 20 dB with a weak input pump power of < 40 pW, and characterize the optomechanical amplifier's frequency-dependent gain and phase response in both the amplitude and phase-modulation quadratures.

  19. Nitrogen doping study in ingot niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kneisel, Peter [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Myneni, Ganapati Rao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Makita, Junki [Old Dominion Univ., Norfolk, VA (United States)

    2015-09-01

    Thermal diffusion of nitrogen in niobium superconducting radio frequency cavities at temperature ~800 °C has resulted in the increase in quality factor with a low-field Q-rise extending to Bp > 90 mT. However, the maximum accelerating gradient of these doped cavities often deteriorates below the values achieved by standard treatments prior to doping. Here, we present the results of the measurements on ingot niobium cavities doped with nitrogen at 800 °C. The rf measurements were carried out after the successive electropolishing to remove small amount of material from the inner surface layer. The result showed higher breakdown field with lower quality factor as material removal increases.

  20. Broadband direct RF digitization receivers

    CERN Document Server

    Jamin, Olivier

    2014-01-01

    This book discusses the trade-offs involved in designing direct RF digitization receivers for the radio frequency and digital signal processing domains.  A system-level framework is developed, quantifying the relevant impairments of the signal processing chain, through a comprehensive system-level analysis.  Special focus is given to noise analysis (thermal noise, quantization noise, saturation noise, signal-dependent noise), broadband non-linear distortion analysis, including the impact of the sampling strategy (low-pass, band-pass), analysis of time-interleaved ADC channel mismatches, sampling clock purity and digital channel selection. The system-level framework described is applied to the design of a cable multi-channel RF direct digitization receiver. An optimum RF signal conditioning, and some algorithms (automatic gain control loop, RF front-end amplitude equalization control loop) are used to relax the requirements of a 2.7GHz 11-bit ADC. A two-chip implementation is presented, using BiCMOS and 65nm...

  1. Prominence Mass Supply and the Cavity

    Science.gov (United States)

    Schmit, Donald J.; Gibson, S.; Luna, M.; Karpen, J.; Innes, D.

    2013-01-01

    A prevalent but untested paradigm is often used to describe the prominence-cavity system; the cavity is under-dense because it it evacuated by supplying mass to the condensed prominence. The thermal non-equilibrium (TNE) model of prominence formation offers a theoretical framework to predict the thermodynamic evolutin of the prominence and the surrounding corona. We examine the evidence for a prominence-cavity connection by comparing the TNE model and diagnostics of dynamic extreme ultraviolet (EUV) emission surrounding the prominence, specifically prominence horns. Horns are correlated extensions of prminence plasma and coronal plasma which appear to connect the prominence and cavity. The TNE model predicts that large-scale brightenings will occur in the Solar Dynamics Observatory Atmospheric Imaging Assembly 171 A badpass near he prominence that are associated with the cooling phase of condensation formation. In our simulations, variations in the magnitude of footpoint heating lead to variations in the duration, spatial scale, and temporal offset between emission enhancements in the other EUV bandpasses. While these predictions match well a subset of the horn observations, the range of variations in the observed structures is not captured by the model. We discuss the implications of one-dimensional loop simulations for the three-dimensional time-averaged equilibrium in the prominence and the cavity. Evidence suggests that horns are likely caused by condensing prominence plasma, but the larger question of whether this process produces a density-depleted cavity requires a more tightly constrained model of heating and better knowledge of the associated magnetic structure.

  2. 1.3 GHz superconducting RF cavity program at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, C.M.; Arkan, T.; Barbanotti, S.; Carter, H.; Champion, M.; Cooley, L.; Cooper, C.; Foley, M.; Ge, M.; Grimm, C.; Harms, E.; /Fermilab

    2011-03-01

    At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules (CMs) for Project X, an International Linear Collider (ILC), or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.

  3. Ferrite-filled cavities for compact planar resonators

    Science.gov (United States)

    Keatley, P. S.; Durrant, C. J.; Berry, S. J.; Sirotkin, E.; Hibbins, A. P.; Hicken, R. J.

    2014-01-01

    Sub-wavelength metallic planar cavities, closed at one end, have been constructed by wrapping aluminium foil around teflon or ferrite slabs. Finite cavity width perturbs the fundamental cavity mode frequency of ferrite-filled cavities due to different permeability inside and outside of the cavity, in contrast to teflon-filled cavities, while the cavity length required to achieve a specific resonance frequency is significantly reduced for a ferrite-filled cavity. Ferrite-filled cavities may be excited by an in-plane alternating magnetic field and may be advantageous for high-frequency (HF) and ultra HF tagging and radio frequency identification of metallic objects within security, manufacturing, and shipping environments.

  4. Instrumentation for localized superconducting cavity diagnostics

    Science.gov (United States)

    Conway, Z. A.; Ge, M.; Iwashita, Y.

    2017-03-01

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  5. Fundamental Research in Superconducting RF Cavity Design

    Energy Technology Data Exchange (ETDEWEB)

    Georg Hoffstaetter

    2012-11-13

    This is a 3-year SRF R&D proposal with two main goals: 1) to benefit near term high gradient SRF applications by understanding the causes of quench at high fields in present-day niobium cavities 2) to open the long-range prospects for SRF applications by experimentally verifying the recent exciting theoretical predication for new cavity materials such as Nb3Sn and MgB2. These predictions shwo that ultimately gradients of 100Mv/m to 200MV/m may become possible as material imperfections are overcome.

  6. Energy Levels of Coupled Plasmonic Cavities

    Institute of Scientific and Technical Information of China (English)

    Chuan-Pu Liu; Xin-Li Zhu; Jia-Sen Zhang; Jun Xu; Yamin Leprince-Wang; Da-Peng Yu

    2016-01-01

    We demonstrate the hybridization of the plasmonic modes in directly coupled whispering gallery cavities fabricated on silver films and present the mode patterns and energy levels using cathodoluminescence spectroscopy.Although the energy of the most antisymmetrically coupled modes is higher than that of the corresponding symmetrically coupled ones,the contrary cases happen for small quantum number modes.We attribute the phenomenon to the different surface plasmon polariton paths between the symmetrically and antisymmetrically coupled modes.These results provide an understanding of the resonant properties in coupled plasmonic cavities,which have potential applications in nanophotonic devices.

  7. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  8. Impedance-matched cavity quantum memory

    CERN Document Server

    Afzelius, Mikael

    2010-01-01

    We consider an atomic frequency comb based quantum memory inside an asymmetric optical cavity. In this configuration it is possible to absorb the input light completely in a system with an effective optical depth of one, provided that the absorption per cavity round trip exactly matches the transmission of the coupling mirror ("impedance matching"). We show that the impedance matching results in a readout efficiency only limited by irreversible atomic dephasing, whose effect can be made very small in systems with large inhomogeneous broadening. Our proposal opens up an attractive route towards quantum memories with close to unit efficiency.

  9. Achieving High Sensitivity in Cavity Optomechanical Magnetometry

    Science.gov (United States)

    2014-03-08

    contained in this report are those of the author(s) and should not contrued as an official Department of the Army position, policy...architecture  with  Terfenol-­‐D  affixed  to  the  top  of   the   toroid .  (b)  New  cavity  optomechanical  magnetometer...architecture  with  Terfenol-­‐D  affixed  inside   the   toroid  in  a  specially  designed  cavity.   Fig.  2

  10. Accelerating RF cavity of the Booster

    CERN Multimedia

    1983-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity.It consists of 2 quarter-wave ferrite-loaded resonators. 2 figure-of-eight loops tune the frequency throughout the accelerating cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm, and are forced-air cooled. The 2 round objects in the front-compartments are the final-stage power-tetrodes. See also 8111095.

  11. Accelerating RF cavity of the Booster

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Each of the 4 PS Booster rings has a single accelerating cavity. It consists of 2 quarter-wave ferrite-loaded resonators. There are 2 figure-of-eight loops on the ferrite loads for tuning the frequency throughout the acceleration cycle, from 3 to 8 MHz (from 50 MeV at injection to the original Booster energy of 800 MeV, 2 GeV today). The cavities have a flat design, to fit the ring-to-ring distance of 36 cm. The tube for forced-air cooling is visible in the left front. See also 8301084.

  12. Electrostatically tunable optomechanical "zipper" cavity laser

    CERN Document Server

    Perahia, Raviv; Meenehan, Sean; Alegre, Thiago P Mayer; Painter, Oskar

    2010-01-01

    A tunable nanoscale "zipper" laser cavity, formed from two doubly clamped photonic crystal nanobeams, is demonstrated. Pulsed, room temperature, optically pumped lasing action at a wavelength of 1.3 micron is observed for cavities formed in a thin membrane containing InAsP/GaInAsP quantum-wells. Metal electrodes are deposited on the ends of the nanobeams to allow for micro-electro-mechanical actuation. Electrostatic tuning and modulation of the laser wavelength is demonstrated at a rate of 0.25nm/V^2 and a frequency as high as 6.7MHz, respectively.

  13. Intensity correlations near a cavity QED antiresonance

    Science.gov (United States)

    Xu, Qing; Mølmer, Klaus

    2017-02-01

    We explore the antiresonance phenomenon, where a two-level atom is excited inside a single-mode, laser-driven cavity without appreciably exciting the field mode. Antiresonance is well known in classical physics and the excitation of the atomic and field degrees of freedom by a weak laser field can be easily understood in a classical oscillator picture. The temporal intensity correlations in the signal emitted from the atom and from the cavity, however, show strong signs of nonclassical behavior. We calculate these correlations and show how they can be interpreted in terms of a conditional quantum trajectory dynamics of the system.

  14. Transformation optics for cavity array metamaterials.

    Science.gov (United States)

    Quach, James Q; Su, Chun-Hsu; Greentree, Andrew D

    2013-03-11

    Cavity array metamaterials (CAMs), composed of optical microcavities in a lattice coupled via tight-binding interactions, represent a novel architecture for engineering metamaterials. Since the size of the CAMs' constituent elements are commensurate with the operating wavelength of the device, it cannot directly utilise classical transformation optics in the same way as traditional metamaterials. By directly transforming the internal geometry of the system, and locally tuning the permittivity between cavities, we provide an alternative framework suitable for tight-binding implementations of metamaterials. We develop a CAM-based cloak as the case study.

  15. Optical cavity resonator in an expanding universe

    Science.gov (United States)

    Kopeikin, Sergei M.

    2015-02-01

    We study the cosmological evolution of frequency of a standing electromagnetic wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. Because of the Einstein principle of equivalence (EEP), one can find a local coordinate system (a local freely falling frame), in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate, . Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to unambiguously decide whether atomic clocks based on quantum transitions of atoms, ticks at the same rate as the clocks based on electromagnetic modes of a cavity. To resolve this ambiguity we have to analyse the cavity rigidity and the oscillation of its electromagnetic modes in an expanding universe by employing the full machinery of the Maxwell equations irrespectively of the underlying theory of gravity. We proceed in this way and found out that the size of the cavity and the electromagnetic frequency experience an adiabatic drift in conformal (unphysical) coordinates as the universe expands in accordance with the Hubble law. We set up the oscillation equation for the resonant electromagnetic modes, solve it by the WKB approximation, and reduce the coordinate-dependent quantities to their counterparts measured by a local observer who counts time with atomic clock. The solution shows that there is a perfect mutual cancellation of the adiabatic drift of cavity's frequency by space transformation to local coordinates and the time counted by the clocks based on electromagnetic modes of cavity has the same rate as that of atomic clocks. We conclude that if general relativity is correct and the local expansion of space is isotropic there should be no cosmological drift of frequency of a

  16. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables predic...... prediction of short term triaxial behaviour from uniaxial stress-strain curves. Key results from a nonlinear finite element calculation of a gas-filled cavity are given, and the general features are related to a simple nonlinear method of stress evaluation....

  17. Instrumentation for localized superconducting cavity diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Z. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Division; Ge, M. [Cornell Lab. for Accelerator-Based Sciences and Education, Ithaca, NY (United States); Iwashita, Y. [Kyoto Univ. (Japan)

    2017-01-12

    Superconducting accelerator cavities are now routinely operated at levels approaching the theoretical limit of niobium. To achieve these operating levels more information than is available from the RF excitation signal is required to characterize and determine fixes for the sources of performance limitations. This information is obtained using diagnostic techniques which complement the analysis of the RF signal. In this paper we describe the operation and select results from three of these diagnostic techniques: the use of large scale thermometer arrays, second sound wave defect location and high precision cavity imaging with the Kyoto camera.

  18. Cavity Loss Induced Generation of Entangled Atoms

    CERN Document Server

    Plenio, M B; Beige, A; Knight, P L

    1999-01-01

    We discuss the generation of entangled states of two two-level atoms inside an optical resonator. When the cavity decay is continuously monitored, the absence of photon-counts is associated with the presence of an atomic entangled state. In addition to being conceptually simple, this scheme could be demonstrated with presently available technology. We describe how such a state is generated through conditional dynamics, using quantum jump methods, including both cavity damping and spontaneous emission decay, and evaluate the fidelity and relative entropy of entanglement of the generated state compared with the target entangled state.

  19. BNl 703 MHz superconducting RF cavity testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, B.; Altinbas, Z.; Burrill, A.; Ben-Zvi, I.; Gassner, D.; Hahn, H.; Hammons, L.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Laloudakis, N.; Lederle, D.; Litvinenko, V.; McIntyre, G.; Pate, D.; Phillips, D.; Schultheiss, C.; Seda,T.; Than, R.; Xu, W.; Zaltsman, A.; Schultheiss, T.

    2011-03-28

    The BNL 5-cell, 703 MHz superconducting accelerating cavity has been installed in the high-current ERL experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q{sub 0} of 1e10. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.

  20. A STUDY OF RAPID CAVITY TUNING.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO, Y.

    2001-07-12

    An FFAG moot likely requires rapid cavity tuning. The cavity must also have a very high gradient. To satisfy both the high power and rapid tuning requirements is a big challenge. Detailed investigation of the possibility is addressed. Included are general thoughts, dual-loop and simple loop analyses, and a study of using ferrite or PIN diodes. Also proposed is a phase control scheme, which may be a better solution if the needed components can be developed. Finally, an energy analysis reveals the difficult of high power tuning.

  1. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  2. Parasitic Cavities Losses in SPEAR-2

    Energy Technology Data Exchange (ETDEWEB)

    Sands, Matt

    2016-12-19

    In PEP the large number of particles in a bunch, together with the small bunch length, may cause grievous energy loss from the beam to parasitic modes in the accelerating cavities. I have recently tried to estimate the parasitic cavity in PEP, based on a paper of Keil and I have obtained the result that the loss to parasitic modes will be about 10 MeV per particle per revolution for a bunch length of about 10 cm. In this note, I bring together some of the considerations that might bear on an experimental investigation of the loss using SPEAR-2.

  3. Thermal buffering of receivers for parabolic dish solar thermal power plants

    Science.gov (United States)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  4. Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries

    Science.gov (United States)

    Yellowhair, Julius; Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.

    2014-09-01

    Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.

  5. Pulsed, High Power Microwave Processing of Field Emission in Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    I.E. Campisi

    1992-08-03

    The phenomenon of field emission is very well known: electrons are extracted from within the solid state potential well of a metal and are emitted from the metal's surface under the presence of an accelerating potential. In many accelerators, electromagnetic energy is delivered to charged particles by means of microwave cavities excited in modes with electric field components aligned along the particles trajectory. If the mode used is of the TM type (most accelerators operate in the TM{sub 010} mode), then a surface electric field inside the cavities exists which can produce field emitted electrons when allowed by the phase of the fields. These field emitted currents can cause considerable current loading and bremsstrahlung radiation in normal conducting cavities (mostly copper), but in superconducting cavities they have the additional effect of locally heating the superconducting material above its transition temperature and causing performance degradation of the cavities and eventually quenches (transition to the normal conducting state). At present this phenomenon constitutes the limiting factor in superconducting cavity performance, and is receiving a great deal of attention. Several diagnostic methods have been developed to detect, locate and characterize the sources of field-emitted electrons. Methods have also been proposed and tested which decrease the incidence of field emission sites on metal surfaces, but the most effective method to date requires high temperature firing of the superconducting structures in an ultra high vacuum. This can be done only if the cavities are completely removed from their cryostat, a lengthy and costly process. In this paper the properties and advantages are examined of a different method for field emission processing, which does not require a cavity disassembly and which can be performed in situ. The method described makes use of short, high peak power RF pulses to reach high electric fields for a short time. At the same

  6. CERN physicist receives Einstein Medal

    CERN Multimedia

    2006-01-01

    On 29 June the CERN theorist Gabriele Veneziano was awarded the prestigious Albert Einstein Medal for significant contributions to the understanding of string theory. This award is given by the Albert Einstein Society in Bern to individuals whose scientific contributions relate to the work of Einstein. Former recipients include exceptional physicists such as Murray Gell-Mann last year, but also Stephen Hawking and Victor Weisskopf. Gabriele Veneziano, a member of the integrated CERN Theory Team since 1977, led the Theory Division from 1994 to 1997 and has already received many prestigious prizes for his outstanding work, including the Enrico Fermi Prize (see CERN Courier, November 2005), the Dannie Heineman Prize for mathematical physics of the American Physical Society in 2004 (see Bulletin No. 47/2003), and the I. Ya. Pomeranchuk Prize of the Institute of Theoretical and Experimental Physics (Moscow) in 1999.

  7. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cheng, Guangfeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davis, G [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Macha, Kurt [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Overton, Roland [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Spell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  8. Efficient generation of Bell-cat states in remote cavities

    Institute of Scientific and Technical Information of China (English)

    LI Xing; ZHANG Ying-Jie; XIA Yun-Jie

    2008-01-01

    In the context of cavity quantum electrodynamics (QED), a potential scheme is proposed to generate entangled coherentstates. The scheme includes twice interactions of two-level atoms with cavities. In the first interaction, two atoms are sentinto a microwave cavity with the large detuning respectively. And then the second interaction is that the two atoms enteranother microwave cavity and are driven by a resonant classical field meantime. When we choose the proper interactiontime and make measurement on the two atoms, the two microwave cavity mode fields are determinatively entangled. Inaddition, it is easy to generalize the scheme to multi-cavity and multi-atom.

