WorldWideScience

Sample records for caveolin-3 promotes nicotinic

  1. Caveolin-3 promotes a vascular smooth muscle contractile phenotype

    Directory of Open Access Journals (Sweden)

    Jorge L. Gutierrez-Pajares

    2015-06-01

    Full Text Available Epidemiological studies have demonstrated the importance of cardiovascular diseases in Western countries. Among the cell types associated with a dysfunctional vasculature, smooth muscle cells are believed to play an essential role in the development of these illnesses. Vascular smooth muscle cells are key regulators of the vascular tone and also have an important function in the development of atherosclerosis and restenosis. While in the normal vasculature contractile smooth muscle cells are predominant, in atherosclerotic vascular lesions, synthetic cells migrate toward the neointima, proliferate, and synthetize extracellular matrix proteins. In the present study, we have examined the role of caveolin-3 in the regulation of smooth muscle cell phenotype. Caveolin-3 is expressed in vivo in normal arterial smooth muscle cells, but its expression appears to be lost in cultured smooth muscle cells. Our data show that caveolin-3 expression in the A7r5 smooth muscle cell line is associated with increased expression of contractility markers such as smooth muscle  actin, smooth muscle myosin heavy chain but decreased expression of the synthetic phenotype markers such as p-Elk and Klf4. Moreover, we also show that caveolin-3 expression can reduce proliferation upon treatment with LDL or PDGF. Finally, we show that caveolin-3-expressing smooth muscle cells are less sensitive to apoptosis than control cells upon treatment with oxidized LDL. Taken together, our data suggest that caveolin-3 can regulate the phenotypic switch between contractile and synthetic smooth muscle cells. A better understanding of the factors regulating caveolin-3 expression and function in this cell type will permit the development of a better comprehension of the factors regulating smooth muscle function in atherosclerosis and restenosis.

  2. Caveolin-3 Mutations in Rippling Muscle Disease

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-05-01

    Full Text Available Two unrelated patients with novel homozygous missense mutations (L86P and A92T in caveolin-3 gene (CAV3, presenting with a severe form of rippling muscle disease (RMD, are reported from the University of Bonn, and other centers in Germany.

  3. Estradiol promotes the rewarding effects of nicotine in female rats.

    Science.gov (United States)

    Flores, Rodolfo J; Pipkin, Joseph A; Uribe, Kevin P; Perez, Adriana; O'Dell, Laura E

    2016-07-01

    It is presently unclear whether ovarian hormones, such as estradiol (E2), promote the rewarding effects of nicotine in females. Thus, we compared extended access to nicotine intravenous self-administration (IVSA) in intact male, intact female, and OVX female rats (Study 1) as well as OVX females that received vehicle or E2 supplementation (Study 2). The E2 supplementation procedure involved a 4-day injection regimen involving 2 days of vehicle and 2 days of E2 administration. Two doses of E2 (25 or 250μg) were assessed in separate groups of OVX females in order to examine the dose-dependent effects of this hormone on the rewarding effects of nicotine. The rats were given 23-hour access to nicotine IVSA using an escalating dose regimen (0.015, 0.03, and 0.06mg/kg/0.1mL). Each dose was self-administered for 4 days with 3 intervening days of nicotine abstinence. The results revealed that intact females displayed higher levels of nicotine intake as compared to males. Also, intact females displayed higher levels of nicotine intake versus OVX females. Lastly, our results revealed that OVX rats that received E2 supplementation displayed a dose-dependent increase in nicotine intake as compared to OVX rats that received vehicle. Together, our results suggest that the rewarding effects of nicotine are enhanced in female rats via the presence of the ovarian hormone, E2.

  4. Low-dose nicotine does not promote lung tumors in mouse models

    Science.gov (United States)

    Experiments in mice show that low levels of exposure to nicotine, equivalent to those in humans who use nicotine replacement therapy (NRT) to help them quit smoking, did not promote lung tumor growth.

  5. Caveolin-3 is associated with the T-tubules of mature skeletal muscle fibers

    DEFF Research Database (Denmark)

    Ralston, E; Ploug, Thorkil

    1999-01-01

    the distribution of caveolin-3 in single skeletal muscle fibers from adult rat soleus by confocal immunofluorescence and by immunogold electron microscopy. We found that caveolin-3 occurs at the highest density on the plasma membrane but is also present in the core of the fibers, at the I-band/A-band interface...

  6. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer.

    Directory of Open Access Journals (Sweden)

    Rebecca Davis

    Full Text Available BACKGROUND: Nicotine is the major addictive component of tobacco smoke. Although nicotine is generally thought to have limited ability to initiate cancer, it can induce cell proliferation and angiogenesis in a variety of systems. These properties might enable nicotine to facilitate the growth of tumors already initiated. Here we show that nicotine significantly promotes the progression and metastasis of tumors in mouse models of lung cancer. This effect was observed when nicotine was administered through intraperitoneal injections, or through over-the-counter transdermal patches. METHODS AND FINDINGS: In the present study, Line1 mouse adenocarcinoma cells were implanted subcutaneously into syngenic BALB/c mice. Nicotine administration either by intraperitoneal (i.p. injection or transdermal patches caused a remarkable increase in the size of implanted Line1 tumors. Once the tumors were surgically removed, nicotine treated mice had a markedly higher tumor recurrence (59.7% as compared to the vehicle treated mice (19.5%. Nicotine also increased metastasis of dorsally implanted Line1 tumors to the lungs by 9 folds. These studies on transplanted tumors were extended to a mouse model where the tumors were induced by the tobacco carcinogen, NNK. Lung tumors were initiated in A/J mice by i.p. injection of NNK; administration of 1 mg/kg nicotine three times a week led to an increase in the size and the number of tumors formed in the lungs. In addition, nicotine significantly reduced the expression of epithelial markers, E-Cadherin and beta-Catenin as well as the tight junction protein ZO-1; these tumors also showed an increased expression of the alpha(7 nAChR subunit. We believe that exposure to nicotine either by tobacco smoke or nicotine supplements might facilitate increased tumor growth and metastasis. CONCLUSIONS: Our earlier results indicated that nicotine could induce invasion and epithelial-mesenchymal transition (EMT in cultured lung, breast

  7. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    OpenAIRE

    See Hoe, Louise E; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J; Roth, David M.; John P. Headrick; Patel, Hemal H.; Peart, Jason N.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on...

  8. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Bao-An Liu

    2011-01-01

    AIM: To investigate the contribution of periostin in nicotine-promoted gastric cancer cell proliferation, survival, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). METHODS: Gastric cancer cells were treated with nicotine and periostin protein expression was determined by immunoblotting. Periostin mRNA in gastric cancer cells was silenced using small interfering RNA (siRNA) techniques and periostin gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Gastric cancer cells transfected with control or periostin siRNA plasmid were compared in terms of cell proliferation using the methylthiazolyldiphenyl-tetrazolium bromide assay. Cell apoptosis was compared using annexin V-fluoresceine isothiocyanate and propidium iodine double staining. Tumor invasion was determined using the Boyden chamber invasion assay, and the EMT marker Snail expression was evaluated by immunoblotting. RESULTS: Nicotine upregulated periostin in gastric cancer cells through a COX-2 dependent pathway, which was blocked by the COX-2-specific inhibitor NS398. Periostin mRNA expression was decreased by ~87.2% by siRNA in gastric cancer cells, and stable periostinsilenced cells were obtained by G418 screening. Periostin- silenced gastric cancer cells exhibited reduced cell proliferation, elevated sensitivity to chemotherapy with 5-fluorouracil, and decreased cell invasion and Snail expression (P < 0.05). CONCLUSION: Periostin is a nicotine target gene in gastric cancer and plays a role in gastric cancer cell growth, invasion, drug resistance, and EMT facilitated by nicotine.

  9. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    Science.gov (United States)

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR. PMID:27649573

  10. Nicotine promotes rooting in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shrish C

    2015-11-01

    Nicotine promotes rooting in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby). Nicotine at 10(-9) to 10(-3) M concentrations was added to the MS basal medium. The optimum response (three-fold increase in rooting) was obtained at 10(-7) M nicotine-enriched MS medium. At the same level i.e. 10(-7) M Nicotine induced dramatic increase (11-fold) in the number of secondary roots per root. We have shown earlier that exogenous acetylcholine induces a similar response in tomato leaves. Since nicotine is an agonist of one of the two acetylcholine receptors in animals, its ability to simulate ACh action in a plant system suggests the presence of the same molecular mechanism operative in both, animal and plant cells.

  11. Nicotine Induced Lung Cancer Cells Epithelial-mesenchymal Transition 
and Promote Its Vitro Invasion Potential

    Directory of Open Access Journals (Sweden)

    Yanxu HOU

    2016-04-01

    Full Text Available Background and objective Our previous study found that nicotine could induce lung cancer cell epithelial-mesenchymal transition (EMT. The aim of this study is to explore the relationship between nicotine-induced EMT and lung cancer invasion and metastasis. Methods Real-time PCR and Western blot were used to detect the expression changes of EMT-related markers, E-cadherin and Vimentin, in A549 lung cancer cells treated with nicotine; The transposition of β-catenin protein expression was determined by immunofluorescence; Scratch test and Transwell invasion assay were used to detect the effects of nicotine on lung cancer cell migration and invasion. Results Nicotine can significantly down-regulate the expressional level of E-cadherin mRNA and protein of A549 cells in a manner of dose and time-dependent (P<0.01, P<0.01; Nicotine can significantly up-regulate the expressional level of Vimentin mRNA and protein of A549 cells in a manner of dose and time-dependent (P<0.01, P<0.01; Immunofluorescence results showed that β-catenin protein was significantly transfered to nucleus; Scratch test and Transwell assay showed that Nicotine could remarkably increase the migration and invasion potential of lung cancer cells (P<0.01, P<0.01. Conclusion Nicotine can induce cancer cells EMT, and promote the invasion and metastasis ability of lung cancer cells.

  12. CHRNB2 promoter region: association with subjective effects to nicotine and gene expression differences.

    Science.gov (United States)

    Hoft, N R; Stitzel, J A; Hutchison, K E; Ehringer, M A

    2011-03-01

    Smoking behavior is a complex, which includes multiple stages in the progression from experimentation to continued use and dependence. The experience of subjective effects, such as dizziness, euphoria, heart pounding, nausea and high, have been associated with varying degrees of persistence and subsequent abuse/dependence of marijuana, cocaine, tobacco and alcohol (Grant et al. 2005, Wagner & Anthony 2002). Previous studies have reported associations between neuronal nicotinic receptor (CHRN) genes and subjective effects to nicotine. We sought to replicate and expand this work by examining eight single nucleotide polymorphisms (SNPs) in a sample of adult smokers (n = 316) who reported subjective effects following cigarette smoking in a controlled laboratory environment. Two SNPs each in the CHRNB2, CHRNB3, CHRNA6 and CHRNA4 genes were examined. A significant association was found between two SNPs and physical effects reported after smoking the first experimental cigarette. SNP rs2072658 is upstream of CHRNB2 (P-value = 0.0046) and rs2229959 is a synonymous change in exon 5 of CHRNA4 (P value = 0.0051). We also examined possible functional relevance of SNP rs2072658 using an in vitro gene expression assay. These studies provided evidence that the minor allele of rs2072658 may lead to decreased gene expression, using two separate cell lines, P19 and SH-SY5Y (18% P < 0.001 and 26% P < 0.001 respectively). The human genetic study and functional assays suggest that variation in the promoter region of CHRNB2 gene may be important in mediating levels of expression of the β2 nicotinic receptor subunit, which may be associated with variation in subjective response to nicotine. PMID:20854418

  13. Nicotine promotes proliferation of human nasopharyngeal carcinoma cells by regulating α7AChR, ERK, HIF-1α and VEGF/PEDF signaling.

    Directory of Open Access Journals (Sweden)

    Dingbo Shi

    Full Text Available Nicotine, the major component in cigarette smoke, can promote tumor growth and angiogenesis, but the precise mechanisms involved remain largely unknown. Here, we investigated the mechanism of action of nicotine in human nasopharyngeal carcinoma (NPC cells. Nicotine significantly promoted cell proliferation in a dose and time-dependent manner in human NPC cells. The mechanism studies showed that the observed stimulation of proliferation was accompanied by the nicotine-mediated simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling. Treatment of NPC cells with nicotine markedly upregulated the expression of α7AChR and HIF-1α proteins. Transfection with a α7AChR or HIF-1α-specific siRNA or a α7AChR-selective inhibitor significantly attenuated the nicotine-mediated promotion of NPC cell proliferation. Nicotine also promoted the phosphorylation of ERK1/2 but not JNK and p38 proteins, thereby induced the activation of ERK/MAPK signaling pathway. Pretreatment with an ERK-selective inhibitor effectively reduced the nicotine-induced proliferation of NPC cells. Moreover, nicotine upregulated the expression of VEGF but suppressed the expression of PEDF at mRNA and protein levels, leading to a significant increase of the ratio of VEGF/PEDF in NPC cells. Pretreatment with a α7AChR or ERK-selective inhibitor or transfection with a HIF-1α-specific siRNA in NPC cells significantly inhibited the nicotine-induced HIF-1α expression and VEGF/PEDF ratio. These results therefore indicate that nicotine promotes proliferation of human NPC cells in vitro through simultaneous modulation of α7AChR, HIF-1α, ERK and VEGF/PEDF signaling and suggest that the related molecules such as HIF-1α might be the potential therapeutic targets for tobacco-associated diseases such as nasopharyngeal carcinomas.

  14. Nitric oxide enhances increase in cytosolic Ca(2+) and promotes nicotine-triggered MAPK pathway in PC12 cells.

    Science.gov (United States)

    Kajiwara, Aya; Tsuchiya, Yukihiro; Takata, Tsuyoshi; Nyunoya, Mayumi; Nozaki, Naohito; Ihara, Hideshi; Watanabe, Yasuo

    2013-11-01

    The purpose of this study was to investigate the roles of neuronal nitric oxide synthase (nNOS), Ca(2+)/calmodulin (CaM)-dependent protein kinases (CaMKs), and protein kinase C (PKC) in nicotine-induced extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) activation. Treatment with nicotine stimulated ERK1/2 and p38 MAPK phosphorylation in the PC12 cells expressing nNOS (NPC12 cells) as compared with that in control PC12 cells. An inhibitor of L-type voltage-sensitive Ca(2+) channel suppressed the nicotine-induced phosphorylation of p38 MAPK. The inhibition of CaMK-kinase, the upstream activator of CaMKI and CaMKIV, did not inhibit the enhanced their phosphorylation. ERK1/2 phosphorylation was attenuated by inhibitors of p38 MAPK, PKC, and MAPK-kinase 1/2, indicating the involvement of these protein kinases upstream of ERK1/2. Furthermore, we found that nNOS expression enhances the nicotine-induced increase in the intracellular concentration of Ca(2+), using the Ca(2+)-sensitive fluorescent probe Fura2. These data suggest that NO promotes nicotine-triggered Ca(2+) transient in PC12 cells to activate possibly CaMKII, leading to sequential phosphorylation of p38 MAPK and ERK1/2.

  15. Nicotine and lung cancer

    Directory of Open Access Journals (Sweden)

    Graham W Warren

    2013-01-01

    Full Text Available Tobacco use in cancer patients is associated with increased cancer treatment failure and decreased survival. Nicotine is one of over 7,000 compounds in tobacco smoke and nicotine is the principal chemical associated with addiction. The purpose of this article is to review the tumor promoting activities of nicotine. Nicotine and its metabolites can promote tumor growth through increased proliferation, angiogenesis, migration, invasion, epithelial to mesenchymal transition, and stimulation of autocrine loops associated with tumor growth. Furthermore, nicotine can decrease the biologic effectiveness of conventional cancer treatments such as chemotherapy and radiotherapy. Common mechanisms appear to involve activation of nicotinic acetylcholine receptors and beta-adrenergic receptors leading to downstream activation of parallel signal transduction pathways that facilitate tumor progression and resistance to treatment. Data suggest that nicotine may be an important mechanism by which tobacco promotes tumor development, progression, and resistance to cancer treatment.

  16. α7 Nicotinic Receptor Promotes the Neuroprotective Functions of Astrocytes against Oxaliplatin Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Lorenzo Di Cesare Mannelli

    2015-01-01

    Full Text Available Neuropathies are characterized by a complex response of the central nervous system to injuries. Glial cells are recruited to maintain neuronal homeostasis but dysregulated activation leads to pain signaling amplification and reduces the glial neuroprotective power. Recently, we highlighted the property of α7 nicotinic-acetylcholine-receptor (nAChR agonists to relieve pain and induce neuroprotection simultaneously with a strong increase in astrocyte density. Aimed to study the role of α7 nAChR in the neuron-glia cross-talk, we treated primary rat neurons and astrocytes with the neurotoxic anticancer drug oxaliplatin evaluating the effect of the α7 nAChR agonist PNU-282987 (PNU. Oxaliplatin (1 μM, 48 h reduced cell viability and increased caspase-3 activity of neuron monocultures without damaging astrocytes. In cocultures, astrocytes were not able to protect neurons by oxaliplatin even if glial cell metabolism was stimulated (pyruvate increase. On the contrary, the coculture incubation with 10 μM PNU improved neuron viability and inhibited apoptosis. In the absence of astrocytes, the protection disappeared. Furthermore, PNU promoted the release of the anti-inflammatory cytokine TGF-β1 and the expression of the glutamate-detoxifying enzyme glutamine synthetase. The α7 nAChR stimulation protects neurons from oxaliplatin toxicity through an astrocyte-mediated mechanism. α7 nAChR is suggested for recovering the homeostatic role of astrocytes.

  17. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  18. Nicotine poisoning

    Science.gov (United States)

    Nicotine is found in: Chewing tobacco Cigarettes E-cigarettes Liquid nicotine Nicotine gum (Nicorette) Nicotine patches (Habitrol, Nicoderm) Pipe tobacco Some insecticides Tobacco leaves Note: This list may not be all-inclusive.

  19. CAVEOLIN-3 IS UP-REGULATED IN THE PHYSIOLOGICAL LEFT VENTRICULAR HYPERTROPHY INDUCED BY VOLUNTARY EXERCISE TRAINING IN RATS

    Directory of Open Access Journals (Sweden)

    Ikuo Yokoyama

    2002-12-01

    Full Text Available Various substances have been introduced in relation with cardiac hypertrophy almost always with controversy in their roles in signal transduction. Those controversies may attribute to the diversity of cardiac hypertrophy. We previously showed that calcineurin was activated in physiological left ventricular hypertrophy (LVH induced by voluntary exercise training, but not in decompensated pressure-overload LVH. In the current study, we advanced our search for the differences between the voluntary exercise-induced LVH and the pressure-overload LVH into several other hypertrophy-related substances including caveolin. Wistar rats were assigned to one of the following three groups: 10 weeks of voluntary exercise (EX, sedentary regimen (SED, and 4 weeks of ascending aortic constriction (AC. The EX rats voluntarily ran 1.6±1.1 km/day in the specially manufactured cages resulting in LVH (24 % increase in left ventricular weight per body weight ratio. Myocardial tissue homogenate of the EX rats revealed different characteristics in signal transduction of hypertrophy from that of the AC. The EX rats had normal sarcoplasmic reticulum (SR Ca2+ATPase mRNA level and normal myosin heavy chain isozyme pattern assessed by RNA protection assay, while AC rats had decreased SR Ca2+ATPase mRNA level and increased beta myosin heavy chain mRNA level. Myocardial caveolin-3 protein levels assessed by Western blotting increased in the EX rats but decreased in the AC rats. The voluntary exercise-induced LVH differed in signal transduction from the decompensated pressure-overload LVH. Caveolin-3 was induced in the voluntary exercise-induced LVH, while it was decreased in the decompensated pressure-overload LVH

  20. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    International Nuclear Information System (INIS)

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: ► Nicotine-induced StAR inhibition in two human adrenal cell models. ► Nicotine-induced single CpG site methylation in StAR promoter. ► Persistent StAR inhibition and single CpG methylation after nicotine termination. ► Single CpG methylation located at Pax6 binding motif regulates St

  1. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Chen, Man; Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Cheng, Huaiyan [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Yan, You-E [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Feng, Ying-Hong, E-mail: yhfeng@usuhs.edu [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  2. Century Tide Nicotine Patch

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Century Tide Nicotine Patch, a hi-tech smoking control therapy, is designed in accordance with the scientific principle of nicotine replacement. The therapy is promoted by the World Health Organization. Meanwhile, it also integrates traditional Chinese medical therapy and adopts advanced TTS technology.

  3. An inhibitor of transforming growth factor beta type I receptor ameliorates muscle atrophy in a mouse model of caveolin 3-deficient muscular dystrophy.

    Science.gov (United States)

    Ohsawa, Yutaka; Okada, Tadashi; Nishimatsu, Shin-Ichiro; Ishizaki, Masatoshi; Suga, Tomohiro; Fujino, Masahiro; Murakami, Tatsufumi; Uchino, Makoto; Tsuchida, Kunihiro; Noji, Sumihare; Hinohara, Atsushi; Shimizu, Toshiyuki; Shimizu, Kiyoshi; Sunada, Yoshihide

    2012-08-01

    Skeletal muscle expressing Pro104Leu mutant caveolin 3 (CAV3(P104L)) in mouse becomes atrophied and serves as a model of autosomal dominant limb-girdle muscular dystrophy 1C. We previously found that caveolin 3-deficient muscles showed activated intramuscular transforming growth factor beta (TGF-β) signals. However, the cellular mechanism by which loss of caveolin 3 leads to muscle atrophy is unknown. Recently, several small-molecule inhibitors of TGF-β type I receptor (TβRI) kinase have been developed as molecular-targeting drugs for cancer therapy by suppressing intracellular TGF-β1, -β2, and -β3 signaling. Here, we show that a TβRI kinase inhibitor, Ki26894, restores impaired myoblast differentiation in vitro caused by activin, myostatin, and TGF-β1, as well as CAV3(P104L). Oral administration of Ki26894 increased muscle mass and strength in vivo in wild-type mice, and improved muscle atrophy and weakness in the CAV3(P104L) mice. The inhibitor restored the number of satellite cells, the resident stem cells of adult skeletal muscle, with suppression of the increased phosphorylation of Smad2, an effector, and the upregulation of p21 (also known as Cdkn1a), a target gene of the TGF-β family members in muscle. These data indicate that both TGF-β-dependent reduction in satellite cells and impairment of myoblast differentiation contribute to the cellular mechanism underlying caveolin 3-deficient muscle atrophy. TβRI kinase inhibitors could antagonize the activation of intramuscular anti-myogenic TGF-β signals, thereby providing a novel therapeutic rationale for the alternative use of this type of anticancer drug in reversing muscle atrophy in various clinical settings. PMID:22584670

  4. Association of annexin A5 with Na+/Ca2+ exchanger and caveolin-3 in non-failing and failing human heart.

    Science.gov (United States)

    Camors, Emmanuel; Charue, Dominique; Trouvé, Pascal; Monceau, Virginie; Loyer, Xavier; Russo-Marie, Françoise; Charlemagne, Danièle

    2006-01-01

    Annexin A5 is a Ca2+ dependent phosphatidylserine binding protein mainly located in the T-tubules and sarcolemma of cardiomyocytes. Our objectives were to determine whether annexin A5 was associated with various protein(s) and whether such an association was modified in failing (F) hearts. The association between annexin A5 and the cardiac Na+/Ca2+ exchanger (NCX) was demonstrated by immunohistofluorescence, annexin A5-biotin overlay and co-immunoprecipitations (IPs) performed with microsomal preparations (MPs) from non-failing (NF) (n = 8) and F (dilated cardiomyopathy, n = 7) human hearts. We moreover found caveolin-3 in the immunoprecipitates, indicating the presence of multimolecular subsarcolemmal complexes. Surface plasmon resonance assays in NF MPs allowed us to demonstrate direct interaction between the NCX and caveolin-3 and immobilized annexin A5. Interaction was Ca2+-dependent and inhibited by the specific antibody. In addition, dissociation by zwittergent 3-14 (ZW 3-14) of the complexes from MPs increased specific interactions. In F hearts, specific interactions were blunted in native MPs but were fully recovered after treatment with ZW 3-14. In conclusion, we demonstrated that a direct interaction between annexin A5 and the cardiac NCX occurs in complexes including caveolin-3. In F hearts, despite the increase in the exchanger level, almost all of the NCX was involved in complexes. These interactions probably occurred in the intracytoplasmic regulatory loop of the exchanger, suggesting a different regulation of the exchanger in heart failure, consistent with a role in altered Ca2+ handling. PMID:16330044

  5. Histopathologycal findings in the ovaries and uterus of albino female rats promoted by co-administration of synthetic steroids and nicotine.

    Science.gov (United States)

    Camargo, Isabel Cristina Cherici; Leite, Gabriel Adan Araújo; Pinto, Tiago; Ribeiro-Paes, João Tadeu

    2014-07-01

    The use of anabolic androgenic steroids is often associated with the use of other substances, licit or not, such as nicotine present in the tobacco. The present study investigated for the first time the effects of co-administration of synthetic steroids and nicotine on the ovarian and uterine tissue and fertility of adult female rats. Animals were submitted to treatment groups (n=16/group): nandrolone decanoate (ND; 7.5mg/kg BW/week); testosterone mixture (T; 7.5mg/kg BW/week); nicotine (N; 2.0mg/kg BW/day), and co-administration of ND/N, T/N and ND/T/N. The control group received saline solution daily. The injections were administered subcutaneously for 30 consecutive days. Results demonstrated that all androgenized rats exhibited estral acyclicity and there was suppression of reproductive capacity due to notable ovarian and uterine histological changes. Treatments promoted decrease (p<0.05) in the ovarian weight. Uterine weight increased (p<0.05) in the T and T/N groups, in comparison to control group. ND or T co-administered or not to nicotine promoted intense follicular degeneration, with formation of cysts in the ovaries. High levels of circulating androgens in the ND/T/N group induced the presence of ovarian sex cord-stromal tumors of Sertoli cell pattern. Androgenized females presented endometrial changes characterized by papilliferous or pleated luminal epithelium, oedematous and hemorrhagic stroma and presence of gland cysts. In conclusion, the co-administration of three drugs promoted atypical morphological pattern on the ovaries and uterus of female rats. PMID:24556002

  6. [Nicotine dependence].

    Science.gov (United States)

    Kawazoe, Shingo; Shinkai, Takahiro

    2015-09-01

    Smoking is the most widespread addictive behavior in the world, and it causes physical and psychological dependence on nicotine. As for physical nicotine dependence, nicotine produces rewarding effects by interacting with nicotinic acetylcholine receptors on neurons in the brain's reward system. Psychological dependence on nicotine comes with a complex psychological procedure that is based on distorted cognition which justifies their smoking behavior. Clinicians should support smokers with willingness to quit smoking comprehensively with this knowledge, although the success rate of smoking cessation is no ideal in general. PMID:26394514

  7. Developmental cholinotoxicants: nicotine and chlorpyrifos.

    OpenAIRE

    Slotkin, T A

    1999-01-01

    The stimulation of cholinergic receptors in target cells during a critical developmental period provides signals that influence cell replication and differentiation. Accordingly, environmental agents that promote cholinergic activity evoke neurodevelopmental damage because of the inappropriate timing or intensity of stimulation. Nicotine evokes mitotic arrest in brain cells possessing high concentrations of nicotinic cholinergic receptors. In addition, the cholinergic overstimulation programs...

  8. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line.

    Directory of Open Access Journals (Sweden)

    Fiorella Faggi

    Full Text Available The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3 in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS, an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.

  9. PKCθ signaling is required for myoblast fusion by regulating the expression of caveolin-3 and β1D integrin upstream focal adhesion kinase

    Science.gov (United States)

    Madaro, Luca; Marrocco, Valeria; Fiore, Piera; Aulino, Paola; Smeriglio, Piera; Adamo, Sergio; Molinaro, Mario; Bouché, Marina

    2011-01-01

    Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKCθ, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKCθ is strongly up-regulated following freeze injury–induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKCθ knockout and muscle-specific PKCθ dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKCθ mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKCθ mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKCθ in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKCθ-null myoblasts. We thus propose that PKC

  10. Nicotine Addiction

    NARCIS (Netherlands)

    Andel I van; Rambali AB; Amsterdam JGC van; Wolterink G; Aerts LAGJM van; Vleeming W; TOX; SIR; BMT

    2003-01-01

    This report discusses the current knowledge on nicotine dependence, devoting a special chapter to smoking among youths, given that most smoking careers start in adolescence. The transition period, in which youths go from elementary to high school (ages 13-14), showes to be particularly risky for smo

  11. Nicotine Nasal Spray

    Science.gov (United States)

    Nicotine nasal spray is used to help people stop smoking. Nicotine nasal spray should be used together with a smoking cessation ... counseling, or specific behavior change techniques. Nicotine nasal spray is in a class of medications called smoking ...

  12. Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats.

    Science.gov (United States)

    Poliacek, I; Rose, M J; Pitts, T E; Mortensen, A; Corrie, L W; Davenport, P W; Bolser, D C

    2015-02-01

    We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphragm, abdominal muscle, and laryngeal muscles EMGs; and several temporal characteristics of cough were analyzed after administration of nicotine and compared with those during control and recovery period. (-)Nicotine (ia) reduced cough number, cough expiratory efforts, blood pressure, and heart rate in a dose-dependent manner. (-)Nicotine did not alter temporal characteristics of the cough motor pattern. Pretreatment with mecamylamine prevented the effect of (-)nicotine on blood pressure and heart rate, but did not block the antitussive action of this drug. (+)Nicotine was less potent than (-)nicotine for inhibition of cough. Microinjections of (-)nicotine into the caudal ventral respiratory column produced similar inhibitory effects on cough as administration of this isomer by the ia route. Mecamylamine microinjected in the region just before nicotine did not significantly reduce the cough suppressant effect of nicotine. Nicotinic acetylcholine receptors significantly modulate functions of brain stem and in particular caudal ventral respiratory column neurons involved in expression of the tracheobronchial cough reflex by a mecamylamine-insensitive mechanism. PMID:25477349

  13. Nicotine Microaerosol Inhaler

    Directory of Open Access Journals (Sweden)

    Paul G Andrus

    1999-01-01

    Full Text Available OBJECTIVE: To measure the droplet size distribution of a nicotine pressurized metered-dose inhaler using a nicotine in ethanol solution formulation with hydrofluoroalkane as propellant.

  14. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Zago, A. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Leão, R.M.; Carneiro-de-Oliveira, P.E. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil); Marin, M.T.; Cruz, F.C. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Planeta, C.S. [Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP (Brazil); Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Araraquara, SP (Brazil)

    2011-11-18

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  15. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    International Nuclear Information System (INIS)

    Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although crosssensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats

  16. Nicotine is Chemotactic for Neutrophils and Enhances Neutrophil Responsiveness to Chemotactic Peptides

    Science.gov (United States)

    Totti, Noel; McCusker, Kevin T.; Campbell, Edward J.; Griffin, Gail L.; Senior, Robert M.

    1984-01-01

    Neutrophils contribute to chronic bronchitis and pulmonary emphysema associated with cigarette smoking. Nicotine was found to be chemotactic for human neutrophils but not monocytes, with a peak activity at ~ 31 micromolar. In lower concentrations (comparable to those in smokers' plasma), nicotine enhanced the response of neutrophils to two chemotactic peptides. In contrast to most other chemoattractants for neutrophils, however, nicotine did not affect degranulation or superoxide production. Nicotine thus may promote inflammation and consequent lung injury in smokers.

  17. Harmful effects of nicotine

    Directory of Open Access Journals (Sweden)

    Aseem Mishra

    2015-01-01

    Full Text Available With the advent of nicotine replacement therapy, the consumption of the nicotine is on the rise. Nicotine is considered to be a safer alternative of tobacco. The IARC monograph has not included nicotine as a carcinogen. However there are various studies which show otherwise. We undertook this review to specifically evaluate the effects of nicotine on the various organ systems. A computer aided search of the Medline and PubMed database was done using a combination of the keywords. All the animal and human studies investigating only the role of nicotine were included. Nicotine poses several health hazards. There is an increased risk of cardiovascular, respiratory, gastrointestinal disorders. There is decreased immune response and it also poses ill impacts on the reproductive health. It affects the cell proliferation, oxidative stress, apoptosis, DNA mutation by various mechanisms which leads to cancer. It also affects the tumor proliferation and metastasis and causes resistance to chemo and radio therapeutic agents. The use of nicotine needs regulation. The sale of nicotine should be under supervision of trained medical personnel.

  18. Nicotine and sympathetic neurotransmission.

    Science.gov (United States)

    Haass, M; Kübler, W

    1997-01-01

    Nicotine increases heart rate, myocardial contractility, and blood pressure. These nicotine-induced cardiovascular effects are mainly due to stimulation of sympathetic neurotransmission, as nicotine stimulates catecholamine release by an activation of nicotine acetylcholine receptors localized on peripheral postganglionic sympathetic nerve endings and the adrenal medulla. The nicotinic acetylcholine receptor is a ligand-gated cation channel with a pentameric structure and a central pore with a cation gate, which is essential for ion selectivity and permeability. Binding of nicotine to its extracellular binding site leads to a conformational change of the central pore, which results in the influx of sodium and calcium ions. The resulting depolarization of the sympathetic nerve ending stimulates calcium influx through voltage-dependent N-type calcium channels, which triggers the nicotine-evoked exocytotic catecholamine release. In the isolated perfused guinea-pig heart, cardiac energy depletion sensitizes cardiac sympathetic nerves to the norepinephrine-releasing effect of nicotine, as indicated by a leftward shift of the concentration-response curve, a potentiation of maximum transmitter release, and a delay of the tachyphylaxis of nicotine-evoked catecholamine release. This sensitization was also shown to occur in the human heart under in vitro conditions. Through the intracardiac release of norepinephrine, nicotine induces a beta-adrenoceptor-mediated increase in heart rate and contractility, and an alpha-adrenoceptor-mediated increase in coronary vasomotor tone. The resulting simultaneous increase in oxygen demand and coronary resistance has a detrimental effect on the oxygen balance of the heart, especially in patients with coronary artery disease. Sensitization of the ischemic heart to the norepinephrine-releasing effect of nicotine may be a trigger for acute cardiovascular events in humans, such as acute myocardial infarction and/or life

  19. Postsynaptic scaffolds for nicotinic receptors on neurons

    Institute of Scientific and Technical Information of China (English)

    Robert A NEFF III; David GOMEZ-VARELA; Catarina C FERNANDES; Darwin K BERG

    2009-01-01

    Complex postsynaptic scaffolds determine the structure and signaling capabilities of glutamatergic synapses. Recent studies indicate that some of the same scaffold components contribute to the formation and function of nicotinic synapses on neurons. PDZ-containing proteins comprising the PSD-95 family co-localize with nicotinic acetylcholine receptors (nAChRs) and mediate downstream signaling in the neurons. The PDZ-proteins also promote functional nicotinic innerva- tion of the neurons, as does the scaffold protein APC and transmembrane proteins such as neuroligin and the EphB2 recep- tor. In addition, specific chaperones have been shown to facilitate nAChR assembly and transport to the cell surface. This review summarizes recent results in these areas and raises questions for the future about the mechanism and synaptic role of nAChR trafficking.

  20. Nicotine and endogenous opioids: neurochemical and pharmacological evidence.

    Science.gov (United States)

    Hadjiconstantinou, Maria; Neff, Norton H

    2011-06-01

    Although the mesolimbic dopamine hypothesis is the most influential theory of nicotine reward and reinforcement, there has been a consensus that other neurotransmitter systems contribute to the addictive properties of nicotine as well. In this regard, the brain opioidergic system is of interest. Striatum is rich in opioid peptides and opioid receptors, and striatal opioidergic neurons are engaged in a bidirectional communication with midbrain dopaminergic neurons, closely regulating each other's activity. Enkephalins and dynorphins exert opposing actions on dopaminergic neurons, increasing and decreasing dopamine release respectively, and are components of circuits promoting positive or negative motivational and affective states. Moreover, dopamine controls the synthesis of striatal enkephalins and dynorphins. Evidence suggests that opioidergic function is altered after nicotine and endogenous opioids are involved in nicotine's behavioral effects. 1) The synthesis and release of β-endorphin, met-enkephalin and dynorphin in brain, especially nucleus accumbens (NAc), are altered after acute or chronic nicotine treatment and during nicotine withdrawal. 2) Although opioid receptor binding and mRNA do not appear to change in the striatum during nicotine withdrawal, the activity of κ-opioid (KOPr) and δ-opioid (DOPr) receptors is attenuated in NAc. 3) The nicotine withdrawal syndrome reminisces that of opiates, and naloxone precipitates some of its somatic, motivational, and affective signs. 4) Genetic and pharmacological studies indicate that μ-opioid (MOPr) receptors are mainly involved in nicotine reward, while DOPrs contribute to the emotional and KOPrs to the aversive responses of nicotine. 5) Finally, MOPrs and enkephalin, but not β-endorphin or dynorphin, are necessary for the physical manifestations of nicotine withdrawal. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. PMID:21108953

  1. Impacts of chronic low-level nicotine exposure on Caenorhabditis elegans reproduction: Identification of novel gene targets

    OpenAIRE

    Michael A Smith; Zhang, Yanqiong; Polli, Joseph R.; Wu, Hongmei; Zhang, Baohong; Xiao, Peng; Farwell, Mary A.; Pan, Xiaoping

    2013-01-01

    Effects and mechanisms of chronic exposure to low levels of nicotine is an area fundamentally important however less investigated. We employed the model organism Caenorhabditis elegans to investigate potential impacts of chronic (24 h) and low nicotine exposure (6.17–194.5 μM) on stimulus-response, reproduction, and gene expressions. Nicotine significantly affects the organism's response to touch stimulus (p = 0.031), which follows a dose-dependent pattern. Chronic nicotine exposure promotes ...

  2. Nicotine and tobacco

    Science.gov (United States)

    ... ease your withdrawal symptoms. Health experts warn that e-cigarettes are not a replacement therapy for cigarette smoking. ... not known exactly how much nicotine is in e-cigarette cartridges, because information on labels is often wrong. ...

  3. Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats

    OpenAIRE

    Poliacek, I; Rose, M.J.; Pitts, T. E.; Mortensen, A.; CORRIE, L.W.; Davenport, P. W.; Bolser, D C

    2014-01-01

    We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphr...

  4. Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    A. Zago

    2012-01-01

    Full Text Available Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P 28-37 and adult (P60-67 rats received nicotine (0.4 mg/kg, sc or saline (0.9% NaCl, sc and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

  5. Neurocognitive Insights in Nicotine Addiction

    NARCIS (Netherlands)

    M. Luijten (Maartje)

    2012-01-01

    textabstractIn the Netherlands, 27% of the population is currently smoking. Nicotine is among the most addictive substances of abuse. Thirty-two percent of the people who tried smoking develop nicotine dependence within ten year. This percentage is higher for nicotine than for other substances of ab

  6. Being a long-term user of nicotine replacement therapy

    DEFF Research Database (Denmark)

    Borup, Gitte; Nørgaard, Lotte Stig; Tønnesen, Philip;

    Background During recent years a gradual shift in the application of nicotine replacement therapy (NRT) has taken place from NRT-products only being recommended to achieve smoking cessation, to now including smoking reduction, and long-term substitution of tobacco with NRT has taken place. This has...... been promoted as a way of achieving harm-reduction in highly nicotine dependent smokers who are unwilling or incapable of quitting all nicotine products, as continued use of NRT is widely accepted as being far less hazardous than continued smoking. To our knowledge no previous research has been done...... of feeling addicted, cost of NRT products and fear of adverse health consequences. Aim of study • To get a thorough understanding of the lived experiences of nicotine dependent long-term NRT users. • To investigate what motivates or discourages quitting NRT. Method Semi-structured interviews with long...

  7. Withdrawal from chronic nicotine and subsequent sensitivity to nicotine challenge on contextual learning

    OpenAIRE

    Wilkinson, Derek S.; Gould, Thomas J.

    2013-01-01

    Nicotine withdrawal is associated with numerous symptoms including impaired hippocampus-dependent learning. Theories of nicotine withdrawal suggest that nicotinic acetylcholine receptors (nAChRs) are hypersensitive during withdrawal, which suggests enhanced sensitivity to nicotine challenge. Research indicates that prior exposure to nicotine enhances sensitivity to nicotine challenge, but it is unclear if this is due to prior nicotine exposure or specific to nicotine withdrawal. Therefore, th...

  8. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking.

    Science.gov (United States)

    Gamaleddin, Islam; Wertheim, Carrie; Zhu, Andy Z X; Coen, Kathleen M; Vemuri, Kiran; Makryannis, Alex; Goldberg, Steven R; Le Foll, Bernard

    2012-01-01

    The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence. PMID:21521420

  9. The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats.

    Science.gov (United States)

    Palmatier, Matthew I; Kellicut, Marissa R; Brianna Sheppard, A; Brown, Russell W; Robinson, Donita L

    2014-11-01

    Nicotine is a psychomotor stimulant with 'reinforcement enhancing' effects--the actions of nicotine in the brain increase responding for non-nicotine rewards. We hypothesized that this latter effect of nicotine depends on increased incentive properties of anticipatory cues; consistent with this hypothesis, multiple laboratories have reported that nicotine increases sign tracking, i.e. approach to a conditioned stimulus (CS), in Pavlovian conditioned-approach tasks. Incentive motivation and sign tracking are mediated by mesolimbic dopamine (DA) transmission and nicotine facilitates mesolimbic DA release. Therefore, we hypothesized that the incentive-promoting effects of nicotine would be impaired by DA antagonists. To test this hypothesis, separate groups of rats were injected with nicotine (0.4mg/kg base) or saline prior to Pavlovian conditioning sessions in which a CS (30s illumination of a light or presentation of a lever) was immediately followed by a sweet reward delivered in an adjacent location. Both saline and nicotine pretreated rats exhibited similar levels of conditioned approach to the reward location (goal tracking), but nicotine pretreatment significantly increased approach to the CS (sign tracking), regardless of type (lever or light). The DAD1 antagonist SCH-23390 and the DAD2/3 antagonist eticlopride reduced conditioned approach in all rats, but specifically reduced goal tracking in the saline pretreated rats and sign tracking in the nicotine pretreated rats. The non-selective DA antagonist flupenthixol reduced sign-tracking in nicotine rats at all doses tested; however, only the highest dose of flupenthixol reduced goal tracking in both nicotine and saline groups. The reductions in conditioned approach behavior, especially those by SCH-23390, were dissociated from simple motor suppressant effects of the antagonists. These experiments are the first to investigate the effects of dopaminergic drugs on the facilitation of sign-tracking engendered by

  10. Nicotine: the Desirable Drug

    Institute of Scientific and Technical Information of China (English)

    瞿桂林

    2001-01-01

    Pure Nicotine,just three drops can kill an adult Yet every day,millions ofpeople take it into their lungs. 纯尼古丁,三滴就可以毒死一个成年人。但每天仍有数以百万的人将它吸入肺中。

  11. Modeling nicotine addiction in rats.

    Science.gov (United States)

    Caille, Stephanie; Clemens, Kelly; Stinus, Luis; Cador, Martine

    2012-01-01

    Among the human population, 15% of drug users develop a pathological drug addiction. This figure increases substantially with nicotine, whereby more than 30% of those who try smoking develop a nicotine addiction. Drug addiction is characterized by compulsive drug-seeking and drug-taking behaviors (craving), and loss of control over intake despite impairment in health, social, and occupational functions. This behavior can be accurately modeled in the rat using an intravenous self-administration (IVSA) paradigm. Initial attempts at establishing nicotine self-administration had been problematic, yet in recent times increasingly reliable models of nicotine self-administration have been developed. The present article reviews different characteristics of the nicotine IVSA model that has been developed to examine nicotine reinforcing and motivational properties in rats. PMID:22231818

  12. The psychobiology of nicotine dependence

    OpenAIRE

    D. J. K. Balfour

    2008-01-01

    There is abundant evidence to show that nicotine is the principal addictive component of tobacco smoke. The results of laboratory studies have shown that nicotine has many of the behavioural and neurobiological properties of a drug of dependence. This article focuses on the evidence that nicotine has the rewarding and reinforcing properties typical of an addictive drug and that these properties are mediated, in part, by its effects on mesolimbic dopamine neurones. However, in many experimenta...

  13. Nicotine and periodontal tissues

    Directory of Open Access Journals (Sweden)

    Malhotra Ranjan

    2010-01-01

    Full Text Available Tobacco use has been recognized to be a significant risk factor for the development and progression of periodontal disease. Its use is associated with increased pocket depths, loss of periodontal attachment, alveolar bone and a higher rate of tooth loss. Nicotine, a major component and most pharmacologically active agent in tobacco is likely to be a significant contributing factor for the exacerbation of periodontal diseases. Available literature suggests that nicotine affects gingival blood flow, cytokine production, neutrophil and other immune cell function; connective tissue turnover, which can be the possible mechanisms responsible for overall effects of tobacco on periodontal tissues. Inclusion of tobacco cessation as a part of periodontal therapy encourages dental professionals to become more active in tobacco cessation counseling. This will have far reaching positive effects on our patients′ oral and general health.

  14. Nicotine and inflammatory neurological disorders

    Institute of Scientific and Technical Information of China (English)

    Wen-Hua PIAO; Denise CAMPAGNOLO; Carlos DAYAO; Ronald J LUKAS; Jie WU; Fu-Dong SHI

    2009-01-01

    Cigarette smoke is a major health risk factor which significantly increases the incidence of diseases including lung cancer and respiratory infections. However, there is increasing evidence that smokers have a lower incidence of some inflamma- tory and neurodegenerative diseases. Nicotine is the main immunosuppressive constituent of cigarette smoke, which inhib-its both the innate and adaptive immune responses. Unlike cigarette smoke, nicotine is not yet considered to be a carcino-gen and may, in fact, have therapeutic potential as a neuroprotective and anti-inflammatory agent. This review provides a synopsis summarizing the effects of nicotine on the immune system and its (nicotine) influences on various neurological diseases.

  15. Experimental Study of Nicotine on Angiogenesis and Restenosis

    Institute of Scientific and Technical Information of China (English)

    Yin Ruixing; Bi Qi; Liu Tangwei

    2005-01-01

    arteriogenesis in ischemic hindlimb of rabbits, but is capable of significantly promoting intramuscular angiogenesis in ischemic hindlimb.Nicotine can also accelerate intimal thickening of balloon catheter denuding injury iliac artery, so it may contribute to the development of restenosis.

  16. Promotion

    OpenAIRE

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed.

  17. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    Science.gov (United States)

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. PMID:26553320

  18. Effects of Menthol on Nicotine Pharmacokinetic, Pharmacology and Dependence in Mice.

    Directory of Open Access Journals (Sweden)

    Shakir D Alsharari

    Full Text Available Although menthol, a common flavoring additive to cigarettes, has been found to impact the addictive properties of nicotine cigarettes in smokers little is known about its pharmacological and molecular actions in the brain. Studies were undertaken to examine whether the systemic administration of menthol would modulate nicotine pharmacokinetics, acute pharmacological effects (antinociception and hypothermia and withdrawal in male ICR mice. In addition, we examined changes in the brain levels of nicotinic receptors of rodents exposed to nicotine and menthol. Administration of i.p. menthol significantly decreased nicotine's clearance (2-fold decrease and increased its AUC compared to i.p. vehicle treatment. In addition, menthol pretreatment prolonged the duration of nicotine-induced antinociception and hypothermia (2.5 mg/kg, s.c. for periods up to 180 min post-nicotine administration. Repeated administration of menthol with nicotine increased the intensity of mecamylamine-precipitated withdrawal signs in mice exposed chronically to nicotine. The potentiation of withdrawal intensity by menthol was accompanied by a significant increase in nicotine plasma levels in these mice. Western blot analyses of α4 and β2 nAChR subunit expression suggests that chronic menthol impacts the levels and distribution of these nicotinic subunits in various brain regions. In particular, co-administration of menthol and nicotine appears to promote significant increase in β2 and α4 nAChR subunit expression in the hippocampus, prefrontal cortex and striatum of mice. Surprisingly, chronic injections of menthol alone to mice caused an upregulation of β2 and α4 nAChR subunit levels in these brain regions. Because the addition of menthol to tobacco products has been suggested to augment their addictive potential, the current findings reveal several new pharmacological molecular adaptations that may contribute to its unique addictive profile.

  19. Tristetraprolin Mediates Anti-inflammatory Effects of Nicotine in Lipopolysaccharide-stimulated Macrophages*

    OpenAIRE

    Joe, Yeonsoo; Kim, Hyo Jeong; Kim, Sena; Chung, Jiwha; Ko, Myoung Seok; Lee, Won Hyeok; Chang, Ki Churl; Park, Jeong Woo; Chung, Hun Taeg

    2011-01-01

    Nicotine inhibits the release of TNF-α from macrophage through activation of STAT3. Tristetraprolin (TTP) is known to destabilize pro-inflammatory transcripts containing AU-rich elements (ARE) in 3′-untranslated region (3′-UTR). Here we show that in LPS-stimulated human macrophages the anti-inflammatory action of nicotine is mediated by TTP. Nicotine induced activation of STAT3 enhanced STAT3 binding to the TTP promoter, increased TTP promoter activity, and increased TTP expression resulting ...

  20. The psychobiology of nicotine dependence

    Directory of Open Access Journals (Sweden)

    D. J. K. Balfour

    2008-12-01

    Full Text Available There is abundant evidence to show that nicotine is the principal addictive component of tobacco smoke. The results of laboratory studies have shown that nicotine has many of the behavioural and neurobiological properties of a drug of dependence. This article focuses on the evidence that nicotine has the rewarding and reinforcing properties typical of an addictive drug and that these properties are mediated, in part, by its effects on mesolimbic dopamine neurones. However, in many experimental models of dependence, nicotine has relatively weak reinforcing properties that do not appear to explain adequately the powerful addiction to tobacco smoke experienced by many habitual smokers. Some of the reasons for this conundrum will be covered herein. This article focuses on the hypothesis that sensory stimuli and other pharmacologically active components in tobacco smoke play a pivotal role in the addiction to nicotine when it is inhaled in tobacco smoke. The article will discuss the evidence that dependence upon tobacco smoke reflects a complex interaction between nicotine and the components of the smoke, which are mediated by complementary effects of nicotine on the dopamine projections to the shell and core subdivisions of the accumbens. It will also discuss the extent to which the complexity of the dependence explains why nicotine replacement therapy does not provide a completely satisfying aid to smoking cessation and speculate on the properties treatments should exhibit if they are to provide a better treatment for tobacco dependence than those currently available.

  1. Behavioral, biochemical and molecular indices of stress are enhanced in female versus male rats experiencing nicotine withdrawal

    Directory of Open Access Journals (Sweden)

    OSCAR VALENTIN TORRES

    2013-05-01

    Full Text Available Stress is a major factor that promotes tobacco use and relapse during withdrawal. Although women are more vulnerable to tobacco use than men, the manner in which stress contributes to tobacco use in women versus men is unclear. Thus, the goal of this study was to compare behavioral and biological indices of stress in male and female rats during nicotine withdrawal. Since the effects of nicotine withdrawal are age-dependent, this study also included adolescent rats. An initial study was conducted to provide comparable nicotine doses across age and sex during nicotine exposure and withdrawal. Rats received sham surgery or an osmotic pump that delivered nicotine. After 14 days of nicotine, the pumps were removed and controls received a sham surgery. Twenty-four hours later, anxiety-like behavior and plasma corticosterone were assessed. The nucleus accumbens (NAcc, amygdala, and hypothalamus were examined for changes in corticotropin-releasing factor (CRF gene expression. In order to differentiate the effects of nicotine withdrawal from exposure to nicotine, a cohort of rats did not have their pumps removed. The major finding is that during nicotine withdrawal, adult females display higher levels of anxiety-like behavior, plasma corticosterone, and CRF mRNA expression in the NAcc relative to adult males. However, during nicotine exposure, adult males exhibited higher levels of corticosterone and CRF mRNA in the amygdala relative to females. Adolescents displayed less nicotine withdrawal than adults. Moreover, adolescent males displayed an increase in anxiety-like behavior and an up-regulation of CRF mRNA in the amygdala during nicotine exposure and withdrawal. These findings are likely related to stress produced by the high doses of nicotine that were administered to adolescents to produce equivalent levels of cotinine as adults. In conclusion, these findings suggest that intense stress produced by nicotine withdrawal may contribute to tobacco use

  2. Toward a comprehensive long term nicotine policy.

    Science.gov (United States)

    Gray, N; Henningfield, J E; Benowitz, N L; Connolly, G N; Dresler, C; Fagerstrom, K; Jarvis, M J; Boyle, P

    2005-06-01

    Global tobacco deaths are high and rising. Tobacco use is primarily driven by nicotine addiction. Overall tobacco control policy is relatively well agreed upon but a long term nicotine policy has been less well considered and requires further debate. Reaching consensus is important because a nicotine policy is integral to the target of reducing tobacco caused disease, and the contentious issues need to be resolved before the necessary political changes can be sought. A long term and comprehensive nicotine policy is proposed here. It envisages both reducing the attractiveness and addictiveness of existing tobacco based nicotine delivery systems as well as providing alternative sources of acceptable clean nicotine as competition for tobacco. Clean nicotine is defined as nicotine free enough of tobacco toxicants to pass regulatory approval. A three phase policy is proposed. The initial phase requires regulatory capture of cigarette and smoke constituents liberalising the market for clean nicotine; regulating all nicotine sources from the same agency; and research into nicotine absorption and the role of tobacco additives in this process. The second phase anticipates clean nicotine overtaking tobacco as the primary source of the drug (facilitated by use of regulatory and taxation measures); simplification of tobacco products by limitation of additives which make tobacco attractive and easier to smoke (but tobacco would still be able to provide a satisfying dose of nicotine). The third phase includes a progressive reduction in the nicotine content of cigarettes, with clean nicotine freely available to take the place of tobacco as society's main nicotine source. PMID:15923465

  3. [Nicotinic acid and nicotinamide].

    Science.gov (United States)

    Kobayashi, M; Shimizu, S

    1999-10-01

    Nicotinic acid and nicotinamide are called niacin. They are the antipellagra vitamin essential to many animals for growth and health. In human being, niacin is believed necessary together with other vitamins for the prevention and cure of pellagra. Niacin is widely distributed in nature; appreciable amounts are found in liver, fish, yeast and cereal grains. Nicotinamide is a precursor of the coenzyme NAD and NADP. Some of the most understood metabolic processes that involve niacin are glycolysis, fatty acid synthesis and respiration. Niacin is also related to the following diseases: Hartnup disease; blue diaper syndrome; tryptophanuria; hydroxykynureninuria; xanthurenic aciduria; Huntington's disease. PMID:10540864

  4. Interaction of Nicotine and Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The binding of nicotine to bovine serum albumin (BSA) was studied by UV absorption, fluorescence, and 1H NMR methods. With the addition of nicotine, the absorption band of BSA at about 210 nm decreased gradually, moved to longer wavelengths, and narrowed. BSA fluorescence of tryptophan residue was quenched by nicotine. The 1H NMR peaks of nicotine moved to downfield by the addition of BSA. The experimental results showed that nicotine was capable of binding with BSA to form a 1:1 complex. BSA's high selectivity for nicotine binding suggests a unique role for this protein in the detoxification and/or transport of nicotine.

  5. The serotonin transporter gene and startle response during nicotine deprivation.

    Science.gov (United States)

    Minnix, Jennifer A; Robinson, Jason D; Lam, Cho Y; Carter, Brian L; Foreman, Jennifer E; Vandenbergh, David J; Tomlinson, Gail E; Wetter, David W; Cinciripini, Paul M

    2011-01-01

    Affective startle probe methodology was used to examine the effects of nicotine administration and deprivation on emotional processes among individuals carrying at least one s allele versus those with the l/l genotype of the 5-Hydroxytryptamine (Serotonin) Transporter Linked Polymorphic Region, 5-HTTLPR in the promoter region of the serotonin transporter gene [solute ligand carrier family 6 member A4 (SLC6A4) or SERT]. Smokers (n=84) completed four laboratory sessions crossing deprivation (12-h deprived vs. non-deprived) with nicotine spray (nicotine vs. placebo). Participants viewed affective pictures (positive, negative, neutral) while acoustic startle probes were administered. We found that smokers with the l/l genotype showed significantly greater suppression of the startle response when provided with nicotine vs. placebo than those with the s/s or s/l genotypes. The results suggest that l/l smokers, who may have higher levels of the serotonin transporter and more rapid synaptic serotonin clearance, experience substantial reduction in activation of the defensive system when exposed to nicotine.

  6. Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure.

