WorldWideScience

Sample records for cationic intermediate stabilization

  1. Gold carbenes, gold-stabilized carbocations, and cationic intermediates relevant to gold-catalysed enyne cycloaddition.

    Science.gov (United States)

    Harris, R J; Widenhoefer, R A

    2016-08-21

    Cationic gold complexes in which gold is bound to a formally divalent carbon atom, typically formulated as gold carbenes or α-metallocarbenium ions, have been widely invoked in a range of gold-catalyzed transformations, most notably in the gold-catalyzed cycloisomerization of 1,n-enynes. Although the existence of gold carbene complexes as intermediates in gold-catalyzed transformations is supported by a wealth of indirect experimental data and by computation, until recently no examples of cationic gold carbenes/α-metallocarbenium ions had been synthesized nor had any cationic intermediates generated via gold-catalyzed enyne cycloaddition been directly observed. Largely for this reason, there has been considerable debate regarding the electronic structure of these cationic complexes, in particular the relative contributions of the carbene (LAu(+)[double bond, length as m-dash]CR2) and α-metallocarbenium (LAu-CR2(+)) forms, which is intimately related to the extent of d → p backbonding from gold to the C1 carbon atom. However, over the past ∼ seven years, a number of cationic gold carbene complexes have been synthesized in solution and generated in the gas phase and cationic intermediates have been directly observed in the gold-catalyzed cycloaddition of enynes. Together, these advances provide insight into the nature and electronic structure of gold carbene/α-metallocarbenium complexes and the cationic intermediates generated via gold-catalyzed enyne cycloaddition. Herein we review recent advances in this area. PMID:27146712

  2. A sulfonium cation intermediate in the mechanism of methionine sulfoxide reductase B: a DFT study.

    Science.gov (United States)

    Robinet, Jesse J; Dokainish, Hisham M; Paterson, David J; Gauld, James W

    2011-07-28

    The hybrid density functional theory method B3LYP in combination with three systematically larger active site models has been used to investigate the substrate binding and catalytic mechanism by which Neisseria gonorrhoeae methionine sulfoxide reductase B (MsrB) reduces methionine-R-sulfoxide (Met-R-SO) to methionine. The first step in the overall mechanism is nucleophilic attack of an active site thiolate at the sulfur of Met-R-SO to form an enzyme-substrate sulfurane. This occurs with concomitant proton transfer from an active site histidine (His480) residue to the substrates oxygen center. The barrier for this step, calculated using our largest most complete active site model, is 17.2 kJ mol(-1). A subsequent conformational rearrangement and intramolecular -OH transfer to form an enzyme-derived sulfenic acid ((Cys495)S-OH) is not enzymatically feasible. Instead, transfer of a second proton from a second histidyl active site residue (His477) to the sulfurane's oxygen center to give water and a sulfonium cation intermediate is found to be greatly preferred, occurring with a quite low barrier of just 1.2 kJ mol(-1). Formation of the final product complex in which an intraprotein disulfide bond is formed with generation of methionine preferably occurs in one step via nucleophilic attack of the sulfur of a second enzyme thiolate ((Cys440)S(-)) at the S(Cys495) center of the sulfonium intermediate with a barrier of 23.8 kJ mol(-1). An alternate pathway for formation of the products via a sulfenic acid intermediate involves enzymatically feasible, but higher energy barriers. The role and impact of hydrogen bonding and active site residues on the properties and stability of substrate and mechanism intermediates and the affects of mutating His477 are also examined and discussed. PMID:21721538

  3. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  4. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  5. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, S. [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), Hyogo 679-5198 (Japan); Kawakita, Y. [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Shimakura, H. [Faculty of Pharmacy, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Ohara, K. [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI, SPring-8), Hyogo 679-5198 (Japan); Fukami, T. [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Takeda, S. [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2015-07-28

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag–Cl and ionic Rb–Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag–Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb–Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag–Ag and Rb–Rb correlations, S{sub AgAg}(Q) and S{sub RbRb}(Q), show a positive contribution to the FSDP, while S{sub AgRb}(Q) for the Ag–Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM.

  6. Intermediate-range chemical ordering of cations in molten RbCl-AgCl

    International Nuclear Information System (INIS)

    A first sharp diffraction peak (FSDP) is observed in the X-ray total structure factor of a molten mixture of RbCl-AgCl, while both pure melts of RbCl and AgCl do not exhibit FSDP individually. Molecular dynamics simulations were performed to investigate the origin of the FSDP with the polarizable ion model (PIM). Coexistence of covalent Ag–Cl and ionic Rb–Cl bonds leads the system to evolve intermediate range ordering, which is simulated by introducing the induced polarization in different ways between Ag–Cl with fully polarizable treatment based on Vashishta-Raman potential and Rb–Cl with suppression over-polarization in the nearest neighbor contribution based on Born-Meyer potential. The partial structure factors for both the Ag–Ag and Rb–Rb correlations, SAgAg(Q) and SRbRb(Q), show a positive contribution to the FSDP, while SAgRb(Q) for the Ag–Rb correlation exhibits a negative contribution, indicating that Ag and Rb ions are distributed in an alternating manner within the intermediate-range length scale. The origin of the intermediate-range chemical ordering of cations can be ascribed to the preferred direction of the dipole moments of anions in the PIM

  7. Nitrogen-doped zirconia: A comparison with cation stabilized zirconia

    International Nuclear Information System (INIS)

    The conductivity behavior of nitrogen-doped zirconia is compared with that of zirconia doped with lower-valent cations and discussed in the framework of defect-defect interactions. While nominally introducing the same number of vacancies as yttrium, nitrogen dopants introduced in the anion sublattice of zirconia lead to substantially different defect kinetics and energetics. Compared to the equivalent yttrium doping nitrogen doping in the Y-Zr-O-N system substantially increases the activation energy and correspondingly decreases the conductivity at temperatures below 500-bar C in the vacancy range below 4mol%. The comparison of N-doped zirconia and zirconia systems doped with size-matched cation stabilizers, such as Sc, Yb and Y, shows that elastically driven vacancy-vacancy ordering interactions can phenomenologically account for the temperature- and composition-dependence. It is striking that materials with superior high-temperature conductivities due to weak dopant-vacancy interactions undergo severe deterioration at low temperature due to the strong vacancy-ordering. The analysis also explains qualitatively similar effects of Y co-doping in Yb-, Sc-, and N-doped zirconia. Small amount of Y in N-doped zirconia as well as in Sc-doped zirconia appears to hinder the formation of the long-range ordered phase and thus enhance the conductivity substantially

  8. Effect of cation trapping on thermal stability of magnetite nanoparticles.

    Science.gov (United States)

    Pati, S S; Philip, John

    2014-06-01

    We investigate the effect of sodium trapping on thermal stability of magnetite (Fe3O4) nanoparticles. The pure magnetite nanoparticles incubated in sodium hydroxide solutions and subsequently washed with water to remove the excess sodium. The amount of sodium in magnetite is measured using atomic absorption spectroscopy. The size distribution obtained from Small angle X-ray scattering measurements show that particles are fairly monodisperse. The FTIR spectra of nanoparticles show transmission bands at 441 and 611 cm(-1) are due to the symmetric stretching vibrations (v) of Fe-O in octahedral and tetrahedral sites respectively. With 500 ppm of sodium ions (Na+) in magnetite, the cubic ferrite structure of maghemite (gamma-Fe2O3) to hexagonal hematite (alpha-Fe2O3) phase transition is enhanced by -150 degrees C in air. The Rietveld analysis of sodium doped magnetite nanoparticles show that above 99% of metastable gamma-Fe2O3 is converted to a thermodynamically stable alpha-Fe2O3 after air annealing at 700 degrees C. A decrease in enthalpy observed in doped magnetite unambiguously confirms that the activation energy for maghemite to hematite transition is increased due to the presence of trapped sodium ions. These results suggest that the trapped cations in ferrite nanoparticles can stabilize them by increasing the activation energy.

  9. Storage Stability and Improvement of Intermediate Moisture Foods, Phase 3

    Science.gov (United States)

    Labuza, T. P.

    1975-01-01

    Methods were determined for the improvement of shelf-life stability of intermediate moisture foods (IMF). Microbial challenge studies showed that protection against molds and Staphylococcus aureus could be achieved by a combination of antimicrobial agents, humectants and food acids. Potassium sorbate and propylene glycol gave the best results. It was also confirmed that the maximum in heat resistance shown by vegetative pathogens at intermediate water activities also occurred in a solid food. Glycols and sorbitol both achieve browning inhibition because of their action as a medium for reaction and effect on viscosity of the adsorbed phase. Chemical availability results showed rapid lysine loss before visual discoloration occurred. This is being confirmed with a biological test using Tetrahymena pyriformis W. Accelerated temperature tests show that effectiveness of food antioxidants against rancidity development can be predicted; however, the protection factor changes with temperature. BHA was found to be the best antioxidant for iron catalyzed oxidation.

  10. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    Directory of Open Access Journals (Sweden)

    Feinan Hu

    Full Text Available Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+ at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  11. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant.

    Science.gov (United States)

    Zhu, Yue; Jiang, Jianzhong; Liu, Kaihong; Cui, Zhenggang; Binks, Bernard P

    2015-03-24

    A stable oil-in-water Pickering emulsion stabilized by negatively charged silica nanoparticles hydrophobized in situ with a trace amount of a conventional cationic surfactant can be rendered unstable on addition of an equimolar amount of an anionic surfactant. The emulsion can be subsequently restabilized by adding a similar trace amount of cationic surfactant along with rehomogenization. This destabilization-stabilization behavior can be cycled many times, demonstrating that the Pickering emulsion is switchable. The trigger is the stronger electrostatic interaction between the oppositely charged ionic surfactants compared with that between the cationic surfactant and the (initially) negatively charged particle surfaces. The cationic surfactant prefers to form ion pairs with the added anionic surfactant and thus desorbs from particle surfaces rendering them surface-inactive. This access to switchable Pickering emulsions is easier than those employing switchable surfactants, polymers, or surface-active particles, avoiding both the complicated synthesis and the stringent switching conditions.

  12. Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia

    Science.gov (United States)

    Good, Brian

    2011-01-01

    Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.

  13. Storage Stability and Improvement of Intermediate Moisture Foods

    Science.gov (United States)

    Labuza, T. P.

    1976-01-01

    Shelf life tests are used to estimate the rate of nonenzymatic browning; however, controlling the reducing sugar levels below 23:1 molar ratio to amines, slows the rate. In addition, liquid glycols surpress browning. The protozoan Tetrahymena pyriformis W can be used to estimate nutrition losses during browning. At high temperatures (80 to 120 C) used in processing intermediate moisture foods (IMF), vitamin C destruction shifts to a zero order mechanism. BHA and BHT are the most effective antioxidants against rancidity. In shelf life testing however, 45 C should be the maximum temperature used. Water binding agents are studied. The five isotherms of thirteen humectants were determined. The results show that neither the method of addition nor sequence of addition affects the a sub u lowering ability of these humectants. Results were used to formulate shelf stable IMF processed cheese foods with at least four months shelf life.

  14. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface.

    Science.gov (United States)

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Crumlin, Ethan J; Yildiz, Bilge

    2016-09-01

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss. PMID:27295099

  15. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    Science.gov (United States)

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Crumlin, Ethan J.; Yildiz, Bilge

    2016-09-01

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a `volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.

  16. MODIFICATION OF TRANSITION METAL CATIONS TO POLYMER- STABILIZED PLATINUM COLLOIDAL CLUSTERS IN ENANTIOSELECTIVE HYDROGENATION OF METHYL PYRUVATE

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping Yan; Bao-lin He; Jie Zhang; Han-fan Liu

    2005-01-01

    Modification of transition metal cations to polymer-stabilized Pt colloidal clusters modified with cinchonidine was studied in enantioselective hydrogenation of methyl pyruvate. Compared to the enantiomeric excess (e.e.) value (71.4%)obtained without the presence of metal cations, obvious e.e. enhancement (up to 82.5%) was resulted from the addition of Zn2+ but with a certain decrease in activity. The reaction parameters in the presence of Zn2+ were also studied. It was found that the Pt colloidal catalysts in the presence of metal cations performed very differently from that in the absence of metal cations.

  17. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection.

    Science.gov (United States)

    Xu, Xiao-Ling; Lin, Fu-Wen; Du, Yong; Zhang, Xi; Wu, Jian; Xu, Zhi-Kang

    2016-05-25

    Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection. PMID:27158976

  18. Stability Assessment of Injectable Castor Oil-Based Nano-sized Emulsion Containing Cationic Droplets Stabilized by Poloxamer–Chitosan Emulsifier Films

    OpenAIRE

    S Tamilvanan; Kumar, B. Ajith; Senthilkumar, S. R.; Baskar, Raj; Sekharan, T. Raja

    2010-01-01

    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer–chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze–thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze–thaw cycling. After storing the emulsion at 4°C, 25°C, a...

  19. The effect of multivalent cations and Tau on paclitaxel-stabilized microtubule assembly, disassembly, and structure.

    Science.gov (United States)

    Safinya, Cyrus R; Chung, Peter J; Song, Chaeyeon; Li, Youli; Ewert, Kai K; Choi, Myung Chul

    2016-06-01

    In this review we describe recent studies directed at understanding the formation of novel nanoscale assemblies in biological materials systems. In particular, we focus on the effects of multivalent cations, and separately, of microtubule-associated protein (MAP) Tau, on microtubule (MT) ordering (bundling), MT disassembly, and MT structure. Counter-ion directed bundling of paclitaxel-stabilized MTs is a model electrostatic system, which parallels efforts to understand MT bundling by intrinsically disordered proteins (typically biological polyampholytes) expressed in neurons. We describe studies, which reveal an unexpected transition from tightly spaced MT bundles to loose bundles consisting of strings of MTs as the valence of the cationic counter-ion decreases from Z=3 to Z=2. This transition is not predicted by any current theories of polyelectrolytes. Notably, studies of a larger series of divalent counter-ions reveal strong ion specific effects. Divalent counter-ions may either bundle or depolymerize paclitaxel-stabilized MTs. The ion concentration required for depolymerization decreases with increasing atomic number. In a more biologically related system we review synchrotron small angle x-ray scattering (SAXS) studies on the effect of the Tau on the structure of paclitaxel-stabilized MTs. The electrostatic binding of MAP Tau isoforms leads to an increase in the average radius of microtubules with increasing Tau coverage (i.e. a re-distribution of protofilament numbers in MTs). Finally, inspired by MTs as model nanotubes, we briefly describe other more robust lipid-based cylindrical nanostructures, which may have technological applications, for example, in drug encapsulation and delivery. PMID:26684364

  20. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent L.; Hu, Jian Z.

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.

  1. Mesityltellurenyl cations stabilized by triphenylpnictogens [MesTe(EPh(3))](+) (E = P, As, Sb).

    Science.gov (United States)

    Beckmann, Jens; Bolsinger, Jens; Duthie, Andrew; Finke, Pamela; Lork, Enno; Lüdtke, Carsten; Mallow, Ole; Mebs, Stefan

    2012-11-19

    The homoleptic 1:1 Lewis pair (LP) complex [MesTe(TeMes2)]O3SCF3 (1) featuring the cation [MesTe(TeMes2)](+) (1a) was obtained by the reaction of Mes2Te with HO3SCF3. The reaction of 1 with Ph3E (E = P, As, Sb, Bi) proceeded with substitution of Mes2Te and provided the heteroleptic 1:1 LP complexes [MesTe(EPh3)]O3SCF3 (2, E = P; 3, E = As) and [MesTe(SbPh3)][Ph2Sb(O3SCF3)2] (4) featuring the cations [MesTe(EPh3)](+) (2a, E = P; 3a, E = As; 4a, E = Sb) and the anion [Ph2Sb(O3SCF3)2](-) (4b). In the reaction with Ph3Bi, the crude product contained the cation [MesTe(BiPh3)](+) (5a) and the anion [Ph2Bi(O3SCF3)2](-) (5b); however, the heteroleptic 1:1 LP complex [MesTe(BiPh3)][Ph2Bi(O3SCF3)2] (5) could not be isolated because of its limited stability. Instead, fractional crystallization furnished a large amount of Ph2BiO3SCF3 (6), which was also obtained by the reaction of Ph3Bi with HO3SCF3. The formation of the anions 4b and 5b involves a phenyl group migration from Ph3E (E = Sb, Bi) to the MesTe(+) cation and afforded MesTePh as the byproduct, which was identified in the mother liquor. The heteroleptic 1:1 LP complexes 2-4 were also obtained by the one-pot reaction of Mes2Te, Ph3E (E = P, As, Sb) and HO3SCF3. Compounds 1-4 and 6 were investigated by single-crystal X-ray diffraction. The molecular structures of 1a-4a were used for density functional theory calculations at the B3PW91/TZ level of theory and studied using natural bond order (NBO) analyses as well as real-space bonding descriptors derived from an atoms-in-molecules (AIM) analysis of the theoretically obtained electron density. Additionally, the electron localizability indicator (ELI-D) and the delocalization index are derived from the corresponding pair density. PMID:23134409

  2. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy

    Directory of Open Access Journals (Sweden)

    Kurakula M

    2015-01-01

    Full Text Available Mallesh Kurakula,1 AM El-Helw,2 Tariq R Sobahi,1 Magdy Y Abdelaal11Polymer Research Lab, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: Cationic charged chitosan as stabilizer was evaluated in preparation of nanocrystals using probe sonication method. The influence of cationic charge densities of chitosan (low CSL, medium CSM, high CSH molecular weights and Labrasol® in solubility enhancement and modifying the release was investigated, using atorvastatin (ATR as poorly soluble model drug. Compared to CSM and CSH; low cationic charge of CSL acted as both electrostatic and steric stabilizer by significant size reduction to 394 nm with charge of 21.5 meV. Solubility of ATR-CSL increased to 60-fold relative to pure ATR and ATR-L. Nanocrystals were characterized for physiochemical properties. Scanning electron microscopy revealed scaffold-like structures with high surface area. X-ray powder diffractometry and differential scanning calorimetry revealed crystalline to slight amorphous state changes after cationic charge size reduction. Fourier transform-infrared spectra indicated no potent drug-excipient interactions. The enhanced dissolution profile of ATR-CSL indicates that sustained release was achieved compared with ATR-L and Lipitor®. Anti-hyperlipidemic performance was pH dependent where ATR-CSL exhibited 2.5-fold higher efficacy at pH 5 compared to pH 6 and Lipitor®. Stability studies indicated marked changes in size and charge for ATR-L compared to ATR-CSL exemplifying importance of the stabilizer. Therefore, nanocrystals developed with CSL as a stabilizer is a promising choice to enhance dissolution, stability, and in-vivo efficacy of major Biopharmaceutical Classification System II/IV drugs.Keywords: atorvastatin, anti-hyperlipidemia, chitosan, cationic charge, stability, nanocrystals

  3. Thermodynamic stability and retinol binding property of {beta}-lactoglobulin in the presence of cationic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Sahihi, M. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Bordbar, A.K., E-mail: bordbar@chem.ui.ac.ir [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Ghayeb, Y. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-08-15

    Highlights: > The stability parameters of {beta}-lactoglobulin, BLG, in the presence of C{sub n}TAB have been evaluated. > Rising in hydrocarbon chain length increases the denaturating power of surfactants. > C{sub n}TAB enhances the retinol binding affinity of BLG in all of its concentration range. - Abstract: In this work the stability parameters of bovine {beta}-lactoglobulin, variant A (BLG-A), with regard to their transition curves induced by dodecyltrimethylammonium bromide (C{sub 12}TAB), tetradecyltrimethylammonium bromide (C{sub 14}TAB) and hexadecyltrimethylammonium bromide (C{sub 16}TAB) as cationic surfactants, were determined at 298 K. For each transition curve, the conventional method of analysis which assumes a linear concentration dependence of the pre- and post-transition base lines, gave the most realistic values for {Delta}G{sub D}(H{sub 2}O). The results represent the increase in the denaturating power of surfactants with an increase in hydrocarbon chain length. The value of about 22.27 kJ . mol{sup -1} was obtained for {Delta}G{sub D}(H{sub 2}O) from transition curves. Subsequently, the retinol binding property of BLG as its functional indicator was investigated in the presence of these surfactants using the spectrofluorimeter titration method. The results represent the substantial enhancement of retinol binding affinity of BLG in the presence of these surfactants.

  4. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste.

    Science.gov (United States)

    Qi, Guangxia; Yue, Dongbei; Liu, Jianguo; Li, Rui; Shi, Xiaochong; He, Liang; Guo, Jingting; Miao, Haomei; Nie, Yongfeng

    2013-10-15

    Waste samples at different depths of a covered municipal solid waste (MSW) landfill in Beijing, China, were excavated and characterized to investigate the impact of intermediate soil cover on waste stabilization. A comparatively high amount of unstable organic matter with 83.3 g kg(-1) dry weight (dw) total organic carbon was detected in the 6-year-old MSW, where toxic inorganic elements containing As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn of 10.1, 0.98, 85.49, 259.7, 530.4, 30.5, 84.0, and 981.7 mg kg(-1) dw, respectively, largely accumulated because of the barrier effect of intermediate soil cover. This accumulation resulted in decreased microbial activities. The intermediate soil cover also caused significant reduction in moisture in MSW under the soil layer, which was as low as 25.9%, and led to inefficient biodegradation of 8- and 10-year-old MSW. Therefore, intermediate soil cover with low permeability seems to act as a barrier that divides a landfill into two landfill cells with different degradation processes by restraining water flow and hazardous matter.

  5. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter

    Science.gov (United States)

    The aggregation and stability of graphene oxide (GO) and three successively reduced GO (rGO) nanomaterials were investigated. Reduced GO species were partially reduced GO (rGO-1h), intermediately reduced GO (rGO-2h), and fully reduced GO (rGO-5h). Specifically, influence of pH, i...

  6. Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids

    Energy Technology Data Exchange (ETDEWEB)

    Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  7. Ionic and covalent stabilization of intermediates and transition states in catalysis by solid acids.

    Science.gov (United States)

    Deshlahra, Prashant; Carr, Robert T; Iglesia, Enrique

    2014-10-29

    Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POM clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE-reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born-Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.

  8. Cation-pi interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Kaznessis, Yiannis N

    2007-01-01

    We implemented molecular dynamics simulations of the 13-residue antimicrobial peptide indolicidin (ILPWKWPWWPWRR-NH2) in dodecylphosphocholine (DPC) and sodium dodecyl sulfate (SDS) micelles. In DPC, a persistent cation-pi interaction between TRP11 and ARG13 defined the structure of the peptide...... to the sulfate groups leads to an extended peptide structure. To the best of our knowledge, this is the first time that a cation-pi interaction between peptide side chains has been shown to stabilize the structure of a small antimicrobial peptide. The simulations are in excellent agreement with available...... experimental measurements: the backbone of the peptide is more ordered in DPC than in SDS; the tryptophan side chains pack against the backbone in DPC and point away from the backbone in SDS; the rms fluctuation of the peptide backbone and peptide side chains is greater in SDS than in DPC; and the peptide...

  9. Stability assessment of injectable castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulsifier films.

    Science.gov (United States)

    Tamilvanan, S; Kumar, B Ajith; Senthilkumar, S R; Baskar, Raj; Sekharan, T Raja

    2010-06-01

    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.

  10. C---lH...O and O...H...O bonded intermediates in the dissociation of low energy methyl glycolate radical cations

    Science.gov (United States)

    Suh, Dennis; Kingsmill, Carol A.; Ruttink, Paul J. A.; Burgers, Peter C.; Terlouw, Johan K.

    1995-08-01

    Low energy methyl glycolate radical cations HOCH2C(=O)OCH3+, 1, abundantly lose HCO, yielding protonated methyl formate H---C(OH)OCH3+. Tandem mass spectrometry based experiments on 2H, 13C and 18O labelled isotopologues show that this loss is largely (about 75%) atom specific. Analysis of the atom connectivity in the product ions indicates that the reaction proceeds analogously to the loss of HCO and CH3CO from ionized acetol HOCH2C(=O)CH3+ and acetoin HOCH(CH3)C(=O)CH3+, respectively. The mechanism, it is proposed, involves isomerization of 1 to the key intermediate CH2=O... H---C(=O)OCH3+, an H-bridged ion-dipole complex of neutral formaldehyde and ionized methyl formate. Next, charge transfer takes place to produce CH3OC(H)=O...HC(H)=O+, an H-bridged ion-dipole complex of ionized formaldehyde and neutral methyl formate, followed by proton transfer to generate the products. Preliminary ab initio calculations executed at the UMP3/6-31G*//6-31G*+ZPVE level of theory are presented in support of this proposal. The non-specific loss of HCO from 1 (about 25%) is rationalized to occur via the same mechanism, but after communication with isomeric dimethyl carbonate ions CH3OC(=O)OCH3+, 2, via the O...H...O bonded intermediate [CH2=O...H...O=C---OCH3]+. The latter pathway is even more important in the formation of CH2OH+ ions from 1 which, it is shown, is not a simple bond cleavage reaction, but may involve consecutive or concerted losses of CH3 and CO2 from the above O...H...O bonded species. Ionized methyl lactate HOCH(CH3)C(=O)OCH3+, the higher homologue of 1, shows a unimolecular chemistry which is akin to that of 1.

  11. Synthesis of cationic hyperbranched multiarm copolymer and its application in self-reducing and stabilizing gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel hyperbranched multiarm copolymer of HBPO-star-PDEAEMA with a hydrophobic poly(3-ethyl-3-(hydroxymethyl) oxetane)(HBPO) core and many cationic poly(2-(N,N-diethylamino) ethyl methacrylate)(PDEAEMA) arms has been synthesized through an atom transfer radical polymerization(ATRP) method,and been applied to spontaneously reduce and stabilize gold nanoparticles(AuNPs) in water without other additional agents.The size of the nanoparticles could be effectively controlled at about 4 nm,and the nanoparticles are extremely stable in solution without aggregation even for one year.It was found that solution pH and the molar ratio of N/Au have certain effects on the size and stability of AuNPs.This work provides a simple method for the synthesis of uniform and highly stable AuNPs.

  12. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

    DEFF Research Database (Denmark)

    Ma, Wenjia; Zhao, Chengji; Yang, Jingshuai;

    2012-01-01

    anchoring of the molecule. Combining the excellent thermal stability, the addition of a small amount of diamines enhanced both the chemical and mechanical stability and the phosphoric acid doping (PA) ability of membranes. Fuel cell performance based on impregnated cross-linked membranes have been...

  13. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  14. Stabilization of Curcumin by Complexation with Divalent Cations in Glycerol/Water System

    Directory of Open Access Journals (Sweden)

    Bachar Zebib

    2010-01-01

    Full Text Available The purpose of present study was to stabilize curcumin food pigment by its complexation with divalent ions like (Zn2+,Cu2+,Mg2+,Se2+, in “green media” and evaluate its stability in vitro compared to curcumin alone. The curcumin complexes were prepared by mechanical mixture of curcumin and sulfate salts of each metal (metal : curcumin 1/1mol into unconventional and nontoxic glycerol/water solvent. Two stoichiometry of complex were obtained, 1 : 1 and 1 : 2 (metal/curcumin, respectively. On evaluation of in vitro stability, all complexes were found to provide a higher stability from curcumin alone.

  15. Heat-induced stabilization of the nuclear matrix is independent of divalent cations and high versus low salt extraction

    International Nuclear Information System (INIS)

    The authors devised a method to determine the structural integrity of the nuclear matrix. Nuclear matrices are prepared from exponentially growing cultures of control or heat shocked (450, 30') HeLa cells by DNase I digestion and high (3M) salt extraction of isolated nuclei. After staining with Fluorescein isothiocyanate for protein and Propidium Iodide for double stranded nuclei acids, these parameters and forward angle light scatter are quantitated simultaneously by a flow cytometer. PI quantitation indicates that matrices from heated cells are 2-4 fold more resistant to ribonuclease than those from control cells. This result suggests that the excess protein accumulated in the matrix due to heat shock may mask associated RNA from nucleolytic attack. In the absence of divalent cations (Mg/sup 2+/ and Ca/sup 2+/) matrices from heated cells remain RNase resistant but those from control cells lose all particulate integrity as a result of exposure to RNase. The RNase resistance of matrices from heat shocked cells is also evident when DNase I treated nuclei are extracted by a low salt procedure which has been shown to eliminate randomization of matrix associated DNA sequences due to high salt (Cell 39:223,1984). Thus the nuclease protection of double stranded RNA due to heat is not an artifact of salt-induced randomization of matrix associated DNA sequences. Heat also overcomes the divalent cation requirement for matrix stability after RNase treatment

  16. Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes

    Science.gov (United States)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent; Hu, JianZhi

    2013-11-01

    The vanadium(V) cation structures in mixed acid based electrolyte solution were analyzed by density functional theory (DFT) based computational modeling and 51V and 35Cl nuclear magnetic resonance (NMR) spectroscopy. The vanadium(V) cation exists as di-nuclear [V2O3Cl2·6H2O]2+ compound at higher vanadium concentrations (≥1.75 M). In particular, at high temperatures (>295 K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl·6H2O]2+ compound. This chlorine bonded [V2O3Cl2·6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2·6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based vanadium(V) electrolyte solutions.

  17. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    Science.gov (United States)

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE. PMID:25442557

  18. Stabilization of Curcumin by Complexation with Divalent Cations in Glycerol/Water System

    OpenAIRE

    Bachar Zebib; Zéphirin Mouloungui; Virginie Noirot

    2010-01-01

    The purpose of present study was to stabilize curcumin food pigment by its complexation with divalent ions like ( Z n 2 + , C u 2 + , M g 2 + , S e 2 + ) , in “green media” and evaluate its stability in vitro compared to curcumin alone. The curcumin complexes were prepared by mechanical mixture of curcumin and sulfate salts of each metal (metal : curcumin 1/1mol) into unconventional and nontoxic glycerol/water solvent. Two stoichiometry of complex were obtained, 1 : 1 and 1 : 2 (metal/curcumi...

  19. Frame Stability of Tunnel‐Structured Cryptomelane Nanofibers: The Role of Tunnel Cations

    DEFF Research Database (Denmark)

    Gao, Tao; Norby, Poul

    2013-01-01

    The role of tunnel K+ ions on the growth and stability of tunnel‐structured cryptomelane‐type MnO2 nanofibers (denoted as cryptomelane nanofibers hereafter) has been discussed by means of X‐ray diffraction and electron microscopy. Cryptomelane nanofibers with typical diameters of 20–80 nm and len...

  20. Effect of dietary cation-anion difference on performance of lactating dairy cows and stability of milk proteins.

    Science.gov (United States)

    Martins, C M M R; Arcari, M A; Welter, K C; Netto, A S; Oliveira, C A F; Santos, M V

    2015-04-01

    Casein micelle stability is negatively correlated with milk concentrations of ionic calcium, which may change according to the metabolic and nutritional status of dairy cows. The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on concentrations of casein subunits, whey proteins, ionic calcium, and milk heat and ethanol stability. Sixteen Holstein cows were distributed in 4 contemporary 4 × 4 Latin square designs, which consisted of 4 periods of 21 d and 4 treatments according to DCAD: 290, 192, 98, and -71 mEq/kg of dry matter (DM). The milk concentrations of ionic calcium and κ-casein were reduced as DCAD increased, whereas the milk urea nitrogen and β-lactoglobulin concentrations were increased. As a result of these alterations, the milk ethanol stability and milk stability during heating at 140 °C were increased linearly with increasing DCAD [Y = 74.87 (standard error = 0.87) + 0.01174 (standard error = 0.0025) × DCAD (mEq/kg of DM) and Y = 3.95 (standard error = 1.02) + 0.01234 (standard error = 0.0032) × DCAD (mEq/kg of DM), respectively]. In addition, 3.5% fat-corrected milk and fat, lactose, and total milk solids contents were linearly increased by 13.52, 8.78, 2.5, and 2.6%, respectively, according to DCAD increases from -71 to 290 mEq/kg of DM, whereas crude protein and casein content were linearly reduced by 4.83 and 4.49%, respectively. In conclusion, control of metabolic changes in lactating dairy cows to maintain blood acid-base equilibrium plays an important role in keeping milk stable to ethanol and during heat treatments. PMID:25622868

  1. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite.

    Science.gov (United States)

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La(3+) in sodalite cage is much better than that of AE(2+) and about 12 La(3+) can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La(3+) is more suitable for the catalytic cracking of cyclohexane than that of AE(2+). Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  2. RgBF2(+) complexes (Rg = Ar, Kr, and Xe): the cations with large stabilities.