  9. Schemes for Generating Cluster States via Cavity Systems

    Institute of Scientific and Technical Information of China (English)

    DU Gang; LAI Bo-Hui; YU Ya-Fei; ZHANG Zhi-Ming

    2009-01-01

    We propose a scheme for generating an N-atom cluster state via cavity quantum electrodynamics (CQED).In our scheme, there is no transfer of quantum information between the atoms and the cavity, i.e., the cavity is always in the vacuum state, so the cavity decay can be suppressed.Also, the generated cluster state is the entanglement of the ground states, so the atomic spontaneous emission can be avoided.Therefore, the cluster state generated in our scheme has a longer lifetime. Furthermore, the requirement on the quality factor of the cavity greatly loosened for the cavity is only virtually excited.

  10. BIOREACTOR WITH LID FOR EASY ACCESS TO INCUBATION CAVITY

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible.......There is provided a bioreactor which is provided with a lid (13) that facilitates access to the incubation cavity. Specifically the end wall of the incubation cavity is constituted by the lid (13) so that removal of the cap renders the incubation cavity fully accessible....

  11. Subwavelength rectangular cavity partially filled with left-handed materials

    Institute of Scientific and Technical Information of China (English)

    Jiang Tian; Chen Yan; Feng Yi-Jun

    2006-01-01

    In this paper, we present the electromagnetic analysis of a rectangular cavity partially filled with a left-handed material slab. Our theoretical investigation shows that there exist novel resonant modes in the cavity, and such a cavity becomes a subwavelength cavity. The eigenvalue equation of the cavity is derived and the resonant frequencies of the novel modes are calculated by using numerical simulation. We also discuss the stability of the novel resonant modes and show the best condition under which a useful rectangular cavity of subwavelength dimensions with tolerable stability is obtained.

  12. Superconducting RF cavity R&D for future accelerators

    CERN Document Server

    Ginsburg, C M

    2009-01-01

    High-beta superconducting radiofrequency (SRF) elliptical cavities are being developed for several accelerator projects including Project X, the European XFEL, and the International Linear Collider (ILC). Fermilab has recently established an extensive infrastructure for SRF cavity R&D for future accelerators, including cavity surface processing and testing and cavity assembly into cryomodules. Some highlights of the global effort in SRF R&D toward improving cavity performance, and Fermilab SRF cavity R&D in the context of global projects are reviewed.

  13. Controlled coupling of photonic crystal cavities using photochromic tuning

    CERN Document Server

    Cai, Tao; Solomon, Glenn S; Waks, Edo

    2013-01-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  14. Cavity sideband cooling of a single trapped ion.

    Science.gov (United States)

    Leibrandt, David R; Labaziewicz, Jaroslaw; Vuletić, Vladan; Chuang, Isaac L

    2009-09-04

    We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped (88)Sr(+) ion in the resolved-sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405 (2001)] without any free parameters, validating the rate equation model for cavity cooling.

  15. Bifurcation structure of an optical ring cavity

    DEFF Research Database (Denmark)

    Kubstrup, C.; Mosekilde, Erik

    1996-01-01

    One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...

  16. Hybrid ion chains inside an optical cavity

    Science.gov (United States)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  17. Coherent acoustic excitation of cavity polaritons

    DEFF Research Database (Denmark)

    Poel, Mike van der; de Lima, M. M.; Hey, R.

    and highly nonlinear optical response.Our sample consists of epitaxially grown GaAs/AlGaAs QWs located at the anti-node ofa high Q lambda cavity, which is resonant with the QW excitonic transition3. The SAWfield, which is excited by an interdigital transducer on the piezoelectric GaAs samplesurface...

  18. Optical cavity resonator in an expanding universe

    CERN Document Server

    Kopeikin, Sergei

    2014-01-01

    We study evolution of frequency of a standing electromagnetic (EM) wave in a resonant optical cavity placed to the expanding manifold described by the Robertson-Walker metric. One builds a local coordinate system in which spacetime is locally Minkowskian. However, due to the conformal nature of the Robertson-Walker metric the conventional transformation to the local inertial coordinates introduces ambiguity in the physical interpretation of the local time coordinate. Therefore, contrary to a common-sense expectation, a straightforward implementation of EEP alone does not allow us to decide whether atomic clocks ticks at the same rate as the clocks based on EM modes of a cavity. To resolve the ambiguity we analyzed the cavity rigidity and the oscillation of its EM modes in an expanding universe by employing the Maxwell equations. We found out that both the size of the cavity and the EM frequency experience an adiabatic drift in conformal coordinates as the universe expands. We set up the oscillation equation f...

  19. Defects in III-nitride microdisk cavities

    Science.gov (United States)

    Ren, C. X.; Puchtler, T. J.; Zhu, T.; Griffiths, J. T.; Oliver, R. A.

    2017-03-01

    Nitride microcavities offer an exceptional platform for the investigation of light–matter interactions as well as the development of devices such as high efficiency light emitting diodes (LEDs) and low-threshold nanolasers. Microdisk geometries in particular are attractive for low-threshold lasing applications due to their ability to support high finesse whispering gallery modes (WGMs) and small modal volumes. In this article we review the effect of defects on the properties of nitride microdisk cavities fabricated using photoelectrochemical etching of an InGaN sacrificial superlattice (SSL). Threading dislocations originating from either the original GaN pseudosubstrate are shown to hinder the undercutting of microdisk cavities during the photoelectric chemical etching process resulting in whiskers of unetched material on the underside of microdisks. The unetched whiskers provide a pathway for light to escape, reducing microdisk Q-factor if located in the region occupied by the WGMs. Additionally, dislocations can affect the spectral stability of quantum dot emitters, thus hindering their effective integration in microdisk cavities. Though dislocations are clearly undesirable, the limiting factor on nitride microdisk Q-factor is expected to be internal absorption, indicating that the further optimisation of nitride microdisk cavities must incorporate both the elimination of dislocations and careful tailoring of the active region emission wavelength and background doping levels.

  20. Lambda shifted photonic crystal cavity laser

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara;

    2010-01-01

    We propose and demonstrate an alternative type of photonic crystal laser design that shifts all the holes in the lattice by a fixed fraction of the targeted emission wavelength. The structures are realized in InGaAsP =1.15 with InGaAsP quantum wells =1.52 as gain material. Cavities with shifts of 1...

  1. Uterine cavity assessment prior to IVF.

    Science.gov (United States)

    Pundir, Jyotsna; El Toukhy, Tarek

    2010-11-01

    Approximately 15% of couples are affected with subfertility, of which up to 20% remain unexplained. Uterine cavity abnormalities can be a contributing cause of subfertility and recurrent implantation failure. Uterine cavity assessment has been suggested as a routine investigation in the evaluation of subfertile women. Traditionally, hysterosalpingography has been the most commonly used technique in the evaluation of infertility. Transvaginal ultrasound scan allows visualization of the endometrial lining and cavity, and has been used as a screening test for the assessment of uterine cavity. Abnormal uterine findings on a baseline scan can be further evaluated with saline hysterosonography, which is highly sensitive and specific in identifying intrauterine abnormalities. Hysteroscopy is considered as the definitive diagnostic tool to evaluate any abnormality suspected on hysterosalpingography, transvaginal ultrasound scan or saline hysterosonography during routine investigation of infertile patients. Minimally invasive hysteroscopes have minimized the pain experienced by patients during the procedure and made it feasible to use hysteroscopy as a routine outpatient examination. Following recurrent IVF failure there is some evidence of benefit from hysteroscopy in increasing the chance of pregnancy in the subsequent IVF cycle, both in those with abnormal and normal hysteroscopic findings. Various possible mechanisms have been proposed for this beneficial effect, but more randomized controlled trials are needed before its routine use in the general subfertile population can be recommended.

  2. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  3. Quantization of Electromagnetic Fields in Cavities

    Science.gov (United States)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  4. Design of 162 MHz RF Experimental Cavity

    Institute of Scientific and Technical Information of China (English)

    YIN; Zhi-guo; CAO; Xue-long; GUO; Juan-juan; JI; Bin; FU; Xiao-liang; WEI; Jun-yi

    2015-01-01

    In this paper,a 162MHz RF experimental cavity is designed to study the multipacting multiplier effect of the medium and the metal electrode and its relationship with the plate surface characteristics,and to find out the method for inhibiting multipacting multiplier effects.The

  5. Tooth structure and fracture strength of cavities

    DEFF Research Database (Denmark)

    Mondelli, José; Sene, Fábio; Ramos, Renata Pereira;

    2007-01-01

    (Groups I, II and III) and indirect inlay cavities (Groups IV, V and VI) were prepared maintaining standardized dimensions: 2-mm deep pulpal floors, 1.5-mm wide gingival walls and 2-mm high axial walls. Buccolingual width of the occlusal box was established at 1/4 (Groups I and IV), 1/3 (Groups II and V...

  6. Coupling coefficients for coupled-cavity lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lang, R.J.; Yariv, A.

    1987-03-01

    The authors derive simple, analytic formulas for the field coupling coefficients in a two-section coupled-cavity laser using a local field rate equation treatment. They show that there is a correction to the heuristic formulas based on power flow calculated by Marcuse; the correction is in agreement with numerical calculations from a coupled-mode approach.

  7. Pressurized rf cavities in ionizing beams

    Science.gov (United States)

    Freemire, B.; Tollestrup, A. V.; Yonehara, K.; Chung, M.; Torun, Y.; Johnson, R. P.; Flanagan, G.; Hanlet, P. M.; Collura, M. G.; Jana, M. R.; Leonova, M.; Moretti, A.; Schwarz, T.

    2016-06-01

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF6 and O2 were measured.

  8. AGN Heating Through Cavities and Shocks

    NARCIS (Netherlands)

    P.E.J. Nulsen; C. Jones; W.R. Forman; L.P. David; B.R. McNamara; D.A. Rafferty; L. Bîrzan; M. Wise

    2007-01-01

    Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak sho

  9. Shallow Cavities in Multiple-Planet Systems

    CERN Document Server

    Duffell, Paul C

    2014-01-01

    Large cavities are often observed in protoplanetary disks, which might suggest the presence of planets opening gaps in the disk. Multiple planets are necessary to produce a wide cavity in the gas. However, multiple planets may also be a burden to the carving out of very deep gaps. When additional planets are added to the system, the time-dependent perturbations from these additional satellites can stir up gas in the gap, suppressing cavity opening. In this study, we perform two-dimensional numerical hydro calculations of gap opening for single and multiple planets, showing the effect that additional planets have on the gap depths. We show that multiple planets produce much shallower cavities than single planets, so that more massive planets are needed in the multiple-planet case to produce an equivalent gap depth as in the single-planet case. To deplete a gap by a factor of 100 for the parameters chosen in this study, one only requires $M_p \\approx 3.5M_J$ in the single-planet case, but much more massive plan...

  10. Effect of cyanoacrylate treatment of cavity walls.

    Science.gov (United States)

    Fukushi, Y; Fusayama, T

    1980-04-01

    Cyanoacrylate treatment of the cavity wall for composite resin restoration failed to keep adhesion when set, but the marginal closure improved markedly both in vivo and vitro, even when thermal-cycled. It irritated the pulp slightly only at the beginning. Ethylcyanoacrylate was superior to methylcyanoacrylate in regard to adhesion, leakage and pulp response.

  11. Femtosecond SESAM lasers with shortlength cavity

    Science.gov (United States)

    Trunov, V. I.; Pestryakov, Efim V.; Petrov, V. V.; Kirpichnikov, A. V.; Bordzilovskii, A. S.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2003-10-01

    Femtosecond pulse generation in Al2O3:Ti3+ laser with some types of laser cavity configuration with semiconductor saturable absorber mirror (SESAM), based on semiconductor quantum well low temperature (LT) GaAs/AlAs, GaxIn1-xAs/AlyGa1-yAs saturated absorbers and metal mirrors have been investigated.

  12. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan;

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...... of the photonic crystal structure....

  13. Cavity-enhanced dual-comb spectroscopy

    CERN Document Server

    Bernhardt, Birgitta; Jacquet, Patrick; Jacquey, Marion; Kobayashi, Yohei; Udem, Thomas; Holzwarth, Ronald; Guelachvili, Guy; Hänsch, Theodor W; Picqué, Nathalie

    2009-01-01

    The sensitivity of molecular fingerprinting is dramatically improved when placing the absorbing sample in a high-finesse optical cavity, thanks to the large increase of the effective path-length. As demonstrated recently, when the equidistant lines from a laser frequency comb are simultaneously injected into the cavity over a large spectral range, multiple trace-gases may be identified within a few milliseconds. Analyzing efficiently the light transmitted through the cavity however still remains challenging. Here, a novel approach, cavity-enhanced frequency comb Fourier transform spectroscopy, fully overcomes this difficulty and measures ultrasensitive, broad-bandwidth, high-resolution spectra within a few tens of $\\mu$s. It could be implemented from the Terahertz to the ultraviolet regions without any need for detector arrays. We recorded, within 18 $\\mu$s, spectra of the 1.0 $\\mu$m overtone bands of ammonia spanning 20 nm with 4.5 GHz resolution and a noise-equivalent-absorption at one-second-averaging per ...

  14. [The effectiveness of cavity preparation training using a virtual reality simulation system with or without feedback].

    Science.gov (United States)

    Yasukawa, Yuriko

    2009-06-01

    The aims of this research were to examine the effectiveness of feedback (FB) study of cavity preparation using a virtual reality system (VRS) and to discuss the evidence from an educational standpoint Thirty-nine dental undergraduate students of the fifth grade of Tokyo Medical and Dental University were randomly divided into the FR group and no-FR group (FB group n=21, no-FR group n=18). All subjects of each group performed cavity preparation of class II on the lower left first molar using VRS (DentSim) four times every week (EXO-3). At session EXO, all subjects performed a pre-test to assess their basic skill leve. At sessions EX1 and EX2, the FR group received feedback from the instructor based on a computer-assessment system. The no-FR group practiced their self-judgment without any feedback. At the last session, EX3, the preparation test was administered. All cavity preparations were graded by the VRS. The results showed that the FR group obtained significantly higher scores than the no-FR group, such as total score, outline shape, outline centralization, outline smoothness, wall incline, wall smoothness, proximal clearance, and box width. By session EX2, the FR group tended to spend longer preparation time than the no-FR group, however, at session EX3, there was no difference between both groups. These resdlts confirmed the effectiveness of cavity preparation with feedback study using VRS. It is suggested that this method of learning cavity preparation techniques is suitable for novice undergraduate dental students at the initial stage of cavity preparation practice.

  15. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  16. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  17. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.

    Science.gov (United States)

    Khankhoje, U K; Kim, S-H; Richards, B C; Hendrickson, J; Sweet, J; Olitzky, J D; Khitrova, G; Gibbs, H M; Scherer, A

    2010-02-10

    In this paper, we present recent progress in the growth, modelling, fabrication and characterization of gallium arsenide (GaAs) two-dimensional (2D) photonic-crystal slab cavities with embedded indium arsenide (InAs) quantum dots (QDs) that are designed for cavity quantum electrodynamics (cQED) experiments. Photonic-crystal modelling and device fabrication are discussed, followed by a detailed discussion of different failure modes that lead to photon loss. It is found that, along with errors introduced during fabrication, other significant factors such as the presence of a bottom substrate and cavity axis orientation with respect to the crystal axis, can influence the cavity quality factor (Q). A useful diagnostic tool in the form of contour finite-difference time domain (FDTD) is employed to analyse device performance.

  18. The Mechanism of Company Accounts Receivable Management

    Directory of Open Access Journals (Sweden)

    Halyna Yamnenko

    2017-02-01

    Full Text Available The relevance of the accounts receivable management is caused by its ability to influence on the filling of the company working capital. Therefore it is necessary to create a specific mechanism for management of accounts receivable in the company. The article analyses the components of the mechanism and the influence of factors that significantly affect the operation. The result of the functioning of the accounts receivable management is to receive funds and to minimize accounts receivable.

  19. Recent developments in superconducting receivers

    Science.gov (United States)

    Richards, Paul L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high Tc superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high Tc bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  20. Influence of cavity loss on an extrinsic Fabry-Perot cavity intensity-based pressure sensor.

    Science.gov (United States)

    Lű, Tao

    2015-09-01

    We present an extrinsic Fabry-Perot cavity intensity-based pressure sensor that mainly comprises a single-mode fiber end and an elastic monocrystalline silicon layer bonded to a silicon diaphragm. We investigated the influence of cavity loss on the performance indexes (PIS) of the intensity-based extrinsic Fabry-Perot cavity optical fiber pressure sensor. A buffer unit made of three incompressible oil cavities attenuated outside pressure and transformed pressure information into cavity length microchange information. Experimental results indicated that, under center quadrature-points within the linear regions of adjacent fringes, for an applied 40 kPa external pressure, cavity length was modulated by pressures of 69.9 kPa-109.9 kPa, 150.1 kPa-190 kPa, 220.1 kPa-259.9 kPa, and 279.9 kPa-319.9 kPa, output intensity ranges increased as 1 μW, 1.02 μW, 1.03 μW, and 1.05 μW, sensitivity increased as 0.01909 μW/kPa, 0.01986 μW/kPa, 0.02127 μW/kPa, and 0.02387 μW/kPa, but linearity degraded, as indicated by the standard deviation of linear fits of 0.02607, 0.02664, 0.02935, and 0.04879 due to cavity loss. Furthermore, the pressure ranges within the same quarter period decreased as 40 kPa, 37.45 kPa, 32.4 kPa, and 30.15 kPa. Consequently, the same lengths of linear regions within adjacent fringes of an approximately sinusoidal curve corresponded to different measurement ranges, linearities, and sensitivities. Initial cavity length must be chosen to optimize both signal strength and the PIS studied here in manufacturing this type sensor.