    Science.gov (United States)

    Buczynski, Matthew W; Herman, Melissa A; Hsu, Ku-Lung; Natividad, Luis A; Irimia, Cristina; Polis, Ilham Y; Pugh, Holly; Chang, Jae Won; Niphakis, Micah J; Cravatt, Benjamin F; Roberto, Marisa; Parsons, Loren H

    2016-01-26

    Chronic nicotine exposure (CNE) alters synaptic transmission in the ventral tegmental area (VTA) in a manner that enhances dopaminergic signaling and promotes nicotine use. The present experiments identify a correlation between enhanced production of the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) and diminished release of the inhibitory neurotransmitter GABA in the VTA following CNE. To study the functional role of on-demand 2-AG signaling in GABAergic synapses, we used 1,2,3-triazole urea compounds to selectively inhibit 2-AG biosynthesis by diacylglycerol lipase (DAGL). The potency and selectivity of these inhibitors were established in rats in vitro (rat brain proteome), ex vivo (brain slices), and in vivo (intracerebroventricular administration) using activity-based protein profiling and targeted metabolomics analyses. Inhibition of DAGL (2-AG biosynthesis) rescues nicotine-induced VTA GABA signaling following CNE. Conversely, enhancement of 2-AG signaling in naïve rats by inhibiting 2-AG degradation recapitulates the loss of nicotine-induced GABA signaling evident following CNE. DAGL inhibition reduces nicotine self-administration without disrupting operant responding for a nondrug reinforcer or motor activity. Collectively, these findings provide a detailed characterization of selective inhibitors of rat brain DAGL and demonstrate that excessive 2-AG signaling contributes to a loss of inhibitory GABAergic constraint of VTA excitability following CNE.

  7. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2014-06-15

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  8. Pharmacodynamics of nicotine: implications for rational treatment of nicotine addiction.

    Science.gov (United States)

    Benowitz, N L

    1991-05-01

    Rational treatment of the pharmacologic aspects of tobacco addiction includes nicotine substitution therapy. Understanding the pharmacodynamics of nicotine and its role in the addiction process provides a basis for rational therapeutic intervention. Pharmacodynamic considerations are discussed in relation to the elements of smoking cessation therapy: setting objectives, selecting appropriate medication and dosing form, selecting the optimal doses and dosage regimens, assessing therapeutic outcome, and adjusting therapy to optimize benefits and minimize risks. PMID:1859911

  9. Menthol facilitates the intravenous self-administration of nicotine in rats

    Directory of Open Access Journals (Sweden)

    Tengfei eWang

    2014-12-01

    Full Text Available Menthol is preferred by approximately 25% of smokers and is the most common flavoring additive in tobacco and electronic cigarettes. Although some clinical studies have suggested that menthol facilitates the initiation of smoking and enhances the dependence on nicotine, many controversies remain. Using licking as the operant behavior, we found that adolescent rats self-administering nicotine (30 μg/kg/infusion, free base, i.v. with contingent oral menthol (60 μl, 0.01% w/v obtained significantly more infusions than rats receiving a vehicle cue or rats self-administering i.v. saline with a menthol cue. Rats yoked to their menthol-nicotine masters emitted significantly fewer licks on the active spouts, indicating that contingent pairing between nicotine and menthol is required for sustained nicotine intake. Rats that self-administered nicotine with a menthol cue also exhibited a long-lasting extinction burst and robust reinstatement behavior, neither of which were observed in rats that self-administered saline with a menthol cue. The cooling sensation of menthol is induced by activating the transient receptor potential M8 (TRPM8 channel. When WS-23, an odorless agonist of the TRPM8 channel, was used as a contingent cue for nicotine, the rats obtained a similar number of nicotine infusions as the rats that were provided a menthol cue and exhibited a strong preference for the active spout. In contrast, highly appetitive taste and odor cues failed to support nicotine self-administration. These data indicated that menthol, likely by inducing a cooling sensation, becomes a potent conditioned reinforcer when it is contingently delivered with nicotine. Together, these results provide a key behavioral mechanism by which menthol promotes the use of tobacco products or electronic cigarettes.

  10. Effect of nicotine on exocytotic pancreatic secretory response: role of calcium signaling

    Directory of Open Access Journals (Sweden)

    Chowdhury Parimal

    2013-01-01

    Full Text Available Abstract Background Nicotine is a risk factor for pancreatitis resulting in loss of pancreatic enzyme secretion. The aim of this study was to evaluate the mechanisms of nicotine-induced secretory response measured in primary pancreatic acinar cells isolated from Male Sprague Dawley rats. The study examines the role of calcium signaling in the mechanism of the enhanced secretory response observed with nicotine exposure. Methods Isolated and purified pancreatic acinar cells were subjected to a nicotine exposure at a dose of 100 μM for 6 minutes and then stimulated with cholecystokinin (CCK for 30 min. The cell’s secretory response was measured by the percent of amylase released from the cells in the incubation medium Calcium receptor antagonists, inositol trisphosphate (IP3 receptor blockers, mitogen activated protein kinase inhibitors and specific nicotinic receptor antagonists were used to confirm the involvement of calcium in this process. Results Nicotine exposure induced enhanced secretory response in primary cells. These responses remained unaffected by mitogen activated protein kinases (MAPK’s inhibitors. The effects, however, have been completely abolished by nicotinic receptor antagonist, calcium channel receptor antagonists and inositol trisphosphate (IP3 receptor blockers. Conclusions The data suggest that calcium activated events regulating the exocytotic secretion are affected by nicotine as shown by enhanced functional response which is inhibited by specific antagonists… The results implicate the role of nicotine in the mobilization of both intra- and extracellular calcium in the regulation of stimulus-secretory response of enzyme secretion in this cell system. We conclude that nicotine plays an important role in promoting enhanced calcium levels inside the acinar cell.

  11. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  12. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  13. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism.

    Science.gov (United States)

    Liu, Lian; Wang, Jian-Fei; Fan, Jie; Rao, Yi-Song; Liu, Fang; Yan, You-E; Wang, Hui

    2016-09-03

    Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.

  14. Nicotine's defensive function in nature.

    Directory of Open Access Journals (Sweden)

    Anke Steppuhn

    2004-08-01

    Full Text Available Plants produce metabolites that directly decrease herbivore performance, and as a consequence, herbivores are selected for resistance to these metabolites. To determine whether these metabolites actually function as defenses requires measuring the performance of plants that are altered only in the production of a certain metabolite. To date, the defensive value of most plant resistance traits has not been demonstrated in nature. We transformed native tobacco(Nicotiana attenuata with a consensus fragment of its two putrescine N-methyl transferase (pmt genes in either antisense or inverted-repeat (IRpmt orientations. Only the latter reduced (by greater than 95% constitutive and inducible nicotine. With D(4-nicotinic acid (NA, we demonstrate that silencing pmt inhibits nicotine production, while the excess NA dimerizes to form anatabine. Larvae of the nicotine-adapted herbivore Manduca sexta (tobacco hornworm grew faster and, like the beetle Diabrotica undecimpunctata, preferred IRpmt plants in choice tests. When planted in their native habitat, IRpmt plants were attacked more frequently and, compared to wild-type plants, lost 3-fold more leaf area from a variety of native herbivores, of which the beet armyworm, Spodoptera exigua, and Trimerotropis spp. grasshoppers caused the most damage. These results provide strong evidence that nicotine functions as an efficient defense in nature and highlights the value of transgenic techniques for ecological research.

  15. Effect of Various Doses of Nicotine on Mitotic Index in Esophageal Mucosa

    Directory of Open Access Journals (Sweden)

    S. Khajeh Jahromi

    2016-07-01

    Full Text Available Introduction & Objective: Nicotine could directly act as a cancer promoter. The purpose of this study was to evaluate effects of nicotine on mitotic index in esophagus epithelium. Materials & Methods: In the present study 30 adult male mice were used. Animals were ran-domly divided into three groups. Group A or the control group received vehicle, groups B and C received nicotine intraperitoneally at doses of 0.2 and 0.4 mg/kg once daily for 14 days, re-spectively. Evaluations were made using kI-67 immunohistochemistry and Hematoxilin& Eo-sin for proliferative activity and morphometric study on esophagus mucosa, respectively. Results: Administration of nicotine in group C, showed a significant increase (P<0.05 in KI-67 index 34.15±2.50vs. 10.41±1.4 compared with the control subjects. The other parameters such as epithelial height, lamina propria, muscular mucosa and mucosa height in nicotine- treated groups were not affected. Nicotine at dose of 0.2 mg/kg did not change the mitotic in-dex in epithelium when compared with the control group. Conclusion: This study indicates nicotine at dose of 0.4 mg/kg increases mitotic activity in basal cells in esophagus epithelium. (Sci J Hamadan Univ Med Sci 2016; 23 (2:126-133

  16. Adolescence is a period of development characterized by short- and long-term vulnerability to the rewarding effects of nicotine and reduced sensitivity to the anorectic effects of this drug.

    Science.gov (United States)

    Natividad, Luis A; Torres, Oscar V; Friedman, Theodore C; O'Dell, Laura E

    2013-11-15

    This study compared nicotine intake and changes in food intake and weight gain in naïve adolescent, naïve adult, and adult rats that were exposed to nicotine during adolescence. An extended intravenous self-administration (IVSA) model was used whereby rats had 23-hour access to saline or increasing doses of nicotine (0.03, 0.06, and 0.09 mg/kg/0.1 mL infusion) for 4-day intervals separated by 3-day periods of abstinence. Rats began IVSA as adolescents (PND 32-34) or adults (PND 75). A separate group of rats was exposed to nicotine via osmotic pumps (4.7 mg/kg) for 14 days during adolescence and then began nicotine IVSA as adults (PND 75). The rats that completed the nicotine IVSA regimen were also tested for nicotine-seeking behavior during extinction. The results revealed that nicotine intake was highest in adolescents followed by adults that were pre-exposed to nicotine during adolescence as compared to naïve adults. A similar pattern of nicotine-seeking behavior was observed during extinction. In contrast to nicotine intake, naïve adults displayed robust appetite and weight suppressant effects of nicotine, an effect that was absent in adolescents and adults that were pre-exposed to nicotine during adolescence. Our findings suggest that adolescence is a unique period of enhanced vulnerability to the reinforcing effects of nicotine. Although adolescents gain weight faster than adults, the food intake and weight suppressant effects of nicotine are reduced during adolescence. Importantly, our findings suggest that adolescent nicotine exposure produces long-lasting consequences that enhance nicotine reward and promote tolerance to the anorectic effects of this drug.

  17. Nicotine overrides DNA damage-induced G1/S restriction in lung cells.

    Directory of Open Access Journals (Sweden)

    Takashi Nishioka

    Full Text Available As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G(1 arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users.

  18. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking.

    Science.gov (United States)

    Ross, Kathryn C; Gubner, Noah R; Tyndale, Rachel F; Hawk, Larry W; Lerman, Caryn; George, Tony P; Cinciripini, Paul; Schnoll, Robert A; Benowitz, Neal L

    2016-09-01

    Rate of nicotine metabolism has been identified as an important factor influencing nicotine intake and can be estimated using the nicotine metabolite ratio (NMR), a validated biomarker of CYP2A6 enzyme activity. Individuals who metabolize nicotine faster (higher NMR) may alter their smoking behavior to titrate their nicotine intake in order to maintain similar levels of nicotine in the body compared to slower nicotine metabolizers. There are known racial differences in the rate of nicotine metabolism with African Americans on average having a slower rate of nicotine metabolism compared to Whites. The goal of this study was to determine if there are racial differences in the relationship between rate of nicotine metabolism and measures of nicotine intake assessed using multiple biomarkers of nicotine and tobacco smoke exposure. Using secondary analyses of the screening data collected in a recently completed clinical trial, treatment-seeking African American and White daily smokers (10 or more cigarettes per day) were grouped into NMR quartiles so that the races could be compared at the same NMR, even though the distribution of NMR within race differed. The results indicated that rate of nicotine metabolism was a more important factor influencing nicotine intake in White smokers. Specifically, Whites were more likely to titrate their nicotine intake based on the rate at which they metabolize nicotine. However, this relationship was not found in African Americans. Overall there was a greater step-down, linear type relationship between NMR groups and cotinine or cotinine/cigarette in African Americans, which is consistent with the idea that differences in blood cotinine levels between the African American NMR groups were primarily due to differences in CYP2A6 enzyme activity without titration of nicotine intake among faster nicotine metabolizers. PMID:27180107

  19. Lipopolysaccharide Enhances the Production of Nicotine-Induced Prostaglandin E2 by an Increase in Cyclooxygenase-2 Expression in Osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Maiko SHOJI; Natsuko TANABE; Narihiro MITSUI; Naoto SUZUKI; Osamu TAKEICHI; Tomoko KATONO; Akira MOROZUMI; Masao MAENO

    2007-01-01

    Previous studies have indicated that lipopolysaccharide (LPS) from Gram-negative bacteria in plaque induces the release of prostaglandin E2 (PGE2),which promotes alveolar bone resorption in periodontitis,and that tobacco smoking might be an important risk factor for the development and severity of periodontitis.We determined the effect of nicotine and LPS on alkaline phosphatase (ALPase)activity,PGE2 production,and the expression of cyclooxygenase (COX-1,COX-2),PGE2 receptors Ep1-4,and macrophage colony stimulating factor(M-CSF)in human osteoblastic Saos-2 cells.The cells were cultured with 10-3 M nicotine in the presence of 0,1,or 10 μg/ml LPS,or with LPS alone.ALPase activity decreased in cells cultured with nicotine or LPS alone,and decreased further in those cultured with both nicotine and LPS,whereas PGE2 production significantly increased in the former and increased further in the latter.By itself,nicotine did not affect expression of COX-1,COX-2,any of the PGE2 receptors,or M-CSF,but when both nicotine and LPS were present,expression of COX-2,Ep3,Ep4,and M-CSF increased significantly.Simultaneous addition of 10-4 M indomethacin eliminated the effects of nicotine and LPS on ALPase activity,PGE2 production,and MCSF expression.Phosphorylation of protein kinase A was high in cells cultured with nicotine and LPS.These results suggest that LPS enhances the production of nicotine-induced PGE2 by an increase in COX-2 expression in osteoblasts,that nicotine-LPS-induced PGE2 interacts with the osteoblast Ep4 receptor primarily in autocrine or paracrine mode,and that the nicotine-LPS-induced PGE2 then decreases ALPase activity and increases M-CSF expression.

  20. Nitrosamines as nicotinic receptor ligands.

    Science.gov (United States)

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention. PMID:17459420

  1. The Role of Nicotine in Schizophrenia.

    Science.gov (United States)

    Featherstone, Robert E; Siegel, Steven J

    2015-01-01

    Schizophrenia is associated with by severe disruptions in thought, cognition, emotion, and behavior. Patients show a marked increase in rates of smoking and nicotine dependence relative to nonaffected individuals, a finding commonly ascribed to the potential ameliorative effects of nicotine on symptom severity and cognitive impairment. Indeed, many studies have demonstrated improvement in patients following the administration of nicotine. Such findings have led to an increased emphasis on the development of therapeutic agents to target the nicotinic system as well as increasing the impetus to understand the genetic basis for nicotinic dysfunction in schizophrenia. The goal of this review article is to provide a critical summary of evidence for the role of the nicotinic system in schizophrenia. The first part will review the role of nicotine in normalization of primary dysfunctions and endophenotypical changes found in schizophrenia. The second part will provide a summary of genetic evidence linking polymorphisms in nicotinic receptor genes to smoking and schizophrenia. The third part will summarize attempts to treat schizophrenia using agents specifically targeting nicotinic and nicotinic receptor subtypes. Although currently available antipsychotic treatments are generally able to manage some aspects of schizophrenia (e.g., positive symptoms) they fail to address several other critically effected aspects of the disease. As such, the search for novel mechanisms to treat this disease is necessary. PMID:26472525

  2. Nicotine alpha 4 beta 2 receptor-mediated free calcium in an animal model of facial nucleus injury

    Institute of Scientific and Technical Information of China (English)

    Dawei Sun; Wenhai Sun; Yanqing Wang; Fugao Zhu; Rui Zhou; Yanjun Wang; Banghua Liu; Xiuming Wan; Huamin Liu

    2010-01-01

    Previous studies have demonstrated that the cholinergic system,via nicotinic receptors,regulates intracellular free calcium levels in the facial nucleus under normal physiological conditions.However,the regulation of nicotinic receptors on free calcium levels following facial nerve injury remains unclear.In the present study,an animal model of facial nerve injury was established,and changes in nicotinic receptor expression following facial nerve injury in rats were detected using reverse transcription polymerase chain reaction.Nicotinic receptor-mediated changes of free calcium levels following facial nucleus injury were determined by laser confocal microscopy.Results showed no significant difference in nicotinic receptor expression between the normal group and the affected facial nerve nucleus.The nicotinic receptor α4β2 subtype increased free calcium levels following facial nerve injury by promoting calcium transmembrane influx,and L-type voltage-gated calcium channel-mediated influx of calcium ions played an important role in promoting calcium transmembrane influx.The nicotinic receptor-mediated increase of free calcium levels following facial nerve injury provides an important mechanism for the repair of facial nerve injury.

  3. Air nicotine monitoring for second hand smoke exposure in public places in India

    Directory of Open Access Journals (Sweden)

    Jagdish Kaur

    2011-01-01

    Full Text Available Background: Air nicotine monitoring is an established method of measuring exposure to second hand smoke (SHS. Not much research has been done in India to measure air nicotine for the purpose of studying exposure to SHS. It is a risk factor and many diseases are known to occur among non smokers if they are exposed to second hand smoke. Objective: To conduct monitoring of air nicotine for second hand smoke exposure in public places across major cities in India. Materials and Methods: A cross sectional survey was conducted across four cities across the country, using passive air monitoring. The buildings included hospitals, secondary schools, Governmental offices, bars and restaurants. The buildings were selected through convenience sampling method keeping in view specific sentinel locations of interest. Result: The presence of air nicotine was recorded in most of the buildings under the study, which included government buildings, hospitals, schools, restaurants and entertainment venues (bars in all four cities under the study. The highest median levels of air nicotine were found in entertainment venues and restaurants in cities. Conclusion: The presence of air nicotine in indoor public places indicates weak implementation of existing smoke free law in India. The findings of this study provide a baseline characterization of exposure to SHS in public places in India, which could be used to promote clean indoor air policies and programs and monitor and evaluate the progress and future smoke-free initiatives in India.

  4. Nicotine-mediated signals modulate cell death and survival of T lymphocytes

    International Nuclear Information System (INIS)

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.

  5. Nicotine administration enhances conditioned inhibition in rats

    OpenAIRE

    MacLeod, Jill E.; Potter, Alexandra S.; Simoni, Michael K.; Bucci, David J.

    2006-01-01

    The effect of nicotine on conditioned inhibition was examined using a serial feature negative discrimination task. Nicotine (0.35mg/kg) or vehicle was administered before each of 16 training sessions. On some trials in each session, a tone was presented and followed by food reward. On other trials, the tone was preceded by a visual stimulus and not reinforced. Nicotine-treated rats exhibited greater discrimination between the two trial types as evidenced by less frequent responding during non...

  6. Nicotinic Acetylcholine Receptor Agonists Attenuate Septic Acute Kidney Injury in Mice by Suppressing Inflammation and Proteasome Activity

    OpenAIRE

    Chatterjee, Prodyot K.; Yeboah, Michael M.; Oonagh Dowling; Xiangying Xue; Powell, Saul R.; Yousef Al-Abed; Metz, Christine N

    2012-01-01

    Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine...

  7. Impact of e-cigarette refill liquid with or without nicotine on liver function in adult rats.

    Science.gov (United States)

    El Golli, Narges; Jrad-Lamine, Aicha; Neffati, Hajira; Rahali, Dalila; Dallagi, Yosra; Dkhili, Houssem; Ba, Nathalie; El May, Michele V; El Fazaa, Saloua

    2016-07-01

    This study was conducted to evaluate the effects of e-cigarette refill liquid administration alone or with nicotine on the antioxidant defense status, functional and histopathological changes in adult rat liver tissue. For this purpose, 32 rats were treated for 28 days as follows: control group was injected intra-peritoneally with physiological saline; e-cigarette 0% treated group received an intra-peritoneal injection of e-liquid without nicotine diluted in physiological saline, e-cigarette-treated group received an intra-peritoneal injection of e-liquid containing 0.5 mg of nicotine/kg of body weight/day diluted in physiological saline and nicotine-treated group received an intra-peritoneal injection of 0.5 mg of nicotine/kg of body weight/day diluted in physiological saline. In e-liquid without nicotine-exposed group, activities of the liver biomarkers aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase increase. Interestingly, oxidative stress indicators showed decreased total protein content, associated with a reduction in the antioxidant enzymes activities superoxide dismutase, catalase and glutathione-S-transferase, and an elevation in malondialdehyde content, highlighting the promotion of lipid peroxidation and oxidative stress. Histological studies identified inflammatory cells infiltration and cell death. Thus, e-liquid seems to promote oxidative tissue injuries, which in turn lead to the observed histopathological finding. In comparison, nicotine alone induced less oxidative stress and less histopathological disorders, whereas e-liquid with nicotine gave rise to more histopathological injuries. Thereby, e-liquid, per se, is able to induce hepatotoxicity and supplementation with nicotine worsens this state.

  8. Nicotine stimulates nerve growth factor in lung fibroblasts through an NFκB-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Cherry Wongtrakool

    Full Text Available Airway hyperresponsiveness (AHR is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF secretion into the environment.Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR deficient mice were treated with nicotine (50 µg/ml in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid.NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells.Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways. These novel findings

  9. Nicotine Therapy Sampling to Induce Quit Attempts Among Smokers Unmotivated to Quit

    Science.gov (United States)

    Carpenter, Matthew J.; Hughes, John R.; Gray, Kevin M.; Wahlquist, Amy E.; Saladin, Michael E.; Alberg, Anthony J.

    2012-01-01

    Background Rates of smoking cessation have not changed in a decade, accentuating the need for novel approaches to prompt quit attempts. Methods Within a nationwide randomized clinical trial (N=849) to induce further quit attempts and cessation, smokers currently unmotivated to quit were randomized to a practice quit attempt (PQA) alone or to nicotine replacement therapy (hereafter referred to as nicotine therapy), sampling within the context of a PQA. Following a 6-week intervention period, participants were followed up for 6 months to assess outcomes. The PQA intervention was designed to increase motivation, confidence, and coping skills. The combination of a PQA plus nicotine therapy sampling added samples of nicotine lozenges to enhance attitudes toward pharmacotherapy and to promote the use of additional cessation resources. Primary outcomes included the incidence of any ever occurring self-defined quit attempt and 24-hour quit attempt. Secondary measures included 7-day point prevalence abstinence at any time during the study (ie, floating abstinence) and at the final follow-up assessment. Results Compared with PQA intervention, nicotine therapy sampling was associated with a significantly higher incidence of any quit attempt (49% vs 40%; relative risk [RR], 1.2; 95% CI, 1.1–1.4) and any 24-hour quit attempt (43% vs 34%; 1.3; 1.1–1.5). Nicotine therapy sampling was marginally more likely to promote floating abstinence (19% vs 15%; RR, 1.3; 95% CI, 1.0–1.7); 6-month point prevalence abstinence rates were no different between groups (16% vs 14%; 1.2; 0.9–1.6). Conclusion Nicotine therapy sampling during a PQA represents a novel strategy to motivate smokers to make a quit attempt. Trial Registration clinicaltrials.gov Identifier: NCT00706979 PMID:22123796

  10. Nicotine-induced resistance of non-small cell lung cancer to treatment--possible mechanisms.

    Science.gov (United States)

    Czyżykowski, Rafał; Połowinczak-Przybyłek, Joanna; Potemski, Piotr

    2016-01-01

    Cigarette smoking is the leading risk factor of lung cancer. Data from several clinical studies suggest that continuation of smoking during therapy of tobacco-related cancers is associated with lower response rates to chemotherapy and/or radiotherapy, and even with decreased survival. Although nicotine--an addictive component of tobacco--is not a carcinogen, it may influence cancer development and progression or effectiveness of anti-cancer therapy. Several in vitro and in vivo trials have evaluated the influence of nicotine on lung cancer cells. The best known mechanisms by which nicotine impacts cancer biology involve suppression of apoptosis induced by certain drugs or radiation, promotion of proliferation, angiogenesis, invasion and migration of cancer cells. This effect is mainly mediated by membranous nicotinic acetylcholine receptors whose stimulation leads to sustained activation of such intracellular pathways as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK and JAK/STAT, induction of NF-κB activity, enhanced transcription of mitogenic promoters, inhibition of the mitochondrial death pathway or stimulation of pro-angiogenic factors. We herein summarize the mechanisms underlying nicotine's influence on biology of lung cancer cells and the effectiveness of anti-cancer therapy. PMID:26943316

  11. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Courtney Schaal

    Full Text Available Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC, which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT, angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs, specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.

  12. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Science.gov (United States)

    Schaal, Courtney; Chellappan, Srikumar

    2016-01-01

    Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC), which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine. PMID:27228072

  13. Fetal and neonatal exposure to nicotine leads to augmented hepatic and circulating triglycerides in adult male offspring due to increased expression of fatty acid synthase

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Noelle [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Nicholson, Catherine J. [Department of Obstetrics and Gynecology, McMaster University (Canada); Wong, Michael [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada); Holloway, Alison C. [Department of Obstetrics and Gynecology, McMaster University (Canada); Hardy, Daniel B., E-mail: Daniel.Hardy@schulich.uwo.ca [Department of Physiology and Pharmacology, The University of Western Ontario (Canada); Department of Obstetrics and Gynecology, The University of Western Ontario (Canada); The Children' s Health Research Institute, The University of Western Ontario (Canada); The Lawson Health Research Institute, The University of Western Ontario (Canada)

    2014-02-15

    While nicotine replacement therapy is assumed to be a safer alternative to smoking during pregnancy, the long-term consequences for the offspring remain elusive. Animal studies now suggest that maternal nicotine exposure during perinatal life leads to a wide range of adverse outcomes for the offspring including increased adiposity. The focus of this study was to investigate if nicotine exposure during pregnancy and lactation leads to alterations in hepatic triglyceride synthesis. Female Wistar rats were randomly assigned to receive daily subcutaneous injections of saline (vehicle) or nicotine bitartrate (1 mg/kg/day) for two weeks prior to mating until weaning. At postnatal day 180 (PND 180), nicotine exposed offspring exhibited significantly elevated levels of circulating and hepatic triglycerides in the male offspring. This was concomitant with increased expression of fatty acid synthase (FAS), the critical hepatic enzyme in de novo triglyceride synthesis. Given that FAS is regulated by the nuclear receptor Liver X receptor (LXRα), we measured LXRα expression in both control and nicotine-exposed offspring. Nicotine exposure during pregnancy and lactation led to an increase in hepatic LXRα protein expression and enriched binding to the putative LXRE element on the FAS promoter in PND 180 male offspring. This was also associated with significantly enhanced acetylation of histone H3 [K9,14] surrounding the FAS promoter, a hallmark of chromatin activation. Collectively, these findings suggest that nicotine exposure during pregnancy and lactation leads to an increase in circulating and hepatic triglycerides long-term via changes in the transcriptional and epigenetic regulation of the hepatic lipogenic pathway. - Highlights: • Our data reveals the links nicotine exposure in utero and long-term hypertriglyceridemia. • It is due to nicotine-induced augmented expression of hepatic FAS and LXRα activity. • Moreover, this involves nicotine-induced enhanced

  14. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues.

    Directory of Open Access Journals (Sweden)

    Karine Guillem

    Full Text Available Nicotine self-administration (SA is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively. Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1 excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2 a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.

  15. Nicotinic alteration of decision-making.

    Science.gov (United States)

    Naudé, Jérémie; Dongelmans, Malou; Faure, Philippe

    2015-09-01

    Addiction to nicotine is characterized by impulses, urges and lack of self-control towards cigarettes. A key element in the process of addiction is the development of habits oriented towards nicotine consumption that surpass flexible systems as a consequence of a gradual adaptation to chronic drug exposure. However, the long-term effects of nicotine on brain circuits also induce wide changes in decision-making processes, affecting behaviors unrelated to cigarettes. This review aims at providing an update on the implications of nicotine on general decision-making processes, with an emphasis on impulsivity and risk-taking. As impulsivity is a rather ambiguous behavioral trait, we build on economic and normative theories to better characterize these nicotine-induced alterations in decision-making. Nonetheless, experimental data are sparse and often contradictory. We will discuss how the latest findings on the neurobiological basis of choice behavior may help disentangling these issues. We focus on the role of nicotine acetylcholine receptors and their different subunits, and on the spatio-temporal dynamics (i.e. diversity of the neural circuits, short- and long-term effects) of both endogenous acetylcholine and nicotine action. Finally, we try to link these neurobiological results with neuro-computational models of attention, valuation and action, and of the role of acetylcholine in these decision processes. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25498234

  16. Nicotine Contamination in Particulate Matter Sampling

    Directory of Open Access Journals (Sweden)

    Eric Garshick

    2009-02-01

    Full Text Available We have addressed potential contamination of PM2.5 filter samples by nicotine from cigarette smoke. We collected two nicotine samples – one nicotine sampling filter was placed in-line after the collection of PM2.5 and the other stood alone. The overall correlation between the two nicotine filter levels was 0.99. The nicotine collected on the “stand-alone” filter was slightly greater than that on the “in-line” filter (mean difference = 1.10 μg/m3, but the difference was statistically significant only when PM2.5 was low (≤ 50 μg/m3. It is therefore important to account for personal and secondhand smoke exposure while assessing occupational and environmental PM.

  17. Effects of Nicotine and Nicotine Expectancy on Attentional Bias for Emotional Stimuli

    Science.gov (United States)

    Adams, Sally; Attwood, Angela S.; Munafò, Marcus R.

    2016-01-01

    Introduction Nicotine’s effects on mood are thought to enhance its addictive potential. However, the mechanisms underlying the effects of nicotine on affect regulation have not been reliably demonstrated in human laboratory studies. We investigated the effects of abstinence (experiment one), and nicotine challenge and expectancy (experiment two) on attentional bias towards facial emotional stimuli differing in emotional valence. Methods In experiment one, 46 nicotine-deprived smokers were randomized to either continue to abstain from smoking or to smoke immediately before testing. In experiment two, 96 nicotine deprived smokers were randomized to smoke a nicotinized or denicotinized cigarette and to be told that the cigarette did or did not contain nicotine. In both experiments participants completed a visual probe task, where positively valenced (happy) and negatively valenced (sad) facial expressions were presented, together with neutral facial expressions. Results In experiment one, there was evidence of an interaction between probe location and abstinence on reaction time, indicating that abstinent smokers showed an attentional bias for neutral stimuli. In experiment two, there was evidence of an interaction between probe location, nicotine challenge and expectation on reaction time, indicating that smokers receiving nicotine, but told that they did not receive nicotine, showed an attentional bias for emotional stimuli. Conclusions Our data suggest that nicotine abstinence appears to disrupt attentional bias towards emotional facial stimuli. These data provide support for nicotine’s modulation of attentional bias as a central mechanism for maintaining affect regulation in cigarette smoking. PMID:25335948

  18. Modulation of Tyrosine Hydroxylase, Neuropeptide Y, Glutamate, and Substance P in Ganglia and Brain Areas Involved in Cardiovascular Control after Chronic Exposure to Nicotine

    Directory of Open Access Journals (Sweden)

    Merari F. R. Ferrari

    2011-01-01

    Full Text Available Considering that nicotine instantly interacts with central and peripheral nervous systems promoting cardiovascular effects after tobacco smoking, we evaluated the modulation of glutamate, tyrosine hydroxylase (TH, neuropeptide Y (NPY, and substance P (SP in nodose/petrosal and superior cervical ganglia, as well as TH and NPY in nucleus tractus solitarii (NTS and hypothalamic paraventricular nucleus (PVN of normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR after 8 weeks of nicotine exposure. Immunohistochemical and in situ hybridization data demonstrated increased expression of TH in brain and ganglia related to blood pressure control, preferentially in SHR, after nicotine exposure. The alkaloid also increased NPY immunoreactivity in ganglia, NTS, and PVN of SHR, in spite of decreasing its receptor (NPY1R binding in NTS of both strains. Nicotine increased SP and glutamate in ganglia. In summary, nicotine positively modulated the studied variables in ganglia while its central effects were mainly constrained to SHR.

  19. Nicotine-enhanced oxidation of low-density lipoprotein and its components by myeloperoxidase/H2O2/Cl- system

    Directory of Open Access Journals (Sweden)

    Olga M.M.F. Oliveira

    2015-03-01

    Full Text Available In this study, the effect of nicotine on the LDL oxidation by the MPO/H2O2/Cl- system and the effect of HOCl on LDL and some of its components, such as methyl linoleate, vitamin E and the amino acid tryptophan were explored. Nicotine, in micromolar concentrations, enhanced the tryptophan oxidation, either present in LDL or free, in solution. Nicotine also decreased the formation of conjugated dienes and oxygen consumption in a methyl linoleate / HOCl system, and there was evidence to suggest an increase in chlorohydrin formation. Acceleration of the vitamin E oxidation by HOCl was also observed in the presence of nicotine. These data show that the interaction of nicotine and HOCl can promote significant biochemical modifications in LDL particle and some of its components involved in the pathogenesis of cardiovascular and other diseases.

  20. Airborne Nicotine Concentrations in the Workplaces of Tobacco Farmers

    OpenAIRE

    Yoo, Seok-Ju; Park, Sung-Jun; Kim, Byoung-Seok; Lee, Kwan; Lim, Hyun-Sul; Kim, Jik-Su; Kim, In-Shik

    2014-01-01

    Objectives Nicotine is a natural alkaloid and insecticide in tobacco leaves. Green tobacco sickness (GTS) is known as a disease of acute nicotine intoxication among tobacco farmers. Until now, GTS has been recognized globally as a disease that results from nicotine absorption through the skin. However, we assumed that GTS might also result from nicotine inhalation as well as absorption. We aimed to measure the airborne nicotine concentrations in various work environments of Korean tobacco far...

  1. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yanfei Jia

    Full Text Available Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin.

  2. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells.

    Science.gov (United States)

    Jia, Yanfei; Sun, Haiji; Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin. PMID:26909550

  3. The genetics of nicotine dependence.

    Science.gov (United States)

    Li, Ming D

    2006-04-01

    Despite almost two decades of intensive tobacco-control efforts, approximately 23% of American adults continue to smoke, and 13% are nicotine-dependent. Cigarette smoking is the greatest preventable cause of cancer, accounting for at least 30% of all cancer deaths and 87% of lung cancer deaths. Smoking behavior is influenced by both genetic and environmental factors. Many years of twin and adoption studies have demonstrated that the heritability of liability for nicotine dependence (ND) is at least 50%. During the past several years, significant efforts have been made to identify susceptibility genes for ND using both genome-wide linkage and association analysis approaches. It is expected that identification of susceptibility genes for ND will allow the development and tailoring of both prevention strategies for individuals at risk and effective treatment programs and medicines for individuals who use tobacco products. This review summarizes the recent progress in genetic studies of ND. As genotyping technology is being improved and well-characterized clinical samples on smoking behavior become available, more and more genes and genetic variants responsible for ND will be identified in the near future. PMID:16539894

  4. Nicotinic receptors in addiction pathways.

    Science.gov (United States)

    Leslie, Frances M; Mojica, Celina Y; Reynaga, Daisy D

    2013-04-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions. PMID:23247824

  5. Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment.

    Science.gov (United States)

    Mucchietto, Vanessa; Crespi, Arianna; Fasoli, Francesca; Clementi, Francesco; Gotti, Cecilia

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Smoking accounts for approximately 70% of the cases of non- small cell lung cancer (NSCLC) and 90% of the cases of small-cell lung cancer (SCLC), although some patients develop lung cancer without a history of smoking. Nicotine is the most active addictive component of tobacco smoke. It does not initiate tumorigenesis in humans and rodents, but it alters the pathophysiology of lung cells by inducing the secretion of growth factors, neurotransmitters and cytokines, and promotes tumour growth and metastases by inducing cell cycle progression, migration, invasion, angiogenesis and the evasion of apoptosis. Most of these effects are a result of nicotine binding and activation of cell-surface neuronal nicotinic acetylcholine receptors (nAChRs) and downstream intracellular signalling cascades, and many are blocked by nAChR subtype-selective antagonists. Recent genome-wide association studies have revealed single nucleotide polymorphisms of nAChR subunits that influence nicotine dependence and lung cancer. This review describes the molecular basis of nAChR structural and functional diversity in normal and cancer lung cells, and the genetic alterations facilitating smoking-induced lung cancers. It also summarises current knowledge concerning the intracellular pathways activated by nicotine and other compounds present in tobacco smoke. PMID:26845123

  6. Variants in nicotinic acetylcholine receptors α5 and α3 increase risks to nicotine dependence†

    OpenAIRE

    Chen, Xiangning; Chen, Jingchun; Williamson, Vernell S; An, Seon-Sook; Hettema, John M.; Aggen, Steven H.; Neale, Michael C.; Kendler, Kenneth S.

    2009-01-01

    Nicotinic acetylcholine receptors bind to nicotine and initiate the physiological and pharmacological responses to tobacco smoking. In this report, we studied the association of α5 and α3 subunits with nicotine dependence and with the symptoms of alcohol and cannabis abuse and dependence in two independent epidemiological samples (n = 815 and 1,121, respectively). In this study, seven single nucleotide polymorphisms were genotyped in the CHRNA5 and CHRNA3 genes. In both samples, we found that...

  7. Nicotine alters lung branching morphogenesis through the α 7 nicotinic acetylcholine receptor

    OpenAIRE

    Wongtrakool, Cherry; Roser-Page, Susanne; Rivera, Hilda N.; Roman, Jesse

    2007-01-01

    There is abundant epidemiological data linking prenatal environmental tobacco smoke with childhood asthma and wheezing, but the underlying molecular and physiological mechanisms that occur in utero to explain this link remain unelucidated. Several studies suggest that nicotine, which traverses the placenta, is a causative agent. Therefore, we studied the effects of nicotine on lung branching morphogenesis using embryonic murine lung explants. We found that the expression of α 7 nicotinic acet...

  8. Affective temperaments in nicotine-dependent and non-nicotine-dependent individuals

    Directory of Open Access Journals (Sweden)

    Włodzimierz Oniszczenko

    2016-07-01

    Full Text Available Background One of the smoking risk factors influencing nicotine dependency may be human personality; however, few studies have examined the association between Akiskal’s affective temperaments and smoking in adults. Our study aims to evaluate the associations between nicotine dependence and affective temperaments using the TEMPS-A. Participants and procedure The sample in this study consisted of 678 healthy Caucasian adults aged from 17 to 69 years, including 134 self-declared nicotine-dependent subjects (89 females and 45 males and 544 self-declared non-nicotine-dependent subjects (352 females and 192 males. The Polish version of the Temperament Evaluation of Memphis, Pisa, Paris and San Diego Autoquestionnaire (TEMPS-A was used to assess affective temperaments (depressive, cyclothymic, hyperthymic, irritable and anxious. Results Nicotine-dependent individuals scored higher on cyclothymic, irritable and anxious temperaments than non-nicotine-dependents (no significant differences with regard to depressive and hyperthymic temperaments. Among the nicotine-dependent individuals, females scored higher on anxious temperaments than males (no differences with regard to the other affective temperaments, and among the non-nicotine-dependent individuals, females exhibited more depressive, cyclothymic and anxious temperaments than males, while males exhibited more hyperthymic temperaments than females. Conclusions The results suggest that affective, cyclothymic and irritable temperaments in both genders and anxious temperaments in females may be predictors of nicotine dependence in adults.

  9. Low dose nicotine and antagonism of β2 subunit containing nicotinic acetylcholine receptors have similar effects on affective behavior in mice.

    Directory of Open Access Journals (Sweden)

    Shawn M Anderson

    Full Text Available Nicotine leads to both activation and desensitization (inactivation of nicotinic acetylcholine receptors (nAChRs. This study tested the hypothesis that nicotine and a selective antagonist of β2*nAChRs would have similar effects on affective behavior. Adult C57BL/6J male mice were tested in a conditioned emotional response (CER assay which evaluates the ability of an aversive stimulus to inhibit goal-directed behavior. Mice lever-pressed for a saccharin reinforcer according to a variable schedule of reinforcement during sessions in which two presentations of a compound light/tone conditioned stimulus (CS co-terminated with a 0.1 or 0.3 mA, 0.5 s footshock unconditioned stimulus (US. During testing in the absence of the US, mice received doses of i.p. nicotine (0, 0.0032, 0.01, 0.032, 0.1 mg/kg or a selective β2 subunit containing nAChR (β2*nAChR antagonist dihydro-beta-erythroidine (0, 0.1, 0.3, 1.0, 3.0 mg/kg DHβE. There was a dose-dependent effect of nicotine revealing that only low doses (0.01, 0.032 mg/kg increased CER suppression ratios (SR in these mice. DHβE also dose-dependently increased SR at the 3 mg/kg dose. In ethological measures of fear-/anxiety-like behavior, these doses of nicotine and DHβE significantly reduced digging behavior in a marble burying task and 0.3 mg/kg DHβE promoted open-arm activity in the elevated plus maze. Doses of nicotine and DHβE that altered affective behavior had no effect on locomotor activity. Similar to previous reports with anxiolytic drugs, low dose nicotine and DHβE reversed SR in a CER assay, decreased digging in a marble burying assay and increased open arm activity in the elevated plus maze. This study provides evidence that inactivation of β2*nAChRs reduces fear-like and anxiety-like behavior in rodents and suggests that smokers may be motivated to smoke in part to desensitize their β2*nAChRs. These data further identify β2*nAChR antagonism as a potential therapeutic strategy for

  10. Nicotinic activation of laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA......). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons...... are unknown. We addressed this issue by examining the effects of nicotine on identified cholinergic and non-cholinergic LDT neurons using whole-cell patch clamp and Ca(2+)-imaging methods in brain slices from mice (P12-P45). Nicotine applied by puffer pipette or bath superfusion elicited membrane...

  11. [Behavioral characteristics of nicotine seeking: a role of the nicotine-conditioned effects and other mechanisms].

    Science.gov (United States)

    Itasaka, Michio; Hironaka, Naoyuki; Miyata, Hisatsugu

    2015-06-01

    Nicotine dependence and its neural mechanisms have been well documented by pharmacological, behavioral and neuroscience studies. In this review, we introduce recent new findings in this theme, particularly on the role of nicotine -associated stimuli as non-pharmacological factors affecting maintaining/reinstating nicotine seeking. By using the techniques of drug self-administration and conditioned place preference, nicotine's specific property of forming seeking/taking behavior is well characterized, and the mechanisms of seeking/taking could be partly explained by discrete and/or contextual conditioned stimuli (dCS and cCS). After having the repeated Pavlovian conditioning in the training/conditioning sessions, CSs begin to play a key role for eliciting nicotine seeking behavior, with the activation of mesolimbic dopaminergic systems. In our study, intracranial self- stimulation (ICSS) was used to assess the mesolimbic dopamine activity. The nicotine-associated cCS also activated this neural system, which resulted in decreasing the ICSS threshold approximately 20% in the testing session under the cCS presentation. This finding would support the evidence of CS-induced incentive motivation for nicotine. According to the incentive salience hypothesis, the mesolimbic dopamine reflects the motivation elicited by incentives (CSs), and induces the drug seeking behavior, which is activated through amygdala--nucleus accumbens--medial prefrontal cortex circuit. Additionally, human brain imaging studies have revealed that tobacco- associated stimuli activate not only these regions, but also right temporo-parietal junction of human cortex, which is relevant to the visual attention. In summary, the above evidence shows that nicotine-conditioned stimuli might have powerful incentive salience and regulate nicotine seeking/taking behavior in animals and humans, though stress and nicotine-withdrawal could also enhance nicotine taking in the same way as other dependence -producing

  12. Negative affective states and cognitive impairments in nicotine dependence.

    Science.gov (United States)

    Hall, F Scott; Der-Avakian, Andre; Gould, Thomas J; Markou, Athina; Shoaib, Mohammed; Young, Jared W

    2015-11-01

    Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation

  13. Negative affective states and cognitive impairments in nicotine dependence.

    Science.gov (United States)

    Hall, F Scott; Der-Avakian, Andre; Gould, Thomas J; Markou, Athina; Shoaib, Mohammed; Young, Jared W

    2015-11-01

    Smokers have substantial individual differences in quit success in response to current treatments for nicotine dependence. This observation may suggest that different underlying motivations for continued tobacco use across individuals and nicotine cessation may require different treatments in different individuals. Although most animal models of nicotine dependence emphasize the positive reinforcing effects of nicotine as the major motivational force behind nicotine use, smokers generally report that other consequences of nicotine use, including the ability of nicotine to alleviate negative affective states or cognitive impairments, as reasons for continued smoking. These states could result from nicotine withdrawal, but also may be associated with premorbid differences in affective and/or cognitive function. Effects of nicotine on cognition and affect may alleviate these impairments regardless of their premorbid or postmorbid origin (e.g., before or after the development of nicotine dependence). The ability of nicotine to alleviate these symptoms would thus negatively reinforce behavior, and thus maintain subsequent nicotine use, contributing to the initiation of smoking, the progression to dependence and relapse during quit attempts. The human and animal studies reviewed here support the idea that self-medication for pre-morbid and withdrawal-induced impairments may be more important factors in nicotine addiction and relapse than has been previously appreciated in preclinical research into nicotine dependence. Given the diverse beneficial effects of nicotine under these conditions, individuals might smoke for quite different reasons. This review suggests that inter-individual differences in the diverse effects of nicotine associated with self-medication and negative reinforcement are an important consideration in studies attempting to understand the causes of nicotine addiction, as well as in the development of effective, individualized nicotine cessation

  14. Effect of Nicotine on Gallbladder Bile

    Directory of Open Access Journals (Sweden)

    Anglo-Dutch Nicotine Intestinal Study Group

    1994-01-01

    Full Text Available Several studies have shown that symptomatic gallstones are largely a disease of nonsmokers, which raises the possibility that nicotine may protect against the formation of gallstones. To examine the effect of nicotine on the gallbladder, 32 rabbits were allocated to four groups: controls and three treatment groups in which nicotine tartarate at low, medium and high doses was administered subcutaneously via an osmotic minipump. After 14 days’ treatment the gallbladder was removed and measurements made of gallbladder mucin synthesis, bile mucin concentration, bile acid concentration and cholesterol saturation. Serum nicotine concentrations (ng/mL were (± SE 0.4±0.1, 3.5±0.4, 8.8±0.8 and 16.2±1.8 in the controls and three treatment groups, respectively. Total bile acid concentration increased significantly in all three treated groups with the greatest increase in the group given low dose nicotine (P<0.001. Cholesterol saturation did not differ significantly in any group but soluble mucin concentration in gallbladder bile was significantly reduced (P=0.013, 95% CI: 16 to 111 with high dose nicotine. Gallbladder mucin synthesis, measured by 3H-glucosamine incorporation, did not change significantly with nicotine treatment. Subcutaneous nicotine 2.0 mg/kg/day for 14 days significantly reduced the concentration of biliary mucin, which could potentially reduce cholesterol nucleation and subsequent gallstone formation. This may be one of the mechanisms responsible for the relative reduction in gallstone disease among smokers.

  15. Inside-out neuropharmacology of nicotinic drugs.

    Science.gov (United States)

    Henderson, Brandon J; Lester, Henry A

    2015-09-01

    Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25660637

  16. Nicotine-induced resistance of non-small cell lung cancer to treatment – possible mechanisms

    Directory of Open Access Journals (Sweden)

    Rafał Czyżykowski

    2016-03-01

    Full Text Available Cigarette smoking is the leading risk factor of lung cancer. Data from several clinical studies suggest that continuation of smoking during therapy of tobacco-related cancers is associated with lower response rates to chemotherapy and/or radiotherapy, and even with decreased survival. Although nicotine – an addictive component of tobacco – is not a carcinogen, it may influence cancer development and progression or effectiveness of anti-cancer therapy. Several in vitro and in vivo trials have evaluated the influence of nicotine on lung cancer cells. The best known mechanisms by which nicotine impacts cancer biology involve suppression of apoptosis induced by certain drugs or radiation, promotion of proliferation, angiogenesis, invasion and migration of cancer cells. This effect is mainly mediated by membranous nicotinic acetylcholine receptors whose stimulation leads to sustained activation of such intracellular pathways as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK and JAK/STAT, induction of NF-κB activity, enhanced transcription of mitogenic promoters, inhibition of the mitochondrial death pathway or stimulation of pro-angiogenic factors. We herein summarize the mechanisms underlying nicotine’s influence on biology of lung cancer cells and the effectiveness of anti-cancer therapy.

  17. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A;

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  18. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  19. US smokers' reactions to a brief trial of oral nicotine products

    Directory of Open Access Journals (Sweden)

    Mahoney Martin C

    2011-01-01

    Full Text Available Abstract Background It has been suggested that cigarette smokers will switch to alternative oral nicotine delivery products to reduce their health risks if informed of the relative risk difference. However, it is important to assess how smokers are likely to use cigarette alternatives before making predictions about their potential to promote individual or population harm reduction. Objectives This study examines smokers' interest in using a smokeless tobacco or a nicotine replacement product as a substitute for their cigarettes. Methods The study included 67 adult cigarette smokers, not currently interested in quitting, who were given an opportunity to sample four alternative oral nicotine products: 1 Camel Snus, 2 Marlboro Snus, 3 Stonewall dissolvable tobacco tablets, and 4 Commit nicotine lozenges. At visit 1, subjects were presented information about the relative benefits/risks of oral nicotine delivery compared to cigarettes. At visit 2, subjects were given a supply of each of the four products to sample at home for a week. At visit 3, subjects received a one-week supply of their preferred product to see if using such products reduced or eliminated cigarette use. Results After multiple product sampling, participants preferred the Commit lozenges over the three smokeless tobacco products (p = 0.011. Following the one week single-product trial experience, GEE models controlling for gender, age, level of education, baseline cigarettes use, and alternative product chosen, indicated a significant decline in cigarettes smoked per day across one week of single-product sampling (p Conclusions Findings from this study show that smokers, who are currently unwilling to make a quit attempt, may be willing to use alternative products in the short term as a temporary substitute for smoking. However, this use is more likely to be for partial substitution (i.e. they will continue to smoke, albeit at a lower rate rather than complete substitution. Of the

  20. Assessment of nicotine dependence in subjects with vascular dementia

    Directory of Open Access Journals (Sweden)

    Mina Chandra

    2015-03-01

    Full Text Available Background: Nicotine dependence is an important public health issue. Nicotine dependence is a risk factor for vascular diseases like myocardial infarction and vascular dementia. The rate of nicotine dependence in Indian subjects with vascular dementia is not known. Hence we decided to assess nicotine dependence in subjects with vascular dementia. Methods: Nicotine dependence in subjects with vascular dementia was assessed among subjects presenting to memory clinic of a tertiary care hospital over a period of 16 months. Data regarding sociodemographic profile and severity of nicotine dependence as per Fagerstrom nicotine dependence scale for smoking and smokeless tobacco was analysed using SPSS version 17. Results: Our study shows that in 159 subjects with vascular dementia continuing nicotine dependence was seen in nearly 12% of the subjects. Though the rates are less than the population prevalence for India, it is still relevant as nicotine is not just a risk factor for development of vascular dementia but severe nicotine dependence and longer duration of nicotine use were found to be poor prognostic factors associated with severe dementia. Further as all subjects continued to be nicotine dependent despite having been advised to quit tobacco, suggesting the need for a more comprehensive tobacco cessation intervention be offered to subjects with vascular dementia to improve outcomes. Conclusion: In subjects with vascular dementia continuing nicotine dependence is an important risk factor which must be addressed. [Int J Res Med Sci 2015; 3(3.000: 711-714

  1. E-Cig Liquid Nicotine Containers Often Mislabeled

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160108.html E-Cig Liquid Nicotine Containers Often Mislabeled Also, many aren't ... July 27, 2016 (HealthDay News) -- Containers that hold liquid nicotine for electronic cigarettes may not be labeled ...

  2. Design, formulation and evaluation of nicotine chewing gum

    Directory of Open Access Journals (Sweden)

    Abolfazl Aslani

    2012-01-01

    Conclusion: Taste enhancement of nicotine gums was achieved where formulations comprised aspartame as the sweetener and cherry and eucalyptus as the flavoring agents. Nicotine gums of pleasant taste may, therefore, be used as NRT to assist smokers quit smoking.

  3. Central cholinergic regulation of respiration: nicotinic receptors

    Institute of Scientific and Technical Information of China (English)

    Xuesi M SHAO; Jack L FELDMAN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of a4* nAChRs in the preBotzinger Complex (preBotC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBotC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic a4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.

  4. Addiction to the nicotine gum in never smokers

    Directory of Open Access Journals (Sweden)

    Etter Jean-François

    2007-07-01

    Full Text Available Abstract Background Addiction to nicotine gum has never been described in never smokers or in never users of tobacco. Methods Internet questionnaire in 2004–2006 in a self-selected sample of 434 daily users of nicotine gum. To assess dependence on nicotine gum, we used modified versions of the Nicotine Dependence Syndrome Scale (NDSS, the Fagerström Test for Nicotine Dependence and the Cigarette Dependence Scale. Results Five never smokers used the nicotine gum daily. They had been using the nicotine gum for longer than the 429 ever smokers (median = 6 years vs 0.8 years, p = 0.004, and they had higher NDSS-gum Tolerance scores (median = 0.73 vs = -1.0, p = 0.03, a difference of 1.5 standard deviation units. Two never smokers had never used smokeless tobacco, both answered "extremely true" to: "I use nicotine gums because I am addicted to them", both "fully agreed" with: "after a few hours without chewing a nicotine gum, I feel an irresistible urge to chew one" and: "I am a prisoner of nicotine gum". Conclusion This is to our knowledge the first report of addiction to nicotine gum in never users of tobacco. However, this phenomenon is rare, and although the long-term effect of nicotine gum is unknown, this product is significantly less harmful than tobacco.

  5. Mitochondrial reactive oxygen species mediates nicotine-induced hypoxia-inducible factor-1α expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Guo, Lili; Li, Lin; Wang, Weiqiang; Pan, Zhenhua; Zhou, Qinghua; Wu, Zhihao

    2012-06-01

    Cigarette smoking is not only a documented risk for lung carcinogenesis but also promotes lung cancer development. Nicotine, a major component of cigarette smoke but not a carcinogen by itself, has been found to induce proliferation, invasion and metastasis of non-small cell lung cancer (NSCLC). Here we reported that proinvasive effect of nicotine is analogous to that of hypoxia and involves stabilization and activation of hypoxia-inducible factor (HIF)-1α, a key factor in determining the presence of HIF-1 and expression of its downstream metastasis-associated genes. Furthermore, nicotine-induced upregulation of HIF-1α was dependent on mitochondria-derived reactive oxygen species (ROS). Ecotopic expression of mitochondrial targeted catalase effectively prevented nicotine-induced accumulation of HIF-1α protein. In addition, we demonstrated that the effect of nicotine in upregulation of HIF-1α was mediated by Dihydro-β-erythroidine (DhβE)-sensitive nicotine acetylcholine receptors (nAChRs) and required synergistic cooperation of Akt and mitogen-activated protein kinase (MAPK) pathways. These results suggest that exposure to nicotine could mimic effects of hypoxia to stimulate HIF-1α accumulation and activity that might underlie the high metastatic potential of lung cancer. PMID:22349311

  6. Investigations of Enantiopure Nicotine Haptens Using an Adjuvanting Carrier in Anti-Nicotine Vaccine Development.

    Science.gov (United States)

    Jacob, Nicholas T; Lockner, Jonathan W; Schlosburg, Joel E; Ellis, Beverly A; Eubanks, Lisa M; Janda, Kim D

    2016-03-24

    Despite efforts to produce suitable smoking cessation aids, addiction to nicotine continues to carry a substantive risk of recidivism. An attractive alternative to current therapies is the pharmacokinetic strategy of antinicotine vaccination. A major hurdle in the development of the strategy has been to elicit a sufficiently high antibody concentration to curb nicotine distribution to the brain. Herein, we detail investigations into a new hapten design, which was able to elicit an antibody response of significantly higher specificity for nicotine. We also explore the use of a mutant flagellin carrier protein with adjuvanting properties. These studies underlie the feasibility of improvement in antinicotine vaccine formulations to move toward clinical efficacy. PMID:26918428

  7. Spectral confocal imaging of fluorescently tagged nicotinic receptors in knock-in mice with chronic nicotine administration.

    Science.gov (United States)

    Renda, Anthony; Nashmi, Raad

    2012-02-10

    neurons via spectral confocal microscopy. The targeted fluorescent knock-in mutation is incorporated in the endogenous locus and under control of its native promoter, producing normal levels of expression and regulation of the receptor when compared to untagged receptors in wildtype mice. This knock-in approach can be extended to fluorescently tag other ion channels and offers a powerful approach of visualizing and quantifying receptors in the CNS. In this paper we describe a methodology to quantify changes in nAChR expression in specific CNS neurons after exposure to chronic nicotine. Our methods include mini-osmotic pump implantation, intracardiac perfusion fixation, imaging and analysis of fluorescently tagged nicotinic receptor subunits from α4YFP knock-in mice (Fig. 1). We have optimized the fixation technique to minimize autofluorescence from fixed brain tissue. We describe in detail our imaging methodology using a spectral confocal microscope in conjunction with a linear spectral unmixing algorithm to subtract autofluoresent signal in order to accurately obtain α4YFP fluorescence signal. Finally, we show results of chronic nicotine-induced upregulation of α4YFP receptors in the medial perforant path of the hippocampus.