    Science.gov (United States)

    Lv, Zhi; Chen, Guang-Hui; Li, Dan; Wu, Di; Huang, Xiao-Chun; Li, Zhi-Ru; Liu, Wen-Guang

    2011-04-21

    Rare gas containing cations with general formula [Rg, B, 2F](+) have been investigated theoretically by second-order Mo̸ller-Plesset perturbation, coupled cluster, and complete active space self-consistent field levels of theory with correlation-consistent basis sets. Totally two types of minima, i.e., boron centered C(2) (v) symmetried RgBF(2) (+) (Rg = Ar, Kr, and Xe) which can be viewed as loss of F(-) from FRgBF(2) and linear FRgBF(+) (Rg = Kr and Xe) are obtained at the CCSD(T)∕aug-cc-pVTZ∕SDD and CASSCF(10,8)∕aug-cc-pVTZ∕SDD levels, respectively. It is shown that the RgBF(2) (+) are global minima followed by FRgBF(+) at 170.9 and 142.2 kcal∕mol on the singlet potential-energy surfaces of [Rg, B, 2F](+) (Rg = Kr and Xe) at the CASPT2(10,8) ∕aug-cc-pVTZ∕SDD∕∕CASSCF(10,8)∕aug-cc-pVTZ∕SDD, respectively. The interconversion barrier heights between RgBF(2) (+) and FRgBF(+) (Rg = Kr and Xe) are at least 39 kcal∕mol. In addition, no dissociation transition state associated with RgBF(2) (+) and FRgBF(+) can be found. This suggests that RgBF(2) (+) (Rg = Ar, Kr, and Xe) can exist as both thermodynamically and kinetically stable species, while linear FRgBF(+) (Rg = Kr and Xe) can exist as metastable species compared with the lowest dissociation limit energies just like isoelectronic linear FRgBO and FRgBN(-). From natural bond orbital and atoms-in-molecules calculations, it is found that the positive charge is mainly located on Rg and boron atoms for both types of minima, the Rg-B bonds of ArBF(2) (+), KrBF(2) (+), and XeBF(2) (+) are mostly electrostatic, thus can be viewed as ion-induced dipole interaction; while that of linear FKrBF(+) and FXeBF(+) are covalent in nature. The previous experimental observation of ArBF(2) (+) by Pepi et al. [J. Phys. Chem. B. 110, 4492 (2006)] should correspond to C(2) (v) minimum. The presently predicted spectroscopies of KrBF(2) (+), XeBF(2) (+), FKrBF(+), and FXeBF(+) should be helpful for their experimental

  3. Electron spin resonance and intermediate neglect of differential overlap molecular orbital study of the π cations of (hydroxymethyl)uracil and (hydroxymethyl)cytosine. Evidence for internal hydrogen bonding

    International Nuclear Information System (INIS)

    The π-cation radicals of 5-(hydroxymethyl)uracil (HOMeU) and 5-(hydroxymethyl)cytosine (HOMeC) have been produced by Cl2- attack in γ-irradiated basic 12 M LiCl and photoionization in basic 8 M NaClO4 glasses at low temperatures. Analysis of the ESR spectra found for these radicals shows that each of the π-cation radicals converts to another species probably by a change in a nitrogen protonation state as the temperature is raised. For example, 5-(hydroxymethyl)uracil cation shows a 28.5-G average splitting for the two hydroxymethyl-group β protons which convert upon annealing to a 36-G splitting. The splittings and the narrowness of the line widths found after annealing are suggestive of a configuration which is intramolecularly rigid and stabilized by a intramolecular hydrogen bond from the hydroxyl proton to the 4-position oxygen. The π cation of 5-(hydroxymethyl)cytosine converts to a radical with substantial spin density on the exocyclic nitrogen which again shows strong evidence for intramolecular hydrogen bonding. Final radicals are found to be produced from the π-cation radicals of (hydroxymethyl)uracil and (hydroxymethyl)cytosine by deprotonation of a methylene proton. INDO calculations for the π cation of (hydroxymethyl)uracil as a function of orientation of the hydroxyl group show that the hydrogen bond to the 4-position oxygen increases in strength by a factor of 3 upon deprotonation at the 3-position nitrogen. The hydrogen bond is therefore predicted to substantially stabilize the π-cation radical

  4. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3.

    Science.gov (United States)

    Wang, Y L; Liu, M F; Liu, R; Xie, Y L; Li, X; Yan, Z B; Liu, J-M

    2016-06-14

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  5. High stability of electro-transport and magnetism against the A-site cation disorder in SrRuO3

    Science.gov (United States)

    Wang, Y. L.; Liu, M. F.; Liu, R.; Xie, Y. L.; Li, X.; Yan, Z. B.; Liu, J.-M.

    2016-06-01

    It is known that the electro-transport and magnetism of perovskite alkaline-earth ruthenate oxides are sensitive to the lattice distortion associated with the A-site cation size. Orthorhombic CaRuO3 and cubic BaRuO3 exhibit distinctly different electro-transport and magnetic properties from orthorhombic SrRuO3. It has been suggested that SrRuO3 can be robust against some intrinsic/external perturbations but fragile against some others in terms of electro-transport and magnetism, and it is our motivation to explore such stability against the local site cation disorder. In this work, we prepare a set of SrRuO3-based samples with identical averaged A-site size but different A-site cation disorder (size mismatch) by Ca and Ba co-substitution of Sr. It is revealed that the electro-transport and magnetism of SrRuO3 demonstrate relatively high stability against this A-site cation disorder, characterized by the relatively invariable electrical and magnetic properties in comparison with those of SrRuO3 itself. A simple electro-transport network model is proposed to explain quantitatively the measured behaviors. The present work suggests that SrRuO3 as an itinerant electron ferromagnetic metal possesses relatively high robustness against local lattice distortion and cation occupation disorder.

  6. Households credits and financial stability : A theoretical model of financial intermediation

    OpenAIRE

    Bastidon, Cécile

    2014-01-01

    This paper develops a theoretical model of financial intermediation with three original features: first, consideration of all sectors within total outstanding credits, including households; second, the possibility of a non monotic relationship between prices and funding supply volumes in periods of high financial strains; last, the link between interbank credit rationing and other sectors funding rationing. The central bank conducts an unconventional type monetary policy. We show that the int...

  7. Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials.

    Science.gov (United States)

    Neukirch, Amanda J; Nie, Wanyi; Blancon, Jean-Christophe; Appavoo, Kannatassen; Tsai, Hsinhan; Sfeir, Matthew Y; Katan, Claudine; Pedesseau, Laurent; Even, Jacky; Crochet, Jared J; Gupta, Gautam; Mohite, Aditya D; Tretiak, Sergei

    2016-06-01

    Solution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. Despite the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more complicated charge transport phenomena. Here we report the results from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures. Using the hybrid density functional theory, we found that volumetric strain in a CsPbI3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively. In the MAPbI3 (MA = CH3NH3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies suggest appearance of small polarons in organometallic perovskite materials. The fact that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH2)2) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications.

  8. Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials.

    Science.gov (United States)

    Neukirch, Amanda J; Nie, Wanyi; Blancon, Jean-Christophe; Appavoo, Kannatassen; Tsai, Hsinhan; Sfeir, Matthew Y; Katan, Claudine; Pedesseau, Laurent; Even, Jacky; Crochet, Jared J; Gupta, Gautam; Mohite, Aditya D; Tretiak, Sergei

    2016-06-01

    Solution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. Despite the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more complicated charge transport phenomena. Here we report the results from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures. Using the hybrid density functional theory, we found that volumetric strain in a CsPbI3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively. In the MAPbI3 (MA = CH3NH3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies suggest appearance of small polarons in organometallic perovskite materials. The fact that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH2)2) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications. PMID:27224519

  9. Influence of Hydrocolloids (Dietary Fibers) on Lipid Digestion of Protein-Stabilized Emulsions: Comparison of Neutral, Anionic, and Cationic Polysaccharides.

    Science.gov (United States)

    Qin, Dingkui; Yang, Xiaojun; Gao, Songran; Yao, Junhu; McClements, David Julian

    2016-07-01

    The impact of dietary fibers on lipid digestion within the gastrointestinal tract depends on their molecular and physicochemical properties. In this study, the influence of the electrical characteristics of dietary fibers on their ability to interfere with the digestion of protein-coated lipid droplets was investigated using an in vitro small intestine model. Three dietary fibers were examined: cationic chitosan; anionic alginate; neutral locust bean gum (LBG). The particle size, ζ-potential, microstructure, and apparent viscosity of β-lactoglobulin stabilized oil-in-water emulsions containing different types and levels of dietary fiber were measured before and after lipid digestion. The rate and extent of lipid digestion depended on polysaccharide type and concentration. At relatively low dietary fiber levels (0.1 to 0.2 wt%), the initial lipid digestion rate was only reduced by chitosan, but the final extent of lipid digestion was unaffected by all 3 dietary fibers. At relatively high dietary fiber levels (0.4 wt%), alginate and chitosan significantly inhibited lipid hydrolysis, whereas LBG did not. The impact of chitosan on lipid digestion was attributed to its ability to promote fat droplet aggregation through bridging flocculation, thereby retarding access of the lipase to the droplet surfaces. The influence of alginate was mainly ascribed to its ability to sequester calcium ions and promote depletion flocculation. PMID:27300319

  10. Relative Stability of the Key Enamine,Oxazolidinone, and Imine Intermediates in Some Proline-catalyzed Asymmetric Reactions

    Institute of Scientific and Technical Information of China (English)

    HU Yi-Fan; LU Xin

    2008-01-01

    Many proline-catalyzed asymmetric addition reactions with ketones as substrates were assumed to involve a key intermediate, an enamine, produced by the condensation of proline and ketone. In this paper, the key intermediate enamines derived from L-proline and cyclohexanone (or acetone) as well as the corresponding oxazolidinone and imine tautomers have been investigated by means of density functional calculations at the B3LYP/6-311+G** level. The predicted order of stability for these tautomers is oxazolidinones > enamines > imines in gas phase and oxazolidinones > imines > enamines in aprotic THF solvent. This prediction explains why enamine intermediate can not be observed experimentally. The predicted energy/enthalpy difference between the formal oxazolidinone structure and the zwitterionic imine structures is very small in THF solvent, suggesting the oxazolidinone-to-imine tautomerization can be readily induced in solvent. 13C NMR chemical shifts of the oxazolidinone and imine structures have been computed and used to explain the experimental NMR spectra observed in oxazolidinone-to-imine tautomerization induced by protic solvent.

  11. Haemostatic role of intermediate filaments in adhered platelets: importance of the membranous system stability.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Mondragón, Ricardo; Mondragón, Mónica; González, Sirenia; Galván, Iván J

    2013-09-01

    The role of platelets in coagulation and the haemostatic process was initially suggested two centuries ago, and under appropriate physiological stimuli, these undergo abrupt morphological changes, attaching and spreading on damaged endothelium, preventing bleeding. During the adhesion process, platelet cytoskeleton reorganizes generating compartments in which actin filaments, microtubules, and associated proteins are arranged in characteristic patterns mediating crucial events, such as centralization of their organelles, secretion of granule contents, aggregation with one another to form a haemostatic plug, and retraction of these aggregates. However, the role of Intermediate filaments during the platelet adhesion process has not been explored. J. Cell. Biochem. 114: 2050-2060, 2013. © 2013 Wiley Periodicals, Inc.

  12. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study.

    Science.gov (United States)

    Jiang, Lei; Xu, Yi-sheng; Ding, Ai-zhong

    2010-12-01

    The mechanism of the reaction of the sulfur dioxide (SO(2)) with four stabilized Criegee intermediates (stabCI-CH(3)-OO, stabCI-OO, stabCIx-OO, and stabCH(2)OO) produced via the ozonolysis of limonene have been investigated using ab initio and DFT (density functional theory) methods. It has been shown that the intermediate adduct formed by the initiation of these reactions may be followed by two different reaction pathways such as H migration reaction to form carboxylic acids and rearrangement of oxygen to produce the sulfur trioxide (SO(3)) from the terminal oxygen of the COO group and SO(2). We found that the reaction of stabCI-OO and stabCH(2)OO with SO(2) can occur via both the aforementioned scenarios, whereas that of stabCI-CH(3)-OO and stabCIx-OO with SO(2) is limited to the second pathway only due to the absence of migrating H atoms. It has been shown that at the CCSD(T)/6-31G(d) + CF level of theory the activation energies of six reaction pathways are in the range of 14.18-22.59 kcal mol(-1), with the reaction between stabCIx-OO and SO(2) as the most favorable pathway of 14.18 kcal mol(-1) activation energy and that the reaction of stabCI-OO and stabCH(2)OO with SO(2) occurs mainly via the second reaction path. The thermochemical analysis of the reaction between SO(2) and stabilized Criegee intermediates indicates that the reaction of SO(2) and stabilized Criegee intermediates formed from the exocyclic primary ozonide decomposition is the main pathway of the SO(3) formation. This is likely to explain the large (~100%) difference in the production rate in the favor of the exocyclic compounds observed in recent experiments on the formation of H(2)SO(4) from exocyclic and endocyclic compounds. PMID:21053959

  13. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  14. Radiation stability of cations in ionic liquids. 5. Task-specific ionic liquids consisting of biocompatible cations and the puzzle of radiation hypersensitivity.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W; Wishart, James F; Grills, David C

    2014-09-01

    In 1953, an accidental discovery by Melvin Calvin and co-workers provided the first example of a solid (the α-polymorph of choline chloride) showing hypersensitivity to ionizing radiation: under certain conditions, the radiolytic yield of decomposition approached 5 × 10(4) per 100 eV (which is 4 orders of magnitude greater than usual values), suggesting an uncommonly efficient radiation-induced chain reaction. Twenty years later, the still-accepted mechanism for this rare condition was suggested by Martyn Symons, but no validation for this mechanism has been supplied. Meanwhile, ionic liquids and deep eutectic mixtures that are based on choline, betainium, and other derivitized natural amino compounds are presently finding an increasing number of applications as diluents in nuclear separations, where the constituent ions are exposed to ionizing radiation that is emitted by decaying radionuclides. Thus, the systems that are compositionally similar to radiation hypersensitive solids are being considered for use in high radiation fields, where this property is particularly undesirable! In Part 5 of this series on organic cations, we revisit the phenomenon of radiation hypersensitivity and explore mechanistic aspects of radiation-induced reactions involving this class of task-specific, biocompatible, functionalized cations, both in ionic liquids and in reference crystalline compounds. We demonstrate that Symons' mechanism needs certain revisions and rethinking, and suggest its modification. Our reconsideration suggests that there cannot be conditions leading to hypersensitivity in ionic liquids.

  15. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K(+) is the best.

    Science.gov (United States)

    Zaccaria, F; Paragi, G; Fonseca Guerra, C

    2016-08-21

    The alkali metal ion affinity of guanine quadruplexes has been studied using dispersion-corrected density functional theory (DFT-D). We have done computational investigations in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. In both cases, an alkali metal cation is needed to assist self-assembly. Our quantum chemical computations on these supramolecular systems are able to reproduce the experimental order of affinity of the guanine quadruplexes for the cations Li(+), Na(+), K(+), Rb(+), and Cs(+). The strongest binding is computed between the potassium cation and the quadruplex as it occurs in nature. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Until now, the relative importance of these two factors has remained unclear and debated. By assessing the quantum chemical 'size' of the cation, determining the amount of deformation of the quadruplex needed to accommodate the cation and through the energy decomposition analysis (EDA) of the interaction energy between the cation and the guanines, we reveal that the desolvation and size of the alkali metal cation are both almost equally responsible for the order of affinity. PMID:27185388

  16. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    OpenAIRE

    Mosayeb Heshmati; Arifin Abdu; Shamshuddin Jusop; Nik M. Majid

    2011-01-01

    Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC) and Soil Aggregate Stability (SAS) that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i) to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii) to evaluate the influence of lan...

  17. The Stabilized Cation Pool Method: Metal- and Oxidant-Free Benzylic C-H/Aromatic C-H Cross-Coupling.

    Science.gov (United States)

    Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-Ichi

    2016-07-13

    Electrochemical oxidation of toluene derivatives in the presence of a sulfilimine gave benzylaminosulfonium ions as stabilized benzyl cation pools, which reacted with subsequently added aromatic nucleophiles to give the corresponding cross-coupling products. The transformation serves as a powerful metal- and chemical-oxidant-free method for benzylic C-H/aromatic C-H cross-coupling. The method has been successfully applied to synthesis of TP27, an inhibitor of PTPase. PMID:27341676

  18. Aflatoxin M1 in the intermediate dairy products from Manchego cheese production: distribution and stability

    OpenAIRE

    Moya, V.J.; Rubio, R.; M.I. Berruga; M.P. Molina; Molina, A.

    2011-01-01

    Aflatoxin M1 (AFM1) distribution in curd, whey, Manchego cheese, the traditional Spanish whey cheese Requesón and Requesón whey, and its stability during two different cold treatments, have been studied. Raw ewe’s milk was artificially contaminated with AFM1 in a final concentration of 50 and 100 ng kg-1, and was used to produce Manchego cheese. AFM1 determinations were carried out by HPLC with fluorimetric detection after immunoaffinity clean-up. The mean AFM1 concentrations in the produced ...

  19. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    Science.gov (United States)

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production.

  20. Engineering of CH3 NH3 PbI3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties.

    Science.gov (United States)

    Peng, Wei; Miao, Xiaohe; Adinolfi, Valerio; Alarousu, Erkki; El Tall, Omar; Emwas, Abdul-Hamid; Zhao, Chao; Walters, Grant; Liu, Jiakai; Ouellette, Olivier; Pan, Jun; Murali, Banavoth; Sargent, Edward H; Mohammed, Omar F; Bakr, Osman M

    2016-08-26

    The number of studies on organic-inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties. PMID:27468159

  1. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001) oriented YSZ intermediate layers and have Tc (R=0) = 86.0 K and Jc ∼ 3x103 A/cm2 at 77 K

  2. Characterization of Y-Ba-Cu-O thin films and yttria-stabilized zirconia intermediate layers on metal alloys grown by pulsed laser deposition

    Science.gov (United States)

    Reade, R. P.; Mao, X. L.; Russo, R. E.

    1991-08-01

    The use of an intermediate layer is necessary for the growth of YBaCuO thin films on polycrystalline metallic alloys for tape conductor applications. A pulsed laser deposition process to grow controlled-orientation yttria-stabilized zirconia (YSZ) films as intermediate layers on Haynes Alloy No. 230 was developed and characterized. YBaCuO films deposited on these YSZ-coated substrates are primarily c-axis oriented and superconducting as deposited. The best YBaCuO films grow on (001)-oriented YSZ intermediate layers and have Tc (R = 0) = 86.0 K and Jc about 3000 A/sq cm at 77 K.

  3. Aflatoxin M1 in the intermediate dairy products from Manchego cheese production: distribution and stability

    Directory of Open Access Journals (Sweden)

    V.J. Moya

    2011-12-01

    Full Text Available Aflatoxin M1 (AFM1 distribution in curd, whey, Manchego cheese, the traditional Spanish whey cheese Requesón and Requesón whey, and its stability during two different cold treatments, have been studied. Raw ewe’s milk was artificially contaminated with AFM1 in a final concentration of 50 and 100 ng kg-1, and was used to produce Manchego cheese. AFM1 determinations were carried out by HPLC with fluorimetric detection after immunoaffinity clean-up. The mean AFM1 concentrations in the produced curd and Manchego cheese were approximately 2- and 3-fold higher than the initial milk they were made from, and the levels of this toxin remaining in whey were 42.3 % and 51.3 % of the initial concentrations. In the Requesón samples, the mean AFM1 values were 1.7 times higher than those in the corresponding whey, while 33.7 % and 44.4 % of the AFM1 concentration detected in milk also appeared in the Requesón whey. Short refrigeration and freezing periods did not affect the toxin levels in either curd or Requesón samples. When ewe’s milk destined for Manchego cheese-making is AFM1-contaminated at the EU limit level (50 ng kg-1 or double, a concentration of this toxin will appear in the manufactured products, but values will be considerably below the toxic doses (Tolerable Daily Intake = 2 ng kg-1 body weight per day, which poses a human health problem.

  4. Hydration, Ionic Valence and Cross-Linking Propensities of Cations Determine the Stability of Lipopolysaccharide (LPS) Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Agrinaldo; Pontes, Frederico J.; Lins, Roberto D.; Soares, Thereza A.

    2013-10-29

    The supra-molecular structure of LPS aggregates governs outer membrane permeability and activation of the host immune response during Gram-negative bacterial infections. Molecular dynamics simulations unveil at atomic resolution 10 the subtle balance between cation hydration and cross-link ability in modulating phase transitions of LPS membranes.

  5. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.

    Science.gov (United States)

    Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C

    2016-11-01

    The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue. PMID:27322901

  6. Role of stabilized Criegee Intermediate in secondary organic aerosol formation from the ozonolysis of α-cedrene

    Science.gov (United States)

    Yao, Lei; Ma, Yan; Wang, Lin; Zheng, Jun; Khalizov, Alexei; Chen, Mindong; Zhou, Yaoyao; Qi, Lu; Cui, Fenping

    2014-09-01

    Atmospheric ozonolysis of sesquiterpenes is an important source of secondary organic aerosols (SOA). The mechanisms by which Criegee Intermediates (CIs) react to form SOA precursors and the influence of environmental conditions, however, remain unclear. On the basis of environmental chamber experiments coupled with detailed characterization of gas-phase and particle-phase products, we present evidence that a significant fraction of CIs from ozonolysis of α-cedrene are stabilized and bimolecular reactions of these stabilized CIs (SCIs) play a key role in the formation of SOA precursors. Ozonolysis experiments were conducted in a 4.5 m3 collapsible fluoropolymer chamber under various conditions in the presence of the OH radical and SCI scavengers. The size and mass of SOA particles produced during ozonolysis were measured directly and used for calculation of particle effective density and mass yield. Gaseous and particulate products were analyzed by several mass spectrometry methods. A total of 14 compounds in gas phase and 17 compounds in particle phase were tentatively identified. The major gas-phase products are secondary ozonides (SOZ) from intramolecular reactions of SCIs. Multifunctional organic acids are dominant particle-phase products. The measured density of aerosol particles is 1.04 ± 0.03 to 1.38 ± 0.03 g/cm3, and the aerosol mass yield is (23.7 ± 0.4)% to (46.4 ± 6.5)%, depending on reaction conditions. The presence of acetic acid, an SCI scavenger, inhibits new particle formation, but leads to increased aerosol mass yield. In contrast, the addition of SO2 dramatically enhances new particle formation and total aerosol yield. The calculated OH formation yield decreases from (62.4 ± 4.9)% to (9.0 ± 1.6)% upon addition of SCI scavengers CH3COOH and SO2, indicating that a large fraction of excited CIs are collisionally stabilized and unimolecular decomposition of SCIs via the hydroperoxide channel can be suppressed by bimolecular reactions. The

  7. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding

    Directory of Open Access Journals (Sweden)

    Wolfgang Hüttel

    2014-02-01

    Full Text Available Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin. Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.

  8. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding.

    Science.gov (United States)

    Hüttel, Wolfgang; Spencer, Jonathan B; Leadlay, Peter F

    2014-01-01

    Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L(-1) dehydroxymonensin; ΔmonE: 0.50 g L(-1) demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L(-1) dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation. PMID:24605157

  9. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file.

    Science.gov (United States)

    Matsui, Taisuke; Seo, Ji-Youn; Domanski, Konrad; Correa-Baena, Juan-Pablo; Nazeeruddin, Mohammad Khaja; Zakeeruddin, Shaik M.; Tress, Wolfgang; Abate, Antonio; Hagfeldt, Anders; Grätzel, Michael

    2016-01-01

    Today's best perovskite solar cells use a mixture of formamidinium and methylammonium as the monovalent cations. With the addition of inorganic cesium, the resulting triple cation perovskite compositions are thermally more stable, contain less phase impurities and are less sensitive to processing conditions. This enables more reproducible device performances to reach a stabilized power output of 21.1% and ∼18% after 250 hours under operational conditions. These properties are key for the industrialization of perovskite photovoltaics.

  10. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.

    Science.gov (United States)

    Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi

    2012-08-01

    The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction. PMID:22735894

  11. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.

    Science.gov (United States)

    Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi

    2012-08-01

    The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.

  12. On the formation and stability of O - and O -2 radicals in type a zeolites and demonstration of cation interactions

    Science.gov (United States)

    Narayana, M.; Janakiraman, R.; Kevan, Larry

    1982-07-01

    Electron spin resonance studies show tha O - is formed as the major paramagnetic oxygen species in γ-irradiated Ca 6-A zeolite followed by oxygen adsorption. This is a new method to generate this highly reactive catalytic intermediate. O -2 is formed in addition to O - if oxygen is adsorbed prior to irradiation. In Na 12-A zeolite O - is also seen but it transforms to O -2 in several hours. Thus O - appears to be more stable in divalent exchanged zeolites. By electron spin echo modulation spectrometry interactions fo O -2 with Li + have been detected which suggests that oxygen species locations in zeolites can be delineated.

  13. Water-soluble Ag:ZnSe nanocrystals with excellent stability via internal doping of donor-type cation impurity

    International Nuclear Information System (INIS)

    Aqueous internally doped ZnSe nanocrystals (NCs) are a recent promising Cd-free NC system. One major problem for this NC system is the intrinsic poor stability of NCs in aqueous environments due to the promoted oxidation of NC surface ligands by acceptor-type impurity. In this work, we successfully solve this problem by doping a donor-type Ag impurity instead of an acceptor-type impurity inside aqueous ZnSe NCs. Proper doping ratio and solution pH are keys for preparing high quality Ag:ZnSe NCs. Under similar synthesis conditions, as-prepared Ag:ZnSe NCs show quite different optical properties from acceptor-type impurity-doped ZnSe NCs, suggesting the donor nature of Ag impurity. In comparison to the weak stability of acceptor-type impurity-doped ZnSe NCs moreover, as-prepared Ag:ZnSe NCs show strong photochemical and luminescent stability, making this new type of NCs available for LED, optical coding, multicolor bio-imaging and so on. (papers)

  14. Does Semi-Rigid Instrumentation Using Both Flexion and Extension Dampening Spacers Truly Provide an Intermediate Level of Stabilization?

    Directory of Open Access Journals (Sweden)

    Dilip Sengupta

    2013-01-01

    Full Text Available Conventional posterior dynamic stabilization devices demonstrated a tendency towards highly rigid stabilization approximating that of titanium rods in flexion. In extension, they excessively offload the index segment, making the device as the sole load-bearing structure, with concerns of device failure. The goal of this study was to compare the kinematics and intradiscal pressure of monosegmental stabilization utilizing a new device that incorporates both a flexion and extension dampening spacer to that of rigid internal fixation and a conventional posterior dynamic stabilization device. The hypothesis was the new device would minimize the overloading of adjacent levels compared to rigid and conventional devices which can only bend but not stretch. The biomechanics were compared following injury in a human cadaveric lumbosacral spine under simulated physiological loading conditions. The stabilization with the new posterior dynamic stabilization device significantly reduced motion uniformly in all loading directions, but less so than rigid fixation. The evaluation of adjacent level motion and pressure showed some benefit of the new device when compared to rigid fixation. Posterior dynamic stabilization designs which both bend and stretch showed improved kinematic and load-sharing properties when compared to rigid fixation and when indirectly compared to existing conventional devices without a bumper.

  15. Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations

    OpenAIRE

    M. Boy; Mogensen, D.; Smolander, S.; Zhou, L; Nieminen, T.; Paasonen, P.; Plass-Dülmer, C.; Sipilä, M.; T. Petäjä; Mauldin, L.; Berresheim, H.; M. Kulmala

    2013-01-01

    The effect of increased reaction rates of stabilized Criegee intermediates (sCIs) with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calc...

  16. Optimization of the Asymmetric Intermediate Reflector Morphology for High Stabilized Efficiency Thin n-i-p Micromorph Solar Cells

    OpenAIRE

    Biron, Remi; Hanni, Simon; Boccard, Mathieu; Pahud, Celine; Bugnon, Gregory; Ding, Laura; NICOLAY, Sylvain; Parascandolo, Gaetano; Meillaud, Fanny; Despeisse, Matthieu; Haug, Franz-Josef; Ballif, Christophe

    2013-01-01

    This paper focuses on our latest progress in n-i-p thinmicromorph solar-cell fabrication using textured back reflectors and asymmetric intermediate reflectors, both deposited by lowpressure chemical vapor deposition of zinc oxide.We then present microcrystalline bottom cells with high crystallinity, which yield excellent long wavelength response for relatively thin absorber thickness. In a 1.5-μm-thick μc-Si:H single-junction n-i-p solar cell, we thus obtain a short-circuit current density of...

  17. Self-peptides with intermediate capacity to bind and stabilize MHC class I molecules may be immunogenic

    DEFF Research Database (Denmark)

    Andersen, M L M; Ruhwald, Morten; Nissen, M H;

    2003-01-01

    Thirty self-peptides were selected on the basis of their predicted binding to H-2b molecules. The binding of peptides was ascertained experimentally by biochemical (KD measurements) and cellular [major histocompatibility complex class I (MHC-I) stabilization] assays. A weak, but significant, corr...

  18. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    Science.gov (United States)

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  19. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter

    International Nuclear Information System (INIS)

    The formation and characterization of AgNPs (silver nanoparticles) formed from the reduction of Ag+ by SRNOM (Suwannee River natural organic matter) is reported. The images of SRNOM-formed AgNPs and the selected area electron diffraction (SAED) were captured by high resolution transmission electron microscopy (HRTEM). The colloidal and chemical stability of SRNOM- and SRHA (Suwannee River humic acid)-formed AgNPs in different ionic strength solutions of NaCl, KCl, CaCl2 and MgCl2 was investigated in an effort to evaluate the key fate and transport processes of these nanoparticles in natural aqueous environments. The aggregation state, stability and sedimentation rate of the AgNPs were monitored by Dynamic Light Scattering (DLS), zeta potential, and UV–vis measurements. The results indicate that both types of AgNPs are very unstable in high ionic strength solutions. Interestingly, the nanoparticles appeared more unstable in divalent cation solutions than in monovalent cation solutions at similar concentrations. Furthermore, the presence of SRNOM and SRHA contributed to the nanoparticle instability at high ionic strength in divalent metallic cation solutions, most likely due to intermolecular bridging with the organic matter. The results clearly suggest that changes in solution chemistry greatly affect nanoparticle long term stability and transport in natural aqueous environments. Highlights: ► Formation of SRNOM-AgNPs under environmentally relevant conditions ► Influence of monovalent versus divalent cations on SRHA- and SRNOM-AgNP stability ► Effect of AgNPs on organic matter removal from water columns

  20. A new intermediate in the Prins reaction

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2013-03-01

    Full Text Available Two Prins reactions were investigated by the use of DFT calculations. A model composed of R–CH=CH2 + H3O+(H2O13 + (H2C=O2, R = Me and Ph, was adopted to trace reaction paths. For both alkenes, the concerted path forming 1,3-diols was obtained as the rate determining step (TS1. TS stands for a transition state. From the 1,3-diol, a bimolecular elimination (TS2 leads to the allylic alcohol as the first channel. In the second channel, the 1,3-diol was converted via TS3 into an unprecedented hemiacetal intermediate, HO–CH2–O–CH(R–CH2–CH2–OH. This intermediate undergoes ring closure (TS4, affording the 1,3-dioxane product. The intermediate is of almost the same stability as the product, and two species were suggested to be in a state of equilibrium. While the geometry of TS1 appears to be forwarded to that of a carbocation intermediate, the cation disappeared through the enlargement of the water cluster. Dynamical calculations of a classical trajectory using the atom-centered density matrix propagation molecular dynamics model on the four TSs were carried out, and results of IRC calculations were confirmed by them.

  1. Oxidation of SO2 by stabilized Criegee intermediate (sCI radicals as a crucial source for atmospheric sulfuric acid concentrations

    Directory of Open Access Journals (Sweden)

    M. Boy

    2013-04-01

    Full Text Available The effect of increased reaction rates of stabilized Criegee intermediates (sCIs with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012 increases sulfuric acid by 30–40%. Increasing the rate coefficient for formaldehyde oxide (CH2OO with SO2 according to the values recommended by Welz et al. (2012 increases the H2SO4 yield by 3–6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO2 could contribute as much as 33–46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100 m. The recent findings that the reaction of sCI + SO2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.