  1. Sputtering System for QWR Cavity in BRIF Project

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>1 Introduction Four superconducting QWR cavities will be used in HI-13 tandem accelerator upgrade project (BRIF). These niobium coated cavities will be produced by CIAE. Up to now, a niobium sputtering

  2. Incompressible Laminar Flow Over a Three-Dimensional Rectangular Cavity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper investigates unsteady incompressible flow over cavities,Previous research in in compressible cavity-flow has included flow inside and past a 2-dimensional cavity,and flow inside a 3-dimensional cavity,driven by a moving lid.The present research is focused on incompressible flow past a 3-dimensional open shallow cavity.This involves the complex interaction etween the external flow and the re-circulating flow within the cavity.In particular,computation was performed on a 3-dimensonal shallow rectangular cavity with a laminar boundary layer at the cavity and a Reynolds number of 5,000 and 10,000,respectively,A CFD approach,based on the unsteady Navier-Stokes equation for 3-dimensional incompressible flow,was used in the study.Typical results of the computation are presented.Theses results reveal the highly unsteady and complex vortical structures at high Reynolds numbers.

  3. MMIC Cavity Oscillator at 50 and 94 GHz (2007040) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative, ultra-low phase-noise, fully integrated single-chip cavity oscillator is proposed. The cavity is built on a standard MMIC process and has a quality...

  4. Teleportation of Atomic States via Cavity Quantum Electrodynamics

    CERN Document Server

    Guerra, E S

    2004-01-01

    In this article we discuss a scheme of teleportation of atomic states. The experimental realization proposed makes use of cavity Quatum Electrodynamics involving the interaction of Rydberg atoms with a micromaser cavity prepared in a coherent state. We start presenting a scheme to prepare atomic Bell states via the interaction of atoms with a cavity. In our scheme the cavity and some atoms play the role of auxiliary systems used to achieve the teleportation.

  5. Unconditional preparation of entanglement between atoms in cascaded optical cavities.

    Science.gov (United States)

    Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-10-24

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high-finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity-QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity-QED parameters and with nonideal coupling.

  6. Preparation of the W state via cavity QED

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin; YE Liu

    2004-01-01

    A scheme for preparation of the tripartite W state via cavity quantum electrodynamics is presented in this paper. And the scheme can be generalized to prepare the n-atom W states. The second part of this paper shows how to prepare n-cavity W states. All cavities involved are initially in the vacuum states, thus the requirement on the quality factor of the cavities is greatly loosened.

  7. Three-qubit Fredkin gate based on cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Shao Xiao-Qiang; Chen Li; Zhang Shou

    2009-01-01

    This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity.The scheme is based on the dispersive atom-cavity interaction.By modulating the cavity frequency and the atomic transition frequency appropriately,it obtains the effective form of nonlinear interaction between photons in the three-mode cavity.This availability is testified via numerical analysis.It also considers both the situations with and without dissipation.

  8. The First Nine-Cell TESLA Cavity Made in China

    Institute of Scientific and Technical Information of China (English)

    LU Xiang-Yang; JIN Song; XIN Tian-Mu; YAO Zhong-Yuan; CHEN Jia-Er; ZHAO Kui; QUAN Sheng-Wen; ZHANG Bao-Cheng; HAO Jian-Kui; ZHU Feng; LIN Lin; XU Wen-Can; WANG Er-Dong; WANG Fang

    2008-01-01

    A totally home-made 9-cell TESLA type superconducting cavity is made at Peking University. The cavity fabrication is according to DESY specification. The cavity is made of high purity niobium from OTIC, Ningxia.The electron beam welding is carried out at Harbin Institute of Technology, Harbin. By the cooperation, the cavity is tested at Thomas Jefferson National Accelerator Facility, USA. The preliminary result shows the acceleration gradient Eacc is 23 MV/m without quench and has potential for improvement.

  9. Effective Scheme for Generating Cluster States in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    WU Huai-Zhi; YANG Zhen-Biao; ZHENG Shi-Biao

    2007-01-01

    We propose a scheme to prepare many two-mode cavities into one-dimensional cluster states in the context of cavity QED. The left-circularly polarized state and right-circularly polarized state of the cavity are encoded as the logic zero and one of the qubits. In the scheme, the atomic spontaneous emission is suppressed, and the fidelity is unaffected by the cavity decay on the assumption that the detection efficiencies of all the photondetectors are 1.

  10. Installation and Commissioning of CYCIAE-100 RF Cavity

    Institute of Scientific and Technical Information of China (English)

    JI; Bin; XING; Jian-sheng; LIU; Geng-shou; YIN; Zhi-guo; ZHANG; Tian-jue; LEI; Yu; FU; Xiao-liang; LI; Peng-zhan; LV; Yin-long; ZHU; Peng-fei; FU; Li-cheng; LIU; Jie; ZHANG; De-zhi; CUI; Bai-yao; DONG; Huan-jun; WANG; Zhen-hui

    2013-01-01

    The RF cavity is used to establish electrical field for the particle acceleration in the cyclotron,the stability of the RF cavity affects the RF system directly.A RF cavity with high quality can reduce thepower consumption of the RF system and make the cooling system simple.A good design is the first step towards RF cavity with high quality.The installation and commissioning are the next important process to achieve an excellent performance.The height of the

  11. Unconditional preparation of entanglement between atoms in cascaded optical cavities

    CERN Document Server

    Clark, S; Gu, M; Parkins, S; Clark, Stephen; Peng, Amy; Gu, Mile; Parkins, Scott

    2003-01-01

    We propose a scheme to unconditionally entangle the internal states of atoms trapped in separate high finesse optical cavities. The scheme uses the technique of quantum reservoir engineering in a cascaded cavity QED setting, and for ideal (lossless) coupling between the cavities generates an entangled pure state. Highly entangled states are also shown to be possible for realizable cavity QED parameters and with nonideal coupling.

  12. Multiple cavities in myocardium of left ventricle after irradiation therapy for breast cancer. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Shinobu; Kato, Hiroshi; Koizumi, Katsumi [Nishi-Kobe Medical Center (Japan)] (and others)

    1999-09-01

    A 68-year-old woman was admitted to our hospital with congestive heart failure. She had been diagnosed with hypertrophic cardiomyopathy 12 years ago in another hospital. She had received irradiation therapy for left breast cancer 33 years ago after resection of her left breast. Echocardiography revealed left ventricular hypertrophy and wall motion hypokinesis, and multiple cavities in the myocardium of the left ventricle, interventricular septum, and anterior wall. Some cavities were observed to connect to the left ventricular cavity and Doppler echocardiography showed slow velocity flows in them different from that of the coronary artery. The pathologic diagnosis was severe sclerosis of the left coronary artery, especially the left descending artery and its branch, which was the area with irradiation. Histopathology revealed sclerotic changes of the coronary artery causing acute and chronic myocardial infarction, and incomplete regeneration and hypertrophy of cardiac cells. There was no sign of hypertrophic cardiomyopathy. Myocardial degeneration and deciduation were present next to the cavities connected to left ventricle-like fistulas. (author)

  13. Control of cavity modes in coupled periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Lavrinenko, Andrei; Ha, Sangwoo;

    2009-01-01

    We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the lateral shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases as the cavities ...

  14. Comparison of Multi-field Coupling Analysis of Accelerator Cavity

    Institute of Scientific and Technical Information of China (English)

    LI; Chun-guang; LI; Jin-hai

    2013-01-01

    In the high power accelerator cavity,the joule heat produced by the electromagnetic fields causes the temperature of the cavity rising which leads to frequency changed,called frequency shift.The analysis of the effect of power to the frequency shift is an important task of accelerator cavity design.It involves heat,structure and high frequency analysis.

  15. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    CERN Document Server

    Crawford, Anthony C

    2016-01-01

    Deeply modulated, continuous, diffusion-limited current waveforms for electropolishing niobium single-cell elliptical radiofrequency cavities are reliably and repeatedly achieved at Fermilab. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500MHz to 3.9 GHz and can be extended to multicell structures.

  16. Preparation of Two-Qutrit Entangled State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIN Xiu-Min; ZHOU Zheng-Wei; WU Yu-Chun; WANG Cheng-Zhi; GUO Guang-Can

    2005-01-01

    @@ We propose a scheme to generate a 3 × 3-dimensional maximally entangled state of two particles. Two three-level atoms interact with a strongly detuned cavity so that the cavity is only virtually excited and efficient decoherence time of the cavity is greatly prolonged. Compared to other protocols, this protocol is simpler and has a higher fidelity.

  17. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  18. Extreme diffusion limited electropolishing of niobium radiofrequency cavities

    Science.gov (United States)

    Crawford, Anthony C.

    2017-03-01

    A deeply modulated, regular, continuous, oscillating current waveform is reliably and repeatably achieved during electropolishing of niobium single-cell elliptical radiofrequency cavities. Details of the technique and cavity test results are reported here. The method is applicable for cavity frequencies in the range 500 MHz to 3.9 GHz and can be extended to multicell structures.

  19. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  20. Thermal resistance model for CSP central receivers

    Science.gov (United States)

    de Meyer, O. A. J.; Dinter, F.; Govender, S.

    2016-05-01

    The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.

  1. Fallopian tube insertion into the uterine cavity discovered accidentally during laparoscopic retrieval of a misplaced coil from the pelvic cavity

    OpenAIRE

    Panayotidis, Costas; Foidart, Jean-Michel; Nisolle, Michelle

    2008-01-01

    This article presents for the first time in the literature a case of fallopian tube insertion into the uterine cavity discovered accidentally during laparoscopic retrieval of a misplaced coil from the pelvic cavity. Peer reviewed

  2. Microwave receivers with electronic warfare applications

    CERN Document Server

    Tsui, James

    2005-01-01

    This book by the author of Digital Techniques for Wideband Receivers willbe like no other one on your book shelf as the definitive word on electronicwarfare (EW) receiver design and performance. Whether you are an EWscientist involved in the test and evaluation of EW receivers or a designerof RWR's and other EW-related receivers, Microwave Receivers withElectronic Warfare Applications is a handy reference through which you canperfect your technical art. Lucidly written, this book is a treatise on EWreceivers that is relevant to you if you are just looking for a top-levelinsight into EW receive

  3. Chemical Sensing Using Infrared Cavity Enhanced Spectroscopy: Short Wave Infrared Cavity Ring Down Spectroscopy (SWIR CRDS) Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Richard M.; Harper, Warren W.; Aker, Pam M.; Thompson, Jason S.; Stewart, Timothy L.

    2003-10-01

    ) quantum cascade lasers as the light source. This report details the research and discoveries made on the SWIR CRDS project. While chemical detection limits in the SWIR is not expected to be as low as that in the LWIR, there are a number of reasons for designing sensors that operate in this region. First and foremost is that high quality SWIR lasers, detectors and optics are commercially available. Technological advances made in the telecommunications sector have yielded photonic components that are robust, low power, compact and operate at room temperature. These components can be quickly combined and assembled to produce a sensor prototype. This is exactly what we have done with our cavity ring down sensor. We assembled our first prototype instrument in FY02, tested it in the laboratory, developed the chemometrics, and defined several improvements that needed to be implemented before trialing this sensor in the field. In FY03 we completed the refinements, retested the sensor in the laboratory, and then conducted our first field campaign. Our success was demonstrated by the ability of our SWIR CRDS to run autonomously and continuously for 7 days when located in PNNL's Shipping and Receiving Building. No false positive alarms were detected even though the environment was contaminated with vehicle exhaust fumes, dirt, dust, and volatile organic chemicals associated with packaging materials. The instrument maintained its detection threshold and calibration throughout the test. Small fluctuations that we observed in the background concentration levels have led us to develop a more robust method for calibrating the instrument, and separate tests we conducted in the laboratory have afforded a means to account interference from species that have very broad, but weak absorption in this spectral region. We outline all of these accomplishments in detail in the body of this report.

  4. Cavity techniques for holographic data storage recording.

    Science.gov (United States)

    Miller, Bo E; Takashima, Yuzuru

    2016-03-21

    Conventionally, reading and writing of data holograms utilizes a fraction of the light power because of a trade off in write and read efficiencies. This system constraint can be mitigated by applying a resonator cavity. Cavities enable more efficient use of the available light leading to enhanced read and write data rates with no additional energy cost. This enhancement is inversely related to diffraction efficiency, so these techniques work well for large capacity holographic data storage having low diffraction efficiency. The enhancement in write data transfer rate is evaluated by writing plane wave holograms and image bearing holograms in Fe:LiNbO3 with a 532 nm wavelength laser. We confirmed 1.2 times enhancement in write data rate, out of a 1.4 theoretical maximum for materials absorption of 16%.

  5. Dynamics of bouncing droplets in annular cavities

    Science.gov (United States)

    Lentz, Zachary Louis; Jalali, Mir Abbas; Alam, Mohammad-Reza

    2014-11-01

    In a cylindrical bath of silicon oil, vertically excited by a frequency of 45 Hz, we trace the motion of bouncing droplets as they fill an annular region. We compute the mean tangential and radial velocity components of the droplets and show that the maximum tangential velocity is larger than the maximum radial velocity by one order of magnitude. Velocity dispersions have almost equal levels in the radial and tangential directions, and their mean values are 1/4 times smaller than the mean tangential velocity. These results show that bouncing droplets undergo random motions within annular cavities determined by the interference patterns of self-induced circumferential waves. We derive analytical relations between the velocity dispersion and the wavelength of surface waves, and calculate the mean tangential velocity of droplets using the random kicks that they experience at the boundaries of the cavity by inward and outward traveling waves.

  6. HOM Couplers for CERN SPL Cavities

    CERN Document Server

    Papke, Kai; Van Rienen, U

    2013-01-01

    Higher-Order-Modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the SPL, which is studied at CERN as the driver for future neutrino facilities. In order to limit beam-induced HOM effects, CERN considers the use of HOM couplers on the cut-off tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to modes of a specific frequency range. In this paper the design process is presented and a comparison is made between various design options for the medium and high-beta SPL cavities, both operating at 704.4 MHz. The RF characteristics and thermal behaviour of the various designs are discussed.

  7. Structure of magnetic fields in intracluster cavities

    CERN Document Server

    Gourgouliatos, Konstantinos Nektarios; Lyutikov, Maxim

    2010-01-01

    Observations of clusters of galaxies show ubiquitous presence of X-ray cavities, presumably blown by the AGN jets. We consider magnetic field structures of these cavities. Stability requires that they contain both toroidal and poloidal magnetic fields, while realistic configurations should have vanishing magnetic field on the boundary. For axisymmetric configurations embedded in unmagnetized plasma, the continuity of poloidal and toroidal magnetic field components on the surface of the bubble then requires solving the elliptical Grad-Shafranov equation with both Dirichlet and Neumann boundary conditions. This leads to a double eigenvalue problem, relating the pressure gradients and the toroidal magnetic field to the radius of the bubble. We have found fully analytical stable solutions. This result is confirmed by numerical simulation. We present synthetic X-ray images and synchrotron emission profiles and evaluate the rotation measure for radiation traversing the bubble.

  8. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density......, coupled photonic crystal nanocavity structures are simulated. The resonance frequencies of in-phase and out-of-phase coupled quadrupole modes in rectangular photonic crystal H1 cavities are extracted and are found to vary non-trivially with the intercavity separation. A qualitative explanation is given...... in terms of the in-plane mode profiles. Fareld emission patterns for the structures are calculated based on the finite-dierence time-domain simulations. It is found that only systems with an even number of holes separating the cavities show clear signs of being coupled. This non-trivial coupling behavior...

  9. Histopathologic Approach to Oral Cavity Lesions

    Directory of Open Access Journals (Sweden)

    Cuyan Demirkesen

    2012-12-01

    Full Text Available Diseases of the oral cavity may be either a reflection of system or cutaneous diseases or can be seen as a primary oral lesion. These lesions are inflammatory reactions due to miscellaneous mechanisms, ulceration or erosion, reactive proliferative nodules, precancerous or neoplastic diseases. In this study, microscopic features of the most common diseases, together with their differential diagnosis are discussed. Some of the diseases of the oral cavity have overlapping histopathological findings. In these conditions, ancillary methods such as immunoflourescence or immunohistochemistry can be performed. Deep biopsies from representative areas are essential for proper histopathological diagnosis. Moreover, informing the pathologist about the exact anatomic localization of the biopsy, as well as the clinical findings of the lesion is crucial for a better approach.

  10. Making of a nonlinear optical cavity

    CERN Document Server

    Martínez-Lorente, R; Esteban-Martín, A; García-Monreal, J; Roldán, E; Silva, F

    2016-01-01

    In the article we explain in detail how to build a photorefractive oscillator (PRO), which is a laser-pumped nonlinear optical cavity containing a photorefractive crystal. The specific PRO whose construction we describe systematically, is based on a Fabry-Perot optical cavity working in a non-degenerate four wave-mixing configuration. This particular PRO has the property that the generated beam exhibits laser-like phase invariance and, as an application, we show how a suitably modulated injected beam converts the output field from phase-invariant into phase-bistable. While the emphasis is made on the making of the experimental device and on the way measurements are implemented, some introduction to the photorefractive effect as well as to the necessary concepts of nonlinear dynamics are also given, so that the article is reasonably self-contained.

  11. Performance of production SRF cavities for CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Reece, C.; Benesch, J.; Kneisel, P.; Kushnick, P.; Mammosser, J.; Powers, T.