  8. Chronic oral nicotine increases brain [3H]epibatidine binding and responsiveness to antidepressant drugs, but not nicotine, in the mouse forced swim test

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Nielsen, Elsebet O; Redrobe, John P

    2009-01-01

    Smoking rates among depressed individuals is higher than among healthy subjects, and nicotine alleviates depressive symptoms. Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. In mice, acute nicotine administration enhances th...

  9. Binding, uptake, and release of nicotine by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4 degree C using a mixture of 3H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between 3H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37 degree C after treating cells with 3H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours

  10. Anti-nicotine vaccine: current status

    Directory of Open Access Journals (Sweden)

    Vishal Prakash Giri

    2015-12-01

    Full Text Available Tobacco abuse has an enormous impact on health. Nicotine is the main substance responsible for dependence on tobacco-containing products. The vast majority of cigarette smokers who try to quit ultimately fail because of high relapse rates. Clearly, novel approaches are needed for the treatment and prevention of nicotine addiction. Having an efficient vaccine that would generate antibodies to sequester the drug and prevent its access to the brain could go a long way toward helping a motivated addict quit an addiction. [Int J Basic Clin Pharmacol 2015; 4(6.000: 1309-1313

  11. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...

  12. A REVIEW: TRANSDERMAL DRUG DELIVERY OF NICOTINE

    Directory of Open Access Journals (Sweden)

    Saurabh Ravi

    2011-06-01

    Full Text Available Cigarette smoking has been the leading cause of premature death and illness in many industrialized country in the world, while the U.S. alone registers more than 4,00,000 deaths each year. The nicotine patch serves to deliver a constant dose of nicotine across the skin that helps to relieve the symptoms which are associated with tobacco withdrawal. Further, the use of carbon nanotube membranes and micro needle based transdermal drug delivery has lead to the great advancements. Some of the main advantages of transdermal drug delivery are bypassing of hepatic first pass metabolism, maintenance of steady plasma level of the drug and enhancement of therapeutic efficiency.

  13. Complex suicide with homemade nicotine patches.

    Science.gov (United States)

    Lardi, C; Vogt, S; Pollak, S; Thierauf, A

    2014-03-01

    Suicide by self-poisoning is rather common around the world. This paper presents an exceptional complex suicide in which nicotine was applied in the form of self-made patches soaked with an extraction from fine-cut tobacco. In addition, the 51-year-old suicide victim took a lethal dose of diphenhydramine. Toxicological analysis also revealed the presence of tetrazepam in subtherapeutic concentrations. The scene of death suggested an autoerotic accident at first, as the body was tied with tapes, cables and handcuffs. As a result of the entire investigations, the fatality had to be classified as a suicidal intoxication by nicotine and diphenhydramine. PMID:24439154

  14. A REVIEW: TRANSDERMAL DRUG DELIVERY OF NICOTINE

    OpenAIRE

    Saurabh Ravi; Sharma P. K; Bansal M

    2011-01-01

    Cigarette smoking has been the leading cause of premature death and illness in many industrialized country in the world, while the U.S. alone registers more than 4,00,000 deaths each year. The nicotine patch serves to deliver a constant dose of nicotine across the skin that helps to relieve the symptoms which are associated with tobacco withdrawal. Further, the use of carbon nanotube membranes and micro needle based transdermal drug delivery has lead to the great advancements. Some of the mai...

  15. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.

    Science.gov (United States)

    Stewart, Adam Michael; Grossman, Leah; Collier, Adam D; Echevarria, David J; Kalueff, Allan V

    2015-12-01

    Nicotine is one of the most widely used and abused legal drugs. Although its pharmacological profile has been extensively investigated in humans and rodents, nicotine CNS action remains poorly understood. The importance of finding evolutionarily conserved signaling pathways, and the need to apply high-throughput in vivo screens for CNS drug discovery, necessitate novel efficient experimental models for nicotine research. Zebrafish (Danio rerio) are rapidly emerging as an excellent organism for studying drug abuse, neuropharmacology and toxicology and have recently been applied to testing nicotine. Anxiolytic, rewarding and memory-modulating effects of acute nicotine treatment in zebrafish are consistently reported in the literature. However, while nicotine abuse is more relevant to long-term exposure models, little is known about chronic effects of nicotine on zebrafish behavior. In the present study, chronic 4-day exposure to 1-2mg/L nicotine mildly increased adult zebrafish shoaling but did not alter baseline cortisol levels. We also found that chronic exposure to nicotine evokes robust anxiogenic behavioral responses in zebrafish tested in the novel tank test paradigm. Generally paralleling clinical and rodent data on anxiogenic effects of chronic nicotine, our study supports the developing utility of zebrafish for nicotine research. PMID:25643654

  16. Nicotinic and iso nicotinic acids: interactions with gamma radiation and acid-base equilibrium

    International Nuclear Information System (INIS)

    The values of pKa1 and pKa2 for nicotinic and iso nicotinic acids in aqueous medium were determined. The effects of gamma radiation about these acids by infrared and ultraviolet spectrophotometry and thermal gravimetric analysis were also studied. It was verified that the radiolysis of acids occurred by the two process of first order, determining the degradation constant and the degradation factors for each one of the solutions. (C.G.C.)

  17. High reinforcing efficacy of nicotine in non-human primates.

    Directory of Open Access Journals (Sweden)

    Bernard Le Foll

    Full Text Available Although tobacco appears highly addictive in humans, there has been persistent controversy about the ability of its psychoactive ingredient nicotine to induce self-administration behavior in laboratory animals, bringing into question nicotine's role in reinforcing tobacco smoking. Because of ethical difficulties in inducing nicotine dependence in naïve human subjects, we explored reinforcing effects of nicotine in experimentally-naive non-human primates given access to nicotine for periods of time up to two years. Five squirrel monkeys with no experimental history were allowed to intravenously self-administer nicotine by pressing one of two levers. The number of presses on the active lever needed to obtain each injection was fixed (fixed-ratio schedule or increased progressively with successive injections during the session (progressive-ratio schedule, allowing evaluation of both reinforcing and motivational effects of nicotine under conditions of increasing response cost. Over time, a progressive shift toward high rates of responding on the active lever, but not the inactive lever, developed. The monkeys' behavior was clearly directed toward nicotine self-administration, rather than presentation of environmental stimuli associated with nicotine injection. Both schedules of reinforcement revealed a high motivation to self-administer nicotine, with monkeys continuing to press the lever when up to 600 lever-presses were needed for each injection of nicotine. Thus, nicotine, by itself, in the absence of behavioral or drug-exposure history, is a robust and highly effective reinforcer of drug-taking behavior in a non-human primate model predictive of human behavior. This supports the use of nicotinic ligands for the treatment of smokers, and this novel preclinical model offers opportunities to test future medications for the treatment of nicotine dependence.

  18. Low dose nicotine self-administration is reduced in adult male rats naïve to high doses of nicotine: Implications for nicotine product standards

    OpenAIRE

    Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.

    2014-01-01

    Product standards that greatly reduce the content of nicotine within cigarettes may result in improved public health. The present study used an animal model to investigate whether individuals who start smoking following implementation of regulation may be affected differently from current smokers who form the basis of most clinical studies. One group of adult male rats (n=14/group) acquired nicotine self-administration at a high nicotine dose (60 μg/kg/infusion) before experiencing a reductio...

  19. Bcl2 Family Functions as Signaling Target in Nicotine-/NNK-Induced Survival of Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xingming Deng

    2014-01-01

    Full Text Available Lung cancer is the leading cause of cancer death and has a strong etiological association with cigarette smoking. Nicotine and nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK are two major components in cigarette smoke that significantly contribute to the development of human lung cancer. Nicotine is able to stimulate survival of both normal human lung epithelial and lung cancer cells. In contrast to nicotine, NNK is a more potent carcinogen that not only induces single-strand DNA breaks and oxidative DNA damage but also stimulates survival and proliferation of normal lung epithelial and lung cancer cells. However, the molecular mechanism(s by which nicotine and NNK promote cell survival, proliferation, and lung tumor development remains elusive. The fate of cells (i.e., survival or death is largely decided by the Bcl2 family members. In the past several years, multiple signaling links between nicotine/NNK and Bcl2 family members have been identified that regulate survival and proliferation. This review provides a concise, systematic overview of the current understanding of the role of the pro- or antiapoptotic proteins in cigarette smoking, lung cancer development, and treatment resistance.

  20. Nicotinic Acetylcholine Receptors in Sensory Cortex

    Science.gov (United States)

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  1. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  2. The Oncogenic Functions of Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Yue Zhao

    2016-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment.

  3. The Oncogenic Functions of Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Zhao, Yue

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the cell membrane of all mammalian cells, including cancer cells. Recent findings suggest that nAChRs not only mediate nicotine addiction in the brain but also contribute to the development and progression of cancers directly induced by nicotine and its derived carcinogenic nitrosamines whereas deregulation of the nAChRs is observed in many cancers, and genome-wide association studies (GWAS) indicate that SNPs nAChRs associate with risks of lung cancers and nicotine addiction. Emerging evidences suggest nAChRs are posited at the central regulatory loops of numerous cell growth and prosurvival signal pathways and also mediate the synthesis and release of stimulatory and inhibitory neurotransmitters induced by their agonists. Thus nAChRs mediated cell signaling plays an important role in stimulating the growth and angiogenic and neurogenic factors and mediating oncogenic signal transduction during cancer development in a cell type specific manner. In this review, we provide an integrated view of nAChRs signaling in cancer, heightening on the oncogenic properties of nAChRs that may be targeted for cancer treatment. PMID:26981122

  4. Effect of Oxidative Phytochemicals on Nicotine-stressed UMNSAH/DF-1 Cell Line.

    Science.gov (United States)

    Chakraborty, Amlan; Gupta, Apoorv; Singh, Abhinay Kr; Patni, Pranav

    2014-04-01

    Nicotine is a parasympathomimetic alkaloid found in the nightshade family of plants (Solanaceae) and is a cholinergic drug. It acts directly by stimulating the nicotinic or muscarinic receptors or indirectly by inhibiting cholinesterase, promoting acetylcholine release, or by other mechanisms. 3% of tobacco or one cigarette yields 1 mg of nicotine. As nicotine enters the body, it disturbs the healthy functioning of the body. In this study, we isolated UMNSAH/DF-1 cell line from Gallus gallus. For this, 9 ± 2 day old chicken embryo was taken. This was followed by the extraction of nicotine (1 mg/ml) from cigarette. The cells were then given nicotine stress and were observed for blackening after 24 h of incubation under 40× resolution of microscope. It was found that this blackening of the cells was permanent even after a wash with 1× phosphate-buffered saline (PBS) followed by replenishing the medium. The phytochemicals extracted were from the dried powder, which included Curcuma longa ( Jiāng Huáng; Turmeric) 40 mg/ml, Azadirachta indica (neem) 50 mg/ml, Cinnamomum tamala (bay leaf) 30 mg/ml, Camellia sinensis ( Lǜ Chá; Green Tea) 100 mg/ml, and Ocimum sanctum (tulsi) 30 mg/ml. When applied to nicotine-stressed cells, it was observed that ursolic acid in neem recovered 70%, followed by 65% recovery by tulsi (having triterpenoid), 50% recovery by the catechins in Ca. sinensis, and very little recovery shown by Ci. tamala. Due to the yellow coloration of the cells by Cu. longa, much could not be inferred, although it was inferable that it had resulted in little effects. Mixtures of these phytochemicals were used, and it was found that neem: tulsi diluted in 3:1 ratio was highly effective and cell recovery was almost 80%. 68% was recovered by tulsi: green tea in a ratio 1:3 and 42% by turmeric:green tea in a ratio of 1:5. PMID:24860736

  5. Nicotine administration enhances negative occasion setting in adolescent rats.

    Science.gov (United States)

    Meyer, Heidi C; Chodakewitz, Molly I; Bucci, David J

    2016-04-01

    Substantial research has established that exposure to nicotine during adolescence can lead to long-term changes in neural circuitry and behavior. However, relatively few studies have considered the effects of nicotine use on cognition during this critical stage of brain development. This is significant because the influence of nicotine on cognitive performance during adolescence may contribute to the development of regular nicotine use. For example, improvements in cognitive functioning may increase the perceived value of smoking and facilitate impulses to smoke. To address this, the present research tested the effects of nicotine on a form of inhibitory learning during adolescence. Specifically, adolescent rats were exposed to nicotine as they were trained in a negative occasion setting paradigm, in which successful performance depends on learning the conditions under which it is, or is not, appropriate to respond to a target stimulus. Here, we found that nicotine administration enhances negative occasion setting in adolescents. In addition, nicotine increased the amount of orienting behavior directed toward the inhibitory stimulus, suggesting that improvements in this form of behavioral inhibition may be attributed to nicotine-induced increases in attentional processing. These results may help elucidate the factors that contribute to the onset as well as continued use of products containing nicotine during adolescence and provide insight to increase the effectiveness of interventions targeted at reducing the prevalence of adolescent smoking. PMID:26779671

  6. Opioid Analgesics and Nicotine: More Than Blowing Smoke.

    Science.gov (United States)

    Yoon, Jin H; Lane, Scott D; Weaver, Michael F

    2015-09-01

    Practitioners are highly likely to encounter patients with concurrent use of nicotine products and opioid analgesics. Smokers present with more severe and extended chronic pain outcomes and have a higher frequency of prescription opioid use. Current tobacco smoking is a strong predictor of risk for nonmedical use of prescription opioids. Opioid and nicotinic-cholinergic neurotransmitter systems interact in important ways to modulate opioid and nicotine effects: dopamine release induced by nicotine is dependent on facilitation by the opioid system, and the nicotinic-acetylcholine system modulates self-administration of several classes of abused drugs-including opioids. Nicotine can serve as a prime for the use of other drugs, which in the case of the opioid system may be bidirectional. Opioids and compounds in tobacco, including nicotine, are metabolized by the cytochrome P450 enzyme system, but the metabolism of opioids and tobacco products can be complicated. Accordingly, drug interactions are possible but not always clear. Because of these issues, asking about nicotine use in patients taking opioids for pain is recommended. When assessing patient tobacco use, practitioners should also obtain information on products other than cigarettes, such as cigars, pipes, smokeless tobacco, and electronic nicotine delivery systems (ENDS, or e-cigarettes). There are multiple forms of behavioral therapy and pharmacotherapy available to assist patients with smoking cessation, and opioid agonist maintenance and pain clinics represent underutilized opportunities for nicotine intervention programs. PMID:26375198

  7. CYP2A6 gene polymorphisms impact to nicotine metabolism

    Directory of Open Access Journals (Sweden)

    Dewi Muliaty

    2010-02-01

    Full Text Available Nicotine is a major addictive compound in tobacco cigarette smoke. After being absorbed by the lung nicotine is rapidly metabolized and mainly inactivated to cotinine by hepatic cytochrome P450 2A6 (CYP2A6 enzyme. Genetic polymorphisms in CYP2A6 may play a role in smoking behavior and nicotine dependence. CYP2A6*1A is the wild type of the CYP2A6 gene which is associated with normal or extensive nicotine metabolism. In the CYP2A6 gene, several polymorphic alleles have been reported such as CYP2A6*4, CYP2A6*7, CYP2A6*9, and CYP2A6*10 which are related to decreasing nicotine metabolism activity. The variation of nicotine metabolism activity could alter nicotine plasma levels. Smokers need a certain level of nicotine in their brain and must smoke regularly because of nicotine’s short half-life; this increases the number of smoked cigarettes in extensive metabolizers. Meanwhile, in slow metabolizers, nicotine plasma level may increase and results in nicotine toxicity. This will eventually lower the risk of dependence. (Med J Indones 2010; 19:46-51Keywords: cotinine, hepatic cytochrome P450 2A6, smoking behavior

  8. Transdermal nicotine absorption handling e-cigarette refill liquids.

    Science.gov (United States)

    Maina, Giovanni; Castagnoli, Carlotta; Passini, Valter; Crosera, Matteo; Adami, Gianpiero; Mauro, Marcella; Filon, Francesca Larese

    2016-02-01

    The concentrated nicotine in e-cigarette refill liquids can be toxic if inadvertently ingested or absorbed through the skin. Reports of poisonings due to accidental ingestion of nicotine on refill liquids are rapidly increasing, while the evaluation of nicotine dermally absorbed still lacks. For that reason we studied transdermal nicotine absorption after the skin contamination with e-liquid. Donor chambers of eight Franz diffusion cells were filled with 1 mL of 0.8 mg/mL nicotine e-liquid for 24 h. The concentration of nicotine in the receiving phase was determined by high-performance liquid chromatography (LOD:0.1 μg/mL). Nicotine was detectable in receiving solution 2 h after the start of exposure and increased progressively. The medium flux calculated was 4.82 ± 1.05 μg/cm(2)/h with a lag time of 3.9 ± 0.1 h. After 24 h, the nicotine concentration in the receiving compartment was 101.02 ± 22.35 μg/cm(2) corresponding to 3.04 mg of absorbed nicotine after contamination of a skin surface of 100 cm(2). Skin contamination with e-liquid can cause nicotine skin absorption: caution must be paid when handling refill e-liquids.

  9. Harm perception of nicotine products in college freshmen.

    Science.gov (United States)

    Smith, Stephanie Y; Curbow, Barbara; Stillman, Frances A

    2007-09-01

    This study examined the association of sociodemographic characteristics and smoking behaviors (i.e., cigarette, cigar, and waterpipe) with nicotine product harm perception in college freshmen. Students were asked to compare the perceived harmfulness of 11 nicotine-delivering products with that of a regular cigarette. Data were from a cross-sectional Internet survey conducted during the spring 2004 semester at a private university (N = 411). Binomial logistic regression was used to determine the association between sociodemographic and behavioral factors with nicotine product harm perception. A statistically significant association was found between nicotine product harm perception and sex, race, income, citizenship, and smoking behavior (pharmful as or more harmful than a regular cigarette; corresponding values were 24.1% for nicotine gum and 52.9% for nicotine inhaler. Respondents incorrectly perceived the following smoked tobacco products to be less harmful than regular cigarettes: ultra-light cigarettes (40.4%), waterpipe (37%), light cigarettes (35.2%), cigarillos (17.4%), and cigars (16.9%). Regarding smokeless nicotine products, 89.3% of respondents incorrectly perceived dip and chew to be as harmful as or more harmful than regular cigarettes; corresponding values were 36.2% for nicotine lollipops and 35.2% for nicotine water. Our findings reveal misperceptions about nicotine product harmfulness and underscore the importance of developing a science base to inform policies and educate consumers about these products. PMID:17763115

  10. Chronic Nicotine Exposure Attenuates Methamphetamine-Induced Dopaminergic Deficits.

    Science.gov (United States)

    Vieira-Brock, Paula L; McFadden, Lisa M; Nielsen, Shannon M; Ellis, Jonathan D; Walters, Elliot T; Stout, Kristen A; McIntosh, J Michael; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2015-12-01

    Repeated methamphetamine (METH) administrations cause persistent dopaminergic deficits resembling aspects of Parkinson's disease. Many METH abusers smoke cigarettes and thus self-administer nicotine; yet few studies have investigated the effects of nicotine on METH-induced dopaminergic deficits. This interaction is of interest because preclinical studies demonstrate that nicotine can be neuroprotective, perhaps owing to effects involving α4β2 and α6β2 nicotinic acetylcholine receptors (nAChRs). This study revealed that oral nicotine exposure beginning in adolescence [postnatal day (PND) 40] through adulthood [PND 96] attenuated METH-induced striatal dopaminergic deficits when METH was administered at PND 89. This protection did not appear to be due to nicotine-induced alterations in METH pharmacokinetics. Short-term (i.e., 21-day) high-dose nicotine exposure also protected when administered from PND 40 to PND 61 (with METH at PND 54), but this protective effect did not persist. Short-term (i.e., 21-day) high-dose nicotine exposure did not protect when administered postadolescence (i.e., beginning at PND 61, with METH at PND 75). However, protection was engendered if the duration of nicotine exposure was extended to 39 days (with METH at PND 93). Autoradiographic analysis revealed that nicotine increased striatal α4β2 expression, as assessed using [(125)I]epibatidine. Both METH and nicotine decreased striatal α6β2 expression, as assessed using [(125)I]α-conotoxin MII. These findings indicate that nicotine protects against METH-induced striatal dopaminergic deficits, perhaps by affecting α4β2 and/or α6β2 expression, and that both age of onset and duration of nicotine exposure affect this protection. PMID:26391161

  11. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  12. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  13. Nicotine acts on growth plate chondrocytes to delay skeletal growth through the alpha7 neuronal nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Atsuo Kawakita

    Full Text Available BACKGROUND: Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR, a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA, a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/- mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR -/- fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR. CONCLUSIONS/SIGNIFICANCE: These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease

  14. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  15. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  16. Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal.

    Science.gov (United States)

    Watkins, S S; Koob, G F; Markou, A

    2000-02-01

    The neurobiology of nicotine addiction is reviewed within the context of neurobiological and behavioral theories postulated for other drugs of abuse. The roles of various neurotransmitter systems, including acetylcholine, dopamine, serotonin, glutamate, gamma-aminobutyric acid, and opioid peptides in acute nicotine reinforcement and withdrawal from chronic administration are examined followed by a discussion of potential neuroadaptations within these neurochemical systems that may lead to the development of nicotine dependence. The link between nicotine administration, depression and schizophrenia are also discussed. Finally, a theoretical model of the neurobiological mechanisms underlying acute nicotine withdrawal and protracted abstinence involves alterations within dopaminergic, serotonergic, and stress systems that are hypothesized to contribute to the negative affective state associated with nicotine abstinence.

  17. Effect of acute and chronic nicotine consumption on reaction time

    OpenAIRE

    Nagalakshmi Vijaykumar; Suresh Badiger

    2015-01-01

    Objective: To record the effect of acute and chronic nicotine usage on visual and whole body reaction time which is the indicators of cognition. Background: Nicotine intake in the form of cigarette smoking does affect cognition. Even though the effect of nicotine on cognition is interesting, knowledge regarding this is inconsistent due to lack of much research. Methods: This study done on 50 male subjects (smokers) in the age group of 30-50 year, equal number of age and sex matched individual...

  18. Multigenerational epigenetic effects of nicotine on lung function

    OpenAIRE

    Leslie Frances M

    2013-01-01

    Abstract A recent preclinical study has shown that not only maternal smoking but also grandmaternal smoking is associated with elevated pediatric asthma risk. Using a well-established rat model of in utero nicotine exposure, Rehan et al. have now demonstrated multigenerational effects of nicotine that could explain this 'grandmother effect'. F1 offspring of nicotine-treated pregnant rats exhibited asthma-like changes to lung function and associated epigenetic changes to DNA and histones in bo...

  19. Effects of maternal nicotine on breastfeeding infants.

    Science.gov (United States)

    Primo, Cândida Caniçali; Ruela, Priscilla Bôa F; Brotto, Léia Damasceno de A; Garcia, Telma Ribeiro; Lima, Eliane de Fátima

    2013-09-01

    OBJECTIVE To assess scientific evidence about the effects of maternal nicotine on infant by an integrative review. DATA SOURCES Studies published in Portuguese, English and Spanish, from 1990 to 2009, with abstracts available in the Latin American Health Sciences Literature (Lilacs) and Medical Literature Analysis and Retrieval System On-Line (Medline) databases. The descriptors were: "breastfeeding", "lactation" and "smoking". DATA SYNTHESIS The main identified effects of nicotine on infants were: changes in sleep and wakefulness patterns; reduction of iodine supply; hystopathological damage on liver and lung; intracellular oxidative damage; reduction of pancreatic ß cells; and decreased glucose tolerance. CONCLUSIONS It is recommended to inform mothers about harmful chemicals contained in cigarettes that can be secreted into breast milk. They should be strongly encouraged to stop smoking during lactation. PMID:24142324

  20. Effect of nicotine on rectal mucus and mucosal eicosanoids.

    OpenAIRE

    Zijlstra, F.J.; Srivastava, E D; Rhodes, M.; van Dijk, A P; Fogg, F; Samson, H J; Copeman, M; Russell, M. A.; Feyerabend, C; Williams, G T

    1994-01-01

    Because ulcerative colitis is largely a disease of non-smokers and nicotine may have a beneficial effect on the disease, the effect of nicotine on rectal mucosa in rabbits was examined. Nicotine was given subcutaneously by an Alzet mini-pump in doses of 0.5, 1.25, and 2 mg/kg/day for 14 days to three groups of eight animals and compared with eight controls. Mean (SD) serum nicotine concentrations (ng/ml) were 3.5 (1.1), 8.8 (2.3), and 16.2 (5.2) respectively in the treated groups. The thickne...

  1. Compound list: nicotinic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available nicotinic acid NIC 00081 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/nicotinic..._acid.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/nicotinic..._acid.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/nic...otinic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc...iencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/nicotinic_acid.Rat.in_vivo.Liver.Repeat.zip ...

  2. Tissue Distribution of [3H]—Nicotine in Rats

    Institute of Scientific and Technical Information of China (English)

    ParimalChowdhury; RyuichiroDOI; 等

    1993-01-01

    This study was conducted in adult male Sprageue-Dawley rats to determine the distribution of [3H]-nicotine in blood and tissues following a bolus injection and a constant infusion of pure nicotine.The animalw were anesthetized and injectd with either 0.5ml of nicotine solution or given a constant infusion of the same nicotine solution with indentical amounts of radioactive nicotine.After sacrifice.blood,brain,trachea,salivery gland, esophagus,lung,heart,liver,fundus,antrum,spleen,pancreas,duodenum,jejunum,ileum, cecum,colon,kidneys,adrenal gland,and testes were collected and measured for radioactivity by scintillation counting.The distribution of nicotine was found highest in kidneys by both routes of administration.Higher accumulations were also found in salivary and adrenal glands,fundus,antrum,duodenum,jejunum,ileum and colon.Retention of nicotine via constant infusion was significantly higher in esophagus,fundus antrum,spleen,cecum, pancreas,testes,heart and muscle when compared with bolus injection,Six-fold increase in retention of blood levels of nicotine were ofund with constant infusion.(P<0.05).The results indicate that longer retention of nicotine occurs in blood and other specific tissues such as esophagus,fundus,antrum,spleen,cecum,pancreas,testes,heart and muscle via constant exposure.These data may implicate the predisposition of these tissues to patologic manifestations.

  3. INDIVIDUAL DIFFERENCES IN ORAL NICOTINE INTAKE IN RATS

    OpenAIRE

    Nesil, Tanseli; Kanit, Lutfiye; Collins, Allan C.; Pogun, Sakire

    2011-01-01

    To study individual differences in nicotine preference and intake, male and female rats were given free access to a choice of oral nicotine (10 or 20 mg/L) or water for 24 hours/day for periods of at least six weeks, starting at adolescence or adulthood. A total of 341 rats, were used in four different experiments; weight, nicotine intake and total liquid consumption were recorded weekly. Results show that rats can discriminate nicotine from water, can regulate their intake, and that there ar...

  4. Revisiting the Effect of Nicotine on Interval Timing

    Science.gov (United States)

    Daniels, Carter W.; Watterson, Elizabeth; Garcia, Raul; Mazur, Gabriel J.; Brackney, Ryan J.; Sanabria, Federico

    2015-01-01

    This paper reviews the evidence for nicotine-induced acceleration of the internal clock when timing in the seconds-to-minutes timescale, and proposes an alternative explanation to this evidence: that nicotine reduces the threshold for responses that result in more reinforcement. These two hypotheses were tested in male Wistar rats using a novel timing task. In this task, rats were trained to seek food at one location after 8 s since trial onset and at a different location after 16 s. Some rats received the same reward at both times (group SAME); some received a larger reward at 16 s (group DIFF). Steady baseline performance was followed by 3 days of subcutaneous nicotine administration (0.3 mg/kg), baseline recovery, and an antagonist challenge (mecamylamine, 1.0 mg/kg). Nicotine induced a larger, immediate reduction in latencies to switch (LTS) in group DIFF than in group SAME. This effect was sustained throughout nicotine administration. Mecamylamine administration and discontinuation of nicotine rapidly recovered baseline performance. These results support a response-threshold account of nicotinic disruption of timing performance, possibly mediated by nicotinic acetylcholine receptors. A detailed analysis of the distribution of LTSs suggests that anomalous effects of nicotine on LTS dispersion may be due to loss of temporal control of behavior. PMID:25637907

  5. Agonist and antagonist effects of tobacco-related nitrosamines on human α4β2 nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Simone eBrusco

    2015-09-01

    Full Text Available Regulation of the ‘neuronal’ nicotinic acetylcholine receptors (nAChRs is implicated in both tobacco addiction and smoking-dependent tumor promotion. Some of these effects are caused by the tobacco-derived N-nitrosamines, which are carcinogenic compounds that avidly bind to nAChRs. However, the functional effects of these drugs on specific nAChR subtypes are largely unknown. By using patch-clamp methods, we tested 4-(methylnitrosamine-1-(3-pyridyl-1-butanone (NNK and N’-nitrosonornicotine (NNN on human α4β2 nAChRs. These latter are widely distributed in the mammalian brain and are also frequently expressed outside the nervous system. NNK behaved as a partial agonist, with an apparent EC50 of 16.7 μM. At 100 μM, it activated 16 % of the maximal current activated by nicotine. When NNK was co-applied with nicotine, it potentiated the currents elicited by nicotine concentrations ≤ 100 nM. At higher concentrations of nicotine, NNK always inhibited the α4β2 nAChR. In contrast, NNN was a pure inhibitor of this nAChR subtype, with IC50 of approximately 1 nM in the presence of 10 μM nicotine. The effects of both NNK and NNN were mainly competitive and largely independent of Vm. The different actions of NNN and NNK must be taken into account when interpreting their biological effects in vitro and in vivo.

  6. Disentangling the nature of the nicotine stimulus✩

    OpenAIRE

    Bevins, Rick A.; Barrett, Scott T.; Polewan, Robert J.; Pittenger, Steven T.; Swalve, Natashia; Charntikov, Sergios

    2011-01-01

    Learning involving interoceptive stimuli likely plays an important role in many diseases and psychopathologies. Within this area, there has been extensive research investigating the interoceptive stimulus effects of abused drugs. In this pursuit, behavioral pharmacologists have taken advantage of what is known about learning processes and adapted the techniques to investigate the behavioral and receptor mechanisms of drug stimuli. Of particular interest is the nicotine stimulus and the use of...

  7. Alcohol, nicotine, caffeine, and mental disorders

    OpenAIRE

    Crocq, Marc-Antoine

    2003-01-01

    Alcohol, nicotine, and caffeine are the most widely consumed psychotropic drugs worldwide. They are largely consumed by normal individuals, but their use is even more frequent in psychiatric patients, Thus, patients with schizophrenia tend to abuse all three substances. The interrelationships between depression and alcohol are complex. These drugs can all create dependence, as understood in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). Alcohol abuse is cl...

  8. The Demand for Nicotine Replacement Therapies

    OpenAIRE

    John A. Tauras; Chaloupka, Frank J.

    2001-01-01

    This paper is the first econometric study to examine the determinants of nicotine replacement therapy (NRT) demand. Pooled cross-sectional time-series scanner-based data for 50 major metropolitan markets in the United States covering the period between the second quarter 1996 and the third quarter 1999 are used in the analysis. Fixed-effects modeling is employed to assess the impact of NRT prices, cigarette prices, and other determinants on NRT demand. The estimates indicate that decreases in...

  9. Spectral Confocal Imaging of Fluorescently tagged Nicotinic Receptors in Knock-in Mice with Chronic Nicotine Administration

    OpenAIRE

    Renda, Anthony; Nashmi, Raad

    2012-01-01

    Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain1. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain t...

  10. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  11. Nicotine and cannabinoids: parallels, contrasts and interactions.

    Science.gov (United States)

    Viveros, Maria-Paz; Marco, Eva M; File, Sandra E

    2006-01-01

    After a brief outline of the nicotinic and cannabinoid systems, we review the interactions between the pharmacological effects of nicotine and cannabis, two of the most widely used drugs of dependence. These drugs are increasingly taken in combination, particularly among the adolescents and young adults. The review focuses on addiction-related processes, gateway and reverse gateway theories of addiction and therapeutic implications. It then reviews studies on the important period of adolescence, an area that is in urgent need of further investigation and in which the importance of sex differences is emerging. Three other areas of research, which might be particularly relevant to the onset and/or maintenance of dependence, are then reviewed. Firstly, the effects of the two drugs on anxiety-related behaviours are discussed and then their effects on food intake and cognition, two areas in which they have contrasting effects. Certain animal studies suggest that reinforcing effects are likely to be enhanced by joint consumption of nicotine and cannabis, as also may be anxiolytic effects. If this was the case in humans, the latter might be viewed as an advantage particularly by adolescent girls, although the increased weight gain associated with cannabis would be a disadvantage. The two drugs also have opposite effects on cognition and the possibility of long-lasting cognitive impairments resulting from adolescent consumption of cannabis is of particular concern.

  12. Environmental fate and effects of nicotine released during cigarette production.

    Science.gov (United States)

    Seckar, Joel A; Stavanja, Mari S; Harp, Paul R; Yi, Yongsheng; Garner, Charles D; Doi, Jon

    2008-07-01

    A variety of test methods were used to study the gradation, bioaccumulation, and toxicity of nicotine. Studies included determination of the octanol-water partition coefficient, conversion to CO2 in soil and activated sludge, and evaluation of the effects on microbiological and algal inhibition as well as plant germination and root elongation. The partitioning of nicotine between octanol and water indicated that nicotine will not bioaccumulate regardless of the pH of the medium. The aqueous and soil-based biodegradation studies indicated that nicotine is readily biodegradable in both types of media. The microbiological inhibition and aquatic and terrestrial toxicity tests indicated that nicotine has low toxicity. The U.S. Environmental Protection Agency Persistence, Bioaccumulation, and Toxicity Profiler model, based on the structure of nicotine and the predictive rates of hydroxyl radical and ozone reactions, estimated an atmospheric half-life of less than 5.0 h. Using this value in the Canadian Environmental Modeling Center level III model, the half-life of nicotine was estimated as 3.0 d in water and 0.5 d in soil. This model also estimated nicotine discharge into the environment; nicotine would be expected to be found predominantly in water (93%), followed by soil (4%), air (3%), and sediment (0.4%). Using the estimated nicotine concentrations in water, soil, and sediment and the proper median effective concentrations derived from the algal growth, biomass inhibition, and buttercrunch lettuce (Lactuca sativa) seed germination and root elongation studies, hazard quotients of between 10(-7) and 10(-8) were calculated, providing further support for the conclusion that the potential for nicotine toxicity to aquatic and terrestrial species in the environment is extremely low. PMID:18399728

  13. Environmental fate and effects of nicotine released during cigarette production.

    Science.gov (United States)

    Seckar, Joel A; Stavanja, Mari S; Harp, Paul R; Yi, Yongsheng; Garner, Charles D; Doi, Jon

    2008-07-01

    A variety of test methods were used to study the gradation, bioaccumulation, and toxicity of nicotine. Studies included determination of the octanol-water partition coefficient, conversion to CO2 in soil and activated sludge, and evaluation of the effects on microbiological and algal inhibition as well as plant germination and root elongation. The partitioning of nicotine between octanol and water indicated that nicotine will not bioaccumulate regardless of the pH of the medium. The aqueous and soil-based biodegradation studies indicated that nicotine is readily biodegradable in both types of media. The microbiological inhibition and aquatic and terrestrial toxicity tests indicated that nicotine has low toxicity. The U.S. Environmental Protection Agency Persistence, Bioaccumulation, and Toxicity Profiler model, based on the structure of nicotine and the predictive rates of hydroxyl radical and ozone reactions, estimated an atmospheric half-life of less than 5.0 h. Using this value in the Canadian Environmental Modeling Center level III model, the half-life of nicotine was estimated as 3.0 d in water and 0.5 d in soil. This model also estimated nicotine discharge into the environment; nicotine would be expected to be found predominantly in water (93%), followed by soil (4%), air (3%), and sediment (0.4%). Using the estimated nicotine concentrations in water, soil, and sediment and the proper median effective concentrations derived from the algal growth, biomass inhibition, and buttercrunch lettuce (Lactuca sativa) seed germination and root elongation studies, hazard quotients of between 10(-7) and 10(-8) were calculated, providing further support for the conclusion that the potential for nicotine toxicity to aquatic and terrestrial species in the environment is extremely low.

  14. [Nicotine and animal models: what does the environmental enrichment paradigm tell us?].

    Science.gov (United States)

    Mesa-Gresa, Patricia; Pérez-Martínez, Asunción; Redolat-Iborra, Rosa

    2012-01-01

    The Environmental Enrichment (EE) paradigm is a housing condition which aims is to provide physical, cognitive and sensorial stimulation to rodents. Animals are housed in larger cages containing inanimate objects such as tunnels, toys and running wheels. The main aim of the current work is to tackle the arguments which suggest that EE may diminish vulnerability to developing addiction to nicotine and other drugs of abuse and to review recent experimental studies performed in relation to this subject. We discuss the major changes induced by EE at physical, neurobiological and behavioral levels and review the results of recent studies which indicate that EE promotes both neurochemical (potentiation of the increase in dopamine release induced by nicotine in the brain cortex) and behavioral changes (increased ability to discriminate the presence of reward and decreased impulsivity), thus supporting the hypothesis put forward. In light of these results, EE can be proposed as a model for the study of vulnerability to addiction to different drugs of abuse, including cocaine and nicotine, though further studies are needed in order to establish the neurobiological implications of the effects of exposure to enriched environments and their possible relationship with changes in brain reward systems. PMID:22648311

  15. Sex differences in nicotine self-administration in rats during progressive unit dose reduction: implications for nicotine regulation policy.

    Science.gov (United States)

    Grebenstein, Patricia; Burroughs, Danielle; Zhang, Yan; LeSage, Mark G

    2013-12-01

    Reducing the nicotine content in tobacco products is being considered by the FDA as a policy to reduce the addictiveness of tobacco products. Understanding individual differences in response to nicotine reduction will be critical to developing safe and effective policy. Animal and human research demonstrating sex differences in the reinforcing effects of nicotine suggests that males and females may respond differently to nicotine-reduction policies. However, no studies have directly examined sex differences in the effects of nicotine unit-dose reduction on nicotine self-administration (NSA) in animals. The purpose of the present study was to examine this issue in a rodent self-administration model. Male and female rats were trained to self-administer nicotine (0.06mg/kg) under an FR 3 schedule during daily 23h sessions. Rats were then exposed to saline extinction and reacquisition of NSA, followed by weekly reductions in the unit dose (0.03 to 0.00025mg/kg) until extinction levels of responding were achieved. Males and females were compared with respect to baseline levels of intake, resistance to extinction, degree of compensatory increases in responding during dose reduction, and the threshold reinforcing unit dose of nicotine. Exponential demand-curve analysis was also conducted to compare the sensitivity of males and females to increases in the unit price (FR/unit dose) of nicotine (i.e., elasticity of demand or reinforcing efficacy). Females exhibited significantly higher baseline intake and less compensation than males. However, there were no sex differences in the reinforcement threshold or elasticity of demand. Dose-response relationships were very well described by the exponential demand function (r(2) values>0.96 for individual subjects). These findings suggest that females may exhibit less compensatory smoking in response to nicotine reduction policies, even though their nicotine reinforcement threshold and elasticity of demand may not differ from males

  16. Neurotensin Agonist Attenuates Nicotine Potentiation to Cocaine Sensitization

    Directory of Open Access Journals (Sweden)

    Paul Fredrickson

    2014-01-01

    Full Text Available Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13 analog, blocks behavioral sensitization (an animal model for psychostimulant addiction to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  17. Melatonin protects uterus and oviduct exposed to nicotine in mice

    Directory of Open Access Journals (Sweden)

    Seyed Saadat Seyedeh Nazanin

    2014-03-01

    Full Text Available Smoking is associated with higher infertility risk. The aim of this study was to evaluate protective effects of melatonin on the uterus and oviduct in mice exposed to nicotine. Adult female mice (n=32 were divided into four groups. Group A: control animals received normal saline, Group B: injected with nicotine 40 μg/kg, Group C: injected with melatonin 10 μg, Group D: injected with nicotine 40 μg/kg and melatonin 10 μg. All animals were treated over 15 days intraperitoneally. On the 16th day, animals in the estrus phase were dissected and their uterus and oviducts were removed. Immunohistochemistry was recruited for studying apoptosis and for detection of estrogen receptor (ER alpha in luminal epithelium of the uterus and oviduct. Enzyme-linked immunosorbent assay was used for serum estradiol level determination. Nicotine in group B decreased estradiol level and ERalpha numbers both in the uterus and oviduct (p<0.05. Co-administration of melatonin-nicotine in Group D ameliorated the histology of the uterus and oviduct, increased ERalpha numbers and reduced apoptosis in the uterus and oviduct compared with the nicotine Group B (p<0.05. This study indicates that nicotine impairs the histology of the uterus and oviduct and co-administration of melatonin-nicotine ameliorates these findings, partly through alteration in ERalpha numbers and reduction of apoptosis

  18. Decreasing Nicotine Content Reduces Subjective and Physiological Effects of Smoking

    Science.gov (United States)

    Penetar, David M.; Lindsey, Kimberly P.; Peters, Erica N.; Juliano, Trisha M.; Lukas, Scott E.

    2013-01-01

    Objective Assessment of the subjective and physiological effects of smoking cigarettes with different machine-smoked nicotine yields. Methods Eight volunteers rated the characteristics of cigarettes with varying levels of nicotine (Quest®). At 30 minute intervals, participants smoked one of three different Quest® brand cigarettes in a counterbalanced order (reported machine-smoked nicotine yield: 0.6 mg, 0.3 mg, or 0.05 mg). Smoking satisfaction and sensations were measured on a cigarette evaluation questionnaire. A mood questionnaire measured self-reported subjective changes in ‘happy’, ‘stimulated’, ‘anxious’, ‘desire to smoke’, and ‘desire not to smoke’. Heart rate and skin temperature were recorded continuously. Results As nicotine yield decreased, cigarettes produced smaller changes in subjective ratings on the evaluation questionnaire with the placebo nicotine cigarette always rated lower or less potent than the other two cigarettes evaluated. Heart rate was significantly increased by the reduced nicotine cigarettes, but was not affected by the nicotine-free cigarette. Conclusion These results indicate that machine-smoked yield is an important determinant of both the subjective and physiological effects of smoking. The use of reduced and nicotine free cigarettes in smoking cessation programs remains to be evaluated. PMID:25253991

  19. Sensory reinforcement-enhancing effects of nicotine via smoking.

    Science.gov (United States)

    Perkins, Kenneth A; Karelitz, Joshua L

    2014-12-01

    As has been found in nicotine research on animals, research on humans has shown that acute nicotine enhances reinforcement from rewards unrelated to nicotine intake, but this effect may be specific to rewards from stimuli that are "sensory" in nature. We assessed acute effects of nicotine via smoking on responding for music or video rewards (sensory), for monetary reward (nonsensory), or for no reward (control), to gauge the generalizability of nicotine's reinforcement-enhancing effects. Using a fully within-subjects design, dependent smokers (N = 20) participated in 3 similar experimental sessions, each following overnight abstinence (verified by carbon monoxide fashion prior to responding on a simple operant computer task for each reward separately using a progressive ratio schedule. The reinforcing effects of music and video rewards, but not money, were significantly greater due to the nicotine versus denic cigarette (i.e., nicotine per se), whereas there were no differences between denic cigarette smoking and no smoking (i.e., smoking behavior per se), except for no reward. These effects were not influenced by withdrawal relief from either cigarette. Results that generalize from an auditory to a visual reward confirm that acute nicotine intake per se enhances the reinforcing value of sensory rewards, but its effects on the value of other (perhaps nonsensory) types of rewards may be more modest. PMID:25180451

  20. Epidemiology, radiology, and genetics of nicotine dependence in COPD

    Directory of Open Access Journals (Sweden)

    Hokanson John E

    2011-01-01

    Full Text Available Abstract Background Cigarette smoking is the principal environmental risk factor for developing COPD, and nicotine dependence strongly influences smoking behavior. This study was performed to elucidate the relationship between nicotine dependence, genetic susceptibility to nicotine dependence, and volumetric CT findings in smokers. Methods Current smokers with COPD (GOLD stage ≥ 2 or normal spirometry were analyzed from the COPDGene Study, a prospective observational study. Nicotine dependence was determined by the Fagerstrom test for nicotine dependence (FTND. Volumetric CT acquisitions measuring the percent of emphysema on inspiratory CT (% of lung Results Among 842 currently smoking subjects (335 COPD cases and 507 controls, 329 subjects (39.1% showed high nicotine dependence. Subjects with high nicotine dependence had greater cumulative and current amounts of smoking. However, emphysema severity was negatively correlated with the FTND score in controls (ρ = -0.19, p Conclusions Nicotine dependence was a negative predictor for emphysema on CT in COPD and control smokers. Increased inflammation in more highly addicted current smokers could influence the CT lung density distribution, which may influence genetic association studies of emphysema phenotypes. Trial registration ClinicalTrials (NCT: NCT00608764

  1. Neuronal Nicotinic Acetylcholine Receptors: Neuroplastic Changes underlying Alcohol and Nicotine Addictions

    Directory of Open Access Journals (Sweden)

    Allison Anne Feduccia

    2012-08-01

    Full Text Available Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug’s reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs. The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine’s effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.

  2. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects.

    Science.gov (United States)

    Pistillo, Francesco; Clementi, Francesco; Zoli, Michele; Gotti, Cecilia

    2015-01-01

    Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.

  3. Knowledge and Perceptions about Nicotine, Nicotine Replacement Therapies and Electronic Cigarettes among Healthcare Professionals in Greece

    Directory of Open Access Journals (Sweden)

    Anastasia Moysidou

    2016-05-01

    Full Text Available Introduction. The purpose of this study was to evaluate the knowledge and perceptions of Greek healthcare professionals about nicotine, nicotine replacement therapies and electronic cigarettes. Methods. An online survey was performed, in which physicians and nurses working in private and public healthcare sectors in Athens-Greece were asked to participate through email invitations. A knowledge score was calculated by scoring the correct answers to specific questions with 1 point. Results. A total of 262 healthcare professionals were included to the analysis. Most had daily contact with smokers in their working environment. About half of them considered that nicotine has an extremely or very important contribution to smoking-related disease. More than 30% considered nicotine replacement therapies equally or more addictive than smoking, 76.7% overestimated their smoking cessation efficacy and only 21.0% would recommend them as long-term smoking substitutes. For electronic cigarettes, 45.0% considered them equally or more addictive than smoking and 24.4% equally or more harmful than tobacco cigarettes. Additionally, 35.5% thought they involve combustion while the majority responded that nicotine in electronic cigarettes is synthetically produced. Only 14.5% knew about the pending European regulation, but 33.2% have recommended them to smokers in the past. Still, more than 40% would not recommend electronic cigarettes to smokers unwilling or unable to quit smoking with currently approved medications. Cardiologists and respiratory physicians, who are responsible for smoking cessation therapy in Greece, were even more reluctant to recommend electronic cigarettes to this subpopulation of smokers compared to all other participants. The knowledge score of the whole study sample was 7.7 (SD: 2.4 out of a maximum score of 16. Higher score was associated with specific physician specialties. Conclusions. Greek healthcare professionals appear to overestimate

  4. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  5. Locomotion induced by ventral tegmental microinjections of a nicotinic agonist.

    Science.gov (United States)

    Museo, E; Wise, R A

    1990-03-01

    Bilateral microinjections of the nicotinic agonist cytisine (0.1, 1 or 10 nanomoles per side) into the ventral tegmental area increased locomotor activity. This increase in locomotion was antagonized by mecamylamine (2 mg/kg, IP), a nicotinic antagonist that readily crosses the blood-brain barrier, and by pimozide (0.3 mg/kg, IP), a central dopaminergic antagonist. Hexamethonium (2 mg/kg, IP), a nicotinic antagonist that, unlike mecamylamine, does not cross the blood-brain barrier, had no effect; this suggests that mecamylamine's attenuation of cytisine-induced locomotor activity resulted from a blockade of central and not peripheral nicotinic receptors. The data support the notion that nicotinic and dopaminergic substrates interact at the level of the VTA to produce increases in locomotor activity.

  6. Chronic injections of saline produce subsensitivity to nicotine.

    Science.gov (United States)

    Flemmer, D D; Dilsaver, S C

    1989-10-01

    The routine handling of rats and the injection of saline is a stressor. The authors report that chronic twice daily injections of normal saline (1 ml/kg IP) for 14 days produced subsensitivity to the hypothermic effects of nicotine (1 ml/kg IP). The weekly injection of nicotine (1 mg/kg IP) does not produce this effect. The investigators propose that their findings reflect the effect of chronic stress on a nicotinic mechanism. Lithium, desipramine, fluoxetine, and amitriptyline also alter the thermic response to systemically injected nicotine. A nicotinic mechanism(s) may be involved in the neurobiology of chronic stress, actions of antidepressants, and conceivably the pathophysiology of depression. PMID:2622980

  7. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  8. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Carlos M. Carballosa

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  9. An fMRI study of nicotine-deprived smokers' reactivity to smoking cues during novel/exciting activity.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Xu

    Full Text Available Engaging in novel/exciting ("self-expanding" activities activates the mesolimbic dopamine pathway, a brain reward pathway also associated with the rewarding effects of nicotine. This suggests that self-expanding activities can potentially substitute for the reward from nicotine. We tested this model among nicotine-deprived smokers who, during fMRI scanning, played a series of two-player cooperative games with a relationship partner. Games were randomized in a 2 (self-expanding vs. not x 2 (cigarette cue present vs. absent design. Self-expansion conditions yielded significantly greater activation in a reward region (caudate than did non-self-expansion conditions. Moreover, when exposed to smoking cues during the self-expanding versus the non-self-expanding cooperative games, smokers showed less activation in a cigarette cue-reactivity region, a priori defined [temporo-parietal junction (TPJ] from a recent meta-analysis of cue-reactivity. In smoking cue conditions, increases in excitement associated with the self-expanding condition (versus the non-self-expanding condition were also negatively correlated with TPJ activation. These results support the idea that a self-expanding activity promoting reward activation attenuates cigarette cue-reactivity among nicotine-deprived smokers. Future research could focus on the parameters of self-expanding activities that produce this effect, as well as test the utility of self-expansion in clinical interventions for smoking cessation.

  10. New trends in the treatment of nicotine addiction.

    Science.gov (United States)

    Sliwińska-Mossoń, Mariola; Zieleń, Iwona; Milnerowicz, Halina

    2014-01-01

    The aim of this study was to discuss the therapeutic substances used to treat nicotine addiction, not registered in Poland. This paper presents the results of the latest clinical trials and the possibility of their use in the treatment of nicotine addiction. The first two discussed drugs clonidine and nortriptyline are recommended by clinical practice guidelines AHRQ (Agency for Healthcare Research and Quality) as the substance of the second line in the fight against addiction. Nortriptyline belongs to tricyclic antidepressants. Its mechanism of action is the inhibition of the reuptake of norepinephrine. It is suggested as the antagonist of activity of nicotinic receptors. The results confirm its efficacy in the treatment of nicotine addiction, but many side effects limit its use. Clonidine acts presumably by inhibition of sympathetic hyperactivity characteristic of symptoms associated with nicotine rehab. The remaining compounds under discussion, such as: venlafaxine, fluoxetine, moclobemide and rimonabant, are not registered in any country with an indication to use in the treatment of nicotine addiction, however, due to the mechanism in which they act, the possibility of their use in the treatment of this disease is considered. The possibility of using anxiolytics such as: buspirone, diazepam, meprobamate and beta-blockers: metoprolol and oxprenolol is also considered in order to treat the anxiety appearing as one of the symptoms of abstinence. An interesting proposal to combat nicotine addiction are vaccines--NicVAX, CYT002-NicQb and TA-NIC. Currently, they are in clinical phase I and II of their development. Their operation would be based on the induction of specific antibodies that bind nicotine in the plasma, thus prevent it reaching the nicotinic receptors. Preliminary results confirm the possible positive effects in the prevention and treatment of nicotine addiction. PMID:25272878

  11. The therapeutic promise of positive allosteric modulation of nicotinic receptors.

    Science.gov (United States)

    Uteshev, Victor V

    2014-03-15

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.

  12. Cellular trafficking of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  13. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs......-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine binding proteins (AChBPs) that despite low overall sequence identity display high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce...

  14. Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles.

    Science.gov (United States)

    Turner, Timothy J

    2004-12-15

    A major factor underlying compulsive tobacco use is nicotine-induced modulation of dopamine release in the mesolimbic reward pathway (Wise and Rompre, 1989). An established biochemical mechanism for nicotine-enhanced dopamine release is by activating presynaptic nicotinic acetylcholine receptors (nAChRs) (Wonnacott, 1997). Prolonged application of 10(-7) to 10(-5) m nicotine to striatal synaptosomes promoted a sustained efflux of [3H]dopamine. This nicotine effect was mediated by non-alpha7 nAChRs, because it was blocked by 5 mum mecamylamine but was resistant to 100 nm alpha-bungarotoxin (alphaBgTx). Dopamine release was diminished by omitting Na+ or by applying peptide calcium channel blockers, indicating that nAChRs trigger release by depolarizing the nerve terminals. However, because alpha7 receptors rapidly desensitize in the continuous presence of agonists, a repetitive stimulation protocol was used to evaluate the possible significance of desensitization. This protocol produced a transient increase in [3H]dopamine released by depolarization and a significant increase in the response to hypertonic solutions that measure the size of the readily releasable pool (RRP) of synaptic vesicles. The nicotine-induced increase in the size of the readily releasable pool was blocked by alphaBgTx and by the calmodulin antagonist calmidazolium, suggesting that Ca2+ entry through alpha7 nAChRs specifically enhances synaptic vesicle mobilization at dopamine terminals. Thus, nicotine enhances dopamine release by two complementary actions mediated by discrete nAChR subtypes and suggest that the alpha7 nAChR-mediated pathway is tightly and specifically coupled to refilling of the RRP of vesicles in dopamine terminals.

  15. Vulnerability to nicotine self-administration in adolescent mice correlates with age-specific expression of α4* nicotinic receptors.

    Science.gov (United States)

    Renda, Anthony; Penty, Nora; Komal, Pragya; Nashmi, Raad

    2016-09-01

    The majority of smokers begin during adolescence, a developmental period with a high susceptibility to substance abuse. Adolescents are affected differently by nicotine compared to adults, with adolescents being more vulnerable to nicotine's rewarding properties. It is unknown if the age-dependent molecular composition of a younger brain contributes to a heightened susceptibility to nicotine addiction. Nicotine, the principle pharmacological component of tobacco, binds and activates nicotinic acetylcholine receptors (nAChRs) in the brain. The most prevalent is the widely expressed α4-containing (α4*) subtype which mediates reward and is strongly implicated in nicotine dependence. Exposing different age groups of mice, postnatal day (P) 44-86 days old, to a two bottle-choice oral nicotine self-administration paradigm for five days yielded age-specific consumption levels. Nicotine self-administration was elevated in the P44 group, peaked at P54-60 and was drastically lower in the P66 through P86 groups. We also quantified α4* nAChR expression via spectral confocal imaging of brain slices from α4YFP knock-in mice, in which the α4 nAChR subunit is tagged with a yellow fluorescent protein. Quantitative fluorescence revealed age-specific α4* nAChR expression in dopaminergic and GABAergic neurons of the ventral tegmental area. Receptor expression showed a strong positive correlation with daily nicotine dose, suggesting that α4* nAChR expression levels are age-specific and may contribute to the propensity to self-administer nicotine. PMID:27102349

  16. Nicotine deteriorates the osteogenic differentiation of periodontal ligament stem cells through α7 nicotinic acetylcholine receptor regulating Wnt pathway.

    Directory of Open Access Journals (Sweden)

    Zhifei Zhou

    Full Text Available AIMS: Cigarette smoking is one of the high risk factors of adult chronic periodontitis and nicotine is the well established toxic substance in cigarette. However, the mechanism of nicotine induced periodontitis is still unknown. Here we studied whether nicotine impaired the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs through activating α7 nicotinic acetylcholine receptor (α7 nAChR. METHODS: hPDLSCs with multi differentiation potential and surface makers for mesenchymal stem cells were harvested by limiting dilution technique. The level of mineralized nodule formation was assessed by alizarin red S staining. Expression level of ostegenic related genes and proteins were detected by real-time PCR and western blot analysis. The expression of α7 nAChR and its downstream signaling pathway were examined by western blot. The role of the receptor and related signaling pathway in nicotine impairing the osteogenic potential of hPDLSCs were also studied in different levels. RESULTS: Nicotine deteriorated the ostegenic differentiation of hPDLSCs in a dose dependent manner. Activation of α7 nAChR by nicotine treatment activated wnt/β-catenin signaling pathway, leading to osteogenic deficiency of hPDLSCs. Blockage of α7 nAChR and wnt pathway inhibitor treatment rescued nicotine induced osteogenic differentiation deficiency. CONCLUSIONS: These data suggested that nicotine activated α7 nAChR expressed on PDLSCs and further activated wnt signaling downstream, thus deteriorating the osteogenic potential of PDLSCs. The impairment of osteogenic differentiation of PDLSCs by nicotine might lead to cigarette smoking related periodontitis.