  2. Atmospheric isoprene ozonolysis: impacts of stabilized Criegee intermediate reactions with SO2, H2O and dimethyl sulfide

    Directory of Open Access Journals (Sweden)

    M. J. Newland

    2015-03-01

    Full Text Available Isoprene is the dominant global biogenic volatile organic compound (VOC emission. Reactions of isoprene with ozone are known to form stabilised Criegee intermediates (SCIs, which have recently been shown to be potentially important oxidants for SO2 and NO2 in the atmosphere; however the significance of this chemistry for SO2 processing (affecting sulfate aerosol and NO2 processing (affecting NOx levels depends critically upon the fate of the SCI with respect to reaction with water and decomposition. Here, we have investigated the removal of SO2 in the presence of isoprene and ozone, as a function of humidity, under atmospheric boundary layer conditions. The SO2 removal displays a clear dependence on relative humidity, confirming a significant reaction for isoprene derived SCI with H2O. Under excess SO2 conditions, the total isoprene ozonolysis SCI yield was calculated to be 0.56 (±0.03. The observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + H2O/k(SCI + SO2, of 5.4 (±0.8 × 10−5 for isoprene derived SCI. The relative rate constant for k(SCI decomposition/k(SCI + SO2 is 8.4 (±5.0 × 1010 cm−3. Uncertainties are ±2σ and represent combined systematic and precision components. These kinetic parameters are based on the simplification that a single SCI species is formed in isoprene ozonolysis, an approximation which describes the results well across the full range of experimental conditions. Our data indicate that isoprene-derived SCIs are unlikely to make a substantial contribution to gas-phase SO2 oxidation in the troposphere. We also present results from an analogous set of experiments, which show a clear dependence of SO2 removal in the isoprene-ozone system as a function of dimethyl sulfide concentration. We propose that this behaviour arises from a rapid reaction between isoprene-derived SCI and DMS; the observed SO2 removal kinetics are consistent with a relative rate constant, k(SCI + DMS/k(SCI + SO2

  3. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    Science.gov (United States)

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen

    2011-01-01

    The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550–700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300–400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum – most likely along Pt grain boundaries – as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum. PMID:22210951

  4. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path.

    Science.gov (United States)

    Opitz, Alexander K; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen

    2011-11-30

    The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded.The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  5. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    Directory of Open Access Journals (Sweden)

    Mosayeb Heshmati

    2011-01-01

    Full Text Available Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC, Cation Exchange Capacity (CEC and Soil Aggregate Stability (SAS that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii to evaluate the influence of land use practices on SOC, CEC and SAS. Results: It was found that soil texture was silty and clay, while soil reaction was alkaline (pH was 7.75. The respective amount of carbonates was 32 and 36% in the top-soil and sub-soil respectively, indicating high level of alkalinity in the soils of the study area. The mean SAS of the surface soil layer for agriculture, rangeland and forest was 53, 61 and 64%, respectively with its mean in the topsoil of agriculture is significantly lower (P≤0.05 than the other zones. SOC level in the agriculture, rangeland and forest were 1.35, 1.56, 2.14 % in the topsoil and 1.03, 1.33 and 1.45%, in the subsoil of the respective areas. The results of t-test and ANOVA analyses showed that SOC means are significantly different from each other within soil depth and among agro-ecological zones. The CEC in the agriculture, rangeland and forest areas were 25.8, 24.6 and 35.1 cmolckg-1 for the top-soil and 31.1, 26.8 and 26.9 cmolckg-1 in the sub-soil, respectively. All the above changes are due to the negative effects of agricultural activities. Conclusion: Improper tillage practice (up-down the slope, conversion of the rangeland and forest to rain-fed areas, crop residue burning, over grazing and forest clearance contribute to reduction in SOC and SAS in the Merek catchment, Iran.

  6. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: The effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids

    DEFF Research Database (Denmark)

    Vermeulen, A.; Nielsen, Cecilie Lykke Marvig; Daelman, J.;

    2015-01-01

    Intermediate moisture foods (IMF) are in general microbiologically stable products. However, due to health concerns consumer demands are increasingly forcing producers to lower the fat, sugar and preservatives content, which impede the stability of the IMF products. One of the strategies...

  7. Stability and instability of the isoelectronic UO22+ and PaO2+ actinyl oxo-cations in aqueous solution from density functional theory based molecular dynamics

    International Nuclear Information System (INIS)

    In this work, Pa(V) mono-cations have been studied in liquid water by means of density functional theory (DFT) based molecular dynamic simulations (CPMD) and compared with their U(VI) isoelectronic counterparts to understand the peculiar chemical behavior of Pa(V) in aqueous solution. Four different Pa(V) monocationic isomers appear to be stable in liquid water from our simulations: [PaO2(H2O)5]+(aq), [Pa(OH)4(H2O)2]+(aq), [PaO(OH)2(H2O)4]+(aq), and [Pa(OH)4(H2O)3]+(aq). On the other hand, in the case of U(VI) only the uranyl, [UO2(H2O)5]2+(aq), is stable. The other species containing hydroxyl groups replacing one or two oxo bonds are readily converted to uranyl. The Pa-OH bond is stable, while it is suddenly broken in U-OH. This makes possible the formation of a broad variety of Pa(V) species in water and participates to its unique chemical behavior in aqueous solution. Further, the two actinyl oxo-cations in water are different in the ability of the oxygen atoms to form stable and extended H-bond networks for Pa(V) contrary to U(VI). In particular, prot-actinyl is found to have between 2 and 3 hydrogen bonds per oxygen atom while uranyl has between zero and one. (authors)

  8. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing.

    Science.gov (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana

    2003-09-25

    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  9. Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage.

    Science.gov (United States)

    DeBlase, Catherine R; Hernández-Burgos, Kenneth; Rotter, Julian M; Fortman, David J; Abreu, Dieric dos S; Timm, Ronaldo A; Diógenes, Izaura C N; Kubota, Lauro T; Abruña, Héctor D; Dichtel, William R

    2015-11-01

    Porous polymer networks (PPNs) are attractive materials for capacitive energy storage because they offer high surface areas for increased double-layer capacitance, open structures for rapid ion transport, and redox-active moieties that enable faradaic (pseudocapacitive) energy storage. Here we demonstrate a new attractive feature of PPNs--the ability of their reduced forms (radical anions and dianions) to interact with small radii cations through synergistic interactions arising from densely packed redox-active groups, only when prepared as thin films. When naphthalene diimides (NDIs) are incorporated into PPN films, the carbonyl groups of adjacent, electrochemically generated, NDI radical anions and dianions bind strongly to K(+), Li(+), and Mg(2+), shifting the formal potentials of NDI's second reduction by 120 and 460 mV for K(+) and Li(+)-based electrolytes, respectively. In the case of Mg(2+), NDI's two redox waves coalesce into a single two-electron process with shifts of 240 and 710 mV, for the first and second reductions, respectively, increasing the energy density by over 20 % without changing the polymer backbone. In contrast, the formal reduction potentials of NDI derivatives in solution are identical for each electrolyte, and this effect has not been reported for NDI previously. This study illustrates the profound influence of the solid-state structure of a polymer on its electrochemical response, which does not simply reflect the solution-phase redox behavior of its monomers.

  10. Financial Intermediation

    OpenAIRE

    Gary Gorton; Andrew Winton

    2002-01-01

    The savings/investment process in capitalist economies is organized around financial intermediation, making them a central institution of economic growth. Financial intermediaries are firms that borrow from consumer/savers and lend to companies that need resources for investment. In contrast, in capital markets investors contract directly with firms, creating marketable securities. The prices of these securities are observable, while financial intermediaries are opaque. Why do financial inter...

  11. Intermediated Trade

    OpenAIRE

    Antras, Pol; Costinot, Arnaud

    2011-01-01

    This paper develops a simple model of international trade with intermediation. We consider an economy with two islands and two types of agents, farmers and traders. Farmers can produce two goods, but in order to sell these goods in centralized (Walrasian) markets, they need to be matched with a trader, and this entails costly search. In the absence of search frictions, our model reduces to a standard Ricardian model of trade. We use this simple model to contrast the implications of changes in...

  12. Construction of a novel cationic polymeric liposomes formed from PEGlated octadecyl-quaternized lysine modified chitosan/cholesterol for enhancing storage stability and cellular uptake efficiency.

    Science.gov (United States)

    Wang, Hanjie; Zhao, Peiqi; Liang, Xiaofei; Song, Tao; Gong, Xiaoqun; Niu, Ruifang; Chang, Jin

    2010-08-15

    The design and construction of delivery vectors with high stability and effective cellular uptake efficiency is very important. In this study, a novel polymeric liposomes (PLs) formed from PEGlated octadecyl-quaternized lysine modified chitosan (OQLCS) and cholesterol with higher size stability and cellular uptake efficiency has been synthesized successfully. Compared to conventional liposomes (CLs; phosphatidyl choline/cholesterol), the calcein-loaded PLs exhibited a multi-lamellar structure with homogenous size diameter (200 nm) and high calcein encapsulation efficiency (about 92%). PLs could be stored at different temperature (25, 4, and -20 degrees C) and different medium (deionized water, phosphate-buffered saline, and human plasma solution) for up to 4 weeks without significant size change. The spectrophotometer fluorometry analysis and the flow cytometry analysis indicated that in comparison with CL, PLs with positive zeta potential facilitates the uptake of calcein by MCF-7 tumor cells. The data suggests that PLs may provide a new method to overcome the stability and enhance the uptake efficiency of CLs. PMID:20506161

  13. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  14. Computational Predictions of the Beryllium Analogue of Borole, Cp(+), and the Fluorenyl Cation: Highly Stabilized, non-Lewis Acidic Antiaromatic Ring Systems.

    Science.gov (United States)

    Field-Theodore, Terri E; Wilson, David J D; Dutton, Jason L

    2015-08-17

    A computational study of a set of synthetically unknown beryllium-containing rings, anionic analogues of antiaromatic boroles, has been carried out to investigate their structure, stability, and potential reactivity. The results indicate that these compounds should be electronically viable (as assessed from HOMO-LUMO and singlet-triplet gaps) and therefore potential targets for synthesis. In strong contrast with boroles, these beryllium species are predicted to be not Lewis acidic but rather Lewis basic, with reactivity centered on the endocyclic Be-C bond.

  15. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  16. Silica-based cationic bilayers as immunoadjuvants

    OpenAIRE

    Carmona-Ribeiro Ana M; da Costa Maria; Faquim-Mauro Eliana; Santana Mariana RA; Lincopan Nilton

    2009-01-01

    Abstract Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6...

  17. Oxidation of SO2 by stabilized Criegee Intermediate (sCI) radicals as a crucial source for atmospheric sulphuric acid concentrations

    OpenAIRE

    Mauldin, L.; T. Petäjä; Plass-Dülmer, C.; Sipilä, M.; Paasonen, P.; Smolander, S.; Zhou, L; Nieminen, T.; Mogensen, D.; M. Boy; Berresheim, H.; M. Kulmala

    2012-01-01

    The effect of increased reaction rates of stabilised Criegee Intermediates (sCI) with SO2 to produce sulphuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland and Hohenpeissenberg, Germany. Results from MALTE, a zero dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calcu...

  18. Cationic hetero diffusion and mechanical properties of yttria-stabilized zirconia: influence of irradiation; Heterodiffusion cationique et proprietes mecaniques de la zircone stabilisee a l'oxyde d'yttrium: influence de l'irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Menvie Bekale, V

    2007-12-15

    Cubic yttria-stabilized zirconia (YSZ) is a promising material as target for the transmutation of radioactive waste. In this context, the present work is dedicated to the study of the atomic transport and the mechanical properties of this ceramic, as well as the influence of irradiation on these properties. The preliminary step concerns the synthesis of YSZ cubic zirconia ceramic undoped and doped with rare earths to form homogeneous Ce-YSZ or Gd-YSZ solid solutions with the highest density. The diffusion experiments of Ce and Gd in YSZ or Ce-YSZ were performed in air from 900 to 1400 C, and the depth profiles were established by SIMS. The bulk diffusion decreases when the ionic radius of diffusing element increases. The comparison with literature data of activation energies for bulk diffusion suggests that the cationic diffusion occurs via a vacancy mechanism. The diffusion results of Ce in YSZ irradiated with 4 or 20 MeV Au ions show a bulk diffusion slowing-down at 1000 and 1100 C when the radiation damage becomes important (30 dpa). The mechanical properties of YSZ ceramics irradiated with 944 MeV Pb ions and non irradiated samples were studied by Vickers micro indentation and Berkovitch nano indentation techniques. The hardness of the material increases when the average grain size decreases. Furthermore, the hardness and the toughness increase with irradiation fluence owing to the occurrence of compressive residual stresses in the irradiated area. (author)

  19. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.

    Science.gov (United States)

    Nguyen, Thanh Lam; Lee, Hyunwoo; Matthews, Devin A; McCarthy, Michael C; Stanton, John F

    2015-06-01

    The fraction of the collisionally stabilized Criegee species CH2OO produced from the ozonolysis of ethylene is calculated using a two-dimensional (E, J)-grained master equation technique and semiclassical transition-state theory based on the potential energy surface obtained from high-accuracy quantum chemical calculations. Our calculated yield of 42 ± 6% for the stabilized CH2OO agrees well, within experimental error, with available (indirect) experimental results. Inclusion of angular momentum in the master equation is found to play an essential role in bringing the theoretical results into agreement with the experiment. Additionally, yields of HO and HO2 radical products are predicted to be 13 ± 6% and 17 ± 6%, respectively. In the kinetic simulation, the HO radical product is produced mostly from the stepwise decomposition mechanism of primary ozonide rather than from dissociation of hot CH2OO. PMID:25945650

  20. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging.

    Science.gov (United States)

    Angelov, Borislav; Angelova, Angelina; Drechsler, Markus; Garamus, Vasil M; Mutafchieva, Rada; Lesieur, Sylviane

    2015-05-14

    Extra-large nanochannel formation in the internal structure of cationic cubosome nanoparticles results from the interplay between charge repulsion and steric stabilization of the lipid membrane interfaces and is evidenced by cryogenic transmission electron microscopy (Cryo-TEM) and synchrotron radiation small-angle X-ray scattering (SAXS). The swollen cubic symmetry of the lipid nanoparticles emerges through a shaping transition of onion bilayer vesicle intermediates containing a fusogenic nonlamellar lipid. Cationic amphiphile cubosome particles, thanks to the advantages of their liquid crystalline soft porous nanoarchitecture and capability for multi-drug nanoencapsulation, appear to be of interest for the design of mitochondrial targeting devices in anti-cancer therapies and as siRNA nanocarriers for gene silencing. PMID:25820228

  1. 阳离子聚合物粘土稳定剂的合成及性能研究%Preparation and evaluation of the clay stabilizer of cationic polymerization

    Institute of Scientific and Technical Information of China (English)

    李丛妮; 雷珂

    2013-01-01

    以二甲胺、环氧氯丙烷为原料,通过缩合聚合反应,合成了阳离子有机聚合物粘土稳定剂.考察了原料配比、反应温度、反应时间对防膨率的影响.结果表明,最佳合成工艺条件为:环氧氯丙烷与二甲胺的摩尔配比为1∶1.2,反应时间5h,反应温度60℃.粘土稳定剂用量2.0%时,防膨率为87.5%;与KCl或NH4Cl以1∶1复配,用量为4%时,防膨率分别为94.9%,93.2%.粘土稳定剂用量2.0%时,第1次和第2次岩屑回收率分别为82.16%,79.49%;2%聚合物+1%KCl+ 1%NH4Cl三元复配,第1次和第2次回收率分别为89.66%,86.41%.%Dimethylamine and epichlorohydrin as raw materials,the organic cationic polymer clay stabilizer was synthesized by condensation polymerization reaction.The effects of raw materials molar ratio,reaction temperature and reaction time on anti-swelling rate has been discussed.The results indicated that the optimal synthetic conditions were found as follows:epichlorohydrin and dimethylamine molar ratio 1 ∶ 1.2,the reaction time 5 h,reaction temperature 60 ℃.The amount of clay stabilizer 2.0%,the anti-swelling rate 87.5%,the first and second debris recovery rate were 82.16% and 79.49%,the compound of KCl ∶ NH4Cl =1 ∶ 1,the amount was 4%,the anti-swelling rate were 94.9% and 93.2% ; the ternary compound of 2% polymer + 1% KCl + 1% NH4Cl,the first and second recovery rate reached 89.66% and 86.41%.

  2. Ground state of naphthyl cation: Singlet or triplet?

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Achintya Kumar; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav, E-mail: s.pal@ncl.res.in [Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008 (India); Manohar, Prashant U. [Department of Chemistry, BITS Pilani, Pilani Campus (India)

    2014-03-21

    We present a benchmark theoretical investigation on the electronic structure and singlet-triplet(S-T) gap of 1- and 2-naphthyl cations using the CCSD(T) method. Our calculations reveal that the ground states of both the naphthyl cations are singlet, contrary to the results obtained by DFT/B3LYP calculations reported in previous theoretical studies. However, the triplet states obtained in the two structural isomers of naphthyl cation are completely different. The triplet state in 1-naphthyl cation is (π,σ) type, whereas in 2-naphthyl cation it is (σ,σ{sup ′}) type. The S-T gaps in naphthyl cations and the relative stability ordering of the singlet and the triplet states are highly sensitive to the basis-set quality as well as level of correlation, and demand for inclusion of perturbative triples in the coupled-cluster ansatz.

  3. Photochemical generation of a primary vinyl cation from (E)-bromostyrene: Mechanisms of formation and reaction

    NARCIS (Netherlands)

    Gronheid, R.; Zuilhof, H.; Hellings, M.G.

    2003-01-01

    The photochemistry of (E)-bromostyrene was investigated to determine the nature of the product-forming intermediates and to clarify the mechanism of formation of vinylic cations and vinylic radicals. Both a cation- and a radical-derived product are formed, and the ionic origin of the former product

  4. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically...

  5. DFT study on the cycloreversion of thietane radical cations.

    Science.gov (United States)

    Domingo, Luis R; Pérez-Ruiz, Raúl; Argüello, Juan E; Miranda, Miguel A

    2011-06-01

    The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(•+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(•+) (ii). Calculations support that 1a(•+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(•+) follows pathway i, leading to trans-stilbene radical cation (2b(•+)) and thiobenzophenone.

  6. Degradation Mechanism of Cationic Red X-GRL by Ozonation

    Institute of Scientific and Technical Information of China (English)

    Wei Rong ZHAO; Xin Hua XU; Hui Xiang SHI; Da Hui WANG

    2003-01-01

    The degradation mechanism of Cationic Red X-GRL was investigated when the intermediates, the nitrate ion and the pH were analyzed in the ozonation. The degradation of the Cationic Red X-GRL includes the de-auxochrome stage, the decolour stage, and the decomposition of fragment stage. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one becomes the form of an amine compound, and the rest four are transformed into two molecules of nitrogen. In the course of the ozonation of Cationic Red X-GRL, the direct attack of ozone is the main decolour effect.

  7. The measurement of financial intermediation in Japan

    OpenAIRE

    Gunther Capelle-Blancard; Jézabel Couppey-Soubeyran; Laurent Soulat

    2005-01-01

    In this paper, we compute financial intermediation ratios for Japan (1970-2003) on a book value basis. According to our results, the intermediation ratio has remained quite stable, at around 85%. However, this stability is the result of two opposing trends : a decrease in credits and an increase in financial securities owned by financial (mostly, non banking) institutions. These two opposing trends would not have appeared if we had used traditional indicators computed as a fraction on GDP, or...

  8. Stabilization of noncondensed (As(III)S3)(3-) anions by coordinating to [Mn(II)(phen)](2+) complex cations: a mixed-valent thioarsenate (III, V) {[Mn(phen)]3(As(V)S4)(As(III)S3)}(n)·nH2O showing the coexistence of antiferromagnetic order, photoluminescence, and nonlinear optical properties.

    Science.gov (United States)

    Liu, Guang-Ning; Jiang, Xiao-Ming; Wu, Mei-Feng; Wang, Guan-E; Guo, Guo-Cong; Huang, Jin-Shun

    2011-06-20

    A novel one-dimensional (1-D) mixed-valent thioarsenate (III, V), {[Mn(phen)](3)(As(V)S(4))(As(III)S(3))}(n)·nH(2)O (1), with a noncentrosymmetric (NCS) polar packing arrangement has been obtained under solvothermal conditions. The noncondensed (As(III)S(3))(3-) anion in 1 is stabilized by coordinating to [Mn(II)(phen)](2+) complex cations and exhibits an unprecedented μ(3)-1,2κS:2,3κS':3κS'' linkage mode. Compound 1 represents the first example of the stabilization of noncondensed (MQ(3))(3-) (M = As, Sb; Q = S, Se) species only in the coordination of TM(II) complex cations (TM = transition-metal) and the first observation of the coexistence of the (As(V)S(4))(3-) tetrahedron and the noncondensed (As(III)S(3))(3-) pyramid in a single compound. Of particular interest, compound 1 is also an antiferromagnet with T(N) = 31 K, and exhibits photoluminescence (PL) with a maximum emission at about 438 nm and a second harmonic generation (SHG) response.

  9. Study of radionuclides complexes formation by organic compounds in intermediate and low-level radioactive wastes

    International Nuclear Information System (INIS)

    In the general framework of the safety of nuclear wastes of low and intermediate activity, we have studied the effects of organic compounds on the solubilization of metallic cations. Organic compounds originate from the degradation of cellulose in concrete interstitial waters. Degradation reactions generate a number of products, among which carboxylic acids. These acids are known for their chelating properties. We have first analysed the degradation of cellulose in alkaline conditions: we have qualitatively and quantitatively determined the degradation products for various reaction progress indices, including a dozen of carboxylic acids. The principal goal of our work was the prediction of the behaviour of metallic cations in such cellulose degradation solutions. Owing the complexity of the system, a priori theoretical calculation are not possible. We have thus decided to choose tetra hydroxy pentanoic acid as a reference compound in order to simulate as accurately as possible the behaviour of more complex acids which contain similar functional groups. We have experimentally determined the complexing properties of this reference acid toward divalent cobalt and copper, and trivalent samarium and europium. Simple and mixed complex (hydroxyl) have been evidenced in alkaline medium. Their stability constants have been determined and extrapolated at zero ionic strength using the SIT theory. These results allowed us to theoretically predict the behaviour of our four reference cations in cellulose degradation products formed in concrete interstitial waters. In parallel, we have measured their solubility in real cellulose degradation solutions. Solubility predictions are correct for transition metals, but not for rare earth cations. In this case the complexes which have been identified with tetra hydroxy pentanoic acid are not stable enough to dissolve metallic hydroxides. In real degradation solutions, other compounds would account for the enhancement of rare earth

  10. Denaturation and intermediates study of two sturgeon hemoglobins by n-dodecyl trimethylammonium bromide

    Science.gov (United States)

    Ariaeenejad, Shohreh; Habibi-Rezaei, Mehran; Kavousi, Kaveh; Jamili, Shahla; Fatemi, Mohammad Reza; Hong, Jun; Poursasan, Najmeh; Sheibani, Nader; Moosavi-Movahedi, Ali. A.

    2013-01-01

    Varieties of hemoglobin (Hb) forms exist in fish, which are usually well adapted to the different ecological conditions or various habitats. In the current study, Hbs from two Sturgeon species of the Southern Caspian Sea Basin were purified and studied upon interaction with n-dodecyl trimethylammonium bromide (DTAB; as a cationic surfactant) by various methods including UV-visible absorption, dynamic light scattering (DLS), and ANS fluorescence spectrophotometry. The chemometric analysis of Hbs was investigated upon interaction with DTAB under titration, using UV-visible absorption spectra. The chemometric resolution techniques were used to determine the number of the components and mole fraction of the oxidized Hbs. These results provided the evidence for the existence of three different molecular components including native (N), intermediate (I) and denatured (D) in sturgeon Hbs. According to the distribution of intermediates, which were broadened in a range of DTAB concentration, the aggregation states, DLS experiments, and thermal stability (Tm obtained by differential scanning calorimetry (DSC)), the Acipenser stellatus Hb was more stable compared to Acipenser persicus Hb. These results demonstrate a significant relationship between the stability of fish Hbs and the habitat depth requirements. PMID:23142155

  11. Branching of keratin intermediate filaments.

    Science.gov (United States)

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023

  12. Simplifying biochemical models with intermediate species

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    canonical model that characterizes crucial dynamical properties, such as mono- and multistationarity and stability of steady states, of all models in the class. We show that if the core model does not have conservation laws, then the introduction of intermediates does not change the steady...

  13. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen

    2007-01-01

    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  14. Theoretical Studies on the Interactions of Cations with Diazine

    Institute of Scientific and Technical Information of China (English)

    CHEN Xing; WU Wen-Peng; ZHANG Jing-Lai; CAO Ze-Xing

    2006-01-01

    Density functional theory and MP2 calculations have been used to determine the geometries, stabilities, binding energies, and dissociative properties of cation-diazine complexes Mn+-C4H4N2 (Mn+ = Li+, B+, Al+, Be2+, Mg2+, Ca2+). The calculated results indicate that most complexes are stable except the π complexes of Ca2+-pyridazine, Ca2+-pyrazine, Al+-pyrimidine and Al+-pyrimidine. The σ complexes are generally much more stable than their π counterparts. Among the π complexes, the cation-pyrazine π complexes have slightly higher stability. The nature of the ion-molecule interactions has been discussed by the natural bond orbital analysis and frontier molecular orbital interactions. In these σ complexes, there is stronger covalent interaction between B+ and diazine. In the selected π complexes, B+ and Be2+ have stronger covalent interaction with diazine, while the other cations mainly have electrostatic interaction with diazine.

  15. Ion exchange behaviour of polymeric zirconium cations

    International Nuclear Information System (INIS)

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  16. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  17. Intermediate algebra a textworkbook

    CERN Document Server

    McKeague, Charles P

    1985-01-01

    Intermediate Algebra: A Text/Workbook, Second Edition focuses on the principles, operations, and approaches involved in intermediate algebra. The publication first takes a look at basic properties and definitions, first-degree equations and inequalities, and exponents and polynomials. Discussions focus on properties of exponents, polynomials, sums, and differences, multiplication of polynomials, inequalities involving absolute value, word problems, first-degree inequalities, real numbers, opposites, reciprocals, and absolute value, and addition and subtraction of real numbers. The text then ex

  18. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  19. Circular dichroism and fluorescence spectroscopy of cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 demonstrates that group I cations are particularly effective in providing structure and stability to this halophilic protein.

    Directory of Open Access Journals (Sweden)

    Christopher J Reed

    Full Text Available Proteins from extremophiles have the ability to fold and remain stable in their extreme environment. Here, we investigate the presence of this effect in the cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 (NRC-1, which was used as a model halophilic protein. The effects of salt on the structure and stability of NRC-1 and of E. coli CysRS were investigated through far-UV circular dichroism (CD spectroscopy, fluorescence spectroscopy, and thermal denaturation melts. The CD of NRC-1 CysRS was examined in different group I and group II chloride salts to examine the effects of the metal ions. Potassium was observed to have the strongest effect on NRC-1 CysRS structure, with the other group I salts having reduced strength. The group II salts had little effect on the protein. This suggests that the halophilic adaptations in this protein are mediated by potassium. CD and fluorescence spectra showed structural changes taking place in NRC-1 CysRS over the concentration range of 0-3 M KCl, while the structure of E. coli CysRS was relatively unaffected. Salt was also shown to increase the thermal stability of NRC-1 CysRS since the melt temperature of the CysRS from NRC-1 was increased in the presence of high salt, whereas the E. coli enzyme showed a decrease. By characterizing these interactions, this study not only explains the stability of halophilic proteins in extremes of salt, but also helps us to understand why and how group I salts stabilize proteins in general.

  20. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  1. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  2. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    Science.gov (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  3. Mobile communication and intermediality

    DEFF Research Database (Denmark)

    Helles, Rasmus

    2013-01-01

    The article argues the importance of intermediality as a concept for research in mobile communication and media. The constant availability of several, partially overlapping channels for communication (texting, calls, email, Facebook, etc.) requires that we adopt an integrated view of the various...... communicative affordances of mobile devices in order to understand how people choose between them for different purposes. It is argued that mobile communication makes intermediality especially central, as the choice of medium is detached from the location of stationary media and begins to follow the user across...

  4. Water oxidation: Intermediate identification

    Science.gov (United States)

    Cowan, Alexander J.

    2016-08-01

    The slow kinetics of light-driven water oxidation on haematite is an important factor limiting the material's efficiency. Now, an intermediate of the water-splitting reaction has been identified offering hope that the full mechanism will soon be resolved.

  5. Hispanic American Heritage, Intermediate.

    Science.gov (United States)

    Shepherd, Mike

    This resource book features the cultural heritage of Hispanics living within the United States and includes ideas, materials, and activities to be used with students in the intermediate grades and middle school. This book explores the definition of the term "Hispanic Americans" and suggests a multilayered population with a variety of cultural…

  6. GLOSSARY TO INTERMEDIATE HINDI.

    Science.gov (United States)

    Wisconsin Univ., Madison. Indian Language and Area Center.

    INCLUDED IN THIS GLOSSARY ARE THE VOCABULARY ITEMS FOR THE READINGS IN "INTERMEDIATE HINDI." THE ITEMS ARE ARRANGED BY SELECTION IN SERIAL ORDER. EACH ENTRY INCLUDES NAGARI (DEVANAGARI) SCRIPT SPELLING, A NOTATION OF THE FORM CLASS, AND A SHORT ENGLISH GLOSS. THESE TWO VOLUMES ARE ALSO AVAILABLE AS A SET FOR $7.00 FROM THE COLLEGE PRINTING…

  7. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl-, NO3-, C2O42-) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu2+, Zn2+, UO22+, Fe3+, Nd3+, Eu3+, Th4+) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author)

  8. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)). PMID:27035210

  9. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  10. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  11. Intermediate energy data

    International Nuclear Information System (INIS)

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  12. Volatility and Financial Intermediation

    OpenAIRE

    Joshua Aizenman; Andrew Powell

    1997-01-01

    Following the Tequila period, its after-effects in Latin America and recent events in South East Asia, the effect of volatility on emerging market economies has become an important topic of research with the domestic financial intermediation process being advanced as one of the most important transmission mechanisms. At the same time there has been continued interest in issues related to imperfect information and rationing in credit markets. In this paper, we consider an economy where risk ne...

  13. Cationic speciation in nonaqueous media

    International Nuclear Information System (INIS)

    Electronic spectra of solutions of d transition elements in the superacids HF, H2SO4, HSO3F, and CF3SO3H and in chloroaluminate melts indicate that in acidic monaqueous media the elements are present as solvated cations, whereas in basic media the speciation is anionic, the same situation as in aqueous solutions. Further, in very highly acidic media, cations in very low oxidation states are stable (e.g., Ti2+), but these disproportionate on addition of base to the system. In this paper spectra, where available, of U, Np, and Pu in oxidation states III and IV in aqueous media, in protonic superacids, and in chloroaluminates are presented to postulate cationic speciation of these early actinides in highly acidic media

  14. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    Directory of Open Access Journals (Sweden)

    Mikaela Stewart

    Full Text Available The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺ and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺ form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  15. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  16. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  17. Carbocation Stability in H-ZSM5 at High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Glen A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cheng, Lei [Argonne National Lab. (ANL), Argonne, IL (United States); Bu, Lintao [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kim, Seonah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robichaud, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nimlos, Mark R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States); Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-26

    Zeolites are common catalysts for multiple industrial applications, including alcohol dehydration to produce olefins, and given their commercial importance, reaction mechanisms in zeolites have long been proposed and studied. Some proposed reaction mechanisms for alcohol dehydration exhibit noncyclic carbocation intermediates or transition states that resemble carbocations, and several previous studies suggest that the tert-butyl cation is the only noncyclic cation more stable than the corresponding chemisorbed species with the hydrocarbon bound to the framework oxygen (i.e., an alkoxide). To determine if carbocations can exist at high temperatures in zeolites, where these catalysts are finding new applications for biomass vapor-phase upgrading (~500 °C), the stability of carbocations and the corresponding alkoxides were calculated with two ONIOM embedding methods (M06-2X/6-311G(d,p):M06-2X/3-21G) and (PBE-D3/6-311G(d,p):PBE-D3/3-21G) and plane-wave density functional theory (DFT) using the PBE functional corrected with entropic and Tkatchenko–Scheffler van der Waals corrections. Additionally, the embedding methods tested are unreliable at finding minima for primary carbocations, and only secondary or higher carbocations can be described with embedding methods consistent with the periodic DFT results. The relative energy between the carbocations and alkoxides differs significantly between the embedding and the periodic DFT methods. The difference is between ~0.23 and 14.30 kcal/mol depending on the molecule, the model, and the functional chosen for the embedding method. At high temperatures, the pw-DFT calculations predict that the allyl, isopropyl, and sec-butyl cations exhibit negligible populations while acetyl and tert-butyl cations exhibit significant populations (>10%). Furthermore, the periodic DFT results indicate that mechanisms including secondary and tertiary carbocations intermediates or carbocations stabilized by adjacent oxygen or double bonds are

  18. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials.