    1993-06-01

    Construction of the Continuous Electron Beam Accelerator Facility recirculating linac represents the largest scale application of superconducting rf (SRF) technology to date. Over 250 of the eventual 338 SRF 1497 MHz cavities have been assembled into hermetic pairs and completed rf testing at 2.0 K. Although the rf performance characteristics well exceed the CEBAF baseline requirements of Q[sub 0] = 2.4[times]10[sup 9] at 5 MV/m, the usual limiting phenomena are encountered field emission, quenching, Q-switching, will occasional multipacting. An analysis of the occurrence conditions and severity of these phenomena during production cavity testing is presented. The frequency with which performance is limited by quenching suggests that additional material advances may be required for applications which require the reliable achievement of accelerating gradients of more than 15 MV/m. The distributions of frequency and Q for a higher-order mode are also presented.

  12. Quantum networks based on cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Stephan; Bochmann, Joerg; Figueroa, Eden; Hahn, Carolin; Kalb, Norbert; Muecke, Martin; Neuzner, Andreas; Noelleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Rempe, Gerhard [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)

    2014-07-01

    Quantum repeaters require an efficient interface between stationary quantum memories and flying photons. Single atoms in optical cavities are ideally suited as universal quantum network nodes that are capable of sending, storing, retrieving, and even processing quantum information. We demonstrate this by presenting an elementary version of a quantum network based on two identical nodes in remote, independent laboratories. The reversible exchange of quantum information and the creation of remote entanglement are achieved by exchange of a single photon. Quantum teleportation is implemented using a time-resolved photonic Bell-state measurement. Quantum control over all degrees of freedom of the single atom also allows for the nondestructive detection of flying photons and the implementation of a quantum gate between the spin state of the atom and the polarization of a photon upon its reflection from the cavity. Our approach to quantum networking offers a clear perspective for scalability and provides the essential components for the realization of a quantum repeater.

  13. A COMPARATIVE STUDY ON COPPER-PLATED UTERINE CAVITY SHAPED IUD AND NON-COPPER BEARING UTERINE CAVITY SHAPED IUD

    Institute of Scientific and Technical Information of China (English)

    ZENGQing-Gu; etal

    1989-01-01

    A comparative randomized clinical trial was carried out between two uterine cavity shaped IUDs: the copper-plated uterine cavity shaped IUD(UCDCu) and non-copper bearing uterine cavity shaped IUD(UCD). The IUDs were used by 1004 and 1005 women

  14. Characterization of transducer cavities to oscillatory inputs

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Hollingshead, J.R.

    1993-12-31

    The design and use of measurement systems must ensure that the data are not computed by the measurement system. A wide variety of sources can be responsible for compromising the integrity of test data. Among the sources of error are transducer calibration errors, signal conditioning problems, recording problems, and characteristics of the mechanical system which introduce errors. In this paper, the characteristics of an acoustic cavity are discussed as they apply to a pressure measurement problem.

  15. Capillary condensation for fluids in spherical cavities

    OpenAIRE

    Urrutia, Ignacio; Szybisz, Leszek

    2005-01-01

    The capillary condensation for fluids into spherical nano-cavities is analyzed within the frame of two theoretical approaches. One description is based on a widely used simplified version of the droplet model formulated for studying atomic nuclei. The other, is a more elaborated calculation performed by applying a density functional theory. The agreement between both models is examined and it is shown that a small correction to the simple fluid model improves the predictions. A connection to ...

  16. Laser in-cavity Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, C.M.

    1978-09-01

    A new laser interferometer is proposed which can be regarded as an in-cavity Michelson interferometer. It utilizes a polarizing beam splitter in conjunction with two quarter-wave plates to produce oscillations between three mirrors. It would measure a change in length of 10/sup -3/ A that, if used for plasma diagnostics, is equivalent to measuring an electron density of 10/sup 9/ cm/sup -3/ over a plasma length of 1 cm.

  17. Study of multipacting effect in superconducting cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meng; ZHAO Ming-Hua

    2008-01-01

    A number of superconducting cavities of axis-symmetric geometry have been considered to study the effect in order to achieve the desired performance.It is shown that the multipacting effect is strongly dependent on the condition of the RF surface and can be suppressed with reconsideration of the geometry.The simulation result is compared with the result of the semi-analytical model in the end.

  18. Dental Sealants Prevent Cavities PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2016-10-18

    This 60 second public service announcement is based on the October 2016 CDC Vital Signs report. Dental sealants, applied soon after a child's permanent molars come in, can protect against cavities for up to nine years. Applying sealants in schools for low-income children could save millions in dental treatment costs.  Created: 10/18/2016 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/18/2016.

  19. The electromagnetic Casimir effect of spherical cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Casimir effect results from the zero-point energy of vacuum. A spherical cavity can be divided into three regions, and we make an analysis of every region and then give a formal solution of Casimir energy. The zeta-function regularization is also used to dispel the divergence of the summation. At the end, we can see the Casimir effect of a single sphere is included in our results.

  20. Controlling spin relaxation with a cavity

    Science.gov (United States)

    Bienfait, A.; Pla, J. J.; Kubo, Y.; Zhou, X.; Stern, M.; Lo, C. C.; Weis, C. D.; Schenkel, T.; Vion, D.; Esteve, D.; Morton, J. J. L.; Bertet, P.

    2016-03-01

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

  1. Rugged, Tunable Extended-Cavity Diode Laser

    Science.gov (United States)

    Moore, Donald; Brinza, David; Seidel, David; Klipstein, William; Choi, Dong Ho; Le, Lam; Zhang, Guangzhi; Iniguez, Roberto; Tang, Wade

    2007-01-01

    A rugged, tunable extended-cavity diode laser (ECDL) has been developed to satisfy stringent requirements for frequency stability, notably including low sensitivity to vibration. This laser is designed specifically for use in an atomic-clock experiment to be performed aboard the International Space Station (ISS). Lasers of similar design would be suitable for use in terrestrial laboratories engaged in atomic-clock and atomic-physics research.

  2. A new awakening for accelerator cavities

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Imagine: an accelerator unbound by length; one that can bring a beam up to the TeV level in just a few hundred metres. Sounds like a dream? Perhaps not for long. At CERN’s Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE), physicists may soon be working to bring this contemporary fairy-tale to life.   The AWAKE experiment in the CNGS facility. Wherever you find a modern linear particle accelerator, you’ll find with it a lengthy series of RF accelerating cavities. Although based on technology first developed over half a century ago, RF cavities have dominated the accelerating world since their inception. However, new developments in plasma accelerator systems may soon be bringing a new player into the game. By harnessing the power of wakefields generated by beams in plasma cells, physicists may be able to produce accelerator gradients of many GV/m –  hundreds of times higher than those achieved in current RF cavities. “Plasma wakef...

  3. Fundamental tests in Cavity Quantum Electrodynamics

    CERN Document Server

    CERN. Geneva

    2010-01-01

    At the dawn of quantum physics, Einstein and Bohr had the dream to confine a photon in a box and to use this contraption in order to illustrate the strange laws of the quantum world. Cavity Quantum Electrodynamics has now made this dream real, allowing us to actually achieve in the laboratory variants of the thought experiments of the founding fathers of quantum theory. In our work at Ecole Normale Supérieure, we use a beam of Rydberg atoms to manipulate and probe non-destructively microwave photons trapped in a very high Q superconducting cavity. We realize ideal quantum non-demolition (QND) measurements of photon numbers, observe the radiation quantum jumps due to cavity relaxation and prepare non-classical fields such as Fock and Schrödinger cat states. Combining QND photon counting with a homodyne mixing method, we reconstruct the Wigner functions of these non-classical states and, by taking snapshots of these functions at increasing times, obtain movies of the decoherence process. These experiments ope...

  4. Direct Numerical Simulation of Automobile Cavity Tones

    Science.gov (United States)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  5. Atraumatic restorative treatment in atypical cavities

    Directory of Open Access Journals (Sweden)

    Letícia Simino Carvalho

    2009-10-01

    Full Text Available The atraumatic restorative treatment has been widely divulged among professionals in the area of Pediatric Dentistry. This restorative technique is included in the philosophy of Minimal Intervention and is considered one of the most conservative treatments, because only the layer of infected dentin caries is removed. Moreover, the atraumatic restorative treatment has been shown to be less painful than conventional approaches, and local anesthesia is rarely required. After the removal of the infected dentin, the cavities are filled with glass ionomer cement, a material that has antimicrobial capacity, good marginal sealing and constant fluorine release and recharge. In spite of the increasing number of studies about atraumatic restorative treatment, only studies related to restorations in occlusal cavities have shown scientific evidences about the technique. The aim of this study was to evaluate the feasibility of atraumatic restorative treatment in cavities with 3 or more surfaces involved, by means of a clinical case report of a patient with extensive dstruction in primary teeth, who was submitted to atraumatic restorative treatment, and observe the result of the treatment after one year of clinical and radiographic control.

  6. Coherently Opening a High-Q Cavity

    Science.gov (United States)

    Tufarelli, Tommaso; Ferraro, Alessandro; Serafini, Alessio; Bose, Sougato; Kim, M. S.

    2014-04-01

    We propose a general framework to effectively "open" a high-Q resonator, that is, to release the quantum state initially prepared in it in the form of a traveling electromagnetic wave. This is achieved by employing a mediating mode that scatters coherently the radiation from the resonator into a one-dimensional continuum of modes such as a waveguide. The same mechanism may be used to "feed" a desired quantum field to an initially empty cavity. Switching between an open and "closed" resonator may then be obtained by controlling either the detuning of the scatterer or the amount of time it spends in the resonator. First, we introduce the model in its general form, identifying (i) the traveling mode that optimally retains the full quantum information of the resonator field and (ii) a suitable figure of merit that we study analytically in terms of the system parameters. Then, we discuss two feasible implementations based on ensembles of two-level atoms interacting with cavity fields. In addition, we discuss how to integrate traditional cavity QED in our proposal using three-level atoms.

  7. Cavity cooling of an optically levitated nanoparticle

    CERN Document Server

    Kiesel, Nikolai; Delic, Uros; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus

    2013-01-01

    The ability to trap and to manipulate individual atoms is at the heart of current implementations of quantum simulations, quantum computing, and long-distance quantum communication. Controlling the motion of larger particles opens up yet new avenues for quantum science, both for the study of fundamental quantum phenomena in the context of matter wave interference, and for new sensing and transduction applications in the context of quantum optomechanics. Specifically, it has been suggested that cavity cooling of a single nanoparticle in high vacuum allows for the generation of quantum states of motion in a room-temperature environment as well as for unprecedented force sensitivity. Here, we take the first steps into this regime. We demonstrate cavity cooling of an optically levitated nanoparticle consisting of approximately 10e9 atoms. The particle is trapped at modest vacuum levels of a few millibar in the standing-wave field of an optical cavity and is cooled through coherent scattering into the modes of the...

  8. Theory of RF superconductivity for resonant cavities

    Science.gov (United States)

    Gurevich, Alex

    2017-03-01

    An overview of a theory of electromagnetic response of superconductors in strong radio-frequency (RF) electromagnetic fields is given with the emphasis on applications to superconducting resonant cavities for particle accelerators. The paper addresses fundamentals of the BCS surface resistance, the effect of subgap states and trapped vortices on the residual surface resistance at low RF fields, and a nonlinear surface resistance at strong fields, particularly the effect of the RF field suppression of the surface resistance. These issues are essential for the understanding of the field dependence of high quality factors Q({B}a)∼ {10}10{--}{10}11 achieved on the Nb cavities at 1.3–2 K in strong RF fields B a close to the depairing limit, and the extended Q({B}a) rise which has been observed on Ti and N-treated Nb cavities. Possible ways of further increase of Q({B}a) and the breakdown field by optimizing impurity concentration at the surface and by multilayer nanostructuring with materials other than Nb are discussed.

  9. Cavity filling water control below aerator devices

    Institute of Scientific and Technical Information of China (English)

    钱尚拓; 吴建华; 马飞; 徐建荣; 彭育; 汪振

    2014-01-01

    With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aera-tor. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some sui-table geometries of the local slope are designed.

  10. Rapid cavity prototyping using mode matching and globalised scattering matrix

    CERN Document Server

    Shinton, I

    2009-01-01

    Cavity design using traditional mesh based numerical means (such as the finite element or finite difference methods) require large mesh calculations in order to obtain accurate values and cavity optimisation is often not achieved. Here we present a mode matching scheme which utilises a globalised scattering matrix approach that allows cavities with curved surfaces (i.e. cavities with elliptical irises and or equators) to be accurately simulated allowing rapid cavity prototyping and optimisation to be achieved. Results on structures in the CLIC main

  11. Unconventional geometric quantum phase gates with a cavity QED system

    Science.gov (United States)

    Zheng, Shi-Biao

    2004-11-01

    We propose a scheme for realizing two-qubit quantum phase gates via an unconventional geometric phase shift with atoms in a cavity. In the scheme the atoms interact simultaneously with a highly detuned cavity mode and a classical field. The atoms undergo no transitions during the gate operation, while the cavity mode is displaced along a circle in the phase space, aquiring a geometric phase conditional upon the atomic state. Under certain conditions, the atoms are disentangled with the cavity mode and thus the gate is insensitive to both the atomic spontaneous emission and the cavity decay.

  12. Scheme for Generation of Entanglement among Bimodal Cavities

    Institute of Scientific and Technical Information of China (English)

    SONG Xin-Guo; FENG Xun-Li

    2004-01-01

    @@ We present a scheme for generation of an entangled state in many spatially separated bimodal cavity modes via cavity quantum electrodynamics. A V-type three-level atom, initially prepared in a coherent superposition of its excited states, successively passes through both the bimodal cavities. If the atom is measured in its ground state after leaving the last cavity, an entangled state of many cavity modes can be generated. The conditions to generate the maximally entangled state with unity probability are worked out.

  13. Scheme for Quantum Entanglement Swapping on Cavity QED System

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong; YU Yan

    2006-01-01

    We propose a scheme for realizing quantum entanglement swapping between the atoms in cavity QED.With only virtual excitation of the cavity during the interaction between the atoms and cavity, the scheme is insensitive to the cavity mode states and the cavity decay. The ideas can also be utilized for realizing entanglement swapping between the atomic levels in a single atom and the atomic levels in the Bell states and between the atomic levels in the Bell states and the atomic levels in the W states.

  14. The crystal cavities of the New Jersey zeolite region

    Science.gov (United States)

    Schaller, Waldemar Theodore

    1932-01-01

    The crystal cavities present in the mineral complex of the New Jersey traprock region have long excited the interest of mineralogists. In 1914 Fenner made the first detailed and comprehensive study of these cavities and suggested that babingtonite was the original mineral. Soon after this anhydrite was found occupying parts of some of the cavities at one of the quarries. At this time, too, Wherry concluded that glauberite was the original mineral of some of the cavities because of his studies of similar crystal cavities in Triassic shale at different places.

  15. Preparation of W state in resonant bimodal cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a Ⅴ-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the second cavity,the four cavity modes are prepared in the W state. On the other hand we can obtain three-atom W states by sending three Ⅴ-type three-level atoms through a two-mode cavity in turn. The present scheme does not require conditional measurement, and it is easily generalized to preparing 2n-mode W states and n-atom W states.

  16. Analysis of superconducting cavity quench events at SSRF

    Institute of Scientific and Technical Information of China (English)

    HOU Hong-Tao; LI Zheng; LIU Jian-Fei; ZHAO Yu-Bin; ZHAO Shen-jie; ZHANG Zhi-Gang; LUO Chen; FENG Zi-Qiang; MAO Dong-Qing; ZHENG Xiang

    2011-01-01

    Quench is important and dangerous to superconducting RF cavities. This paper illustrates the mechanism of quench and how a quench detector works, and analyzes the quench events happening during beam operations and cavity conditioning. We find that the quench protection is mostly triggered by some reasons such as fluctuation of cavity voltage, multipacting or arc, rather than a real cavity thermal breakdown. The results will be beneficial to optimize the operation parameters of superconducting cavities, to discover the real reasons for beam trip by quench interlock, and to improve the operation stability of superconducting RF systems.

  17. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  18. Trough Receiver Heat Loss Testing (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, A.; Feik, C.; Hansen, R.; Phillips, S.; Bingham, C.; Netter, J.; Forristal, R.; Burkholder, F.; Meglan, B.; Wolfrum, E.

    2006-02-01

    This presentation describes the design, fabrication, and qualification of an experimental capability for thermal loss testing of full-size trough receiver elements; and the testing on a variety of receivers.

  19. The First Six ALMA Band 10 Receivers

    Science.gov (United States)

    Fujii, Y.; Gonzalez, A.; Kroug, M.; Kaneko, K.; Miyachi, A.; Yokoshima, T.; Kuroiwa, K.; Ogawa, H.; Makise, K.; Wang, Z.; Uzawa, Y.

    2013-01-01

    The first six Atacama Large Millimeter/submillimeter Array (ALMA) Band 10 (787-950 GHz) receivers have been developed and characterized during the receiver preproduction phase. State-of-the-art measurement systems at THz frequencies have been implemented and successfully used to measure the performance of the first six receivers. Extensive tests ranging from receiver sensitivity and stability to optical aperture efficiency on the secondary antenna have been performed. Performance of all six receivers is well within the stringent ALMA requirements. Moreover, our extensive tests have shown that there are no big performance differences between receivers. These results indicate that the ALMA Band 10 receiver is ready for the production phase, during which an additional 67 receivers will be produced and characterized.

  20. Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mavric, Uros; Vidmar, Matjaz; Chase, Brian; /Fermilab

    2008-06-01

    The proposed RF distribution scheme for the two 15 km long ILC LINACs, uses one klystron to feed 26 superconducting RF cavities operating at 1.3 GHz. For a precise control of the vector sum of the signals coming from the SC cavities, the control system needs a high performance, low cost, reliable and modular multichannel receiver. At Fermilab we developed a 96 channel, 1.3 GHz analog/digital receiver for the ILC LINAC LLRF control system. In the paper we present a balanced design approach to the specifications of each receiver section, the design choices made to fulfill the goals and a description of the prototyped system. The design is tested by measuring standard performance parameters, such as noise figure, linearity and temperature sensitivity. Measurements show that the design meets the specifications and it is comparable to other similar systems developed at other laboratories, in terms of performance.