  17. New Product Marketing Blurs the Line Between Nicotine Replacement Therapy and Smokeless Tobacco Products.

    Science.gov (United States)

    Kostygina, Ganna; England, Lucinda; Ling, Pamela

    2016-07-01

    Tobacco companies have begun to acquire pharmaceutical subsidiaries and recently started to market nicotine replacement therapies, such as Zonnic nicotine gum, in convenience stores. Conversely, tobacco companies are producing tobacco products such as tobacco chewing gum and lozenges that resemble pharmaceutical nicotine replacement products, including a nicotine pouch product that resembles snus pouches. This convergence of nicotine and tobacco product marketing has implications for regulation and tobacco cessation.

  18. Bioavailability and absorption kinetics of nicotine following application of a transdermal system.

    OpenAIRE

    Gupta, S.K.; Benowitz, N L; Jacob, P.; Rolf, C N; Gorsline, J

    1993-01-01

    1. The absolute bioavailability and absorption kinetics of nicotine were investigated in 13 healthy adult male smokers following single and multiple applications of a nicotine transdermal system (NTS), designed to release nicotine at an approximate rate of 1.5 mg h-1 over 24 h. The absorption of nicotine from the single NTS application was calculated with reference to a simultaneous intravenous infusion (i.v.) of deuterium-labelled nicotine. 2. The mean input time (MIT) and mean absorption ti...

  19. New Product Marketing Blurs the Line Between Nicotine Replacement Therapy and Smokeless Tobacco Products.

    Science.gov (United States)

    Kostygina, Ganna; England, Lucinda; Ling, Pamela

    2016-07-01

    Tobacco companies have begun to acquire pharmaceutical subsidiaries and recently started to market nicotine replacement therapies, such as Zonnic nicotine gum, in convenience stores. Conversely, tobacco companies are producing tobacco products such as tobacco chewing gum and lozenges that resemble pharmaceutical nicotine replacement products, including a nicotine pouch product that resembles snus pouches. This convergence of nicotine and tobacco product marketing has implications for regulation and tobacco cessation. PMID:27077338

  20. Parazoanthoxanthin A blocks Torpedo nicotinic acetylcholine receptors.

    Science.gov (United States)

    Rozman, Klara Bulc; Araoz, Romulo; Sepcić, Kristina; Molgo, Jordi; Suput, Dusan

    2010-09-01

    Nicotinic acetylcholine receptors are implicated in different nervous system-related disorders, and their modulation could improve existing therapy of these diseases. Parazoanthoxanthin A (ParaA) is a fluorescent pigment of the group of zoanthoxanthins. Since it is a potent acetylcholinesterase inhibitor, it may also bind to nicotinic acetylcholine receptors (nAChRs). For this reason its effect on Torpedo nAChR (alpha1(2)betagammadelta) transplanted to Xenopus laevis oocytes was evaluated, using the voltage-clamp technique. ParaA dose-dependently reduced the acetylcholine-induced currents. This effect was fully reversible only at lower concentrations. ParaA also reduced the Hill coefficient and the time to peak current, indicating a channel blocking mode of action. On the other hand, the combined effect of ParaA and d-tubocurarine (d-TC) on acetylcholine-induced currents exhibited only partial additivity, assuming a competitive mode of action of ParaA on nAChR. These results indicate a dual mode of action of ParaA on the Torpedo AChR. PMID:20230806

  1. Nicotine effects and the endogenous opioid system.

    Science.gov (United States)

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro

    2014-01-01

    Nicotine (NIC) is an exogenous ligand of the nicotinic acetylcholine receptor (nAChR), and it influences various functions in the central nervous system. Systemic administration of NIC elicits the release of endogenous opioids (endorphins, enkephalins, and dynorphins) in the supraspinal cord. Additionally, systemic NIC administration induces the release of methionine-enkephalin in the spinal dorsal horn. NIC has acute neurophysiological actions, including antinociceptive effects, and the ability to activate the hypothalamic-pituitary-adrenal (HPA) axis. The endogenous opioid system participates in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception is mediated by α4β2 and α7 nAChRs, while NIC-induced HPA axis activation is mediated by α4β2, not α7, suggesting that the effects of NIC on the endogenous opioid system are mediated by α7, not α4β2. NIC has substantial physical dependence liability. The opioid-receptor antagonist naloxone (NLX) elicits NIC withdrawal after repeated NIC administration, and NLX-induced NIC withdrawal is inhibited by concomitant administration of an opioid-receptor antagonist. NLX-induced NIC withdrawal is also inhibited by concomitant administration of an α7 antagonist, but not an α4β2 antagonist. Taken together, these findings suggest that NIC-induced antinociception and the development of physical dependence are mediated by the endogenous opioid system, via the α7 nAChR.

  2. Nicotine nasal spray and vapor inhaler: abuse liability assessment.

    Science.gov (United States)

    Schuh, K J; Schuh, L M; Henningfield, J E; Stitzer, M L

    1997-04-01

    Acute subjective and physiological effects were examined to provide information relevant to abuse liability of new nicotine delivery systems. Subjects (n = 12) were overnight-deprived smokers who received 0, 4, 8 and 16 active puffs from nicotine-containing cigarettes (0.1 mg per puff), 0, 1, 2 or 4 nasal sprays (0.5 mg nicotine per spray) and 0, 30, 60 and 120 vapor inhalations (estimated 0.013 mg nicotine per inhalation) in a within-subject single blinded design. While smokers clearly liked cigarette puffs, there was much less evidence of liking produced by either nasal spray or vapor inhaler; only modest elevations on a measure of good drug effects were observed. The novel delivery products engendered unpleasant effects of burning throat and nose, watery eyes, runny nose, coughing and sneezing that might be expected to limit abuse liability. Nicotine plasma level and heart rate increase was dose-related for cigarettes and nasal spray but not for vapor inhaler, indicating limited nicotine delivery with the latter device. Overall, results are consistent with the conclusion that the nicotine nasal spray and vapor inhaler are of substantially lower abuse liability than cigarettes in experienced cigarette smokers receiving initial exposure to these products. PMID:9160851

  3. Multigenerational epigenetic effects of nicotine on lung function

    Directory of Open Access Journals (Sweden)

    Leslie Frances M

    2013-02-01

    Full Text Available Abstract A recent preclinical study has shown that not only maternal smoking but also grandmaternal smoking is associated with elevated pediatric asthma risk. Using a well-established rat model of in utero nicotine exposure, Rehan et al. have now demonstrated multigenerational effects of nicotine that could explain this 'grandmother effect'. F1 offspring of nicotine-treated pregnant rats exhibited asthma-like changes to lung function and associated epigenetic changes to DNA and histones in both lungs and gonads. These alterations were blocked by co-administration of the peroxisome proliferator-activated receptor-γ agonist, rosiglitazone, implicating downregulation of this receptor in the nicotine effects. F2 offspring of F1 mated animals exhibited similar changes in lung function to that of their parents, even though they had never been exposed to nicotine. Thus epigenetic mechanisms appear to underlie the multigenerational transmission of a nicotine-induced asthma-like phenotype. These findings emphasize the need for more effective smoking cessation strategies during pregnancy, and cast further doubt on the safety of using nicotine replacement therapy to reduce tobacco use in pregnant women. Please see related article: http://www.biomedcentral.com/1741-7015/10/129

  4. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia. PMID:17349863

  5. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  6. The effects of extrinsic context on nicotine discrimination.

    Science.gov (United States)

    Duka, T; Seiss, E; Tasker, R

    2002-02-01

    There is evidence from memory studies that context acquired in parallel with the encoded material will facilitate retrieval. However, relatively little is known of how context affects drug discrimination behaviour in humans. The present study employs conventional drug discrimination procedures to investigate the effects of music, as an external cue, on nicotine drug discrimination. Subjects were trained to discriminate a low dose of nicotine (1 mg) from placebo while listening to two different types of music [elated (EL) and depressant (DE): thought to induce happy and sad mood respectively]. Half of the subjects received EL music with nicotine and DE with placebo and the other half vice versa. At the end of training, subjects who reached the criterion (80% of trials identified correctly) entered the generalization phase and were required to discriminate different doses of nicotine (0, 0.25, 0.5 and 1 mg) by indicating how similar each sample was to the training dose. Generalization took place in the presence of either EL or DE music. Nicotine-appropriate responding during generalization was linearly related to dose, with subjects being able to distinguish 0.5mg of nicotine from placebo. Nicotine-appropriate responding at generalization was higher when the context (type of music) was the same as the one employed during discrimination training when nicotine was administered (i.e. a context-dependent generalization effect was present). In addition, it was shown that the context-dependent effect was due to the properties of the EL music. These data provide the first evidence that extrinsic context can facilitate nicotine discrimination in humans. In addition, the findings suggest that this facilitatory effect is not a general effect but is sensitive to specific attributes of the context. PMID:11990718

  7. Relationships between trait urgency, smoking reinforcement expectancies, and nicotine dependence.

    Science.gov (United States)

    Pang, Raina D; Hom, Marianne S; Geary, Bree A; Doran, Neal; Spillane, Nichea S; Guillot, Casey R; Leventhal, Adam M

    2014-01-01

    Urgency (i.e., the tendency to act rashly during negative/positive affect) may increase vulnerability to a variety of risky behaviors. This cross-sectional study of nontreatment-seeking smokers examined the relationship between urgency, level of nicotine dependence, and smoking reinforcement expectancies. Both positive and negative urgency were associated with nicotine dependence. Mediational analyses illustrated that smoking reinforcement expectancies significantly accounted for urgency-dependence relations, with negative reinforcement expectancies displaying incremental mediational effects. If replicated and extended, these findings may support the use of treatments that modify beliefs regarding smoking reinforcement outcomes as a means of buffering the risk of nicotine dependence carried by urgency.

  8. Degradation kinetics of benzyl nicotinate in aqueous solution

    Directory of Open Access Journals (Sweden)

    Mbah C

    2010-01-01

    Full Text Available The degradation of benzyl nicotinate in aqueous solution over a pH range of 2.0-10.0 at 50±0.2 o was studied. The degradation was determined by high performance liquid chromatography. The degradation was observed to follow apparent first-order rate kinetics and the rate constant for the decomposition at 25 o was estimated by extrapolation. The reaction was shown to be hydroxide ion catalyzed and the Arrhenius plots showed the temperature dependence of benzyl nicotinate degradation. A significant increase in the stability of benzyl nicotinate was observed when glycerol or polyethylene glycol 400 was incorporated into the aqueous solution.

  9. Effects of Smoking Abstinence on Cigarette Craving, Nicotine Withdrawal, and Nicotine Reinforcement in Smokers With and Without Schizophrenia

    Science.gov (United States)

    2014-01-01

    Introduction: Schizophrenia is associated with a high prevalence of cigarette smoking. The aims of this study were to compare smokers with schizophrenia (SS) and control smokers without psychiatric illness (CS) on (a) cigarette craving and nicotine withdrawal symptom severity during a 72-hr smoking abstinence period; (b) nicotine reinforcement, before and after abstinence; and (c) latency to smoking lapse following abstinence. We also explored mediators of smoking lapse in SS and CS. Methods: SS (n = 28) and CS (n = 27) underwent a nicotine versus denicotinized cigarette puff choice task before and after a 72-hr period of smoking abstinence that was experimentally controlled by providing cash reinforcement contingent on biochemical verification of abstinence. Twenty-four hours after the second choice task, participants could receive a low-value reinforcer if they had continued to abstain since the previous day. Those who remained abstinent were recontacted a week later to determine time of their smoking lapse. Results: SS reported more severe cigarette craving and nicotine withdrawal symptoms throughout the 72-hr abstinence period, had greater nicotine preference after abstinence, and lapsed back to smoking significantly sooner than CS. The relationship between group and smoking lapse latency was mediated by baseline depression and nicotine withdrawal symptom severity but not by effects of abstinence on craving or nicotine reinforcement. Conclusions: Overall, these results indicate that negative affect is a key contributor to poor smoking cessation outcomes among those with schizophrenia. PMID:24113929

  10. Nicotine blocks apomorphine-induced disruption of prepulse inhibition of the acoustic startle in rats: possible involvement of central nicotinic α7 receptors

    OpenAIRE

    Suemaru, Katsuya; Yasuda, Kayo; Umeda, Kenta; Araki, Hiroaki; Shibata, Kazuhiko; Choshi, Tominari; Hibino, Satoshi; Gomita, Yutaka

    2004-01-01

    Nicotine has been reported to normalize deficits in auditory sensory gating in the cases of schizophrenia, suggesting an involvement of nicotinic acetylcholine receptors in attentional abnormalities. However, the mechanism remains unclear. The present study investigated the effects of nicotine on the disruption of prepulse inhibition (PPI) of the acoustic startle response induced by apomorphine or phencyclidine in rats.Over the dose range tested, nicotine (0.05–1 mg kg−1, s.c.) did not disrup...

  11. Effects of nicotine-specific antibodies, Nic311 and Nic-IgG, on the transfer of nicotine across the human placenta.

    Science.gov (United States)

    Nekhayeva, Ilona A; Nanovskaya, Tatiana N; Pentel, Paul R; Keyler, Dan E; Hankins, Gary D V; Ahmed, Mahmoud S

    2005-11-25

    The adverse effects of smoking during pregnancy on fetal development are, in part, due to nicotine. These effects may be due to the actions of nicotine in fetal circulation or on placental functions. In pregnant rats, vaccination with a nicotine immunogen reduces the transfer of nicotine from the maternal to fetal circulation. However, extrapolation of these results to pregnant women might not be valid due to the well-recognized differences between human and rat placentas. In the current investigation, the effects of nicotine-specific antibodies on the transfer of nicotine from the maternal to fetal circuit of the dually perfused human placental lobule were determined. Two types of nicotine-specific antibodies were investigated; nicotine-specific mouse monoclonal antibody (Nic311, K(d) for nicotine 60nM) and IgG from rabbits vaccinated with a nicotine immunogen (Nic-IgG, K(d) 1.6nM). Transfer of the antibodies from maternal to fetal circuits was negligible. Both rabbit Nic-IgG and, to a lesser extent, mouse monoclonal Nic311 significantly reduced nicotine transfer from the maternal to fetal circuit as well as the retention of the drug by placental tissue. These effects were mediated by a substantial increase in the protein binding of nicotine and a reduction in the unbound nicotine concentration. Therefore, the data cited in this report suggest that the use of nicotine-specific antibodies might reduce fetal exposure to the drug, and that antibody affinity for nicotine is a key determinant of the extent of nicotine transfer.

  12. Nicotinic Acetylcholine Receptor (nAChR Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    Directory of Open Access Journals (Sweden)

    Zuo Jun Ren

    Full Text Available Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR, inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  13. Urine collection for nicotine and cotinine measurement in studies on nicotine addicts.

    Science.gov (United States)

    Lequang, N T; Roussel, G; Roche, D; Migueres, M L; Chretien, J; Ekindjian, O G

    1994-02-01

    One of the reasons for the paucity of tabagism exposure data on the consequences of smoking is the difficulty in obtaining urine samples and the fact that the optimal storage conditions remains undetermined. The authors therefore assessed the influence of storage on urinary nicotine and cotinine levels both at room temperature and after freezing. The variations observed were not statistically significant for up to 30 hours at room temperature or for up to 8 days at -25 degrees C. They then studied the excretion of cotinine and nicotine in overnight and 24-h urine specimens collected from 90 non-smokers exposed to tobacco smoke and 40 smokers. The correlation between overnight and 24-h excretion was excellent in the case of cotinine (r = 0.89) and poor for nicotine (r = 0.18), probably because of their respective half-lives. Lastly, the usefulness of referring the urinary cotinine to the urinary creatinine was questioned. The authors conclude that valuable studies should be based on overnight urines samples stored at room temperature for up to 30 hours and then frozen at -25 degrees C until quantification of cotinine expressed in microgram/fraction. PMID:8090564

  14. Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal

    OpenAIRE

    Grieder, Taryn E; George, Olivier; Tan, Huibing; George, Susan R.; Le Foll, Bernard; Laviolette, Steven R; van der Kooy, Derek

    2012-01-01

    Nicotine, the main psychoactive ingredient of tobacco smoke, induces negative motivational symptoms during withdrawal that contribute to relapse in dependent individuals. The neurobiological mechanisms underlying how the brain signals nicotine withdrawal remain poorly understood. Using electrophysiological, genetic, pharmacological, and behavioral methods, we demonstrate that tonic but not phasic activity is reduced during nicotine withdrawal in ventral tegmental area dopamine (DA) neurons, a...

  15. Probing into the Interaction of Nicotine and Bovine Submaxillary Mucin: NMR, Fluorescence, and FTIR Approaches

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Liao

    2016-01-01

    Full Text Available Nicotine, the important component of cigarette products, may have an impact on the oral environment after inhalation. The research of interaction between nicotine and bovine submaxillary mucin (BSM contributes to understand the binding mechanism of nicotine and BSM, and the effects of nicotine on the structure and function of the mucin. NMR data demonstrated that the interaction between nicotine and BSM did exist, and it was pyrrolidyl ring of nicotine playing the major role in the binding. The quenching mechanisms of nicotine and BSM in different pH were different: for acidic environment, the quenching was dynamic; while it became static in the alkaline circumstance. Synchronous fluorescence spectra indicated that nicotine had effect on the microenvironment of the Trp rather than Tyr residue. Meanwhile, the impact of nicotine on the conformation of BSM was also confirmed by 3D fluorescence and FTIR spectra.

  16. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use and compulsive smoking

    Directory of Open Access Journals (Sweden)

    Ami eCohen

    2013-06-01

    Full Text Available Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.

  17. Maintenance and suppression of behavior by intravenous nicotine injections in squirrel monkeys.

    Science.gov (United States)

    Goldberg, S R; Spealman, R D

    1982-02-01

    Nicotine appears to be a contributing factor in maintaining cigarette smoking, but experimental evidence for its reinforcing effects is scarce. Indeed, it has been suggested that in some situations nicotine may have noxious properties, which limit smoking behavior. These ideas were explored by comparing the effects of intravenous injections of nicotine on behavior of squirrel monkeys under two experimental procedures. Under a fixed-interval schedule of nicotine self-administration, responding was well maintained by injections of 30-300 microgram/kg of nicotine. Nicotine-maintained responding could be reduced by presession treatment with the nicotine antagonist, mecamylamine, or by substitution of saline for nicotine. In a second experiment, responding was maintained under a two-component fixed-ratio schedule of food presentation in which responses during one component (punishment component) also resulted in injections of 10-30 microgram/kg of nicotine. Nicotine markedly suppressed responding during the punishment component but not during the alternating nonpunishment components. The suppressant effects of nicotine could be reversed by presession treatment with either mecamylamine or the antianxiety drug chlordiazepoxide, or by substitution of saline for nicotine. Nicotine had pronounced effects both as a reinforcer and as a punisher; the nature of the effects depended on the schedule under which nicotine was administered. PMID:7060749

  18. PLANT GROWTH REGULATORS IN THE SERIES OF NICOTINIC ACID DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Kaigorodova E. A.

    2014-06-01

    Full Text Available The article shows the information of the use of 2-R-sulfanyl nicotinates of potassium on rice crops. We have found that the compounds described increase yield and improve its quality

  19. The impact of nicotine on bone healing and osseointegration

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Lindh, Christian H;

    2005-01-01

    OBJECTIVES: To examine the short-term effect of nicotine on bone healing and osseointegration. MATERIAL AND METHODS: Sixteen female rabbits were divided into two groups. The test group was exposed to nicotine tartrate for 8 weeks and the control group was exposed to placebo. Nicotine or placebo...... was administered via a miniosmotic pump and plasma cotinine levels were measured weekly. The pump delivered 15 mg of nicotine/day for the animals in the test group. All rabbits had three tibial bone preparations. In the proximal and distal bone bed, implants were placed after 4 weeks (right tibia) and after 6...... weeks (left tibia). Thus, 2- and 4-week healing groups were created. Removal torque test (RMT) was performed at the distal implants. Ground sections were made from the proximal and the central bone beds. The fraction of mineralized bone in contact to the implant (BIC) and the bone density within...

  20. Constant exposure to darkness produces supersensitivity to nicotine.

    Science.gov (United States)

    Flemmer, D D; Dilsaver, S C

    1990-03-01

    Treatment with full-spectrum bright artificial light produces subsensitivity to the hypothermic effect of nicotine in the rat. The authors hypothesized that prolonged exposure to darkness would produce the opposite effect. The thermic responsiveness of 11 rats to nicotine (base), 0.25 mg/kg IP, was telemetrically measured at baseline, after 7 days of exposure to constant darkness, and 2, 5, and 12 days after being returned to standard vivarium conditions. Exposure to constant darkness enhanced the hypothermic response to nicotine. The sample exhibited a hyperthermic response to nicotine 2 and 5 days after being returned to the standard vivarium conditions with a 12-hour-light/12-hour-dark cycle. The magnitude of the hyperthermia observed is characteristic of the response to the injection of saline. Twelve days after return to standard vivarium conditions the thermic response of the sample was at baseline. PMID:2339143

  1. Activities of nicotinic acetylcholine receptors modulate neurotransmission and synaptic architecture

    Institute of Scientific and Technical Information of China (English)

    Akira Oda; Hidekazu Tanaka

    2014-01-01

    The cholinergic system is involved in a broad spectrum of brain function, and its failure has been implicated in Alzheimer’s disease. Acetylcholine transduces signals through muscarinic and nicotinic acetylcholine receptors, both of which inlfuence synaptic plasticity and cognition. However, the mechanisms that relate the rapid gating of nicotinic acetylcholine receptors to per-sistent changes in brain function have remained elusive. Recent evidence indicates that nicotinic acetylcholine receptors activities affect synaptic morphology and density, which result in per-sistent rearrangements of neural connectivity. Further investigations of the relationships between nicotinic acetylcholine receptors and rearrangements of neural circuitry in the central nervous system may help understand the pathogenesis of Alzheimer’s disease.

  2. Differential sensitivity to nicotine among hypothalamic magnocellular neurons

    DEFF Research Database (Denmark)

    Mikkelsen, J D; Jacobsen, Julie; Kiss, Adrian Emil

    2012-01-01

    The magnocellular neurons in the hypothalamic paraventricular (PVN) and supraoptic nuclei (SON) either contain vasopressin or oxytocin. Even though both hormones are released after systemic administration of nicotine, the mechanism through which the two populations of neurons are activated...

  3. Nicotine addiction: studies about vulnerability, epigenesis and animal models

    Directory of Open Access Journals (Sweden)

    Bernabeu, Ramon

    2013-07-01

    Full Text Available This article is a summary about the current research of nicotine effects on the nervous system and its relationship to the generation of an addictive behavior. Like other drugs of abuse, nicotine activates the reward pathway, which in turn is involved in certain psychiatric diseases. There are individuals who have a high vulnerability to nicotine addiction. This may be due to genetic and epigenetic factors and/or the environment. In this review, we described some epigenetic factors that may be involved in those phenomena. The two animal models most widely used for studying the reinforcing effects of nicotine are: self-administration and conditioning place preference (CPP. Here, we emphasized the CPP, due to its potential application in humans. In addition, we described the locomotor activity model (as a measure of psychostimulant effects to study vulnerability to drugs of abuse

  4. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Directory of Open Access Journals (Sweden)

    Amber N Brown

    Full Text Available Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  5. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    Science.gov (United States)

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  6. Influence of nicotine and caffeine on rat embryonic development

    OpenAIRE

    Nash, J. E.; Persaud, T.V.N.

    1988-01-01

    The influence on embryonic development of nicotine and caffeine at dose levels approximating human consumption was investigated in Sprague- Dawley rats. One group of animals received nicotine administered subcutaneously by an Alzet mini-osmotic pump from gestational day 6 through 12 (25 mg over 7 days; rate 149 pg/hr). Control animals received physiological saline in a similar manner. A second group received a single intravenous injection of caffeine (25 mg/ ...

  7. The habenulo-interpeduncular pathway in nicotine aversion and withdrawal.

    Science.gov (United States)

    Antolin-Fontes, Beatriz; Ables, Jessica L; Görlich, Andreas; Ibañez-Tallon, Inés

    2015-09-01

    Progress has been made over the last decade in our understanding of the brain areas and circuits involved in nicotine reward and withdrawal, leading to models of addiction that assign different addictive behaviors to distinct, yet overlapping, neural circuits (Koob and Volkow, 2010; Lobo and Nestler, 2011; Tuesta et al., 2011; Volkow et al., 2011). Recently the habenulo-interpeduncular (Hb-IPN) midbrain pathway has re-emerged as a new critical crossroad that influences the brain response to nicotine. This brain area is particularly enriched in nicotinic acetylcholine receptor (nAChR) subunits α5, α3 and β4 encoded by the CHRNA5-A3-B4 gene cluster, which has been associated with vulnerability to tobacco dependence in human genetics studies. This finding, together with studies in mice involving deletion and replacement of nAChR subunits, and investigations of the circuitry, cell types and electrophysiological properties, have begun to identify the molecular mechanisms that take place in the MHb-IPN which underlie critical aspects of nicotine dependence. In the current review we describe the anatomical and functional connections of the MHb-IPN system, as well as the contribution of specific nAChRs subtypes in nicotine-mediated behaviors. Finally, we discuss the specific electrophysiological properties of MHb-IPN neuronal populations and how nicotine exposure alters their cellular physiology, highlighting the unique role of the MHb-IPN in the context of nicotine aversion and withdrawal. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25476971

  8. Cohort Profile: The Nicotine Dependence in Teens (NDIT) Study

    OpenAIRE

    O'Loughlin, Jennifer; Brunet, Jennifer; Difranza, Joseph; Gervais, Andre; Gray-Donald, Katherine; Karp, Igor; Sabiston, Catherine; Sylvestre, Marie-Pierre; Dugas, Erika N.; Engert, James C.; Low, Nancy C.; Tyndale, Rachel F.

    2014-01-01

    International audience; The Nicotine Dependence in Teens (NDIT) study is a prospective cohort investigation of 1294 students recruited in 1999–2000 from all grade 7 classes in a convenience sample of 10 high schools in Montreal, Canada. Its primary objectives were to study the natural course and determinants of cigarette smoking and nicotine dependence in novice smokers. The main source of data was self-report questionnaires administered in class at school every 3 months from grade 7 to grade...

  9. Relationships between trait urgency, smoking reinforcement expectancies, and nicotine dependence

    OpenAIRE

    Raina D Pang; Hom, Marianne S.; Geary, Bree A.; Doran, Neal; Spillane, Nichea S.; Guillot, Casey R.; Leventhal, Adam M.

    2014-01-01

    Urgency (i.e. the tendency to act rashly during negative/positive affect) may increase vulnerability to a variety of risky behaviors. This cross-sectional study of non-treatment-seeking smokers examined the relationship between urgency, level of nicotine dependence, and smoking reinforcement expectancies. Both positive and negative urgency were associated with nicotine dependence. Mediational analyses illustrated that smoking reinforcement expectancies significantly accounted for urgency-depe...

  10. E-cigarettes for the management of nicotine addiction

    OpenAIRE

    Bullen, Chris; Knight-West, Oliver

    2016-01-01

    Oliver Knight-West, Christopher Bullen The National Institute for Health Innovation, School of Population Health, The University of Auckland, Auckland, New Zealand Abstract: In this review, we discuss current evidence on electronic cigarettes (ECs), a rapidly evolving class of nicotine delivery system, and their role in managing nicotine addiction, specifically in helping smokers to quit smoking and/or reduce the amount of tobacco they smoke. The current evidence base is limited to t...

  11. First trimester nicotine exposure and the risk of infantile colic

    DEFF Research Database (Denmark)

    Milidou, Ioanna; Henriksen, Tine Brink; Jensen, Morten Søndergaard;

    Background: Although prenatal exposure to maternal smoking has been associated with infantile colic (IC), to date no published studies have reported on the relationship between the prenatal use of nicotine replacement therapy (NRT) and IC. Aim: We aimed to assess the relationship between fetal......: The results indicate that prenatal exposure to nicotine from any source during the first trimester of the pregnancy increases the risk of infantile colic....

  12. The effects of acute nicotine on contextual safety discrimination

    OpenAIRE

    Kutlu, Munir G.; Oliver, Chicora; Gould, Thomas J.

    2014-01-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Followi...

  13. The endocrine effects of nicotine and cigarette smoke

    OpenAIRE

    Tweed, Jesse Oliver; Hsia, Stanley H.; Lutfy, Kabirullah; Friedman, Theodore C.

    2012-01-01

    With a current prevalence of approximately 20%, smoking continues to impact negatively upon health. Tobacco or nicotine use influences the endocrine system, with important clinical implications. In this review we critically evaluate the literature concerning the impact of nicotine as well as tobacco use on several parameters of the endocrine system and on glucose and lipid homeostasis. Emphasis is on the effect of smoking on diabetes mellitus and obesity and the consequences of smoking cessat...

  14. Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and...

  15. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    Science.gov (United States)

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  16. Associations between nicotine dependence, anhedonia, urgency and smoking motives.

    Science.gov (United States)

    Roys, Melanie; Weed, Keri; Carrigan, Maureen; MacKillop, James

    2016-11-01

    Models of nicotine dependence have suggested that the association between urgency, a subconstruct of impulsivity, and smoking behaviors may be mediated by motivations. Motives that are driven by expectations that smoking will relieve negative affect or increase positive affect may be especially salient in persons who have depression symptoms such as anhedonia. Support for associations between symptoms of depression, urgency, and addiction has been found for alcohol dependence, but empirical analysis is lacking for an interactive effect of urgency and depression symptoms on nicotine dependence. The current study investigated relationships among the urgency facet of impulsivity, anhedonia, smoking motives, and nicotine dependence with secondary analyses of a sample of 1084 daily smokers using simultaneous moderation and multiple mediation analyses. The moderation analysis revealed that although urgency was significantly associated with smoking at average or higher levels of anhedonia, it was unrelated to smoking when few anhedonia symptoms were endorsed. Further, multiple mediation analyses revealed that the smoking motives of craving, cue exposure, positive reinforcement, and tolerance significantly mediated the relationship between urgency and nicotine dependence. Results suggest that models of alcohol addiction that include an interactive effect of urgency and certain symptoms of depression may be applied to nicotine dependence. Examination of the multiple mediational pathways between urgency and nicotine dependence suggests directions for intervention efforts.

  17. Is low-nicotine Marlboro snus really snus?

    Directory of Open Access Journals (Sweden)

    Furberg Helena

    2008-02-01

    Full Text Available Abstract Swedish snus is a medium/high nicotine delivery, low-nitrosamine moist smokeless tobacco product that has been estimated to be at least 90% less harmful than smoked tobacco. More men use snus than smoke cigarettes in Sweden, and a quarter of male former smokers quit by switching to snus. Leading multinational cigarette manufacturers have begun test-marketing snus-like products in the United States and other countries. The version of Philip Morris' Marlboro snus currently being marketed in the United States differs from Swedish snus in many ways; it has lower moisture content and pH, but most puzzling is its very low nicotine delivery. Philip Morris, the market-leader in United States cigarette sales, may have designed the product so that it does not satisfy nicotine cravings and fails to enable smokers to switch. In this paper we compare and contrast Swedish snus and Marlboro snus, and speculate as to why Philip Morris may have intentionally designed a product that delivers very low levels of nicotine. We recommend that Philip Morris cease using the term "snus" to refer to dry tobacco products with low nicotine delivery, so that the term be reserved for moist, low-toxin, medium/high nicotine delivery smokeless tobacco products that are qualitatively similar to the leading brands in Sweden.

  18. Transdermal Nicotine Application Attenuates Cardiac Dysfunction after Severe Thermal Injury

    Directory of Open Access Journals (Sweden)

    Leif Claassen

    2015-01-01

    Full Text Available Background. Severe burn trauma leads to an immediate and strong inflammatory response inciting cardiac dysfunction that is associated with high morbidity and mortality. The aim of this study was to determine whether transdermal application of nicotine could influence the burn-induced cardiac dysfunction via its known immunomodulatory effects. Material and Methods. A standardized rat burn model was used in 35 male Sprague Dawley rats. The experimental animals were divided into a control group, a burn trauma group, a burn trauma group with additional nicotine treatment, and a sham group with five experimental animals per group. The latter two groups received nicotine administration. Using microtip catheterization, functional parameters of the heart were assessed 12 or 24 hours after infliction of burn trauma. Results. Burn trauma led to significantly decreased blood pressure (BP values whereas nicotine administration normalized BP. As expected, burn trauma also induced a significant deterioration of myocardial contractility and relaxation parameters. After application of nicotine these adverse effects were attenuated. Conclusion. The present study showed that transdermal nicotine administration has normalizing effects on burn-induced myocardial dysfunction parameters. Further research is warranted to gain insight in molecular mechanisms and pathways and to evaluate potential treatment options in humans.

  19. Targeted deletion of the mouse α2 nicotinic acetylcholine receptor subunit gene (Chrna2) potentiates nicotine-modulated behaviors.

    Science.gov (United States)

    Lotfipour, Shahrdad; Byun, Janet S; Leach, Prescott; Fowler, Christie D; Murphy, Niall P; Kenny, Paul J; Gould, Thomas J; Boulter, Jim

    2013-05-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2(-/-) mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2(-/-) mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2(-/-) mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors.

  20. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  1. Differences in nicotine metabolism of two Nicotiana attenuata herbivores render them differentially susceptible to a common native predator.

    Directory of Open Access Journals (Sweden)

    Pavan Kumar

    Full Text Available BACKGROUND: Nicotiana attenuata is attacked by larvae of both specialist (Manduca sexta and generalist (Spodoptera exigua lepidopteran herbivores in its native habitat. Nicotine is one of N. attenuata's important defenses. M. sexta is highly nicotine tolerant; whether cytochrome P450 (CYP-mediated oxidative detoxification and/or rapid excretion is responsible for its exceptional tolerance remains unknown despite five decades of study. Recently, we demonstrated that M. sexta uses its nicotine-induced CYP6B46 to efflux midgut-nicotine into the hemolymph, facilitating nicotine exhalation that deters predatory wolf spiders (Camptocosa parallela. S. exigua's nicotine metabolism is uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS: We compared the ability of these two herbivores to metabolize, tolerate and co-opt ingested nicotine for defense against the wolf spider. In addition, we analyzed the spider's excretion to gain insights into its nicotine metabolism. Contrary to previous reports, we found that M. sexta larvae neither accumulate the common nicotine oxides (cotinine, cotinine N-oxide and nicotine N-oxide nor excrete them faster than nicotine. In M. sexta larvae, ingestion of nicotine as well as its oxides increases the accumulation of CYP6B46 transcripts. In contrast, S. exigua accumulates nicotine oxides and exhales less (66% nicotine than does M. sexta. Spiders prefer nicotine-fed S. exigua over M. sexta, a preference reversed by topical or headspace nicotine supplementation, but not ingested or topically-coated nicotine oxides, suggesting that externalized nicotine but not the nicotine detoxification products deter spider predation. The spiders also do not accumulate nicotine oxides. CONCLUSIONS: Nicotine oxidation reduces S. exigua's headspace-nicotine and renders it more susceptible to predation by spiders than M. sexta, which exhales unmetabolized nicotine. These results are consistent with the hypothesis that generalist herbivores incur

  2. Chronic forced swim stress produces subsensitivity to nicotine.

    Science.gov (United States)

    Peck, J A; Dilsaver, S C; McGee, M

    1991-03-01

    Twice daily injections of saline reduce the thermic response to nicotine in the rat. The authors hypothesized that this was due to the stress of twice-daily handling and injection. However, the injection of saline is not a classic stressor. The hypothesis that stress blunts thermic responsiveness to nicotine was, therefore, tested using a classic form of chronic inescapable stress. Rats (n = 12) were subjected to a 14-day, twice daily course of inescapable cold water swim stress using a repeated measures design. Thermic responsiveness of nicotine was measured at baseline and every 7 days thereafter for 49 days. The mean response to nicotine (1.0 mg/kg IP) differed significantly across time, F(7,88) = 10.6, p less than 0.0001. Mean thermic responsiveness (+/- SEM) decreased from -0.75 +/- 0.09 at baseline to -0.41 +/- 0.18 degrees C (54.7% of baseline) following 14 days of forced swim stress. This change was not significant. However, the thermic response to nicotine was -0.14 +/- 0.13 degrees C (p less than 0.05), +0.55 +/- 0.12 degrees C (p less than 0.05), and +0.04 +/- 0.11 degrees C (p less than 0.05) 7, 14, and 21 days following the discontinuation of forced swim stress. The mean response did not differ from baseline 28 days following the last session of forced swim stress. The data suggest that in the recovery phase the animals ceased to be sensitive to nicotine. These findings support the hypothesis that a chronic stressor can produce subsensitivity to nicotine. PMID:2068187

  3. Nicotine Dependence and Alcohol Problems from Adolescence to Young Adulthood

    Science.gov (United States)

    Dierker, Lisa; Selya, Arielle; Rose, Jennifer; Hedeker, Donald; Mermelstein, Robin

    2016-01-01

    Background Despite the highly replicated relationship between symptoms associated with both alcohol and nicotine, little is known about this association across time and exposure to both drinking and smoking. In the present study, we evaluate if problems associated with alcohol use are related to emerging nicotine dependence symptoms and whether this relationship varies from adolescence to young adulthood, after accounting for both alcohol and nicotine exposure. Methods The sample was drawn from the Social and Emotional Contexts of Adolescent Smoking Patterns Study which measured smoking, nicotine dependence, alcohol use and alcohol related problems over 6 assessment waves spanning 6 years. Analyses were based on repeated assessment of 864 participants reporting some smoking and drinking 30 days prior to individual assessment waves. Mixed-effects regression models were estimated to examine potential time, smoking and/or alcohol varying effects in the association between alcohol problems and nicotine dependence. Findings Inter-individual differences in mean levels of alcohol problems and within subject changes in alcohol problems from adolescence to young adulthood were each significantly associated with nicotine dependence symptoms over and above levels of smoking and drinking behaviour. This association was consistent across both time and increasing levels of smoking and drinking. Conclusions Alcohol related problems are a consistent risk factor for nicotine dependence over and above measures of drinking and smoking and this association can be demonstrated from the earliest experiences with smoking in adolescents, through the establishment of more regular smoking patterns across the transition to young adulthood. These findings add to accumulating evidence suggesting that smoking and drinking may be related through a mechanism that cannot be wholly accounted for by exposure to either substance.

  4. [Stress-protective properties of lithium nicotinate--a new derivative of nicotinic acid].

    Science.gov (United States)

    Kresiun, V I

    1984-03-01

    Experiments were made to study stress-protective properties of a new psychotropic agent lithium nicotinate developed on the basis of natural metabolites. Prophylactic treatment of the drug given in courses entails an increase in the physical endurance and work fitness, improvement of animals' orientation under stress, facilitating the avoidance behavior. These effects were particularly demonstrable in highly emotional animals. In these animals, stress produced a paralyzing action. According to the electro- and ballisto-cardiography, the drug prevented the stress-induced disorders of cardiovascular function. PMID:6538449

  5. Mechanism of nicotine-induced relaxation in the porcine basilar artery

    DEFF Research Database (Denmark)

    Zhang, W; Edvinsson, L; Lee, T J

    1998-01-01

    The present experiment was designed to examine possible influence of adrenergic nerves on nicotine-induced neurogenic vasodilation in porcine basilar arteries denuded of endothelium. Nicotine and transmural nerve stimulation (TNS) induced relaxation of basilar arteries. Tetrodotoxin (TTX) abolished...... the relaxation elicited by TNS, but only partially blocked that induced by nicotine. Relaxation induced by both nicotine and TNS was abolished by N-nitro-L-arginine. The N-nitro-L-arginine inhibition of both TNS- and nicotine-induced relaxation was reversed by L-arginine but not by D-arginine. Hexamethonium...... abolished the relaxation induced by nicotine, but did not affect that elicited by TNS. Relaxation induced by nicotine was diminished by guanethidine, which did not affect the relaxation induced by TNS, suggesting that guanethidine blockade of nicotine-induced relaxation is not due to its local anesthetic...

  6. Kefir protective effects against nicotine cessation-induced anxiety and cognition impairments in rats

    Directory of Open Access Journals (Sweden)

    Negin Noori

    2014-01-01

    Conclusion: This study revealed that Kefir had a potential effect on the treatment of nicotine cessation-induced depression, anxiety and cognition impairment in the animal model. Kefir may be useful for adjunct therapy for nicotine abandonment treatment protocols.

  7. The Yin and Yang of nicotine: harmful during development, beneficial in adult patient populations

    OpenAIRE

    SabineSpijker

    2012-01-01

    Nicotine has remarkably diverse effects on the brain. Being the main active compound in tobacco, nicotine can aversively affect brain development. However, it has the ability to act positively by restoring attentional capabilities in smokers. Here, we focus on nicotine exposure during the prenatal and adolescent developmental periods and specifically, we will review the long-lasting effects of nicotine on attention, both in humans and animal models. We discuss the reciprocal relation of the b...

  8. Modulation of Hippocampus-Dependent Learning and Synaptic Plasticity by Nicotine

    OpenAIRE

    Justin W Kenney; Gould, Thomas J.

    2008-01-01

    A long-standing relationship between nicotinic acetylcholine receptors (nAChRs) and cognition exists. Drugs that act at nAChRs can have cognitive-enhancing effects and diseases that disrupt cognition such as Alzheimer’s disease and schizophrenia are associated with altered nAChR function. Specifically, hippocampus-dependent learning is particularly sensitive to the effects of nicotine. However, the effects of nicotine on hippocampus-dependent learning vary not only with the doses of nicotine ...

  9. Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory.

    Science.gov (United States)

    Leach, Prescott T; Kenney, Justin W; Connor, David A; Gould, Thomas J

    2015-06-01

    Cigarette smoking is common despite adverse health effects. Nicotine's effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ. PMID:25666034

  10. Rapid deterioration of externally induced neuroplasticity in non-smoking subjects by nicotine

    OpenAIRE

    Jessica eGrundey; Nivethida eThirugnanasambandam; Kim eKaminsky; Anne eDrees; Angela eSkwirba; Nicolas eLang; Walter ePaulus; Nitsche, Michael A

    2012-01-01

    In various studies nicotine has been shown to alter cognitive functions in non-smoking subjects, which might be due to nicotine-generated modulation of cortical functions, excitability and activity, as mainly described in animal experiments. In non-smoking humans application of nicotine for hours via nicotine patch abolishes inhibitory plasticity both after cathodal transcranial direct current stimulation (tDCS) or paired associative stimulation (PAS-10). Excitatory anodal tDCS after-effects ...

  11. Rapid Effect of Nicotine Intake on Neuroplasticity in Non-Smoking Humans

    OpenAIRE

    Grundey, Jessica; Thirugnanasambandam, Nivethida; Kaminsky, Kim; Drees, Anne; Skwirba, Angela C; Lang, Nicolas; Paulus, Walter; Nitsche, Michael A

    2012-01-01

    In various studies nicotine has shown to alter cognitive functions in non-smoking subjects. The physiological basis for these effects might be nicotine-generated modulation of cortical structure, excitability, and activity, as mainly described in animal experiments. In accordance, a recently conducted study demonstrated that application of nicotine for hours via nicotine patch in non-smoking humans alters the effects of neuroplasticity-inducing non-invasive brain stimulation techniques on cor...

  12. Nicotine alleviates colitis-induced damage in rats via its anti-oxidative activity

    OpenAIRE

    ÖZDEMİR, Zarife Nigar; TAZEGÜL, Gökhan; Kuru, Pınar; BİLGİN, Şeyda; MENTEŞE, Semih Tiber; ERZIK, Can; Sirvanci, Serap; YEGEN, Berrak C

    2014-01-01

    Objective: Previous studies have demonstrated a higher incidence of ulcerative colitis in non-smokers. We investigated the beneficial effects of nicotine treatment on colitis-induced anxiety and oxidative colonic damage on rats.Materials and Methods: Wistar Albino (250-300 g) rats (n=40) were randomly divided into 5 groups as saline-treated colitis group, nicotine pre-treated colitis group, nicotine post-treated colitis group, continuously nicotine-treated colitis group and control group. Gro...

  13. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    OpenAIRE

    Matsuda, K; Buckingham, S D; Freeman, J.C.; Squire, M D; Baylis, H. A.; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine...

  14. Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors

    OpenAIRE

    Tomizawa, Motohiro; Casida, John E.

    1999-01-01

    The major nitroimine insecticide imidacloprid (IMI) and the nicotinic analgesics epibatidine and ABT-594 contain the 6-chloro-3-pyridinyl moiety important for high activity and/or selectivity. ABT-594 has considerable nicotinic acetylcholine receptor (AChR) subtype specificity which might carry over to the chloropyridinyl insecticides. This study considers nine IMI analogues for selectivity in binding to immuno-isolated α1, α3 and α7 containing nicotinic AChRs and to purported α4β2 nicotinic ...

  15. Compensatory nicotine self-administration in rats during reduced access to nicotine: an animal model of smoking reduction.

    Science.gov (United States)

    Harris, Andrew C; Burroughs, Danielle; Pentel, Paul R; LeSage, Mark G

    2008-02-01

    The ability of smoking reduction (e.g., decreasing cigarettes per day) to produce significant reductions in toxin exposure is limited by compensatory increases in smoking behavior. Characterizing factors contributing to the marked individual variability in compensation may be useful for understanding this phenomenon. The goal of the current study was to develop an animal model of smoking reduction and to begin to examine potential behavioral and pharmacokinetic contributors to compensation. Rats trained for nicotine self-administration (NSA) in unlimited access sessions were exposed to a progressive decrease in duration of access to nicotine from 23-hr/day to 10-, 6-, and 2-hr/day. Following a return to 23 hr/day access and extinction, single-dose nicotine pharmacokinetic parameters were determined. Rats exhibited a reduction in total daily nicotine intake during reduced access to NSA, but decreases in nicotine intake were not proportional to decreases in access duration. Compensatory increases in hourly infusion rate were also observed when access was decreased. The magnitude of compensation differed considerably among animals. Early session infusion rate during baseline was significantly correlated, while nicotine clearance was moderately correlated, with 1 measure of compensation. Infusion rates were transiently increased compared to prereduction levels when unlimited access was restored, and this effect was greatest in animals that had exhibited the greatest levels of compensation. These findings indicate that rats exhibit compensatory increases in NSA during reduced access to nicotine, with substantial individual variability. This model may be useful for characterizing underlying factors and potential consequences of compensatory smoking. PMID:18266555

  16. Methods for smoking cessation and treatment of nicotine dependence.

    Science.gov (United States)

    Balbani, Aracy Pereira Silveira; Montovani, Jair Cortez

    2005-01-01

    Smoking is related to 30% of cancer deaths. It is a risk factor for respiratory tract, esophagus, stomach, pancreas, uterine cervix, kidney and bladder carcinomas. Nicotine induces tolerance and addiction by acting on the central dopaminergic pathways, thus leading to pleasure and reward sensations within the limbic system. It stimulates the central nervous system (CNS), enhances alertness and reduces the appetite. A 50% reduction of nicotine consumption may trigger withdrawal symptoms in addicted individuals: anxiety, anger, sleep disorders, hunger, cognitive dysfunction and cigarette craving. Medical advice is the cornerstone of smoking cessation. Pharmacotherapy of nicotine addiction comprises first-line (bupropion and nicotine replacement therapy) and second-line (clonidine and nortriptyline) drugs. Bupropion is a non-tricyclic antidepressant that inhibits dopamine uptake, whose contraindications are: epilepsy, eating disorders, uncontrolled hypertension, recent alcohol abstinence and current therapy with MAO inhibitors. Nicotine replacement therapy can be done with patches or gums. Counseling groups and behavioral interventions are efficacious. The effects of acupuncture on smoking cessation are not fully elucidated. Prompt smoking cessation or gradual reduction strategies have similar success rates. PMID:16878254

  17. Impaired Lung Mitochondrial Respiration Following Perinatal Nicotine Exposure in Rats.

    Science.gov (United States)

    Cannon, Daniel T; Liu, Jie; Sakurai, Reiko; Rossiter, Harry B; Rehan, Virender K

    2016-04-01

    Perinatal smoke/nicotine exposure predisposes to chronic lung disease and morbidity. Mitochondrial abnormalities may contribute as the PPARγ pathway is involved in structural and functional airway deficits after perinatal nicotine exposure. We hypothesized perinatal nicotine exposure results in lung mitochondrial dysfunction that can be rescued by rosiglitazone (RGZ; PPARγ receptor agonist). Sprague-Dawley dams received placebo (CON), nicotine (NIC, 1 mg kg(-1)), or NIC + RGZ (3 mg kg(-1)) daily from embryonic day 6 to postnatal day 21. Parenchymal lung (~10 mg) was taken from adult male offspring for mitochondrial assessment in situ. ADP-stimulated O2 consumption was less in NIC and NIC + RGZ compared to CON (F[2,14] = 17.8; 4.5 ± 0.8 and 4.1 ± 1.4 vs. 8.8 ± 2.5 pmol s mg(-1); p NIC and remediated in NIC + RGZ (F[2,14] = 3.8; p < 0.05). Reduced mitochondrial oxidative capacity and abnormal coupling were evident after perinatal nicotine exposure. RGZ improved mitochondrial function through tighter coupling of oxidative phosphorylation.

  18. Clarifying the relationship between impulsive delay discounting and nicotine dependence.

    Science.gov (United States)

    Amlung, Michael; MacKillop, James

    2014-09-01

    Impulsive delayed reward discounting (DRD) has been linked to nicotine dependence, but with some inconsistency. This may be related to the considerable variability in the literature with regard to the DRD assessments used, particularly in the case of the reward magnitudes assessed. In addition, previous studies have often not considered concurrent substance use when examining the relationship between DRD and nicotine dependence. The current study sought to further clarify the relationship between DRD and nicotine dependence by characterizing DRD across diverse reward magnitudes and incorporating other substance use. Daily smokers (N = 933) were assessed for DRD preferences across nine reward magnitudes (delayed reward range: $2.50-$850), comorbid substance use, and relevant demographic variables (age, education, income). A significant large effect size magnitude effect was found for DRD, reflecting steeper discounting for smaller delayed rewards, but significant correlations across magnitudes also suggested similar relative levels of discounting. Principal components analysis (PCA) was used to generate a single latent index of discounting across all magnitudes that accounted for 69% of the total variance. In correlation and regression analyses, steeper composite DRD was significantly associated with nicotine dependence severity. This relationship remained statistically significant after incorporating demographic variables and alcohol and illicit drug use. These findings provide evidence of a specific link between impulsive DRD and nicotine dependence and reveal that this association is robust across a broad range of monetary rewards. The study also demonstrates the utility of using PCA to generate latent indices of delay discounting across multiple magnitudes of delayed reward. PMID:24841186

  19. Impaired Lung Mitochondrial Respiration Following Perinatal Nicotine Exposure in Rats.

    Science.gov (United States)

    Cannon, Daniel T; Liu, Jie; Sakurai, Reiko; Rossiter, Harry B; Rehan, Virender K

    2016-04-01

    Perinatal smoke/nicotine exposure predisposes to chronic lung disease and morbidity. Mitochondrial abnormalities may contribute as the PPARγ pathway is involved in structural and functional airway deficits after perinatal nicotine exposure. We hypothesized perinatal nicotine exposure results in lung mitochondrial dysfunction that can be rescued by rosiglitazone (RGZ; PPARγ receptor agonist). Sprague-Dawley dams received placebo (CON), nicotine (NIC, 1 mg kg(-1)), or NIC + RGZ (3 mg kg(-1)) daily from embryonic day 6 to postnatal day 21. Parenchymal lung (~10 mg) was taken from adult male offspring for mitochondrial assessment in situ. ADP-stimulated O2 consumption was less in NIC and NIC + RGZ compared to CON (F[2,14] = 17.8; 4.5 ± 0.8 and 4.1 ± 1.4 vs. 8.8 ± 2.5 pmol s mg(-1); p nicotine exposure. RGZ improved mitochondrial function through tighter coupling of oxidative phosphorylation. PMID:26899624

  20. Expression of nicotinic acetylcholine receptor subunits from parasitic nematodes in Caenorhabditis elegans.

    Science.gov (United States)

    Sloan, Megan A; Reaves, Barbara J; Maclean, Mary J; Storey, Bob E; Wolstenholme, Adrian J

    2015-11-01

    The levamisole-sensitive nicotinic acetylcholine receptor present at nematode neuromuscular junctions is composed of multiple different subunits, with the exact composition varying between species. We tested the ability of two well-conserved nicotinic receptor subunits, UNC-38 and UNC-29, from Haemonchus contortus and Ascaris suum to rescue the levamisole-resistance and locomotion defects of Caenorhabditis elegans strains with null deletion mutations in the unc-38 and unc-29 genes. The parasite cDNAs were cloned downstream of the relevant C. elegans promoters and introduced into the mutant strains via biolistic transformation. The UNC-38 subunit of H. contortus was able to completely rescue both the locomotion defects and levamisole resistance of the null deletion mutant VC2937 (ok2896), but no C. elegans expressing the A. suum UNC-38 could be detected. The H. contortus UNC-29.1 subunit partially rescued the levamisole resistance of a C. elegans null mutation in unc-29 VC1944 (ok2450), but did cause increased motility in a thrashing assay. In contrast, only a single line of worms containing the A. suum UNC-29 subunit showed a partial rescue of levamisole resistance, with no effect on thrashing.

  1. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa, E-mail: ebuszman@sum.edu.pl

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  2. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  3. Role of nicotine dependence on the relationship between variants in the nicotinic receptor genes and risk of lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Tung-Sung Tseng

    Full Text Available Several variations in the nicotinic receptor genes have been identified to be associated with both lung cancer risk and smoking in the genome-wide association (GWA studies. However, the relationships among these three factors (genetic variants, nicotine dependence, and lung cancer remain unclear. In an attempt to elucidate these relationships, we applied mediation analysis to quantify the impact of nicotine dependence on the association between the nicotinic receptor genetic variants and lung adenocarcinoma risk. We evaluated 23 single nucleotide polymorphisms (SNPs in the five nicotinic receptor related genes (CHRNB3, CHRNA6, and CHRNA5/A3/B4 previously reported to be associated with lung cancer risk and smoking behavior and 14 SNPs in the four 'control' genes (TERT, CLPTM1L, CYP1A1, and TP53, which were not reported in the smoking GWA studies. A total of 661 lung adenocarcinoma cases and 1,347 controls with a smoking history, obtained from the Environment and Genetics in Lung Cancer Etiology case-control study, were included in the study. Results show that nicotine dependence is a mediator of the association between lung adenocarcinoma and gene variations in the regions of CHRNA5/A3/B4 and accounts for approximately 15% of this relationship. The top two CHRNA3 SNPs associated with the risk for lung adenocarcinoma were rs1051730 and rs12914385 (p-value = 1.9×10(-10 and 1.1×10(-10, respectively. Also, these two SNPs had significant indirect effects on lung adenocarcinoma risk through nicotine dependence (p = 0.003 and 0.007. Gene variations rs2736100 and rs2853676 in TERT and rs401681 and rs31489 in CLPTM1L had significant direct associations on lung adenocarcinoma without indirect effects through nicotine dependence. Our findings suggest that nicotine dependence plays an important role between genetic variants in the CHRNA5/A3/B4 region, especially CHRNA3, and lung adenocarcinoma. This may provide valuable information for

  4. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n......AChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n...

  5. Differential Effects of Nicotine on Discrete Components of Visual Attention

    DEFF Research Database (Denmark)

    Vangkilde, Signe Allerup; Bundesen, Claus; Coull, Jennifer T.

    2009-01-01

    of the present pilot study was to identify at which point in the attentional process nicotine exerts its effects. Participants and Methods: In a double-blind, counterbalanced, crossover design, nine healthy nonsmokers (mean age 26 years) completed two sessions (45 minutes each) after chewing 2 mg nicotine gum...... or a placebo gum. The experimental paradigm was a letter recognition task with varied stimulus durations terminated by pattern masks. The temporal threshold of conscious perception (t0), visual processing speed (C), storage capacity of visual short-term memory (K), and attentional selectivity (alpha) were...... measured by use of Bundesen's (1990) Theory of Visual Attention. Results: As compared with placebo, nicotine caused a significant 40% decrease in the t0-parameter (t[8] = 6.06, p

  6. Individual differences in responses to nicotine: tracking changes from adolescence to adulthood

    Institute of Scientific and Technical Information of China (English)

    Ming LI; Alexa MEAD; Rick A BEVINS

    2009-01-01

    Aim: The present study determined the extent to which individual differences in responses to the psychostimulating effect of nicotine during adolescence predict similar individual differences during adulthood in rats. We also examined the possible long-term effects of adolescent nicotine exposure on adult prepulse inhibition (PPI) of the acoustic startle response, a measure of sensorimotor gating ability.Methods: During the adolescent phase, rats were administered saline, 0.10, 0.40, or 0.60 mg/kg nicotine via subcutaneous injections for 8 days, and motor activity was measured daily. During the adult phase, these rats were treated with the same nicotine dose as in adolescence for 8 additional days. The adolescent saline rats (now adults) were subdivided into four groups and administered saline, 0.10, 0.40, or 0.60 mg/kg nicotine, respectively. PPI was assessed 12 days after the last nicotine treatment.Results: During both phases, nicotine increased motor activity across test days in a dose-dependent manner. Motor activity of rats treated with nicotine during adolescence was positively correlated with the activity recorded from the same rats during adulthood. In both phases, there were profound individual differences in the responses to the nicotine treatments. In addition, adolescent rats treated with nicotine did not show decreased motor response to the initial exposure to nicotine. Finally, adolescent exposure to nicotine at 0.4 mg/kg, but not adulthood exposure to the same dose of nicotine, produced a robust disruption of PPI, with individual rats showing different degrees of PPI disruption.Conclusion: These findings suggest that adolescent rats have increased sensitivity to the psychostimulating effect and decreased sensitivity to the aversive effect of nicotine. Also, nicotine exposure during adolescence may have long-term detrimental effects on sensorimotor gating ability.