    Science.gov (United States)

    Rong, Ziqin; Kitchaev, Daniil; Canepa, Pieremanuele; Huang, Wenxuan; Ceder, Gerbrand

    2016-08-21

    The Nudged Elastic Band (NEB) is an established method for finding minimum-energy paths and energy barriers of ion migration in materials, but has been hampered in its general application by its significant computational expense when coupled with density functional theory (DFT) calculations. Typically, an NEB calculation is initialized from a linear interpolation of successive intermediate structures (also known as images) between known initial and final states. However, the linear interpolation introduces two problems: (1) slow convergence of the calculation, particularly in cases where the final path exhibits notable curvature; (2) divergence of the NEB calculations if any intermediate image comes too close to a non-diffusing species, causing instabilities in the ensuing calculation. In this work, we propose a new scheme to accelerate NEB calculations through an improved path initialization and associated energy estimation workflow. We demonstrate that for cation migration in an ionic framework, initializing the diffusion path as the minimum energy path through a static potential built upon the DFT charge density reproduces the true NEB path within a 0.2 Å deviation and yields up to a 25% improvement in typical NEB runtimes. Furthermore, we find that the locally relaxed energy barrier derived from this initialization yields a good approximation of the NEB barrier, with errors within 20 meV of the true NEB value, while reducing computational expense by up to a factor of 5. Finally, and of critical importance for the automation of migration path calculations in high-throughput studies, we find that the new approach significantly enhances the stability of the calculation by avoiding unphysical image initialization. Our algorithm promises to enable efficient calculations of diffusion pathways, resolving a long-standing obstacle to the computational screening of intercalation compounds for Li-ion and multivalent batteries.

  19. An efficient algorithm for finding the minimum energy path for cation migration in ionic materials

    Science.gov (United States)

    Rong, Ziqin; Kitchaev, Daniil; Canepa, Pieremanuele; Huang, Wenxuan; Ceder, Gerbrand

    2016-08-01

    The Nudged Elastic Band (NEB) is an established method for finding minimum-energy paths and energy barriers of ion migration in materials, but has been hampered in its general application by its significant computational expense when coupled with density functional theory (DFT) calculations. Typically, an NEB calculation is initialized from a linear interpolation of successive intermediate structures (also known as images) between known initial and final states. However, the linear interpolation introduces two problems: (1) slow convergence of the calculation, particularly in cases where the final path exhibits notable curvature; (2) divergence of the NEB calculations if any intermediate image comes too close to a non-diffusing species, causing instabilities in the ensuing calculation. In this work, we propose a new scheme to accelerate NEB calculations through an improved path initialization and associated energy estimation workflow. We demonstrate that for cation migration in an ionic framework, initializing the diffusion path as the minimum energy path through a static potential built upon the DFT charge density reproduces the true NEB path within a 0.2 Å deviation and yields up to a 25% improvement in typical NEB runtimes. Furthermore, we find that the locally relaxed energy barrier derived from this initialization yields a good approximation of the NEB barrier, with errors within 20 meV of the true NEB value, while reducing computational expense by up to a factor of 5. Finally, and of critical importance for the automation of migration path calculations in high-throughput studies, we find that the new approach significantly enhances the stability of the calculation by avoiding unphysical image initialization. Our algorithm promises to enable efficient calculations of diffusion pathways, resolving a long-standing obstacle to the computational screening of intercalation compounds for Li-ion and multivalent batteries.

  20. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;

    2012-01-01

    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances...... and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure...... and stability of SF6-based clusters....

  1. Stabilization of reactive species by supramolecular encapsulation.

    Science.gov (United States)

    Galan, Albano; Ballester, Pablo

    2016-03-14

    Molecular containers have attracted the interest of supramolecular chemists since the early beginnings of the field. Cavitands' inner cavities were quickly exploited by Cram and Warmuth to construct covalent containers able to stabilize and assist the characterization of short-lived reactive species such as cyclobutadiene or o-benzyne. Since then, more complex molecular architectures have been prepared able to store and isolate a myriad of fleeting species (i.e. organometallic compounds, cationic species, radical initiators…). In this review we cover selected examples of the stabilization of reactive species by encapsulation in molecular containers from the first reports of covalent containers described by Cram et al. to the most recent examples of containers with self-assembled structure (metal coordination cages and hydrogen bonded capsules). Finally, we briefly review examples reported by Rebek et al. in which elusive reaction intermediates could be detected in the inner cavities of self-folding resorcin[4]arene cavitands by the formation of covalent host-guest complexes. The utilization of encapsulated reactive species in catalysis or synthesis is not covered. PMID:26797259

  2. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  3. Features definition exchange cations in sedimentary rocks.

    OpenAIRE

    Bilec'ka V.A.

    2008-01-01

    The research method of determination of exchange cations in calcareous sedimentary rocks of different extractants, the influence of the ratio between the solid and liquid phases on extrusion exchange cations.

  4. Features definition exchange cations in sedimentary rocks.

    Directory of Open Access Journals (Sweden)

    Bilec'ka V.A.

    2008-05-01

    Full Text Available The research method of determination of exchange cations in calcareous sedimentary rocks of different extractants, the influence of the ratio between the solid and liquid phases on extrusion exchange cations.

  5. Electrophilic Pt(II) complexes: precision instruments for the initiation of transformations mediated by the cation-olefin reaction.

    Science.gov (United States)

    Felix, Ryan J; Munro-Leighton, Colleen; Gagné, Michel R

    2014-08-19

    A discontinuity exists between the importance of the cation-olefin reaction as the principal C-C bond forming reaction in terpene biosynthesis and the synthetic tools for mimicking this reaction under catalyst control; that is, having the product identity, stereochemistry, and functionality under the control of a catalyst. The main reason for this deficiency is that the cation-olefin reaction starts with a reactive intermediate (a carbocation) that reacts exothermically with an alkene to reform the reactive intermediate; not to mention that reactive intermediates can also react in nonproductive fashions. In this Account, we detail our efforts to realize catalyst control over this most fundamental of reactions and thereby access steroid like compounds. Our story is organized around our progress in each component of the cascade reaction: the metal controlled electrophilic initiation, the propagation and termination of the cyclization (the cyclase phase), and the turnover deplatinating events. Electrophilic Pt(II) complexes efficiently initiate the cation-olefin reaction by first coordinating to the alkene with selection rules that favor less substituted alkenes over more substituted alkenes. In complex substrates with multiple alkenes, this preference ensures that the least substituted alkene is always the better ligand for the Pt(II) initiator, and consequently the site at which all electrophilic chemistry is initiated. This control element is invariant. With a suitably electron deficient ligand set, the catalyst then activates the coordinated alkene to intramolecular addition by a second alkene, which initiates the cation-olefin reaction cascade and generates an organometallic Pt(II)-alkyl. Deplatination by a range of mechanisms (β-H elimination, single electron oxidation, two-electron oxidation, etc.) provides an additional level of control that ultimately enables A-ring functionalizations that are orthogonal to the cyclase cascade. We particularly focus on

  6. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  7. Organometallic cation-exchanged phyllosilicates

    OpenAIRE

    Fleming, Shay

    1991-01-01

    Organotin (IV) complexes formed between 0 01 M dimethyltin dichloride solutions prepared at pH 2 6 and 4 0, and trimethyltin chloride prepared at pH 3 4, with Na- 119 montmori 1lonite clay have been characterised using Sn Mflssbauer spectroscopy, X-ray diffraction, thermogravimetric analysis and water sorption isotherms Following cation exchange, Mttssbauer spectroscopy identified two tin species in the dimethyltin (IV)-exchanged clay prepared at pH 2 6 A cis specie...

  8. Theoretical study of the influence of cation vacancies on the catalytic properties of vanadium antimonate

    Energy Technology Data Exchange (ETDEWEB)

    Messina, S. [Laboratorio de Procesos Cataliticos, Departamento de Ingenieria Quimica, FIUBA, Pabellon de Industrias, Ciudad Universitaria, (1428) Capital Federal (Argentina); Juan, A. [Departamento de Fisica, UNS, Av. Alem 1253, (8000) Bahia Blanca (Argentina)], E-mail: cajuan@uns.edu.ar; Larrondo, S.; Irigoyen, B.; Amadeo, N. [Laboratorio de Procesos Cataliticos, Departamento de Ingenieria Quimica, FIUBA, Pabellon de Industrias, Ciudad Universitaria, (1428) Capital Federal (Argentina)

    2008-07-15

    We have theoretically studied the influence of antimony and vanadium cation vacancies in the electronic structure and reactivity of vanadium antimonate, using molecular orbital methods. From the analysis of the electronic properties of the VSbO{sub 4} crystal structure, we can infer that both antimony and vanadium vacancies increase the oxidation state of closer V cations. This would indicate that, in the rutile-type VSbO{sub 4} phase the Sb and V cations defects stabilize the V in a higher oxidation state (V{sup 4+}). Calculations of the adsorption energy for different toluene adsorption geometries on the VSbO{sub 4}(1 1 0) surface have also been performed. The oxidation state of Sb, V and O atoms and the overlap population of metal-oxygen bonds have been evaluated. Our results indicate that the cation defects influence in the toluene adsorption reactions is slight. We have computed different alternatives for the reoxidation of the VSbO{sub 4}(1 1 0) surface active sites which were reduced during the oxygenated products formation. These calculations indicate that the V cations in higher oxidation state (V{sup 4+}) are the species, which preferentially incorporate lattice oxygen to the reduced Sb cations. Thus, the cation defects would stabilize the V{sup 4+} species in the VSbO{sub 4} structure, determining its ability to provide lattice oxygen as a reactant.

  9. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  10. Cationic Tungsten(VI Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Dey Raju

    2016-03-01

    Full Text Available Tungsten-hexa-methyl readily reacts with B(C6F53 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  11. A rapid method for decontamination of low and intermediate level liquid radioactive wastes by amalgamation

    International Nuclear Information System (INIS)

    The objective of this study is to develop an integrated workstation for rapid decontamination of low and intermediate level liquid radioactive wastes. The workstation comprises of an electrochemical amalgamator that allows the reduction of different radionuclides cations in the waste and eventually from amalgamate. The de-amalgamation results in purification of mercury and leftover a radioactive waste behind as secondary waste. (author)

  12. Financial Intermediation and Economic Growth

    OpenAIRE

    Dima, Bogdan; Petru-Eugen OPRIȘ

    2013-01-01

    The paper evaluates the relationship between financial intermediation and the economic growth in the developing economic systems. First, using dataset from 28 countries,between 2001 and 2010 we define a financial intermediation indicator applying EFA method. We use several dimensions of the financial intermediation: Domestic credit provided by banking sector (% of GDP); Domestic credit to private sector (% of GDP); Broad money (% of GDP); Market capitalization of listed companies (% of GDP). ...

  13. Financial Intermediation and Macroeconomic Analysis

    OpenAIRE

    Michael Woodford

    2010-01-01

    Understanding phenomena such as the recent financial crisis, and possible policy responses, requires the use of a macroeconomic framework in which financial intermediation matters for the allocation of resources. Neither standard macroeconomic models that abstract from financial intermediation nor traditional models of the "bank lending channel" are adequate as a basis for understanding the recent crisis. Instead we need models in which intermediation plays a crucial role, but in which interm...

  14. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  15. Stabilizing brokerage.

    Science.gov (United States)

    Stovel, Katherine; Golub, Benjamin; Milgrom, Eva M Meyersson

    2011-12-27

    A variety of social and economic arrangements exist to facilitate the exchange of goods, services, and information over gaps in social structure. Each of these arrangements bears some relationship to the idea of brokerage, but this brokerage is rarely like the pure and formal economic intermediation seen in some modern markets. Indeed, for reasons illuminated by existing sociological and economic models, brokerage is a fragile relationship. In this paper, we review the causes of instability in brokerage and identify three social mechanisms that can stabilize fragile brokerage relationships: social isolation, broker capture, and organizational grafting. Each of these mechanisms rests on the emergence or existence of supporting institutions. We suggest that organizational grafting may be the most stable and effective resolution to the tensions inherent in brokerage, but it is also the most institutionally demanding.

  16. High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles with a Fluorinated Core.

    Science.gov (United States)

    Wang, Long-Hai; Wu, De-Cheng; Xu, Hang-Xun; You, Ye-Zi

    2016-01-11

    During the last two decades, cationic polymers have become one of the most promising synthetic vectors for gene transfection. However, the weak interactions formed between DNA and cationic polymers result in low transfection efficacy. Furthermore, the polyplexes formed between cationic polymers and DNA generally exhibit poor stability and toxicity because of the large excess of cationic polymer typically required for complete DNA condensation. Herein, we report the preparation of a novel class of bioreducible cationic nanomicelles by the use of disulfide bonds to connect the cationic shell to the fluorocarbon core. These bioreducible nanomicelles form strong interactions with DNA and completely condense DNA at an N/P ratio of 1. The resulting nanomicelle/DNA polyplexes exhibited high biocompatibility and performed very effectively as a gene-delivery system.

  17. Use of laser induced photoacoustic spectroscopy (LIPAS) to determine equilibrium constants of cation-cation complexes

    International Nuclear Information System (INIS)

    Laser Induced PhotoAcoustic Spectroscopy (LIPAS) is a relatively new, photothermal technique to examine solutions. Studies in the past have shown it to be more sensitive than conventional absorption spectroscopy, while, yielding the same information thus allowing lower concentrations to be used. This study is using LIPAS to examine solutions to determine the equilibrium constants of cation-cation complexes. It has been found that actinyl(V) cations form cation-cation complexes with a variety of cations, including actinyl(VI) cations. The radioactive nature of the actinide elements requires special handling techniques and also require limits be placed on the amount of material that can be used. The sensitivity of some oxidation states of the actinides to oxygen also presents a problem. Preliminary results will be presented for actinyl(V)-actinyl(VI) cation-cation complexes that were studied using a remote LIPAS system incorporating fiber optics for transmission of laser signals

  18. Mechanism of retinal schiff base formation and hydrolysis in relation to visual pigment photolysis and regeneration: resonance raman spectroscopy of a tetrahedral carbinolamine intermediate and oxygen-18 labeling of retinal at the metarhodopsin stage in photoreceptor membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, A.; Dixon, S.F.; Nutley, M.A.; Robb, J.L.

    1987-11-25

    The mechanism of formation and hydrolysis of N-retinylidene-n-butylamine, as a model of the rhodopsin chromophore, has been investigated by a study of the kinetic and equilibrium properties in aqueous anionic, cationic, and neutral detergent micelle systems. The pH dependence of steady-state formation and hydrolysis rate constants is consistent with the classical imine reaction mechanism involving tetrahedral carbinolamine intermediates. Kinetic transients consistent with such intermediates can be seen using rapid stopped-flow techniques. Hydrolysis rates in neutral detergent micelles exhibit general base catalysis, and there are pronounced detergent-specific effects which can be qualitatively interpreted in terms of ionic effects on Schiff base pK/sub a/ and micellar hydrogen ion activities. This suggests a rational explanation for the anomalous pK/sub a/ and thermodynamic stability of visual pigment chromophores under physiological conditions. The tetrahedral intermediate has been observed directly at room temperature by continuous-flow, pH-jump resonance Raman spectroscopy, and the spectrum of this transient species shows remarkable similarity with the previously reported Raman spectrum of the metarhodopsin II intermediate of bovine rhodopsin photolysis. Isotope-labeling experiments on bovine photoreceptor membranes exposed to oxygen-18 enriched water during bleaching show incorporation of /sup 18/O at the retinal aldehyde site during the metarhodopsin I ..-->.. II transition.

  19. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  20. Recent results on intermediate polars

    OpenAIRE

    Hellier, Coel

    1999-01-01

    I review recent activity in the field of intermediate polars, concentrating on: the mode of accretion (disc-fed, disc-overflow or discless); accretion curtains (the transition region and the accretion footprint); X-ray pulse profiles (occultation and absorption effects); accretion columns (mass determinations, line-broadening, the soft X-ray component), and outbursts in intermediate polars.

  1. Optimal Auditing Under Intermediated Contracting

    OpenAIRE

    Wolfgang Gick

    2004-01-01

    This paper builds on Faure-Grimaud and Martimort’s [Economics Letters 71 (2001) 75-82] analysis of intermediated contracting. I argue that intermediated contracting permits one form of auditing, in which the sub-contract offered to the firm is examined, contingent on the intermediary’s report. Auditing reduces the intermediary’s rent and increases allocative efficiency.

  2. Cation Intercalation in Manganese Oxide Nanosheets: Effects on Lithium and Sodium Storage.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Xiang, Zhonghua; Ma, Jizhen; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-08-22

    The rapid development of advanced energy-storage devices requires significant improvements of the electrode performance and a detailed understanding of the fundamental energy-storage processes. In this work, the self-assembly of two-dimensional manganese oxide nanosheets with various metal cations is introduced as a general and effective method for the incorporation of different guest cations and the formation of sandwich structures with tunable interlayer distances, leading to the formation of 3D Mx MnO2 (M=Li, Na, K, Co, and Mg) cathodes. For sodium and lithium storage, these electrode materials exhibited different capacities and cycling stabilities. The efficiency of the storage process is influenced not only by the interlayer spacing but also by the interaction between the host cations and shutter ions, confirming the crucial role of the cations. These results provide promising ideas for the rational design of advanced electrodes for Li and Na storage. PMID:27458045

  3. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  4. On the Nature of the Intermediates and the Role of Chloride Ions in Pd-Catalyzed Allylic Alkylations: Added Insight from Density Functional Theory

    DEFF Research Database (Denmark)

    Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland;

    2008-01-01

    The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...... with two phosphine ligands, the corresponding neutral complex with one phosphine and one chloride ligand, and a neutral eta(1)-allylPd complex with one chloride and two phosphine ligands. The eta(1)-complex is unreactive toward nucleophiles. The cationic eta(3)-complex is the intermediate most...

  5. Direct observation of hexamethylbenzenium radical cations generated during zeolite methanol-to-olefin catalysis: an ESR study.

    Science.gov (United States)

    Kim, Sun Jung; Jang, Hoi-Gu; Lee, Jun Kyu; Min, Hyung-Ki; Hong, Suk Bong; Seo, Gon

    2011-09-01

    The generation of hexamethylbenzenium radical cations as the key reaction intermediate in chabazite-type molecular sieve acids (i.e., H-SAPO-34 and H-SSZ-13) during the methanol-to-olefin process has been directly evidenced by ESR spectroscopy. PMID:21766115

  6. Mechanical Properties of Intermediate Filament Proteins.

    Science.gov (United States)

    Charrier, Elisabeth E; Janmey, Paul A

    2016-01-01

    Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.

  7. Intermediation Costs and Financial Fragility

    OpenAIRE

    Kaplan, Cafer; Salman, Ferhan

    2007-01-01

    This paper studies implications of intermediation costs in credit markets. The presence of intermediation costs increases the amount of risky projects therefore results in financial fragility. Moreover, for an open economy that has a perfectly liberal capital account, prudent firms finance their projects from foreign markets therefore shrinking the domestic credit markets. The theoretical predictions of our model gains support by Turkish data for the 1991 – 2004 period. Data suggests that an ...

  8. Wealth, Financial Intermediation and Growth

    OpenAIRE

    Gaytan, Alejandro; Ranci??re, Romain

    2005-01-01

    This paper presents empirical support for the existence of wealth effects in the contribution of financial intermediation to economic growth, and offers a theoretical explanation for these effects. Using GMM dynamic panel data techniques applied to study the growth-promoting effects of financial intermediation, we show that the exogenous contribution of financial development on economic growth has different effects for different levels of income per capita. We find that this contribution is g...

  9. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  10. Naphthoxy Bounded Ferrocenium Salts as Cationic Photoinitiators for Epoxy Photopolymerization

    Directory of Open Access Journals (Sweden)

    Zh. Q. Li

    2009-01-01

    Full Text Available To improve the absorption and the bulk of arene ligands, two naphthoxy bounded ferrocenium salts as new cationic photoinitiators, (η6-α-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-1 and (η6-β-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-2, were synthesized, characterized, and studied. NOFC-1 and NOFC-2 were prepared by the reaction of nucleophilic substitution (SNAr with naphthol and chlorobenzene-cyclopentadienyliron salt. Their activity as cationic photoinitiators was studied using real-time infrared spectroscopy. The results obtained showed that NOFC-1 and NOFC-2 are capable of photoinitiating the cationic polymerization of epoxy monomer directly on irradiation with long-wavelength UV light (365 nm. Comparative studies also demonstrated that they exhibited better efficiency than cyclopentadienyl-Fe-cymene hexafluorophosphate (I-261. When NOFC-1 and NOFC-2 were used to efficiently initiate polymerization of epoxide, both rate of polymerization and final conversion increased using benzoyl peroxide (BPO as sensitizer. DSC studies showed that NOFC-1 and NOFC-2 photoinitiators in epoxides possess good thermal stability in the absence of light.

  11. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;

    1997-01-01

    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  12. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  13. Intermediate ions in the atmosphere

    Science.gov (United States)

    Tammet, Hannes; Komsaare, Kaupo; Hõrrak, Urmas

    2014-01-01

    Intermediate air ions are charged nanometer-sized aerosol particles with an electric mobility of about 0.03-0.5 cm2 V- 1 s- 1 and a diameter of about 1.5-7.5 nm. Intensive studies of new particle formation provided good knowledge about intermediate ions during burst events of atmospheric aerosol nucleation. Information about intermediate ions during quiet periods between the bursts remained poor. The new mobility analyzer SIGMA can detect air ions at concentrations of mobility fractions of about 1 cm- 3 and enables studying intermediate ions during quiet periods. It became evident that intermediate ions always exist in atmospheric air and should be considered an indicator and a mediator of aerosol nucleation. The annual average concentration of intermediate ions of one polarity in Tartu, Estonia, was about 40 cm- 3 while 5% of the measurements showed a concentration of less than 10 cm- 3. The fraction concentrations in logarithmic 1/8-decade mobility bins between 0.1 and 0.4 cm2 V- 1 s- 1 often dropped below 1 cm- 3. The bursts of intermediate ions at stations separated by around 100 km appeared to be correlated. The lifespan of intermediate ions in the atmosphere is a few minutes, and they cannot be carried by wind over long distances. Thus the observed long-range correlation of intermediate ions is explained by simultaneous changes in air composition in widely spaced stations. A certain amount of intermediate ion bursts, predominantly of negative polarity, are produced by the balloelectric effect at the splashing of water drops during rain. These bursts are usually excluded when speaking about new particle formation because the balloelectric particles are assumed not to grow to the size of the Aitken mode. The mobility distribution of balloelectric ions is uniform in shape in all measurements. The maximum is located at a mobility of about 0.2 cm2 V- 1 s- 1, which corresponds to the diameter of particles of about 2.5 nm.

  14. Generation of pyridyl coordinated organosilicon cation pool by oxidative Si-Si bond dissociation

    Directory of Open Access Journals (Sweden)

    Itami Kenichiro

    2007-02-01

    Full Text Available Abstract An organosilicon cation stabilized by intramolecular pyridyl coordination was effectively generated and accumulated by oxidative Si-Si bond dissociation of the corresponding disilane using low temperature electrolysis, and was characterized by NMR and CSI-MS.

  15. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L−1). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH3-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  16. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  17. The lightest organic radical cation for charge storage in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S.; Su, Liang; Brushett, Fikile; Cheng, Lei; Liao, Chen; Ferrandon, Magali S.; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K.; Curtiss, Larry A.; Shkrob, Ilya A.; Moore, Jeffrey S.; Zhang, Lu

    2016-08-25

    Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, we find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.

  18. Porphyrin Analogues of a Trityl Cation and Anion.

    Science.gov (United States)

    Kato, Kenichi; Kim, Woojae; Kim, Dongho; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-05-17

    Porphyrin-stabilized meso- or β-carbocations were generated upon treatment of the corresponding bis(4-tert-butylphenyl)porphyrinylcarbinols with trifluoroacetic acid (TFA). Bis(4-tert-butylphenyl)porphyrinylcarbinols were treated with TFA to generate the corresponding carbocations stabilized by a meso- or β-porphyrinyl group. The meso-porphyrinylmethyl carbocation displayed more effective charge delocalization with decreasing aromaticity compared with the β-porphyrinylmethyl carbocation. A propeller-like porphyrin trimer, tris(β-porphyrinyl)carbinol, was also synthesized and converted to the corresponding cation that displayed a more intensified absorption reaching over the NIR region. meso-Porphyrinylmethyl carbanion was generated as a stable species upon deprotonation of bis(4-tert-butylphenyl)(meso-porphyrinyl)methane with potassium bis(trimethylsilyl)amide (KHMDS) and [18]crown-6, whereas β-porphyrinylmethyl anions were highly unstable. PMID:26991021

  19. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  20. Intermediate Temperature Solid Oxide Fuel Cell Development

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600

  1. Radiation stability of selected ionic liquids: a pulse radiolysis study

    International Nuclear Information System (INIS)

    One important potential application of ionic liquids (IL) is as a medium for processing of spent nuclear fuel. It is therefore imperative to study the radiation chemistry of ILs, not only to determine their radiolytic products and degradation pathways, but also to describe how the radiolysis may affect or interfere in the separation processes. An understanding of Radiation Chemistry of ILs would also facilitate general chemical reactivity in this medium, which will aid in the development of energy production, chemical industry and environmental applications. We were interested in understanding how the specific physical properties of ionic liquids influence the dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions in this medium. In the pulse radiolysis experiments on Imidazolium based ILs (1-Ethyl-3-methylimidazolium) (Ethyl sulphate) or (Emim) (EtSO4) under oxidizing or reducing conditions, we observed a transient peak at 320 nm. This absorption may be due to the formation of a radical as electron reacts with the imidazolium cation of the ionic liquid. We have not observed hydrated electrons because the electron reacts with imidazolium cation very fast. Pulse radiolysis experiments have also been performed on FAP (Fluoro Alkyl Phosphates) ILs having imidazolium as cation e.g. (1-Ethyl-3-methylimidazolium) (tris(pentafluoroethyl) trifluorophosphate) or FAP-1 and (1-(2-HydroxyEthyl-3-methylimidazolium) (tris(pentafluoroethyl) trifluorophosphate) or FAP-2. FAP-ionic liquids show an excellent hydrolytic stability, low viscosity and high electrochemical and thermal stability that makes them attractive for use in electrochemical devices and as a new media for application in modern technologies and chemical synthesis. The time-resolved transient spectra of FAP ILs were recorded and characterized under different experimental conditions. The formation and decay

  2. 棘突间动态稳定装置Wallis治疗腰椎退行性疾病中长期随访效果分析%Intermediate and long-term follow-up evaluation of posterior dynamic lumbar stabilization in lumbar degenerative disease

    Institute of Scientific and Technical Information of China (English)

    徐林; 俞兴; 毕连涌; 柳根哲; 李鹏洋; 曲弋; 焦勇

    2012-01-01

    目的 探讨棘突间动态稳定装置Wallis治疗腰椎退行性疾病的中长期效果.方法 回顾性分析2007年8月至2010年1月采用Wallis或结合固定融合方法治疗腰椎退行性疾病并有2年以上随访的96例患者资料,其中男性51例,女性45例;年龄21 ~ 68岁,平均41.5岁.采用疼痛视觉模拟量表(VAS)1 00分法和中华医学会骨科分会脊柱外科学组腰椎手术疗效标准评估手术短期和中长期疗效,测量分析术前、术后3个月和末次随访时Wallis植入节段椎间盘终板高度,随访有无Wallis相关并发症及患者对手术的满意度,部分患者MRI检查分析Wallis植入节段术后椎间盘影像学变化.结果 术前、术后3个月及末次随访疼痛VAS评分分别为78 ±24、28±16和14±12,采用配对t检验,术后3个月及末次随访疼痛VAS评分较术前明显下降(t=2.634和2.653,P<0.01);末次随访疼痛VAS评分较术后3个月也有下降(t=2.147,P<0.05).术后末次随访功能恢复优良率为91.7%,患者手术整体满意率为95.8%,术前、术后3个月和末次随访时Wallis植入节段椎间盘终板高度分别为(8.2±3.7)、(10.4±2.6)和(10.1±1.9) mm,MRI检查未发现植入节段间盘退变加速、部分患者可见椎间盘水化.结论 棘突间动态稳定装置Wallis或结合固定融合方法治疗腰椎退行性疾病简便安全,2年以上中长期随访疗效良好,为腰椎退行性疾病的手术治疗增加了一种新的选择.%Objective To evaluate the intermediate and long-term follow-up effect of posterior dynamic lumbar stabilization in lumbar degenerative disease.Methods The clinical outcomes of 96 patients (male 51,female 45,age from 21 to 68 years,mean 41.5 years) whose follow-up time were more than 2 years with lumbar degenerative disease treated by posterior decompression with Wallis posterior dynamic lumbar stabilization implant or combined with posterior lumbar fusion from August 2007 to January 2010 were

  3. Formation of cationic [RP5Cl](+)-cages via insertion of [RPCl](+)-cations into a P-P bond of the P4 tetrahedron.

    Science.gov (United States)

    Holthausen, Michael H; Feldmann, Kai-Oliver; Schulz, Stephen; Hepp, Alexander; Weigand, Jan J

    2012-03-19

    Fluorobenzene solutions of RPCl(2) and a Lewis acid such as ECl(3) (E = Al, Ga) in a 1:1 ratio are used as reactive sources of chlorophosphenium cations [RPCl](+), which insert into P-P bonds of dissolved P(4). This general protocol represents a powerful strategy for the synthesis of new cationic chloro-substituted organophosphorus [RP(5)Cl](+)-cages as illustrated by the isolation of several monocations (21a-g(+)) in good to excellent yields. For singular reaction two possible reaction mechanisms are proposed on the basis of quantum chemical calculations. The intriguing NMR spectra and structures of the obtained cationic [RP(5)Cl](+)-cages are discussed. Furthermore, the reactions of dichlorophosphanes and the Lewis acid GaCl(3) in various stoichiometries are investigated to obtain a deeper understanding of the species involved in these reactions. The formation of intermediates such as RPCl(2)·GaCl(3) (14) adducts, dichlorophosphanylchlorophosphonium cations [RPCl(2)-RPCl](+) (16(+)) and [RPCl(2)-RPCl-GaCl(3)](+) (17(+)) in reaction mixtures of RPCl(2) and GaCl(3) in fluorobenzene strongly depends on the basicity of the dichlorophosphane RPCl(2) (R = tBu, Cy, iPr, Et, Me, Ph, C(6)F(5)) and the reaction stoichiometry.

  4. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  5. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    2008-11-01

    Full Text Available Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS and the outer membrane (OM. DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552-PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on beta-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation.

  6. Study of radionuclides complexes formation by organic compounds in intermediate and low-level radioactive wastes; Etude de la mobilisation, par des complexants organiques, des radionucleides contenus dans les dechets radioactifs de faible et moyenne activite

    Energy Technology Data Exchange (ETDEWEB)

    Bourbon, X.

    1994-12-01

    In the general framework of the safety of nuclear wastes of low and intermediate activity, we studied the effects of organic compounds on the solubilization of metallic cations. Organic compounds originate from the degradation of cellulose in concrete interstitial waters. Degradation reactions generate a number of products, among which carboxylic acids. These acids are known for their chelating properties. We first analysed the degradation of cellulose in alkaline conditions: we qualitatively and quantitatively determined the degradation products for various reaction progress indices, including a dozen of carboxylic acids. The principal goal of our work was the prediction of the behaviour of metallic cations in such cellulose degradation solutions. Owing the complexity of the system, a priori theoretical calculation are not possible. We have thus decided to choose tetra hydroxy pentanoic acid as a reference compound in order to simulate as accurately as possible the behaviour of more complex acids which contain similar functional groups. We have experimentally determined the complexing properties of this reference acid toward divalent cobalt and copper, and trivalent samarium and europium. Simple and mixed complex (hydroxyl) have been evidenced in alkaline medium. Their stability constants have been determined and extrapolated at zero ionic strength using the SIT theory. These results allowed us to theoretically predict the behaviour of our four reference cations in cellulose degradation products formed in concrete interstitial waters. In parallel, we have measured their solubility in real cellulose degradation solutions. Solubility predictions are correct for transition metals, but not for rare earth cations. In this case the complexes which have been identified with tetra hydroxy pentanoic acid are not stable enough to dissolve metallic hydroxides. In real degradation solutions, other compounds would account for the enhancement of rare earth elements solubility.