  1. Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main LINACs

    Energy Technology Data Exchange (ETDEWEB)

    Mavric, Uros [Fermilab, P.O. Box 500, 60510 Batavia, IL (United States)], E-mail: mavric@fnal.gov; Chase, Brian [Fermilab, P.O. Box 500, 60510 Batavia, IL (United States); Vidmar, Matjaz [Faculty of Electrical Engineering in Ljubljana, Trzaska 25, 1000 Ljubljana (Slovenia)

    2008-08-21

    The proposed RF distribution scheme for the two 15 km long ILC LINACs uses one klystron to feed 26 superconducting RF cavities operating at 1.3 GHz. For a precise control of the vector sum of the signals coming from the SC cavities, the control system needs a high-performance, low-cost, reliable and modular multichannel receiver. At Fermilab we developed a 96-channel, 1.3 GHz analog/digital receiver for the ILC LINAC LLRF control system. In this paper we present a balanced design approach to the specifications of each receiver section, the design choices made to fulfill the goals and a description of the prototyped system. The design is tested by measuring standard performance parameters, such as noise figure, linearity and temperature sensitivity. Measurements show that the design meets the specifications and it is comparable to other similar systems developed at other laboratories, in terms of performance.

  2. Interaction between dual cavity modes in a planar photonic microcavity

    Science.gov (United States)

    Noble, Elizabeth; Nair, Rajesh V.; Jagatap, B. N.

    2016-10-01

    We theoretically study the interaction between dual cavity modes in a planar photonic microcavity structure in the optical communication wavelength range. The merging and splitting of cavity mode is analysed with realistic microcavity structures. The merging of dual cavity resonance into a single cavity resonance is achieved by changing the number of layers between the two cavities. The splitting of single cavity resonance into dual cavity resonance is obtained with an increase in the reflectivity of mirrors in the front and rear side of the microcavity structure. The threshold condition for the merging and splitting of cavity mode is established in terms of structural parameters. The physical origin of the merging of dual cavity modes into a single cavity resonance is discussed in terms of the electric field intensity distribution in the microcavity structure. The microcavity structure with dual cavity modes is useful for the generation of entangled photon pairs, for achieving the strong-coupling regime between exciton and photon and for high-resolution multi-wavelength filters in optical communication.

  3. 49 CFR 393.88 - Television receivers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Television receivers. 393.88 Section 393.88... NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.88 Television receivers. Any motor vehicle equipped with a television viewer, screen or other means of visually receiving a...

  4. 49 CFR 236.730 - Coil, receiver.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Coil, receiver. 236.730 Section 236.730 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Coil, receiver. Concentric layers of insulated wire wound around the core of a receiver of an...

  5. Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks

    CERN Document Server

    Li, Ruoxin

    2010-01-01

    We perform 3D finite element calculations of the fields in microwave cavities and analyze the distributed cavity phase errors of atomic clocks that they produce. The fields of cylindrical cavities are treated as an azimuthal Fourier series. Each of the lowest components produces clock errors with unique characteristics that must be assessed to establish a clock's accuracy. We describe the errors and how to evaluate them. We prove that sharp structures in the cavity do not produce large frequency errors, even at moderately high powers, provided the atomic density varies slowly. We model the amplitude and phase imbalances of the feeds. For larger couplings, these can lead to increased phase errors. We show that phase imbalances produce a novel distributed cavity phase error that depends on the cavity detuning. We also design improved cavities by optimizing the geometry and tuning the mode spectrum so that there are negligible phase variations, allowing this source of systematic error to be dramatically reduced.

  6. Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics

    CERN Document Server

    Spillane, S M; Vahala, K J; Goh, K W; Wilcut, E; Kimble, H J

    2004-01-01

    We investigate the suitability of toroidal microcavities for strong-coupling cavity quantum electrodynamics (QED). Numerical modeling of the optical modes demonstrate a significant reduction of modal volume with respect to the whispering gallery modes of dielectric spheres, while retaining the high quality factors representative of spherical cavities. The extra degree of freedom of toroid microcavities can be used to achieve improved cavity QED characteristics. Numerical results for atom-cavity coupling strength, critical atom number N_0 and critical photon number n_0 for cesium are calculated and shown to exceed values currently possible using Fabry-Perot cavities. Modeling predicts coupling rates g/(2*pi) exceeding 700 MHz and critical atom numbers approaching 10^{-7} in optimized structures. Furthermore, preliminary experimental measurements of toroidal cavities at a wavelength of 852 nm indicate that quality factors in excess of 100 million can be obtained in a 50 micron principal diameter cavity, which w...

  7. Cryogenic rf test of the first plasma etched SRF cavity

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Im, D; Phillips, L; Vušković, L

    2016-01-01

    Plasma etching has a potential to be an alternative processing technology for superconducting radio frequency (SRF) cavities. An apparatus and a method are developed for plasma etching of the inner surfaces of SRF cavities. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used. The single cell cavity is mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. This cavity is then plasma processed. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  8. Blasting practices in a quarry with karstic cavities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The blasting practices in a limestone quarry with karstic cavities have been presented. The existence of karstic cavities in the quarry has reduced blasting efficiency significantly. In order to improve blasting efficiency different blasting strategies (loading holes with ANFO in plastic bag, recording cavity location along the holes and charging the holes according to this information, and modifying blasting pattern according to karstic cavities) had been implemented and the results were evaluated on per ton cost basis. It was concluded that efficient blasting in such aquarries requires determining the size and shape of karstic cavities and based on this information, to modify the blast pattern and charge the holes. The suggested method is to record the cavity along the drill hole and to generate 3D model of cavities. By doing this, the production cost in the limestone quarry has decreased from 0.407 $/t to 0.354 $/t.

  9. An unobtrusive liquid sensor utilizing a micromilled RF spark gap transmitter and resonant cavity

    Science.gov (United States)

    Berry, H.; Wilson, C.

    2009-09-01

    This paper reports on a new dielectric liquid sensor that utilizes an RF sparkgap transmitter coupled with an aluminum microwave resonant cavity. The transmitter is a micromilled polymer transmitter housing with patterned copper electrodes that generate micro-arcs. This transmitter which operates outside the measured liquid generates a directed ultrawideband signal which is received by the aluminum waveguide. Absorption resonances in the microwave cavity, measured with a spectrum analyzer are a function of the liquids' dielectric constant at lower frequencies, as well as from molecular vibrations/rotations at higher frequencies. In many chemical manufacturing processes, liquids being manufactured are removed, tested in a lab, and then disposed of, or else they will contaminate the full batch. In beer brewing, for instance, samples are removed, density tested for alcohol content, then disposed of. Using this sensor, the chemical process could be continuously monitored by a computerized system without risk of contamination.

  10. Trapping of light in solitonic cavities and its role in the supercontinuum generation

    CERN Document Server

    Driben, R; Efimov, A; Malomed, B A

    2013-01-01

    We demonstrate that the fission of higher-order N-solitons with a subsequent ejection of fundamental quasi-solitons creates solitonic cavities, formed by a pair of solitons with dispersive light trapped between them. As a result of multiple reflections of the trapped light from the bounding solitons which act as mirrors, they bend their trajectories and collide. In the spectral-domain, the two solitons receive blue and red wavelength shifts, respectively. The spectrum of the bouncing trapped light alters as well. This phenomenon strongly affect spectral characteristics of the generated supercontinuum. Studies of the system's parameters, which are responsible for the creation of the cavities, reveal possibilities of predicting and controlling soliton-soliton collisions induced by multiple reflections of the trapped light.

  11. A zero-power radio receiver.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-09-01

    This report describes both a general methodology and some specific examples of passive radio receivers. A passive radio receiver uses no direct electrical power but makes sole use of the power available in the radio spectrum. These radio receivers are suitable as low data-rate receivers or passive alerting devices for standard, high power radio receivers. Some zero-power radio architectures exhibit significant improvements in range with the addition of very low power amplifiers or signal processing electronics. These ultra-low power radios are also discussed and compared to the purely zero-power approaches.

  12. Scheme for Implementation of an Economic 1→3 Quantum Cloning Machine via Cavity-Assisted Atomic Collisions in Cavity-QED

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Qiang; LIU Qi; LIANG Xian-Ting; ZHANG Wen-Hai; YE Liu

    2008-01-01

    A scheme to implement of 1→ 3 economic phase-covariant cloning machine for unknown equator state in cavity-QED is proposed. The scheme requires cavity-assisted collision processes between atoms, which cross through nonresonant cavity fields in the vacuum states. The cavity fields are only virtually excited so that the cavity quality factor can be loosened.

  13. Selective oxidization cavity confinement for low threshold vertical cavity transistor laser

    Science.gov (United States)

    Wu, M. K.; Liu, M.; Tan, F.; Feng, M.; Holonyak, N.

    2013-07-01

    Data are presented for a low threshold n-p-n vertical cavity transistor laser (VCTL) with improved cavity confinement by trench opening and selective oxidation. The oxide-confined VCTL with a 6.5 × 7.5 μm2 oxide aperture demonstrates a threshold base current of 1.6 mA and an optical power of 150 μW at IB = 3 mA operating at -80 °C due to the mismatch between the quantum well emission peak and the resonant cavity optical mode. The VCTL operation switching from spontaneous to coherent stimulated emission is clearly observed in optical output power L-VCE characteristics. The collector output IC-VCE characteristics demonstrate the VCTL can lase in transistor's forward-active mode with a collector current gain β = 0.48.

  14. Astronomical Receiver Modelling Using Scattering Matrices

    CERN Document Server

    King, O G; Copley, C; Davis, R J; Leahy, J P; Leech, J; Muchovej, S J C; Pearson, T J; Taylor, Angela C

    2014-01-01

    Proper modelling of astronomical receivers is vital: it describes the systematic errors in the raw data, guides the receiver design process, and assists data calibration. In this paper we describe a method of analytically modelling the full signal and noise behaviour of arbitrarily complex radio receivers. We use electrical scattering matrices to describe the signal behaviour of individual components in the receiver, and noise correlation matrices to describe their noise behaviour. These are combined to produce the full receiver model. We apply this approach to a specified receiver architecture: a hybrid of a continous comparison radiometer and correlation polarimeter designed for the C-Band All-Sky Survey. We produce analytic descriptions of the receiver Mueller matrix and noise temperature, and discuss how imperfections in crucial components affect the raw data. Many of the conclusions drawn are generally applicable to correlation polarimeters and continuous comparison radiometers.

  15. Note: Broadband cavity ring-down spectroscopy of an intra-cavity bulk sample.

    Science.gov (United States)

    Zeuner, T; Paa, W; Mühlig, C; Stafast, H

    2013-03-01

    A cavity ring-down (CRD) setup equipped with a pulsed broadband light source (480 nm ≤ λ ≤ 650 nm) and a multichannel detection system (temporal gate width Δτ = 20 ns) is used to simultaneously record the optical loss spectrum of an intra-cavity CaF2 sample and its changes upon transverse ArF laser irradiation at 193 nm. The CRD setup with mirrors of high reflectivity (R > 99.93%) allows to register loss changes of 5 × 10(-5) with a spectral resolution of 0.3 nm in less than 2 min.

  16. Different optical properties in different periodic slot cavity geometrical morphologies

    Science.gov (United States)

    Zhou, Jing; Shen, Meng; Du, Lan; Deng, Caisong; Ni, Haibin; Wang, Ming

    2016-09-01

    In this paper, optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain (FDTD) simulation method. By simulating reflectance spectra, electric field distribution, and charge distribution, we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light, in which the four reflectance dips are attributed to Fabry-Perot cavity resonances in the coaxial cavity. A coaxial waveguide mode TE11 will exist in these annular cavities, and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities. These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss. The formation of an absorption peak can be explained from the aspect of phase matching conditions. We observed that the proposed structure can be tuned over the broad spectral range of 600-4000 nm by changing the outer and inner radii of the annular gaps, gap surface topography. Meanwhile, different lengths of the cavity may cause the shift of resonance dips. Also, we study the field enhancement at different vertical locations of the slit. In addition, dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths, which make the annular cavities good candidates for refractive index sensors. The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity. Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates, refractive index sensors, nano-lasers, and optical trappers. Project supported by the National Natural Science Foundation of China (Grant No. 61178044), the Natural Science Foundation

  17. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  18. Development of a cavity enhanced aerosol albedometer

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2014-03-01

    Full Text Available We report on the development of a cavity enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS approach and an integrating sphere (IS for simultaneous in situ measurements of aerosol scattering and extinction coefficients in the exact same sample volume. The cavity enhanced albedometer employed a blue light-emitting diode (LED based IBBCEAS approach for the measurement of wavelength-resolved aerosol optical extinction over the spectral range of 445–480 nm. An integrating sphere nephelometer coupled to the IBBCEAS setup was used for the measurement of aerosol scattering. The scattering signal was measured with a single channel photomultiplier tube (PMT, providing an integrated value over a narrow bandwidth (FWHM ~ 9 nm in the spectral region of 465–474 nm. A scattering coefficient at a wavelength of 470 nm was deduced as an averaged scattering value and used for data analysis and instrumental performance comparison. Performance evaluation of the albedometer was carried out using laboratory-generated particles and ambient aerosol. The scattering and extinction measurements of monodisperse polystyrene latex (PSL spheres generated in laboratory proved excellent correlation between two channels of the albedometer. The retrieved refractive index (RI from the measured scattering and extinction efficiencies agreed well with the values reported in previously published papers. Aerosol light scattering and extinction coefficients, single scattering albedo (SSA and NO2 concentrations in an ambient sample were directly and simultaneously measured using the developed albedometer. The developed instrument was validated via an intercomparison of the measured aerosol scattering coefficient and NO2 trace concentration against a TSI 3563 integrating nephelometer and a chemiluminescence detector, respectively.

  19. Evaluation of micro-GPS receivers for tracking small-bodied mammals

    Science.gov (United States)

    Shipley, Lisa A.; Forbey, Jennifer S.; Olsoy, Peter J.

    2017-01-01

    GPS telemetry markedly enhances the temporal and spatial resolution of animal location data, and recent advances in micro-GPS receivers permit their deployment on small mammals. One such technological advance, snapshot technology, allows for improved battery life by reducing the time to first fix via postponing recovery of satellite ephemeris (satellite location) data and processing of locations. However, no previous work has employed snapshot technology for small, terrestrial mammals. We evaluated performance of two types of micro-GPS (sensors) and FSR generated during stationary, above-ground trials, suggesting that animal behavior other than burrowing did not markedly influence micro-GPS errors. In our study, traditional micro-GPS receivers demonstrated similar FSR and LE to snapshot receivers, however, snapshot receivers operated inconsistently due to battery and software failures. In contrast, the initial traditional receivers deployed on animals experienced some breakages, but a modified collar design consistently functioned as expected. If such problems were resolved, snapshot technology could reduce the tradeoff between fix interval and battery life that occurs with traditional micro-GPS receivers. Our results suggest that micro-GPS receivers are capable of addressing questions about space use and resource selection by small mammals, but that additional techniques might be needed to identify use of habitat structures (e.g., burrows, tree cavities, rock crevices) that could affect micro-GPS performance and bias study results. PMID:28301495

  20. Water clusters confined in icosahedral fullerene cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rojas, J., E-mail: jhrojas@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Monteseguro, V. [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Breton, J., E-mail: jbreton@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Gomez Llorente, J.M., E-mail: jmgomez@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)

    2012-05-03

    Graphical abstract: Black-Square Display Omitted Highlights: Black-Right-Pointing-Pointer We model the interaction energy of water clusters confined in fullerene cavities. Black-Right-Pointing-Pointer C{sub 60} and C{sub 180} are chosen as icosahedral cavities. Black-Right-Pointing-Pointer The rigid TIP4P and flexible q-TIP4P/F water-water potentials are used. Black-Right-Pointing-Pointer While C{sub 60} can confine exothermically only one water molecule, C{sub 180} does up to 17. Black-Right-Pointing-Pointer New global minimum structures are reported for water clusters inside C{sub 180}. - Abstract: Likely candidates for the global energy minima of endohedral (H{sub 2}O){sub N}-C{sub 60} and (H{sub 2}O){sub N}-C{sub 180}, and exohedral (H{sub 2}O){sub N}C{sub 180} water-fullerene clusters with N Less-Than-Or-Slanted-Equal-To 20, are found using basin-hopping global optimization. The potential energy surfaces are constructed using both the rigid TIP4P and the flexible q-TIP4P/F potentials to model the water-water interaction, together with a Lennard-Jones potential for the water-fullerene interaction. In agreement with previous ab initio studies, we find that the small C{sub 60} cavity is able to encapsulate exothermically only one water molecule. On the other hand, the larger C{sub 180} cavity can encapsulate up to 17 water molecules exothermically. This threshold value is higher than that reported in a previous ab initio study (N Less-Than-Or-Slanted-Equal-To 12). New confined water cluster structures are found. One which is particularly interesting is the structure of (H{sub 2}O){sub 14}-C{sub 180}, with the water molecules forming an internal cage in which six oxygen atoms are located at the vertices of an almost regular octahedron and the eight remaining ones lie on top of the octahedron faces. For N Greater-Than-Or-Slanted-Equal-To 15 one water molecule is always present at the center of the water cage, which is distorted to accommodate the extra molecules.

  1. Discontinuity effects on radial cavity transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, D.B.

    1979-04-01

    Pulse propagation in radial cavity transmission lines such as those found on a radial line accelerator is considered. Specifically, the effects of discontinuities along the line are examined in detail. It is found that previous analyses of such effects have been incorrect, and here two alternate solution techniques are presented. Depending upon the parameters of such a radial line, the discontinuity effects considered here may or may not be significant; however, if they are significant, it is recommended that the alternate solution techniques presented here be used.