  7. Behavioral and molecular analysis of nicotine-conditioned place preference in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ximena Kedikian

    Full Text Available Studies using mice and rats have demonstrated that nicotine induces a conditioned place preference (CPP, with more effective results obtained by using biased procedures. Zebrafish have also been used as a model system to identify factors influencing nicotine-associated reward by using an unbiased design. Here, we report that zebrafish exhibited putative nicotine biased CPP to an initially aversive compartment (nicotine-paired group. A counterbalanced nicotine-exposed control group did not show a significant preference shift, providing evidence that the preference shift in the nicotine-paired group was not due to a reduction of aversion for this compartment. Zebrafish preference was corroborated by behavioral analysis of several indicators of drug preference, such as time spent in the drug-paired side, number of entries to the drug-paired side, and distance traveled. These results provided strong evidence that zebrafish may actually develop a preference for nicotine, although the drug was administrated in an aversive place for the fish, which was further supported by molecular studies. Reverse transcription-quantitative real-time PCR analysis depicted a significant increase in the expression of α7 and α6 but not α4 and β2 subunits of the nicotinic receptor in nicotine-paired zebrafish brains. In contrast, zebrafish brains from the counterbalanced nicotine group showed no significant changes. Moreover, CREB phosphorylation, an indicator of neural activity, accompanied the acquisition of nicotine-CPP. Our studies offered an incremental value to the drug addiction field, because they further describe behavioral features of CPP to nicotine in zebrafish. The results suggested that zebrafish exposed to nicotine in an unfriendly environment can develop a preference for that initially aversive place, which is likely due to the rewarding effect of nicotine. Therefore, this model can be used to screen exogenous and endogenous molecules involved in

  8. The role of nicotine in smoking: a dual-reinforcement model.

    Science.gov (United States)

    Caggiula, Anthony R; Donny, Eric C; Palmatier, Matthew I; Liu, Xiu; Chaudhri, Nadia; Sved, Alan F

    2009-01-01

    Models of intravenous nicotine self-administration in laboratory animals are being used to investigate the behavioral and neurobiological consequences of nicotine reinforcement, and to aid in the development of novel pharmacotherapies for smoking cessation. Central to these models is the principle of primary reinforcement, which posits that response-contingent presentation of a primary reinforcer, nicotine, engenders robust operant behavior, whereas response-independent drug delivery does not. This dictum of nicotine as a primary reinforcer has been widely used to explain why people smoke tobacco-smoking results in the rapid delivery of nicotine to the brain, setting up a cascade of neurobiological processes that strengthen subsequent smoking behavior. However, there is mounting evidence that the primary reinforcement model of nicotine self-administration fails to fully explain existing data from both the animal self-administration and human smoking literatures. We have recently proposed a "dual reinforcement" model to more fully capture the relationship between nicotine and self-administration, including smoking. Briefly, the "dual reinforcement" model posits that nicotine acts as both a primary reinforcer and a reinforcement enhancer. The latter action of nicotine had originally been uncovered by showing that a reinforcing VS, which accompanies nicotine delivery, synergizes with nicotine in the acquisition and maintenance of self-administration, and that this synergism can be reproduced by combining operant responding for the reinforcing stimulus with non-contingent (response-independent) nicotine. Thus, self-administration (and smoking) is sustained by three actions: (1) nicotine, acting as a primary reinforcer, can sustain behavior that leads to its delivery; (2) nicotine, acting as a primary reinforcer, can establish neutral environmental stimuli as conditioned reinforcers through Pavlovian associations; and (3) nicotine, acting as a reinforcement enhancer

  9. The Volitional Nature of Nicotine Exposure Alters Anandamide and Oleoylethanolamide Levels in the Ventral Tegmental Area

    Science.gov (United States)

    Buczynski, Matthew W; Polis, Ilham Y; Parsons, Loren H

    2013-01-01

    Cannabinoid-1 receptors (CB1) have an important role in nicotine reward and their function is disrupted by chronic nicotine exposure, suggesting nicotine-induced alterations in endocannabinoid (eCB) signaling. However, the effects of nicotine on brain eCB levels have not been rigorously evaluated. Volitional intake of nicotine produces physiological and behavioral effects distinct from forced drug administration, although the mechanisms underlying these effects are not known. This study compared the effects of volitional nicotine self-administration (SA) and forced nicotine exposure (yoked administration (YA)) on levels of eCBs and related neuroactive lipids in the ventral tegmental area (VTA) and other brain regions. Brain lipid levels were indexed both by in vivo microdialysis in the VTA and lipid extractions from brain tissues. Nicotine SA, but not YA, reduced baseline VTA dialysate oleoylethanolamide (OEA) levels relative to nicotine-naïve controls, and increased anandamide (AEA) release during nicotine intake. In contrast, all nicotine exposure paradigms increased VTA dialysate 2-arachidonoyl glycerol (2-AG) levels. Thus, nicotine differentially modulates brain lipid (2-AG, AEA, and OEA) signaling, and these modulations are influenced by the volitional nature of the drug exposure. Corresponding bulk tissue analysis failed to identify these lipid changes. Nicotine exposure had no effect on fatty acid amide hydrolase activity in the VTA, suggesting that changes in AEA and OEA signaling result from alterations in their nicotine-induced biosynthesis. Both CB1 (by AEA and 2-AG) and non-CB1 (by OEA) targets can alter the excitability and activity of the dopaminergic neurons in the VTA. Collectively, these findings implicate disrupted lipid signaling in the motivational effects of nicotine. PMID:23169348

  10. The nicotine paradox: effect of smoking on autonomic discrimination.

    Science.gov (United States)

    Lombardo, T W; Epstein, L H

    1986-01-01

    Smoking reduces negative affect while it increases sympathetic nervous system activity. However, theories of emotion predict that increased autonomic arousal should increase rather than reduce negative affect. One explanation for this paradox is that nicotine interferes with perception of autonomic activity. We evaluated the effect of smoking on autonomic activity perception by measuring performance on a heartbeat detection task after a high or low dose of nicotine or not smoking. A group of nonsmokers also completed the task. Results failed to support the hypothesis. In light of previous research, the results suggest EMG perception may be more important to the negative affect reduction phenomenon than perception of autonomic activity. PMID:3739820

  11. Curcumin improves liver damage in male mice exposed to nicotine

    OpenAIRE

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2015-01-01

    The color of turmeric (薑黃 jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (n...

  12. Perinatal nicotine exposure induces asthma in second generation offspring

    Directory of Open Access Journals (Sweden)

    Rehan Virender K

    2012-10-01

    Full Text Available Abstract Background By altering specific developmental signaling pathways that are necessary for fetal lung development, perinatal nicotine exposure affects lung growth and differentiation, resulting in the offsprings' predisposition to childhood asthma; peroxisome proliferator-activated receptor gamma (PPARγ agonists can inhibit this effect. However, whether the perinatal nicotine-induced asthma risk is restricted to nicotine-exposed offspring only; whether it can be transmitted to the next generation; and whether PPARγ agonists would have any effect on this process are not known. Methods Time-mated Sprague Dawley rat dams received either placebo or nicotine (1 mg/kg, s.c., once daily from day 6 of gestation to postnatal day (PND 21. Following delivery, at PND21, generation 1 (F1 pups were either subjected to pulmonary function tests, or killed to obtain their lungs, tracheas, and gonads to determine the relevant protein markers (mesenchymal contractile proteins, global DNA methylation, histone 3 and 4 acetylation, and for tracheal tension studies. Some F1 animals were used as breeders to generate F2 pups, but without any exposure to nicotine in the F1 pregnancy. At PND21, F2 pups underwent studies similar to those performed on F1 pups. Results Consistent with the asthma phenotype, nicotine affected lung function in both male and female F1 and F2 offspring (maximal 250% increase in total respiratory system resistance, and 84% maximal decrease in dynamic compliance following methacholine challenge; P P P > 0.05, F1 versus F2, but only affected tracheal constriction in males (51% maximal increase in tracheal constriction following acetylcholine challenge, P P P > 0.05, F1 versus F2; nicotine also increased the contractile protein content of whole lung (180% increase in fibronectin protein levels, P P P P P P Conclusions Germline epigenetic marks imposed by exposure to nicotine during pregnancy can become permanently programmed and transferred

  13. Targeting nicotine addiction: the possibility of a therapeutic vaccine

    Directory of Open Access Journals (Sweden)

    Escobar-Chávez JJ

    2011-04-01

    Full Text Available José Juan Escobar-Chávez1, Clara Luisa Domínguez-Delgado2, Isabel Marlen Rodríguez-Cruz21Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México; 2División de Estudios de Posgrado (Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, MéxicoAbstract: Cigarette smoking is the primary cause of lung cancer, cardiovascular diseases, reproductive disorders, and delayed wound healing all over the world. The goals of smoking cessation are both to reduce health risks and to improve quality of life. The development of novel and more effective medications for smoking cessation is crucial in the treatment of nicotine dependence. Currently, first-line smoking cessation therapies include nicotine replacement products and bupropion. The partial nicotinic receptor agonist, varenicline, has recently been approved by the US Food and Drug Administration (FDA for smoking cessation. Clonidine and nortriptyline have demonstrated some efficacy, but side effects may limit their use to second-line treatment products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine D3 receptor antagonists. Nicotine vaccines are among newer products seeking approval from the FDA. Antidrug vaccines are irreversible, provide protection over years and need booster injections far beyond the critical phase of acute withdrawal symptoms. Interacting with the drug in the blood rather than with a receptor in the brain, the vaccines are free of side effects due to central interaction. For drugs like nicotine, which interacts with different types of receptors in many organs, this is a further advantage. Three anti-nicotine vaccines are today in an advanced stage of clinical evaluation. Results

  14. Intelligent biomembranes for nicotine releases by radiation curing

    International Nuclear Information System (INIS)

    The authors have studied stimuli-responsive polyelectrolyte and polyampholyte hydrogels. Thermo-responsive copolymer hydrogels have also been studied. Recently, the authors have applied those hydrogels to radiation curable intelligent coatings for the gating of drug release channel. One way of this application is the coating on a drug including membrane to initiate and stop the drug release by on-off switching of stimulations. Some results of application to practical intelligent biomembranes such as glucose-responsive nicotine release membrane and temperature-responsive nicotine release membrane were investigated and their functions as well as of some effective factors on the release profiles were proved

  15. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  16. Ameliorative effect of black tea on nicotine induced cardiovascular pathogenesis in rat

    OpenAIRE

    Gholamhoseinian, Ahmad; Joukar, Farzin; Joukar, Siyavash; Najafipour, Hamid; Shahouzehi, Beydolah

    2012-01-01

    Regarding the role of nicotine in the development of cardiovascular complications of smoking, we investigated whether black tea has a modulatory effect on cardiovascular pathogenesis of nicotine in rat. Animals were randomized to control, tea, nicotine and tea plus nicotine groups. Test groups received black tea brewed (adding 400 ml boiling water to 10 g Lipton black tea for 5 min) orally alone or with nicotine 2 mg/kg/day, s.c. separately or combined for four weeks. On 28th day, lipids p...

  17. Nicotine Inhibits Clostridium difficile Toxin A-Induced Colitis but Not Ileitis in Rats

    Science.gov (United States)

    Vigna, Steven R.

    2016-01-01

    Nicotine is protective in ulcerative colitis but not Crohn's disease of the small intestine, but little is known about the effects of nicotine on Clostridium difficile toxin A-induced enteritis. Isolated ileal or colonic segments in anesthetized rats were pretreated with nicotine bitartrate or other pharmacological agents before intraluminal injection of toxin A. After 3 hours, the treated segments were removed and inflammation was assessed. Nicotine biphasically inhibited toxin A colitis but not ileitis. Pretreatment with the nicotinic receptor antagonist, hexamethonium, blocked the effects of nicotine. Pretreating the colonic segments with hexamethonium before toxin A administration resulted in more inflammation than seen with toxin A alone, suggesting that a tonic nicotinic anti-inflammatory condition exists in the colon. Nicotine also inhibited toxin A-induced increased colonic concentrations of the TRPV1 (transient receptor potential vanilloid subtype 1) agonist, leukotriene B4 (LTB4), and release of the proinflammatory neuropeptide, substance P. Pretreatment with nicotine did not protect against direct TRPV1-mediated colitis caused by intraluminal capsaicin. Nicotinic cholinergic receptors tonically protect the colon against inflammation and nicotine inhibits toxin A colitis but not toxin A ileitis in rats in part by inhibition of toxin A-induced activation of TRPV1 by endogenous TRPV1 agonists such as LTB4. PMID:26881175

  18. Mechanism-based medication development for the treatment of nicotine dependence

    Institute of Scientific and Technical Information of China (English)

    Zheng-xiong XI; Krista SPILLER; Eliot L GARDNER

    2009-01-01

    Tobacco use is a global problem with serious health consequences. Though some treatment options exist, there remains a great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence. In the present article, we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmacological agents for the treatment of nicotine dependence. An oversimplified hypothesis of addiction to tobacco is that nicotine is the major addictive component of tobacco. Nicotine binds to a4β2 and a7 nicotinic acetylcholine receptors (nAChRs) located on dopaminergic, glutamatergic and GABAergic neurons in the mesolimbic dopamine (DA) system, which causes an increase in extracellular DA in the nucleus accumbens (NAc). That increase in DA reinforces tobacco use, particularly during the acquisition phase. Enhanced glutamate transmission to DA neurons in the ventral tegmental area appears to play an important role in this process. In addition, chronic nicotine treatment increases endocannabinoid levels in the mesolimbic DA system, which indirectly modulates NAc DA release and nicotine reward. Accordingly, pharmacological agents that target brain acetylcholine, DA, glutamate, GABA, or endocannabonoid signaling systems have been proposed to interrupt nicotine action. Furthermore, pharmacokinetic strategies that alter plasma nicotine availability, metabolism and clearance also significantly alter nicotine's action in the brain. Progress using these pharmacodynamic and pharmacokinetic agents is reviewed. For drugs in each category, we discuss the mechanistic rationale for their potential anti-nicotine efficacy, major findings in preclinical and clinical studies, and future research directions.

  19. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    International Nuclear Information System (INIS)

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.

  20. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    Science.gov (United States)

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals. PMID:20032966

  1. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    Science.gov (United States)

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals.

  2. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Directory of Open Access Journals (Sweden)

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  3. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  4. Hooked on the nicotine addiction thesis: a response to DiFranza.

    Science.gov (United States)

    Dar, Reuven; Frenk, Hanan

    2013-11-18

    DiFranza's rebuttal to our critique of the "Hooked on Nicotine" research program misconstrues our arguments beyond recognition. The grossest misrepresentation of our critique by DiFranza is that we devise (by thwarting science) to rescue "the conventional wisdom" of the "threshold model of nicotine addiction." In fact, the difference between our positions lies elsewhere: We believe that nicotine is not an addictive drug and that its contribution to the smoking habit is secondary; DiFranza believes that nicotine is so powerfully addictive that novice smokers can lose autonomy over their smoking behavior after one cigarette or even following a single puff. Our review aimed to critically examine the empirical basis of this extreme version of the nicotine "addiction" model. In this brief commentary we illustrate how the commitment to the nicotine "addiction" theory has biased the methodology and the interpretation of the data in "Hooked on Nicotine" research program.

  5. Generation of tobacco lines with widely different reduction in nicotine levels via RNA silencing approaches

    Indian Academy of Sciences (India)

    Peng Wang; Zhifeng Liang; Jia Zeng Wenchao; Wenchao Li; Xiaofen Sun; Zhiqi Miao; Kexuan Tang

    2008-06-01

    Issues related to the nicotine content of tobacco have been public concerns. Several reports have described decreasing nicotine levels by silencing the putrescine N-methyltransferase (PMT) genes, but the reported variations of nicotine levels among transgenic lines are relatively low in general. Here we describe the generation in tobacco (Nicotiana tabacum) lines with widely different, reduced nicotine levels using three kinds of RNA-silencing approaches. The relative efficacies of suppression were compared among the three approaches regarding the aspect of nicotine level in tobacco leaves. By suppressing expression of the PMT genes, over 200 transgenic lines were obtained with nicotine levels reduced by 9.1–96.7%. RNA interference (RNAi) was the most efficient method of reducing the levels of nicotine, whereas cosuppression and antisense methods were less effective. This report gives clues to the efficient generation of plants with a variety of metabolite levels, and the results demonstrate the relative efficiencies of various RNA-silencing methods.

  6. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    2015-12-01

    Full Text Available Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  7. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective.

    Science.gov (United States)

    Neumann, Silke; Shields, Nicholas J; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N

    2015-12-04

    Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer's disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  8. Rapid deterioration of externally induced neuroplasticity in non-smoking subjects by nicotine

    Directory of Open Access Journals (Sweden)

    Jessica eGrundey

    2012-10-01

    Full Text Available In various studies nicotine has been shown to alter cognitive functions in non-smoking subjects, which might be due to nicotine-generated modulation of cortical functions, excitability and activity, as mainly described in animal experiments. In non-smoking humans application of nicotine for hours via nicotine patch abolishes inhibitory plasticity both after cathodal transcranial direct current stimulation (tDCS or paired associative stimulation (PAS-10. Excitatory anodal tDCS after-effects were reduced whereas excitatory PAS-25 was prolonged. These results are compatible with the view that prolonged nicotine administration facilitates focal synapse-specific excitatory plasticity as induced with excitatory PAS as focusing effect. However, since nicotine receptors undergo rapid adaption processes within minutes, the results cannot distinguish between an impact of the substance alone or a compensatory receptor adaption. Thus in the present study we replicated the experiments however using nicotine spray, which enhances blood concentration of nicotine within minutes. 48 non-smokers received nicotine spray respectively placebo spray combined with either facilitatory or inhibitory tDCS or PAS. Corticospinal excitability was monitored via motor-evoked potentials elicited by transcranial magnetic stimulation (TMS. Nicotine spray abolished all types of plasticity except synapse-unspecific non-focal tDCS-derived excitability reduction, which was delayed and also weakened. Thus, the effects of short-term nicotine application differ from those of prolonged nicotine application, which might be due to missing adaptive nicotinic receptor alterations. These results enhance our knowledge about the dynamic impact of nicotine on plasticity, which might be relevant to its heterogeneous effect on cognition.

  9. Heterogeneity across brain regions and neurotransmitter interactions with nicotinic effects on memory function.

    Science.gov (United States)

    Levin, Edward D; Hall, Brandon J; Rezvani, Amir H

    2015-01-01

    Nicotinic acetylcholine receptors have been shown in many studies to be critically involved in memory function. The precise roles these receptors play depend on the receptor subtype, their anatomic localization, their interactions with other parts of the neural systems underlying cognition and the particular domain of cognitive function. Nicotinic agonists can significantly improve learning, memory, and attention. Nicotinic receptors in the hippocampus are innervated by cholinergic projections from the medial septum and diagonal band. Local infusions of either α7 or α4β2 nicotinic antagonists into either the dorsal or ventral hippocampus produce amnestic effects in rats navigating about a radial arm maze. There is cholinergic innervation of nicotinic receptors in other components of the limbic system as well. In the basolateral amygdala and the anterior thalamus, similar amnestic effects of nicotinic α7 and α4β2 antagonists are seen. Interestingly, there are no additive amnestic effects observed in these limbic areas when α7 and α4β2 receptor antagonists are combined. The particular expression patterns of α7 and α4β2 nicotinic receptors in these limbic and cortical areas may explain this nonadditivity, but further research is needed to determine the specific cause of this phenomenon. Nicotinic receptor mechanisms in the limbic system play an important role in cognitive impairment for a variety of neurological disorders, including Alzheimer's disease and schizophrenia. Alzheimer's disease results in a dramatic decrease in hippocampal nicotinic receptor density, affecting α4β2 receptor expression most prominently. In schizophrenia, there are anomalies in α7 nicotinic receptor expression, which seem to be crucial for the cognitive impairment of the disorder. Chronic nicotine exposure, such as seen with tobacco use, results in an increase in nicotinic receptor density in the limbic system. This effect appears to be related to the desensitization of

  10. Differential blockade of rat α3β4 and α7 neuronal nicotinic receptors by ω-conotoxin MVIIC, ω-conotoxin GVIA and diltiazem

    Science.gov (United States)

    Herrero, Carlos J; García-Palomero, Esther; Pintado, Antonio J; García, Antonio G; Montiel, Carmen

    1999-01-01

    Rat α3β4 or α7 neuronal nicotinic acetylcholine receptors (AChRs) were expressed in Xenopus laevis oocytes, and the effects of various toxins and non-toxin Ca2+ channel blockers studied. Nicotinic AChR currents were elicited by 1 s pulses of dimethylphenylpiperazinium (DMPP, 100 μM) applied at regular intervals.The N/P/Q-type Ca2+ channel blocker ω-conotoxin MVIIC inhibited α3β4 currents with an IC50 of 1.3 μM; the blockade was non-competitive and reversible. The α7 currents were unaffected.At 1 μM, ω-conotoxin GVIA (N-type Ca2+ channel blocker) inhibited by 24 and 20% α3β4 and α7 currents, respectively. At 1 μM, ω-agatoxin IVA (a P/Q-type Ca2+ channel blocker) did not affect α7 currents and inhibited α3β4 currents by only 15%.L-type Ca2+ channel blockers furnidipine, verapamil and, particularly, diltiazem exhibited a preferential blocking activity on α3β4 nicotinic AChRs.The mechanism of α3β4 currents blockade by ω-conotoxins and diltiazem differed in the following aspects: (i) the onset and reversal of the blockade was faster for toxins; (ii) the blockade by the peptides was voltage-dependent, while that exerted by diltiazem was not; (iii) diltiazem promoted the inactivation of the current while ω-toxins did not.These data show that, at concentrations currently employed as Ca2+ channel blockers, some of these compounds also inhibit certain subtypes of nicotinic AChR currents. Our data calls for caution when interpreting many of the results obtained in neurons and other cell types, where nicotinic receptor and Ca2+ channels coexist. PMID:10455287

  11. Effect of acute and chronic nicotine consumption on reaction time

    Directory of Open Access Journals (Sweden)

    Nagalakshmi Vijaykumar

    2015-07-01

    Full Text Available Objective: To record the effect of acute and chronic nicotine usage on visual and whole body reaction time which is the indicators of cognition. Background: Nicotine intake in the form of cigarette smoking does affect cognition. Even though the effect of nicotine on cognition is interesting, knowledge regarding this is inconsistent due to lack of much research. Methods: This study done on 50 male subjects (smokers in the age group of 30-50 year, equal number of age and sex matched individuals were taken as controls. Cognition is evaluated by following parameters: (a Simple and choice visual reaction time. (b C1 of whole body reaction time. Student t test was used to compare the reaction time between smokers and non smokers. Results: The difference between simple and choice visual reaction time which is the indicator of cognition is significantly lower in smokers when compared to that of non smokers. (p=0.02 C1 of whole body reaction time is significantly lower in smokers when compared to that of non smokers (p=0.04. Conclusion: acute and chronic effect of nicotine consumption improves cognition and there by decreases reaction time.

  12. Passive exposure to nicotine from e-cigarettes.

    Science.gov (United States)

    Gallart-Mateu, D; Elbal, L; Armenta, S; de la Guardia, M

    2016-05-15

    A procedure based on the use of ion mobility spectrometry (IMS), after liquid-liquid microextraction (LLME), has been successfully employed for the determination of passive exposure to nicotine from cigarette and e-cigarette smoking. Nicotine has been determined in exhaled breath and oral fluids of both, active and passive smokers. The aforementioned studies, made in closed environments, evidenced that the exhaled breath after conventional blend cigarette smoke provides nicotine levels of the order of 220 ng per puff, in the case of experienced smokers, being exhaled only 32 ng in the case of e-cigarettes. On the other hand, the nicotine amount in oral fluids of passive vapers was between 8 and 14 µg L(-1) lower than the average value of 38±14 µg L(-1) found for passive smokers of rolling tobacco and clearly lower than the 79±36 µg L(-1) obtained from passive smokers of classical yellow blend. This study was also placed in the frame of the verification of the e-cigarettes composition. PMID:26992528

  13. Effect of transdermal nicotine administration on exercise endurance in men.

    Science.gov (United States)

    Mündel, Toby; Jones, David A

    2006-07-01

    Nicotine is widely reported to increase alertness, improve co-ordination and enhance cognitive performance; however, to our knowledge there have been no attempts to replicate these findings in relation to exercise endurance. The purpose of this study was to determine the effects nicotine might have on cycling endurance, perception of exertion and a range of physiological variables. With local ethics committee approval and having obtained informed consent, 12 healthy, non-smoking men (22 +/- 3 years; maximal O2 uptake, 56 +/- 6 ml kg(-1) min(-1), mean +/- s.d.) cycled to exhaustion at 18 degrees C and 65% of their peak aerobic power, wearing either a 7 mg transdermal nicotine patch (NIC) or a colour-matched placebo (PLA) in a randomized cross-over design; water was available ad libitum. Subjects were exercising at approximately 75% of their maximal O2 uptake with no differences in cadence between trials. Ten out of 12 subjects cycled for longer with NIC administration, and this resulted in a significant 17 +/- 7% improvement in performance (P effect on peripheral markers, we conclude that nicotine prolongs endurance by a central mechanism. Possible modes of action are suggested. PMID:16627574

  14. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...

  15. A common biological basis of obesity and nicotine addiction

    NARCIS (Netherlands)

    Thorgeirsson, T.E.; Gudbjartsson, D.F.; Sulem, P.; Besenbacher, S.; Styrkarsdottir, U.; Thorleifsson, G.; Walters, G.B.; Consortium, T.A.G.; Oxford, G.S.K.C.; consortium, E.; Furberg, H.; Sullivan, P.F.; Marchini, J.; McCarthy, M.I.; Steinthorsdottir, V.; Thorsteinsdottir, U.; Stefansson, K.; Aben, K.K.; Heijer, M. den; Kiemeney, L.A.L.M.

    2013-01-01

    Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved i

  16. E-cigarettes for the management of nicotine addiction.

    Science.gov (United States)

    Knight-West, Oliver; Bullen, Christopher

    2016-01-01

    In this review, we discuss current evidence on electronic cigarettes (ECs), a rapidly evolving class of nicotine delivery system, and their role in managing nicotine addiction, specifically in helping smokers to quit smoking and/or reduce the amount of tobacco they smoke. The current evidence base is limited to three randomized trials (only one compares ECs with nicotine replacement therapy) and a growing number of EC user surveys (n=6), case reports (n=4), and cohort studies (n=8). Collectively, these studies suggest modest cessation efficacy and a few adverse effects, at least with the short-term use. On this basis, we provide advice for health care providers on providing balanced information for patients who enquire about ECs. More research, specifically well-conducted large efficacy trials comparing ECs with standard smoking cessation management (eg, nicotine replacement therapy plus behavioral support) and long-term prospective studies for adverse events, are urgently needed to fill critical knowledge gaps on these products. PMID:27574480

  17. Concise synthesis of new bridged-nicotine analogues

    DEFF Research Database (Denmark)

    Crestey, François; Hooyberghs, Geert; Kristensen, Jesper Langgaard

    2012-01-01

    This study describes a very efficient strategy for the synthesis of two new bridged-nicotine analogues. Starting from either 4- or 3-chloropyridine the desired tricyclic ring systems are accessed in just three steps in 23% and 40% overall yield, respectively....

  18. Addressing Nicotine Dependence in Psychodynamic Psychotherapy: Perspectives from Residency Training

    Science.gov (United States)

    Prochaska, Judith J.; Fromont, Sebastien C.; Banys, Peter; Eisendrath, Stuart J.; Horowitz, Mardi J.; Jacobs, Marc H.; Hall, Sharon M.

    2007-01-01

    Objective: According to APA treatment recommendations, psychiatrists should assess and intervene in tobacco use with all of their patients who smoke. The ease with which this occurs may vary by treatment model. This study examined perspectives in residency training to identify a framework for addressing nicotine dependence within psychodynamic…

  19. E-cigarettes for the management of nicotine addiction

    Science.gov (United States)

    Knight-West, Oliver; Bullen, Christopher

    2016-01-01

    In this review, we discuss current evidence on electronic cigarettes (ECs), a rapidly evolving class of nicotine delivery system, and their role in managing nicotine addiction, specifically in helping smokers to quit smoking and/or reduce the amount of tobacco they smoke. The current evidence base is limited to three randomized trials (only one compares ECs with nicotine replacement therapy) and a growing number of EC user surveys (n=6), case reports (n=4), and cohort studies (n=8). Collectively, these studies suggest modest cessation efficacy and a few adverse effects, at least with the short-term use. On this basis, we provide advice for health care providers on providing balanced information for patients who enquire about ECs. More research, specifically well-conducted large efficacy trials comparing ECs with standard smoking cessation management (eg, nicotine replacement therapy plus behavioral support) and long-term prospective studies for adverse events, are urgently needed to fill critical knowledge gaps on these products. PMID:27574480

  20. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen, Jesper Tobias; Arvaniti, Maria;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus...

  1. Modal gating of muscle nicotinic acetylcholine receptors

    Science.gov (United States)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  2. Postnatal nicotine effects on the expression of nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    Science.gov (United States)

    Vivekanandarajah, Arunnjah; Waters, Karen A; Machaalani, Rita

    2015-12-01

    Postnatal exposure to cigarette smoke during infancy is associated with increased number of respiratory illnesses, impaired pulmonary function, and the occurrence of Sudden Infant Death Syndrome (SIDS). It is also associated with reduced cognitive functioning and attention deficits in childhood. Nicotine, the major neurotoxic component of cigarette smoke, induces its actions by binding to nicotinic acetylcholine receptors (nAChR). Using a piglet model of postnatal nicotine exposure, we studied the immunohistochemical expression of nAChR subunits α2, α3, α4, α5, α7, α9, β1 and β2 in the brainstem medulla and the hippocampus, given the role of these structures in cardiorespiratory control and cognition, respectively. We compared piglets exposed postnatally to 2mg/kg/day nicotine for 14 days (n=14: 7 males: 7 females) to controls (n=14: 7 males: 7 females). In the hippocampus, decreased expression was seen for α3 in CA1 (p=0.017), α9 in CA1 (pnicotine in the developing brain, and the implications are discussed. PMID:26440997

  3. Cadmium Increases the Sensitivity of Adolescent Female Mice to Nicotine-Related Behavioral Deficits

    Directory of Open Access Journals (Sweden)

    Philip Adeyemi Adeniyi

    2014-01-01

    Full Text Available This study investigates spatial and nonspatial working memory, anxiety related behavior, and motor activities in cadmium and/or nicotine exposed female adolescent mice. P28 female adolescent mice (albino strain were divided into four groups of five (n=5 mice each. A set of mice (Nic received subcutaneous nicotine (2.0 mg/kg while a separate set (Cd was treated with 2.0 mg/kg cadmium (subcutaneous. For the combined treatments of cadmium and nicotine, we administered 2.0 mg/kg Nicotine and 2.0 mg/kg of Cd. Subsequently, a separate group of animals (n=5; control received normal saline. The total duration of treatment for all groups was 28 days (P28–P56. At P56, the treatment was discontinued, after which the animals were examined in behavioural tests. Nicotine and cadmium increased the metabolism and food intake in the female adolescent mice. This also corresponded to an increase in weight when compared with the control. However, a combined nicotine-cadmium treatment induced a decline in weight of the animals versus the control. Also, nicotine administration increased the motor function, while cadmium and nicotine-cadmium treatment caused a decline in motor activity. Both nicotine and cadmium induced a reduction in memory index; however, nicotine-cadmium treatment induced the most significant decrease in nonspatial working memory.

  4. A CHRNA5 Smoking Risk Variant Decreases the Aversive Effects of Nicotine in Humans.

    Science.gov (United States)

    Jensen, Kevin P; DeVito, Elise E; Herman, Aryeh I; Valentine, Gerald W; Gelernter, Joel; Sofuoglu, Mehmet

    2015-11-01

    Genome-wide association studies have implicated the CHRNA5-CHRNA3-CHRNB4 gene cluster in risk for heavy smoking and several smoking-related disorders. The heavy smoking risk allele might reduce the aversive effects of nicotine, but this hypothesis has not been tested in humans. We evaluated the effects of a candidate causal variant in CHRNA5, rs16969968, on the acute response to nicotine in European American (EA) and African American (AA) smokers (n=192; 50% AA; 73% male). Following overnight abstinence from nicotine, participants completed a protocol that included an intravenous (IV) dose of saline and two escalating IV doses of nicotine. The outcomes evaluated were the aversive, pleasurable, and stimulatory ratings of nicotine's effects, cardiovascular reactivity to nicotine, withdrawal severity, and cognitive performance before and after the nicotine administration session. The heavy smoking risk allele (rs16969968*A; frequency=28% (EA) and 6% (AA)) was associated with lower ratings of aversive effects (Peffect was evident in EA and AA subjects analyzed as separate groups and was most robust at the highest nicotine dose. Rs16969968*A was also associated with greater improvement on a measure of cognitive control (Stroop Task) following nicotine administration. These findings support differential aversive response to nicotine as one likely mechanism for the association of CHRNA5-CHRNA3-CHRNB4 with heavy smoking.

  5. Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area.

    Science.gov (United States)

    Simonnet, Amelie; Cador, Martine; Caille, Stephanie

    2013-11-01

    Cannabinoid type 1 (CB1) receptors control the motivational properties and reinforcing effects of nicotine. Indeed, peripheral administration of a CB1 receptor antagonist dramatically decreases both nicotine taking and seeking. However, the neural substrates through which the cannabinoid CB1 receptors regulate the voluntary intake of nicotine remain to be elucidated. In the present study, we sought to determine whether central injections of a CB1 receptor antagonist delivered either into the ventral tegmental area (VTA) or the nucleus accumbens (NAC) may alter nicotine intravenous self-administration (IVSA). Rats were first trained to self-administer nicotine (30 μg/kg/0.1 ml). The effect of central infusions of the CB1 antagonist AM 251 (0, 1 and 10 μg/0.5 μl/side) on nicotine-taking behavior was then tested. Intra-VTA infusions of AM 251 dose dependently reduced IVSA with a significant decrease for the dose 10 μg/0.5 μl/side. Moreover, operant responding for water was unaltered by intra-VTA AM 251 at the same dose. Surprisingly, intra-NAC delivery of AM 251 did not alter nicotine behavior at all. These data suggest that in rats chronically exposed to nicotine IVSA, the cannabinoid CB1 receptors located in the VTA rather than in the NAC specifically control nicotine reinforcement and, subsequently, nicotine-taking behavior. PMID:22784230

  6. Crocin Improves Damage Induced by Nicotine on A Number of Reproductive Parameters in Male Mice

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salahshoor

    2016-05-01

    Full Text Available Background: Crocin, a carotenoid isolated from Crocus sativus L. (saffron, is a pharmacologically active component of saffron. Nicotine consumption can decrease fertility in males through induction of oxidative stress and DNA damage. The aim of this study is to determine the effects of crocin on reproductive parameter damages in male mice exposed to nicotine. Materials and Methods: In this experimental study, we divided 48 mice into 8 groups (n=6 per group: control (normal saline, nicotine (2.5 mg/kg, crocin (12.5, 25 and 50 mg/kg and crocin (12.5, 25 and 50 mg/kg+nicotine (2.5 mg/kg. Mice received once daily intraperitoneal injections of crocin, nicotine and crocin+nicotine for 4 weeks. Sperm parameters (count, motility, and viability, testis weight, seminiferous tube diameters, testosterone, and serum nitric oxide levels were analyzed and compared. Results: Nicotine administration significantly decreased testosterone level; sperm count, viability, and motility; testis weight and seminiferous tubule diameters compared to the control group (P<0.05. However, increasing the dose of crocin in the crocin and crocin+nicotine groups significantly boosted sperm motility and viability; seminiferous tubule diameters; testis weight; and testosterone levels in all groups compared to the nicotine group (P<0.05. Conclusion: Crocin improves nicotine-induced adverse effects on reproductive parameters in male mice.

  7. Acute reinforcing effects of low-dose nicotine nasal spray in humans.

    Science.gov (United States)

    Perkins, K A; Grobe, J E; Caggiula, A; Wilson, A S; Stiller, R L

    1997-02-01

    Tobacco smoking behavior is reinforced by nicotine intake, but there has been little human research examining self-administration of nicotine per se, isolated from tobacco. In this study, 10 smokers (5 men, 5 women) who wanted to quit smoking sampled 0 (placebo), 0.75, and 1.5 ug/kg/spray nicotine via nasal spray during separate lab sessions before engaging in a free choice session, involving ad lib access to all three spray doses. Subjects also ad lib smoked during another session. For the group as a whole, neither nicotine spray dose was self-administered significantly more than placebo during the free choice session, suggesting low abuse potential. However, 4 of 10 subjects self-administered 1.5 ug/kg/spray on more than 50% of all sprays (vs. 33% chance) and were designated nicotine "choosers," while the others were "nonchoosers." Choosers responded to initial nicotine spray exposure during sampling sessions with greater positive subjective effects (similar to their responses to tobacco smoking), smoked more during the ad lib smoking session (i.e., self-administered more nicotine via tobacco smoking), and tended to be more heavily dependent smokers. They did not report greater withdrawal relief or less aversive effects from nicotine, suggesting their greater nicotine choice reflected greater positive reinforcement rather than negative reinforcement. These results are consistent with the few existing studies demonstrating that acute nicotine intake per se, in the absence of tobacco, may be reinforcing in some smokers. PMID:9050080

  8. Crocin Improves Damage Induced by Nicotine on A Number of Reproductive Parameters in Male Mice

    Science.gov (United States)

    Salahshoor, Mohammad Reza; Khazaei, Mozafar; Jalili, Cyrus; Keivan, Mona

    2016-01-01

    Background Crocin, a carotenoid isolated from Crocus sativus L. (saffron), is a pharmacologically active component of saffron. Nicotine consumption can decrease fertility in males through induction of oxidative stress and DNA damage. The aim of this study is to determine the effects of crocin on reproductive parameter damages in male mice exposed to nicotine. Materials and Methods In this experimental study, we divided 48 mice into 8 groups (n=6 per group): control (normal saline), nicotine (2.5 mg/kg), crocin (12.5, 25 and 50 mg/kg) and crocin (12.5, 25 and 50 mg/kg)+nicotine (2.5 mg/kg). Mice received once daily intraperitoneal injections of crocin, nicotine and crocin+nicotine for 4 weeks. Sperm parameters (count, motility, and viability), testis weight, seminiferous tube diameters, testosterone, and serum nitric oxide levels were analyzed and compared. Results Nicotine administration significantly decreased testosterone level; sperm count, viability, and motility; testis weight and seminiferous tubule diameters compared to the control group (P<0.05). However, increasing the dose of crocin in the crocin and crocin+nicotine groups significantly boosted sperm motility and viability; seminiferous tubule diameters; testis weight; and testosterone levels in all groups compared to the nicotine group (P<0.05). Conclusion Crocin improves nicotine-induced adverse effects on reproductive parameters in male mice. PMID:27123203

  9. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  10. Acute reinforcing effects of low-dose nicotine nasal spray in humans.

    Science.gov (United States)

    Perkins, K A; Grobe, J E; Caggiula, A; Wilson, A S; Stiller, R L

    1997-02-01

    Tobacco smoking behavior is reinforced by nicotine intake, but there has been little human research examining self-administration of nicotine per se, isolated from tobacco. In this study, 10 smokers (5 men, 5 women) who wanted to quit smoking sampled 0 (placebo), 0.75, and 1.5 ug/kg/spray nicotine via nasal spray during separate lab sessions before engaging in a free choice session, involving ad lib access to all three spray doses. Subjects also ad lib smoked during another session. For the group as a whole, neither nicotine spray dose was self-administered significantly more than placebo during the free choice session, suggesting low abuse potential. However, 4 of 10 subjects self-administered 1.5 ug/kg/spray on more than 50% of all sprays (vs. 33% chance) and were designated nicotine "choosers," while the others were "nonchoosers." Choosers responded to initial nicotine spray exposure during sampling sessions with greater positive subjective effects (similar to their responses to tobacco smoking), smoked more during the ad lib smoking session (i.e., self-administered more nicotine via tobacco smoking), and tended to be more heavily dependent smokers. They did not report greater withdrawal relief or less aversive effects from nicotine, suggesting their greater nicotine choice reflected greater positive reinforcement rather than negative reinforcement. These results are consistent with the few existing studies demonstrating that acute nicotine intake per se, in the absence of tobacco, may be reinforcing in some smokers.

  11. Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells.

    Science.gov (United States)

    Tega, Yuma; Yuzurihara, Chihiro; Kubo, Yoshiyuki; Akanuma, Shin-ichi; Ehrhardt, Carsten; Hosoya, Ken-ichi

    2016-02-01

    Nicotine is a potent addictive alkaloid, and is rapidly absorbed through the alveoli of the lung. However, the transport mechanism of nicotine at the human alveolar epithelial barrier has not been investigated in great detail. In the present study, the transport mechanism of nicotine across alveolar epithelium was investigated in vitro using A549 cells, a human adenocarcinoma-derived cell line with an alveolar epithelial cell like phenotype. Nicotine uptake by A549 cells exhibited time-, temperature-, and concentration-dependence with a Km of 50.4 μM. These results suggest that a carrier-mediated transport process is involved in nicotine transport in human alveolar epithelial cells. Nicotine uptake by A549 cells was insensitive to change in extracellular pH. Moreover, nicotine uptake by A549 cells could be inhibited by organic cations such as verapamil and pyrilamine, but not typical substrates of organic cation transporters and β2-agonist. These results suggest that a novel, not yet molecularly identified, organic cation transporter plays a role in nicotine transport which is unlikely to interact with β2-agonist transport. This nicotine influx transporter in human alveolar epithelium might have implications for the rapid absorption of nicotine into the systemic circulation. PMID:26830082

  12. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system.

    Science.gov (United States)

    Husain, K; Scott, B R; Reddy, S K; Somani, S M

    2001-10-01

    Ethanol consumption and cigarette smoking are common in societies worldwide and have been identified as injurious to human health. This study was undertaken to examine the interactive effects of chronic ethanol and nicotine consumption on the antioxidant defense system in different tissues of rat. Male Fisher-344 rats were divided into four groups of five animals each and treated for 6.5 weeks as follows: (1) Control rats were administered normal saline orally; (2) ethanol (20% [wt./vol.]) was given orally at a dose of 2 g/kg; (3) nicotine was administered subcutaneously at a dose of 0.1 mg/kg; and (4) a combination of ethanol plus nicotine was administered by the route and at the dose described above. The animals were killed 20 h after the last treatment, and liver, lung, kidney, and testes were isolated and analyzed. Chronic ingestion of ethanol resulted in a significant depletion of glutathione (GSH) content in liver, lung, and testes, whereas chronic administration of nicotine significantly depleted GSH content in liver and testes. The combination of ethanol plus nicotine resulted in a significant depletion of GSH content in liver, lung, and testes. Ethanol, nicotine, or a combination of ethanol plus nicotine significantly increased superoxide dismutase (SOD) activity in liver and decreased SOD activity in kidney. Ethanol, nicotine, or a combination of ethanol plus nicotine significantly decreased catalase (CAT) activity in liver and increased CAT activity in kidney and testes. Chronic ingestion of ethanol resulted in a significant decrease in glutathione peroxidase (GSH-Px) activity in liver and kidney, whereas a combination of ethanol plus nicotine increased GSH-Px activity in liver and decreased GSH-Px activity in kidney and testes. Ethanol, nicotine, or a combination of ethanol plus nicotine significantly increased lipid peroxidation, respectively, in liver. It is suggested that prolonged exposure to ethanol and nicotine produce similar, and in some cases

  13. Comparison of pure nicotine- and smokeless tobacco extract-induced toxicities and oxidative stress.

    Science.gov (United States)

    Yildiz, D; Liu, Y S; Ercal, N; Armstrong, D W

    1999-11-01

    The toxicities and oxidative stress-inducing actions of (-)-nicotine and smokeless tobacco extract (STE), containing equivalent amounts of nicotine, were studied. Toxicities were determined by colony formation assays using Chinese hamster ovary (CHO) cells. Results indicated that nicotine is less toxic than smokeless tobacco extract that contained the same amount of nicotine. The generation of reactive oxygen species, following treatment with smokeless tobacco extract and nicotine, was assessed by measurement of changes in glutathione (GSH) and malondialdehyde (MDA) levels. CHO cells (5 x 10(5) cells/5 ml media) were incubated with 4, 0.8, and 0.08 mg of nicotine and STE containing the same amounts of nicotine. All preparations of smokeless tobacco extract significantly decreased GSH levels and increased MDA generation. However, 0.08 mg of nicotine treatment did not result in a significant change in GSH level, and only 4 mg of nicotine were sufficient to increase MDA generation. Addition of free radical scavenging enzymes, superoxide dismutase (SOD) and catalase (CAT), and an intracellular GSH precursor, N-acetyl-L-cysteine (NAC), replenished the GSH levels in nicotine-treated cells. GSH levels in cells exposed to smokeless tobacco extract containing 4 and 0.8 mg nicotine remained significantly lower than the control with the addition of SOD and CAT. However, co-addition of NAC with smokeless tobacco extract preparations returned the GSH levels to the control level. Lactate dehydrogenase (LDH) activities were measured in the media to establish the membrane damage following exposure to smokeless tobacco extract and nicotine. Treatment of cells with 4 mg nicotine caused a significant increase in LDH activity, which was returned to control level in the presence of the antioxidant enzymes and NAC. Smokeless tobacco extract did not change the LDH activity. http://link.springer-ny. com/link/service/journals/00244/bibs/37n4p434.html

  14. Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart.

    Science.gov (United States)

    Gumustekin, Kenan; Taysi, Seyithan; Alp, Hamit Hakan; Aktas, Omer; Oztasan, Nuray; Akcay, Fatih; Suleyman, Halis; Akar, Sedat; Dane, Senol; Gul, Mustafa

    2010-06-01

    The effects of vitamin E and Hippophea rhamnoides L. extract (HRe-1) on nicotine-induced oxidative stress in rat heart were investigated. There were eight rats per group and supplementation period was 3 weeks. The groups were: nicotine [0.5 mg kg(-1)day(-1), intraperitoneal (i.p.)]; nicotine plus vitamin E [75 mg kg(-1)day(-1), intragastric (i.g.)]; nicotine plus HRe-1 (250 mg kg(-1)day(-1), i.g.); and the control group (receiving only vehicles). Nicotine increased the malondialdehyde level, which was prevented by both vitamin E and HRe-1. Glutathione peroxidase (GPx) activity in nicotine plus vitamin E supplemented group was higher than the others. Glutathione S-transferase (GST) activity in nicotine plus HRe-1 supplemented group was increased compared with the control group. Catalase activity was higher in nicotine group compared with others. GPx activity in nicotine plus vitamin E supplemented group was elevated compared with the others. Total and non-enzymatic superoxide scavenger activities in nicotine plus vitamin E supplemented group were lower than nicotine plus HRe-1 supplemented group. Superoxide dismutase (SOD) activity was higher in nicotine plus HRe-1 supplemented group compared with others. Glutathione reductase activity and nitric oxide level were not affected. Increased SOD and GST activities might have taken part in the prevention of nicotine-induced oxidative stress in HRe-1 supplemented group in rat heart. Flavonols such as quercetin, and isorahmnetin, tocopherols such as alpha-tocopherol and beta-tocopherol and carotenoids such as alpha-carotene and beta-carotene, reported to be present in H. rhamnoides L. extracts may be responsible for the antioxidant effects of this plant extract. PMID:20517898

  15. Tobacco extract but not nicotine impairs the mechanical strength of fracture healing in rats.

    Science.gov (United States)

    Skott, Martin; Andreassen, Troels T; Ulrich-Vinther, Michael; Chen, X; Keyler, Dan E; LeSage, Mark G; Pentel, Paul R; Bechtold, Joan E; Soballe, Kjeld

    2006-07-01

    The influence of nicotine and tobacco extract (without nicotine) alone and in combination on and mechanical strength of closed femoral fractures in rats was investigated. One hundred four male Sprague-Dawley rats were divided into four groups receiving: nicotine, tobacco extract, tobacco extract plus nicotine, and saline. One week prior to fracture, osmotic pumps were implanted subcutaneously in all animals to administer nicotine equivalent to the serum level of nicotine observed in a smoker consuming one to two packs of cigarettes daily. An equivalent volume of saline was administered to the control animals. Tobacco extract was administered orally. A closed transverse femoral diaphysial fracture was performed, and stabilized with an intramedullary pin. The fractures were mechanically tested after 21 days of healing. Tobacco extract alone decreased the mechanical strength. Ultimate torque and torque at yield point of the tobacco extract group were decreased by 21% (p=0.010) and 23% (p=0.056), respectively, compared with the vehicle (saline) group, and by 20% (p=0.023) and 26% (p=0.004), respectively, compared with the nicotine group. No difference was found between the tobacco extract and tobacco extract plus nicotine groups. An 18% (p=0.013) reduction in torque at yield point was observed in the tobacco extract plus nicotine group compared with the nicotine group. No differences in ultimate stiffness, energy absorption, and callus bone mineral content at the fracture line were found between any of the groups. Serum levels of nicotine were between 40-50 ng/mL in the group given nicotine alone and the group given tobacco extract plus nicotine (equivalent to serum levels observed in persons smoking one to two packs of cigarettes per day). PMID:16705735

  16. Adolescent alcohol exposure decreased sensitivity to nicotine in adult Wistar rats.

    Science.gov (United States)

    Boutros, Nathalie; Semenova, Svetlana; Markou, Athina

    2016-07-01

    Many adolescents engage in heavy alcohol use. Limited research in humans indicates that adolescent alcohol use predicts adult tobacco use. The present study investigated whether adolescent intermittent ethanol (AIE) exposure alters nicotine sensitivity in adulthood. Adolescent male Wistar rats (postnatal day 28-53) were exposed to AIE exposure that consisted of 5 g/kg of 25 percent ethanol three times per day in a 2 days on/2 days off regimen. Control rats received water with the same exposure regimen. In adulthood, separate groups of rats were tested for nicotine intravenous self-administration (IVSA), drug discrimination and conditioned taste aversion (CTA). The dose-response function for nicotine IVSA under a fixed-ratio schedule of reinforcement was similar in AIE-exposed and control rats. However, AIE-exposed rats self-administered less nicotine at the lowest dose, suggesting that low-dose nicotine was less reinforcing in AIE-exposed, compared with control rats. AIE-exposed rats self-administered less nicotine under a progressive-ratio schedule, suggesting decreased motivation for nicotine after AIE exposure. The discriminative stimulus effects of nicotine were diminished in AIE-exposed rats compared with control rats. No group differences in nicotine CTA were observed, suggesting that AIE exposure had no effect on the aversive properties of nicotine. Altogether, these results demonstrate that AIE exposure decreases sensitivity to the reinforcing, motivational and discriminative properties of nicotine while leaving the aversive properties of nicotine unaltered in adult rats. These findings suggest that drinking during adolescence may result in decreased sensitivity to nicotine in adult humans, which may in turn contribute to the higher rates of tobacco smoking. PMID:25950618

  17. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures

    Science.gov (United States)

    Schweitzer, Kelly S.; Chen, Steven X.; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J.; Hubbard, Walter C.; Kim, Elena S.; Lai, Xianyin; Wang, Mu; Kranz, William D.; Carroll, Clinton J.; Ray, Bruce D.; Bittman, Robert; Goodpaster, John

    2015-01-01

    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1–20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10–20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation. PMID:25979079

  18. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex

    Science.gov (United States)

    Esterlis, Irina; Stone, Kathryn L.; Grady, Sharon R.; Lindstrom, Jon M.; Marks, Michael J.

    2016-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets.

  19. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts

    Directory of Open Access Journals (Sweden)

    Luketich James D

    2004-12-01

    Full Text Available Abstract Background Non-neuronal cells, including those derived from lung, are reported to express nicotinic acetylcholine receptors (nAChR. We examined nAChR subunit expression in short-term cultures of human airway cells derived from a series of never smokers, ex-smokers, and active smokers. Methods and Results At the mRNA level, human bronchial epithelial (HBE cells and airway fibroblasts expressed a range of nAChR subunits. In multiple cultures of both cell types, mRNA was detected for subunits that constitute functional muscle-type and neuronal-type pentomeric receptors. Two immortalized cell lines derived from HBE cells also expressed muscle-type and neuronal-type nAChR subunits. Airway fibroblasts expressed mRNA for three muscle-type subunits (α1, δ, and ε significantly more often than HBE cells. Immunoblotting of HBE cell and airway fibroblast extracts confirmed that mRNA for many nAChR subunits is translated into detectable levels of protein, and evidence of glycosylation of nAChRs was observed. Some minor differences in nAChR expression were found based on smoking status in fibroblasts or HBE cells. Nicotine triggered calcium influx in the immortalized HBE cell line BEAS2B, which was blocked by α-bungarotoxin and to a lesser extent by hexamethonium. Activation of PKC and MAPK p38, but not MAPK p42/44, was observed in BEAS2B cells exposed to nicotine. In contrast, nicotine could activate p42/44 in airway fibroblasts within five minutes of exposure. Conclusions These results suggest that muscle-type and neuronal-type nAChRs are functional in airway fibroblasts and HBE cells, that prior tobacco exposure does not appear to be an important variable in nAChR expression, and that distinct signaling pathways are observed in response to nicotine.

  20. Validation of a LC-MS/MS method for quantifying urinary nicotine, six nicotine metabolites and the minor tobacco alkaloids--anatabine and anabasine--in smokers' urine.

    Directory of Open Access Journals (Sweden)

    James E McGuffey

    Full Text Available Tobacco use is a major contributor to premature morbidity and mortality. The measurement of nicotine and its metabolites in urine is a valuable tool for evaluating nicotine exposure and for nicotine metabolic profiling--i.e., metabolite ratios. In addition, the minor tobacco alkaloids--anabasine and anatabine--can be useful for monitoring compliance in smoking cessation programs that use nicotine replacement therapy. Because of an increasing demand for the measurement of urinary nicotine metabolites, we developed a rapid, low-cost method that uses isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS for simultaneously quantifying nicotine, six nicotine metabolites, and two minor tobacco alkaloids in smokers' urine. This method enzymatically hydrolyzes conjugated nicotine (primarily glucuronides and its metabolites. We then use acetone pretreatment to precipitate matrix components (endogenous proteins, salts, phospholipids, and exogenous enzyme that may interfere with LC-MS/MS analysis. Subsequently, analytes (nicotine, cotinine, hydroxycotinine, norcotinine, nornicotine, cotinine N-oxide, nicotine 1'-N-oxide, anatabine, and anabasine are chromatographically resolved within a cycle time of 13.5 minutes. The optimized assay produces linear responses across the analyte concentrations typically found in urine collected from daily smokers. Because matrix ion suppression may influence accuracy, we include a discussion of conventions employed in this procedure to minimize matrix interferences. Simplicity, low cost, low maintenance combined with high mean metabolite recovery (76-99%, specificity, accuracy (0-10% bias and reproducibility (2-9% C.V. make this method ideal for large high through-put studies.

  1. The Yin and Yang of nicotine: harmful during development, beneficial in adult patient populations

    Directory of Open Access Journals (Sweden)

    Danielle S Counotte

    2012-10-01

    Full Text Available Nicotine has remarkably diverse effects on the brain. Being the main active compound in tobacco, nicotine can aversively affect brain development. However, it has the ability to act positively by restoring attentional capabilities in smokers. Here, we focus on nicotine exposure during the prenatal and adolescent developmental periods and specifically, we will review the long-lasting effects of nicotine on attention, both in humans and animal models. We discuss the reciprocal relation of the beneficial effects of nicotine, improving attention in smokers and in patients with neuropsychiatric diseases, such as schizophrenia and attention deficit/hyperactivity disorder, versus nicotine-related attention deficits already caused during adolescence. Given the need for research on the mechanisms of nicotine’s cognitive actions, we discuss some of the recent work performed in animals.