  7. Brillouin spectroscopy with surface acoustic waves on intermediate valent, doped SmS

    International Nuclear Information System (INIS)

    Brillouin scattering on surface acoustic waves is a very powerful tool to determine the elastic constants of intermediate valent crystals, since the method is non-destructive and no mechanical contact is needed. A strong evidence for intermediate valence is a negative value of Poisson's ratio, which describes the behavior of the volume under uniaxial pressure. SmS by itself makes a semiconductor-metal transition at a pressure of more than 6.5 kbar. When substituting the divalent Sm by a trivalent cation, like Y, La or Tm, SmS can become - depending on the doping concentration - intermediate valent without any applied, external pressure. In this work, we will present measurements of the velocities of the surface acoustic waves and the calculation of the elastic constants of La- and Tm-doped SmS compounds. We found a clear dependence of Poisson's ratio on the doping concentration and on the valence of the materials. Furthermore, we will discuss the mechanism leading to intermediate valence when substituting Sm. Besides the internal, chemical pressure, which is produced by the built in trivalent cations with their smaller ionic radii, we have clear evidence, that the free electrons in the 5d band, induced by the substituting atoms, also play an important role in making doped SmS intermediate valent. (orig.)

  8. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  9. Intermediality and the Child Performer

    Science.gov (United States)

    Budd, Natasha

    2016-01-01

    This report details examples of praxis in the creation and presentation of "Joy Fear and Poetry": an intermedial theatre performance in which children aged 7-12 years generated aesthetic gestures using a range of new media forms. The impetus for the work's development was a desire to make an intervention into habituated patterns of…

  10. Cestina pro Pokrocile (Intermediate Czech).

    Science.gov (United States)

    Kabat, Grazyna; And Others

    The textbook in intermediate Czech is designed for second-year students of the language and those who already have a basic knowledge of Czech grammar and vocabulary. It is appropriate for use in a traditional college language classroom, the business community, or a government language school. It can be covered in a year-long conventional…

  11. Material Voices: Intermediality and Autism

    Science.gov (United States)

    Trimingham, Melissa; Shaughnessy, Nicola

    2016-01-01

    Autism continues to be regarded enigmatically; a community that is difficult to access due to perceived disruptions of interpersonal connectedness. Through detailed observations of two children participating in the Arts and Humanities Research Council funded project "Imagining Autism: Drama, Performance and Intermediality as Interventions for…

  12. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a ...

  13. Authentic Video in Intermediate German.

    Science.gov (United States)

    Lutcavage, Charles

    1992-01-01

    Assorted techniques are offered for introducing authentic German video into the intermediate language curriculum. Television commercials, weather forecasts, and news programs are described as tools for enhancing listening comprehension and expanding students' cultural awareness. Various preparatory activities and follow-up assignments are…

  14. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  15. Cations and activated sludge floc structure

    OpenAIRE

    Park, Chul

    2002-01-01

    This research was designed to investigate the effect of cations on activated sludge characteristics and also to determine their influence on digestion performance. For this purpose, cations in solution and in floc were evaluated along with various activated sludge characteristics and the collected waste activated sludge underwent both anaerobic and aerobic digestion. It was found that large amounts of biopolymer (protein + polysaccharide) remained in the effluent of WWTP that received high in...

  16. Ion-radical intermediates of the radiation-chemical transformations of organic carbonates

    Science.gov (United States)

    Shiryaeva, Ekaterina S.; Sosulin, Ilya S.; Saenko, Elizaveta V.; Feldman, Vladimir I.

    2016-07-01

    The spectral features and reactions of ion-radical intermediates produced from organic carbonates in low-temperature matrices were investigated by EPR spectroscopy and quantum-chemical calculations. It was shown that radical cations of diethyl carbonate and dimethyl carbonate underwent intramolecular hydrogen transfer to yield alkyl-type species, as was suggested previously. Meanwhile, radical cation of EC demonstrates a ring cleavage even at 77 K, while radical cation of PC is probably intrinsically stable and undergo an ion-molecule reaction with a neighboring neutral molecule in dimers or associates. Radical anions were obtained in glassy matrices of diethyl ether or perdeuteroethanol. The radical anions of linear carbonates show photoinduced fragmentation to yield the corresponding alkyl radicals; such process may also occur directly under radiolysis. Radical anions of cyclic carbonates are relatively stable and yield only trace amounts of fragmentation products under similar conditions.

  17. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  18. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  19. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. PMID:25212827

  20. An overview of quantification methods in energy-dispersive X-ray fluorescence analysis

    Indian Academy of Sciences (India)

    A Markowicz

    2011-02-01

    This paper reviews the major factors influencing the accuracy of the energy-dispersive X-ray fluorescence (EDXRF) analysis including physical and chemical matrix effects (resulting from particle size, surface irregularity, mineralogy, moisture, absorption and enhancement) as well as the correction procedures with emphasis on the analysis of unprepared samples. Quantification methods for thin samples, samples with intermediate thickness and thick samples are presented including fundamental parameter methods, influence coefficient algorithms, empirical coefficient algorithms and quantification methods based on scattered primary radiation. Quality control procedures are also reviewed.

  1. Financial intermediation and the post-crisis financial system

    OpenAIRE

    Hyun Song Shin

    2010-01-01

    Securitization was meant to disperse credit risk to those who were better able to bear it. In practice, securitization appears to have concentrated the risks in the financial intermediary sector itself. This paper outlines an accounting framework for the financial system for assessing the impact of securitization on financial stability. If securitization leads to the lengthening of intermediation chains, then risks becomes concentrated in the intermediary sector with damaging consequences for...

  2. Quantum mechanical investigations on the role of neutral and negatively charged enamine intermediates in organocatalyzed reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hubin, Pierre O., E-mail: pierre.hubin@unamur.be [Laboratoire de Physico-Chimie Informatique (PCI), Unité de Chimie Physique Théorique et Structurale, University of Namur, 61 rue de Bruxelles, 5000 Namur (Belgium); Jacquemin, Denis [Laboratoire CEISAM – UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, BP92208, 44322 Nantes Cedex 3 (France); Institut Universitaire de France 103, Boulevard St Michel, 75005 Paris Cedex 5 (France); Leherte, Laurence; Vercauteren, Daniel P. [Laboratoire de Physico-Chimie Informatique (PCI), Unité de Chimie Physique Théorique et Structurale, University of Namur, 61 rue de Bruxelles, 5000 Namur (Belgium)

    2014-04-15

    Highlights: • M06-2X functional is suitable to model key steps of proline-catalyzed reactions. • Investigation of the proline-catalyzed aldol reaction mechanism. • Influence of water molecules on the C–C bond formation step. • Mechanism for the reaction of proline-derived enamines with benzhydrylium cations. - Abstract: The proline-catalyzed aldol reaction is the seminal example of asymmetric organocatalysis. Previous theoretical and experimental studies aimed at identifying its mechanism in order to rationalize the outcome of this reaction. Here, we focus on key steps with modern first principle methods, i.e. the M06-2X hybrid exchange–correlation functional combined to the solvation density model to account for environmental effects. In particular, different pathways leading to the formation of neutral and negatively charged enamine intermediates are investigated, and their reactivity towards two electrophiles, i.e. an aldehyde and a benzhydrylium cation, are compared. Regarding the self-aldol reaction, our calculations confirm that the neutral enamine intermediate is more reactive than the negatively charged one. For the reaction with benzhydrylium cations however, the negatively charged enamine intermediate is more reactive.

  3. Quantum mechanical investigations on the role of neutral and negatively charged enamine intermediates in organocatalyzed reactions

    International Nuclear Information System (INIS)

    Highlights: • M06-2X functional is suitable to model key steps of proline-catalyzed reactions. • Investigation of the proline-catalyzed aldol reaction mechanism. • Influence of water molecules on the C–C bond formation step. • Mechanism for the reaction of proline-derived enamines with benzhydrylium cations. - Abstract: The proline-catalyzed aldol reaction is the seminal example of asymmetric organocatalysis. Previous theoretical and experimental studies aimed at identifying its mechanism in order to rationalize the outcome of this reaction. Here, we focus on key steps with modern first principle methods, i.e. the M06-2X hybrid exchange–correlation functional combined to the solvation density model to account for environmental effects. In particular, different pathways leading to the formation of neutral and negatively charged enamine intermediates are investigated, and their reactivity towards two electrophiles, i.e. an aldehyde and a benzhydrylium cation, are compared. Regarding the self-aldol reaction, our calculations confirm that the neutral enamine intermediate is more reactive than the negatively charged one. For the reaction with benzhydrylium cations however, the negatively charged enamine intermediate is more reactive

  4. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  5. The sequence to hydrogenate coronene cations: A journey guided by magic numbers

    CERN Document Server

    Cazaux, Stéphanie; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas

    2016-01-01

    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms att...

  6. Financial Intermediation with Risk Aversion

    OpenAIRE

    Hellwig, Martin

    1998-01-01

    The paper extends Diamond's (1984) analysis of financial intermediation to allow for risk aversion of the intermediary. It shows that, as in the case of risk neutrality, the agency costs of external funds provided to an intermediary are relatively small if the intermediary is financing many entrepreneurs with stochastically independent returns. Even though the intermediary is adding rather than subdividing risks, the underlying large-numbers argument is not invalidated by the presence of risk...

  7. Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Science.gov (United States)

    Nishikata, Takashi; Abela, Alexander R; Huang, Shenlin

    2016-01-01

    Summary Cationic palladium(II) complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN)4](BF4)2 or a nitrile-free cationic palladium(II) complex generated in situ from the reaction of Pd(OAc)2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1) C–H activation to generate a cationic palladacycle; (2) reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3) regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II) complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied. PMID:27340491

  8. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    Science.gov (United States)

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed. PMID:27391279

  9. Innate cation sensitivity in a semiconducting polymer.

    Science.gov (United States)

    Althagafi, Talal M; Algarni, Saud A; Grell, Martin

    2016-09-01

    Water-gated organic thin film transistors (OTFTs) using the hole transporting semiconducting polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), show an innate response of their threshold voltage to the addition of divalent metal cations to the gating water, without deliberately introducing an ion-sensitive component. A similar threshold response is shown for several divalent cations, but is absent for monovalent cations. Response is absent for transistors using the inorganic semiconductor ZnO, or the similar organic semiconductor poly(3-hexylthiophene) (rrP3HT), instead of PBTTT. We assign innate cation sensitivity to residues of the organometallic Pd(0) complex used as catalyst in PBTTT synthesis which bears strong resemblance to typical metal chelating agents. Organometallic Pd(0) residues are absent from ZnO, and also from rrP3HT which is polymerised with a different type of catalyst. However, when Pd(0) complex is deliberately added to rrP3HT casting solutions, resulting OTFTs also display threshold response to a divalent cation. PMID:27343580

  10. Trapping five-coordinate platinum(iv) intermediates.

    Science.gov (United States)

    Shaw, Paul A; Phillips, Jessica M; Clarkson, Guy J; Rourke, Jonathan P

    2016-07-28

    The oxidation of three different complexes of the doubly cycloplatinated 2,6-di(4-fluorophenyl)pyridine ligand (namely DMSO, PPh3 and PPr3 derivatives, 1a, 1b and 1c, respectively) with the electrophilic oxidant iodobenzenedichloride was studied. In each case oxidation can yield a simple trans-dichloro platinum(iv) complex (2(t)), which subsequently isomerises to the cis isomer (2(c)). However, by changing the solvent, or performing the reaction in the presence of an additional ligating species, a five-coordinate intermediate can be trapped out and isolated. Thus, cationic species with additional DMSO or pyridine coordinated could be collected for the DMSO and PPh3 derivatives. The PPr3 derivative traps out the reactive five-coordinate species with an agostic interaction that subsequently induces a transcyclometallation reaction to give a complex with a singly cyclometallated pyridine and a cyclometallated phosphine, which was characterised crystallographically, (6c PMID:27335216

  11. Covalent functionalization of graphene with reactive intermediates.

    Science.gov (United States)

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  12. Metal cations inserted in vanadium-oxide nanotubes

    International Nuclear Information System (INIS)

    Vanadium-oxide nanotubes (VO x-NTs) consist of nanosize cylinders of thin, easily bent vanadyl (VO x) wall chains, which are open at both ends. Surfactant molecules (e.g. C12H27N) can be easily trapped in the interior of the nanotube walls. The structure of as-synthesized VO x-NTs are observed to collapse to an amorphous vanadium oxide at temperatures greater than 250 deg, C. This happens, even under a protective atmosphere. This property makes the VO x-NTs unusable as a catalyst at temperatures between 400-500 deg, C, which is the temperature range where many applications would exist. In order to increase the thermal stability of VO x-NTs several exchange reactions have been used to modify the original nanotubes. In these reactions metallic cations (Cd2+, Co2+, Mn2+ or Zn2+) were introduced. It was observed that that the morphology of the nanotubes remained unchanged after the exchange reactions were performed. In order to characterize the exchanged VO x-NTs the following analytic techniques were used: scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, particle-induced X-ray emission and Rutherford backscattering spectrometry. The results showed that the VO x-NTs exchanged with metallic cations have preserved their tubular morphology. However, it has not been possible to fully perform a 100% efficient exchange reaction

  13. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  14. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  15. Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure

    Institute of Scientific and Technical Information of China (English)

    Yaxin Zhang; Yan Zhao; Yong Zhu; Huayong Wu; Hongtao Wang; Wenjing Lu

    2012-01-01

    The adsorption of cationic-nordonic mixed surfactant onto bentonite and its effect on bentonite structure were investigated.The objective was to improve the understanding of surfactant behavior on clay mineral for its possible use in remediation technologies of soil and groundwater contaminated by toxic organic compounds.The cationic surfactant used was hexadecylpyridinium bromide(HDPB),and the nonionic suffactant was Triton X-100(TX100).Adsorption of TX100 was enhanced significantly by the addition of HDPB,but this enhancement decreased with an increase in the fraction of the cationic surfactant.Part of HDPB was replaced by TX100 which decreased the adsorption of HDPB.However,the total adsorbed amount of the mixed surfactant was still increased substantially,indicating the synergistic effect between the cationic and nonionic surfactants.The surfactant-modified bentonite was characterized by Brunauer-Emmett-Teller specific surface area measurement,Fourier transform infrared spectroscopy,and thermogravimetric-derivative thermogravimetric/differential thermal analyses.Surfactant intercalation was found to decrease the bentonite specific surface area,pore volume,and surface roughness and irregularities,as calculated by nitrogen adsorption-desorption isotherms.The co-adsorption of the cationic and nonionic surfactants increased the ordering conformation of the adsorbed surfactants on bentonite,but decreased the thermal stability of the organobentonite system.

  16. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini

    2010-01-01

    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  17. Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers

    KAUST Repository

    Zhang, Hefeng

    2015-12-17

    A series of hydroxyl-terminated polyisobutylene-b-polyethylene (PIB-b-PE-OH) copolymers were synthesized by combining living cationic polymerization and polyhomologation. Allyl-terminated PIBs, synthesized by living cationic polymerization, were hydroborated with BH3·THF to produce 3-arm boron-linked stars, PIB3B, which served as macroinitiators for the in situ polyhomologation of dimethylsulfoxonium methylide. The resulting 3-arm star block copolymers, (PIB-b-PE)3B, were oxidized/hydrolysed to afford PIB-b-PE-OH. Characterization of all intermediates and final products by high temperature gel permeation chromatography (HT-GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR) revealed the well-defined character of the copolymers. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC).

  18. Efficient scavenging of β-carotene radical cations by antiinflammatory salicylates

    DEFF Research Database (Denmark)

    Cheng, Hong; Liang, Ran; Han, Rui-Min;

    2014-01-01

    by the anion of salicylic acid with 2.2 × 10 L mol s, but still of possible importance for light-exposed tissue. Surprisingly, acetylsalicylate, the aspirin anion, reacts with an intermediate rate in a reaction assigned to the anion of the mixed acetic-salicylic acid anhydride formed through base induced......The radical cation generated during photobleaching of β-carotene is scavenged efficiently by the anion of methyl salicylate from wintergreen oil in a second-order reaction approaching the diffusion limit with k = 3.2 × 10 L mol s in 9:1 v/v chloroform-methanol at 23 °C, less efficiently...... rearrangements. The relative scavenging rate of the β-carotene radical cation by the three salicylates is supported by DFT-calculations. © 2014 The Royal Society of Chemistry....

  19. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  20. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...... and topological features of these glasses and we use AFM to quantify the resistances associated with each deformation process under Vickers indentation. We demonstrate that the mixed cation effect manifests itself as a maximum in the amount of bonded tetrahedral units and as a minimum in liquid fragility index...

  1. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  2. Role of Intermediate Filaments in Vesicular Traffic

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  3. Intermedial Strategies of Memory in Contemporary Novels

    DEFF Research Database (Denmark)

    Tanderup, Sara

    2014-01-01

    In her article "Intermedial Strategies and Memory in Contemporary Novels" Sara Tanderup discusses a tendency in contemporary literature towards combining intermedial experiments with a thematic preoccupation with memory and trauma. Analyzing selected works by Steven Hall, Jonathan Safran Foer...

  4. Role of Intermediate Filaments in Vesicular Traffic.

    Science.gov (United States)

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  5. THE FUNCTIONS OF FINANCIAL INTERMEDIATION - A SURVEY

    OpenAIRE

    Andries Marius Alin

    2009-01-01

    Traditional theories of intermediation are based on transaction costs and asymmetric information. In recent decades although transaction costs and asymmetric information have declined, intermediation has increased. New markets for financial futures and options are mainly markets for intermediaries rather than individuals or firms. In this paper we survey the last theoretical and empirical research on financial intermediation and functions of financial intermediation. We discuss the functions ...

  6. How Should Financial Intermediation Services be Taxed?

    OpenAIRE

    Lockwood, Ben

    2010-01-01

    This paper considers the optimal taxation of two types of financial intermediation services (savings intermediation, and payment services) in a dynamic general equilibrium setting, when the government can also use consumption and income taxes. When payment services are used in strict proportion to final consumption, and the cost of intermediation services is the same across firms, the optimal taxes on financial intermediation are generally indeterminate. But, when firms differ in the cost of ...

  7. Intermediate Filaments in Caenorhabditis elegans.

    Science.gov (United States)

    Zuela, Noam; Gruenbaum, Yosef

    2016-01-01

    More than 70 different genes in humans and 12 different genes in Caenorhabditis elegans encode the superfamily of intermediate filament (IF) proteins. In C. elegans, similar to humans, these proteins are expressed in a cell- and tissue-specific manner, can assemble into heteropolymers and into 5-10nm wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. At least 5 of the 11 cytoplasmic IFs, as well as the nuclear IF, lamin, are essential. In this chapter, we will include a short review of our current knowledge of both cytoplasmic and nuclear IFs in C. elegans and will describe techniques used for their analyses.

  8. ESL intermediate/advanced writing

    CERN Document Server

    Munoz Page, Mary Ellen; Jaskiewicz, Mary

    2011-01-01

    Master ESL (English as a Second Language) Writing with the study guide designed for non-native speakers of English. Skill-building lessons relevant to today's topics help ESL students write complete sentences, paragraphs, and even multi-paragraph essays. It's perfect for classroom use or self-guided writing preparation.DETAILS- Intermediate drills for improving skills with parallel structure, mood, correct shifting errors & dangling participles- Advanced essay drills focusing on narrative, descriptive, process, reaction, comparison and contrast- Superb preparation for students taking the TOEFL

  9. Binding of Divalent Cations to Polygalacturonate: A Mechanism Driven by the Hydration Water.

    Science.gov (United States)

    Huynh, Uyen T D; Lerbret, Adrien; Neiers, Fabrice; Chambin, Odile; Assifaoui, Ali

    2016-02-11

    We have investigated the interactions between polygalacturonate (polyGal) and four divalent cations (M(2+) = Ba(2+), Ca(2+), Mg(2+), Zn(2+)) that differ in size and affinity for water. Our results evidence that M(2+)-polyGal interactions are intimately linked to the affinity of M(2+) for water. Mg(2+) interacts so strongly with water that it remains weakly bound to polyGal (polycondensation) by sharing water molecules from its first coordination shell with the carboxylate groups of polyGal. In contrast, the other cations form transient ionic pairs with polyGal by releasing preferentially one water molecule (for Zn(2+)) or two (for Ca(2+) and Ba(2+)), which corresponds to monodentate and bidentate binding modes with carboxylates, respectively. The mechanism for the binding of these three divalent cations to polyGal can be described by two steps: (i) monocomplexation and formation of point-like cross-links between polyGal chains (at low M(2+)/Gal molar ratios, R) and (ii) dimerization (at higher R). The threshold molar ratio, R*, between these two steps depends on the nature of divalent cations and is lower for calcium ions (R* barium ions (R* > 0.3). This difference may be explained by the intermediate affinity of Ca(2+) for water with respect to those of Zn(2+) and Ba(2+), which may induce the formation of cross-links of intermediate flexibility. By comparison, the lower and higher flexibilities of the cross-links formed by Zn(2+) and Ba(2+), respectively, may shift the formation of dimers to higher molar ratios (R*). PMID:26771109

  10. Cable Stability

    CERN Document Server

    Bottura, L

    2014-01-01

    Superconductor stability is at the core of the design of any successful cable and magnet application. This chapter reviews the initial understanding of the stability mechanism, and reviews matters of importance for stability such as the nature and magnitude of the perturbation spectrum and the cooling mechanisms. Various stability strategies are studied, providing criteria that depend on the desired design and operating conditions.

  11. 34 CFR 200.17 - Intermediate goals.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Intermediate goals. 200.17 Section 200.17 Education... Programs Operated by Local Educational Agencies Adequate Yearly Progress (ayp) § 200.17 Intermediate goals. Each State must establish intermediate goals that increase in equal increments over the period...

  12. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Directory of Open Access Journals (Sweden)

    Justin John Finnerty

    Full Text Available Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  13. Microsecond molecular dynamics simulations of Mg²⁺- and K⁺-bound E1 intermediate states of the calcium pump.

    Directory of Open Access Journals (Sweden)

    L Michel Espinoza-Fonseca

    Full Text Available We have performed microsecond molecular dynamics (MD simulations to characterize the structural dynamics of cation-bound E1 intermediate states of the calcium pump (sarcoendoplasmic reticulum Ca²⁺-ATPase, SERCA in atomic detail, including a lipid bilayer with aqueous solution on both sides. X-ray crystallography with 40 mM Mg²⁺ in the absence of Ca²⁺ has shown that SERCA adopts an E1 structure with transmembrane Ca²⁺-binding sites I and II exposed to the cytosol, stabilized by a single Mg²⁺ bound to a hybrid binding site I'. This Mg²⁺-bound E1 intermediate state, designated E1•Mg²⁺, is proposed to constitute a functional SERCA intermediate that catalyzes the transition from E2 to E1•2Ca²⁺ by facilitating H⁺/Ca²⁺ exchange. To test this hypothesis, we performed two independent MD simulations based on the E1•Mg²⁺ crystal structure, starting in the presence or absence of initially-bound Mg²⁺. Both simulations were performed for 1 µs in a solution containing 100 mM K⁺ and 5 mM Mg²⁺ in the absence of Ca²⁺, mimicking muscle cytosol during relaxation. In the presence of initially-bound Mg²⁺, SERCA site I' maintained Mg²⁺ binding during the entire MD trajectory, and the cytosolic headpiece maintained a semi-open structure. In the absence of initially-bound Mg²⁺, two K⁺ ions rapidly bound to sites I and I' and stayed loosely bound during most of the simulation, while the cytosolic headpiece shifted gradually to a more open structure. Thus MD simulations predict that both E1•Mg²⁺ and E•2K+ intermediate states of SERCA are populated in solution in the absence of Ca²⁺, with the more open 2K+-bound state being more abundant at physiological ion concentrations. We propose that the E1•2K⁺ state acts as a functional intermediate that facilitates the E2 to E1•2Ca²⁺ transition through two mechanisms: by pre-organizing transport sites for Ca²⁺ binding, and by partially opening the

  14. Solution-phase mechanistic study and solid-state structure of a tris(bipyridinium radical cation) inclusion complex.

    Science.gov (United States)

    Fahrenbach, Albert C; Barnes, Jonathan C; Lanfranchi, Don Antoine; Li, Hao; Coskun, Ali; Gassensmith, Jeremiah J; Liu, Zhichang; Benítez, Diego; Trabolsi, Ali; Goddard, William A; Elhabiri, Mourad; Stoddart, J Fraser

    2012-02-15

    The ability of the diradical dicationic cyclobis(paraquat-p-phenylene) (CBPQT(2(•+))) ring to form inclusion complexes with 1,1'-dialkyl-4,4'-bipyridinium radical cationic (BIPY(•+)) guests has been investigated mechanistically and quantitatively. Two BIPY(•+) radical cations, methyl viologen (MV(•+)) and a dibutynyl derivative (V(•+)), were investigated as guests for the CBPQT(2(•+)) ring. Both guests form trisradical complexes, namely, CBPQT(2(•+))⊂MV(•+) and CBPQT(2(•+))⊂V(•+), respectively. The structural details of the CBPQT(2(•+))⊂MV(•+) complex, which were ascertained by single-crystal X-ray crystallography, reveal that MV(•+) is located inside the cavity of the ring in a centrosymmetric fashion: the 1:1 complexes pack in continuous radical cation stacks. A similar solid-state packing was observed in the case of CBPQT(2(•+)) by itself. Quantum mechanical calculations agree well with the superstructure revealed by X-ray crystallography for CBPQT(2(•+))⊂MV(•+) and further suggest an electronic asymmetry in the SOMO caused by radical-pairing interactions. The electronic asymmetry is maintained in solution. The thermodynamic stability of the CBPQT(2(•+))⊂MV(•+) complex was probed by both isothermal titration calorimetry (ITC) and UV/vis spectroscopy, leading to binding constants of (5.0 ± 0.6) × 10(4) M(-1) and (7.9 ± 5.5) × 10(4) M(-1), respectively. The kinetics of association and dissociation were determined by stopped-flow spectroscopy, yielding a k(f) and k(b) of (2.1 ± 0.3) × 10(6) M(-1) s(-1) and 250 ± 50 s(-1), respectively. The electrochemical mechanistic details were studied by variable scan rate cyclic voltammetry (CV), and the experimental data were compared digitally with simulated data, modeled on the proposed mechanism using the thermodynamic and kinetic parameters obtained from ITC, UV/vis, and stopped-flow spectroscopy. In particular, the electrochemical mechanism of association

  15. Water adsorption on free cobalt cluster cations

    NARCIS (Netherlands)

    D.M. Kiawi; J.M. Bakker; J. Oomens; W.J. Buma; Z. Jamshidi; L. Visscher; L.B.F.M. Waters

    2015-01-01

    Cationic cobalt clusters complexed with water Con+-​H2O (n = 6-​20) are produced through laser ablation and investigated via IR multiple photon dissocn. (IR-​MPD) spectroscopy in the 200-​1700 cm-​1 spectral range. All spectra exhibit a resonance close to the 1595 cm-​1 frequency of the free water b

  16. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M alk...

  17. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  18. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  19. A CATIONIC POLYACRYLAMIDE DISPERSION SYNTHESIS BY DISPERSION POLYMERIZATION IN AQUEOUS SOLUTION

    OpenAIRE

    Yufeng Wang; Kefu Chen; Lihuan Mo; Huiren Hu,

    2011-01-01

    A cationic polyacrylamide (CPAM) dispersion, the copolymer of acrylamide (AM) and acryloyloxyethyltrimethyl ammonium chloride (DAC), has been synthesized through dispersion polymerization in aqueous ammonium sulfate ((NH4)2SO4) solution. The polymerization was initiated by tert-butyl hydroperoxide (TBHP) and ferrisulfas (FeSO4) using poly(dimethyl diallyl ammonium chloride) (PDMDAAC) as the stabilizer. At the optimal reaction conditions, the relative molecular weight of the CPAM dispersion wa...

  20. Intermediate view synthesis from stereoscopic images

    Institute of Scientific and Technical Information of China (English)

    Lü Chaohui; An Ping; Zhang Zhaoyang

    2005-01-01

    A new method is proposed for synthesizing intermediate views from a pair of stereoscopic images. In order to synthesize high-quality intermediate views, the block matching method together with a simplified multi-window technique and dynamic programming is used in the process of disparity estimation. Then occlusion detection is performed to locate occluded regions and their disparities are compensated. After the projecton of the left-to-right and right-to-left disparities onto the intermediate image, intermediate view is synthesized considering occluded regions. Experimental results show that our synthesis method can obtain intermediate views with higher quality.

  1. Theory of Square-Wave Voltammetry of Two-Electron Reduction with the Adsorption of Intermediate

    OpenAIRE

    Milivoj Lovrić; Šebojka Komorsky-Lovrić

    2012-01-01

    Thermodynamically unstable intermediate of fast and reversible two-electron electrode reaction can be stabilized by the adsorption to the electrode surface. In square-wave voltammetry of this reaction mechanism, the split response may appear if the electrode surface is not completely covered by the adsorbed intermediate. The dependence of the difference between the net peak potentials of the prepeak and postpeak on the square-wave frequency is analyzed theoretically. This relationship can be ...

  2. Beyond interfacial anion/cation pairing: The role of Cu(I) coordination chemistry in additive-controlled copper plating

    International Nuclear Information System (INIS)

    Highlights: ► We study synergistic and antagonistic ensemble effects of various polymeric suppressor additives and MPS relevant for copper electroplating. ► Type-I suppressors (e.g. PEGs) show a purely antagonistic interaction with MPS. ► Type-II suppressors (e.g. PEIs) show a purely synergistic interaction with MPS. ► Hybrid suppressors (e.g. Imep) reveal both synergistic and antagonistic effects depending on the MPS concentration. ► We identify a combination of Cu(I) coordination chemistry and an inner salt formation as key to the understanding of the suppressing mode of polymeric leveler additives. - Abstract: This study reinvestigates the electrochemical characteristics of three different suppressor additives that are used in context of industrial copper plating (Damascene, Through-Silicon-Via). It is the particular aim of this contribution to further substantiate our recently introduced classification scheme of suppressor chemistries that relies on their antagonistic and synergistic interplay with MPS (mercaptopropane sulfonic acid/sulfonate). The latter appears as intermediate species in the course of copper electrodeposition in the presence of SPS (bis-(sodium-sulfopropyl)-disulfide). Both the linear sweep voltammetry and potential transient experiments reveal a purely antagonistic interaction between PAG (polyalkylene glycol) based suppressor ensembles and the SPS (MPS precursor) which is rationalized in terms of the coordinative dissolution of a hyper-branched PAG-Cu(I)-Cl coordination network by the MPS. Such purely antagonistic suppressor/MPS interplay is our criterion for a so-called type-I suppressor. A purely synergistic suppressor/MPS interaction is observed for the PEI (polyethylene-imine) which can be considered as a prototypical type-II suppressor. Beyond classical interfacial anion/cation pairing the partly protonated, poly-cationic PEI is capable to form MPS-stabilized Cu(I) adducts. Their suppressing effect relies on an in situ hyper

  3. Cation-cation interactions, magnetic communication and reactivity of the pentavalent uraniumion [U(NR)2]+

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Liam P [Los Alamos National Laboratory; Schelter, Eric J [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Gsula, Robyn L [NON LANL; Scott, Brian L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Kiplinger, Jacqueline L [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory

    2009-01-01

    The dimeric bis(imido) uranium complex [{l_brace}U(NtBu)2(I)(tBu2bpy){r_brace}2] (see picture; U green, N blue, I red) has cation-cation interactions between [U(NR)2]+ ions. This f1-f1 system also displays f orbital communication between uranium(V) centers at low temperatures, and can be oxidized to generate uranium(VI) bis(imido) complexes.

  4. Intermediate inflation from rainbow gravity

    CERN Document Server

    Barrow, John D

    2013-01-01

    It is possible to dualize theories based on deformed dispersion relations and Einstein gravity so as to map them into theories with trivial dispersion relations and rainbow gravity. This often leads to "dual inflation" without the usual breaking of the strong energy condition. We identify the dispersion relations in the original frame which map into "intermediate" inflationary models. These turn out to be particularly simple: power-laws modulated by powers of a logarithm. The fluctuations predicted by these scenarios are near, but not exactly scale-invariant, with a red running spectral index. These dispersion relations deserve further study within the context of quantum gravity and the phenomenon of dimensional reduction in the ultraviolet.