  2. Plexiform neurofibromatosis involving face and oral cavity

    Directory of Open Access Journals (Sweden)

    Dorairaj Jayachandran

    2014-01-01

    Full Text Available Plexiform neurofibromas (PNFs are one of the most common and debilitating complications of neurofibromatosis type I (NF-I. They account for substantial morbidity, disfigurement, functional impairment and are life threatening. PNFs can also be subjected to transformation into malignant peripheral nerve sheath tumor (MPNST. This complication is refractory to treat due to paucity of effective therapies for malignant soft tissue sarcomas in general and also the delay in diagnosis from a preexisting tumor. We report a case of PNF of face involving oral cavity with literature review.

  3. Crater and cavity depth in hypervelocity impact

    Science.gov (United States)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  4. Control of multiatom entanglement in a cavity

    CERN Document Server

    Mandilara, A; Kolar, M; Kurizki, G

    2006-01-01

    We propose a general formalism for analytical description of multiatomic ensembles interacting with a single mode quantized cavity field under the assumption that most atoms remain un-excited on average. By combining the obtained formalism with the nilpotent technique for the description of multipartite entanglement we are able to overview in a unified fashion different probabilistic control scenarios of entanglement among atoms or examine atomic ensembles. We then apply the proposed control schemes to the creation of multiatom states useful for quantum information.

  5. Glial heterotopia of the oral cavity

    Directory of Open Access Journals (Sweden)

    Radhames E. Lizardo

    2015-07-01

    Full Text Available We report an unusual case of a glial heterotopia arising from the oral cavity of an African neonate. The patient presented with an external pedunculated oral mass which was connected to the anterior hard palate by a firm, rubbery stalk of mucosal tissue. While the mass appeared painless, it interfered with the infant's feeding and was disturbing to the parents. After a computed tomography scan excluded an intracranial connection, the mass was excised at its base and sent for biopsy. Histopathology examination confirmed glial heterotopia. Glial heterotopias should be included in the differential diagnosis of congenital masses in the oral region.

  6. Long wavelength vertical cavity surface emitting laser

    Science.gov (United States)

    Choquette, Kent D.; Klem, John F.

    2005-08-16

    Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.

  7. Wave Dynamical Chaos in Superconducting Microwave Cavities

    CERN Document Server

    Rehfeld, H; Dembowski, C; Gräf, H D; Hofferbert, R; Richter, A; Lengeler, Herbert

    1997-01-01

    During the last few years we have studied the chaotic behavior of special Euclidian geometries, so-called billiards, from the quantum or in more general sense "wave dynamical" point of view. Due to the equivalence between the stationary Schroedinger equation and the classical Helmholtz equation in the two-dimensional case (plain billiards), it is possible to simulate "quantum chaos" with the help of macroscopic, superconducting microwave cavities. Using this technique we investigated spectra of three billiards from the family of Pascal's Snails (Robnik-Billiards) with a different chaoticity in each case in order to test predictions of standard stochastical models for classical chaotic systems.

  8. External cavity diode laser around 657 nm

    Institute of Scientific and Technical Information of China (English)

    Desheng Lǖ (吕德胜); Kaikai Huang (黄凯凯); Fengzhi Wang (王凤芝); DonghaiYang (杨东海)

    2003-01-01

    Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Ramsey spectroscopy experiment, we have constructed a 657-nm laser system based on the LittmanMetcalf configuration with a 660-nm commercial laser diode. Continuously 10-GHz tuning range was achieved with about 100-kHz spectral linewidth, measured with beat-note spectrum of two identical laser systems.

  9. Millimeter and Submillimeter-Wave Integrated Horn Antenna Schottky Receivers.

    Science.gov (United States)

    Ali-Ahmad, Walid Youssef

    1993-01-01

    Fundamental Schottky-diode mixers are currently used in most millimeter-wave receivers above 100GHz. The mixers use either a whisker-contacted diode or a planar Schottky diode suspended in a machined waveguide with an appropriate RF matching network. However, waveguide mounts are very expensive to machine for frequencies above 200GHz. Also, the whisker-contacted structure is not compatible with integrated mixers which represent the leading technology used for millimeter- and submillimeter-wave applications such as plasma diagnostics imaging arrays, radiometers, and anti-collision radars. In this work, a novel quasi-integrated horn antenna has been used for the receiver antenna. This antenna has a high gain and a high Gaussian coupling efficiency (97%), similar to machined scalar feed horns, but with the advantage of being easily fabricated up to at least 1.5THz. The quasi-integrated horn antenna is based on the integrated horn antenna structure. The integrated horn antenna consists of a pyramidal cavity with a 70^circ flare angle etched anisotropically in silicon. The cavity focuses the incoming energy on dipole-probe suspended on a membrane inside the horn. The integrated horn antenna does not suffer from dielectric losses or substrate mode losses since the feeding dipole antenna is integrated on a very thin dielectric layer. The mixer circuit, along with the feed dipole, are both integrated on the membrane wafer. The mixer diode is the University of Virginia surface channel planar diode which has a low parasitic capacitance. The diode is epoxied directly at the dipole apex without the need for an RF matching network, and with no mixer tuning required. At 92GHz,the DSB antenna-mixer conversion loss and noise temperature are 5.5dB and 770K, respectively. This represents the best reported results to this date for a quasi-optical mixer with a planar diode, at room temperature. At 335GHz, the DSB antenna-mixer noise temperature is 1750K and it is within 1dB of the

  10. High stable remote photoelectric receiver for interferometry

    Science.gov (United States)

    Yang, Hongxing; Zhu, Pengfei; Tan, Jiubin; Hu, Pengcheng; Fan, Zhigang

    2017-03-01

    A high sensitive and high stable remote photoelectric receiver has been developed to reduce noise and phase delay drift caused by thermal pollution and environmental interference. The phase delay drift model is analyzed and built based on a traditional photoelectric receiver. According to the model, a new mechanical isolation structure and a temperature control system are designed to keep the photoelectric receiver in a low constant temperature. Comparison experiments with traditional bias voltage compensation method and temperature control method are carried out between photoelectric receivers. The results verify that the output voltage fluctuation of photoelectric receiver used is reduced by 65% while the phase drift between measurement and reference photoelectric receivers decreases from 1.05° to 0.02°.

  11. Analysis of the omnium-g receiver

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, M.

    1980-03-01

    A thermal analysis of the Omnium-G receiver is presented and the technique is shown to be generally applicable to solar thermal receivers utilizing a directly heated thermal mass. The thermal loss coefficient, including reradiation losses, is calculated and shown to agree quite well with the experimentally measured thermal loss coefficient. The rate of heat transfer to the working fluid is also analyzed and the analysis is used to show that the Omnium-G receiver is well matched to the water/steam working fluid because the steam outlet temperature is almost the same as the receiver temperature. A general procedure for calculating receiver performance is presented. With this procedure, the energy delivery to any working fluid, the delivered temperature of the working fluid, and the pressure drop through the receiver can be determined. An example of the calculation is also presented.

  12. A coupled microwave-cavity system in the Rydberg-atom cavity detector for dark matter axions

    CERN Document Server

    Tada, M; Shibata, M; Kominato, K; Ogawa, I; Funahashi, H; Yamamoto, K; Matsuki, S

    2001-01-01

    A coupled microwave-cavity system of cylindrical TM$_{010}$ single-mode has been developed to search for dark matter axions around 10 $\\mu {\\rm eV}$(2.4 GHz) with the Rydberg-atom cavity detector at 10 mK range temperature. One component of the coupled cavity (conversion cavity) made of oxygen-free high-conductivity copper is used to convert an axion into a single photon with the Primakoff process in the strong magnetic field, while the other component (detection cavity) made of Nb is utilized to detect the converted photons with Rydberg atoms passed through it without magnetic field. Top of the detection cavity is attached to the bottom flange of the mixing chamber of a dilution refrigerator, thus the whole cavity is cooled down to 10 mK range to reduce the background thermal blackbody-photons in the cavity. The cavity resonant frequency is tunable over $\\sim$ 15% by moving dielectric rods inserted independently into each part of the cavities along the cylindrical axis. In order to reduce the heat load from ...

  13. Cavity quantum electrodynamics of a quantum dot in a micropillar cavity: comparison between experiment and theory

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Reitzenstein, S.;

    2010-01-01

    The coupling between a quantum dot (QD) and a micropillar cavity is experimentally investigated by performing time-resolved, correlation, and two-photon interference measurements. The Jaynes-Cummings model including dissipative Lindblad terms and dephasing is analyzed, and all the parameters...... for the model are experimentally determined allowing for a complete comparison between experiment and theory....

  14. The ``Q disease'' in Superconducting Niobium RF Cavities

    Science.gov (United States)

    Knobloch, J.

    2003-07-01

    Superconducting niobium cavities can achieve quality (Q0) factors of 1010-1011, more than six orders of magnitude higher than conventional copper cavities. However, to maintain this performance at high accelerating gradient (20 MV/m) the radio-frequency (rf) surface must be damage and dust free. Cavity preparation techniques therefore routinely include a chemical etch or electropolishing. Under certain conditions, these (and other) treatments can contaminate the niobium with hydrogen. Hydrides may then form when the cavity is cooled through 150 K, even if only a few atomic percent hydrogen are present. If hydrides are formed, the cavity quality can degrade substantially (Q disease). A rapid cooldown often inhibits the hydride formation. Other "cures" include degassing cavities at 900 °C to eliminate the hydrogen. A historical review of the Q disease is provided here, with the emphasis being placed on its discovery, symptoms, mechanism, and cures.

  15. Optically thin hybrid cavity for terahertz photo-conductive detectors

    Science.gov (United States)

    Thompson, R. J.; Siday, T.; Glass, S.; Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.

    2017-01-01

    The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

  16. The first operation of 56 MHz SRF cavity in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); DeSanto, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Goldberg, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    A 56 MHz superconducting RF cavity has been designed, fabricated and installed in the Relativistic Heavy Ion Collider (RHIC). The cavity operates at 4.4 K with a “quiet helium source” to isolate the cavity from environmental acoustic noise. The cavity is a beam driven quarter wave resonator. It is detuned and damped during injection and acceleration cycles and is brought to operation only at store energy. For a first test operation, the cavity voltage was stabilized at 300 kV with full beam current. Within both Au + Au and asymmetrical Au + He3 collisions, luminosity improvement was detected from direct measurement, and the hourglass effect was reduced. One higher order mode (HOM) coupler was installed on the cavity. We report in this paper on our measurement of a broadband HOM spectrum excited by the Au beam.

  17. Comparative numerical studies of ion traps with integrated optical cavities

    CERN Document Server

    Podoliak, Nina; Keller, Matthias; Horak, Peter

    2016-01-01

    We study a range of radio-frequency ion trap geometries and investigate the effect of integrating dielectric cavity mirrors on their trapping potential. We aim to identify ion trap and cavity configurations that are best suited for achieving small cavity volumes and thus large ion-photon coupling as required for scalable quantum information networks. In particular, we investigate the trapping potential distortions caused by the dielectric material of the cavity mirrors for different mirror orientations with respect to the trapping electrodes, as well as for mirror misalignment. We also analyze the effect of the mirror material properties such as dielectric constants and surface conductivity, and study the effect of surface charges on the mirrors. The smallest trapping potential distortions are found if the cavities are aligned along the major symmetry axis of the electrode geometries. These cavity configurations also appear to be the most stable with respect to any mirror misalignment.

  18. Multiple-cavity detector for axion dark matter search

    Science.gov (United States)

    Jeong, Junu; Ahn, Saebyeok; Youn, Sungwoo; Semertzidis, Yannis

    2017-01-01

    Exploring higher frequency regions in axion dark matter searches using microwave cavity detectors requires a smaller size of the cavity as the TM010 frequency scales inversely with the cavity radius. One of the intuitive ways to make a maximal use of a given magnet volume, and thereby to increase the experimental sensitivity, is to bundle multiple cavities together and combine their individual outputs ensuring phase-matching of the coherent axion signal. The Experiment of Axion Search aT CAPP (EAST-C) is a dedicated project to develop multiple-cavity systems at the Centre for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS). In this poster, the conceptual design of the phase-matching mechanism and experimental feasibility using a quadruple-cavity system will be presented.

  19. Stability analysis for bad cavity lasers with inhomogeneously broadened gain

    CERN Document Server

    Kazakov, Georgy A

    2016-01-01

    Bad cavity lasers are experiencing renewed interest in the context of active optical frequency standards, due to their enhanced robustness against fluctuations of the laser cavity. The gain medium would consist of narrow-linewidth atoms, either trapped inside the cavity or intersecting the cavity mode dynamically. A finite velocity distribution, atomic interactions, or interactions of realistic multilevel atoms with external field leads to an inhomogeneous broadening of the atomic gain profile. This can bring the bad cavity laser to operate in unstable regimes characterized by complex temporal patterns of the field amplitude. We present a new and efficient method for the stability analysis of bad cavity lasers with inhomogeneously broadened gain. We apply this method to identify the steady-state solutions for the metrology-relevant case of spin-1/2 atoms interacting with an external magnetic field.

  20. SRF Cavity Surface Topography Characterization Using Replica Techniques

    Energy Technology Data Exchange (ETDEWEB)

    C. Xu, M.J. Kelley, C.E. Reece

    2012-07-01

    To better understand the roll of topography on SRF cavity performance, we seek to obtain detailed topographic information from the curved practical cavity surfaces. Replicas taken from a cavity interior surface provide internal surface molds for fine Atomic Force Microscopy (AFM) and stylus profilometry. In this study, we confirm the replica resolution both on surface local defects such as grain boundary and etching pits and compare the surface uniform roughness with the aid of Power Spectral Density (PSD) where we can statistically obtain roughness parameters at different scales. A series of sampling locations are at the same magnetic field chosen at the same latitude on a single cell cavity to confirm the uniformity. Another series of sampling locations at different magnetic field amplitudes are chosen for this replica on the same cavity for later power loss calculation. We also show that application of the replica followed by rinsing does not adversely affect the cavity performance.

  1. Laser frequency modulator for modulating a laser cavity

    Science.gov (United States)

    Erbert, Gaylen V.

    1992-01-01

    The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.

  2. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high......-quality-factor and optically active semiconductor nanomembrane. The cooling is a result of electron–hole generation by cavity photons. Consequently, the cooling factor depends on the optical wavelength, varies drastically in the vicinity of the semiconductor bandgap, and follows the excitonic absorption behaviour...... an alternative cooling mechanism that is a result of electronic stress via the deformation potential, and outline future directions for cavity optomechanics with optically active semiconductors....

  3. Nursing process approach improves receivables management.

    Science.gov (United States)

    Dias, K; Stockamp, D

    1992-09-01

    The "nursing process" is a systematic decision-making approach to problem solving based on open-system theory. This theory assumes that there is an on-going interchange between all system components. Components cannot be viewed in isolation, because decisions regarding one component will affect other components. Receivables management is similar to the nursing process, in that it involves constant diagnosis, assessment, and intervention in the work in process during all phases of the receivables cycle. In experiments that applied the nursing process concept to the management of accounts receivable in several hospitals, gross days in accounts receivable were reduced and cash flow was increased.

  4. Shipping/Receiving and Quality Control

    Data.gov (United States)

    Federal Laboratory Consortium — Shipping receiving, quality control, large and precise inspection and CMM machines. Coordinate Measuring Machines, including "scanning" probes, optical comparators,...

  5. Special design topics in digital wideband receivers

    CERN Document Server

    Tsui, James B Y

    2009-01-01

    Offering engineers a thorough examination of special, more advanced aspects of digital wideband receiver design, this practical book builds on fundamental resources on the topic, helping you gain a more comprehensive understanding of the subject. This in-depth volume presents a detailed look at a complete receiver design, including the encoder. Moreover, it discusses the detection of exotic signals and provides authoritative guidance on designing receivers used in electronic warfare. From frequency modulation and biphase shifting keys, to parameter encoders in electronic warfare receivers and

  6. Efficient structures for wideband digital receiver

    Institute of Scientific and Technical Information of China (English)

    Wang Hong; Lu Youxin; Wang Xuegang; Wan Yonglun

    2006-01-01

    Digital receivers have become more and more popular in radar, communication, and electric warfare for the advantages compared with their analog counterparts. But conventional digital receivers have been generally considered impractical for bandwidth greater than several hundreds MHz. To extend receiver bandwidth, decrease data rate and save hardware resources, three novel structures are proposed. They decimate the data stream prior to mixing and filtering, then process the multiple decimated streams in parallel at a lower rate. Consequently it is feasible to realize wideband receivers on the current ASIC devices. A design example and corresponding simulation results are demonstrated to evaluate the proposed structures.

  7. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  8. Unusual Dermoid Cyst in Oral Cavity

    Directory of Open Access Journals (Sweden)

    Evanice Menezes Marçal Vieira

    2014-01-01

    Full Text Available Dermoid cysts in oral cavity are unusual lesions. Their etiology is not yet clear and can be associated with trapped cells as a result of the inclusion error resulting in the development into the ectoderm, mesoderm, and endoderm tissues. The aim of this case report is to evidence the presence of a dermoid cyst in the floor of mouth surgically removed. In the present case, the lesion showed soft consistency, floating, regular borders, smooth surface, and the same color as the adjacent mucosa, asymptomatic and measuring 4.5 × 5.5 cm in its greatest diameter. The initial diagnostic was ranula in consequence of the similarity with clinical characteristics and localization. After surgical removal lesion, a fibrotic capsule was identified with a friable material with intensive yellow color. The microscopic exam showed cystic lesion with cavity lined by squamous stratified epithelium hyperorthokeratinized. Cutaneous attachments, such as sebaceous glands and hair follicles, were present in connective adjacent tissue. Surgical intervention is elective in these situations. All dentists must have a thorough knowledge of this unusual lesion.