  2. Predictive model of nicotine dependence based on mental health indicators and self-concept

    Directory of Open Access Journals (Sweden)

    Hamid Kazemi Zahrani

    2014-12-01

    Full Text Available Background: The purpose of this research was to investigate the predictive power of anxiety, depression, stress and self-concept dimensions (Mental ability, job efficiency, physical attractiveness, social skills, and deficiencies and merits as predictors of nicotine dependency among university students in Isfahan. Methods: In this correlational study, 110 male nicotine-dependent students at Isfahan University were selected by convenience sampling. All samples were assessed by Depression Anxiety Stress Scale (DASS, self-concept test and Nicotine Dependence Syndrome Scale. Data were analyzed by Pearson correlation and stepwise regression. Results: The result showed that anxiety had the highest strength to predict nicotine dependence. In addition, the self-concept and its dimensions predicted only 12% of the variance in nicotine dependence, which was not significant. Conclusion: Emotional processing variables involved in mental health play an important role in presenting a model to predict students’ dependence on nicotine more than identity variables such as different dimensions of self-concept.

  3. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Biegon, A.; Kim, S.-W.; Logan, J.; Hooker, J.M.; Muench, L.; Fowler, J.S.

    2010-01-12

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [{sup 11}C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in [{sup 11}C]vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.

  4. Insulin signaling genes modulate nicotine-induced behavioral responses in Caenorhabditis elegans.

    Science.gov (United States)

    Wescott, Seth A; Ronan, Elizabeth A; Xu, X Z Shawn

    2016-02-01

    Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, Caenorhabditis elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. For this, we challenged drug-naive C. elegans with an acute dose of nicotine (100 μmol/l) while recording changes in their locomotion speed. Although nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2, modulate behavioral responses to nicotine in C. elegans, indicating a genetic link between nicotine behavior and insulin signaling.

  5. The Relationship of Childhood Trauma to Nicotine Dependence in Pregnant Smokers

    OpenAIRE

    Blalock, Janice A.; Nayak, Nisha; Wetter, David W.; Schreindorfer, Lisa; Minnix, Jennifer A.; Canul, Jennifer; Cinciripini, Paul M.

    2011-01-01

    Pregnant women with high levels of nicotine dependence are the least likely to quit smoking spontaneously during pregnancy or to benefit from smoking cessation interventions. In the general population, there is increasing evidence of a relationship between smoking, nicotine dependence, and exposure to childhood trauma. We examined the relationship of childhood trauma to several measures of nicotine dependence and evaluated whether this relationship was mediated by major depressive disorder or...

  6. Relationship between nicotine dependence and temperament and character traits in adults with cigarette smoking

    OpenAIRE

    Zincir, Selma Bozkurt; Zincir, Nihat; Sünbül, Esra Aydın; Kaymak, Esra

    2012-01-01

    Objective: Cigarette smoking is one of the most important health problems today. Nicotine dependence and difficulty to cessate smoking are assumed to be originating both from psychopharmacological effects of nicotine and genetic and environmental factors. The other possible factor which mediates to keep on smoking behavior may be personality traits. Aims: To find out the associations between temperament and character traits and nicotine dependence levels among the adult outpatients presen...

  7. Developmental Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning

    OpenAIRE

    Portugal, George S.; Wilkinson, Derek S.; Turner, Jill R.; Blendy, Julie A; Gould, Thomas J.

    2012-01-01

    Pre-adolescence and adolescence are developmental periods associated with increased vulnerability for tobacco addiction, and exposure to tobacco during these periods may lead to long-lasting changes in behavioral and neuronal plasticity. The present study examined the short- and long-term effects of nicotine and nicotine withdrawal on fear conditioning in pre-adolescent, adolescent, and adult mice, and potential underlying substrates that may mediate the developmental effects of nicotine, suc...

  8. Strain-dependent Effects of Acute, Chronic, and Withdrawal from Chronic Nicotine on Fear Conditioning

    OpenAIRE

    Portugal, George S.; Wilkinson, Derek S.; Justin W Kenney; Sullivan, Colleen; Gould, Thomas J.

    2011-01-01

    The effects of nicotine on cognitive processes such as learning and memory may play an important role in the addictive liability of tobacco. However, it remains unknown whether genetic variability modulates the effects of nicotine on learning and memory. The present study characterized the effects of acute, chronic, and withdrawal from chronic nicotine administration on fear conditioning, somatic signs, and the elevated plus maze in 8 strains of inbred mice. Strain-dependent effects of acute ...

  9. Thyroid Receptor β Involvement in the Effects of Acute Nicotine on Hippocampus-Dependent Memory

    OpenAIRE

    Leach, Prescott T.; Justin W Kenney; CONNOR David; Gould, Thomas J.

    2015-01-01

    Cigarette smoking is common despite adverse health effects. Nicotine’s effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid...

  10. In Vitro Interaction of Nicotine and Hemoglobin under Liver Cell Metabolizing Condition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    he in vitro interaction of nicotine and hemoglobin (Hb) in a metabolizing system was studied by spectroscopy assays. Visible spectra showed two isobestics,and fluorescence spectra showed static quenching with increasing of nicotine dose. Meanwhile,the CD spectra intensity reduced,showing the conformation of Hb varied markedly through the interaction.All these results suggested that the interaction of nicotine or its metabolites and Hb might do harm to physicological function of Hb.

  11. Electronic Cigarette Effectiveness and Abuse Liability: Predicting and Regulating Nicotine Flux

    OpenAIRE

    Shihadeh, Alan; Eissenberg, Thomas

    2014-01-01

    Electronic cigarettes (ECIGs) comprise an aerosolized nicotine delivery product category that provides consumers with probably unprecedented control over extensive features and operating conditions, allowing a wide range of nicotine yields to be obtained. Depending on the combination of such ECIG variables as electrical power input, geometry, liquid composition, and puff behavior, ECIG users can extract in a few puffs far more or far less nicotine than with a conventional combustible cigarett...

  12. Nicotine Treatment Induces Expression of Matrix Metalloproteinases in Human Osteoblastic Saos-2 Cells

    Institute of Scientific and Technical Information of China (English)

    Tomoko KATONO; Takayuki KAWATO; Natsuko TANABE; Naoto SUZUKI; Kazuhiro YAMANAKA; Hitoshi OKA; Masafumi MOTOHASHI; Masao MAENO

    2006-01-01

    Tobacco smoking is an important risk factor for the development of severe periodontitis.Recently, we showed that nicotine affected mineralized nodule formation, and that nicotine and lipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophage colony-stimulating factor (M-CSF) and prostaglandin E2 (PGE2) by human osteoblastic Saos-2 cells. In the present study, we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs),tissue inhibitors of matrix metalloproteinases (TIMPs), the plasminogen activation system including the component of tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PA inhibitor type 1(PAI- 1), α7 nicotine receptor, and c-fos. We also examined the effect of the nicotine antagonist D-tubocurarine on nicotine-induced expression of MMP-1. Gene expression was examined using real-time polymerase chain reaction (PCR) to estimate mRNA levels. In addition, expression of the MMP, TIMP, uPA, tPA, and PAI-1proteins was determined by Western blotting analysis. Nicotine treatment caused expression of MMP-1, 2, 3,and 13, but not MMP-14, to increase significantly after 5 or 10 d of culture; MMP-14 expression did not change through day 14. Enhancement of MMP-1 expression by nicotine treatment was eliminated by simultaneous treatment with D-tubocurarine. In the presence of nicotine, expression of uPA, PAI-1, or TIMP-1, 2, 3, or 4 did not change over 14 d of culture, whereas expression of tPA increased significantly by day 7. Nicotine also increased expression of the α7 nicotine receptor and c-fos genes. These results suggest that nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1, 2, 3, and 13,thereby tipping the balance between bone matrix formation and resorption toward the latter process.

  13. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    OpenAIRE

    Schuller Hildegard M; Dhar Madhu; Plummer Howard K

    2005-01-01

    Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was t...

  14. Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat

    Energy Technology Data Exchange (ETDEWEB)

    Foth, H.; Walther, U.I.; Kahl, G.F. (Univ. of Goettingen (Germany, F.R.))

    1990-09-15

    Elimination parameters of (14C)nicotine in conscious rats receiving nicotine (0.3 mg/kg) either intravenously or orally were studied. The oral availability of unchanged nicotine, derived by comparison of the respective areas under the concentration vs time curves (AUC), was 89%, indicating low hepatic extraction ratios of about 10%. Pretreatment of rats with phenobarbital (PB) markedly increased hepatic first-pass extraction of nicotine. The oral availability of unchanged nicotine in plasma dropped to 1.4% of the corresponding values obtained from PB-treated rats receiving nicotine iv. After PB pretreatment, the clearance of iv nicotine was increased approximately twofold over controls, much less than the observed more than ninefold increase of hepatic first-pass extraction. It is assumed that extrahepatic metabolism contributed significantly to the rapid removal of nicotine from the plasma. The elimination of cotinine, originating from nicotine administered either po or iv, was significantly increased by PB pretreatment, as determined by the ratio of corresponding AUCs. The pattern of nicotine metabolites in urine also indicated an increase in the rate of cotinine metabolic turnover. The amount of norcotinine in the organic extract of urine paralleled PB microsomal enzyme induction. The ratio between urinary concentrations of the normetabolite and cotinine correlated strongly with the PB-induced state of rat liver. This may be a suitable indicator of PB-inducible hepatic cytochrome P450 isoenzyme(s). Since smoking habits in man are feedback-regulated by nicotine plasma concentrations, a similar increase of nicotine elimination by microsomal enzyme induction in man may be of relevance for tobacco consumption.

  15. Effects of baclofen on conditioned rewarding and discriminative stimulus effects of nicotine in rats

    OpenAIRE

    Le Foll, Bernard; Wertheim, Carrie E.; Goldberg, Steven R.

    2008-01-01

    Neurochemical studies suggest that baclofen, an agonist at GABAB receptors, may be useful for treatment of nicotine dependence. However, its ability to selectively reduce nicotine’s abuse-related behavioral effects remains in question. We assessed effects of baclofen doses ranging from 0.1 to 3 mg/kg on nicotine-induced conditioned place preferences (CPP), nicotine discrimination, locomotor activity and food-reinforced behavior in male Sprague Dawley rats. The high dose of baclofen (3 mg/kg) ...

  16. Developing a model of limited-access nicotine consumption in C57Bl/6J mice.

    Science.gov (United States)

    Kasten, C R; Frazee, A M; Boehm, S L

    2016-09-01

    Although United States smoking rates have been on the decline over the past few decades, cigarette smoking still poses a critical health and economic threat. Very few treatment options for smoking exist, and many of them do not lead to long-term abstinence. Preclinical models are necessary for understanding the effects of nicotine and developing treatments. Current self-administration models of nicotine intake may require surgical procedures and often result in low levels of intake. Further, they do not lend themselves to investigating treatments. The current study sought to develop a limited-access model of nicotine intake using the Drinking-in-the-Dark paradigm, which results in high levels of binge-like ethanol consumption that can be pharmacologically manipulated. The present study found that mice will consume nicotine under a range of parameters. Intakes under the preferred condition of 0.14mg/ml nicotine in 0.2% saccharin reached over 6mg/kg in two hours and were reduced by an injection of R(+)-baclofen. Mecamylamine did not significantly affect nicotine consumption. As nicotine and ethanol are often co-abused, nicotine intake was also tested in the presence of ethanol. When presented in the same bottle, mice altered nicotine intake under various concentrations to maintain consistent levels of ethanol intake. When nicotine and ethanol were presented in separate bottles, mice greatly reduced their nicotine intake while maintaining ethanol intake. In conclusion, these studies characterize a novel model of limited-access nicotine intake that can be pharmacologically manipulated. PMID:27242276

  17. Rodent Models of Nicotine Reward: What do they tell us about tobacco abuse in humans?

    OpenAIRE

    O'Dell, Laura E.; Khroyan, Taline V.

    2008-01-01

    Tobacco products are widely abused in humans, and it is assumed that nicotine is the key substrate in these products that produces addiction. Based on this assumption, several pre-clinical studies have utilized animal models to measure various aspects of nicotine addiction. Most of this work has focused on behavioral measures of nicotine and how other variables contribute to these effects. Here we discuss the most commonly used animal models including, self-administration (SA), place conditio...

  18. Bromoenol Lactone Attenuates Nicotine-Induced Breast Cancer Cell Proliferation and Migration.

    Directory of Open Access Journals (Sweden)

    Lindsay E Calderon

    Full Text Available Calcium independent group VIA phospholipase A2 (iPLA2β and Matrix Metalloproteinase-9 (MMP-9 are upregulated in many disease states; their involvement with cancer cell migration has been a recent subject for study. Further, the molecular mechanisms mediating nicotine-induced breast cancer cell progression have not been fully investigated. This study aims to investigate whether iPLA2β mediates nicotine-induced breast cancer cell proliferation and migration through both in-vitro and in-vivo techniques. Subsequently, the ability of Bromoenol Lactone (BEL to attenuate the severity of nicotine-induced breast cancer was examined.We found that BEL significantly attenuated both basal and nicotine-induced 4T1 breast cancer cell proliferation, via an MTT proliferation assay. Breast cancer cell migration was examined by both a scratch and transwell assay, in which, BEL was found to significantly decrease both basal and nicotine-induced migration. Additionally, nicotine-induced MMP-9 expression was found to be mediated in an iPLA2β dependent manner. These results suggest that iPLA2β plays a critical role in mediating both basal and nicotine-induced breast cancer cell proliferation and migration in-vitro. In an in-vivo mouse breast cancer model, BEL treatment was found to significantly reduce both basal (p<0.05 and nicotine-induced tumor growth (p<0.01. Immunohistochemical analysis showed BEL decreased nicotine-induced MMP-9, HIF-1alpha, and CD31 tumor tissue expression. Subsequently, BEL was observed to reduce nicotine-induced lung metastasis.The present study indicates that nicotine-induced migration is mediated by MMP-9 production in an iPLA2β dependent manner. Our data suggests that BEL is a possible chemotherapeutic agent as it was found to reduce both nicotine-induced breast cancer tumor growth and lung metastasis.

  19. Nicotine does not enhance tumorigenesis in mutant K-Ras-driven mouse models of lung cancer

    OpenAIRE

    Maier, Colleen R.; Hollander, M. Christine; Hobbs, Evthokia A.; Dogan, Irem; Dennis, Phillip A.

    2011-01-01

    Smoking is the leading cause of preventable cancer deaths in the United States. Nicotine replacement therapies (NRT) have been developed to aid in smoking cessation, which decreases lung cancer incidence. However, the safety of NRT is controversial because numerous preclinical studies have shown that nicotine enhances tumor cell growth in vitro and in vivo. We modeled NRT in mice to determine the effects of physiological levels of nicotine on lung tumor formation, tumor growth or metastasis. ...

  20. Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation.

    Science.gov (United States)

    Hamill, J D; Robins, R J; Parr, A J; Evans, D M; Furze, J M; Rhodes, M J

    1990-07-01

    Transformed root cultures of Nicotiana rustica have been generated in which the gene from the yeast Saccharomyces cerevisiae coding for ornithine decarboxylase has been integrated. The gene, driven by the powerful CaMV35S promoter with an upstream duplicated enhancer sequence, shows constitutive expression throughout the growth cycle of some lines, as demonstrated by the analysis of mRNA and enzyme activity. The presence of the yeast gene and enhanced ornithine decarboxylase activity is associated with an enhanced capacity of cultures to accumulate both putrescine and the putrescine-derived alkaloid, nicotine. Even, however, with the very powerful promoter used in this work the magnitude of the changes seen is typically only in the order of 2-fold, suggesting that regulatory factors exist which limit the potential increase in metabolic flux caused by these manipulations. Nevertheless, it is demonstrated that flux through a pathway to a plant secondary product can be elevated by means of genetic manipulation. PMID:2103440

  1. Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Andrea Nemethova

    Full Text Available BACKGROUND: The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR. This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. METHODS: Calcium transients ([Ca(2+]i in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. RESULTS: In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900 nm. The ATP induced [Ca(2+]i increase was significantly inhibited in 65% or 55% of macrophages by 100 µM or 10 µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist, mecamylamine (α3β4 nAChR-preferring antagonist, α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist. Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. CONCLUSION: This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition

  2. Reactivity to nicotine cues over repeated cue reactivity sessions.

    Science.gov (United States)

    LaRowe, Steven D; Saladin, Michael E; Carpenter, Matthew J; Upadhyaya, Himanshu P

    2007-12-01

    The present study investigated whether reactivity to nicotine-related cues would attenuate across four experimental sessions held 1 week apart. Participants were nineteen non-treatment seeking, nicotine-dependent males. Cue reactivity sessions were performed in an outpatient research center using in vivo cues consisting of standardized smoking-related paraphernalia (e.g., cigarettes) and neutral comparison paraphernalia (e.g., pencils). Craving ratings were collected before and after both cue presentations while physiological measures (heart rate, skin conductance) were collected before and during the cue presentations. Although craving levels decreased across sessions, smoking-related cues consistently evoked significantly greater increases in craving relative to neutral cues over all four experimental sessions. Skin conductance was higher in response to smoking cues, though this effect was not as robust as that observed for craving. Results suggest that, under the described experimental parameters, craving can be reliably elicited over repeated cue reactivity sessions.

  3. Interaction between intra-oral cinnamaldehyde and nicotine assessed by psychophysical and physiological responses.

    Science.gov (United States)

    Jensen, Tanja K; Andersen, Michelle V; Nielsen, Kent A; Arendt-Nielsen, Lars; Boudreau, Shellie A

    2016-08-01

    Cinnamaldehyde and nicotine activate the transient receptor potential subtype A1 (TRPA1) channel, which may cause burning sensations. This study investigated whether cinnamaldehyde modulates nicotine-induced psychophysical and physiological responses in oral tissues. Healthy non-smokers (n = 22) received, in a randomized, double-blind, crossover design, three different gums containing 4 mg of nicotine, 20 mg of cinnamaldehyde, or a combination thereof. Assessments of orofacial temperature and blood flow, blood pressure, heart rate, taste experience, and intra-oral pain/irritation area and intensity were performed before, during, and after a 10-min chewing regime. Cinnamaldehyde increased the temperature of the tongue and blood flow of the lip, and was associated with pain/irritation, especially in the mouth. Nicotine increased the temperature of the tongue and blood flow of the cheek, and produced pain/irritation in the mouth and throat. The combination of cinnamaldehyde and nicotine did not overtly change the psychophysical or physiological responses. Interestingly, half of the subjects responded to cinnamaldehyde as an irritant, and these cinnamaldehyde responders reported greater nicotine-induced pain/irritation areas in the throat. Whether sensitivity to cinnamaldehyde can predict the response to nicotine-induced oral irritation remains to be determined. A better understanding of the sensory properties of nicotine in the oral mucosa has important therapeutic implications because pain and irritation represent compliance issues for nicotine replacement products.

  4. Nicotine exposure and transgenerational impact: a prospective study on small regulatory microRNAs.

    Science.gov (United States)

    Taki, Faten A; Pan, Xiaoping; Lee, Myon-Hee; Zhang, Baohong

    2014-12-17

    Early developmental stages are highly sensitive to stress and it has been reported that pre-conditioning with tobacco smoking during adolescence predisposes those youngsters to become smokers as adults. However, the molecular mechanisms of nicotine-induced transgenerational consequences are unknown. In this study, we genome-widely investigated the impact of nicotine exposure on small regulatory microRNAs (miRNAs) and its implication on health disorders at a transgenerational aspect. Our results demonstrate that nicotine exposure, even at the low dose, affected the global expression profiles of miRNAs not only in the treated worms (F0 parent generation) but also in two subsequent generations (F1 and F2, children and grandchildren). Some miRNAs were commonly affected by nicotine across two or more generations while others were specific to one. The general miRNA patterns followed a "two-hit" model as a function of nicotine exposure and abstinence. Target prediction and pathway enrichment analyses showed daf-4, daf-1, fos-1, cmk-1, and unc-30 to be potential effectors of nicotine addiction. These genes are involved in physiological states and phenotypes that paralleled previously published nicotine induced behavior. Our study offered new insights and further awareness on the transgenerational effects of nicotine exposed during the vulnerable post-embryonic stages, and identified new biomarkers for nicotine addiction.

  5. A CHRNA5 Smoking Risk Variant Decreases the Aversive Effects of Nicotine in Humans.

    Science.gov (United States)

    Jensen, Kevin P; DeVito, Elise E; Herman, Aryeh I; Valentine, Gerald W; Gelernter, Joel; Sofuoglu, Mehmet

    2015-11-01

    Genome-wide association studies have implicated the CHRNA5-CHRNA3-CHRNB4 gene cluster in risk for heavy smoking and several smoking-related disorders. The heavy smoking risk allele might reduce the aversive effects of nicotine, but this hypothesis has not been tested in humans. We evaluated the effects of a candidate causal variant in CHRNA5, rs16969968, on the acute response to nicotine in European American (EA) and African American (AA) smokers (n=192; 50% AA; 73% male). Following overnight abstinence from nicotine, participants completed a protocol that included an intravenous (IV) dose of saline and two escalating IV doses of nicotine. The outcomes evaluated were the aversive, pleasurable, and stimulatory ratings of nicotine's effects, cardiovascular reactivity to nicotine, withdrawal severity, and cognitive performance before and after the nicotine administration session. The heavy smoking risk allele (rs16969968*A; frequency=28% (EA) and 6% (AA)) was associated with lower ratings of aversive effects (Pnicotine dose. Rs16969968*A was also associated with greater improvement on a measure of cognitive control (Stroop Task) following nicotine administration. These findings support differential aversive response to nicotine as one likely mechanism for the association of CHRNA5-CHRNA3-CHRNB4 with heavy smoking. PMID:25948103

  6. Nicotine-induced acute hyperactivity is mediated by dopaminergic system in a sexually dimorphic manner.

    Science.gov (United States)

    Zhang, Yunpeng; Guo, Jing; Guo, Aike; Li, Yan

    2016-09-22

    Short-term exposure to nicotine induces positive effects in mice, monkeys and humans, including mild euphoria, hyperactivity, and enhanced cognition. However, the underlying neural basis and molecular mechanisms for these effects remain poorly understood. Here, using a video recording system, we find that acute nicotine administration induces locomotor hyperactivity in Drosophila, similar to observations made in higher model organisms. Suppressing dopaminergic neurons or down-regulating dopamine 1-like receptor (DopR) abolishes this acute nicotine response, but surprisingly, does so only in male flies. Using a GFP reconstitution across synaptic partners (GRASP) approach, we show that dopaminergic neurons possess potential synaptic connections with acetylcholinergic neurons in wide regions of the brain. Furthermore, dopaminergic neurons are widely activated upon nicotine perfusion in both sexes, while the response curve differs significantly between the sexes. Moreover, knockdown of the β1 nicotine acetylcholine receptor (nAChR) in dopaminergic neurons abolishes the acute nicotine response only in male flies, while panneural knock-down occurs in both sexes. Taken together, our results reveal that in fruit flies, dopaminergic neurons mediate nicotine-induced acute locomotor hyperactivity in a sexually dimorphic manner, and Drosophila β1 nAChR subunit plays a crucial role in this nicotine response. These findings provide important insights into the molecular and neural basis of acute nicotine effects, and the underlying mechanisms may play conserved roles across species. PMID:27365175

  7. Nicotine receptor subtype-specific effects on auditory evoked oscillations and potentials.

    Directory of Open Access Journals (Sweden)

    Robert E Featherstone

    Full Text Available BACKGROUND: Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA the α4β4/α4β2 nicotine receptor antagonist dihydro-beta-erythroidine (DHβE, and the α4β2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHβE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4β2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHβE blocks the effects of nicotine through a non-α4β2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHβE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHβE but not MLA blocked the effect of nicotine on event-related gamma. CONCLUSIONS/SIGNIFICANCE: These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHβE sensitive mechanism, but suggests that this does not occur through

  8. In vitro nicotine-induced oxidative stress in mice peritoneal macrophages: a dose-dependent approach.

    Science.gov (United States)

    Mahapatra, Santanu Kar; Das, Subhasis; Bhattacharjee, Surajit; Gautam, N; Majumdar, Subrata; Roy, Somenath

    2009-02-01

    The immune cells use reactive oxygen species (ROS) for carrying out their normal functions while an excess amount of ROS can attack cellular components that lead to cell damage. In the present study, peritoneal macrophages (6 x 10(6) cells, >95% viable) isolated from male Swiss mice were treated with nicotine (1 mM, 5 mM, 10 mM, 25 mM, and 50 mM) in vitro for 12 h and the superoxide anion generation, lipid peroxidation, protein oxidation and antioxidant enzymes status were monitored. Maximum superoxide radical generation was found at the dose of 10 mM nicotine. The lipid peroxidation and protein oxidation were increased significantly (p nicotine. The reduced glutathione level, catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities were decreased significantly (p nicotine. From these experiments, it was also observed that all the changes in peritoneal macrophages with 10 mM, 25 mM, and 50 mM nicotine had no significant difference. To observe the effect of nicotine in vivo, this study examined the liver and spleen antioxidant status after nicotine administration (1 mg/kg BW) intraperitoneally in mice and found the diminished SOD activity and GSH level. It may be concluded that nicotine is able to enhance the production of ROS that produced oxidative stress in murine peritoneal macrophages. It also suggested that, 10 mM in vitro nicotine treatment for 12 h is the effective dose. PMID:19778253

  9. Antioxidant enzyme activity in bacterial resistance to nicotine toxicity by reactive oxygen species.

    Science.gov (United States)

    Shao, Tiejuan; Yuan, Haiping; Yan, Bo; Lü, Zhenmei; Min, Hang

    2009-10-01

    We analyzed superoxide dismutase (SOD), catalase (CAT), and ATPase activities in the highly nicotine-degrading strain Pseudomonas sp. HF-1 and two standard strains Escherichia coli and Bacillus subtilis in an attempt to understand antioxidant enzymes in bacteria are produced in response to nicotine, which increases the virulence of the bacteria. Nicotine had different effects on different antioxidant enzymes of different bacteria. SOD plays a more important role in resistance to nicotine stress in E. coli than it does in CAT. Multiple antioxidant enzymes are involved in combating oxidative stress caused by nicotine in Pseudomonas sp. HF-1. The contribution of a particular antioxidant enzyme for protection from nicotine stress varies with the growth phase involved. The inhibition of ATPase in Pseudomonas sp. HF-1 at the stationary phase was enhanced with increasing nicotine concentration, showing a striking dose-response relationship. Nicotine probably affected the metabolism of ATP to some extent. Furthermore, different bacteria possessed distinct SOD isoforms to cope with oxidative stress caused by nicotine. PMID:19294456

  10. Discriminability of personality profiles in isolated and Co-morbid marijuana and nicotine users.

    Science.gov (United States)

    Ketcherside, Ariel; Jeon-Slaughter, Haekyung; Baine, Jessica L; Filbey, Francesca M

    2016-04-30

    Specific personality traits have been linked with substance use disorders (SUDs), genetic mechanisms, and brain systems. Thus, determining the specificity of personality traits to types of SUD can advance the field towards defining SUD endophenotypes as well as understanding the brain systems involved for the development of novel treatments. Disentangling these factors is particularly important in highly co morbid SUDs, such as marijuana and nicotine use, so treatment can occur effectively for both. This study evaluated personality traits that distinguish isolated and co-morbid use of marijuana and nicotine. To that end, we collected the NEO Five Factor Inventory in participants who used marijuana-only (n=59), nicotine-only (n=27), both marijuana and nicotine (n=28), and in non-using controls (n=28). We used factor analyses to identify personality profiles, which are linear combinations of the five NEO Factors. We then conducted Receiver Operating Characteristics (ROC) curve analysis to test accuracy of the personality factors in discriminating isolated and co-morbid marijuana and nicotine users from each other. ROC curve analysis distinguished the four groups based on their NEO personality patterns. Results showed that NEO Factor 2 (openness, extraversion, agreeableness) discriminated marijuana and marijuana+nicotine users from controls and nicotine-only users with high predictability. Additional ANOVA results showed that the openness dimension discriminated marijuana users from nicotine users. These findings suggest that personality dimensions distinguish marijuana users from nicotine users and should be considered in prevention strategies. PMID:27086256

  11. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Zarrelli, Armando, E-mail: zarrelli@unina.it [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy); DellaGreca, Marina; Parolisi, Alice; Iesce, Maria Rosaria; Cermola, Flavio; Temussi, Fabio [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy); Isidori, Marina; Lavorgna, Margherita [Department of Life Sciences, II University of Naples, Caserta (Italy); Passananti, Monica; Previtera, Lucio [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy)

    2012-06-01

    Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive 'smoking'. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and {sup 1}H and {sup 13}C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products. - Highlights: Black-Right-Pointing-Pointer Processes of chlorination in the treatment of raw water. Black-Right-Pointing-Pointer STP chlorination of nicotine. Black-Right-Pointing-Pointer Genotoxic evaluation of main degradation products of nicotine.

  12. The impact of nicotine lozenges and stimulus expectancies on cigarette craving.

    Science.gov (United States)

    Schlagintweit, Hera E; Good, Kimberley P; Barrett, Sean P

    2014-08-01

    Reduced craving associated with nicotine replacement therapy use is frequently attributed to the effects of nicotine pharmacology, however non-pharmacological factors may also play a role. This study examined the impact of nicotine pharmacology and non-pharmacological components of an acute nicotine lozenge (4 mg) on cigarette craving, mood and heart rate in 70 daily smokers (36 male). Smoking-related stimuli were used to assess cue-induced craving. Participants were randomly assigned to one of four conditions in a balanced placebo design where half the participants were provided deceptive information regarding the nicotine content of a lozenge. Subjective ratings of craving and mood were collected and heart rate was assessed before and after neutral and smoking cues. Nicotine expectancy reduced withdrawal-related craving (p = 0.006) regardless of actual nicotine administration while combined nicotine expectancy and administration reduced intentions to smoke (p = 0.046) relative to each of the other conditions. Exposure to smoking-related stimuli increased cigarette craving (p ≤ 0.001) and negative affect (p ≤ 0.001) regardless of expectancy or pharmacology. Following the smoking cue, women reported a greater increase in withdrawal-related craving than men (p = 0.027). Findings suggest that both pharmacological and non-pharmacological components of nicotine lozenge administration contribute to its acute effects on craving, yet neither appears effective in preventing craving triggered by exposure to environmental smoking stimuli.

  13. Development of tolerance to nicotine's anxiogenic effect in the social interaction test.

    Science.gov (United States)

    Irvine, E E; Cheeta, S; File, S E

    2001-03-01

    The purpose of the present experiment was to explore the role of the dorsal hippocampus in mediating the development of tolerance to the anxiogenic effect of nicotine in the social interaction test of anxiety, and to determine whether tolerance develops to the effects of nicotine on [3H]-5-HT release in this area. Nicotine (1 microg) administered bilaterally into the dorsal hippocampus significantly reduced the time spent in social interaction in vehicle pre-treated rats, indicating an anxiogenic effect, but tolerance to this effect was seen in the rats pre-treated for 6 days with s.c. nicotine (0.1 mg/kg/day). In rats that had been pre-treated with vehicle for 6 days, nicotine (50-200 microM), significantly stimulated [3H]-5-HT release from dorsal hippocampal slices. This stimulation was significantly reduced in rats pre-treated with nicotine (0.1 mg/kg/day) for 6 days, indicating the development of tolerance to the effects of nicotine on 5-HT release. This suggests that tolerance to the anxiogenic effect of nicotine administered into the dorsal hippocampus could be mediated by a reduction in the nicotine enhancement of 5-HT release in this area.

  14. Prospects for a nicotine-reduction strategy in the cigarette endgame: Alternative tobacco harm reduction scenarios.

    Science.gov (United States)

    Kozlowski, Lynn T

    2015-06-01

    Some major national and international tobacco control organisations favour mandating a reduction in nicotine content of cigarettes to non-addictive levels as a tobacco control tool. Reducing nicotine content, it is argued, will make tobacco smoking less attractive. The 2009 U.S. Food and Drug Administration's regulation of cigarettes appears to have the power to reduce nicotine to non-addictive levels provided it is not taken to zero. A consideration of the U.S. context, however, raises doubts about (a) whether this will ever be practicable and (b), if practicable, how long it will take to implement. Current versions of the nicotine-reducing strategy propose the systematic, incentivised use of less harmful nicotine/tobacco products as elements of the mandatory cigarette nicotine-reduction strategy. Time will tell if and when mandatory nicotine reduction in tobacco cigarettes will occur and what impact it might have on smoking prevalence. The question posed here is "Why wait?" Resources used in implementing reduction in nicotine content have an opportunity cost. In the meantime, nicotine-maintaining harm reduction strategies can have nearer term effects on tobacco use as an individual and a public health issue. PMID:25795345

  15. The conformation alteration of mouse hepatic histones after reacting with nicotine in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    UV differential spectroscopy, fluorescence spectroscopy and circular dichroism (CD) spectroscopy assays have been applied to studying the conformation alteration of mouse hepatic histones H1 and H3 after reacting with nicotine in vitro. The results indicate that their conformation changes from regular form to random form with the increasing reaction dose of nicotine. The adduction of nicotine or its metabolites with histones H1 and H3 accounts for the conformation alteration. Nicotine may affect the structure, function and expression of genes of chromosome by changing the conformation of histones.

  16. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine

    International Nuclear Information System (INIS)

    Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive ‘smoking’. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and 1H and 13C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products. - Highlights: ► Processes of chlorination in the treatment of raw water. ► STP chlorination of nicotine. ► Genotoxic evaluation of main degradation products of nicotine.

  17. Multiple nicotine training doses in mice as a basis for differentiating the effects of smoking cessation aids

    Science.gov (United States)

    Cunningham, Colin S.; McMahon, Lance R.

    2013-01-01

    Rationale Receptor mechanisms underlying the behavioral effects of clinically used nicotinic acetylcholine receptor agonists have not been fully established. Objective Drug discrimination was used to compare receptor mechanisms underlying the effects of smoking cessation aids. Methods Separate groups of male C57BL/6J mice discriminated 0.56, 1, or 1.78 mg/kg of nicotine base. Nicotine, varenicline, and cytisine were administered alone, in combination with each other, and in combination with mecamylamine and dihydro-β-erythroidine (DHβE). Midazolam and morphine were tested to examine sensitivity to non-nicotinics. Results The ED50 value of nicotine to produce discriminative stimulus effects systematically increased as training dose increased. Varenicline and cytisine did not fully substitute for nicotine and, as compared with nicotine, their ED50 values varied less systematically as a function of nicotine training dose. Morphine did not substitute for nicotine, whereas midazolam substituted for the low and not the higher training doses of nicotine. As training dose increased, the dose of mecamylamine needed to produce a significant rightward shift in the nicotine dose-effect function also increased. DHβE antagonized nicotine in animals discriminating the smallest dose of nicotine. Varenicline did not antagonize the effects of nicotine, whereas cytisine produced a modest though significant antagonism of nicotine. Conclusions These results suggest that differences in pharmacologic mechanism between nicotine, varenicline, and cytisine include not only differences in efficacy at a common subtype of nicotinic acetylcholine receptor, but also differential affinity and/or efficacy at multiple receptor subtypes. PMID:23494230

  18. Personality types and nicotine Dependency among medical sciences students

    Directory of Open Access Journals (Sweden)

    H. Bakshi

    2014-01-01

    Full Text Available Smoking has recently become a major public health threat among the youth of today in Iran. Many clinicians and researchers hypothesized that tobacco-related disorders are maintained by the ability of nicotine to regulate positive and negative mood states. Moreover, some research indicates that there is no correlation between personality type, cigarette smoking, and heart disease, while some others mention that people with personality type A are more inclined towards smoking and related diseases. Thus, to test this hypothesis, we have studied possible correlations between psychological personality and tobacco-dependency among university students in the central part of Iran. In the current study, the most prevalent personality type was B (56.8%, with A (43.2%. Regarding smoking status, 17.5% (70 of the students were smokers and 82.5% (330 non-smokers; moreover, our results showed 66.7% (47 of smokers had low dependency and 33.3% (23 were physically dependent on nicotine. Concerning the difference between smokers and non-smokers based on their personality type, the results showed that 51.4% smokers had type A personality and 59.9% non-smokers were type B. There were also statistical differences between personality type and tobacco usage in students (p<0.05. We also found statistical differences between physical dependency and personality type; that is, 67.3% of smoking students who were physically dependent on nicotine had A type personality (p<0.05. The results suggest that there are several psychological types having higher association with tobacco use than other types. It poses some additional challenges for students’ support services to address mental health problems. The personality type in our study turned out to be an important factor influencing the nicotine dependency of the students.

  19. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

    OpenAIRE

    Alexandra eAcevedo-Rodriguez; Lifen eZhang; Fuwen eZhou; Suzhen eGong; Howard eGu; Mariella eDe Biasi; Fu-Ming eZhou; Dani, John A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine’s ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit...

  20. Interaction between Harmane and Nicotinic in the Passive Avoidance Test

    OpenAIRE

    M. Piri; Nasehi, M.; MS Shahin; Zarrindast MR

    2011-01-01

    Introduction & Objective: A number of β-carboline alkaloids such as harmane are naturally present in the human food chain. Furthermore, some plants which contain β-carboline have behavioral effects such as hallucination. In the present study, the effect of intra-dorsal hippocampus injection of nicotinic receptor agonist on memory impairment induced by harmane was examined in mice. Materials & Methods: This study was conducted at Shahid Beheshti University in 2009. Two hundred and forty mi...

  1. The Relationship between Nicotine Dependence and Age among Current Smokers.

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-04-01

    Full Text Available A recent study indicates that the incidence of smoking cessation varies with age. Although nicotine dependence (ND has been regarded as one of the most significant barriers of successful smoking cessation, few researches have focused on the relationship between nicotine dependence and age.A cross-sectional study (conducted in 2013 with 596 Chinese rural male current smokers was performed to study the relationship between ND and age. The ND level was assessed using the Fagerström Test for Nicotine Dependence (FTND scale. The univariate two-degree fractional polynomials (FPs regression was used to explore the relation of ND to age.The mean of FTND scores in the middle-aged group (45-64 yr old was higher than that in the younger (<45 yr old and older groups (≥65 yr old. The FPs regression showed an inverse U-shaped relationship between ND and age.The middle-aged current smokers had higher degree of ND than the younger and the older groups, which showed an inverse U-shaped relationship between ND and age. This finding needs to be confirmed by further researches.

  2. The genetics of nicotine dependence: Relationship to pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Stewart L MacLeod; Parimal Chowdhury

    2006-01-01

    Smoking of tobacco products continues to be a major cause of worldwide health problems. Epidemiological studies have shown that tobacco smoking is the greatest risk factor for the development of pancreatic cancer.Smokers who are able to quit smoking can reduce their risk of pancreatic cancer by nearly 50% within two years, however, their risk of developing pancreatic cancer remains higher than that of non-smokers for 10 years. Nicotine is the major psychoactive substance in tobacco, and is responsible for tobacco dependence and addiction. Recent evidence suggests that individuals have genetically based differences in their ability to metabolize nicotine, as well as genetic differences in the psychological reward pathways that may influence individual response to smoking initiation, dependence,addiction and cessation. Numerous associations have been reported between smoking behavior and genetic polymorphisms in genes that are responsible for nicotine metabolism. Tn addition, polymorphisms in genes that encode neurotransmitters and transporters that function in psychological reward pathways have been implicated in differences in smoking behavior. However,there is a large degree of between-study variability that demonstrates the need for larger, well-controlled casecontrol studies to identify target genes and deduce mechanisms that account for the genetic basis of interindividual differences in smoking behavior. Understanding the genetic factors that increase susceptibility to tobacco addiction may result in more effective tobacco cessation programs which will, in turn, reduce the incidence of tobacco related disease, including pancreatic cancer.

  3. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    Science.gov (United States)

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex. PMID:26428091

  4. Smoking cessation or reduction with nicotine replacement therapy: a placebo-controlled double blind trial with nicotine gum and inhaler

    Directory of Open Access Journals (Sweden)

    Gustavsson Gunnar

    2009-11-01

    Full Text Available Abstract Background Even with effective smoking cessation medications, many smokers are unable to abruptly stop using tobacco. This finding has increased interest in smoking reduction as an interim step towards complete cessation. Methods This multi-center, double-blind placebo-controlled study evaluated the efficacy and safety of nicotine 4 mg gum or nicotine 10 mg inhaler in helping smokers (N = 314 to reduce or quit smoking. It included smokers willing to control their smoking, and participants could set individual goals, to reduce or quit. The study was placebo-controlled, randomized in a ratio of 2:1 (Active:Placebo, and subjects could choose inhaler or gum after randomization. Outcome was short-term (from Week 6 to Month 4 and long-term (from Month 6 to Month 12 abstinence or reduction. Abstinence was defined as not a single cigarette smoked and expired CO readings of Results Significantly more smokers managed to quit in the Active group than in the Placebo group. Sustained abstinence rates at 4 months were 42/209 (20.1% subjects in the Active group and 9/105 (8.6% subjects in the Placebo group (p = 0.009. Sustained abstinence rates at 12 months were 39/209 (18.7% and 9/105 (8.6%, respectively (p = 0.019. Smoking reduction did not differ between the groups, either at short-term or long-term. Twelve-month reduction results were 17.2% vs. 18.1%, respectively. No serious adverse events were reported. Conclusion In conclusion, treatment with 10 mg nicotine inhaler or 4 mg nicotine chewing gum resulted in a significantly higher abstinence rate than placebo. In addition a large number of smokers managed to reduce their cigarette consumption by more than 50% compared to baseline.

  5. Ly6h regulates trafficking of alpha7 nicotinic acetylcholine receptors and nicotine-induced potentiation of glutamatergic signaling.

    Science.gov (United States)

    Puddifoot, Clare A; Wu, Meilin; Sung, Rou-Jia; Joiner, William J

    2015-02-25

    α7 nAChRs are expressed widely throughout the brain, where they are important for synaptic signaling, gene transcription, and plastic changes that regulate sensory processing, cognition, and neural responses to chronic nicotine exposure. However, the mechanisms by which α7 nAChRs are regulated are poorly understood. Here we show that trafficking of α7-subunits is controlled by endogenous membrane-associated prototoxins in the Ly6 family. In particular, we find that Ly6h reduces cell-surface expression and calcium signaling by α7 nAChRs. We detect Ly6h in several rat brain regions, including the hippocampus, where we find it is both necessary and sufficient to limit the magnitude of α7-mediated currents. Consistent with such a regulatory function, knockdown of Ly6h in rat hippocampal pyramidal neurons enhances nicotine-induced potentiation of glutamatergic mEPSC amplitude, which is known to be mediated by α7 signaling. Collectively our data suggest a novel cellular role for Ly6 proteins in regulating nAChRs, which may be relevant to plastic changes in the nervous system including rewiring of glutamatergic circuitry during nicotine addiction. PMID:25716842

  6. Effects of nicotine on regional cerebral glucose metabolism in awake resting tobacco smokers.

    Science.gov (United States)

    Domino, E F; Minoshima, S; Guthrie, S K; Ohl, L; Ni, L; Koeppe, R A; Cross, D J; Zubieta, J

    2000-01-01

    Eleven healthy tobacco smoking adult male volunteers of mixed race were tobacco abstinent overnight for this study. In each subject, positron emission tomographic images of regional cerebral metabolism of glucose with [18F]fluorodeoxyglucose were obtained in two conditions in the morning on different days: about 3min after approximately 1-2mg of nasal nicotine spray and after an equivalent volume of an active placebo spray of oleoresin of pepper in a random counterbalanced design. A Siemens/CTI 931/08-12 scanner with the capability of 15 horizontal brain slices was used. The images were further converted into a standard uniform brain format in which the mean data of all 11 subjects were obtained. Images were analysed in stereotactic coordinates using pixel-wise t statistics and a smoothed Gaussian model. Peak plasma nicotine levels varied three-fold and the areas under the curve(0-30min) varied seven-fold among the individual subjects. Nicotine caused a small overall reduction in global cerebral metabolism of glucose but, when the data were normalized, several brain regions showed relative increases in activity. Cerebral structures specifically activated by nicotine (nicotine minus pepper, Z score >4.0) included: left inferior frontal gyrus, left posterior cingulate gyrus and right thalamus. The visual cortex, including the right and left cuneus and left lateral occipito-temporal gyrus fusiformis, also showed an increase in regional cerebral metabolism of glucose with Z scores >3. 6. Structures with a decrease in regional cerebral metabolism of glucose (pepper minus nicotine) were the left insula and right inferior occipital gyrus, with Z scores >3.5. Especially important is the fact that the thalamus is activated by nicotine. This is consistent with the high density of nicotinic cholinoceptors in that brain region. However, not all brain regions affected by nicotine are known to have many nicotinic cholinoceptors. The results are discussed in relation to the

  7. Dextromethorphan and its metabolite dextrorphan block alpha3beta4 neuronal nicotinic receptors.

    Science.gov (United States)

    Hernandez, S C; Bertolino, M; Xiao, Y; Pringle, K E; Caruso, F S; Kellar, K J

    2000-06-01

    Dextromethorphan (DM), a structural analog of morphine and codeine, has been widely used as a cough suppressant for more than 40 years. DM is not itself a potent analgesic, but it has been reported to enhance analgesia produced by morphine and nonsteroidal anti-inflammatory drugs. Although DM is considered to be nonaddictive, it has been reported to reduce morphine tolerance in rats and to be useful in helping addicted subjects to withdraw from heroin. Here we studied the effects of DM on neuronal nicotinic receptors stably expressed in human embryonic kidney cells. Studies were carried out to examine the effects of DM on nicotine-stimulated whole cell currents and nicotine-stimulated (86)Rb(+) efflux. We found that both DM and its metabolite dextrorphan block nicotinic receptor function in a noncompetitive but reversible manner, suggesting that both drugs block the receptor channel. Consistent with blockade of the receptor channel, neither drug competed for the nicotinic agonist binding sites labeled by [(3)H]epibatidine. Although DM is approximately 9-fold less potent than the widely used noncompetitive nicotinic antagonist mecamylamine in blocking nicotinic receptor function, the block by DM appears to reverse more slowly than that by mecamylamine. These data indicate that DM is a useful antagonist for studying nicotinic receptor function and suggest that it might prove to be a clinically useful neuronal nicotinic receptor antagonist, possibly helpful as an aid for helping people addicted to nicotine to refrain from smoking, as well as in other conditions where blockade of neuronal nicotinic receptors would be helpful. PMID:10869398

  8. Transgenerational effects of adolescent nicotine exposure in rats: Evidence for cognitive deficits in adult female offspring.

    Science.gov (United States)

    Renaud, Samantha M; Fountain, Stephen B

    2016-01-01

    This study investigated whether adolescent nicotine exposure in one generation of rats would impair the cognitive capacity of a subsequent generation. Male and female rats in the parental F0 generation were given twice-daily i.p. injections of either 1.0mg/kg nicotine or an equivalent volume of saline for 35days during adolescence on postnatal days 25-59 (P25-59). After reaching adulthood, male and female nicotine-exposed rats were paired for breeding as were male and female saline control rats. Only female offspring were used in this experiment. Half of the offspring of F0 nicotine-exposed breeders and half of the offspring of F0 saline control rats received twice-daily i.p. injections of 1.0mg/kg nicotine during adolescence on P25-59. The remainder of the rats received twice-daily saline injections for the same period. To evaluate transgenerational effects of nicotine exposure on complex cognitive learning abilities, F1 generation rats were trained to perform a highly structured serial pattern in a serial multiple choice (SMC) task. Beginning on P95, rats in the F1 generation were given either 4days of massed training (20patterns/day) followed by spaced training (10 patterns/day) or only spaced training. Transgenerational effects of adolescent nicotine exposure were observed as greater difficulty in learning a "violation element" of the pattern, which indicated that rats were impaired in the ability to encode and remember multiple sequential elements as compound or configural cues. The results indicated that for rats that received massed training, F1 generation rats with adolescent nicotine exposure whose F0 generation parents also experienced adolescent nicotine exposure showed poorer learning of the violation element than rats that experienced adolescent nicotine exposure only in the F1 generation. Thus, adolescent nicotine exposure in one generation of rats produced a cognitive impairment in the next generation.

  9. Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats.

    Science.gov (United States)

    Gellner, Candice A; Belluzzi, James D; Leslie, Frances M

    2016-10-01

    Although smoking initiation typically occurs during adolescence, most preclinical studies of tobacco use involve adult animals. Furthermore, their focus is largely on nicotine alone, even though cigarette smoke contains thousands of constituents. The present study therefore aimed to determine whether aqueous constituents in cigarette smoke affect acquisition of nicotine self-administration during adolescence in rats. Adolescent and adult male rats, aged postnatal day (P) 25 and 85, respectively, were food trained on a fixed ratio 1 (FR1) schedule, then allowed to self-administer one of 5 doses of nicotine (0, 3.75, 7.5, 15, or 30 μg/kg) or aqueous cigarette smoke extract (CSE) with equivalent nicotine content. Three progressively more difficult schedules of reinforcement, FR1, FR2, and FR5, were used. Both adolescent and adult rats acquired self-administration of nicotine and CSE. Nicotine and CSE similarly increased non-reinforced responding in adolescents, leading to enhanced overall drug intake as compared to adults. When data were corrected for age-dependent alterations in non-reinforced responding, adolescents responded more for low doses of nicotine and CSE than adults at the FR1 reinforcement schedule. No differences in adolescent responding for the two drugs were seen at this schedule, whereas adults had fewer responses for CSE than for nicotine. However, when the reinforcement schedule was increased to FR5, animals dose-dependently self-administered both nicotine and CSE, but no drug or age differences were observed. These data suggest that non-nicotine tobacco smoke constituents do not influence the reinforcing effect of nicotine in adolescents. PMID:27346207

  10. Effects of nitric oxide on gastric ulceration induced by nicotine and cold-restraint stress

    Institute of Scientific and Technical Information of China (English)

    Bo-Sheng Qui; Qi-Bing Mei; Li Liu; Kam-Meng Tchou-Wong

    2004-01-01

    AIM: Stress induces gastric ulceration in human and experimental animals. People tend to smoke more cigarettes when under stress. Nitric oxide (NO) and nicotine have opposing effects on gastric integrity. The present study examined the possible therapeutic benefit of NO in nicotinetreated rats with stress-induced gastric ulceration.METHODS: Rats drank a nicotine solution while control rats drank tap water for 20 days. The alkoloid was then replaced by water with or without supplementation of isosorbide dinitrate (NO donor) for an additional 10 days. Isosorbide dinitrate was given twice shortly before experiments (acute)or three times daily by oral gavages for 10 days after the rats stopped drinking nicotine solution. At the end of experiments,ulcer index, gastric adhesion mucus content and MPO activity were measured and analysed.RESULTS: Nicotine treatment decreased gastric mucus content and intensified stress-induced gastric ulcer. A higher ulcer index persisted even after the rats stopped drinking nicotine solution for 10 days. Acute NO donor showed no benefit on both mucus and ulcer index in nicotine treatment or/and stress condition. Chronic NO donor treatment reversed the worsening action of nicotine in stomach. Stress increased gastric mucosal myeloperoxidase (MPO) activity, which was antagonized by chronic NO treatment. However, nicotine was unlikely to change mucosal MPO activity.CONCLUSION: The intensifying action of nicotine on stressinduced gastric ulceration persists for 10 days after cessation.Nicotine treatment significantly decreases gastric mucus content that can be restored by chronic NO donor treatment.The present study suggests that NO antagonizes the ulcerogenic action of nicotine through a cytoprotective way.

  11. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    DEFF Research Database (Denmark)

    Christensen, Mark Holm; Ishibashi, Masaru; Nielsen, Michael Linnemann;

    2014-01-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved...... intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15–P34). Nicotine increased neuronal firing of cholinergic cells...

  12. Nicotine content and abstinence state have different effects on subjective ratings of positive versus negative reinforcement from smoking

    OpenAIRE

    Lindsey, Kimberly P.; Bethany K. Bracken; MacLean, Robert R; Ryan, Elizabeth T.; Lukas, Scott E.; Frederick, Blaise deB.

    2012-01-01

    Despite the well-known adverse health consequences of smoking, approximately 20% of US adults smoke tobacco cigarettes. Much of the research on smoking reinforcement and the maintenance of tobacco smoking behavior has focused on nicotine; however, a number of other non-nicotine factors are likely to influence the reinforcing effects of smoked tobacco. A growing number of studies suggest that non-nicotine factors, through many pairings with nicotine, are partially responsible for the reinforci...

  13. Nicotine During Pregnancy: Changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne

    2015-01-01

    Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative...

  14. c-Jun-N-terminal kinase 1 is necessary for nicotine-induced enhancement of contextual fear conditioning.

    Science.gov (United States)

    Leach, Prescott T; Kenney, Justin W; Gould, Thomas J

    2016-08-01

    Acute nicotine enhances hippocampus-dependent learning. Identifying how acute nicotine improves learning will aid in understanding how nicotine facilitates the development of maladaptive memories that contribute to drug-seeking behaviors, help development of medications to treat disorders associated with cognitive decline, and advance understanding of the neurobiology of learning and memory. The effects of nicotine on learning may involve recruitment of signaling through the c-Jun N-terminal kinase family (JNK 1-3). Learning in the presence of acute nicotine increases the transcription of mitogen-activated protein kinase 8 (MAPK8, also known as JNK1), likely through a CREB-dependent mechanism. The functional significance of JNK1 in the effects of acute nicotine on learning, however, is unknown. The current studies undertook a backward genetic approach to determine the functional contribution JNK1 protein makes to nicotine-enhanced contextual fear conditioning. JNK1 wildtype (WT) and knockout (KO) mice were administered acute nicotine prior to contextual and cued fear conditioning. 24h later, mice were evaluated for hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear conditioning) memory. Nicotine selectively enhanced contextual conditioning in WT mice, but not in KO mice. Nicotine had no effect on hippocampus-independent learning in either genotype. JNK1 KO and WT mice given saline showed similar levels of learning. These data suggest that JNK1 may be recruited by nicotine and is functionally necessary for the acute effects of nicotine on learning and memory. PMID:27235579

  15. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  16. Characterizing the Genetic Basis for Nicotine Induced Cancer Development: A Transcriptome Sequencing Study.

    Directory of Open Access Journals (Sweden)

    Jasmin H Bavarva

    Full Text Available Nicotine is a known risk factor for cancer development and has been shown to alter gene expression in cells and tissue upon exposure. We used Illumina® Next Generation Sequencing (NGS technology to gain unbiased biological insight into the transcriptome of normal epithelial cells (MCF-10A to nicotine exposure. We generated expression data from 54,699 transcripts using triplicates of control and nicotine stressed cells. As a result, we identified 138 differentially expressed transcripts, including 39 uncharacterized genes. Additionally, 173 transcripts that are primarily associated with DNA replication, recombination, and repair showed evidence for alternative splicing. We discovered the greatest nicotine stress response by HPCAL4 (up-regulated by 4.71 fold and NPAS3 (down-regulated by -2.73 fold; both are genes that have not been previously implicated in nicotine exposure but are linked to cancer. We also discovered significant down-regulation (-2.3 fold and alternative splicing of NEAT1 (lncRNA that may have an important, yet undiscovered regulatory role. Gene ontology analysis revealed nicotine exposure influenced genes involved in cellular and metabolic processes. This study reveals previously unknown consequences of nicotine stress on the transcriptome of normal breast epithelial cells and provides insight into the underlying biological influence of nicotine on normal cells, marking the foundation for future studies.

  17. Real-time UV imaging of nicotin release from transdermal patch

    DEFF Research Database (Denmark)

    Østergaard, Jesper; Meng-Lund, Emil; Larsen, Susan Weng;

    2010-01-01

    PURPOSE: This study was conducted to characterize UV imaging as a platform for performing in vitro release studies using Nicorette® nicotine patches as a model drug delivery system. METHODS: The rate of nicotine release from 2 mm diameter patch samples (Nicorette®) into 0.067 M phosphate buffer, ...

  18. The effects of nicotine on cognition are dependent on baseline performance

    NARCIS (Netherlands)

    Niemegeers, P.; Dumont, G.J.H.; Quisenaerts, C.; Morrens, M.; Boonzaier, J.; Fransen, E.; Bruijn, E.R.A. de; Hulstijn, W.; Sabbe, B.G.C.

    2014-01-01

    Since cholinergic neurotransmission plays a major role in cognition, stimulation of the nicotinic acetylcholine receptor may be a target for cognitive enhancement. While nicotine improves performance on several cognitive domains, results of individual studies vary. A possible explanation for these f

  19. Time-varying effects of smoking quantity and nicotine dependence on adolescent smoking regularity

    Science.gov (United States)

    Selya, Arielle S.; Dierker, Lisa C.; Rose, Jennifer S.; Hedeker, Donald; Tan, Xianming; Li, Runze; Mermelstein, Robin J.