  5. Intermediate Jacobians of moduli spaces

    CERN Document Server

    Arapura, D; Arapura, Donu; Sastry, Pramathanath

    1996-01-01

    Let $SU_X(n,L)$ be the moduli space of rank n semistable vector bundles with fixed determinant L on a smooth projective genus g curve X. Let $SU_X^s(n,L)$ denote the open subset parametrizing stable bundles. We show that if g>3 and n > 1, then the mixed Hodge structure on $H^3(SU_X^s(n, L))$ is pure of type ${(1,2),(2,1)}$ and it carries a natural polarization such that the associated polarized intermediate Jacobian is isomorphic J(X). This is new when deg L and n are not coprime. As a corollary, we obtain a Torelli theorem that says roughly that $SU_X^s(n,L)$ (or $SU_X(n,L)$) determines X. This complements or refines earlier results of Balaji, Kouvidakis-Pantev, Mumford-Newstead, Narasimhan-Ramanan, and Tyurin.

  6. Cationic modified nucleic acids for use in DNA hairpins and parallel triplexes

    DEFF Research Database (Denmark)

    Bomholt, Niels; Filichev, Vyacheslav V; Pedersen, Erik Bjerregaard

    2011-01-01

    Non-nucleosidic DNA monomers comprising partially protonated amines at low pH have been designed and synthesized. The modifications were incorporated into DNA oligonucleotides via standard DNA phosphoramidite synthesis. The ability of cationic modifications to stabilize palindromic DNA hairpins and...... parallel triplexes were evaluated using gel electrophoresis, circular dichroism and thermal denaturation measurements. The non-nucleosidic modifications were found to increase the thermal stability of palindromic hairpins at pH 8.0 as compared with a nucleosidic tetraloop (TCTC). Incorporation of...

  7. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    K Saravanan; S Govindarajan

    2002-02-01

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae (N2H5)2M(dip)2.H2O (where, M =Ca, Sr, Ba or Pb and = 0, 2, 4 and 3 respectively and dip = dipicolinate), N2H5Bi(dip)2.3H2O and (N2H5)3Bi(dip)3.4H2O have been prepared and characterized by physico-chemical techniques. The infrared spectra of the complexes reveal the presence of tridentate dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements show that the mono, di and trihydrazinium complexes behave as 1:1, 2:1 and 3:1 electrolytes respectively, in aqueous solution. Thermal decomposition studies show that these compounds lose water followed by endothermic decomposition of hydrazine to give respective metal hydrogendipicolinate intermediates, which further decompose exothermically to the final product of either metal carbonates (Ca, Sr, Ba and Pb) or metal oxycarbonates (Bi). The coordination numbers around the metal ions differ from compound to compound. The various coordination numbers exhibited by these metals are six (Ca), seven (Ba), eight (Sr) and nine (Pb and Bi). In all the complexes the above coordination number is attained by tridentate dipicolinate dianions and water molecules. The X-ray diffraction patterns of these compounds differ from one another suggesting that they are not isomorphous.

  8. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Science.gov (United States)

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2009-09-01

    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  9. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Zou Weiwei

    2009-01-01

    Full Text Available Abstract The purpose of the present work was to formulate and evaluate cationic poly(lactic acid-poly(ethylene glycol (PLA-PEG nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95% could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  10. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  11. Cation distribution and mixing thermodynamics in Fe/Ni thiospinels

    Science.gov (United States)

    Haider, Saima; Grau-Crespo, Ricardo; Devey, Antony J.; de Leeuw, Nora H.

    2012-07-01

    The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe, Ni)S clusters present in biological enzymes has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospinels (Fe1-xNix)3S4, using a combination of density functional theory (DFT) calculations and Monte Carlo simulations. We find that the equilibrium distribution of the cations deviates significantly from a random distribution: at low Ni concentrations, Ni dopants are preferably located in octahedral sites, while at higher Ni concentrations the tetrahedral sites become much more favourable. The thermodynamic mixing behaviour between greigite and polydymite (Ni3S4) is dominated by the stability field of violarite (FeNi2S4), for which the mixing enthalpy exhibits a deep negative minimum. The analysis of the free energy of mixing shows that Ni doping of greigite is very unstable with respect to the formation of a separate violarite phase. The calculated variation of the cubic cell parameter with composition is found to be non-linear, exhibiting significant deviation from Vegard’s law, but in agreement with experiment.

  12. Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae.

    Science.gov (United States)

    Govorunova, Elena G; Sineshchekov, Oleg A; Spudich, John L

    2016-06-01

    Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes. PMID:27233115

  13. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  14. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  15. Cation Permeability in Soybean Aleurone Layer

    OpenAIRE

    Noda, Hiroko; Fukuda, Mitsuru

    1998-01-01

    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  16. Low cation coordination in oxide melts

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrie [State University of New York, Stony Brook; Benmore, Chris J [Argonne National Laboratory (ANL); Du, Jincheng [University of North Texas; Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Tumber, Sonia [Materials Development, Inc., Evanston, IL; Parise, John B [Stony Brook University (SUNY)

    2014-01-01

    The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  17. Low Cation Coordination in Oxide Melts

    Science.gov (United States)

    Skinner, L. B.; Benmore, C. J.; Weber, J. K. R.; Du, J.; Neuefeind, J.; Tumber, S. K.; Parise, J. B.

    2014-04-01

    The complete set of partial pair distribution functions for a rare earth oxide liquid are measured by combining aerodynamic levitation, neutron and x-ray diffraction on Y2O3, and Ho2O3 melts at 2870 K. The average Y-O (or Ho-O) coordination of these isomorphic melts is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2O3 (or Ho2O3). Investigation of La2O3, ZrO2, and Al2O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation-oxygen coordination. These measurements suggest a general trend towards lower coordination compared to their crystalline counterparts. It is found that the coordination drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations, such as SiO2. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  18. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna

    2010-10-01

    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  19. Corrosion behavior of construction materials for intermediate temperature steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf;

    2013-01-01

    Different corrosion resistant stainless steels, nickel-based alloys, pure nickel, Ta-coated stainless steel (AISI 316L), niobium, platinum and gold rods were evaluated as possible materials for use in the intermediate temperature (200-400 °C) acidic water electrolysers. The corrosion resistance...... resistance and the anodic and cathodic limits were for the first time found for the electrolyte. Nickel, niobium, Inconel®625, Hastelloy®C-276 and Ta-coated stainless steel (AISI 316L) demonstrated high corrosion stability and can be recommended as construction materials for bipolar plates. © (2013) Trans...

  20. FINANCIAL INTERMEDIATION, ENTREPRENEURSHIP AND ECONOMIC GROWTH

    OpenAIRE

    Wenli Cheng

    2007-01-01

    This paper presents a simple general equilibrium model of financial intermediation, entrepreneurship and economic growth. In this model, the role of financial intermediation is to pool savings and to lend the pooled funds to an entrepreneur, who in turn invests the funds in a new production technology. The adoption of the new production technology improves individual real income. Thus financial intermediation promotes economic growth through affecting individuals’ saving behaviour and enabl...

  1. How should Financial Intermediation Services be Taxed?

    OpenAIRE

    Lockwood, Ben

    2010-01-01

    This paper considers the optimal taxation of savings intermediation and payment services in a dynamic general equilibrium setting, when the government can also use consumption and income taxes. When payment services are used in strict proportion to final consumption, and the cost of intermediation services is fixed and the same across firms, the optimal taxes are generally indeterminate. But, when firms differ exogenously in the cost of intermediation services, the tax on savings intermediati...

  2. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  3. The isolable cation radical of disilene: synthesis, characterization, and a reversible one-electron redox system.

    Science.gov (United States)

    Inoue, Shigeyoshi; Ichinohe, Masaaki; Sekiguchi, Akira

    2008-05-14

    The highly twisted tetrakis(di-tert-butylmethylsilyl)disilene 1 was treated with Ph3C+.BAr4- (BAr4-: TPFPB = tetrakis(pentafluorophenyl)borate) in toluene, producing disilene cation radical 3 upon one-electron oxidation. Cation radical 3 was isolated in the form of its borate salt as extremely air- and moisture-sensitive red-brown crystals. The molecular structure of 3 was established by X-ray crystallography, which showed a highly twisted structure (twisting angle of 64.9 degrees) along the central Si-Si bond with a bond length of 2.307(2) A, which is 2.1% elongated relative to that of 1. The cation radical is stabilized by sigma-pi hyperconjugation by the four tBu2MeSi groups attached to the two central sp2-Si atoms. An electron paramagnetic resonance (EPR) study of the hyperfine coupling constants (hfcc) of the 29Si nuclei indicates delocalization of the spin over the central two Si atoms. A reversible one-electron redox system between disilene, cation radical, and anion radical is also reported.

  4. Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface

    Energy Technology Data Exchange (ETDEWEB)

    Sankara Rama Krishnan, P. S.; Munroe, Paul; Nagarajan, V. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Morozovska, Anna N.; Eliseev, Eugene A. [Institute of Physics, Institute of Material Sciences, NAS of Ukraine, 03028 Kiev (Ukraine); Ramasse, Quentin M.; Kepaptsoglou, Demie [SuperSTEM laboratory, SciTech Daresbury, Daresbury WA4 4AD (United Kingdom); Liang, Wen-I.; Chu, Ying-Hao [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2014-02-07

    Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ∼2 nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions and depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.

  5. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane. PMID:25954916

  6. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    Science.gov (United States)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  7. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  8. Amino acid preference against beta sheet through allowing backbone hydration enabled by the presence of cation

    CERN Document Server

    Sharley, John N

    2016-01-01

    It is known that steric blocking by peptide sidechains of hydrogen bonding, HB, between water and peptide groups, PGs, in beta sheets accords with an amino acid intrinsic beta sheet preference. The present observations with Quantum Molecular Dynamics, QMD, simulation with quantum mechanical treatment of every water molecule solvating a beta sheet that would be transient in nature suggest that this steric blocking is not applicable in a hydrophobic region unless a cation is present, so that the amino acid beta sheet preference due to this steric blocking is only effective in the presence of a cation. We observed backbone hydration in a polyalanine and to a lesser extent polyvaline alpha helix without a cation being present, but a cation could increase the strength of these HBs. Parallel beta sheets have a greater tendency than antiparallel beta sheets of equivalent small size to retain regular structure in solvated QMD, and a 4 strand 4 inter-PG HB chain parallel beta sheet was used. Stability was reinforced b...

  9. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  10. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems

    Science.gov (United States)

    Wedig, Anja; Luebben, Michael; Cho, Deok-Yong; Moors, Marco; Skaja, Katharina; Rana, Vikas; Hasegawa, Tsuyoshi; Adepalli, Kiran K.; Yildiz, Bilge; Waser, Rainer; Valov, Ilia

    2016-01-01

    A detailed understanding of the resistive switching mechanisms that operate in redox-based resistive random-access memories (ReRAM) is key to controlling these memristive devices and formulating appropriate design rules. Based on distinct fundamental switching mechanisms, two types of ReRAM have emerged: electrochemical metallization memories, in which the mobile species is thought to be metal cations, and valence change memories, in which the mobile species is thought to be oxygen anions (or positively charged oxygen vacancies). Here we show, using scanning tunnelling microscopy and supported by potentiodynamic current-voltage measurements, that in three typical valence change memory materials (TaOx, HfOx and TiOx) the host metal cations are mobile in films of 2 nm thickness. The cations can form metallic filaments and participate in the resistive switching process, illustrating that there is a bridge between the electrochemical metallization mechanism and the valence change mechanism. Reset/Set operations are, we suggest, driven by oxidation (passivation) and reduction reactions. For the Ta/Ta2O5 system, a rutile-type TaO2 film is believed to mediate switching, and we show that devices can be switched from a valence change mode to an electrochemical metallization mode by introducing an intermediate layer of amorphous carbon.

  11. Electron transfer-induced four-membered cyclic intermediate formation: Olefin cross-coupling vs. olefin cross-metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Yohei [Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509 (Japan); Chiba, Kazuhiro, E-mail: chiba@cc.tuat.ac.j [Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509 (Japan)

    2011-01-01

    An electron transfer-induced four-membered cyclic intermediate, formed between a radical cation of an enol ether and an unactivated olefin, played a key role in the pathway toward either cross-coupling or cross-metathesis. The presence of an alkoxy group on the phenyl ring of the olefin entirely determined the synthetic outcome of the reaction, which mirrored the efficiency of the intramolecular electron transfer.

  12. Electrolytes For Intermediate Temperature Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Rękas M.

    2015-06-01

    Full Text Available Solid electrolytes for construction of the intermediate-temperature solid oxide fuel cells, IT-SOFC, have been reviewed. Yttrium stabilized tetragonal zirconia polycrystals, YTZP, as a potential electrolyte of IT-SOFC have been highlighted. The experimental results involving structural, microstructural, electrical properties based on our own studies were presented. In order to study aluminum diffusion in YTZP, aluminum oxide was deposited on the surface of 3 mol.% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP. The samples were annealed at temperatures from 1523 to 1773 K. Diffusion profiles of Al in the form of mean concentration vs. depth in B-type kinetic region were investigated by secondary ion mass spectroscopy (SIMS. Both the lattice (DB and grain boundary (DGB diffusion were determined.

  13. Complexation of the sodium cation with sodium ionophore III: Experimental and theoretical study

    Science.gov (United States)

    Makrlík, Emanuel; Kvíčala, Jaroslav; Vaňura, Petr

    2014-06-01

    By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Na+(aq) + A-(aq) + 1(nb) ⇄ 1·Na+(nb) + A-(nb) occurring in the two-phase water - nitrobenzene system (A- = picrate, 1 = sodium ionophore III; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (1·Na+, A-) = 1.5 ± 0.1. Further, the stability constant of the 1·Na+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Na+) = 6.7 ± 0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the nonhydrated 1·Na+ and hydrated 1·Na+·2H2O cationic complex species were derived. In both of these complexes, the “central” cation Na+ is bound by four bonding interactions to the corresponding four oxygen atoms of the parent ligand 1. Besides, in the case of 1·Na+·2H2O complex, the considered hydrated structure is stabilized by two water molecules bound to the “central” sodium cation.

  14. Chabazite: stable cation-exchanger in hyper alkaline concrete pore water.

    Science.gov (United States)

    Van Tendeloo, Leen; Wangermez, Wauter; Kurttepeli, Mert; de Blochouse, Benny; Bals, Sara; Van Tendeloo, Gustaaf; Martens, Johan A; Maes, André; Kirschhock, Christine E A; Breynaert, Eric

    2015-02-17

    To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K(+) and Na(+) cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs(+) cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.

  15. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  16. Some Intermediate-Level Violin Concertos.

    Science.gov (United States)

    Abramson, Michael

    1997-01-01

    Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…

  17. Intermediate energy nuclear data for applications

    International Nuclear Information System (INIS)

    A comprehensive review of the data needs for various applications was performed by the participants of the meeting. The status of compilation and evaluation of the needed data in the intermediate energy range of incident particles was discussed. The following broad application areas were identified and considered by the participants: intermediate energy nuclear data needed for accelerators; intermediate energy nuclear data needed for space applications; intermediate energy nuclear data for medical applications. The role of nuclear model calculations in data evaluations in this energy range was considered. The possibilities of existing model codes were considered from the point of view of reliability, accuracy, cost of computer time, availability to specialists in the Member States. The Meeting presentations were divided into the following three sessions: Nuclear data needs in the intermediate energy range (6 papers), Progress of nuclear data computations and evaluations in the intermediate energy range (6 papers) and Progress of experimental data measurements in the intermediate energy range. A separate abstract was prepared for each paper. The ways of further improvement of the status of nuclear data in the intermediate energy range were discussed and the results of these discussions can be found in the conclusions and recommendations of this meeting. Refs, figs and tabs

  18. Air Conditioning. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  19. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  20. 19 CFR 122.84 - Intermediate airport.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Intermediate airport. 122.84 Section 122.84... Intermediate airport. (a) Application. The provisions of this section apply at any U.S. airport to which an... aircraft arrives at the next airport, the aircraft commander or agent shall make entry by filing the:...

  1. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  2. Ionic liquids based on S-alkylthiolanium cations and TFSI anion as potential electrolytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuanQi; YANG Li; FANG ShaoHua; PENG ChengXin; LUO HongJun

    2009-01-01

    New ionic liquids based on S-alkylthiolanium cations with TFSI anions were synthesized and charac-terized.The physical and electrochemical properties,including melting point,thermal stability,solubil-ity,viscosity,conductivity and electrochemical window,were reported.Relation between these proper-ties and the structure of the cations was discussed.In this series,T4TFSI and T5TFSI have melting points below -60℃,and their conductivities are 2.10 mS/cm and 1.46 mS/cm;their electrochemical windows are 4.1 V and 4.5 V at room temperature.These cyclic alkylthiolanium-based ionic liquids are promising as novel electrolytes in various electrochemical devices,especially under low temperature condition.

  3. Flocculation performance of a cationic biopolymer derived from a cellulosic source in mild aqueous solution.

    Science.gov (United States)

    Liimatainen, Henrikki; Sirviö, Juho; Sundman, Ola; Visanko, Miikka; Hormi, Osmo; Niinimäki, Jouko

    2011-10-01

    The flocculation behavior of cationic, quaternary ammonium groups containing cellulosic biopolymers, CDACs, synthesized by cationizing dialdehyde cellulose in mild aqueous solution was studied in a kaolin suspension. In particular, the role of CDAC dosage and solution pH, NaCl concentration, and temperature were clarified. In addition, the initial apparent charge densities (CDs), particle sizes, ζ-potential, and stability of CDs were determined. CDACs possessed a high flocculation activity in neutral and acidic solutions, but a significant decrease was observed in alkaline solutions (pH >9). This was also seen as a decline in the apparent CD and particle size of the CDACs in alkaline conditions. The measurements also indicated that the apparent CD decreased to a constant level of 3 mmol/g in aqueous solutions. However, no notable decrease in flocculation performance was obtained after several days of storage. Moreover, the variation of NaCl concentration and temperature did not affect the flocculation activity. PMID:21862324

  4. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

  5. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum. PMID:27177274

  6. Interactions of cationic trimeric, gemini and monomeric surfactants with trianionic curcumin in aqueous solution.

    Science.gov (United States)

    Wang, Meina; Wu, Chunxian; Tang, Yongqiang; Fan, Yaxun; Han, Yuchun; Wang, Yilin

    2014-05-21

    Interactions of trianionic curcumin (Cur(3-)) with a series of cationic surfactants, monomeric surfactant dodecyl trimethylammonium bromide (DTAB), dimeric surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12) and trimeric surfactant tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD), have been investigated in aqueous solution of pH 13.0. Surface tension and spectral measurements indicate that the cationic surfactants display a similar surfactant concentration dependent interaction process with Cur(3-), involving three interaction stages. At first the three cationic surfactants electrostatically bind on Cur(3-) to form the surfactant-Cur(3-) complex. Then the bound and unbound cationic surfactants with Cur(3-) aggregate into surfactant-Cur(3-) mixed micelles through hydrophobic interactions above the critical micelle concentration of the surfactants (CMCC) in the presence of Cur(3-). Finally excess unbound surfactants self-assemble into micelles like those without Cur(3-). For all the three surfactants, the addition of Cur(3-) only decreases the critical micelle concentration of 12-6-12 but does not affect the critical micelle concentration of DTAB and DTAD. As the oligomeric degree of surfactants increases, the intermolecular interaction of the cationic surfactants with Cur(3-) increases and the surfactant amount needed for Cur(3-) encapsulation decreases. Compared with 12-6-12, either the weaker interaction of DTAB with Cur(3-) or stronger interaction of DTAD with Cur(3-) limits the stability or solubility of Cur(3-) in surfactant micelles. Therefore, gemini surfactant 12-6-12 is the best choice to effectively suppress Cur(3-) degradation at very low concentrations. Isothermal titration microcalorimetry, surface tension and (1)H NMR results reveal that 12-6-12 and Cur(3-) form a (12-6-12)2-Cur(3-) complex and start to form micelles at extremely decreased concentrations, where either 12-6-12 or Cur(3-) works as a bridge

  7. CHARACTERISTICS OF AKD EMULSION PREPARED BY CATIONIC STARCH WITH WELL-DEFINED STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Y.S. Chew; H. Xiao; G. Peng; J. C. Roberts; K. Nurmi; K. Sundberg

    2004-01-01

    Alkyl ketene dimers (AKD) have been used in the papermaking industry as reactive internal sizing agents for more than 30 years. AKD emulsions are normally stabilised by cationic starch. The advantages and disadvantages of the emulsions prepared in this way have been well documented. However, the influence of factors such as electrolytes, polyelectrolytes oligomers and pH on AKD emulsion stability has not been addressed. Polyelectrolyte oligomers often arise as impurities in cationic starch or as by-products during the cationisation of starches. The key objectives of this work have been to use starches purified by dialysis and precipitation to study (a)emulsion stabilising properties, (b) factor affecting emulsion characterisation and (c) the adsorption behaviour on AKD particles.Size exclusion chromatography (SEC) and intrinsic viscosity measurements were performed to evaluate molecular weight and MW distribution of cationic starches. NMR and Elemental analysis were conducted to characterise the degree of substitution (DS), and electrophoresis mobility was used to measure the surface charge characteristics of the emulsion particles.Within the experimental concentration ranges, the amount of the cationic starch adsorbed on the AKD particle surfaces has been shown to increase proportionally with the addition level but a high proportion remained unabsorbed. Molecular weight and charge density of cationic starch have also been observed and shown to be important. The zeta-potential of the emulsion particles was strongly dependent on the concentrations of the electrolytes added as well as pH. Excessive electrolytes and extreme pH conditions tended to reduce the zeta potential of the AKD particles.

  8. Hybrid simulations of intermediate shocks - Coplanar and noncoplanar solutions. [of space plasma flow

    Science.gov (United States)

    Karimabadi, H.; Omidi, N.

    1992-01-01

    A hybrid code is used to investigate the kinetic structure and stability of subfast intermediate shocks (IS) formed dynamically by the interaction between a flowing plasma and a stationary piston. Results of the kinetic simulation of noncoplanar ISs are compared with predictions of the MHD theory. The relevance of the results of the study to observations of the magnetopause is discussed.

  9. Targeting the S1 and S3 subsite of trypsin with unnatural cationic amino acids generates antimicrobial peptides with potential for oral administration.

    Science.gov (United States)

    Karstad, Rasmus; Isaksen, Geir; Wynendaele, Evelien; Guttormsen, Yngve; De Spiegeleer, Bart; Brandsdal, Bjørn-Olav; Svendsen, John Sigurd; Svenson, Johan

    2012-07-26

    This study investigates how the S1 and S3 site of trypsin can be challenged with cationic amino acid analogues to yield active antimicrobial peptides with stability toward tryptic degradation. It is shown that unnatural analogues can be incorporated to generate stable peptides with maintained bioactivity to allow for a potential oral uptake. Selected peptides were studied using isothermal calorimetry and computational methods. Both stable and unstable peptides were found to bind stoichiometrically to trypsin with dissociation constants ranging 2-60 μM, suggesting several different binding modes. The stability of selected peptides was analyzed in whole organ extracts and the incorporation of homoarginine and 2-amino-(3-guanidino)propanoic acid resulted in a 14- and 50-fold increase in duodenal stability. In addition, a 40- and 70-fold increase in stomach stability is also reported. Overall, these results illustrate how the incorporation of cationic side chains can be employed to generate bioactive peptides with significant systemic stability.

  10. Structure of a low-population binding intermediate in protein-RNA recognition

    Science.gov (United States)

    Bardaro, Michael F.; Aprile, Francesco A.; Varani, Gabriele; Vendruscolo, Michele

    2016-01-01

    The interaction of the HIV-1 protein transactivator of transcription (Tat) and its cognate transactivation response element (TAR) RNA transactivates viral transcription and represents a paradigm for the widespread occurrence of conformational rearrangements in protein-RNA recognition. Although the structures of free and bound forms of TAR are well characterized, the conformations of the intermediates in the binding process are still unknown. By determining the free energy landscape of the complex using NMR residual dipolar couplings in replica-averaged metadynamics simulations, we observe two low-population intermediates. We then rationally design two mutants, one in the protein and another in the RNA, that weaken specific nonnative interactions that stabilize one of the intermediates. By using surface plasmon resonance, we show that these mutations lower the release rate of Tat, as predicted. These results identify the structure of an intermediate for RNA-protein binding and illustrate a general strategy to achieve this goal with high resolution. PMID:27286828

  11. Ionothermal synthesis and electrochemical properties of a selenidostannate containing the mixed cations of Na+ and enH+

    Science.gov (United States)

    Du, Cheng-Feng; Li, Jian-Rong; Shen, Nan-Nan; Huang, Xiao-Ying

    2016-06-01

    In this report, by taking advantages of the competitive and synergistic effects of mixed-cations under the ionothermal conditions, a novel selenidostannate compound containing the mixed cations, namely (enH)3Na[Sn3Se7]2·1.5Me2NH·1.5H2O (1, en=ethylenediamine, Me2NH=dimethylamine) was obtained in the presence of the ionic liquid (IL) [DAMS]I (4-N,N-Dimethylamino-4‧-N‧-methylstilbazolium iodide) with a bulky and more structurally rigid organic cation as the main solvent and en as the auxiliary solvent. The compound features anionic [Sn3Se7]n2n- layers that are interconnected by sodium ions to form a three-dimensional (3D) structure. The syntheses, structure, thermal, optical and electrochemical properties of 1 were investigated. 1 showed good thermal stability and a Na+ ion storage property without capacity fading over 150 cycles.

  12. Influence of the substitution of {beta}-cyclodextrins by cationic groups on the complexation of organic anions

    Energy Technology Data Exchange (ETDEWEB)

    Hbaieb, S. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia)], E-mail: Souhairabouchaira@yahoo.fr; Kalfat, R. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia); Chevalier, Y. [Laboratoire d' Automatique et de Genie des Procedes (LAGEP), UMR 5007 CNRS-Universite Claude Bernard Lyon 1, 69622 Villeurbanne (France)], E-mail: chevalier@lagep.univ-lyon1.fr; Amdouni, N. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia); Parrot-Lopez, H. [Institut de Chimie et Biochimie Moleculaires et Supramoleculaires (ICBMS), UMR 5246 CNRS-Universite Claude Bernard Lyon 1, 69622 Villeurbanne (France)], E-mail: helene.parrot@univ-lyon1.fr

    2008-07-01

    The inclusion complexation of the organic anion, dansyl-acid, by cationic derivatives of {beta}-cyclodextrin has been investigated. A series of cationic {beta}-cyclodextrins with various positive charge has been synthesized by selective functionalization of the primary face of {beta}-cyclodextrin with amino groups. The complexes were of the 1:1 stoichiometry; the stability constants (K{sub 11}) have been evaluated from UV-Vis measurements by application of the Benesi-Hildebrand equation. The presence of amino groups increased the complexation ability. {beta}-cyclodextrin fully substituted at the primary face with amino groups showed the strongest inclusion binding ability towards the dansyl-acid guest. The enhanced complexation for anions was ascribed to the cationic amino groups. A simple thermodynamic model of the electrostatic contribution to the complexation is presented.

  13. Influence of 3‧-3‧ inversion of polarity site within d(TGGGGT) on inter quartet cation binding

    Science.gov (United States)

    Šket, Primož; Korbar, Tjaša; Plavec, Janez

    2014-10-01

    Stability, dynamics and function of nucleic acids are affected by nature of cations that are involved in interaction with specific functionalities. Introduction of inversion of polarity sites represents a very useful and chemically accessible backbone modification, which can alter the binding affinity of cations. NMR study on cation binding between G-quartets in tetramolecular G-quadruplex adopted by d(5‧TGG3‧-3‧GGT5‧) with 3‧-3‧ inversion of polarity sites in the middle of G-tract showed existence of two different G-quadruplex forms with all strands in parallel orientation, where all guanine residues adopt anti conformation around glycosidic bonds in the presence of 15NH4+ ions. In one of the forms all three binding sites are equally populated, while in the second form the binding site next to the inversion of polarity site is not fully populated by 15NH4+ ions.

  14. PREAPARATION OF CATIONIC LATEXES OF POLY(STYRENE-CO-BUTYL ACRYLATE) AND THEIR PROPERTIES EVOLUTION IN LATEX DILUTION

    Institute of Scientific and Technical Information of China (English)

    Dong Zou; Xiu-fen Li; Xiao-li Zhu; Xiang-zheng Kong

    2012-01-01

    Cationic latexes were prepared through emulsion copolymerization of styrene (St) and butyl acrylate (BA) with a cationic surfactant,cetyl trimethyl ammonium bromide (CTAB).Latex properties,including particle size,size distribution,ζ potential,surface tension and monomer conversion,were determined for latexes prepared with different CTAB amounts.Evolution of these properties during emulsion polymerization was followed in order to understand the mechanism of the particles formation.Results showed that both particle size and ζpotential were function of polymerization time and latex solids.Parallel emulsion polymerizations with cationic,anionic charged initiator and charge-free initiators were also carried out,the latex properties were determined at different polymerization time.All these results were attentively interpreted based on the mechanisms of emulsion polymerization,surfactant adsorption and latex particle stabilization.

  15. Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates.

    Science.gov (United States)

    Motlagh, Hesam N; Toptygin, Dmitri; Kaiser, Christian M; Hilser, Vincent J

    2016-03-29

    Single-molecule force spectroscopy has emerged as a powerful tool for studying the folding of biological macromolecules. Mechanical manipulation has revealed a wealth of mechanistic information on transient and intermediate states. To date, the majority of state assignment of intermediates has relied on empirical demarcation. However, performing such experiments in the presence of different osmolytes provides an alternative approach that reports on the structural properties of intermediates. Here, we analyze the folding and unfolding of T4 lysozyme with optical tweezers under a chemo-mechanical perturbation by adding osmolytes. We find that two unrelated protective osmolytes, sorbitol and trimethylamine-n-oxide, function by marginally decelerating unfolding rates and specifically modulating early events in the folding process, stabilizing formation of an on-pathway intermediate. The chemo-mechanical perturbation provides access to two independent metrics of the relevant states during folding trajectories, the contour length, and the solvent-accessible surface area. We demonstrate that the dependence of the population of the intermediate in different osmolytes, in conjunction with its measured contour length, provides the ability to discriminate between potential structural models of intermediate states. Our study represents a general strategy that may be employed in the structural modeling of equilibrium intermediate states observed in single-molecule experiments. PMID:27028638

  16. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  17. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  18. Radical cations of aromatic selenium compounds: role of Se···X nonbonding interactions.

    Science.gov (United States)

    Singh, Beena G; Thomas, Elizabeth; Sawant, Shilpa N; Takahashi, Kohei; Dedachi, Kenchi; Iwaoka, Michio; Priyadarsini, K Indira

    2013-09-26

    Selenium centered radical cations in aliphatic selenium compounds are stabilized by formation of two-center-three electron (2c-3e) hemi bonds either with nearby heteroatoms forming monomer radicals or with selenium atoms of the parent molecules forming dimer radicals. Such radicals in aromatic selenium compounds would generally be stabilized as monomers by the delocalization of the spin density along the aromatic ring. To test the assumption if aromatic selenides having Se···X nonbonding interactions can show different types of radical cations, we have performed pulse radiolysis studies of three structurally related aromatic selenium compounds and the results have been substantiated with cyclic voltammetry and quantum chemical calculations. The three aromatic selenium compounds have functional groups like -CH2N(CH3)2 (1), -CH2OH (2), and -CH3 (3) at ortho position to the -SeCH3 moiety. The energy of Se···X nonbonding interactions (E(nb)) for these compounds is in the order 1 (Se···N) > 2 (Se···O) > 3 (Se···H). Radical cations, 1(•+), 2(•+) and 3(•+) were produced by the one-electron oxidation of 1, 2 and 3 by radiolytically generated (•)OH and Br2(•-) radicals. Results on transient spectra, lifetime, and secondary reactions of 1(•+), 2(•+), and 3(•+) indicated that 1(•+) shows a significantly different absorption spectrum, longer lifetime, and less oxidizing power compared to those of 2(•+) or 3(•+). Quantum chemical calculations suggested that 1(•+) is stabilized by the formation of a 2c-3e bond between Se and N atoms, whereas 2(•+) and 3(•+) acquire stability through the delocalization of the spin density on the aromatic ring. These results provide evidence for the first time that stronger nonbonding interactions between Se···N in the ground state, facilitate the formation of stabilized radical cations, which can significantly influence the redox chemistry and the biological activity of aromatic selenium compounds.

  19. Cation control of energetics on dye-sensitized nanocrystalline TiO2 for solar cells

    Science.gov (United States)

    Stux, Arnold M.