  9. Ultrasonic Abrasion: An Alternative for Cavity Preparation

    Directory of Open Access Journals (Sweden)

    Áurea Simone Barrôso VIEIRA

    2007-05-01

    Full Text Available Introduction: Restorative dentistry aims to repair damages caused by caries disease. Along the years, researchers have developed effective and less invasive methods with the goal of preserving the teeth from caries destruction. Therefore, the improvement of scientific knowledge, auxiliary diagnostic systems, dental materials, and new instruments has changed the approaches and treatments in this field. In addition to conservative removal of carious tissue, patient’s comfort has also become a concern in modern dentistry.Purpose: Considering that ultrasonic abrasion has attracted great interest of dental professionals, this article discusses an alternative technique for cavity preparation by literature review, addressing its indications, contra-indications, advantages and limitations compared to the conventional high-speed method.Conclusion: There are not many studies on this subject. The available studies have demonstrated several qualities of the ultrasonic abrasion system, but some aspects remain unclear. Therefore, it is important to highlight that laboratorial and clinical studies in primary/permanent teeth should be conducted to elucidate questionable issues, such as time of cavity preparation, topography, presence of smear layer and microleakage, in order to offer safety to the extensive use of this new technology for both the professional and the patient. In this context, the dentist should always be attentive to innovations referring to minimally invasive techniques.

  10. Devil's Staircase in an Optomechanical Cavity

    CERN Document Server

    Wang, Hui; Buks, Eyal

    2016-01-01

    We study self-excited oscillation (SEO) in an on-fiber optomechanical cavity. While the phase of SEO randomly diffuses in time when the laser power that is injected into the cavity is kept constant, phase locking may occur when the laser power is periodically modulated in time. We investigate the dependence of phase locking on the amplitude and frequency of the laser power modulation. We find that phase locking can be induced with a relatively low modulation amplitude provided that the ratio between the modulation frequency and the frequency of SEO is tuned close to a rational number of relatively low hierarchy in the Farey tree. To account for the experimental results a one dimensional map, which allows evaluating the time evolution of the phase of SEO, is theoretically derived. By calculating the winding number of the one dimensional map the regions of phase locking can be mapped in the plane of modulation amplitude and modulation frequency. Comparison between the theoretical predictions and the experimenta...

  11. The inner cavity of the circumnuclear disc

    CERN Document Server

    Blank, Marvin; Frank, Adam; Carroll-Nellenback, Jonathan J; Duschl, Wolfgang J

    2016-01-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and second, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabi...

  12. The inner cavity of the circumnuclear disc

    Science.gov (United States)

    Blank, M.; Morris, M. R.; Frank, A.; Carroll-Nellenback, J. J.; Duschl, W. J.

    2016-06-01

    The circumnuclear disc (CND) orbiting the Galaxy's central black hole is a reservoir of material that can ultimately provide energy through accretion, or form stars in the presence of the black hole, as evidenced by the stellar cluster that is presently located at the CND's centre. In this paper, we report the results of a computational study of the dynamics of the CND. The results lead us to question two paradigms that are prevalent in previous research on the Galactic Centre. The first is that the disc's inner cavity is maintained by the interaction of the central stellar cluster's strong winds with the disc's inner rim, and secondly, that the presence of unstable clumps in the disc implies that the CND is a transient feature. Our simulations show that, in the absence of a magnetic field, the interaction of the wind with the inner disc rim actually leads to a filling of the inner cavity within a few orbital time-scales, contrary to previous expectations. However, including the effects of magnetic fields stabilizes the inner disc rim against rapid inward migration. Furthermore, this interaction causes instabilities that continuously create clumps that are individually unstable against tidal shearing. Thus the occurrence of such unstable clumps does not necessarily mean that the disc is itself a transient phenomenon. The next steps in this investigation are to explore the effect of the magnetorotational instability on the disc evolution and to test whether the results presented here persist for longer time-scales than those considered here.

  13. Plasmonic external cavity laser refractometric sensor.

    Science.gov (United States)

    Zhang, Meng; Lu, Meng; Ge, Chun; Cunningham, Brian T

    2014-08-25

    Combining the high sensitivity properties of surface plasmon resonance refractive index sensing with a tunable external cavity laser, we demonstrate a plasmonic external cavity laser (ECL) for high resolution refractometric sensing. The plasmonic ECL utilizes a plasmonic crystal with extraordinary optical transmission (EOT) as the wavelength-selective element, and achieves single mode lasing at the transmission peak of the EOT resonance. The plasmonic ECL refractometric sensor maintains the high sensitivity of a plasmonic crystal sensor, while simultaneously providing a narrow spectral linewidth through lasing emission, resulting in a record high figure of merit for refractometric sensing with an active or passive optical resonator. We demonstrate single-mode and continuous-wave operation of the electrically-pumped laser system, and show the ability to measure refractive index changes with a 3σ detection limit of 1.79 × 10(-6) RIU. The demonstrated approach is a promising path towards label-free optical biosensing with enhanced signal-to-noise ratios for challenging applications in small molecule drug discovery and pathogen sensing.

  14. Isolated secondary fungal infections of pleural cavity

    Directory of Open Access Journals (Sweden)

    Makbule Ergin

    2013-12-01

    Full Text Available Objectives: Pleural fungal infections are rare, but the incidence has been increasing with immunosuppressant diseases and use of immunosuppressive medications. In this report, we present 6 patients with pleural effusions that have been determined fungal infection. Methods: The medical records of patients with followed and treated due to fungal infection of the pleural were retrospectively reviewed. Result: The 6 cases whom was 58 of the value median for age were treated as surgical and medical due to fungal infection of the pleural cavity. Dyspnea, cough and chest pain were the most common symptoms. Fever, night sweats and expectoration are relatively rare. In 4 patients, the infections of pleural cavity developed on the bases of rheumatoid arthritis, tuberculosis, pleural mesothelioma and esophagopleural fistula. In two patients had isolated fungal infections. Cultural positivity was seen in 5 patients. Fungal hyphae were determined by cytopathology in all of the patients. As a surgical procedure, all of the patients underwent decortication or pleural biopsy and pleural irrigation. In all patients, antifungal agents were added to surgical procedures. Full recovery of infection was seen in 5 patients. One patient died. Conclusion: In immunosuppressive patients, the incidence of pleural effusions due to or associated with fungal infections are more common. Addition to culture of pleural fluid, histopathological evaluation of pleura will aid diagnosis. J Clin Exp Invest 2013; 4 (4: 443-446

  15. Porous photonic crystal external cavity laser biosensor

    Science.gov (United States)

    Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.; Cunningham, Brian T.

    2016-08-01

    We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO2 dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions with much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.

  16. New Device for the Oral Cavity

    Directory of Open Access Journals (Sweden)

    Virginia Pentón García

    2010-02-01

    Full Text Available Background: Apart from the instruments used to work and develop adequate treatments, there are some other instruments in General Dentistry and in Orthodontics in particular, called auxiliary instruments or accessories that help to get a better view of surgical field. A capable surgeon appreciates good instruments and recognizes their urgent need in an efficient way. Objective: To show a new device to work in the oral cavity. Methods: the device which was made of 1,8 mm stainless steal wires is 0,61 meters long . For its construction universal forceps 003-180 for facial arcs and 003-233 heavy corrugated forceps were used. The elaboration of the device started on the one side of the lip retractor, then a first fold was done and after that another fold in the right angle was done in which the wire went down to continue forming a stainless steel strong crossbow-like pattern. After this has been done the lip retractor of the other side was done. Results: The device has a single size hence, it can be used in other fields of dentistry such as Dental Surgery and Endodontics. Although the device is a standard unit, it has three main parts: two lip retractors joined to a resort or crossbow –like pattern. Conclusions: This device makes easier the inspection of the oral cavity, has a standard size. It can be used in different fields of dentistry with great economic advantages.

  17. Cavity Cooling for Ensemble Spin Systems

    Science.gov (United States)

    Cory, David

    2015-03-01

    Recently there has been a surge of interest in exploring thermodynamics in quantum systems where dissipative effects can be exploited to perform useful work. One such example is quantum state engineering where a quantum state of high purity may be prepared by dissipative coupling through a cold thermal bath. This has been used to great effect in many quantum systems where cavity cooling has been used to cool mechanical modes to their quantum ground state through coupling to the resolved sidebands of a high-Q resonator. In this talk we explore how these techniques may be applied to an ensemble spin system. This is an attractive process as it potentially allows for parallel remove of entropy from a large number of quantum systems, enabling an ensemble to achieve a polarization greater than thermal equilibrium, and potentially on a time scale much shorter than thermal relaxation processes. This is achieved by the coupled angular momentum subspaces of the ensemble behaving as larger effective spins, overcoming the weak individual coupling of individual spins to a microwave resonator. Cavity cooling is shown to cool each of these subspaces to their respective ground state, however an additional algorithmic step or dissipative process is required to couple between these subspaces and enable cooling to the full ground state of the joint system.

  18. Unusual Dermoid Cyst in Oral Cavity

    Science.gov (United States)

    Vieira, Evanice Menezes Marçal; Volpato, Luis Evaristo Ricci; Porto, Alessandra Nogueira; Carvalhosa, Artur Aburad; Botelho, Gilberto de Almeida; Bandeca, Matheus Coelho

    2014-01-01

    Dermoid cysts in oral cavity are unusual lesions. Their etiology is not yet clear and can be associated with trapped cells as a result of the inclusion error resulting in the development into the ectoderm, mesoderm, and endoderm tissues. The aim of this case report is to evidence the presence of a dermoid cyst in the floor of mouth surgically removed. In the present case, the lesion showed soft consistency, floating, regular borders, smooth surface, and the same color as the adjacent mucosa, asymptomatic and measuring 4.5 × 5.5 cm in its greatest diameter. The initial diagnostic was ranula in consequence of the similarity with clinical characteristics and localization. After surgical removal lesion, a fibrotic capsule was identified with a friable material with intensive yellow color. The microscopic exam showed cystic lesion with cavity lined by squamous stratified epithelium hyperorthokeratinized. Cutaneous attachments, such as sebaceous glands and hair follicles, were present in connective adjacent tissue. Surgical intervention is elective in these situations. All dentists must have a thorough knowledge of this unusual lesion. PMID:24818032

  19. Quantum superdense coding via cavity-assisted interactions

    Institute of Scientific and Technical Information of China (English)

    Pan Guo-Zhu; Yang Ming; Cao Zhuo-Liang

    2009-01-01

    Quantum superdense coding (QSC) is an example of how entanglement can be used to minimize the number of carriers of classical information. This paper proposes two schemes for implementing QSC by means of cavity assisted interactions with single-photon pulses. The schemes are insensitive to the cavity decay and the thermal field, thus it might be realizable based on the current cavity QED techniques.

  20. Preparation of cluster state in large detuned cavity

    Institute of Scientific and Technical Information of China (English)

    Zou Chang-Lin; Gao Guo-Jun; Lu Yan; Li Da-Chuang; Yang Ming; Cao Zhuo-Liang

    2008-01-01

    An experimentally realizable physical scheme for preparing multiqubit cluster states from a large detuned atomcavity interaction is proposed. The scheme is free of any type of measurement and insensitive to the cavity decay, and the cavity field is only virtually excited so that there is no information exchanging between atom and cavity. The time required for the gate operations is very short, which is important for decoherence. We also discuss the experimental feasibility of our scheme.

  1. Scalable photonic quantum computation through cavity-assisted interactions.

    Science.gov (United States)

    Duan, L-M; Kimble, H J

    2004-03-26

    We propose a scheme for scalable photonic quantum computation based on cavity-assisted interaction between single-photon pulses. The prototypical quantum controlled phase-flip gate between the single-photon pulses is achieved by successively reflecting them from an optical cavity with a single-trapped atom. Our proposed protocol is shown to be robust to practical noise and experimental imperfections in current cavity-QED setups.

  2. Simulation of Multipacting in RF cavities and waveguides.

    Science.gov (United States)

    Grudiev, A. V.; Myakishev, D. G.; Yakovlev, V. P.

    1997-05-01

    The code for multipacting simulations in axisymmetrical RF cavities, waveguides and coaxial lines is presented. Physical model includes secondary emission simulations and particle trajectory integration in realistic RF fields. The code calculates multipactor voltage levels and discharge distribution. The paper contains simulation results for 180 MHz cavity of INP microtron-recuperator as well as measured data for this cavity demonstrating good agreement with the calculations.

  3. Modeling of Electromagnetic Heating in RF Copper Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Awida, M. H. [Fermilab; Gonin, I. [Fermilab; Romanov, Romanov [Fermilab; Khabiboulline, T. [Fermilab; Yakovlev, V. [Fermilab

    2016-01-17

    Electromagnetic heating is a critical issue in normal conducting copper RF cavities that are employed in particle accelerators. With several tens to hundreds of kilowatts dissipated RF power, there must be an effective cooling scheme whether it is water or air based or even a combination of both. In this paper we investigate the electromagnetic heating in multiple cavities that were designed at Fermilab exploring how the electromagnetic and thermal analyses are coupled together to properly design the cooling of such cavities.

  4. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  5. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [IIT, Chicago; Grassellino, Anna [Fermilab; Martinello, Martina [Fermilab; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  6. Spontaneous symmetry breaking in synchronously pumped fiber ring cavities

    CERN Document Server

    Schmidberger, Michael J; Biancalana, Fabio; Russell, Philip St J; Joly, Nicolas Y

    2013-01-01

    We introduce a new equation that describes the spatio-temporal evolution of arbitrary pulses propagating in a fiber-ring cavity. This model is a significant extension of the traditionally used Lugiato-Lefever model. We demonstrate spontaneous symmetry breaking as well as multistability regimes in a synchronously pumped fiber-ring cavity. The equation can be applied to virtually any type of waveguide-based ring cavity.

  7. New construction of hybrid and aperiodic ordered PBG cavity

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The band gap of a photonic crystal (PhC) cavity intrinsically avoids HOM problems. In this paper, we present a new PBG structure based on the possible advantage of using hybrid structures and aperiodic lattices. This novel hybrid and aperiodically ordered cavity was designed for apparently higher Q-factor (more than 10300) and achieving large accelerating field gradient. The HOMs in the cavity are able to be absorbed efficiently.

  8. HOM Coupler Notch Filter Tuning for the European XFEL Cavities

    OpenAIRE

    Sulimov, Alexey

    2015-01-01

    The notch filter (NF) tuning prevents the extraction of fundamental mode (1.3 GHz) RF power through Higher Order Modes (HOM) couplers. The procedure of NF tuning was optimized at the beginning of serial European XFEL cavities production. It allows keeping the filter more stable against temperature and pressure changes during cavity cool down. Some statistics of NF condition during cavities and modules cold tests is presented.

  9. Investigations of a Coherently Driven Semiconductor Optical Cavity QED System

    Science.gov (United States)

    2008-09-30

    wavelength range of interest, the wavelength blueshift be- tween room and low temperature is 17 nm. 2 PL measure- ments through the fiber taper are...from the cryostat and blueshifted through a digital etching process 50 and the steps are repeated. 1. Room temperature cavity mode spectroscopy Room...small cavity mode blueshift of 0.8 nm per cycle, and does not degrade the cavity Q for the devices studied Q=105 and the number of etch cycles in

  10. Prototype 350 MHz niobium spoke-loaded cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J. R.; Kedzie, M.; Mammosser, J.; Piller, C.; Shepard, K. W.

    1999-05-10

    This paper reports the development of 350 MHz superconducting cavities of a spoke-loaded geometry, intended for the velocity range 0.2 < v/c < 0.6. Two prototype single-cell cavities have been designed, one optimized for velocity v/c = 0.4, and the other for v/c = 0.29. Construction of the prototype niobium cavities is nearly complete. Details of the design and construction are discussed, along with the results of cold tests.

  11. Cryogenic Testing of High-Velocity Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion University; Delayen, Jean R. [Old Dominion University; Park, HyeKyoung [JLAB

    2014-12-01

    Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, β0= 0.82 single-spoke cavity and a 500 MHz, β0 = 1 double-spoke cavity.

  12. Radiation treatment for newly diagnosed esophageal cancer with prior radiation to the thoracic cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sponseller, Patricia, E-mail: sponselp@uw.edu [University of Wisconsin at La Crosse, La Crosse, WI (United States); Lenards, Nishele [Department of Radiation Oncology, University of Washington, Seattle, WA (United States); Kusano, Aaron; Patel, Shilpen [University of Wisconsin at La Crosse, La Crosse, WI (United States)

    2014-10-01

    The purpose of this report is to communicate the use of single-positron emission computed tomography scan in planning radiation treatments for patients with a history of radiation to the thoracic cavity. A patient presented with obstructive esophageal cancer, having previously received chemotherapy and radiation therapy to the mediastinum for non-Hodgkin lymphoma 11 years earlier. Owing to a number of comorbidities, the patient was not a surgical candidate and was referred to the University of Washington Medical Center for radiation therapy. Prior dose to the spinal cord and lung were taken into account before designing the radiation treatment plan.

  13. Design and implementation of the CAPS receiver

    Science.gov (United States)

    Hu, Yonghui; Hua, Yu; Hou, Lei; Wei, Jingfa; Wu, Jianfeng

    2009-03-01

    In this paper, based on analyses of the Chinese Area Positioning System (CAPS) satellite (GEO satellite) resources and signal properties, the signal power at the port of the receiver antenna is estimated, and the implementation projects are presented for a switching band C to band L CAPS C/A code receiver integrated with GPS receiver suite and for a CAPS dual frequency P code receiver. A microstrip receiving antenna is designed with high sensitivity and wide beam orientation, the RF front end of the C/A code and P code receivers, and a processor is designed for the navigation baseband. A single frequency CAPS C/A code receiver and a CAPS dual frequency P code receiver are built at the same time. A software process flow is provided, and research on relatively key techniques is also conducted, such as signal searching, code loop and carrier loop algorithms, a height assistant algorithm, a dual frequency difference speed measurement technique, a speed measurement technique using a single frequency source with frequency assistance, and a CAPS time correcting algorithm, according to the design frame of the receiver hardware. Research results show that the static plane positioning accuracy of the CAPS C/A code receiver is 20.5-24.6 m, height accuracy is 1.2-12.8 m, speed measurement accuracy is 0.13-0.3 m/s, dynamic plane positioning accuracy is 24.4 m, height accuracy is 3.0 m, and speed measurement accuracy is 0.24 m/s. In the case of C/A code, the timing accuracy is 200 ns, and it is also shown that the positioning accuracy of the CAPS precise code receiver (1 σ) is 5 m from south to north, and 0.8 m from east to west. Finally, research on positioning accuracy is also conducted.