    2012-01-01

    Background Little is known about time-varying effects of smoking quantity and nicotine dependence on the regularity of adolescent smoking behavior. Methods The sample was drawn from the Social and Emotional Contexts of Adolescent Smoking Patterns Study which followed adolescent smokers over 5 assessment waves spanning 48 months. Participants included former experimenters (smoked 100 cigarettes/lifetime and smoked in past 30 days). Mixed-effects regression models were run to examine the time-varying effects of smoking quantity and nicotine dependence on regularity of smoking behavior, as measured by number of days smoked. Results Smoking quantity and nicotine dependence were each found to be significantly associated with regularity of adolescent smoking and the size of each effect exhibited significant variation over time. The effect of smoking quantity decreased across time for each smoking group, while the effect of nicotine dependence increased across time for former and recent experimenters. By the 48-month follow-up, the effects of smoking quantity and nicotine dependence had each stabilized across groups. Conclusions This study reveals that smoking quantity and nicotine dependence are not static risk factors for the development of more regular smoking patterns. At low levels of smoking when nicotine dependence symptoms are less common, smoking quantity is a stronger predictor of increased regularity of smoking, while for more experienced smokers, nicotine dependence predicts further increases in regularity. PMID:22995764

  20. The influence of occupational stress factors on the nicotine dependence: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Wolf Jürgen

    2010-04-01

    Full Text Available Abstract Objective This study analyses the association between occupational stress factors and nicotine dependence. Our hypothesis is that occupational stress factors increase nicotine dependence. Methods Data were taken from the Cologne Smoking Study, a case-control study that examines which genetic/psychosocial factors lead to a higher risk for smokers to suffer from cardiac infarction, lung cancer and/or to become addicted to nicotine. Our sample consisted of N = 197 currently smoking and employed participants. Nicotine dependence was measured using the Fagerström Test for Nicotine Dependence (FTND. The extent of the stress factors experienced at work was assessed using the Effort-Reward Imbalance scale (ERI. Logistic regression was used for the statistical analysis. Results Contrary to our hypothesis, the results show that occupational stress factors are actually associated with lower levels of nicotine dependence (N = 197; adjusted OR = 0.439; p = .059. Conclusions One possible explanation for the study's findings is that the participants have a heavy workload and can only smoke in their spare time. Another reason may be workplace smoking bans. Furthermore, the Fagerström Test for Nicotine Dependence is unable to examine nicotine dependence during working hours.

  1. Activation of the GABAB receptor prevents nicotine-induced locomotor stimulation in mice

    Directory of Open Access Journals (Sweden)

    Carla eLobina

    2011-12-01

    Full Text Available Recent studies demonstrated that activation of the GABAB receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs, inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABAB receptor agonist, baclofen, and GABAB PAMs, CGP7930 and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p., CGP7930 (0, 25, and 50 mg/kg, i.g., or GS39783 (0, 25, and 50 mg/kg, i.g., then treated with nicotine (0 and 0.05 mg/kg, s.c., and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABAB PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABAB receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  2. Acute effects of nicotine on processing of complex stimuli in smokers and nonsmokers

    Science.gov (United States)

    Harkrider, Ashley; Hedrick, Mark

    2001-05-01

    Effects of nicotine in the auditory system of normal-hearing smokers and nonsmokers were investigated both behaviorally and physiologically. Discrimination of consonant-vowel speech in quiet and noise was assessed in the presence and absence of a transdermal nicotine patch by measuring categorical boundaries and mismatch negativity (MMN). Data indicate that the effects of nicotine on both behavioral and physiological measures increased with an increase in severity of nicotine-induced symptoms. Smokers showed improved CV discrimination in quiet and noise with nicotine. Additionally, smokers exhibited more measurable and significantly sharper boundaries as well as larger MMN areas than nonsmokers in quiet and noise for both placebo and nicotine sessions. MMN data acquired for both quiet and noise, and behavioral data acquired in quiet, indicate that smokers show the greatest improvements in discrimination during nicotine exposure, followed by symptomatic nonsmokers. Asymptomatic nonsmokers show little improvement with nicotine and, on occasion, show decrements in performance. These data may contribute to our understanding of the role of nAChRs in the auditory system, the neural mechanisms that underlie the recognition of sound in quiet and noise, and mechanisms mediating improved information processing and enhanced cognitive performance that serve as reinforcement for continued tobacco use by smokers.

  3. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    Science.gov (United States)

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  4. Extinction of the Discriminative Stimulus Effects of Nicotine with a Devalued Reinforcer: Recovery Following Revaluation

    Science.gov (United States)

    Troisi, Joseph R., II; Bryant, Erin; Kane, Jennifer

    2012-01-01

    Extinction and recovery of the discriminative stimulus effects of nicotine (0.3 mg/kg) was investigated with a devalued food reinforcer (rats sated). Sixteen rats were trained in a counterbalanced one manipulandum (nose-poke) drug discrimination procedure with the roles of nicotine and saline counterbalanced as S[superscript D] and S[superscript…

  5. Nitric oxide synthase inhibition ameliorates nicotine-induced sperm function decline in male rats

    Institute of Scientific and Technical Information of China (English)

    IP Oyeyipo; Y Raji; AdeyomboF Bolarinwa

    2015-01-01

    Objective:To evaluate the effects of inhibiting nitric oxide synthase as a means of intervention in nicotine-induced infertility in male rats.Methods:Forty-eight male and thirty female Wistar rats (180-200 g) were randomly assigned to six groups and treated orally for 30 days with saline (control), nicotine (0.5 mg/kg, 1.0 mg/kg) with or without NG Nitro-L-Arginine Methyl Ester (L- NAME, 50 mg/kg). Treated male rats were cohabited with untreated females in ratio 1:2 for fertility studies. Sperm analysis was done by microscopy. Results:There was a significant decrease in the epididymal sperm motility and count after nicotine treatment. However, the percentage of abnormality significantly increased in nicotine treatment groups. Fertility studies revealed that nicotine reduced libido in male rats and decreased litter weight and number delivered by the untreated female during the experiments. Co-treatment with L-NAME effectively reversed the nicotine-mediated alterations in the sperm functional parameters, fertility indexes and hormone when compared to nicotine only.Conclusion: Taken together, the present data indicate the abilities of L-NAME to ameliorate nicotine-induced spermatotoxic effects in male rats via a mechanism dependent on the circulating testosterone level.

  6. Bupropion SR in Adolescents with Comorbid ADHD and Nicotine Dependence: A Pilot Study

    Science.gov (United States)

    Upadhyaya, Himanshu P.; Brady, Kathleen T.; Wang, Wei

    2004-01-01

    Objective: Bupropion SR has been shown to be effective for the treatment of nicotine dependence in adults. This open-label pilot study was designed to examine the feasibility and preliminary tolerability of bupropion SR in adolescents with nicotine dependence. Method: Sixteen adolescents aged 12 to 19 years were enrolled in the study. Eleven of…

  7. The Effect of Nicotine Dependence on Psychopathology in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Anne Yee

    2015-01-01

    Full Text Available Introduction. Our study aims to determine the prevalence of nicotine dependence and investigate the effect of nicotine dependence on psychopathology among schizophrenia patients. Methods. A cross-sectional study was carried out in an outpatient psychiatric clinic at a general hospital in Malaysia. 180 recruited subjects were administered the Malay version of Mini International Neuropsychiatric Interview (MINI, the Positive and Negative Symptom Scale (PANSS, and the Malay version of Fagerstrom Test for Nicotine Dependence (FTND-M questionnaires. Results. The prevalence of nicotine dependence among the subjects was 38.1% (n=69 and they were mainly composed of male gender, Malay ethnicity, being treated with atypical antipsychotics, and taking other illicit drugs or alcohol. Subjects with severe nicotine dependence scored less in the negative subscale of PANSS compared with the nonsmokers (P=0.011. On performing the hierarchy multiple regressions, dependence status still significantly predicted negative scores after adjusting the confounders (t=-2.87, P=0.005. Conclusion. The rate of nicotine use disorder among schizophrenia patients in this study is higher than that of the general population in Malaysia. The significant association between nicotine dependence and negative psychopathology symptoms will help the healthcare practitioners in their management of nicotine dependence among schizophrenia patients.

  8. Adolescent (Mis)Perceptions about Nicotine Addiction: Results from a Mixed-Methods Study

    Science.gov (United States)

    Roditis, Maria; Lee, Joann; Halpern-Felsher, Bonnie L.

    2016-01-01

    Purpose: Despite evidence that adolescents become addicted to nicotine even after limited use, adolescents believe they can experiment with or smoke cigarettes for a few years and easily quit. The goal of this study was to examine adolescents' understanding of the definition and process of nicotine addiction using a mixed-methods approach. Method:…

  9. Nicotinic Acetylcholine Receptor Variants Are Related to Smoking Habits, but Not Directly to COPD

    NARCIS (Netherlands)

    Budulac, Simona E.; Vonk, Judith M.; Postma, Dirkje S.; Siedlinski, Mateusz; Timens, Wim; Boezen, Marike H

    2012-01-01

    Genome-wide association studies identified single nucleotide polymorphisms (SNPs) in the nicotinic acetylcholine receptors (nAChRs) cluster as a risk factor for nicotine dependency and COPD. We investigated whether SNPs in the nAChR cluster are associated with smoking habits and lung function declin

  10. Cardiovascular effects of black tea and nicotine alone or in combination against experimental induced heart injury.

    Science.gov (United States)

    Joukar, Siyavash; Bashiri, Hamideh; Dabiri, Shahriar; Ghotbi, Payam; Sarveazad, Arash; Divsalar, Kouros; Joukar, Farzin; Abbaszadeh, Mahsa

    2012-06-01

    The present study was designed to elucidate the outcome of subchronic co-administration of black tea and nicotine on cardiovascular performance and whether these substances could modulate the isoproterenol-induced cardiac injury. Animal groups were control, black tea, nicotine and black tea plus nicotine. Test groups received nicotine (2 mg/kg s.c.) and black tea brewed (p.o.) each alone and in combination for 4 weeks. On the 28th day, myocardial damage was induced by isoproterenol (50 mg/kg i.p.), and blood samples were taken. On day 29, after hemodynamic parameters recording, hearts were removed for histopathological evaluation. Tea or nicotine consumption had no significant effects on hemodynamic indices of animals without heart damage. When the cardiac injury was induced, tea consumption maintained the maximum dp/dt, and nicotine significantly decreased the pressure-rate product. Moreover, severity of heart lesions was lower in the presence of nicotine or black tea. Concomitant use of these materials did not show extra effects on mentioned parameters more than the effect of each of them alone. The results suggest that subchronic administration of black tea or nicotine for a period of 4 weeks may have a mild cardioprotective effect, while concomitant use of these materials cannot intensify this beneficial effect.

  11. The impact of nicotine on osseointegration. An experimental study in the femur and tibia of rabbits

    DEFF Research Database (Denmark)

    Balatsouka, Dimitra; Gotfredsen, Klaus; Lindh, Christian H;

    2005-01-01

    OBJECTIVES: The aim of the present study was to analyze the effect of an enhanced systematic dose of nicotine on osseointegration of titanium implants. MATERIAL AND METHODS: Sixteen female rabbits received either nicotine (n=8) or saline (n=8) administered subcutaneously via mini-osmotic pumps...... for 2 months. The pump delivered 6 mug/kg/min of nicotine for the animals in the test group. Blood was withdrawn and plasma cotinine levels were measured weekly. Thirty-two titanium implants were inserted into the femur and tibia of all rabbits after 4 weeks and after 6 weeks of nicotine...... and the peri-implant BD-i showed no significant differences between the test and the control group after 2 or after 4 weeks. CONCLUSION: Nicotine exposure for a short period of time even in a high dose did not have a significant impact on implant osseointegration in rabbits....

  12. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    Directory of Open Access Journals (Sweden)

    Raman Gurusamy

    2013-01-01

    Full Text Available Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites.

  13. Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases

    Institute of Scientific and Technical Information of China (English)

    David A Scott; Michael Martin

    2006-01-01

    Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcholine (ACh)-triggered, α7-nicotinic acetylcholine receptor (α7nAChR)-dependent nicotinic anti-inflammatory pathway. Studies using the α7nAChR agonist, nicotine, for the treatment of mucosal inflammation have been undertaken but the efficacy of nicotine as a treatment for inflammatory bowel diseases remains debatable. Further understanding of the nicotinic anti-inflammatory pathway and other endogenous anti-inflammatory mechanisms is required in order to develop refined and specific therapeutic strategies for the treatment of a number of inflammatory diseases and conditions, including periodontitis, psoriasis,sarcoidosis, and ulcerative colitis.

  14. C. elegans and mutants with chronic nicotine exposure as a novel model of cancer phenotype.

    Science.gov (United States)

    Kanteti, Rajani; Dhanasingh, Immanuel; El-Hashani, Essam; Riehm, Jacob J; Stricker, Thomas; Nagy, Stanislav; Zaborin, Alexander; Zaborina, Olga; Biron, David; Alverdy, John C; Im, Hae Kyung; Siddiqui, Shahid; Padilla, Pamela A; Salgia, Ravi

    2016-01-01

    We previously investigated MET and its oncogenic mutants relevant to lung cancer in C. elegans. The inactive orthlogues of the receptor tyrosine kinase Eph and MET, namely vab-1 and RB2088 respectively, the temperature sensitive constitutively active form of KRAS, SD551 (let-60; GA89) and the inactive c-CBL equivalent mutants in sli-1 (PS2728, PS1258, and MT13032) when subjected to chronic exposure of nicotine resulted in a significant loss in egg-laying capacity and fertility. While the vab-1 mutant revealed increased circular motion in response to nicotine, the other mutant strains failed to show any effect. Overall locomotion speed increased with increasing nicotine concentration in all tested mutant strains except in the vab-1 mutants. Moreover, chronic nicotine exposure, in general, upregulated kinases and phosphatases. Taken together, these studies provide evidence in support of C. elegans as initial in vivo model to study nicotine and its effects on oncogenic mutations identified in humans.

  15. Uptake, transport and accumulation of nicotine by the Golden Potho (Epipremnum aureum): the central role of root pressure.

    Science.gov (United States)

    Weidner, Manfred; Martins, Ralf; Müller, Andrea; Simon, Judith; Schmitz, Heribert

    2005-02-01

    The roots of Epipremnum aureum, though not synthesizing nicotine themselves, take up exogenously fed nicotine as a xenobiotic. The alkaloid is subsequently translocated to the leaves, via the xylem path, where it accumulates in the mesophyll up to levels comparable with nicotine-rich Nicotiana species. The Epipremnum plants accept nicotine only up to a distinct level; saturation is reached after about 10 days. All mature, non-senescent leaves accumulate the same amount of nicotine. By different experimental approaches, unequivocal evidence could be provided that root pressure is the 'translocative force' for nicotine transport in E. aureum. Xylem sap exudates, collected from shoot stumps that were connected to an intact root system immersed in nicotine solution were analyzed for nicotine content. Nicotine uptake from the medium by the root and its subsequent transfer into the xylem of the shoot persisted for more than 10h without measurable decline of the transport rate, provided the nicotine concentrations applied were nicotine from the roots into the leaves took place beyond the level observed in amputated plants. Under the influence of inhibitors of root respiration, nicotine uptake was halted slowly in case of oxygen deprivation and in case of cyanide, or it stopped very rapidly when CCCP, an uncoupler of mitochondrial ATP formation, was applied to the roots. This threshold of toxicity against the xenobiotic was established by dose effect curves for nicotine sensitivity of the roots for root respiration and by transpiration measurements. Leaves, bearing a heavy 'nicotine load', showed symptoms of senescence only after 3-6 weeks, as indicated by a decline in the chlorophyll content, the chl a/b ratio, and the maximal quantum yield efficiency (Fv/Fm), and by an increase in catalase activity. Our results provide insight into the mechanisms of uptake, transport and storage of nicotine as a xenobiotic. PMID:15779824

  16. Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze.

    Science.gov (United States)

    Sultana, Ruby; Ameno, Kiyoshi; Jamal, Mostofa; Miki, Takanori; Tanaka, Naoko; Ono, Junichiro; Kinoshita, Hiroshi; Nakamura, Yu

    2013-06-01

    Here, we investigated the effects of nicotine on spatial memory in ApoE-knockout (ApoE-KO) and wild-type (WT) mice in a radial arm maze. Training occurred on three consecutive days and the test was performed on day 4, with one trial per day. Then on day 4, animals were administered nicotine (0.1, 0.25, 0.5, and 1.0 mg/kg) or the antagonist of nicotinic receptors (nAChRs) mecamylamine (MEC 2 mg/kg) alone or together with 0.1 mg/kg nicotine. The number of errors in the first eight choices was recorded. The results were that 0.1 mg/kg nicotine decreased errors in ApoE-KO mice, while 0.1 and 0.25 mg/kg nicotine reduced errors in WT mice, indicating that lower doses of nicotine elicit a memory improvement. In contrast, 1.0 mg/kg nicotine increased errors in WT mice, but not in ApoE-KO mice. MEC alone had no noticeable effect on errors in either strain of mice. However, co-administration of 0.1 mg/kg nicotine and MEC increased errors and reduced the effects of nicotine in WT mice, but not in ApoE-KO mice. Our study found a biphasic effect of nicotine in WT mice: it improves spatial memory at lower doses and impairs it at a higher dose. In ApoE-KO mice, nicotine improves memory at a low dose and has no effect at a higher dose, suggesting that the ApoE deficiency may influence the efficacy of nicotine. Moreover, a reversal of nicotinic effects with MEC was seen in WT mice, indicating the likelihood of the involvement of nAChRs in the spatial-memory response to nicotine.

  17. Role of sortase in Streptococcus mutans under the effect of nicotine

    Institute of Scientific and Technical Information of China (English)

    Ming-Yun Li; Rui-Jie Huang; Xue-Dong Zhou; Richard L. Gregory

    2013-01-01

    Streptococcus mutans is a common Gram-positive bacterium and plays a significant role in dental caries. Tobacco and/or nicotine have documented effects on S. mutans growth and colonization. Sortase A is used by many Gram-positive bacteria, including S. mutans, to facilitate the insertion of certain cell surface proteins, containing an LPXTGX motif such as antigen I/II. This study examined the effect of nicotine on the function of sortase A to control the physiology and growth of S. mutans using wild-type S. mutans NG8, and its isogenic sortase-defective and-complemented strains. Briefly, the strains were treated with increasing amounts of nicotine in planktonic growth, biofilm metabolism, and sucrose-induced and saliva-induced antigen I/II-dependent biofilm formation assays. The strains exhibited no significant differences with different concentrations of nicotine in planktonic growth assays. However, they had significantly increased (Pf0.05) biofilm metabolic activity (2-to 3-fold increase) as the concentration of nicotine increased. Furthermore, the sortase-defective strain was more sensitive metabolically to nicotine than the wild-type or sortase-complemented strains. All strains had significantly increased sucrose-induced biofilm formation (2-to 3-fold increase) as a result of increasing concentrations of nicotine. However, the sortase-defective strain was not able to make as much sucrose-and saliva-induced biofilm as the wild-type NG8 did with increasing nicotine concentrations. These results indicated that nicotine increased metabolic activity and sucrose-induced biofilm formation. The saliva-induced biofilm formation assay and qPCR data suggested that antigen I/II was upregulated with nicotine but biofilm was not able to be formed as much as wild-type NG8 without functional sortase A.

  18. Belief about Nicotine Modulates Subjective Craving and Insula Activity in Deprived Smokers

    Science.gov (United States)

    Gu, Xiaosi; Lohrenz, Terry; Salas, Ramiro; Baldwin, Philip R.; Soltani, Alireza; Kirk, Ulrich; Cinciripini, Paul M.; Montague, P. Read

    2016-01-01

    Little is known about the specific neural mechanisms through which cognitive factors influence craving and associated brain responses, despite the initial success of cognitive therapies in treating drug addiction. In this study, we investigated how cognitive factors such as beliefs influence subjective craving and neural activities in nicotine-addicted individuals using model-based functional magnetic resonance imaging (fMRI) and neuropharmacology. Deprived smokers (N = 24) participated in a two-by-two balanced placebo design, which crossed beliefs about nicotine (told “nicotine” vs. told “no nicotine”) with the nicotine content in a cigarette (nicotine vs. placebo) which participants smoked immediately before performing a fMRI task involving reward learning. Subjects’ reported craving was measured both before smoking and after the fMRI session. We found that first, in the presence of nicotine, smokers demonstrated significantly reduced craving after smoking when told “nicotine in cigarette” but showed no change in craving when told “no nicotine.” Second, neural activity in the insular cortex related to craving was only significant when smokers were told “nicotine” but not when told “no nicotine.” Both effects were absent in the placebo condition. Third, insula activation related to computational learning signals was modulated by belief about nicotine regardless of nicotine’s presence. These results suggest that belief about nicotine has a strong impact on subjective craving and insula responses related to both craving and learning in deprived smokers, providing insights into the complex nature of belief–drug interactions. PMID:27468271

  19. Structurally distinct nicotine immunogens elicit antibodies with non-overlapping specificities

    Science.gov (United States)

    Pravetoni, M; Keyler, DE; Pidaparthi, RR; Carroll, FI; Runyon, SP; Murtaugh, MP; Earley, CA; Pentel, PR

    2011-01-01

    Nicotine conjugate vaccine efficacy is limited by the concentration of nicotine-specific antibodies that can be reliably generated in serum. Previous studies suggest that the concurrent use of 2 structurally distinct nicotine immunogens in rats can generate additive antibody responses by stimulating distinct B cell populations. In the current study we investigated whether it is possible to identify a third immunologically distinct nicotine immunogen. The new 1′-SNic immunogen (2S)-N,N′-(disulfanediyldiethane-2,1-diyl)bis[4-(2-pyridin-3-ylpyrrolidin-1-yl)butanamide] conjugated to keyhole limpet hemocyanin (KLH) differed from the existing immunogens 3′-AmNic-rEPA and 6-CMUNic-BSA in linker position, linker composition, conjugation chemistry, and carrier protein. Vaccination of rats with 1′-SNic-KLH elicited high concentrations of high affinity nicotine-specific antibodies. The antibodies produced in response to 1′-SNic-KLH did not appreciably cross-react in ELISA with either 3′-AmNic-rEPA or 6-CMUNic-BSA or vice-versa, showing that the B cell populations activated by each of these nicotine immunogens were non-overlapping and distinct. Nicotine retention in serum was increased and nicotine distribution to brain substantially reduced in rats vaccinated with 1′-SNic-KLH compared to controls. Effects of 1′-SNic-KLH on nicotine distribution were comparable to those of 3′-AmNic-rEPA which has progressed to late stage clinical trials as an adjunct to smoking cessation. These data show that it is possible to design multiple immunogens from a small molecule such as nicotine which elicit independent immune responses. This approach could be applicable to other addiction vaccines or small molecule targets as well. PMID:22100986

  20. Effects of Nicotine on the Neurophysiological and Behavioral Effects of Ketamine in Humans

    Directory of Open Access Journals (Sweden)

    Daniel H Mathalon

    2014-01-01

    Full Text Available Background: N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia and its associated neurocognitive impairments. The high rate of cigarette smoking in schizophrenia raises questions about how nicotine modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined the modulatory effects of brain nicotinic acetylcholine receptor (nAChR stimulation on NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR agonist, and ketamine, a noncompetitive NMDA receptor antagonist, on behavioral and neurophysiological measures in healthy human volunteers.Methods: From an initial sample of 17 subjects (age range 18 - 55 years, 8 subjects successfully completed 4 test sessions, each separated by at least 3 days, during which they received ketamine or placebo and two injections of nicotine or placebo in a double-blind, counterbalanced manner. Schizophrenia-like effects (PANSS, perceptual alterations (CADSS, subjective effects (VAS and auditory event-related brain potentials (mismatch negativity, P300 were assessed during each test session.Results: Consistent with existing studies, ketamine induced transient schizophrenia-like behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it was elicited by a target or novel stimulus, while nicotine only reduced the amplitude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions of ketamine and nicotine were not significant. While nicotine significantly reduced MMN amplitude, ketamine did not. Conclusion: Nicotine failed to modulate ketamine-induced schizophrenia-like effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and nAChR in the generation of P3b and P3a, respectively.

  1. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Directory of Open Access Journals (Sweden)

    Nicole M Mantella

    Full Text Available Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1 or orosensory-mediated responses to nicotine solutions (Experiment 2 were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are

  2. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  3. Thermochemistry of aqueous pyridine-3-carboxylic acid (nicotinic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Elsa M. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto Politecnico de Setubal, ESTBarreiro, Rua Americo da Silva Marinho, 2839-001 Lavradio (Portugal); Rego, Talita S. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Minas da Piedade, Manuel E., E-mail: memp@fc.ul.p [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2011-06-15

    Research highlights: {yields} We determined the {Delta}{sub sol}H{sub m} of solid nicotinic acid (NA) in water by solution calorimetry. {yields} We determined {Delta}{sub dil}H{sub m} of an aqueous nicotinic acid solution by flow calorimetry. {yields} We determined (aq, {infinity}) for the 3 NA species involved in acid/base equilibria. {yields} We determined the enthalpy of formation of NA(aq) under saturation conditions.. - Abstract: The molar enthalpy of solution of solid nicotinic acid (NA) at T = 298.15 K, to give an aqueous solution of molality m = 3.748 . 10{sup -3} mol {center_dot} kg{sup -1}, was determined as {Delta}{sub sol}H{sub m} = (19,927 {+-} 48) J {center_dot} mol{sup -1}, by solution calorimetry. Enthalpies of dilution, {Delta}{sub dil}H{sub m}, of 0.1005 mol {center_dot} kg{sup -1} aqueous nicotinic acid to yield final solutions with molality in the approximate range (0.03 to 0.09) mol {center_dot} kg{sup -1} were also measured by flow calorimetry. Combining the two sets of data and the results of pH measurements, with values of proton dissociation enthalpies and {Delta}{sub f}H{sub m}{sup 0}(NA, cr) selected from the literature, it was possible to derive the standard molar enthalpies of formation of the three nicotinic acid species involved in protonation/deprotonation equilibria, at infinite dilution: {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COOH.{infinity}H{sub 2}O,aq) = (328.2 {+-} 1.2) kJ {center_dot} mol{sup -1}, {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (325.0 {+-} 1.2) kJ {center_dot} mol{sup -1}, and {Delta}{sub f}H{sub m}{sup 0}(NC{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (313.7 {+-} 1.2) kJ {center_dot} mol{sup -1}. Finally, the enthalpy of solution of nicotinic acid at T = 298.15 K, under saturation conditions (m = 0.138 mol {center_dot} kg{sup -1}), and the standard molar enthalpy of formation of the corresponding solution could also be obtained as {Delta

  4. The kappa-opioid receptor is involved in the stimulating effect of nicotine on adrenocortical activity but not in nicotine induced anxiety.

    Science.gov (United States)

    Marco, Eva Maria; Llorente, Ricardo; Pérez-Alvarez, Laura; Moreno, Enrique; Guaza, Carmen; Viveros, Maria Paz

    2005-09-01

    The kappa (kappa) opioid system appears to interact with nicotine in the modulation of locomotion and addiction related processes. In this study we have investigated the possible implication of the kappa-opioid system in the effects of nicotine on anxiety and adrenocortical activity. In two different experiments, we analysed the possible interaction between nicotine (0.5 mg/kg i.p.) and either the kappa-opioid receptor antagonist nor-binaltorphimine (5 mg/kg i.p.) or the kappa-opioid receptor agonist U50,488H (1 mg/kg s.c.). Behavioural and endocrine experiments were performed in different groups of animals. Animals were exposed to the holeboard immediately followed by the plus-maze. Serum corticosterone levels were determined by radioimmunoassay. Nicotine induced an anxiogenic-like effect in the plus-maze and a significant decrease of holeboard activity. The anxiogenic-like effect in the plus-maze was not modified by any of the kappa-opioid receptor ligands. Nicotine also induced a significant increase in the corticosterone levels, and the kappa antagonist, which did not exert any effect per se, antagonised this effect. The kappa-agonist U50,488H induced a significant increase in corticosterone concentration when administered alone. We provide the first evidence for the involvement of the kappa-opioid receptor in the stimulatory effect of nicotine on adrenocortical activity.

  5. The possible role of ammonia toxicity on the exposure, deposition, retention, and the bioavailability of nicotine during smoking.

    Science.gov (United States)

    Seeman, Jeffrey I; Carchman, Richard A

    2008-06-01

    A complete and rigorous review is presented of the possible effect(s) of ammonia on the exposure, deposition and retention of nicotine during smoking and the bioavailability of nicotine to the smoker. There are no toxicological data in humans regarding ammonia exposure within the context of tobacco smoke. Extrapolation from occupational exposure of ammonia to smoking in humans suggests minimal, non-toxicological effects, if any. No direct study has examined the effect of the ammonia on the total rate or amount of nicotine reaching the arterial bloodstream or brains of smokers. Machine-smoking methods have been reported which accurately quantify >99% of the nicotine in mainstream (MS) smoke for a wide variety of commercial and test cigarettes, including a series of experimental cigarettes having a range in MS smoke ammonia yields using the US Federal Trade Commission (FTC) protocol. However, the actual exposure of nicotine to smokers depends on their own smoking behavior. The nicotine ring system is relatively thermally stable. Protonated nicotine forms nicotine which evaporates before the nicotine ring system decomposes. The experimental data indicate that neither nicotine transfer from tobacco to MS smoke nor nicotine bioavailability to the smoker increases with an increase in any of the following properties: tobacco soluble ammonia, MS smoke ammonia, "tobacco pH" or "smoke pH" at levels found in commercial cigarettes. Gas phase nicotine deposits primarily in the mouth and upper respiratory tract. To the extent that ammonia increases the deposition of nicotine in the buccal cavity and upper respiratory tract during smoking, the total rate and amount of nicotine into the arterial bloodstream and to the central nervous system will decrease. Charged nicotine analogues are actively transported in a number of tissues. This active transport system appears to be insensitive to pH and the form of nicotine in the biological milieu, suggesting that protonated nicotine may

  6. AG-4:A NICOTINIC AGONIST ENDOWED WITH ANTIAMNESIC PROPERTIES

    OpenAIRE

    Ghelardini, C; Galeotti, N; Di Cesare Mannelli, L.; S. Dei; F. GUALTIERI; Bartolini, A.

    2000-01-01

    The effect of the nicotinic agonist AG-4 on memory processes was evaluated in the mouse passive avoidance test. AG-4 (100 mg per mouse icv) prevented amnesia induced by scopolamine (1.5 mg kg–1 ip), mecamylamine (20 mg kg–1 ip), and dihydro-b-erythroidine (10 mg per mouse icv). In the same experimental conditions, AG-4 (100 mg per mouse icv) also prevented baclofen (2 mg kg–1 ip), clonidine (0.125 mg kg–1 ip), and diphenhydramine (20 mg kg–1 ip) amnesia in mice. AG-4 exerted an an...

  7. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen, Jesper Tobias; Arvaniti, Maria;

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus......, and their demonstrated role in processes underlying cognition such as synaptic facilitation, and theta and gamma wave activity. Historically, activity at these receptors is facilitated in AD by use of drugs that increase the levels of their endogenous agonist acetylcholine, and more recently nAChR selective ligands have...

  8. Characterization of nicotinic receptors involved in the release of noradrenaline from the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Vizi, E.S. [Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest (Hungary); Lajtha, A. [Center of Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY (United States); Balla, A. [Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest (Hungary); Sershen, H. [Center of Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY (United States)

    1997-01-06

    The pharmacological features of putative nicotinic acetylcholine receptor sites involved in the release of [{sup 3}H]noradrenaline were assessed in rat hippocampus. The effect of nicotinic agonists to induce [{sup 3}H]noradrenaline release was examined in superfused slices. The nicotinic agonists (-)-epibatidine, (+)-anatoxin-a, dimethylphenylpiperazinium, (-)-nicotine and (-)-lobeline released [{sup 3}H]noradrenaline. The dose-response curves to nicotinic agonists were bell shaped, and indicated that their functional efficacies and potency vary across agonists. Maximal efficacy was seen with dimethylphenylpiperazinium and lobeline (E{sub max} values two to three times higher than other agonists). The rank order of potency for the agonists to release [{sup 3}H]noradrenaline was (-)-epibatidine (+)-anatoxin-a dimethylphenylpiperazinium cytisine nicotine (-)-lobeline. The nicotinic acetylcholine receptor antagonists [n-bungarotoxin (+)-tubocurarine hexamethonium>>{alpha}-bungarotoxin=dihydro-{beta}-erythroidine] and tetrodotoxin antagonized the effect of dimethylphenylpiperazinium to release [{sup 3}H]noradrenaline. The results, based on these pharmacological profiles, suggest the possible involvement of nicotinic acetylcholine receptor {alpha}3 and {beta}2 nicotinic acetylcholine receptor subunits in the control of [{sup 3}H]noradrenaline release from hippocampal slices. The absence of effect of {alpha}-bungarotoxin and {alpha}-conotoxin-IMI excludes the possible involvement of nicotinic acetylcholine receptors containing the {alpha}7 subunit. The release of [{sup 3}H]noradrenaline by dimethylphenylpiperazinium was Ca{sup 2+} dependent. Nifedipine failed to prevent the dimethylphenylpiperazinium-induced release of [{sup 3}H]noradrenaline, but Cd{sup 2+}, {omega}-conotoxin and Ca{sup 2+}-free conditions significantly reduced the dimethylphenylpiperazinium-induced release, suggesting that N-type voltage-sensitive Ca{sup 2+} channels are involved in the nicotinic

  9. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states.

    Science.gov (United States)

    Picciotto, Marina R; Lewis, Alan S; van Schalkwyk, Gerrit I; Mineur, Yann S

    2015-09-01

    The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25582289

  10. Cohort Profile: The Nicotine Dependence in Teens (NDIT) Study.

    Science.gov (United States)

    O'Loughlin, Jennifer; Dugas, Erika N; Brunet, Jennifer; DiFranza, Joseph; Engert, James C; Gervais, Andre; Gray-Donald, Katherine; Karp, Igor; Low, Nancy C; Sabiston, Catherine; Sylvestre, Marie-Pierre; Tyndale, Rachel F; Auger, Nathalie; Auger, Nathalie; Mathieu, Belanger; Tracie, Barnett; Chaiton, Michael; Chenoweth, Meghan J; Constantin, Evelyn; Contreras, Gisèle; Kakinami, Lisa; Labbe, Aurelie; Maximova, Katerina; McMillan, Elizabeth; O'Loughlin, Erin K; Pabayo, Roman; Roy-Gagnon, Marie-Hélène; Tremblay, Michèle; Wellman, Robert J; Hulst, Andraeavan; Paradis, Gilles

    2015-10-01

    The Nicotine Dependence in Teens (NDIT) study is a prospective cohort investigation of 1294 students recruited in 1999-2000 from all grade 7 classes in a convenience sample of 10 high schools in Montreal, Canada. Its primary objectives were to study the natural course and determinants of cigarette smoking and nicotine dependence in novice smokers. The main source of data was self-report questionnaires administered in class at school every 3 months from grade 7 to grade 11 (1999-2005), for a total of 20 survey cycles during high school education. Questionnaires were also completed after graduation from high school in 2007-08 and 2011-12 (survey cycles 21 and 22, respectively) when participants were aged 20 and 24 years on average, respectively. In addition to its primary objectives, NDIT has embedded studies on obesity, blood pressure, physical activity, team sports, sedentary behaviour, diet, genetics, alcohol use, use of illicit drugs, second-hand smoke, gambling, sleep and mental health. Results to date are described in 58 publications, 20 manuscripts in preparation, 13 MSc and PhD theses and 111 conference presentations. Access to NDIT data is open to university-appointed or affiliated investigators and to masters, doctoral and postdoctoral students, through their primary supervisor (www.nditstudy.ca).

  11. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  12. Measures and models of nicotine dependence: positive reinforcement.

    Science.gov (United States)

    Glautier, Steven

    2004-06-01

    This paper addresses the problem of assessing nicotine dependence. The main objective is to develop theory-led suggestions for measures that will be relevant in the early phases of tobacco use, as well as in established smokers. Theoretical models of addiction falling into the general class of 'positive reinforcement theories' were identified and reviewed. From this review a number of drug effects and patterns of behaviour were distilled and categorized as either vulnerability or dependence indicators. A comparison of those features with the International Classification of Diseases (ICD-10) and Diagnostic and Statistical Manual (DSM-IV) diagnostic systems shows that neither system includes detailed assessment of vulnerability indicators. It is argued that measurement of vulnerability indicators, in addition to dependence indicators, may add to the predictive validity of assessments carried out in early career tobacco users, especially where there is limited evidence of established dependence. In addition, it is suggested that examination of measures that differentiate a subgroup of early career smokers termed 'rapid accelerators' may prove profitable and enable identification of the key parameters of nicotine reinforcement.

  13. Nicotine reduction as an increase in the unit price of cigarettes: a behavioral economics approach.

    Science.gov (United States)

    Smith, Tracy T; Sved, Alan F; Hatsukami, Dorothy K; Donny, Eric C

    2014-11-01

    Urgent action is needed to reduce the harm caused by smoking. Product standards that reduce the addictiveness of cigarettes are now possible both in the U.S. and in countries party to the Framework Convention on Tobacco Control. Specifically, standards that required substantially reduced nicotine content in cigarettes could enable cessation in smokers and prevent future smoking among current non-smokers. Behavioral economics uses principles from the field of microeconomics to characterize how consumption of a reinforcer changes as a function of the unit price of that reinforcer (unit price=cost/reinforcer magnitude). A nicotine reduction policy might be considered an increase in the unit price of nicotine because smokers are paying more per unit of nicotine. This perspective allows principles from behavioral economics to be applied to nicotine reduction research questions, including how nicotine consumption, smoking behavior, use of other tobacco products, and use of other drugs of abuse are likely to be affected. This paper reviews the utility of this approach and evaluates the notion that a reduction in nicotine content is equivalent to a reduction in the reinforcement value of smoking-an assumption made by the unit price approach. PMID:25025523

  14. An Experimental Study of the Effects of Nicotine on the Intervertebral Disc

    Directory of Open Access Journals (Sweden)

    Nahla M. Afifi**# and Kawther A. Hafez

    2007-06-01

    Full Text Available Backgrounds: Clinically it had been noticed that a large proportion of patients presenting with low back pain are smokers. Therefore, in this experimental study the histological effects of nicotine on the lumbar intervertebral discs of the rabbits was investigated. Material and Methods: Eighteen rabbits were divided equally into 3 groups, Group 1 (a & b; as control. Group2 injected intraperitoneally by 5000 ng/kg nicotine daily for 4 weeks. Group3 injected intraperitoneally by 5000 ng/kg nicotine daily for 8 weeks. The selected dose produced blood nicotine levels equivalent to those found in heavy smokers (30 cigarettes / day. Results: Light and electron microscopic studies revealed that nicotine injection showed a variety of histological changes, which were not observed in the control group. This includes appearance of spaces within the nucleus pulposus and separation from the adjacent fibrous lamellae in the annulus fibrosus. Also loss of the regularity of the multilayered structure of the annulus fibrosus, and excessive inclusions associated with vacuoles which continue with the rough endoplasmic reticulum within the chondrocytes. Disc degeneration was more marked in rabbits injected with nicotine for 8 weeks (G3 than in those injected for 4 weeks (G2. Conclusion: It could be concluded that the disc degeneration is more common among smokers and is correlated with the duration of exposure to nicotine.

  15. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.

    Science.gov (United States)

    Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M

    2016-02-01

    The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue. PMID:26088184

  16. Optimizing treatments for nicotine dependence by increasing cognitive performance during withdrawal

    Science.gov (United States)

    Ashare, Rebecca L; Schmidt, Heath D

    2014-01-01

    Introduction Current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, there is a clear need to develop novel antismoking medications. Nicotine withdrawal is associated with cognitive impairments that predict smoking relapse. It has been proposed that these cognitive deficits are a hallmark of nicotine withdrawal that could be targeted in order to prevent smoking relapse. Thus, pharmacotherapies that increase cognitive performance during nicotine withdrawal may represent potential smoking cessation agents. Areas covered The authors review the clinical literature demonstrating that nicotine withdrawal is associated with deficits in working memory, attention and response inhibition. They then briefly summarize different classes of compounds and strategies to increase cognitive performance during nicotine withdrawal. Particular emphasis has been placed on translational research in order to highlight areas for which there is strong rationale for pilot clinical trials of potential smoking cessation medications. Expert opinion There is emerging evidence that supports deficits in cognitive function as a plausible nicotine withdrawal phenotype. The authors furthermore believe that the translational paradigms presented here may represent efficient and valid means for the evaluation of cognitive-enhancing medications as possible treatments for nicotine dependence. PMID:24707983

  17. Consequences of nicotine exposure during different phases of rat brain development.

    Science.gov (United States)

    Khanna Sood, Pooja; Sharma, Sonika; Nehru, Bimla

    2012-08-01

    Nicotine is a psychoactive drug whose intensity of the addiction is so tremendous that it is now the fastest growing public health hazard in the world. The present study was designed to study the toxic effects of nicotine during different phases of rat brain development. The study is extended through adult brain designated as group A, that received nicotine at the dosage of 5 mg/kg of b.wt. for 21 days and were sacrificed following 21 days of recovery. In the second group P, pups in different gestational phases (P2-P4) were given maternal nicotine exposures for only a period of 7 days followed by recovery till they had achieved the age of 40 days. A significant decrease in long term memory was observed in adult rats which correlated well with a significant decrease in the acetylcholine esterase activity. Simultaneously a significant decrease in the total glutathione, GSH content and catalase activity was observed which could account for the increase in peroxidation of lipids as evaluated by malondialdehyde (MDA) content in the nicotine exposed adult rats. The consequences of maternal nicotine exposure were different during different exposures regimes the alterations were least during the early gestation period, i.e. P2 (2-9 days of their gestation period) as compared to P3 (7-14 days of their gestation period) and P4 (21 days of their weanling period). The study indicates that the consequences of nicotine exposure are varied during different stages of brain development. PMID:22169521

  18. Mephedrone and nicotine: oxidative stress and behavioral interactions in animal models.

    Science.gov (United States)

    Budzynska, Barbara; Boguszewska-Czubara, Anna; Kruk-Slomka, Marta; Kurzepa, Jacek; Biala, Grazyna

    2015-05-01

    The purpose of our experiment was to examine the influence of co-administration of nicotine and mephedrone on anxiety-like behaviors, cognitive processes and the nicotine-induced behavioral sensitization as well as processes connected with induction of oxidative stress in the brain of male Swiss mice. The results revealed that co-administration of subthreshold doses of mephedrone and nicotine (0.05 mg/kg each) exerted marked anxiogenic profile in the elevated plus maze and displayed pro-cognitive action in the passive avoidance paradigm (nicotine 0.05 mg/kg and mephedrone 2.5 mg/kg). Furthermore, one of the main findings of the present study was that mephedrone, administered alone at the dose not affecting locomotor activity of mice (1 mg/kg), enhanced the expression of nicotine-induced locomotor sensitization. Moreover, mephedrone administered with nicotine decreased general antioxidant status and catalase activity as well as antioxidant enzymes activity in the hippocampus and prefrontal cortex and increased concentration of malondialdehyde, an indicator of lipid peroxidation processes. Considering the likelihood that mephedrone is taken as a part of polydrug combination with nicotine, the effects of this combination on mammalian organisms have been confirmed in our study. Understanding the consequences of co-administration of psychoactive substances on the central nervous system and oxidative processes in the brain provide the important toxicological significance, and may be useful in polydrug intoxication treatment. PMID:25862193

  19. Mephedrone and nicotine: oxidative stress and behavioral interactions in animal models.

    Science.gov (United States)

    Budzynska, Barbara; Boguszewska-Czubara, Anna; Kruk-Slomka, Marta; Kurzepa, Jacek; Biala, Grazyna

    2015-05-01

    The purpose of our experiment was to examine the influence of co-administration of nicotine and mephedrone on anxiety-like behaviors, cognitive processes and the nicotine-induced behavioral sensitization as well as processes connected with induction of oxidative stress in the brain of male Swiss mice. The results revealed that co-administration of subthreshold doses of mephedrone and nicotine (0.05 mg/kg each) exerted marked anxiogenic profile in the elevated plus maze and displayed pro-cognitive action in the passive avoidance paradigm (nicotine 0.05 mg/kg and mephedrone 2.5 mg/kg). Furthermore, one of the main findings of the present study was that mephedrone, administered alone at the dose not affecting locomotor activity of mice (1 mg/kg), enhanced the expression of nicotine-induced locomotor sensitization. Moreover, mephedrone administered with nicotine decreased general antioxidant status and catalase activity as well as antioxidant enzymes activity in the hippocampus and prefrontal cortex and increased concentration of malondialdehyde, an indicator of lipid peroxidation processes. Considering the likelihood that mephedrone is taken as a part of polydrug combination with nicotine, the effects of this combination on mammalian organisms have been confirmed in our study. Understanding the consequences of co-administration of psychoactive substances on the central nervous system and oxidative processes in the brain provide the important toxicological significance, and may be useful in polydrug intoxication treatment.

  20. Protective effect of Eruca sativa seed oil against oral nicotine induced testicular damage in rats.

    Science.gov (United States)

    Abd El-Aziz, Gamal Said; El-Fark, Magdy Omar; Hamdy, Raid Mahmoud

    2016-08-01

    Nicotine is a pharmacologically active component of the tobacco that adversely affects the male reproductive system and fertility. Nicotine administration in experimental animals was found to affect spermatogenesis, epididymal sperm count, motility and the fertilizing potential of sperms. The goal of this work is to assess the protective or ameliorative effect of Eruca Sativa seed oil against testicular damage induced by oral administration of nicotine in rats. Male adult Sprague-Dawley rats were used and divided into three groups; control, nicotine treated and nicotine and Eruca seed oil treated groups. After three weeks of treatment, the rats were weighed and sacrificed where testes were removed and weighed then calculating relative testis weights. The testes were processed for routine paraffin embedding and staining and the sections were examined for different morphometric and histopathological changes. The results show that nicotine administration had an effect on the body and testis weight and various morphometric parameters of the testis. It also induced varying degrees of structural damage to the seminiferous tubules, with shrinkage and absence of mature spermatids. Disorganized, vacuolization and loss of germinal cells were noticed in the basement membrane. The co-administration of Eruca Sativa seed oil led to improvement in the morphometric and histopathological changes of the seminiferous tubules. In conclusion, Eruca Sativa seed oil treatment in this study had a protective role by reversing, almost completely, all morphometric and histological changes in the testis induced by nicotine administration.

  1. Nicotine Exposure Exacerbates Development of Cataracts in a Type 1 Diabetic Rat Model

    Directory of Open Access Journals (Sweden)

    Nima Tirgan

    2012-01-01

    Full Text Available Diabetes and smoking are known risk factors for cataract development. In this study, we evaluated the effect of nicotine on the progression of cataracts in a type 1 diabetic rat model. Diabetes was induced in Sprague-Dawley rats by a single injection of 65 mg/kg streptozotocin. Daily nicotine injections were administered subcutaneously. Forty-five rats were divided into groups of diabetics with and without nicotine treatment and controls with and without nicotine treatment. Progression of lens opacity was monitored using a slit lamp biomicroscope and scores were assigned. To assess whether systemic inflammation played a role in mediating cataractogenesis, we studied serum levels of eotaxin, IL-6, and IL-4. The levels of the measured cytokines increased significantly in nicotine-treated and untreated diabetic animals versus controls and demonstrated a positive trend in the nicotine-treated diabetic rats. Our data suggest the presence of a synergistic relationship between nicotine and diabetes that accelerated cataract formation via inflammatory mediators.

  2. Effects of nicotine on attention and inhibitory control in healthy nonsmokers.

    Science.gov (United States)

    Wignall, Nicholas D; de Wit, Harriet

    2011-06-01

    Nicotine improves cognitive functioning in smokers and psychiatric populations, but its cognitive-enhancing effects in healthy nonsmokers are less well understood. Nicotine appears to enhance certain forms of cognition in nonsmokers, but its specificity to subtypes of cognition is not known. This study sought to replicate and extend previous findings on the effects of nicotine on cognitive performance in healthy nonsmokers. Healthy young adults (N = 40, 50% women) participated in a placebo-controlled, double-blind, repeated measures experiment examining the effects of 7 mg transdermal nicotine or placebo. Participants completed tests of attention (Attention Network Test), behavioral inhibition (stop signal task, Stroop test), reward responsiveness (signal detection task), and risk-taking behavior (Balloon Analogue Risk Task). Physiological (heart rate, blood pressure) and subjective (Profile of Mood States, Drug Effects Questionnaire) measures were also obtained. Nicotine significantly improved performance only on the Stroop test, but it impaired performance on one aspect of the Attention Network Test, the orienting effect. Nicotine produced its expected effects on physiologic and subjective measures within the intended time course. The findings of this study contribute to a growing literature indicating that nicotine differentially affects specific subtypes of cognitive performance in healthy nonsmokers. PMID:21480731

  3. The relationship between impulsivity, risk-taking propensity and nicotine dependence among older adolescent smokers.

    Science.gov (United States)

    Ryan, Katherine K; Mackillop, James; Carpenter, Matthew J

    2013-01-01

    Impulsivity and risk-taking propensity are neurobehavioral traits that reliably distinguish between smoking and non-smoking adults. However, how these traits relate to smoking quantity and nicotine dependence among older adolescent smokers is unclear. The current study examined impulsivity and risk-taking propensity in relation to smoking behavior and nicotine dependence among current older adolescent smokers (age 16-20 years; N=107). Participants completed the Barratt Impulsiveness Scale-11 (BIS-11), the Balloon Analogue Risk Task (BART), and self-report measures of smoking behavior and nicotine dependence. Results indicated a significant positive relationship between nicotine dependence and the Attention subscale (β=.20, t=2.07, prisk-taking propensity was associated with less dependence. These data suggest that impulsivity and risk-taking propensity are related to older adolescent smoking but are separable traits with distinguishable associations with nicotine dependence among adolescents. These findings support the notion that impulsivity is related to heightened nicotine dependence, but suggest that the relationship between risk-taking propensity and nicotine dependence is more ambiguous and warrants further investigation. PMID:23006247

  4. Uptake of [3H]-nicotine and [3H]-noradrenaline by cultured chromaffin cells.

    Science.gov (United States)

    Ceña, V.; García, A. G.; Montiel, C.; Sánchez-García, P.

    1984-01-01

    Three day-old cultured bovine adrenal chromaffin cells incubated at room temperature with Krebs-HEPES solution containing different concentrations of [3H]-nicotine, took up and retained increasing amounts of the drug by a mechanism that did not saturate. Concentrations of cold nicotine as high as 100 microM did not alter the amount of [3H]-nicotine retained by cells. Imipramine, cocaine, tetracaine or mecamylamine, at concentrations (10 microM) that blocked the catecholamine secretory effects of nicotine completely, did not modify the uptake of [3H]-nicotine. Both imipramine and cocaine drastically inhibited [3H]-noradrenaline uptake by cells in a concentration-dependent manner (IC50S of 0.08 and 1 microM, respectively). These data indicate that the secretory effects of nicotine are not coupled to its previous uptake into cells, and are evidence in favour of a site of action for nicotine located in or at the surface of the chromaffin cell membrane. PMID:6704577

  5. Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat.

    Science.gov (United States)

    Aleisa, A M; Helal, G; Alhaider, I A; Alzoubi, K H; Srivareerat, M; Tran, T T; Al-Rejaie, S S; Alkadhi, K A

    2011-08-01

    Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long-term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD-induced learning and memory impairment has not been studied. Modified multiple platform paradigm was used to induce SD for 24 or 48 h during which rats were injected with saline or nicotine (1 mg kg(-1) s.c.) twice a day. In the radial arm water maze (RAWM) task, 24- or 48-h SD significantly impaired learning and short-term memory. In addition, extracellular recordings from CA1 and dentate gyrus (DG) regions of the hippocampus in urethane anesthetized rats showed a significant impairment of LTP after 24- and 48-h SD. Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD-induced impairment of learning and STM and prevented SD-induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.

  6. Post-learning REM sleep deprivation impairs long-term memory: reversal by acute nicotine treatment.

    Science.gov (United States)

    Aleisa, A M; Alzoubi, K H; Alkadhi, K A

    2011-07-15

    Rapid eye movement sleep deprivation (REM-SD) is associated with spatial learning and memory impairment. During REM-SD, an increase in nicotine consumption among habitual smokers and initiation of tobacco use by non-smokers have been reported. We have shown recently that nicotine treatment prevented learning and memory impairments associated with REM-SD. We now report the interactive effects of post-learning REM-SD and/or nicotine. The animals were first trained on the radial arm water maze (RAWM) task, then they were REM-sleep deprived using the modified multiple platform paradigm for 24h. During REM-SD period, the rats were injected with saline or nicotine (1mg/kg s.c. every 12h: a total of 3 injections). The animals were tested for long-term memory in the RAWM at the end of the REM-SD period. The 24h post-learning REM-SD significantly impaired long-term memory. However, nicotine treatment reversed the post-learning REM-SD-induced impairment of long-term memory. On the other hand, post-learning treatment of normal rats with nicotine for 24h enhanced long-term memory. These results indicate that post-learning acute nicotine treatment prevented the deleterious effect of REM-SD on cognitive abilities.

  7. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    Science.gov (United States)

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. PMID:26608528

  8. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  9. Nicotine effects on regional cerebral blood flow in awake, resting tobacco smokers.

    Science.gov (United States)

    Domino, E F; Minoshima, S; Guthrie, S; Ohl, L; Ni, L; Koeppe, R A; Zubieta, J K

    2000-12-01

    The hypothesis for this research was that regional cerebral blood flow (rCBF) would increase following nasal nicotine administration to overnight abstinent tobacco smokers in relationship to the known brain distribution of nicotinic cholinergic receptors (nAChRs). Nine male and nine female healthy adult smokers were studied. They abstained overnight from tobacco products for 10 or more hours prior to study the next morning. Nicotine nasal spray was given in doses of 1-2.5 mg total with half in each nostril while the subject was awake and resting in a supine position. Oleoresin of pepper solution in a similar volume was used as an active placebo to control for the irritating effects of nicotine. Both substances were given single blind to the subjects. Positron emission tomography (PET) with H(2)(15)O was used to measure rCBF. The data from each subject volunteer were normalized to global activity to better assess regional brain changes. Both nasal nicotine and pepper spray produced similar increases in CBF in somesthetic area II, consistent with the irritant effects of both substances. The mean rCBF effects of nasal pepper were subtracted from those of nasal nicotine to determine the actions of nicotine alone. The latter produced increases in rCBF in the thalamus, pons, Brodman area 17 of the visual cortex, and cerebellum. Some brain areas that contain a large number of nAChRs, such as the thalamus, showed an increase in CBF. Other areas that have few nAChRs, such as the cerebellum, also showed an increase in relative CBF. The hippocampal/parahippocampal areas showed greater regional decreases (left) and lesser increases (right) in CBF that correlated with the increase in plasma arterial nicotine concentrations. The results obtained indicate complex primary and secondary effects of nicotine in which only some regional brain CBF changes correlate with the known distribution of nAChR. No gender differences were noted. PMID:11020234

  10. Tobacco Use and Nicotine Dependence among Conflict-Affected Men in the Republic of Georgia

    Directory of Open Access Journals (Sweden)

    Vikram Patel

    2013-05-01

    Full Text Available Background: There is very little evidence globally on tobacco use and nicotine dependence among civilian populations affected by armed conflict, despite key vulnerability factors related to elevated mental disorders and socio-economic stressors. The study aim was to describe patterns of smoking and nicotine dependence among conflict-affected civilian men in the Republic of Georgia and associations with mental disorders. Methods: A cross-sectional household survey using multistage random sampling was conducted in late 2011 among conflict-affected populations in Georgia. Respondents included in this paper were 1,248 men aged ≥18 years who were internally displaced persons (IDPs and former IDPs who had returned in their home areas. Outcomes of current tobacco use, heavy use (≥20 cigarettes per day, and nicotine dependence (using the Fagerström Test for Nicotine Dependence were used. PTSD, depression, anxiety and hazardous alcohol use were also measured, along with exposure to traumatic events and a range of demographic and socio-economic characteristics. Results: Of 1,248 men, 592 (47.4% smoked and 70.9% of current smokers were heavy smokers. The mean nicotine dependence score was 5.0 and the proportion with high nicotine dependence (≥6 was 41.4%. In multivariate regression analyses, nicotine dependence was significantly associated with PTSD (β 0.74 and depression (β 0.85, along with older age (except 65+ years, and being a returnee (compared to IDPs. Conclusions: The study reveals very high levels of heavy smoking and nicotine dependence among conflict-affected persons in Georgia. The associations between nicotine dependence, PTSD and depression suggest interventions could yield synergistic benefits.