    Regenerative solar cells based on nanocrystalline TiO2 (anatase) and the dye Ru(deeb)(bpy)2(PF6)2, where deeb is 4,4'-(CO2CH2CH3)2-2,2 '-bipyridine and bpy is 2,2'-bipyridine, have increased efficiency when in the presence of a high concentration of cations with a large charge-to-radius ratio. Concentration-dependent photoluminescence (PL) quenching and increased quantum yield for interfacial charge separation have been explored for mono- and divalent cations by absorbance, time-resolved and steady-state PL. Cation adsorption stabilizes TiO2 acceptor states resulting in energetically favorable electron transfer from the dye into the semiconductor conduction band. Quenching of the PL of excited states is reversible. A new luminescence approach for sensing alkali and alkaline earth metal cations utilizes the surface-adsorption/desorption induced energetic shifts of a semiconductor conduction band to alter the electron transfer quenching efficiency of a photoluminescent dye such as Ru(deeb)(bpy)2(PF 6)2 anchored to TiO2 nanoparticles. This approach yields intensity, lifetime, and wavelength-ratiometric calcium ion sensors that are sensitive to 5 x 10-4 M concentrations. In situ photoluminescence of a regenerative solar cell has been demonstrated as a probe of injection and efficiencies. The smaller the alkali cation, the higher the photocurrent and the more quenched the photoluminescence. The extent of quenching in 0.1 M iodide/0.01 M iodine electrolytes was 10-fold with LiI and 3-fold with NaI. A millimolar threshold concentration is observed for Li+ at which point a red shift in absorbance and photoluminescence spectra concomitant with significant static and dynamic quenching occurs. For Na+, the threshold concentration for observable red shift is more than an order of magnitude higher than for Li+. Cation adsorption was also observed on planar TiO2 surfaces in the absence of dye. The flat band potentials of single crystal TiO 2 (rutile) with cations in propylene

  20. Language in use intermediate : classroom book

    CERN Document Server

    Doff, Adrian

    1995-01-01

    ach of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  1. Language in use intermediate : teacher's book

    CERN Document Server

    Doff, Adrian

    1998-01-01

    Each of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  2. Influence of interlayer cations on organic intercalation of montmorillonite.

    Science.gov (United States)

    Wu, Limei; Liao, Libing; Lv, Guocheng

    2015-09-15

    The influence of the types of interlayer cations on organic intercalation of montmorillonite (Mt) was studied in this paper. The distribution of Na(+), K(+), Mg(2+), Ca(2+) and Fe(3+) in montmorillonite interlayer, their interaction with structure layers and the effect of interlayer cations on the basal spacing of Mt, the amount of binding water for different interlayer cations and the binding force between them were investigated systematically. 1-Hexadecy1-3-methylimidazolium chloride monohydrate (C16mimCl) was intercalated into montmorillonites with different interlayer cations. The influence of interlayer cations on organic intercalation was investigated. Molecular dynamics (MD) modeling was used to speculate the interlayer microstructures of the organically intercalated Mt with different interlayer cations. These simulations help to predict the microstructure of organo-Mt and guide their relevant engineering applications. PMID:26001131

  3. Non-bonding interactions and non-covalent delocalization effects play a critical role in the relative stability of group 12 complexes arising from interaction of diethanoldithiocarbamate with the cations of transition metals Zn(II), Cd(II), and Hg(II): a theoretical study.

    Science.gov (United States)

    Bahrami, Homayoon; Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-07-01

    The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1-C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7-C2-S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1-C2-S7 and along S7-C2-S8 in the ligand. The π-electron flow or resonance along N1-C2-S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II) < Cd(II) < Hg(II) for the aromaticity of the quasi-rings. Finally, by ignoring van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand, the relative stability of the complexes was changed as follows:[Formula: see text] Graphical Abstract Huge electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex.

  4. Bespoke cationic nano-objects via RAFT aqueous dispersion polymerisation

    OpenAIRE

    Williams, M.; Penfold, NJW; Lovett, JR; Warren, NJ; Douglas, CWI; Doroshenko, N; Verstraete, P; Smets, J; Armes, SP

    2016-01-01

    A range of cationic diblock copolymer nanoparticles are synthesised via polymerisation-induced self-assembly (PISA) using a RAFT aqueous dispersion polymerisation formulation. The cationic character of these nanoparticles can be systematically varied by utilising a binary mixture of two macro-CTAs, namely non-ionic poly(glycerol monomethacrylate) (PGMA) and cationic poly[2-(methacryloyloxy)ethyl]trimethylammonium chloride (PQDMA), with poly(2-hydroxypropyl methacrylate) (PHPMA) being selected...

  5. Development of Recombinant Cationic Polymers for Gene Therapy Research

    OpenAIRE

    Canine, Brenda F.; Hatefi, Arash

    2010-01-01

    Cationic polymers created through recombinant DNA technology have the potential to fill a void in the area of gene delivery. The recombinant cationic polymers to be discussed here are amino acid based polymers synthesized in E.coli with the purpose to not only address the major barriers to efficient gene delivery but offer safety, biodegradability, targetability and cost-effectiveness. This review helps the readers to get a better understanding about the evolution of recombinant cationic poly...

  6. Ensuring Stability

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    "Stable"will be a key word for China’s economy in 2012.That’s the beat set at the annual Central Economic Work Conference held in Beijing on December 12-14,which reviewed this year’s development and mapped out plans for the next year.Policymakers at the conference decided to keep macroeconomic policies stable,seek a stable and relatively fast economic growth,stabilize consumer prices and maintain social stability in 2012.On the basis of stability,the government will transform the development model,deepen reform and improve people’s livelihood.

  7. Against Stabilization

    Directory of Open Access Journals (Sweden)

    Roger Mac Ginty

    2012-11-01

    Full Text Available This is a polemic against the concept and practice of stabilization as practiced by leading states from the global north in peace support interventions. It is not an argument against stability. Instead, it depicts stabilization as an essentially conservative doctrine that runs counter to its stated aims of enhancing local participation and legitimacy. It is an agenda of control that privileges notions of assimilation with international (western standards and mainstreams the military into peace-support operations. As a result, the value of peace is undercut.

  8. Physical Mechanisms for Earthquakes at Intermediate Depths

    Science.gov (United States)

    Green, H. W.; Green, H. W.

    2001-12-01

    Conventional brittle shear failure it is strongly inhibited by pressure because it relies on local tensile failure. In contrast, plastic flow processes are thermally activated, making them sensitive functions of temperature, but their pressure dependence is only moderate. As a consequence, in Earth, faulting by unassisted brittle failure is probably restricted to depths less than ~ 30 km because the rocks flow at lower stresses than they fracture. To enable faulting at greater depths, mineral reactions must occur that generate a fluid or fluid-like solid that is much weaker than the parent assemblage. Although a variety of plastic instabilities have been and continue to be proposed to explain earthquakes at depth, dehydration embrittlement remains the only experimentally verified faulting mechanism consistent with the pressures and compositions existing at depths of 50-300km within subducting lithosphere. However, low pressure hydrous phases potentially abundant in subducting lithosphere (e.g. chlorite and antigorite) exhibit a temperature maximum in their stability, implying that the bulk volume change at depths of more than 70-100 km. becomes negative, thereby raising questions about mechanical instability upon dehydration. Further, it is now well-accepted that intermediate-depth earthquakes occur within the descending slab (double seismic zones present in several slabs dramatically demonstrate this fact), in conflict with the maximum depth of 10-12 km accepted for hydration of the lithosphere at oceanic spreading centers. Thus, on the one hand these earthquakes may be evidence that hydrous phases exist deep within subducting slabs but on the other hand, a mechanism for hydration to such depths is not known. One possibility is that large earthquakes outboard of trenches break the surface and allow hydration of the fault zone that can later dehydrate to yield earthquakes at depth, but no mechanism is known for pumping H2O into such fault zones to depths of tens of

  9. Non-bonding interactions and non-covalent delocalization effects play a critical role in the relative stability of group 12 complexes arising from interaction of diethanoldithiocarbamate with the cations of transition metals Zn(II), Cd(II), and Hg(II): a theoretical study.

    Science.gov (United States)

    Bahrami, Homayoon; Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-07-01

    The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1-C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7-C2-S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1-C2-S7 and along S7-C2-S8 in the ligand. The π-electron flow or resonance along N1-C2-S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II) electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex. PMID:27299888

  10. MHD stability analysis of diagnostic optimized configuration shots in JET

    Energy Technology Data Exchange (ETDEWEB)

    Saarelma, S [Helsinki University of Technology, Euratom-TEKES Association, FIN-02015 HUT (Finland); Parail, V [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Andrew, Y [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Luna, E de la [Associacion EURATOM-CIEMAT para Fusion, Avenida Complutense 22, E-28040 Madrid (Spain); Kallenbach, A [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Kempenaars, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Korotkov, A [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Loarte, A [EFDA, CSU-Garching, Garching (Germany); Loennroth, J [Helsinki University of Technology, Euratom-TEKES Association, FIN-02015 HUT (Finland); Monier-Garbet, P [Association EURATOM-CEA, CEA Cadarache, DRFC, 13108, Saint-Paul-Lez-Durance (France); Stober, J [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Suttrop, W [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2005-05-01

    The plasma edge MHD stability is analysed for several JET discharges in the diagnostic optimized configuration. The stability analysis of Type I ELMy plasmas shows how after an edge localized mode (ELM) crash the plasma edge is deep in the stable region against low- to intermediate-n peeling-ballooning modes. As the pressure gradient steepens and the edge current builds up, the plasma reaches the low- to intermediate-n peeling-ballooning mode stability boundary just before the ELM crash. Increasing the plasma fuelling by gas puffing makes the second stability access against high-n ballooning modes narrower until it closes completely and the ELMs change from Type I to Type III. Reducing the plasma heating has a similar effect. Increasing the safety factor at the plasma edge improves the stability against low- to intermediate-n modes allowing steeper pressure gradients to develop before an ELM crash.

  11. Cationic and PEGylated Amphiphilic Cyclodextrins: Co-Formulation Opportunities for Neuronal Sirna Delivery.

    Science.gov (United States)

    O'Mahony, Aoife M; Ogier, Julien; Darcy, Raphael; Cryan, John F; O'Driscoll, Caitriona M

    2013-01-01

    Optimising non-viral vectors for neuronal siRNA delivery presents a significant challenge. Here, we investigate a co-formulation, consisting of two amphiphilic cyclodextrins (CDs), one cationic and the other PEGylated, which were blended together for siRNA delivery to a neuronal cell culture model. Co-formulated CD-siRNA complexes were characterised in terms of size, charge and morphology. Stability in salt and serum was also examined. Uptake was determined by flow cytometry and toxicity was measured by MTT assay. Knockdown of a luciferase reporter gene was used as a measure of gene silencing efficiency. Incorporation of a PEGylated CD in the formulation had significant effects on the physical and biological properties of CD.siRNA complexes. Co-formulated complexes exhibited a lower surface charge and greater stability in a high salt environment. However, the inclusion of the PEGylated CD also dramatically reduced gene silencing efficiency due to its effects on neuronal uptake. The co-formulation strategy for cationic and PEGylated CDs improved the stability of the CD.siRNA delivery systems, although knockdown efficiency was impaired. Future work will focus on the addition of targeting ligands to the co-formulated complexes to restore transfection capabilities. PMID:23805220

  12. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    The characteristics of directional spread parameters at intermediate water depth are investigated based on a cosine power '2s' directional spreading model. This is based on wave measurements carried out using a Datawell directional waverider buoy...

  13. Intermediate/Advanced Research Design and Statistics

    Science.gov (United States)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  14. Bursts of intermediate ions in atmospheric air

    Science.gov (United States)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  15. The second national audit of intermediate care.

    Science.gov (United States)

    Young, John; Gladman, John R F; Forsyth, Duncan R; Holditch, Claire

    2015-03-01

    Intermediate care services have developed internationally to expedite discharge from hospital and to provide an alternative to an emergency hospital admission. Inconsistencies in the evidence base and under-developed governance structures led to concerns about the care quality, outcomes and provision of intermediate care in the NHS. The National Audit of Intermediate Care was therefore established by an interdisciplinary group. The second national audit reported in 2013 and included crisis response teams, home-based and bed-based services in approximately a half of the NHS. The main findings were evidence of weak local strategic planning, considerable under-provision, delays in accessing the services and lack of mental health involvement in care. There was a very high level of positive patient experience reported across all types of intermediate care, though reported involvement with care decisions was less satisfactory.

  16. On financial equilibrium with intermediation costs

    DEFF Research Database (Denmark)

    Markeprand, Tobias Ejnar

    2008-01-01

    This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium correspond......This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium...... correspondence. Finally, we prove that when intermediation costs approach zero, unbounded volume of asset trades is a necessary and sufficient condition, provided that, there is no financial equilibrium without intermediation costs....

  17. Optimizing delivery systems for cationic biopolymers: competitive interactions of cationic polylysine with anionic κ-carrageenan and pectin.

    Science.gov (United States)

    Lopez-Pena, Cynthia Lyliam; McClements, David Julian

    2014-06-15

    Polylysine is a cationic biopolymer with a strong antimicrobial activity against a wide range of microorganisms, however, its functional performance is influenced by its interactions with anionic biopolymers. We examined the stability of polylysine-pectin complexes in the presence of carrageenan, and vice versa. Polylysine-pectin or polylysine-carrageenan complexes were formed at mass ratios of 1:0 to 1:32 (pH 3.5), and then micro-electrophoresis, turbidity, microscopy, and isothermal titration calorimetry (ITC) were used to characterise them. Solutions containing polylysine-pectin complexes were slightly turbid and relatively stable to aggregation at high mass ratios, whereas those containing polylysine-carrageenan complexes were turbid and unstable to aggregation and precipitation. Pectin did not strongly interact with polylysine-carrageenan complexes, whereas carrageenan displaced pectin from polylysine-pectin complexes, which was attributed to differences in electrostatic attraction between polylysine, carrageenan, and pectin. These results have important implications for the design of effective antimicrobial delivery systems for foods and beverages.

  18. Some Aspects of Intermediate mass black holes

    OpenAIRE

    Sivaram, C; Arun, Kenath

    2007-01-01

    There is a lot of current astrophysical evidence and interest in intermediate mass black holes, ranging from a few hundred to several thousand solar masses. The active galaxy M82 and the globular cluster in M31, for example, are known to host such objects. Here we discuss several aspects of intermediate mass black holes such as their expected luminosity, spectral nature of radiation, associated jets, etc. We also discuss possible scenarios for their formation including the effects of dynamica...

  19. Has Banks’ Financial Intermediation Improved in Russia?

    OpenAIRE

    Fungachova, Z.; Solanko, L.

    2010-01-01

    The aim of this paper is to analyze the increasing importance of banks in the Russian economy over the period following the financial crisis of 1998. We use several measures to assess the role of banks in domestic financial intermediation in Russia. The traditional macro-level view is complemented by the analysis of sectoral financial flows as well as by insights from micro-level studies. All of these confirm that banks are becoming increasingly important in financial intermediation. We find ...

  20. Financial intermediation and occupational choice in development

    OpenAIRE

    Erosa, Andrés

    2000-01-01

    This paper presents evidence that the spread between the marginal product of capital and the return on financial assets is mich higher in poor than in rich countries. A model with costly intermediation is developed. In this economy, individuals choose at each instant whether to work or to operate a technology. Entrepreneurs finance their business with their own savings and, if necessary, by borrowing from banks. I find that in this framework intermediation costs are not equivalent to a tax on...

  1. Firm. An intermediate language for compiler research

    OpenAIRE

    Beck, Michael; Boesler, Boris; Geiß, Rubino; Lindenmaier, Götz

    2005-01-01

    State of the art compiler intermediate representations incorporate SSA data dependencies in a graph based manner. We present the intermediate representation Firm, which extends the functional stores of Steensgard and introduces a novel representation of exceptions. Firm offers a high-level representation of the type hierarchy and object-oriented features, which makes it exceptional suitable for analysing and optimizing of strongly typed languages. The co...

  2. Effect of substrates and intermediate compounds on foaming in manure digestion systems

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Kougias, Panagiotis; Pacheco, F.;

    2012-01-01

    Manure contains several compounds that can potentially cause foaming during anaerobic digestion. Understanding the effect of substrates and intermediate compounds on foaming tendency and stability could facilitate strategies for foaming prevention and recovery of the process. In this study......, the effect of physicochemical properties of substrates and intermediate compounds on liquid properties such as surface tension, surfactant property, and hydrophobicity were investigated and compared with the effect on foaming tendency and foam stability. The results showed that there was no consistent...... potential to create foam in a manure digester. Moreover, high organic loading of lipids and protein, and high concentrations of acetic and butyric acids also showed a strong tendency to create foaming during anaerobic digestion. Due to their great ability to stabilize foam, high organic loadings of Na...

  3. Foams Stabilized by Tricationic Amphiphilic Surfactants

    OpenAIRE

    Heerschap, Seth; Marafino, John N.; McKenna, Kristin; Caran, Kevin L.; Feitosa, Klebert

    2015-01-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. Novel surfactant architectures with multi-cephalic and multi-tailed molecules have reportedly enhanced their anti-bacterial activity in connection with tail length and the nature of the head group, but their ability to produce and stabilize foam is mostly unknown. Here we report on experiments with tris-cationic, triple-headed, double- a...

  4. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Science.gov (United States)

    Pillai, C. K. S.; Sundaresan, Neethu; Radhakrishnan Pillai, M.; Thomas, T.; Thomas, T. J.

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physico-chemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li--DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  5. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Indian Academy of Sciences (India)

    C K S Pillai; Neethu Sundaresan; M Radhakrishnan Pillai; T Thomas; T J Thomas

    2005-10-01

    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  6. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    Science.gov (United States)

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers. PMID:27288092

  7. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  8. Univalent-cation-elicited acidification by yeasts.

    Science.gov (United States)

    Kotyk, A; Georghiou, G

    1994-08-01

    Addition of univalent cations to sugar-metabolizing Saccharomyces cerevisiae, Schizosaccharomyces pombe and Lodderomyces elongisporus brought about a powerful acidification of the external medium with rates up to nearly 20 nmol H+ per min per mg dry wt. in S. cerevisiae, over 15 nmol in S. pombe, and 4.7 nmol in L. elongisporus. These rates were as much as 20 times, 5.5 times and 10.3 times, respectively. higher than in the absence of K+. Use of galactose-induced cells, of H(+)-ATPase-deficient mutants and observations over the entire growth curve indicated that the K+ effect on H+ extrusion is not connected with the H(+)-ATPase function as such but rather depends on metabolic reactions producing ATP. The effect has apparently nothing to do with the electrical potential across the plasma membrane. PMID:7804140

  9. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  10. Capturing dynamic cation hopping in cubic pyrochlores

    Science.gov (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.

    2011-08-01

    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  11. Interaction of actinide cations with synthetic polyelectrolytes

    International Nuclear Information System (INIS)

    The binding of Am+3, Th+4 and UO2+2 to polymaleic acid, polyethylenemaleic acid and polymethylvinylethermaleic acid has been measured by a solvent extraction technique at 250C and either 0.02 or 0.10 M ionic strength. The solutions were buffered over a pH range such that the percent of carboxylate groups ionized ranged from 25 to 74%. The binding was described by two constants, β1 and β2, which were evaluated after correction for complexation of the actinide cations by acetate and hydrolysis. For comparable degrees of ionization, all three polyelectrolytes showed similar binding strengths. In general, these results indicated that the binding of actinides to these synthetic polyelectrolytes is basically similar to that of natural polyelectrolytes such as humic and fulvic acids. (orig.)

  12. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly

    2013-03-01

    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  13. A Balancing Act: Stability versus Reactivity of Mn(O) Complexes.

    Science.gov (United States)

    Neu, Heather M; Baglia, Regina A; Goldberg, David P

    2015-10-20

    A large class of heme and non-heme metalloenzymes utilize O2 or its derivatives (e.g., H2O2) to generate high-valent metal-oxo intermediates for performing challenging and selective oxidations. Due to their reactive nature, these intermediates are often short-lived and very difficult to characterize. Synthetic chemists have sought to prepare analogous metal-oxo complexes with ligands that impart enough stability to allow for their characterization and an examination of their inherent reactivity. The challenge in designing these molecules is to achieve a balance between their stability, which should allow for their in situ characterization or isolation, and their reactivity, in which they can still participate in interesting chemical transformations. This Account focuses on our recent efforts to generate and stabilize high-valent manganese-oxo porphyrinoid complexes and tune their reactivity in the oxidation of organic substrates. Dioxygen can be used to generate a high-valent Mn(V)(O) corrolazine (Mn(V)(O)(TBP8Cz)) by irradiation of Mn(III)(TBP8Cz) with visible light in the presence of a C-H substrate. Quantitative formation of the Mn(V)(O) complex occurs with concomitant selective hydroxylation of the benzylic substrate hexamethylbenzene. Addition of a strong H(+) donor converted this light/O2/substrate reaction from a stoichiometric to a catalytic process with modest turnovers. The addition of H(+) likely activates a transient Mn(V)(O) complex to achieve turnover, whereas in the absence of H(+), the Mn(V)(O) complex is an unreactive "dead-end" complex. Addition of anionic donors to the Mn(V)(O) complex also leads to enhanced reactivity, with a large increase in the rate of two-electron oxygen atom transfer (OAT) to thioether substrates. Spectroscopic characterization (Mn K-edge X-ray absorption and resonance Raman spectroscopies) revealed that the anionic donors (X(-)) bind to the Mn(V) ion to form six-coordinate [Mn(V)(O)(X)](-) complexes. An unusual "V

  14. Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Osigwe Esue

    Full Text Available BACKGROUND: Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K(+, Na(+, but is enhanced by divalent cations (Mg(2+, Ca(2+, suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution. CONCLUSIONS/SIGNIFICANCE: These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.

  15. Synthesis and Characterization of Yttrium Doped Nano-zirconia by a Cationic Surfactant-assisted Route

    Institute of Scientific and Technical Information of China (English)

    YU Jian-Chang; HU Shen-Wei

    2006-01-01

    Recently, more and more interest has been focused on zirconia for its unique characteristics. In this paper, via the preceding preparation technique, yttrium can be successfully incorporated into nano-zirconia by a cationic surfactant-assisted route. The methods of XRD, TEM, EDS, Uv-vis and N2 adsorption-desorption are adopted to characterize the synthesized samples. The results show that the yttrium has been successfully incorporated into the zirconia lattice, and the thermal stability of yttrium doped zirconia has been enhanced remarkably.

  16. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and metal cations and protons. A comprehensive overview over the properties of natural organic matter is given and experimental techniques are presented briefly. Two major concepts of modelling have been identified: discrete ligand models and continuous distribution model. Different modelling approaches like Discrete Ligand Models (s.s.), Random-Structure Model, Affinity Spectra, Statistical Distribution Models, Continuous Stability Function Models and surface sorption models and their advantages/disadvantages are discussed. (author)

  17. Refolding of Denatured/Reduced Lysozyme Using Weak-Cation Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Bo Lin GONG; Xin Du GENG

    2003-01-01

    Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent, sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.

  18. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  19. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)

    VIKASH DHINDHWAL; N SATHYAMURTHY

    2016-10-01

    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  20. Crystal structure of channelrhodopsin, a light-gated cation channel - all cations lead through the monomer.

    Science.gov (United States)

    Kato, Hideaki E; Nureki, Osamu

    2013-01-01

    Channelrhodopsin (ChR) is a light-gated cation channel derived from green algae. Since the inward flow of cations triggers the neuron firing, neurons expressing ChRs can be optically controlled even within freely moving mammals. Although ChR has been broadly applied to neuro-science research, little is known about its molecular mechanisms. We determined the crystal structure of chimeric ChR at 2.3 Å resolution and revealed its molecular architecture. The integration of structural, electrophysio-logical, and computational analyses provided insight into the molecular basis for the channel function of ChR, and paved the way for the principled design of ChR variants with novel properties. PMID:27493541

  1. Strontium isotopes provide clues for a process shift in base cation dynamics in young volcanic soils

    Science.gov (United States)

    Bingham, N.; Jackson, M. G.; Bookhagen, B.; Maher, K.; Chadwick, O.

    2015-12-01

    Despite advances in soil development theory based on studies of old soils or over long timescales, little is known about soil thresholds (dramatic changes in soil properties associated with only small shifts in external forcing factors) that might be expressed in young soils (less than 10 kyr). Therefore, we seek to understand infant soil development in a tropical environment through the sourcing of plant available base cations by measuring the strontium (Sr) isotopic composition of the soil exchange complex. Our sampling strategy spans soils in three different precipitation ranges (950-1060 mm, 1180-1210 mm, and 1450-1500) and an array of soil ages from 500 to 7500 years in the Kona region on the island of Hawaii. In Hawaiian soils, 87Sr/86Sr values are determined by a mixture of three components: a mantle-derived component from the lava (0.7034), a rainfall component (0.7093) and a component from continental dust (0.720). Elevation-controlled leaching intensity in the wettest localities produces a decline in the concentration of base cations supplied by basalt and a dilute resupply by rainfall. In the driest sites, where leaching intensity is dramatically reduced, there is a buildup of rainfall-derived extractable Sr in the soil over time. Slow rock weathering rates produce a small rock-derived cation input to the soil. Thus, Sr isotope signatures reflect both the input of rainfall-derived cations and rock-derived cations with values that fall between rainfall and basaltic signatures. Soils in the intermediate precipitation range have Sr isotopic signatures consistent with both the wet and dry trends; suggesting that they lie close to the critical precipitation amount that marks a shift between these two processes. For the Kona region, this transition seems to occur at 1200 mm /yr. In contrast to the clear-cut differentiation in strontium isotopes with precipitation shifts observed in older soils, patterns on these young soils in Kona are complicated by low soil

  2. Lithium ionophore VIII as an extraordinarily strong receptor for the trivalent europium cation

    Science.gov (United States)

    Makrlík, Emanuel; Novák, Vít; Vaňura, Petr

    2015-01-01

    On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Eu3+(aq) + 3A-(aq) + 1(nb) ⇆ 1.Eu3+(nb) + 3A‑(nb) occurring in the two-phase water-nitrobenzene system (A- = CF3SO-3; 1 = lithium ionophore VIII; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (1.Eu3+, 3A‑) = 2.5 ± 0.1. Furthermore, the extremely high stability constant of the 1.Eu3+ complex in nitrobenzene saturated with water was calculated: log βnb (1.Eu3+) = 15.6 ± 0.1. Finally, by using DFT calculations, the most probable structure of the cationic complex species 1.Eu3+ was derived. In the resulting complex, the 'central' cation Eu3+ is bound by six very strong bond interactions to the corresponding six oxygen atoms of the parent ligand 1. It is evident that this exceptionally effective receptor 1 for the Eu3+ cation could be considered as a potential extraction agent for nuclear waste treatment.

  3. Chapter 17 - Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery.

    Science.gov (United States)

    Podesta, Jennifer E; Kostarelos, Kostas

    2009-01-01

    RNA interference, the sequence-specific silencing of gene expression by introduction of short interfering RNA (siRNA) is a powerful tool that that the potential to act as a therapeutic agent and the advantage of decreasing toxic effects on normal tissue sometimes seen with conventional treatments i.e. small molecule inhibitors. Naked, unmodified siRNA is poorly taken up by cells and is subject to degradation when exposed to blood proteins during systemic administration. It has also been shown to produce non-specific immune response as well as having the potential to generate 'off-target' effects. Therefore there is a requirement for a delivery system to not only protect the siRNA and facilitate its uptake, but additionally to offer the potential for targeted delivery with an aim of exploiting the high specificity afforded by RNA interference. Cationic liposomes are the most studied, non-viral delivery system used for nucleic acid delivery. As such, the use of cationic liposomes is promising for siRNA for delivery. Furthermore, polyethylene glycol (PEG) can be incorporated into the liposome formulation to create sterically stabilized or 'stealth' liposomes. Addition of PEG can reduce recognition by the reticuloendothelial system (RES) thereby prolonging circulation time. Here we describe a methodology for the complexation of siRNA with cationic liposomes and PEGylated liposomes using two protocols: mixing and encapsulation. Moreover, the different formulations are compared head to head to demonstrate their efficacy for gene silencing.

  4. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    Science.gov (United States)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  5. DFT and ENDOR Study of Bixin Radical Cations and Neutral Radicals on Silica-Alumina.

    Science.gov (United States)

    Tay-Agbozo, Sefadzi S; Krzyaniak, Matthew D; Bowman, Michael K; Street, Shane; Kispert, Lowell D

    2015-06-18

    Bixin, a carotenoid found in annatto (Bixa orellana), is unique among natural carotenoids by being water-soluble. We stabilized free radicals from bixin on the surface of silica-alumina (Si-Al) and characterized them by pulsed electron-nuclear double resonance (ENDOR). DFT calculations of unpaired electron spin distribution for various bixin radicals predict the EPR hyperfine couplings. Least-square fitting of experimental ENDOR spectra by spectra calculated from DFT hyperfine couplings characterized the radicals trapped on Si-Al. DFT predicts that the trans bixin radical cation is more stable than the cis bixin radical cation by 1.26 kcal/mol. This small energy difference is consistent with the 26% trans and 23% cis radical cations in the ENDOR spectrum. The remainder of the ENDOR spectrum is due to several neutral radicals formed by loss of a H(+) ion from the 9, 9', 13, or 13' methyl group, a common occurrence in all water-insoluble carotenoids previously studied. Although carboxyl groups of bixin strongly affect its solubility relative to other natural carotenoids, they do not alter properties of its free radicals based on DFT calculations and EPR measurements which remain similar to typical water-insoluble carotenoids. PMID:25333911

  6. The sequence to hydrogenate coronene cations: A journey guided by magic numbers.

    Science.gov (United States)

    Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, Thomas

    2016-01-01

    The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2. PMID:26821925

  7. Experimental and theoretical study on interaction of the silver cation with nonactin

    Science.gov (United States)

    Makrlík, Emanuel; Vaňura, Petr

    2015-12-01

    From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium ? occurring in the two-phase water-nitrobenzene system (1 = nonactin, aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log Kex (Ag+, 1 ṡ Na+) = 0.6 ± 0.1. Furthermore, the stability constant of the 1 ṡ Ag+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb(1 ṡ Ag+) = 6.6 ± 0.2. Finally, employing quantum mechanical calculations, the most probable structure of the cationic complex species 1 ṡ Ag+ was derived. In the resulting complex, having a tennis-ball-seam conformation with the C2 symmetry, the 'central' cation Ag+ is bound by eight relatively strong bonding interactions to eight oxygen atoms of the parent nonactin ligand. The interaction energy of the considered 1 ṡ Ag+ complex was found to be -468.5 kJ/mol, confirming also the formation of this cationic species.

  8. Cationic lioposomes with folic acid as targeting ligand for gene delivery.

    Science.gov (United States)

    Cui, Shao-Hui; Zhi, De-Fu; Zhao, Yi-Nan; Chen, Hui-Ying; Meng, Yao; Zhang, Chuan-Min; Zhang, Shu-Biao

    2016-08-15

    In our previous Letter, we have carried out the synthesis of a novel DDCTMA cationic lipid which was formulated with DOPE for gene delivery. Herein, we used folic acid (FA) as targeting ligand and cholesterol (Chol) as helper lipid instead of DOPE for enhancing the stability of the liposomes. These liposomes were characterized by dynamic laser scattering (DLS), transmission electron microscopy (TEM) and agarose gel electrophoresis assays of pDNA binding affinity. The lipoplexes were prepared by using different weight ratios of DDCTMA/Chol (1:1, 2:1, 3:1, 4:1) liposomes and different concentrations of FA (50-200μg/mL) combining with pDNA. The transfection efficiencies of the lipoplexes were evaluated using pGFP-N2 and pGL3 plasmid DNA against NCI-H460 cells in vitro. Among them, the optimum gene transfection efficiency with DDCTMA/Chol (3:1)/FA (100μg/mL) was obtained. The results showed that FA could improve the gene transfection efficiencies of DDCTMA/Chol cationic liposome. Our results also convincingly demonstrated FA (100μg/mL)-coated DDCTMA/Chol (3:1) cationic liposome could serve as a promising candidate for the gene delivery. PMID:27426864

  9. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar;

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  10. Stable polyfluorinated cycloalkenyl cations and their NMR spectra

    International Nuclear Information System (INIS)

    New stable 1-methoxyperfluoro-2-ethylcyclobutenyl, 1-methoxyperfluoro-2-methylcyclo-pentenyl, and 1-methoxyperfluoro-2-ethylcyclohexenyl cations were obtained by the action of antimony pentafluoride on the corresponding olefins. The distribution of the charges in the investigated polyfluorinated cycloalkenyl cations was investigated by 13C NMR method

  11. Photodynamic Inactivation of Bacteria and Biofilms Using Cationic Bacteriochlorins

    Science.gov (United States)

    Meerovich, G. A.; Tiganova, I. G.; Makarova, E. A.; Meerovich, I. G.; Romanova Ju., M.; Tolordova, E. R.; Alekseeva, N. V.; Stepanova, T. V.; Yu, Koloskova; Luk'anets, E. A.; Krivospitskaya, N. V.; Sipailo, I. P.; Baikova, T. V.; Loschenov, V. B.; Gonchukov, S. A.