  14. Design and implementation of the CAPS receiver

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, based on analyses of the Chinese Area Positioning System (CAPS) satellite (GEO satellite) resources and signal properties, the signal power at the port of the receiver antenna is estimated, and the implementation projects are presented for a switching band C to band L CAPS C/A code receiver integrated with GPS receiver suite and for a CAPS dual frequency P code receiver. A microstrip receiving antenna is designed with high sensitivity and wide beam orientation, the RF front end of the C/A code and P code receivers, and a processor is designed for the navigation baseband. A single frequency CAPS C/A code receiver and a CAPS dual frequency P code receiver are built at the same time. A software process flow is provided, and research on relatively key techniques is also conducted, such as signal searching, code loop and carrier loop algorithms, a height assistant algorithm, a dual frequency difference speed measurement technique, a speed measurement technique using a single frequency source with frequency assistance, and a CAPS time correcting algorithm, according to the design frame of the receiver hardware. Research results show that the static plane positioning accuracy of the CAPS C/A code receiver is 20.5-24.6 m, height accuracy is 1.2-12.8 m, speed measurement accuracy is 0.13-0.3 m/s, dynamic plane positioning accuracy is 24.4 m, height accuracy is 3.0 m, and speed measurement accuracy is 0.24 m/s. In the case of C/A code, the timing accuracy is 200 ns, and it is also shown that the positioning accuracy of the CAPS precise code receiver (1σ ) is 5 m from south to north, and 0.8 m from east to west. Finally, research on positioning accuracy is also conducted.

  15. Optimising Blackbody Cavity Shape for Spatially Uniform Integrated Emissivity

    Science.gov (United States)

    Saunders, P.

    2017-01-01

    The emissivity of a blackbody cavity, as seen by a radiation thermometer viewing the cavity, depends on both the field of view of the thermometer and the distribution of local effective emissivity values within the field of view. For cylindro-conical cavities, the local effective emissivity generally attains a maximum value at the apex of the cone and drops along the conical section. Thus, radiation thermometers with different fields of view see different blackbody emissivity values. This impacts, particularly, on the calibration of wide-angle low-temperature radiation thermometers and thermal imaging systems where each pixel responds to a different radiance. The spatial uniformity of the effective emissivity profile depends principally on the cone angle, with a weaker dependence on the length-to-diameter ratio of the cavity, the intrinsic emissivity of the cavity surfaces, and the temperature gradient along the cavity. In this paper, a nonlinear least-squares method is used to determine the optimal cone angle as a function of the cavity parameters. It is concluded that full cone angles close to 160° provide the flattest effective emissivity profile across the conical section of the cavity for typical cavity parameters. A method is also described for calculating the value of integrated emissivity, which includes the umbral and penumbral regions seen by an imaging radiation thermometer.

  16. Optimization of Mold Yield in MultiCavity Sand Castings

    Science.gov (United States)

    Shinde, Vasudev D.; Joshi, Durgesh; Ravi, B.; Narasimhan, K.

    2013-06-01

    The productivity of ductile iron foundries engaging in mass production of castings for the automobile and other engineering sectors depends on the number of cavities per mold. A denser packing of cavities, however, results in slower heat transfer from adjacent cavities, leading to delayed solidification, possible shrinkage defects, and lower mechanical properties. In this article, we propose a methodology to optimize mold yield by selecting the correct combination of the mold box size and the number of cavities based on solidification time and mold temperature. Simulation studies were carried out by modeling solid and hollow cube castings with different values of cavity-wall gap and finding the minimum value of the gap beyond which there is no change in casting solidification time. Then double-cavity molds were modeled with different values of cavity-cavity gap, and simulated to find the minimum value of gap. The simulation results were verified by melting and pouring ductile iron in green sand molds instrumented with thermocouples, and recording the temperature in mold at predetermined locations. The proposed approach can be employed to generate a technological database of minimum gaps for various combinations of part geometry, metal and process, which will be very useful to optimize the mold cavity layouts.

  17. Manipulating nanoscale atom-atom interactions with cavity QED

    CERN Document Server

    Pal, Arpita; Deb, Bimalendu

    2016-01-01

    We theoretically explore manipulation of interactions between excited and ground state atoms at nanoscale separations by cavity quantum electrodynamics (CQED). We develop an adiabatic molecular dressed state formalism and show that it is possible to generate Fano-Feshbach resonances between ground and long-lived excited-state atoms inside a cavity. The resonances are shown to arise due to non-adiabatic coupling near a pseudo-crossing between the dressed state potentials. We illustrate our results with a model study using fermionic $^{171}$Yb atoms in a two-modal cavity. Our study is important for manipulation of interatomic interactions at low energy by cavity field.

  18. Accelerator cavities as a probe of millicharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Gies, H. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jaeckel, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-08-15

    We investigate Schwinger pair production of millicharged fermions in the strong electric field of cavities used for particle accelerators. Even without a direct detection mechanism at hand, millicharged particles, if they exist, contribute to the energy loss of the cavity and thus leave an imprint on the cavity's quality factor. Already conservative estimates substantially constrain the electric charge of these hypothetical particles; the resulting bounds are competitive with the currently best laboratory bounds which arise from experiments based on polarized laser light propagating in a magnetic field. We propose an experimental setup for measuring the electric current comprised of the millicharged particles produced in the cavity. (orig.)

  19. Nylon Sleeve for Cavity Amplifier Holds Tuning Despite Heat

    Science.gov (United States)

    Derr, Lloyd

    1964-01-01

    The problem: Detuning of cavity amplifiers with change in temperature. This results in deterioration of the performance of the amplifier at its design frequency. In cavity amplifiers and filters it is desirable that constant performance be maintained regardless of thermal changes. These changes often cause an "off resonance shift" in a cavity filter and a deterioration of performance in a cavity amplifier. The solution: Mount the tuning probe in a nylon sleeve. Thermal expansion and contraction of the nylon nullifies unwanted capacitive and inductive changes in the resonant elements.

  20. Design of S-band re-entrant cavity BPM

    Institute of Scientific and Technical Information of China (English)

    LUO Qing; SUN Baogen; HE Duohui

    2009-01-01

    An S-band cavity BPM is designed for a new injector for HLS (Hefei Light Source). It consists of two cavities that work on 2448 MHz: a re-entrant position cavity tuned to TM110 mode and a reference cavity tuned to TM010 mode. Cut-through waveguides are used as pickups to suppress the monopole signal. Simulations with different assumption of dimension change are performed to evaluate errors caused by mechanical error and give general tolerance. Design of electronics is given. Theoretical resolution of this design is 31 nm.

  1. Tunable cavity resonator including a plurality of MEMS beams

    Energy Technology Data Exchange (ETDEWEB)

    Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib

    2015-10-20

    A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.

  2. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L. E-mail: lutz.lilje@desy.de; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmueser, P.; Trines, D.; Visentin, B.; Wenninger, H

    2004-01-11

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  3. Improved surface treatment of the superconducting TESLA cavities

    Science.gov (United States)

    Lilje, L.; Antoine, C.; Benvenuti, C.; Bloess, D.; Charrier, J.-P.; Chiaveri, E.; Ferreira, L.; Losito, R.; Matheisen, A.; Preis, H.; Proch, D.; Reschke, D.; Safa, H.; Schmüser, P.; Trines, D.; Visentin, B.; Wenninger, H.

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a centre-of-mass energy of 500 GeV, an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper, results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity.

  4. Improved surface treatment of the superconducting TESLA cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lilje, L.; Matheisen, A.; Proch, D.; Reschke, D.; Trines, D.; Antoine, C.; Charrier, J.P.; Safa, H.; Visentin, B. [CEA Saclay, DAPHNIA, Gif-sur-Yvette (France); Benvenuti, C.; Bloess, D.; Chiaveri, E.; Ferreira, L.; Losito, R.; Preis, H.; Wenninger, H. [CERN, Geneva (Switzerland); Schmueser, P. [Hamburg Univ. (Germany)

    2004-01-01

    The proposed linear electron-positron collider TESLA is based on 1.3 GHz superconducting niobium cavities for particle acceleration. For a center-of-mass energy of 500 GeV an accelerating field of 23.4 MV/m is required which is reliably achieved with a niobium surface preparation by chemical etching. An upgrade of the collider to 800 GeV requires an improved cavity preparation technique. In this paper results are presented on single-cell cavities which demonstrate that fields of up to 40 MV/m are accessible by electrolytic polishing of the inner surface of the cavity. (orig.)

  5. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...... interference between two single photons, is calculated as a function of important parameters describing the cavity QED system and the phonon reservoir, e.g., cavity quality factor, light-matter coupling strength, temperature, and phonon lifetime. We show that non-Markovian effects play an important role...

  6. The spatial relation between EUV cavities and linear polarization signatures

    Science.gov (United States)

    Bak-Stȩślicka, Urszula; Gibson, Sarah E.; Fan, Yuhong; Bethge, Christian; Forland, Blake; Rachmeler, Laurel A.

    2014-01-01

    Solar coronal cavities are regions of rarefied density and elliptical cross-section. The Coronal Multi-channel Polarimeter (CoMP) obtains daily full-Sun coronal observations in linear polarization, allowing a systematic analysis of the coronal magnetic field in polar-crown prominence cavities. These cavities commonly possess a characteristic ``lagomorphic'' signature in linear polarization that may be explained by a magnetic flux-rope model. We analyze the spatial relation between the EUV cavity and the CoMP linear polarization signature.

  7. Ultracold Fermions in a Cavity-Induced Artificial Magnetic Field

    Science.gov (United States)

    Kollath, Corinna; Sheikhan, Ameneh; Wolff, Stefan; Brennecke, Ferdinand

    2016-02-01

    We propose how a fermionic quantum gas confined to an optical lattice and coupled to an optical cavity can self-organize into a state where the spontaneously emerging cavity field amplitude induces an artificial magnetic field. The fermions form either a chiral insulator or a chiral liquid carrying chiral currents. The feedback mechanism via the dynamical cavity field enables robust and fast switching in time of the chiral phases, and the cavity output can be employed for a direct nondestructive measurement of the chiral current.

  8. HOMs Simulation and Measurement Results of IHEP02 Cavity

    CERN Document Server

    Zheng, Hongjuan; Zhao, Tongxian; Gao, Jie

    2015-01-01

    In cavities, there exists not only the fundamental mode which is used to accelerate the beam but also higher order modes (HOMs). The higher order modes excited by beam can seriously affect beam quality, especially for the higher R/Q modes. This paper reports on measured results of higher order modes in the IHEP02 1.3GHz low-loss 9-cell superconducting cavity. Using different methods, Qe of the dangerous modes passbands have been got. The results are compared with TESLA cavity results. R/Q of the first three passbands have also been got by simulation and compared with the results of TESLA cavity.

  9. Physical simulations of cavity closure in a creeping material

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, H.J.; Preece, D.S.

    1985-09-01

    The finite element method has been used extensively to predict the creep closure of underground petroleum storage cavities in rock salt. Even though the numerical modeling requires many simplifying assumptions, the predictions have generally correlated with field data from instrumented wellheads, however, the field data are rather limited. To gain an insight into the behavior of three-dimensional arrays of cavities and to obtain a larger data base for the verification of analytical simulations of creep closure, a series of six centrifuge simulation experiments were performed using a cylindrical block of modeling clay, a creeping material. Three of the simulations were conducted with single, centerline cavities, and three were conducted with a symmetric array of three cavities surrounding a central cavity. The models were subjected to body force loading using a centrifuge. For the single cavity experiments, the models were tested at accelerations of 100, 125 and 150 g's for 2 hours. For the multi-cavity experiments, the simulations were conducted at 100 g's for 3.25 hours. The results are analyzed using dimensional analyses. The analyses illustrate that the centrifuge simulations yield self-consistent simulations of the creep closure of fluid-filled cavities and that the interaction of three-dimensional cavity layouts can be investigated using this technique.

  10. Research on Field Emission and Dark Current in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kexin; Li, Yongming; Palczewski, Ari; Geng, Rongli

    2013-09-01

    Field emission and dark current are issues of concern for SRF cavity performance and SRF linac operation. Complete understanding and reliable control of the issue are still needed, especially in full-scale multi-cell cavities. Our work aims at developing a generic procedure for finding an active field emitter in a multi-cell cavity and benchmarking the procedure through cavity vertical test. Our ultimate goal is to provide feedback to cavity preparation and cavity string assembly in order to reduce or eliminate filed emission in SRF cavities. Systematic analysis of behaviors of field emitted electrons is obtained by ACE3P developed by SLAC. Experimental benchmark of the procedure was carried out in a 9-cell cavity vertical test at JLab. The energy spectrum of Bremsstrahlung X-rays is measured using a NaI(Tl) detector. The end-point energy in the X-ray energy spectrum is taken as the highest kinetic electron energy to predict longitudinal position of the active field emitter. Angular location of the field emitter is determined by an array of silicon diodes around irises of the cavity. High-resolution optical inspection was conducted at the predicted field emitter location.

  11. A stable fiber-based Fabry-Perot cavity

    CERN Document Server

    Steinmetz, T; Colombe, Y; Hunger, D; Hänsch, T W; Warburton, R J; Reichel, J

    2006-01-01

    We report the development of a fiber-based, tunable optical cavity with open access. The cavity is of the Fabry-Perot type and is formed with miniature spherical mirrors positioned on the end of single- or multi-mode optical fibers by a transfer technique which involves lifting a high-quality mirror from a smooth convex substrate, either a ball lens or micro-lens. The cavities typically have a finesse of $\\sim 1,000$ and a mode volume of 600 $\\mu$m$^3$. We demonstrate the detection of small ensembles of cold Rb atoms guided through such a cavity on an atom chip.

  12. Internalization of Calcium Oxalate Calculi Developed in Narrow Cavities

    Directory of Open Access Journals (Sweden)

    Fèlix Grases

    2014-03-01

    Full Text Available We describe the case of a patient with calcium oxalate monohydrate and calcium oxalate dihydrate calculi occluded in cavities. All those calculi were located inside narrow cavities covered with a thin epithelium that permits their visualization. Urinary biochemical analysis showed high calciuria, not hypercalciuria, hypocitraturia, and a ratio [calcium]/[citrate] >0.33. The existence of cavities of very low urodynamic efficacy was decisive in the formation of such calculi. It is important to emphasize that we observed a thin epithelium covering such cavities, demonstrating that this epithelium may be formed after the development of the calculi through a re-epithelialization process.

  13. Cavity design for high-frequency axion dark matter detectors.

    Science.gov (United States)

    Stern, I; Chisholm, A A; Hoskins, J; Sikivie, P; Sullivan, N S; Tanner, D B; Carosi, G; van Bibber, K

    2015-12-01

    In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ∼8 μeV (∼2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating vane designs for higher-frequency searches. The results show that both designs could be used to develop resonant cavities for high-mass axion searches. Multiple configurations of both methods obtained the scanning sensitivity equivalent to approximately 4 coherently coupled cavities with a single tuning rod.

  14. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  15. Higher Order Mode Properties of Superconducting Two-Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, C. S.; Delayen, J. R.; Olave, R. G.

    2011-07-01

    Multi-Spoke cavities lack the cylindrical symmetry that many other cavity types have, which leads to a more complex Higher Order Mode (HOM) spectrum. In addition, spoke cavities offer a large velocity acceptance which means we must perform a detailed analysis of the particle velocity dependence for each mode's R/Q. We present here a study of the HOM properties of two-spoke cavities designed for high-velocity applications. Frequencies, R/Q and field profiles of HOMs have been calculated and are reported.

  16. Multipacting Analysis of the Superconducting Parallel-bar Cavity

    Energy Technology Data Exchange (ETDEWEB)

    S.U. De Silva, J.R. Delayen,

    2011-03-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.

  17. Superconducting spoke cavities for high-velocity applications

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  18. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Shaun D. [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, James [Brayton Energy, LLC, Portsmouth, NH (United States); Nash, James [Brayton Energy, LLC, Portsmouth, NH (United States); Farias, Jason [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, Devon [Brayton Energy, LLC, Portsmouth, NH (United States); Caruso, William [Brayton Energy, LLC, Portsmouth, NH (United States)

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  19. Superconducting integrated submillimeter receiver for TELIS

    NARCIS (Netherlands)

    Koshelets, Valery P.; Ermakov, Andrey B.; Filippenko, Lyudmila V.; Khudchenko, Andrey V.; Kiselev, Oleg S.; Sobolev, Alexander S.; Torgashin, Mikhail Yu.; Yagoubov, Pavel A.; Hoogeveen, Ruud W. M.; Wild, Wolfgang

    2007-01-01

    In this report an overview of the results on the development of a single-chip superconducting integrated receiver for the Terahertz Limb Sounder (TELIS) balloon project intended to measure a variety of stratosphere trace gases is presented. The Superconducting Integrated Receiver (SIR) comprises in

  20. Social networks and receiving informal care.

    NARCIS (Netherlands)

    Boer, A. de; Klerk, M. de; Cardol, M.; Westert, G.

    2006-01-01

    In 2001, roughly half a million people (4% of the Dutch population) received informal care from family members living outside their home, and a quarter of a million (2% of the Dutch population) received this care from acquaintances, such as friend, neighbours and work colleagues. The potential suppl