  11. Genetic factors control nicotine self-administration in isogenic adolescent rat strains.

    Directory of Open Access Journals (Sweden)

    Hao Chen

    Full Text Available Adult cigarette smokers usually become dependent on cigarettes during adolescence. Despite recent advances in addiction genetics, little data delineates the genetic factors that account for the vulnerability of humans to smoke tobacco. We studied the operant nicotine self-administration (SA behavior of six inbred strains of adolescent male rats (Fisher 344, Brown Norway, Dark Agouti, Spontaneous Hypertensive Rat, Wistar Kyoto and Lewis and six selected F1 hybrids. All rats were trained to press a lever to obtain food starting on postnatal day (PN 32, and then nicotine (0.03 mg/kg/infusion, i.v. reinforcement was made available on PN41-42 (10 consecutive daily 2 h sessions. Of the 12 isogenic strains, Fisher rats self-administered the fewest nicotine infusions (1.45 ± 0.36/d during the last 3 d, while Lewis rats took the most nicotine (13.0 ± 1.4/d. These strains sorted into high, intermediate and low self-administration groups in 2, 2, and 8 strains, respectively. The influence of heredity on nicotine SA (0.64 is similar to that reported for humans. Therefore, this panel of isogenic rat strains effectively models the overall impact of genetics on the vulnerability to acquire nicotine-reinforced behavior during adolescence. Separate groups of rats responded for food starting on PN41. The correlation between nicotine and food reward was not significant. Hence, the genetic control of the motivation to obtain nicotine is distinctly different from food reward, indicating the specificity of the underlying genetic mechanisms. Lastly, the behavior of F1 hybrids was not predicted from the additive behavior of the parental strains, indicating the impact of significant gene-gene interactions on the susceptibility to nicotine reward. Taken together, the behavioral characteristics of this model indicate its strong potential to identify specific genes mediating the human vulnerability to smoke cigarettes.

  12. Pharmacokinetics of nicotine in rats after multiple-cigarette smoke exposure

    Energy Technology Data Exchange (ETDEWEB)

    Rotenberg, K.S.; Adir, J.

    1983-06-15

    The pharmacokinetics of nicotine and its major metabolites was evaluated in male rats after multiple-cigarette smoke exposure. A smoke-exposure apparatus was used to deliver cigarette smoke to the exposure chamber. The rats were exposed to smoke from a single cigarette every 8 hr for 14 days and to the smoke of a cigarette spiked with radiolabeled nicotine on the 15th day. Blood and urine samples were collected at timed intervals during the 10-min smoke-exposure period of the last cigarette and up to 48 hr thereafter. Nicotine, cotinine, and other polar metabolites were separated by thin-layer chromatography and quantified by liquid scintillation counting. The data were analyzed by computer fitting, and the derived pharmacokinetic parameters were compared to those observed after a single iv injection of nicotine and after a single-cigarette smoke exposure. The results indicated that the amount of nicotine absorbed from multiple-cigarette smoke was approximately 10-fold greater than that absorbed from a single cigarette. Also, unlike the single-cigarette smoke exposure experiment, nicotine plasma levels did not decay monotonically but increased after the 5th hr, and high plasma concentrations persisted for 30 hr. The rate and extent of the formation of cotinine, the major metabolite of nicotine, were decreased as compared with their values following a single-cigarette smoke exposure. It was concluded that nicotine or a constituent of tobacco smoke inhibits the formation of cotinine and may affect the biotransformation of other metabolites. Urinary excretion tended to support the conclusions that the pharmacokinetic parameters of nicotine and its metabolites were altered upon multiple as compared to single dose exposure.

  13. Effect of nicotine and porphyromonas gingivalis lipopolysaccharide on endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Na An

    Full Text Available Smoking is considered a significant risk factor for both periodontal disease and cardiovascular disease (CVD. Endothelial cells play an important role in the progression of both diseases. In the present study, we investigated in vitro the impact of nicotine on functional properties of human umbilical vein endothelial cells (HUVECs stimulated with lipopolysaccharide (LPS of periodontal pathogen Porphyromonas gingivalis. HUVECs were stimulated with different concentrations of nicotine (10 µM-10 mM and/or P. gingivalis LPS. Expression levels of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, monocyte chemoattractant protein 1, and interleukin-8 were measured on both gene and protein levels. Cell proliferation/viability, apoptosis, and migration were also investigated. Nicotine at a concentration of 10 mM significantly decreased P. gingivalis LPS-induced expression of all investigated proteins after 4 h stimulation, while lower nicotine concentrations had no significant effect on protein expression with or without P. gingivalis LPS. Proliferation/viability of HUVECs was also significantly inhibited by 10-mM nicotine but not by lower concentrations. Migration of HUVECs was significantly decreased by nicotine at concentrations of 1-10 mM. Nicotine at a concentration similar to that observed in the serum of smokers had no significant effect on the functional properties of HUVECs. However, high concentrations of nicotine, similar to that observed in the oral cavity of smokers, inhibited the inflammatory response of HUVECs. This effect of nicotine might be associated with decreased gingival bleeding indices in smoking periodontitis patients.

  14. Tobacco Transcription Factors NtMYC2a and NtMYC2b Form Nuclear Complexes with the NtJAZ1 Repressor and Regulate Multiple Jasmonate-Inducible Steps in Nicotine Biosynthesis

    Institute of Scientific and Technical Information of China (English)

    Hong-Bo Zhang; Marta T. Bokowiec; Paul J. Rushton; Sheng-Cheng Han; Michael P. Timko

    2012-01-01

    Biotic and abiotic stress lead to elevated levels of jasmonic acid (JA) and its derivatives and activation of the biosynthesis of nicotine and related pyridine alkaloids in cultivated tobacco (Nicotiana tabacum L.).Among the JAresponsive genes is NtPMT1a,encoding putrescine N-methyl transferase,a key regulatory enzyme in nicotine formation.We have characterized three genes (NtMYC2a,b,c) encoding basic helix-loop-helix (bH LH) transcription factors (TFs) whose expression is rapidly induced by JA and that specifically activate JA-inducible NtPMT1a expression by binding a G-box motif within the NtPMT1a promoter in in vivo and in vitro assays.Using split-YFP assays,we further show that,in the absence of JA,NtMYC2a and NtMYC2b are present as nuclear complexes with the NtJAZ1 repressor.RNA interference (RNAi)-mediated knockdown of NtMYC2a and NtMYC2b expression results in significant decreases in JA-inducible NtPMT1a transcript levels,as well as reduced levels of transcripts encoding other enzymes involved in nicotine and minor alkaloid biosynthesis,including an 80-90% reduction in the level of transcripts encoding the putative nicotine synthase gene NtA662.In contrast,ectopic overexpression of NtMYC2a and NtMYC2b had no effect on NtPMT1a expression in the presence or absence of exogenously added JA.These data suggest that NtMYC2a,b,c are required components of JA-inducible expression of multiple genes in the nicotine biosynthetic pathway and may act additively in the activation of JA responses.

  15. Effects of Nicotine Chewing Gum on UPDRS Score and P300 in Early-onset Parkinsonism

    OpenAIRE

    Mitsuoka, Takako; Kaseda, Yumiko; Yamashita, Hiroshi; Kohriyama, Tatsuo; Kawakami, Hideshi; Nakamura, Shigenobu; Yamamura, Yasuhiro

    2002-01-01

    It has been reported that nicotine shows some beneficial effects on Parkinson's disease. The purpose of the present study is to assess the therapeutic effects of nicotine chewing gum in patients with early-onset parkinsonism (EOP). The subjects were 8 patients with early-onset parkinsonism (male/ female = 4/ 4, mean age; 51.3 years). Four out of 8 patients had a history of smoking (smokers). To estimate the effects of nicotine gum, the scores on the Unified Parkinson's Disease Rating Scale (U...

  16. Release of noradrenaline and ATP by electrical stimulation and nicotine in guinea-pig vas deferens.

    Science.gov (United States)

    von Kügelgen, I; Starke, K

    1991-10-01

    Effects of electrical stimulation and nicotine on ATP and tritium outflow and smooth muscle tension were studied in the guinea-pig isolated vas deferens preincubated with [3H]-noradrenaline. ATP was measured using the luciferase technique. Electrical stimulation caused biphasic contractions and an acceleration of ATP and tritium outflow. The contraction amplitude and the overflow of ATP increased markedly, whereas the overflow of tritium increased only slightly with the frequency of stimulation (1-10 Hz; constant number of 60 pulses). The contraction amplitude did not increase with an increase in pulse number (20-540 pulses; constant frequency of 5 Hz), whereas the overflow of ATP increased slightly, and that of tritium markedly. Nicotine caused monophasic, transient contractions and, again, an acceleration of ATP and tritium outflow. Contractions, ATP and tritium overflow increased with the concentration of nicotine (56-320 mumol/l) in an approximately parallel manner. The influence of some drugs on responses to electrical stimulation (60 pulses, 5 Hz) and nicotine (180 mumol/l) was investigated. Tetrodotoxin blocked all effects of electrical stimulation but did not change those of nicotine. The reverse was true for hexamethonium. Neither electrical stimulation nor nicotine caused contraction or an increase in ATP outflow after pretreatment with 6-hydroxydopamine. The main effects of prazosin 0.3 mumol/l were to reduce electrically evoked contractions (above all second phase) as well as nicotine-evoked contractions and the nicotine-evoked overflow of ATP (the latter by about 81%). Prazosin also tended to diminish the electrically evoked overflow of ATP. alpha,beta-Methylene-ATP 10 mumol/l elicited a transient contraction and ATP overflow on its own. The main change in the subsequent state of desensitization was a decrease of the first phase of electrically evoked contractions. The main effects of prazosin combined with desensitization by alpha

  17. Mephedrone and Nicotine: Oxidative Stress and Behavioral Interactions in Animal Models

    OpenAIRE

    Budzynska, Barbara; Boguszewska-Czubara, Anna; Kruk-Slomka, Marta; Kurzepa, Jacek; Biala, Grazyna

    2015-01-01

    The purpose of our experiment was to examine the influence of co-administration of nicotine and mephedrone on anxiety-like behaviors, cognitive processes and the nicotine-induced behavioral sensitization as well as processes connected with induction of oxidative stress in the brain of male Swiss mice. The results revealed that co-administration of subthreshold doses of mephedrone and nicotine (0.05 mg/kg each) exerted marked anxiogenic profile in the elevated plus maze and displayed pro-cogni...

  18. Air Nicotine Monitoring for Second Hand Smoke Exposure in Public Places in India

    OpenAIRE

    Jagdish Kaur; Prasad, Vinayak M

    2011-01-01

    Background: Air nicotine monitoring is an established method of measuring exposure to second hand smoke (SHS). Not much research has been done in India to measure air nicotine for the purpose of studying exposure to SHS. It is a risk factor and many diseases are known to occur among non smokers if they are exposed to second hand smoke. Objective: To conduct monitoring of air nicotine for second hand smoke exposure in public places across major cities in India. Materials and Methods: A cross s...

  19. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  20. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  1. Nicotine Elevated Intracellular Ca2+ in Rat Airway Smooth Muscle Cells via Activating and Up-Regulating α7-Nicotinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yongliang Jiang

    2014-02-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is characterized by airway remodeling with airway smooth muscle (ASM hypertrophy and hyperplasia. Since tobacco use is the key risk factor for the development of COPD and intracellular Ca2+ concentration ([Ca2+]i plays a major role in both cell proliferation and differentiation, we hypothesized that nicotinic acetylcholine receptor (nAChR activation plays a role in the elevation of [Ca2+]i in airway smooth muscle cells (ASMCs. Methods: We examined the expression of nAChR and characterized the functions of α7-nAChR in ASMCs. Results: RT-PCR analysis showed that α2-7, β2, and β3-nAChR subunits are expressed in rat ASMCs, with α7 being one of the most abundantly expressed subtypes. Chronic nicotine exposure increased α7-nAChR mRNA and protein expression, and elevated resting [Ca2+]i in cultured rat ASMCs. Acute application of nicotine evoked a rapid increase in [Ca2+]i in a concentration-dependent manner, and the response was significantly enhanced in ASMCs cultured with 1 µM nicotine for 48 hours. Nicotine-induced Ca2+ response was reversibly blocked by the α7-nAChR nicotinic antagonists, methyllycaconitine and α-bungarotoxin. Small interfering RNA suppression of α7-nAChR also substantially blunted the Ca2+ responses induced by nicotine. Conclusion: These observations suggest that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.

  2. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    Science.gov (United States)

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol

  3. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    Science.gov (United States)

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol

  4. Protocol for the Smoking, Nicotine and Pregnancy (SNAP trial: double-blind, placebo-randomised, controlled trial of nicotine replacement therapy in pregnancy

    Directory of Open Access Journals (Sweden)

    Coughtrie Michael WH

    2007-01-01

    Full Text Available Abstract Background Smoking in pregnancy remains a public health challenge. Nicotine replacement therapy (NRT is effective for smoking cessation in non-pregnant people, but because women metabolise nicotine and cotinine much faster in pregnancy, it is unclear whether this will be effective for smoking cessation in pregnancy. The NHS Health Technology Assessment Programme (HTA-funded smoking, nicotine and pregnancy (SNAP trial will investigate whether or not nicotine replacement therapy (NRT is effective, cost-effective and safe when used for smoking cessation by pregnant women. Methods/Design Over two years, in 5 trial centres, 1050 pregnant women who are between 12 and 24 weeks pregnant will be randomised as they attend hospital for ante-natal ultrasound scans. Women will receive either nicotine or placebo transdermal patches with behavioural support. The primary outcome measure is biochemically-validated, self-reported, prolonged and total abstinence from smoking between a quit date (defined before randomisation and set within two weeks of this and delivery. At six months after childbirth self-reported maternal smoking status will be ascertained and two years after childbirth, self-reported maternal smoking status and the behaviour, cognitive development and respiratory symptoms of children born in the trial will be compared in both groups. Discussion This trial is designed to ascertain whether or not standard doses of NRT (as transdermal patches are effective and safe when used for smoking cessation during pregnancy.

  5. Simultaneous determination of nicotine, cotinine, and nicotine N-oxide in human plasma, semen, and sperm by LC-Orbitrap MS.

    Science.gov (United States)

    Abu-Awwad, Ahmad; Arafat, Tawfiq; Schmitz, Oliver J

    2016-09-01

    Nicotine (Nic) distribution in human fluids and tissues has a deleterious effect on human health. In addition to its poisoning profile, Nic may contribute to the particular impact of smoking on human reproduction. Although present in seminal fluid, still nobody knows whether nicotine is available in sperm or not. Herein, we developed and validated a new bioanalytical method, for simultaneous determination of Nic, cotinine (Cot), and nicotine N'-oxide (Nox) in human plasma, semen, and sperm by LC-ESI-orbitrap-MS. Blood and semen samples were collected from 12 healthy smoking volunteers in this study. Sperm bodies were then separated quantitatively from 1 mL of semen samples by centrifugation. The developed method was fully validated for plasma following European and American guidelines for bioanalytical method validation, and partial validation was applied to semen analysis. Plasma, semen, and sperm samples were treated by trichloroacetic acid solution for protein direct precipitation in single extraction step. The established calibration range for Nic and Nox in plasma and semen was linear between 5 and 250 ng/mL, and for Cot between 10 and 500 ng/mL. Nic and Cot were detected in human sperm at concentrations as high as in plasma. In addition, Nox was present in semen and sperm but not in plasma. Graphical abstract Nicotine correlation between plasma and semen a; Nicotine correlation between semen and sperm c; Cotinine correlation between plasma and semen b; Cotinine correlation between semen and sperm d.

  6. Accumulation and persistence of nicotine derived DNA and hemoglobin adducts in mice after multiple administration of {sup 14}C-nicotine at low dose level

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hongfang; Li, Hongli; Zhu, Jiadan; Wang, Haifang; Liu, Yuanfang [Peking Univ., Beijing (China). Dept. of Chemical Biology, College of Chemistry and Molecular Engineering; Liu, Kexin; Peng, Shixiang [Peking Univ., Beijing (China). Inst. of Heavy Ion Physics, School of Physics

    2004-07-01

    The hypothetic role of nicotine in causing smoking related diseases has not been well established. Based on our early finding of the genotoxicity of nicotine, a sub-chronic study on the accumulation and persistence of nicotine derived DNA and hemoglobin (Hb) adducts in mice following multiple low dose exposures was carried out by accelerator mass spectrometry (AMS). AMS is a sophisticated ultrasensitive nuclear method, which facilitates the detection of adduction of DNA and other bio-macromolecules with xenobiotics at human relevant environmental dose levels. Briefly, in this study [N-{sup 14}CH{sub 3}]-nicotine (s.a. 16.2 {mu}Ci/{mu}mol) was administered to mice by gavage once daily at 3.0 {mu}g/kg b.w., which is equivalent to an estimated nicotine dose inhaled by a 70 kg person smoking 5 cigarettes, for 14 consecutive days. Lung DNA, liver DNA and Hb were isolated from tissues and blood samples which were collected at 1, 3, 5, 7, 10, 14, 15, 17, 21 and 25 days time point, respectively. (orig.)

  7. In vivo PET imaging of brain nicotinic cholinergic receptors

    International Nuclear Information System (INIS)

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the α4β2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [18F]fluoro-A-85380 (Dolle et al., 1999). The [18F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ 18F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the 18F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [18F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [18F]fluoro-A-85380 was also used in epileptic patients to whom a mutation in the α4 or β2 nAChRs subunit have been identified. We found that, in these patients, the pattern of the brain distribution of the radiotracer was found different when compared to the healthy subjects

  8. Metazoan promoters

    DEFF Research Database (Denmark)

    Lenhard, Boris; Sandelin, Albin Gustav; Carninci, Piero

    2012-01-01

    and their features, helping researchers who are investigating functional categories of promoters and their modes of regulation. Additional features of promoters that are being characterized include types of histone modifications, nucleosome positioning, RNA polymerase pausing and novel small RNAs. In this Review, we...

  9. Modifying Risk Factors for Total Joint Arthroplasty: Strategies That Work Nicotine.

    Science.gov (United States)

    Springer, Bryan D

    2016-08-01

    Smoking and nicotine use remain a major health care crisis in the United States. Although rates have dropped dramatically over the last 50 years, approximately 18% of the US adult population still smokes. The musculoskeletal effects of nicotine and other byproducts of smoking place patients at increased risk for perioperative complications including medical complication, wound healing problems, infection, and death. A comprehensive behavioral modification program with or without the use of nicotine replacement therapy has been shown to be most effective at smoking cessation around the time of planned surgery. Although literature suggests that smoking cessation 4-6 weeks before surgery can diminish risk, both current and former smokers are at increased risk for perioperative complications compared with those that have never smoked. Cotinine, a metabolite of nicotine, can be used to monitor smoking cessation before surgery.

  10. Microinjections of a nicotinic agonist into dopamine terminal fields: effects on locomotion.

    Science.gov (United States)

    Museo, E; Wise, R A

    1990-09-01

    Nicotine induces locomotion, a behavior associated with the mesocorticolimbic dopamine system. The present study determined the effects on locomotion of direct microinjections of the nicotinic agonist cytisine into four DA terminal fields were nicotinic receptors have been localized: nucleus accumbens (NAS, n = 20), caudate putamen (CPU, n = 9), olfactory tubercle (OT, n = 8), and medial prefrontal cortex (MPC, n = 12). Male Long-Evans rats were injected with cytisine (0.1, 1, 10 and 100 nanomoles per 0.5 microliters per side) or vehicle through indwelling cannulae, and locomotor activity was recorded during a 60-minute test session; each animal was tested with each dose in counterbalanced order. NAS injections of the three highest doses of cytisine increased locomotion relative to vehicle injections; injections in the CPU, dorsal to the NAS, were ineffective, as were MPC and OT injections. The data support the notion that systemic nicotine may interact with dopaminergic projections to the NAS to produce increases in locomotor activity.

  11. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence.

    Science.gov (United States)

    Nunes, Sandra Odebrecht Vargas; Vargas, Heber Odebrecht; Prado, Eduardo; Barbosa, Decio Sabbatini; de Melo, Luiz Picoli; Moylan, Steven; Dodd, Seetal; Berk, Michael

    2013-09-01

    Nicotine dependence is common in people with mood disorders; however the operative pathways are not well understood. This paper reviews the contribution of inflammation and oxidative stress pathways to the co-association of depressive disorder and nicotine dependence, including increased levels of pro-inflammatory cytokines, increased acute phase proteins, decreased levels of antioxidants and increased oxidative stress. These could be some of the potential pathophysiological mechanisms involved in neuroprogression. The shared inflammatory and oxidative stress pathways by which smoking may increase the risk for development of depressive disorders are in part mediated by increased levels of pro-inflammatory cytokines, diverse neurotransmitter systems, activation the hypothalamic-pituitary-adrenal (HPA) axis, microglial activation, increased production of oxidative stress and decreased levels of antioxidants. Depressive disorder and nicotine dependence are additionally linked imbalance between neuroprotective and neurodegenerative metabolites in the kynurenine pathway that contribute to neuroprogression. These pathways provide a mechanistic framework for understanding the interaction between nicotine dependence and depressive disorder.

  12. Smoking history, nicotine dependence and opioid use in patients with chronic non-malignant pain

    DEFF Research Database (Denmark)

    Plesner, K; Jensen, H I; Højsted, J

    2016-01-01

    BACKGROUND: Previous studies have demonstrated a positive association between smoking and addiction to opioids in patients with chronic non-malignant pain. This could be explained by a susceptibility in some patients to develop addiction. Another explanation could be that nicotine influences both...... pain and the opioid system. The objective of the study was to investigate whether smoking, former smoking ± nicotine use and nicotine dependence in patients with chronic non-malignant pain were associated with opioid use and addiction to opioids. METHODS: The study was a cross-sectional study carried...... as in the general population. The prevalence of patients using opioids was 54% and the prevalence of addiction to opioids was 6%. No significant differences in addiction were found between the different smoking groups, but smokers and former smokers using nicotine tended to use opioids more frequently and at higher...

  13. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    Science.gov (United States)

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats" NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo." The pattern evok...

  14. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  15. In vivo PET imaging of brain nicotinic cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  16. Associations of Mindfulness with Nicotine Dependence, Withdrawal, and Agency

    Science.gov (United States)

    Vidrine, Jennifer Irvin; Businelle, Michael S.; Cinciripini, Paul; Li, Yisheng; Marcus, Marianne T.; Waters, Andrew J.; Reitzel, Lorraine R.; Wetter, David W.

    2016-01-01

    Quitting smoking is a major life stressor that results in numerous aversive consequences, including persistently increased level of post-cessation negative affect and relapse. The identification of factors that may enhance behavioral and emotional regulation after quitting may be useful in enhancing quit rates and preventing relapse. One factor broadly linked with behavioral and emotional regulation is mindfulness. This study examined baseline associations of mindfulness with demographic variables, smoking history, dependence, withdrawal severity, and agency among 158 smokers enrolled in a cessation trial. Results indicated that mindfulness was negatively associated with level of nicotine dependence and withdrawal severity, and positively associated with a sense of agency regarding cessation. Moreover, mindfulness remained significantly associated with these measures even after controlling for key demographic variables. Results suggest that low level of mindfulness may be an important predictor of vulnerability to relapse among adult smokers preparing to quit; thus, mindfulness-based interventions may enhance cessation. PMID:19904667

  17. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    Science.gov (United States)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  18. Percutaneous absorption of nicotinic acid derivatives in vitro.

    Science.gov (United States)

    Dal Pozzo, A; Donzelli, G; Liggeri, E; Rodriguez, L

    1991-01-01

    The permeation rates through isolated epidermis of a homologous series of glycol, polyglycol, and alkyl esters of nicotinic acid were measured in vitro in a two-compartment diffusion cell assembly, using an isotonic buffered solution as the receiving phase. The esters were applied from aqueous solutions and also as the pure liquids. The results were consistent with those reported by other using compounds of equal or different structures either in vitro or in vivo. The experiments are compared in terms of partition equilibrium between vehicle and tissue and distribution from tissue to the receiving phase. It was demonstrated that the plateau observed in skin permeabilities of the compounds beyond a certain degree of lipophilicity is the result of the effect of water when used as the vehicle in the laboratory models. PMID:2013851

  19. [Reduction of nicotinic risk--is it possible?].

    Science.gov (United States)

    Dubois, Gérard

    2004-11-15

    To decrease the health consequences of tabagism pandemic, quitting is still the only goal. The size of the problem leads to question if harm reduction is possible. Today, this concept, which was successful with illegal drugs, cannot be applied to tobacco because of a lack of proof. There is no safe cigarette and all brands have the same toxicity. Arguments in favor of smokeless tobacco are still insufficient for a public health decision. A voluntary decrease of tobacco consumption does not decrease morbidity and mortality of heavy smokers. A long-term use of nicotine replacement therapy is acceptable to reduce the daily smoking under medical supervision in smokers with chronic tobacco related disease who have previously failed in attempts to quit smoking. PMID:15655913

  20. Preparation and characterization of ambazone salt with nicotinic acid

    Science.gov (United States)

    Kacsó, I.; Muresan-Pop, M.; Borodi, Gh.; Bratu, I.

    2012-02-01

    Salt formation is a good method of increasing solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs. The aim of this study was to obtain and to investigate the structural properties of the compound that was obtained by solvent drop grinding method at room temperature starting from the 1:1 molar ratios of ambazone (AMB) and nicotinic acid (NA). The obtained compound (AMB•NA) was investigated by thermal analysis (DSC, TG-DTA), X-ray powder diffraction (PXRD) and infrared spectroscopy (FTIR). The difference between the patterns of AMB•NA and of the starting compounds evidenced the formation of a salt. Using X-ray powder diffraction data, the lattice parameters were determined. The thermal and FTIR measurements on the pure compounds and on the (1:1) grinding mixture of AMB with NA confirm the salt formation.

  1. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  2. IMPACT OF CURCUMIN ON NICOTINE-INDUCED LUNG CHANGE: HISTOPATHOLOGICAL, BIOCHEMICAL AND IMMUNOLOGICAL STUDY

    OpenAIRE

    Sawsan H. Karam; Anisa S. Mohamed; Mansour, Sahar M.; Heba I. Issa; Amany Abdel Ghaffar; Atef M. Mahmoud; Seham Abdel Dayem

    2014-01-01

    Background: Nicotine, major toxic component of cigarette smoke, is considered to be the main risk factor in the development of pulmonary diseases Purpose: The aim of the present study was to investigate the morphological, biochemical and immunological changes in albino rats following intraperitoneal injection of nicotine. The possible protective effect of curcumin was also evaluated. Material and Methods: The study included three groups, the first served as control. The second...

  3. Nicotinic receptors in non-human primates: Analysis of genetic and functional conservation with humans.

    Science.gov (United States)

    Shorey-Kendrick, Lyndsey E; Ford, Matthew M; Allen, Daicia C; Kuryatov, Alexander; Lindstrom, Jon; Wilhelm, Larry; Grant, Kathleen A; Spindel, Eliot R

    2015-09-01

    Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25661700

  4. Thyroid hormone signaling: Contribution to neural function, cognition, and relationship to nicotine.

    Science.gov (United States)

    Leach, Prescott T; Gould, Thomas J

    2015-10-01

    Cigarette smoking is common despite its adverse effects on health, such as cardiovascular disease and stroke. Understanding the mechanisms that contribute to the addictive properties of nicotine makes it possible to target them to prevent the initiation of smoking behavior and/or increase the chance of successful quit attempts. While highly addictive, nicotine is not generally considered to be as reinforcing as other drugs of abuse. There are likely other mechanisms at work that contribute to the addictive liability of nicotine. Nicotine modulates aspects of the endocrine system, including the thyroid, which is critical for normal cognitive functioning. It is possible that nicotine's effects on thyroid function may alter learning and memory, and this may underlie some of its addictive potential. Here, we review the literature on thyroid function and cognition, with a focus on how nicotine alters thyroid hormone signaling and the potential impact on cognition. Changes in cognition are a major symptom of nicotine addiction. Current anti-smoking therapies have modest success at best. If some of the cognitive effects of nicotine are mediated through the thyroid hormone system, then thyroid hormone agonists may be novel treatments for smoking cessation therapies. The content of this review is important because it clarifies the relationship between smoking and thyroid function, which has been ill-defined in the past. This review is timely because the reduction in smoking rates we have seen in recent decades, due to public awareness campaigns and public smoking bans, has leveled off in recent years. Therefore, novel treatment approaches are needed to help reduce smoking rates further. PMID:26344666

  5. Nicotine Enhances Context Learning but not Context-Shock Associative Learning

    OpenAIRE

    Kenney, Justin W.; Gould, Thomas J.

    2008-01-01

    Nicotine has been found to enhance learning in a variety of tasks including contextual fear conditioning. During contextual fear conditioning animals have to learn the context and associate the context with an unconditioned stimulus (footshock). As both of these types of learning co-occur during fear conditioning it is not clear whether nicotine enhances one or both of these types of learning. To tease these two forms of learning apart we made use of the context pre-exposure facilitation effe...

  6. Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice

    OpenAIRE

    Aso P??rez, Ester; Maldonado, Rafael; Murtra, Patricia; Balerio, Graciela N.; Berrendero D??az, Fernando, 1971-

    2004-01-01

    The possible interactions between Delta9-tetrahydrocannabinol (THC) and nicotine remain unclear in spite of the current association of cannabis and tobacco in humans. The aim of the present study was to explore the interactions between these two drugs of abuse by evaluating the consequences of THC administration on the somatic manifestations and the aversive motivational state associated to nicotine withdrawal in mice. Acute THC administration significantly decreased the incidence of several ...

  7. Offspring of prenatal IV nicotine exposure exhibit increased sensitivity to the reinforcing effects of methamphetamine

    OpenAIRE

    StevenBrownHarrod

    2012-01-01

    Maternal smoking during pregnancy is associated with increased substance abuse in offspring. Preclinical research shows that in utero exposure to nicotine, the primary psychoactive compound in tobacco smoke, influences the neurodevelopment of reward systems and alters motivated behavior in offspring. The present study determined if prenatal nicotine (PN) exposure altered the sensitivity to the reinforcing and aversive effects of methamphetamine (METH) in offspring using a low dose, intraven...

  8. Effects of chronic nicotine on behavioural and neurochemical responses to morphine

    OpenAIRE

    Kivinummi, Tanja

    2009-01-01

    Tobacco smoking is a worldwide health problem. Nicotine is generally accepted as the addictive substance in tobacco smoke. In addition to causing cancer, cardiac, vascular and pulmonary diseases, tobacco smoking has been suggested to act as a gateway drug to other drugs of abuse. The purpose of this study was to find out, whether chronic nicotine administration and its cessation potentiate the effects of morphine, and the mechanisms behind this. The study was performed in mice that received n...

  9. Nicotine regulates cocaine-amphetamine-Regulated Transcript (Cart) in the mesocorticolimbic system.

    Science.gov (United States)

    Kaya, Egemen; Gozen, Oguz; Ugur, Muzeyyen; Koylu, Ersin O; Kanit, Lutfiye; Balkan, Burcu

    2016-07-01

    Cocaine-and-Amphetamine Regulated Transcript (CART) mRNA and peptides are intensely expressed in the brain regions comprising mesocorticolimbic system. Studies suggest that CART peptides may have a role in the regulation of reward circuitry. The present study aimed to examine the effect of nicotine on CART expression in the mesocorticolimbic system. Three different doses of nicotine (0.2, 0.4, 0.6 mg/kg free base) were injected subcutaneously for 5 days, and on day 6, rats were decapitated following a challenge dose. CART mRNA and peptide levels in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), dorsal striatum (DST), amygdala (AMG), lateral hypothalamic area (LHA), and ventral tegmental area (VTA) were measured by quantitative real-time PCR (qPCR) and Western Blot analysis, respectively. In the mPFC, 0.4 and 0.6 mg/kg nicotine, decreased CART peptide levels whereas there was no effect on CART mRNA levels. In the VTA, a down-regulation of CART peptide expression was observed with 0.2 and 0.6 mg/kg nicotine. Conversely, 0.4 and 0.6 mg/kg nicotine increased CART mRNA levels in the AMG without affecting the CART peptide expression. Nicotine did not regulate CART mRNA or CART peptide expression in the NAc, DST, and LHA. We conclude that nicotine regulates CART expression in the mesocorticolimbic system and this regulation may play an important role in nicotine reward. Synapse 70:283-292, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990424

  10. Formulation of nicotine mucoadhesive tablet for smoking cessation and evaluation of its pharmaceuticals properties

    Directory of Open Access Journals (Sweden)

    Rahim Bahri-Najafi

    2013-01-01

    Full Text Available Background: Nicotine replacement therapy (NRT with gradual decreasing of nicotine is one of the smoking cessation methods. Muccoadhesive formulations are among the novel drug delivery systems that are available in the form of tablets and films, and can be used for NRT. Muccoadhesive nicotine tablets when placed in the upper gum will attach to the buccal mucosa and release nicotine content in a controlled manner. This will meet the immediate and long-term need of the individual to the nicotine, such that the person can decrease his/her dependency on smoking. [1] Materials and Methods: In this study, the tablets were prepared using different conventional bioadhesive polymers such as Hydroxypropyl Methycellulose (HPMC 50cps, sodium carboxy methyl cellulose (NaCMC, and carbapol 934 (CP934 in singular or mixture form. Magnesium hydroxide were used as the pH increasing agent; magnesium stearate as the lubricant; and lactose as the excipiente. Nicotine hydrogen bitartrate, more stable than the liquid, was used in different formulations. Pharmaceutics characteristics such as adhesion degree and drug release rate were evaluated. Results: Increasing of HPMC 50cps in the formulations decrease speed release of nicotine. The carbapol in formulations beget slow releasing of nicotine. With increasing the percent of lactose, the rate of release in formulations was increased. Formulations, which have HPMC 50cps has best adhesiveness and the formulations contains carbapol had not suitable adhesiveness. Formulations contains NaCMC were very fast release and had not suitable adhesiveness. Conclusion: The formulation contains mixture of HPMC50cps and CP934 was the best because of suitable adhesiveness and minimum swing in release.

  11. The Effect of Repeated Virtual Nicotine Cue Exposure Therapy on the Psychophysiological Responses: A Preliminary Study

    OpenAIRE

    Choi, Jung-Seok; Park, Sumi; Lee, Jun-Young; Jung,Hee-Yeon; Lee, Hae-Woo; Jin, Chong-Hyeon; Kang, Do-Hyung

    2011-01-01

    Objective Smoking related cues may elicit smoking urges and psychophysiological responses in subjects with nicotine dependence. This study aimed to investigate the effect of repeated virtual cue exposure therapy using the surround-screen based projection wall system on the psychophysiological responses in nicotine dependence. Methods The authors developed 3-dimensional neutral and smoking-related environments using virtual reality (VR) technology. Smoking-related environment was a virtual bar...

  12. Role of nicotine on cognitive and behavioral deficits in sepsis-surviving rats.

    Science.gov (United States)

    Leite, Franco B; Prediger, Rui D; Silva, Mônica V; de Sousa, João Batista; Carneiro, Fabiana P; Gasbarri, Antonella; Tomaz, Carlos; Queiroz, Amadeu J; Martins, Natália T; Ferreira, Vania M

    2013-04-24

    Sepsis and its complications are important causes of mortality in intensive care units and sepsis survivors may present long-term cognitive and emotional impairments, including memory deficits and anxiety symptoms. In the present study, we investigated whether repeated nicotine administration can affect the behavioral changes in sepsis-surviving rats. Male Wistar rats were divided in two groups: sham-operated and experimental sepsis induced by cecal ligation and puncture (CLP). The animals were injected subcutaneously with nicotine (0.1 mg/kg) or vehicle once a day during 1 week before and/or 1 week after sepsis induction. Thirty minutes after the last administration (i.e., 7 days after surgery), the animals were tested in the open field, elevated plus-maze and step-down inhibitory avoidance tasks. The repeated nicotine treatment did not affect the survival rate in the sepsis group (50%). Moreover, no significant changes on locomotor activity were observed in the sepsis group while the treatment with nicotine during 1 week after surgery reduced the locomotion of sepsis-surviving rats in the open field. It is important to note that both schedules of nicotine treatment (prior and/or after CLP) improved the sepsis-induced anxiogenic-like responses. Interestingly, nicotine was able to improve short- and long-term inhibitory avoidance memory impairments, observed in sepsis survivors, only when administered during 2 consecutive weeks (i.e., prior and after CLP). Taken together, these results indicate that repeated nicotine administration does not alter the survival rate in rats submitted to CLP and provide new evidence that nicotine can improve long-lasting memory impairments and anxiogenic-like responses in sepsis-surviving animals.

  13. Offspring of Prenatal IV Nicotine Exposure Exhibit Increased Sensitivity to the Reinforcing Effects of Methamphetamine

    OpenAIRE

    Harrod, Steven B.; Lacy, Ryan T.; Morgan, Amanda J.

    2012-01-01

    Maternal smoking during pregnancy is associated with increased substance abuse in offspring. Preclinical research shows that in utero exposure to nicotine, the primary psychoactive compound in tobacco smoke, influences the neurodevelopment of reward systems and alters motivated behavior in offspring. The present study determined if prenatal nicotine (PN) exposure altered the sensitivity to the reinforcing and aversive effects of methamphetamine (METH) in offspring using a low dose, intravenou...

  14. Selected constituents in the smokes of foreign commercial cigaretts: tar, nicotine, carbon monoxide, and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.

    1979-05-01

    The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.

  15. Distal Ulcerative Colitis Refractory to Rectal Mesalamine: Role of Transdermal Nicotine versus Oral Mesalamine

    OpenAIRE

    Guslandi, Mario; Frego, Roberto; Viale, Edi; Testoni, Pier Alberto

    2002-01-01

    BACKGROUND: Distal ulcerative colitis usually responds to treatment with rectal mesalamine, but the management of refractory cases is poorly defined.AIM: To evaluate the possible therapeutic benefit of transdermal nicotine versus oral mesalamine.PATIENTS AND METHODS: Thirty patients with left-sided ulcerative colitis unresponsive to treatment with a mesalamine 4 g enema at bedtime were randomly allocated to additional therapy with either transdermal nicotine 15 mg daily or oral mesalamine 800...

  16. THE RELATIONSHIP BETWEEN IMPULSIVITY, -TAKING PROPENSITY AND NICOTINE DEPENDENCE AMONG OLDER ADOLESCENT SMOKERS

    OpenAIRE

    Ryan, Katherine K.; MacKillop, James; Carpenter, Matthew J.

    2012-01-01

    Impulsivity and risk-taking propensity are neurobehavioral traits that reliably distinguish between smoking and non-smoking adults. However, how these traits relate to smoking quantity and nicotine dependence among older adolescent smokers is unclear. The current study examined impulsivity and risk-taking propensity in relation to smoking behavior and nicotine dependence among current older adolescent smokers (age 16–20 years; N = 107). Participants completed the Barratt Impulsiveness Scale–1...

  17. Smoking and nicotine in inflammatory bowel disease: good or bad for cytokines?

    Directory of Open Access Journals (Sweden)

    F. J. Zijlstra

    1998-01-01

    Full Text Available Smoking has either a beneficial or harmful effect on the course and recurrence of ulcerative colitis and Crohn's disease respectively. Transdermal application of nicotine had similar effects in ulcerative colitis and therefore was considered to be an effective basic drug which could be further developed in the search for new compounds in the treatment of acute exacerbations of corticosteroid resistant ulcerative colitis. In this communication the short-term use of nicotine in ulcerative colitis is reviewed.

  18. Nicotinic α4β2 receptor imaging agents

    International Nuclear Information System (INIS)

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3H-cytisine exhibited a K i=0.50 nM for the α4β2 sites. The radiosynthesis of 2-18F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  19. Smoking practices and nicotine dependence among adolescents in Pakistan

    International Nuclear Information System (INIS)

    Objective: To find out the smoking prevalence and associated factors among in-school and out-of-school adolescents and their nicotine dependence. Method: The cross-sectional study was conducted from April to June 2008 comprising 1014 adolescents aged 12-18 years residing in two rural districts of Sindh and Punjab. Trained interviewers collected information from the adolescents regarding age, ethnicity, religion, occupation and education of parents, smoking behaviour, smoking history of family/friend, type of family system, number of siblings and place of residence. Statistical package Epi-Info version 6 was used to enter the data and analysis was performed by using SPSS version 12. Results: Overall smoking prevalence among the 1014 adolescents was 15.2%, with significant gender stratification (7.9% among girls versus 20.2% among boys). Of these, 50% were moderately nicotine dependent. However, the prevalence among in-school adolescents (14.6%) was not significantly different from out-of-school adolescents (16.1%). The factors associated with adolescents smoking were father's illiteracy (adjusted odds ratio [OR]= 8.2), friend's smoking (adjusted OR=6.8), father's smoking (adjusted OR=5.4) and nuclear family setup (adjusted OR=3.6). When explored for the first place of smoking, friend's home was mentioned by majority of adolescents boys and girls. Conclusion: Although there was a significant difference found between the prevalence of smoking among adolescent males and females, but any difference among in-school and out-of-school adolescents smoking prevalence could not be established. (author)

  20. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers.

    Directory of Open Access Journals (Sweden)

    Hiroto Kuwabara

    Full Text Available The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs when compared to nonsmokers. We found no significant changes in binding potential (BPND of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND. Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward.

  1. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor.

    Science.gov (United States)

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing

    2011-06-01

    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  2. The μ-opioid receptor gene and smoking initiation and nicotine dependence

    Directory of Open Access Journals (Sweden)

    Kendler Kenneth S

    2006-08-01

    Full Text Available Abstract The gene encoding the mu-opioid receptor (OPRM1 is reported to be associated with a range of substance dependence. Experiments in knockout mice indicate that the mu-opioid receptor may mediate reinforcing effects of nicotine. In humans, opioid antagonist naltrexone may reduce the reinforcing effects of tobacco smoking. Additionally, the OPRM1 gene is located in a region showing linkage to nicotine dependence. The OPRM1 is thus a plausible candidate gene for smoking behavior. To investigate whether OPRM1 contributes to the susceptibility of smoking initiation and nicotine dependence, we genotyped 11 SNPs in the gene for 688 Caucasian subjects of lifetime smokers and nonsmokers. Three SNPs showed nominal significance for smoking initiation and one reached significance for nicotine dependence. The global test for three-marker (rs9479757-rs2075572-rs10485057 haplotypes was significant for smoking initiation (p = 0.0022. The same three-marker haplotype test was marginal (p = 0.0514 for nicotine dependence. These results suggest that OPRM1 may be involved in smoking initiation and nicotine dependence.

  3. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson's Disease.

    Science.gov (United States)

    Perez, Xiomara A

    2015-12-01

    One of the primary deficits in Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta which leads to striatal dopaminergic deficits that underlie the motor symptoms associated with the disease. A plethora of animal models have been developed over the years to uncover the molecular alterations that lead to PD development. These models have provided valuable information on neurotransmitter pathways and mechanisms involved. One such a system is the nicotinic cholinergic system. Numerous studies show that nigrostriatal damage affects nicotinic receptor-mediated dopaminergic signaling; therefore therapeutic modulation of the nicotinic cholinergic system may offer a novel approach to manage PD. In fact, there is evidence showing that nicotinic receptor drugs may be useful as neuroprotective agents to prevent Parkinson's disease progression. Additional preclinical studies also show that nicotinic receptor drugs may be beneficial for the treatment of L-dopa induced dyskinesias. Here, we review preclinical findings supporting the idea that nicotinic receptors are valuable therapeutic targets for PD. PMID:26553323

  4. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    George E. eBarreto

    2015-01-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder, which is characterized by neuroinflammation, dopaminergic neuronal cell death and motor dysfunction, and for which there are no proven effective treatments. The negative correlation between tobacco consumption and PD suggests that tobacco-derived compounds can be beneficial against PD. Nicotine, the more studied alkaloid derived from tobacco, is considered to be responsible for the beneficial behavioral and neurological effects of tobacco use in PD. However, several metabolites of nicotine such as cotinine also increase in the brain after nicotine administration. The effect of nicotine and some of its derivatives on dopaminergic neurons viability, neuroinflammation, and motor and memory functions, have been investigated using cellular and rodent models of PD. Current evidence shows that nicotine, and some of its derivatives diminish oxidative stress and neuroinflammation in the brain and improve synaptic plasticity and neuronal survival of dopaminergic neurons. In vivo these effects resulted in improvements in mood, motor skills and memory in subjects suffering from PD pathology. In this review, we discuss the potential benefits of nicotine and its derivatives for treating PD.

  5. Mouth-Level Intake of Benzo[a]pyrene from Reduced Nicotine Cigarettes

    Directory of Open Access Journals (Sweden)

    Yan S. Ding

    2014-11-01

    Full Text Available Cigarette smoke is a known source of exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs, especially benzo[a]pyrene (BaP. Exposure to BaP in cigarette smoke is influenced by how a person smokes and factors, such as tobacco blend. To determine whether sustained use of reduced-nicotine cigarettes is associated with changes in exposure to nicotine and BaP, levels of BaP in spent cigarette filter butts were correlated with levels of BaP in cigarette smoke to estimate mouth-level intake (MLI of BaP for 72 daily smokers given three progressively reduced nicotine content cigarettes. Urinary cotinine, a marker of nicotine exposure, and urinary 1-hydroxypyrene (1-HOP, a marker of PAH exposure, were measured throughout the study. Median daily BaP MLI and urine cotinine decreased in a similar manner as smokers switched to progressively lower nicotine cigarettes, despite relatively constant daily cigarette consumption. 1-HOP levels were less responsive to the use of reduced nicotine content cigarettes. We demonstrate that spent cigarette filter butt analysis is a promising tool to estimate MLI of harmful chemicals on a per cigarette or per-day basis, which partially addresses the concerns of the temporal influence of smoking behavior or differences in cigarette design on exposure.

  6. Potential contribution of aromatase inhibition to the effects of nicotine and related compounds on the brain.

    Science.gov (United States)

    Biegon, Anat; Alia-Klein, Nelly; Fowler, Joanna S

    2012-01-01

    Cigarette smoking continues to be a major public health problem, and while smoking rates in men have shown some decrease over the last few decades, smoking rates among girls and young women are increasing. Practically all of the important aspects of cigarette smoking and many effects of nicotine are sexually dimorphic (reviewed by Pogun and Yararbas, 2009). Women become addicted more easily than men, while finding it harder to quit. Nicotine replacement appears to be less effective in women. This may be linked to the observation that women are more sensitive than men to non-nicotine cues or ingredients in cigarettes. The reasons for these sex differences are mostly unknown. Several lines of evidence suggest that many of the reported sex differences related to cigarette smoking may stem from the inhibitory effects of nicotine and other tobacco alkaloids on estrogen synthesis via the enzyme aromatase (cyp19a gene product). Aromatase is the last enzyme in estrogen biosynthesis, catalyzing the conversion of androgens to estrogens. This review provides a summary of experimental evidence supporting brain aromatase as a potential mediator and/or modulator of nicotine actions in the brain, contributing to sex differences in smoking behavior. Additional research on the interaction between tobacco smoke, nicotine, and aromatase may help devise new, sex specific methods for prevention and treatment of smoking addiction.

  7. Nicotine Contents in Some Commonly Used Toothpastes and Toothpowders: A Present Scenario

    Directory of Open Access Journals (Sweden)

    S. S. Agrawal

    2012-01-01

    Full Text Available The use of tobacco products as dentifrices is still prevalent in various parts of India. Tobacco use in dentifrices is a terrible scourge which motivates continued use despite its harmful effects. Indian legislation prohibits the use of nicotine in dentifrices. Nicotine is primarily injurious to people because it is responsible for tobacco addiction and is dependence forming. The present study was motivated by an interest in examining the presence of nicotine in these dentifrices. Our earlier report indicates the presence of nicotine in toothpowders. To further curb the menace of tobacco, our team again analysed the toothpowder brands of previous years and in toothpastes as well. Eight brands of commonly used toothpastes and toothpowders were evaluated by gas chromatography-mass spectroscopy. On the whole, there are a few successes but much remains to be done. Our findings indicated the presence of nicotine in two brands of dant manjans and four brands of toothpastes. Further our finding underscores the need for stringent regulations by the regulatory authorities for preventing the addition of nicotine in these dentifrices. Hence government policy needs to be targeted towards an effective control of tobacco in these dentifrices and should be properly addressed.

  8. Mood influences on acute smoking responses are independent of nicotine intake and dose expectancy.

    Science.gov (United States)

    Perkins, Kenneth A; Ciccocioppo, Melinda; Conklin, Cynthia A; Milanak, Melissa E; Grottenthaler, Amy; Sayette, Michael A

    2008-02-01

    Acute responses to smoking are influenced by nicotine and by nonpharmacological factors such as nicotine dose expectancy and sensory effects of smoke inhalation. Because negative mood increases smoking reinforcement, the authors examined whether these effects may be altered by mood context. Smokers (n=200) participated in 2 sessions, negative or positive mood induction, and were randomized to 1 of 5 groups. Four groups comprised the 2x2 balanced placebo design, varying actual (0.6 mg vs. 0.05 mg yield) and expected nicotine dose (expected nicotine vs. denicotinized [denic]) of cigarettes. A fifth group was a no-smoking control. Smoking, versus not smoking, attenuated negative affect, as well as withdrawal and craving. Negative mood increased smoking reinforcement. However, neither actual nor expected nicotine dose had much influence on these responses; even those smokers receiving and expecting a denic cigarette reported attenuated negative affect. A follow-up comparison suggested that the sensory effects of smoke inhalation, but not the simple motor effects of smoking behavior, were responsible. Thus, sensory effects of smoke inhalation had a greater influence on relieving negative affect than actual or expected nicotine intake. PMID:18266487

  9. Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement.

    Science.gov (United States)

    Tolu, S; Eddine, R; Marti, F; David, V; Graupner, M; Pons, S; Baudonnat, M; Husson, M; Besson, M; Reperant, C; Zemdegs, J; Pagès, C; Hay, Y A H; Lambolez, B; Caboche, J; Gutkin, B; Gardier, A M; Changeux, J-P; Faure, P; Maskos, U

    2013-03-01

    Smoking is the most important preventable cause of mortality and morbidity worldwide. This nicotine addiction is mediated through the nicotinic acetylcholine receptor (nAChR), expressed on most neurons, and also many other organs in the body. Even within the ventral tegmental area (VTA), the key brain area responsible for the reinforcing properties of all drugs of abuse, nicotine acts on several different cell types and afferents. Identifying the precise action of nicotine on this microcircuit, in vivo, is important to understand reinforcement, and finally to develop efficient smoking cessation treatments. We used a novel lentiviral system to re-express exclusively high-affinity nAChRs on either dopaminergic (DAergic) or γ-aminobutyric acid-releasing (GABAergic) neurons, or both, in the VTA. Using in vivo electrophysiology, we show that, contrary to widely accepted models, the activation of GABA neurons in the VTA plays a crucial role in the control of nicotine-elicited DAergic activity. Our results demonstrate that both positive and negative motivational values are transmitted through the dopamine (DA) neuron, but that the concerted activity of DA and GABA systems is necessary for the reinforcing actions of nicotine through burst firing of DA neurons. This work identifies the GABAergic interneuron as a potential target for smoking cessation drug development.

  10. Mood influences on acute smoking responses are independent of nicotine intake and dose expectancy.

    Science.gov (United States)

    Perkins, Kenneth A; Ciccocioppo, Melinda; Conklin, Cynthia A; Milanak, Melissa E; Grottenthaler, Amy; Sayette, Michael A

    2008-02-01

    Acute responses to smoking are influenced by nicotine and by nonpharmacological factors such as nicotine dose expectancy and sensory effects of smoke inhalation. Because negative mood increases smoking reinforcement, the authors examined whether these effects may be altered by mood context. Smokers (n=200) participated in 2 sessions, negative or positive mood induction, and were randomized to 1 of 5 groups. Four groups comprised the 2x2 balanced placebo design, varying actual (0.6 mg vs. 0.05 mg yield) and expected nicotine dose (expected nicotine vs. denicotinized [denic]) of cigarettes. A fifth group was a no-smoking control. Smoking, versus not smoking, attenuated negative affect, as well as withdrawal and craving. Negative mood increased smoking reinforcement. However, neither actual nor expected nicotine dose had much influence on these responses; even those smokers receiving and expecting a denic cigarette reported attenuated negative affect. A follow-up comparison suggested that the sensory effects of smoke inhalation, but not the simple motor effects of smoking behavior, were responsible. Thus, sensory effects of smoke inhalation had a greater influence on relieving negative affect than actual or expected nicotine intake.

  11. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    Institute of Scientific and Technical Information of China (English)

    CHENG Yan; WANG Hai-Fang; SUN Hong-Fang; LI Hong-Li

    2004-01-01

    Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.

  12. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2011-08-01

    Full Text Available Abstract Cigarette smoke is a major risk factor for a number of diseases including lung cancer and respiratory infections. Paradoxically, it also contains nicotine, an anti-inflammatory alkaloid. There is increasing evidence that smokers have a lower incidence of some inflammatory diseases, including ulcerative colitis, and the protective effect involves the activation of a cholinergic anti-inflammatory pathway that requires the α7 nicotinic acetylcholine receptor (α7nAChR on immune cells. Obesity is characterized by chronic low-grade inflammation, which contributes to insulin resistance. Nicotine significantly improves glucose homeostasis and insulin sensitivity in genetically obese and diet-induced obese mice, which is associated with suppressed adipose tissue inflammation. Inflammation that results in disruption of the epithelial barrier is a hallmark of inflammatory bowel disease, and nicotine is protective in ulcerative colitis. This article summarizes current evidence for the anti-inflammatory effects of nicotine in obesity and ulcerative colitis. Selective agonists for the α7nAChR could represent a promising pharmacological strategy for the treatment of inflammation in obesity and ulcerative colitis. Nevertheless, we should keep in mind that the anti-inflammatory effects of nicotine could be mediated via the expression of several nAChRs on a particular target cell.

  13. Can one puff really make an adolescent addicted to nicotine? A critical review of the literature

    Directory of Open Access Journals (Sweden)

    Frenk Hanan

    2010-11-01

    Full Text Available Abstract Rationale In the past decade, there have been various attempts to understand the initiation and progression of tobacco smoking among adolescents. One line of research on these issues has made strong claims regarding the speed in which adolescents can become physically and mentally addicted to smoking. According to these claims, and in contrast to other models of smoking progression, adolescents can lose autonomy over their smoking behavior after having smoked one puff in their lifetime and never having smoked again, and can become mentally and physically "hooked on nicotine" even if they have never smoked a puff. Objectives To critically examine the conceptual and empirical basis for the claims made by the "hooked on nicotine" thesis. Method We reviewed the major studies on which the claims of the "hooked on nicotine" research program are based. Results The studies we reviewed contained substantive conceptual and methodological flaws. These include an untenable and idiosyncratic definition of addiction, use of single items or of very lenient criteria for diagnosing nicotine dependence, reliance on responders' causal attributions in determining physical and mental addiction to nicotine and biased coding and interpretation of the data. Discussion The conceptual and methodological problems detailed in this review invalidate many of the claims made by the "hooked on nicotine" research program and undermine its contribution to the understanding of the nature and development of tobacco smoking in adolescents.

  14. Rewarding and aversive effects of nicotine are segregated within the nucleus accumbens.

    Science.gov (United States)

    Sellings, Laurie H L; Baharnouri, Golriz; McQuade, Lindsey E; Clarke, Paul B S

    2008-07-01

    Forebrain dopamine plays a critical role in motivated behavior. According to the classic view, mesolimbic dopamine selectively guides behavior motivated by positive reinforcers. However, this has been challenged in favor of a wider role encompassing aversively motivated behavior. This controversy is particularly striking in the case of nicotine, with opposing claims that either the rewarding or the aversive effect of nicotine is critically dependent on mesolimbic dopamine transmission. In the present study, the effects of 6-hydroxydopamine lesions of nucleus accumbens core vs. medial shell on intravenous nicotine conditioned place preference and conditioned taste aversion were examined in male adult rats. Dopaminergic denervation in accumbens medial shell was associated with decreased nicotine conditioned place preference. Conversely, denervation in accumbens core was associated with an increase in conditioned place preference. In addition, dopaminergic denervation of accumbens core but not medial shell abolished conditioned taste aversion for nicotine. We conclude that nucleus accumbens core and medial shell dopaminergic innervation exert segregated effects on rewarding and aversive effects of nicotine. More generally, our findings indicate that dopaminergic transmission may mediate or enable opposing motivational processes within functionally distinct domains of the accumbens.

  15. Examining the Nature of the Association Between Attention-Deficit/Hyperactivity Disorder and Nicotine Dependence: A Familial Risk Analysis

    Science.gov (United States)

    Biederman, Joseph; Petty, Carter R.; Hammerness, Paul; Woodworth, K. Yvonne; Faraone, Stephen V.

    2013-01-01

    Objective The main aim of this study was to use familial risk analysis to examine the association between attention-deficit/hyperactivity disorder (ADHD) and nicotine dependence. Methods Subjects were children with (n = 257) and without (n = 229) ADHD of both sexes ascertained form pediatric and psychiatric referral sources and their first-degree relatives (N = 1627). Results Nicotine dependence in probands increased the risk for nicotine dependence in relatives irrespective of ADHD status. There was no evidence of cosegregation or assortative mating between these disorders. Patterns of familial risk analysis suggest that the association between ADHD and nicotine dependence is most consistent with the hypothesis of independent transmission of these disorders. Conclusions These findings may have important implications for the identification of a subgroup of children with ADHD at high risk for nicotine dependence based on parental history of nicotine dependence. PMID:23461889

  16. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages.

    Directory of Open Access Journals (Sweden)

    Maria C Maldifassi

    Full Text Available Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs, has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M, a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3 or two convergent cascades (JAK2/STAT3 and PI3K/STAT3, is necessary for nicotine-induced IRAK-M expression. Moreover, d