    2016-02-01

    This work is devoted to the study of two new synthetic bacteriochlorins with four and eight cationic substitutes as the photosensitizers in the photodynamic process. The spectral and antibacterial properties of these photosensitizers in saline solution were investigated. It is shown, that the aggregation ability decreases and the antibacterial efficiency grows as the cationic substitute number increases.

  12. Effects of metallic cations in the beryl flotation

    International Nuclear Information System (INIS)

    The beryl zeta potential in microelectrophoretic cell is studied in the presence of neutral electrolyte, cations of calcium, magnesium and iron. The petroleum sulfonate is used how collector in Hallimond tube. Hydroxy complex of metallic cations seems activate the ore and precipitates of colloidal metallic hidroxies seems lower him when added to the mixture. (M.A.C.)

  13. Application of remote sensing technique to site selection for low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Based on the relative criteria of selection of disposal site for low and intermediate level radioactive waste, the social-economic conditions, landform, morphologic properties, regional geological stability, hydrogeological and engineering geological characters of adjacent area of Anhui, Zhejiang and Jiangsu provinces were investigated. The geological interpretation of thematic mapper images, field reconnaissance and data analysis were conducted during the research work. The results show that three areas in the west part of Zhejiang Province were recommended as potential site for disposal of low and intermediate level radioactive waste. They are Bajiaotang area, Tiebanchong area and Changxing-Guangde-Anji nabes

  14. Theory of Square-Wave Voltammetry of Two-Electron Reduction with the Adsorption of Intermediate

    Directory of Open Access Journals (Sweden)

    Milivoj Lovric

    2012-01-01

    Full Text Available Thermodynamically unstable intermediate of fast and reversible two-electron electrode reaction can be stabilized by the adsorption to the electrode surface. In square-wave voltammetry of this reaction mechanism, the split response may appear if the electrode surface is not completely covered by the adsorbed intermediate. The dependence of the difference between the net peak potentials of the prepeak and postpeak on the square-wave frequency is analyzed theoretically. This relationship can be used for the estimation of adsorption constant.

  15. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR.

    Science.gov (United States)

    Surana, Parag; Das, Ranabir

    2016-08-01

    The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly-Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process. PMID:27111887

  16. Aqueous oxidation of sulfonamide antibiotics: aromatic nucleophilic substitution of an aniline radical cation.

    Science.gov (United States)

    Tentscher, Peter R; Eustis, Soren N; McNeill, Kristopher; Arey, J Samuel

    2013-08-19

    Sulfonamide antibiotics are an important class of organic micropollutants in the aquatic environment. For several, sulfur dioxide extrusion products have been previously reported upon photochemical or dark oxidation. Using quantum chemical modeling calculations and transient absorption spectroscopy, it is shown that single-electron oxidation from sulfadiazine produces the corresponding aniline radical cation. Density functional theory calculations indicate that this intermediate can exist in four protonation states. One species exhibits a low barrier for an intramolecular nucleophilic attack at the para position of the oxidized aniline ring, in which a pyrimidine nitrogen acts as a nucleophile. This attack can lead to a rearranged structure, which exhibits the same connectivity as the SO2 -extruded oxidation product that was previously observed in the aquatic environment and characterized by NMR spectroscopy. We report a detailed reaction mechanism for this intramolecular aromatic nucleophilic substitution, and we discuss the possibility of this reaction pathway for other sulfonamide drugs. PMID:23828254

  17. A useful methoxyvinyl cation equivalent: α-t-butyldimethylsilyl-α-methoxyacetaldehyde

    Science.gov (United States)

    McCune, Christopher D.; Beio, Matthew L.; Friest, Jacob A.; Ginotra, Sandeep; Berkowitz, David B.

    2015-01-01

    Described are the synthesis and application of α-t-butyldimethylsilyl-α-methoxyacetaldehyde as a formal methoxyvinyl cation equivalent. Addition of Grignard reagents to the title aldehyde, followed by treatment of the intermediate β-hydroxysilanes with KH, gives good yields of large Z-methoxyvinylated products. Assuming a Peterson-like elimination mechanism, one can infer that the Grignard addition proceeds with high syn selectivity. These results are consistent with a chelation control model involving coordination to the α-methoxy group in the title aldehyde rather than an alternative stereoelectronic Felkin-Anh-type model. It must be noted that a steric Felkin-Anh model also accounts for the observed stereochemistry. All told, the title reagent can be employed to efficiently append a Z-configured methoxyvinyl group to an appropriate R-M species, in two steps. PMID:26028786

  18. Theoretical study of partial oxidation of ethylene by vanadium trioxide cluster cation

    Institute of Scientific and Technical Information of China (English)

    WANG ZheChen; DING XunLei; MA YanPing; CAO Hai; WU XiaoNan; ZHAO YanXia; HE ShengGui

    2009-01-01

    Density functional theory (DFT) study of reaction between vanadium trioxide cluster cation (VO+3) and ethylene (C2H4) to yield VO+2 + CH3CHO (acetaldehyde) and VO2CH+2 + HCHO (formaldehyde) is carried out.Structures of all reactants,products,intermediates,and transition state in the reaction have been optimized and characterized.The results show unexpected barriers in the reaction due to the existence of a η2-O2 moiety in the ground state structure of VO+3.The initial reaction steps combining ethylene adsorption,C=C activation and O-O cleavage are proposed as rate limiting processes.Comparison of reactions of VO+3 + C2H4 with VO3 + C2H4 and VO+2 + C2H4 in the previous studies is made in detail.The results of this work may shed light on the understanding of C=C bond cleavage in related heterogeneous catalysis.

  19. HNS+ and HSN+ cations: Electronic states, spin-rovibronic spectroscopy with planetary and biological implications

    Science.gov (United States)

    Trabelsi, Tarek; Ben Yaghlane, Saida; Al Mogren, Muneerah Mogren; Francisco, Joseph S.; Hochlaf, Majdi

    2016-08-01

    Ab initio methods in conjunction with a large basis set are used to compute the potential energy surfaces of the 12 lowest electronic states of the HNS+ and HSN+ isomeric forms. These potentials are used in discussions of the metastability of these cations and plausible mechanisms for the H+/H + SN+/SN, S/S+ + NH+/NH, N/N+ + SH+/SH ion-molecule reactions. Interestingly, the low rovibrational levels of HSN+(12A″) and HNS+(12A″) electronically excited ions are predicted to be long-lived. Both ions are suggested to be a suitable candidate for light-sensitive NOṡ donor in vivo and as a possible marker for the detection of intermediates in nitrites + H2S reactions at the cellular level. The full spin rovibronic levels of HNS+ are presented, which may assist in the experimental identification of HNS+ and HSN+ ions and in elucidating their roles in astrophysical and biological media.

  20. Partially folded intermediates during trypsinogen denaturation

    Directory of Open Access Journals (Sweden)

    Martins N.F.

    1999-01-01

    Full Text Available The equilibrium unfolding of bovine trypsinogen was studied by circular dichroism, differential spectra and size exclusion HPLC. The change in free energy of denaturation was = 6.99 ± 1.40 kcal/mol for guanidine hydrochloride and = 6.37 ± 0.57 kcal/mol for urea. Satisfactory fits of equilibrium unfolding transitions required a three-state model involving an intermediate in addition to the native and unfolded forms. Size exclusion HPLC allowed the detection of an intermediate population of trypsinogen whose Stokes radii varied from 24.1 ± 0.4 Å to 26.0 ± 0.3 Å for 1.5 M and 2.5 M guanidine hydrochloride, respectively. During urea denaturation, the range of Stokes radii varied from 23.9 ± 0.3 Å to 25.7 ± 0.6 Å for 4.0 M and 6.0 M urea, respectively. Maximal intrinsic fluorescence was observed at about 3.8 M urea with 8-aniline-1-naphthalene sulfonate (ANS binding. These experimental data indicate that the unfolding of bovine trypsinogen is not a simple transition and suggest that the equilibrium intermediate population comprises one intermediate that may be characterized as a molten globule. To obtain further insight by studying intermediates representing different stages of unfolding, we hope to gain a better understanding of the complex interrelations between protein conformation and energetics.

  1. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  2. PARALLEL STABILIZATION

    Institute of Scientific and Technical Information of China (English)

    J.L.LIONS

    1999-01-01

    A new algorithm for the stabilization of (possibly turbulent, chaotic) distributed systems, governed by linear or non linear systems of equations is presented. The SPA (Stabilization Parallel Algorithm) is based on a systematic parallel decomposition of the problem (related to arbitrarily overlapping decomposition of domains) and on a penalty argument. SPA is presented here for the case of linear parabolic equations: with distrjbuted or boundary control. It extends to practically all linear and non linear evolution equations, as it will be presented in several other publications.

  3. Metal Phosphates as Intermediate Temperature Proton Conducting Electrolytes

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Q.F.; Pan, Chao;

    2012-01-01

    A series of metal phosphates were synthesized and screened as potential proton conductor electrolytes for fuel cells and electrolysers operational at intermediate temperatures. Among the selected, niobium and bismuth phosphates exhibited a proton conductivity of 10-2 and 10-7 S cm-1, respectively......, under the anhydrous atmosphere at 250 °C, showing close correlation with the presence of hydroxyl groups in the phosphate phases. At the water partial pressure of above 0.6 atm, both phosphates possessed a proton conductivity to a level of above 3 x 10-2 S cm-1. Reasonable stability of the proton...... conductivity was observed under either a constant low water partial pressure or under a humidity cycling test within a period of more than 80 hours....

  4. Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential.

    Science.gov (United States)

    Stapleford, Kenneth A; Coffey, Lark L; Lay, Sreyrath; Bordería, Antonio V; Duong, Veasna; Isakov, Ofer; Rozen-Gagnon, Kathryn; Arias-Goeta, Camilo; Blanc, Hervé; Beaucourt, Stéphanie; Haliloğlu, Türkan; Schmitt, Christine; Bonne, Isabelle; Ben-Tal, Nir; Shomron, Noam; Failloux, Anna-Bella; Buchy, Philippe; Vignuzzi, Marco

    2014-06-11

    The high replication and mutation rates of RNA viruses can result in the emergence of new epidemic variants. Thus, the ability to follow host-specific evolutionary trajectories of viruses is essential to predict and prevent epidemics. By studying the spatial and temporal evolution of chikungunya virus during natural transmission between mosquitoes and mammals, we have identified viral evolutionary intermediates prior to emergence. Analysis of virus populations at anatomical barriers revealed that the mosquito midgut and salivary gland pose population bottlenecks. By focusing on virus subpopulations in the saliva of multiple mosquito strains, we recapitulated the emergence of a recent epidemic strain of chikungunya and identified E1 glycoprotein mutations with potential to emerge in the future. These mutations confer fitness advantages in mosquito and mammalian hosts by altering virion stability and fusogenic activity. Thus, virus evolutionary trajectories can be predicted and studied in the short term before new variants displace currently circulating strains.

  5. Tuning Cationic Block Copolymer Micelle Size by pH and Ionic Strength.

    Science.gov (United States)

    Sprouse, Dustin; Jiang, Yaming; Laaser, Jennifer E; Lodge, Timothy P; Reineke, Theresa M

    2016-09-12

    The formation, morphology, and pH and ionic strength responses of cationic block copolymer micelles in aqueous solutions have been examined in detail to provide insight into the future development of cationic micelles for complexation with polyanions such as DNA. Diblock polymers composed of a hydrophilic/cationic block of N,N-dimethylaminoethyl methacrylate (DMAEMA) and a hydrophobic/nonionic block of n-butyl methacrylate (BMA) were synthesized [denoted as DMAEMA-b-BMA (X-Y), where X = DMAEMA molecular weight and Y = molecular weight of BMA in kDa]. Four variants were created with block molecular weights of 14-13, 14-23, 27-14, 27-29 kDa and low dispersities less than 1.10. The amphiphilic polymers self-assembled in aqueous conditions into core-shell micelles that ranged in size from 25-80 nm. These cationic micelles were extensively characterized in terms of size and net charge in different buffers over a wide range of ionic strength (0.02-1 M) and pH (5-10) conditions. The micelle core is kinetically trapped, and the corona contracts with increasing pH and ionic strength, consistent with previous work on micelles with glassy polystyrene cores, indicating that the corona properties are independent of the dynamics of the micelle core. The contraction and extension of the corona scales with solution ionic strength and charge fraction of the amine groups. The aggregation numbers of the micelles were obtained by static light scattering, and the Rg/Rh ratios are close to that of a hard sphere. The zeta potentials of the micelles were positive up to two pH units above the corona pKa, suggesting that applications relying on micelle charge for stability should be viable over a wide range of solution conditions. PMID:27487088

  6. VUV Photo-processing of PAH Cations: Quantitative Study on the Ionization versus Fragmentation Processes

    Science.gov (United States)

    Zhen, Junfeng; Rodriguez Castillo, Sarah; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-05-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ˜13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ˜18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  7. Preparation, characterization, and evaluation of antitumor effect of Brucea javanica oil cationic nanoemulsions.

    Science.gov (United States)

    Liu, Ting-Ting; Mu, Li-Qiu; Dai, Wei; Wang, Chuan-Bang; Liu, Xin-Yi; Xiang, Da-Xiong

    2016-01-01

    The purpose of this study was to prepare Brucea javanica oil cationic nanoemulsions (BJO-CN) with BJO as drug as well as oil phase and chitosan as cationic inducer, to explore the practical suitability of using cationic nanoemulsions for oral delivery of mixed oil, and to test its bioavailability and antitumor effect. BJO-CN was prepared by chitosan solution stirring method and then characterized physicochemically. The obtained BJO-CN had a spherical morphology with a positive zeta potential of 18.9 mV and an average particle size of 42.36 nm, showing high colloidal stability. The drug loading of BJO-CN was 91.83 mg·mL(-1), determined by high-performance liquid chromatography with precolumn derivatization. Pharmacokinetic studies revealed that, compared with BJO emulsion (BJO-E) (the dosage of BJO-CN and BJO-E was equal to 505 mg·kg(-1), calculated by oleic acid), BJO-CN exhibited a significant increase in the area under the plasma drug concentration-time curve over the period of 24 hours and relative bioavailability was 1.6-fold. Furthermore, the antitumor effect of BJO-CN in the orthotopic mouse model of lung cancer was evaluated by recording the median survival time and the weight of lung tissue with tumor, hematoxylin and eosin staining, and immunohistochemical technique. Results of anticancer experiments illustrated that, even though the administrated dosage in the BJO-CN group was half of that in the BJO-E group, BJO-CN exhibited similar antitumor effect to BJO-E. Moreover, BJO-CN had good synergistic effect in combination therapy with vinorelbine. These results suggested that cationic nanoemulsions are an effective and promising delivery system to enhance the oral bioavailability and anticancer effect of BJO. PMID:27330293

  8. Gramicidin tryptophans mediate formamidinium-induced channel stabilization.

    OpenAIRE

    Seoh, S A; Busath, D

    1995-01-01

    Compared with alkali metal cations, formamidinium ions stabilize the gramicidin A channel molecule in monoolein bilayers (Seoh and Busath, 1993a). A similar effect is observed with N-acetyl gramicidin channel molecules in spite of the modified forces at the dimeric junction (Seoh and Busath, 1993b). Here we use electrophysiological measurements with tryptophan-to-phenylalanine-substituted gramicidin analogs to show that the formamidinium-induced channel molecule stabilization is eliminated wh...

  9. Intermediate Coupling For Core-Level Excited States: Consequences For X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Sassi, Michel JPC; Rosso, Kevin M.

    2015-04-15

    The origin of the complex NEXAFS features of X-Ray Absorption, XAS, spectra in transition metal complexes is analyzed and interpreted in terms of the angular momentum coupling of the open shell electrons. Especially for excited configurations where a core-electron is promoted to an open valence shell, the angular momentum coupling is intermediate between the two limits of Russell- Saunders, RS, coupling where spin-orbit splitting of the electron shells is neglected and j-j coupling where this splitting is taken as dominant. The XAS intensities can be understood in terms of two factors: (1) The dipole selection rules that give the allowed excited RS multiplets and (2) The contributions of these allowed multiplets to the wavefunctions of the intermediate coupled levels. It is shown that the origin of the complex XAS spectra is due to the distribution of the RS allowed multiplets over several different intermediate coupled excited levels. The specific case that is analyzed is the L2,3 edge XAS of an Fe3+ cation, because this cation allows a focus on the angular momentum coupling to the exclusion of other effects; e.g., chemical bonding. Arguments are made that the properties identified for this atomic case are relevant for more complex materials. The analysis is based on the properties of fully relativistic, ab initio, many-body wavefunctions for the initial and final states of the XAS process. The wavefunction properties considered include the composition of the wavefunctions in terms of RS multiplets and the occupations of the spin-orbit split open shells; the latter vividly show whether the coupling is j-j or not.

  10. Outflow forces in intermediate mass star formation

    CERN Document Server

    van Kempen, T A; van Dishoeck, E F; Kristensen, L E; Belloche, A; Klaassen, P D; Leurini, S; Jose-Garcia, I San; Aykutalp, A; Choi, Y; Endo, A; Frieswijk, W; Harsono, D; Karska, A; Koumpia, E; van der Marel, N; Nagy, Z; Perez-Beaupuits, J P; Risacher, C; van Weeren, R J; Wyrowski, F; Yildiz, U A; Guesten, R; Boland, W; Baryshev, A

    2015-01-01

    Intermediate mass protostarsprovide a bridge between theories of low- and high-mass star formation. Emerging molecular outflows can be used to determine the influence of fragmentation and multiplicity on protostellar evolution through the correlation of outflow forces of intermediate mass protostars with the luminosity. The aim of this paper is to derive outflow forces from outflows of six intermediate mass protostellar regions and validate the apparent correlation between total luminosity and outflow force seen in earlier work, as well as remove uncertainties caused by different methodology. By comparing CO 6--5 observations obtained with APEX with non-LTE radiative transfer model predictions, optical depths, temperatures, densities of the gas of the molecular outflows are derived. Outflow forces, dynamical timescales and kinetic luminosities are subsequently calculated. Outflow parameters, including the forces, were derived for all sources. Temperatures in excess of 50 K were found for all flows, in line wi...

  11. MNE Entrepreneurial Capabilities at Intermediate Levels

    DEFF Research Database (Denmark)

    Hoenen, Anne K.; Nell, Phillip Christopher; Ambos, Björn

    2014-01-01

    and on the heterogeneous information that is generated through dissimilar markets within the region. Our study opens up for an interesting discussion of the independence of these mechanisms. In sum, we contribute to the understanding of the entrepreneurial role of intermediate units in general and RHQs in particular.......This study investigates the entrepreneurial capabilities of MNE units at intermediate geographical levels, between the local subsidiary level and global corporate headquarters. In our conceptual development, we build on the entrepreneurship and MNE embeddedness literature to explain how MNE units...... at intermediate geographical levels differ from local subsidiaries and global corporate headquarters, and why those differences are important. We illustrate our arguments using data on European regional headquarters (RHQs). We find that RHQs' entrepreneurial capabilities depend on their external embeddedness...

  12. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  13. A CATIONIC POLYACRYLAMIDE DISPERSION SYNTHESIS BY DISPERSION POLYMERIZATION IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Yufeng Wang

    2011-07-01

    Full Text Available A cationic polyacrylamide (CPAM dispersion, the copolymer of acrylamide (AM and acryloyloxyethyltrimethyl ammonium chloride (DAC, has been synthesized through dispersion polymerization in aqueous ammonium sulfate ((NH42SO4 solution. The polymerization was initiated by tert-butyl hydroperoxide (TBHP and ferrisulfas (FeSO4 using poly(dimethyl diallyl ammonium chloride (PDMDAAC as the stabilizer. At the optimal reaction conditions, the relative molecular weight of the CPAM dispersion was 4.2×106, its charge density was 2.2 mmol•g-1, its average particle size was 6.01 μm, and its stability and dissolvability were both excellent. The CPAM dispersion was characterized using Fourier-transform infrared (FTIR spectroscopy, nuclear magnetic resonance (NMR spectroscopy, and differential scanning calorimeter (DSC. Results indicated that the copolymerization was successful.

  14. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.;

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We the...... of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  15. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard

    2016-07-01

    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  16. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment.

    Science.gov (United States)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C; Anand, Atul; Cederkvist, Luise; Petersen, Nikolaj H T; Nylandsted, Jesper; Stenvang, Jan; Mellemgaard, Anders; Østerlind, Kell; Friis, Søren; Jäättelä, Marja

    2016-07-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy. PMID:27333030

  17. Therapeutic potential of cationic steroid antibacterials.

    Science.gov (United States)

    Salmi, Chanaz; Brunel, Jean M

    2007-08-01

    Antibiotics were one of the great health successes of the 20th century. Antibiotics, both naturally derived and synthetic, have resulted in huge decreases in both morbidity and mortality from bacterial infections. As a consequence, the 'antibiotic age' has changed public expectations about the results of infectious disease. However, this has led to high levels of inappropriate prescribing, where antibiotics may be administered to fulfil patient expectations rather than for clinical benefit. Along with unwise uses in agriculture and elsewhere, this has contributed to recent rises in numbers of antibiotic-resistant bacteria. As a result, many commentators have described this as the end of the antibiotic age and the term 'superbug' has entered the common vocabulary for multi-drug-resistant bacteria such as vancomycin-resistant Enterococcus, multi-drug-resistant Staphylococcus aureus and multi-drug-resistant Pseudomonas aeruginosa. In this context, an attractive approach for the development of antibacterial agents is the use of a new class of cationic steroidal compounds mimicking polymyxin activities. The permeabilization properties of these agents of the outer membranes of Gram-negative bacteria are reported in this review, as well as a discussion of literature results. PMID:17685865

  18. Stabilizing Movements

    DEFF Research Database (Denmark)

    Norbäck, Maria; Helin, Jenny; Raviola, Elena

    2014-01-01

    of turbulent times. Departing from a process perspective to organizational change and insights from Bakhtin's notion of ‘double-voicing’, which means that people borrow other people's words in their own talk, two main contributions are offered. First, we show how stability cannot be taken for granted...

  19. Before Stabilization

    DEFF Research Database (Denmark)

    Plesner, Ursula; Horst, Maja

    2013-01-01

    to the literature on the relationship between ICTs and organizing, but with a distinct focus on innovation communication and distributed innovation processes taking place before ICTs are stabilized, issues which cannot be captured by studies of diffusion and adaptation of new ICTs within single organizations....

  20. Macroeconomic stability

    DEFF Research Database (Denmark)

    Jespersen, Jesper

    2004-01-01

    It is demonstrated that full employment and sustainable development not necessarily are conflicting goals. On the other hand macroeconomic stability cannot be obtained without a deliberate labour sharing policy and a shift in the composition of private consumption away from traditional material...

  1. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide).

    Science.gov (United States)

    Shen, Hong; Hu, Xixue; Yang, Fei; Bei, Jianzhong; Wang, Shenguo

    2007-10-01

    Surface characteristics greatly influence attachment and growth of cells on biomaterials. Although polylactone-type biodegradable polymers have been widely used as scaffold materials for tissue engineering, lack of cell recognition sites, poor hydrophilicity and low surface energy lead to a bad cell affinity of the polymers, which limit the usage of polymers as scaffolds in tissue engineering. In the present study, surface of poly (L-lactide-co-glycolide) (PLGA) was modified by a method of combining oxygen plasma treatment with anchorage of cationized gelatin. Modification effect of the method was compared with other methods of oxygen plasma treatment, cationized gelatin or gelatin coating and combining oxygen plasma treatment with anchorage of gelatin. The change of surface property was compared by contact angles, surface energy, X-ray photoelectron spectra (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) measurement. The optimum oxygen pretreatment time determined by surface energy was 10 min when the power was 50 W and the oxygen pressure was 20 Pa. Analysis of the stability of gelatin and cationized gelatin anchored on PLGA by XPS, ATR-FTIR, contact angles and surface energy measurement indicated the cationized gelatin was more stable than gelatin. The result using mouse NIH 3T3 fibroblasts as model cells to evaluate cell affinity in vitro showed the cationized gelatin-anchored PLGA (OCG-PLGA) was more favorable for cell attachment and growth than oxygen plasma treated PLGA (O-PLGA) and gelatin-anchored PLGA (OG-PLGA). Moreover cell affinity of OCG-PLGA could match that of collagen-anchored PLGA (AC-PLGA). So the surface modification method combining oxygen plasma treatment with anchorage of cationized gelatin provides a universally effective way to enhance cell affinity of polylactone-type biodegradable polymers. PMID:17618682

  2. Riparian zone controls on base cation concentrations in boreal streams

    Directory of Open Access Journals (Sweden)

    J. L. J. Ledesma

    2013-01-01

    Full Text Available Forest riparian zones are a major in control of surface water quality. Base cation (BC concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  3. Riparian zone control on base cation concentration in boreal streams

    Directory of Open Access Journals (Sweden)

    J. L. J. Ledesma

    2013-06-01

    Full Text Available Riparian zones (RZ are a major factor controlling water chemistry in forest streams. Base cations' (BC concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.

  4. Governance-Default Risk Relationship and the Demand for Intermediated and Non-Intermediated Debt

    Directory of Open Access Journals (Sweden)

    Husam Aldamen

    2012-09-01

    Full Text Available This paper explores the impact of corporate governance on the demand for intermediated debt (asset finance, bank debt, non-bank private debt and non-intermediated debt (public debt in the Australian debt market. Relative to other countries the Australian debt market is characterised by higher proportions of intermediated or private debt with a lower inherent level of information asymmetry in that private lenders have greater access to financial information (Gray, Koh & Tong 2009. Our firm level, cross-sectional evidence suggests that higher corporate governance impacts demand for debt via the mitigation of default risk. However, this relationship is not uniform across all debt types. Intermediated debt such as bank and asset finance debt are more responsive to changes in governance-default risk relationship than non-bank and non-intermediated debt. The implication is that a firm’s demand for different debt types will reflect its governance-default risk profile.

  5. Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length

    Science.gov (United States)

    Liu, Libin; Wu, Xiwen; Li, Tianduo

    2014-03-01

    A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.

  6. Strain Manipulated Magnetic Properties in ZnO and GaN Induced by Cation Vacancy

    Science.gov (United States)

    Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang

    2016-07-01

    The effects of isotropic strains on the magnetic properties in ZnO and GaN induced by cation vacancies are comparatively investigated by density functional theory calculations. The magnetic moments and the couplings between vacancies in different charged states are calculated as a function of strains. The modulation of strain on the magnetic properties relies on the materials and the charge states of cation vacancies in them. As the occurrence of charge transfer in ZnO: V Zn under compression, the coupling between V_{{Zn}}0 is antiferromagnetic (AFM) and it could be stabilized by strains. Tensions can strengthen the ferromagnetic (FM) coupling between V_{{Zn}}0 but weaken that of V_{{Ga}}^{ - } . The neutral V Ga are always AFM coupling under strains from -6 to +6% and could be stabilized by compressions. The interactions between V_{{Ga}}^{ - } are always FM with ignorable variations under strains; however, the FM couplings between V_{{Ga}}^{2 - } could be strengthened by compressions. These varying trends of magnetic coupling under strains are interpreted by the band coupling models. Therefore, strain-engineering provides a route to manipulate and design high Curie temperature ferromagnetism derived and mediated by intrinsic defect for spintronic applications.

  7. Stearylamine-Containing Cationic Nanoemulsion as a Promising Carrier for Gene Delivery.

    Science.gov (United States)

    Silva, André L; Marcelino, Henrique R; Verissimo, Lourena M; Araujo, Ivonete B; Agnez-Lima, Lucymara F; do Egito, Eryvaldo S T

    2016-02-01

    The drawbacks related to the use of viral vectors in gene therapy have been stimulated the research in non-viral strategies such as cationic nanoemulsions. The aim of this work was to develop a stearylamine-containing nanoemulsion for gene therapy purpose. The formulation was chosen from a Pseudo-Ternary Phase Diagram and had its long-term stability assessed by Dynamic Light Scattering and Phase Analysis Light Scattering during 180 days at 4 degrees C, 25 degrees C and 40 degrees C. Besides, studies of sterilization and scale up of the product were conducted. It was demonstrated that the proposed system was stable up to 180 days when stored at 4 degrees C and could be sterilized by a 0.22 microm filter pore without changes on its characteristics. The scale up was possible by adjusting the volume to the sonication time. Because the nanoemulsion presented a droplet size smaller than 200 nm and a zeta potential higher than 30 mV, this system was able to correctly complex the plasmid model PIRES2-EGFP, as confirmed by the agarosis gel electrophoresis assay. The nanoemulsion toxicity evaluated over lung fetus human cells (MRC-5) was dose-dependent. However, it does not appear to be a limiting factor for further experiments aiming gene transfection. As a conclusion, stearylamine-containing cationic nanoemulsions can be used for gene therapy, since it presents suitable characteristics, stability and possibility of sterilization. PMID:27433584

  8. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K

    2016-01-01

    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  9. Cations bind only weakly to amides in aqueous solutions.

    Science.gov (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S

    2013-04-01

    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  10. Competitive Solvation of the Imidazolium Cation by Water and Methanol

    CERN Document Server

    Chaban, Vitaly

    2014-01-01

    Imidazolium-based ionic liquids are widely used in conjunction with molecular liquids for various applications. Solvation, miscibility and similar properties are of fundamental importance for successful implementation of theoretical schemes. This work reports competitive solvation of the 1,3-dimethylimidazolium cation by water and methanol. Employing molecular dynamics simulations powered by semiempirical Hamiltonian (electronic structure level of description), the local structure nearly imidazolium cation is described in terms of radial distribution functions. Although water and methanol are chemically similar, water appears systematically more successful in solvating the 1,3-dimethylimidazolium cation. This result fosters construction of future applications of the ternary ion-molecular systems.

  11. Pyridine radical cation and its fluorine substituted derivatives

    Science.gov (United States)

    Bondybey, V.E.; English, J.H.; Shiley, R.H.

    1982-01-01

    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  12. Modern Persian: Intermediate Level, Vol. 2.

    Science.gov (United States)

    Windfuhr, Gernot; And Others

    The second of three volumes of an intergrated course in intermediate Persian is presented. This volume encompasses material appropriate for students entering the second year of Persian studies who have strong preparation in elementary Persian. Verbal skills should be on a level which will allow comprehensive discussion of a topic using simple,…

  13. The GEOTRACES Intermediate Data Product 2014

    NARCIS (Netherlands)

    Mawji, Edward; Schlitzer, Reiner; Dodas, Elena Masferrer; Abadie, Cyril; Abouchami, Wafa; Anderson, Robert F.; Baars, Oliver; Bakker, Karel; Baskaran, Mark; Bates, Nicholas R.; Bluhm, Katrin; Bowie, Andrew; Bown, Johann; Boye, Marie; Boyle, Edward A.; Branellec, Pierre; Bruland, Kenneth W.; Brzezinski, Mark A.; Bucciarelli, Eva; Buesseler, Ken; Butler, Edward; Cai, Pinghe; Cardinal, Damien; Casciotti, Karen; Chaves, Joaquin; Cheng, Hai; Chever, Fanny; Church, Thomas M.; Colman, Albert S.; Conway, Tim M.; Croot, Peter L.; Cutter, Gregory A.; de Souza, Gregory F.; Dehairs, Frank; Deng, Feifei; Huong Thi Dieu, [Unknown; Dulaquais, Gabriel; Echegoyen-Sanz, Yolanda; Edwards, R. Lawrence; Fahrbach, Eberhard; Fitzsimmons, Jessica; Fleisher, Martin; Frank, Martin; Friedrich, Jana; Fripiat, Francois; Galer, Stephen J. G.; Gamo, Toshitaka; Solsona, Ester Garcia; Gerringa, Loes J. A.; Godoy, Jose Marcus; Gonzalez, Santiago; Grossteffan, Emilie; Hatta, Mariko; Hayes, Christopher T.; Heller, Maija Iris; Henderson, Gideon; Huang, Kuo-Fang; Jeandel, Catherine; Jenkins, William J.; John, Seth; Kenna, Timothy C.; Klunder, Maarten; Kretschmer, Sven; Kumamoto, Yuichiro; Laan, Patrick; Labatut, Marie; Lacan, Francois; Lam, Phoebe J.; Lannuzel, Delphine; le Moigne, Frederique; Lechtenfeld, Oliver J.; Lohan, Maeve C.; Lu, Yanbin; Masque, Pere; McClain, Charles R.; Measures, Christopher; Middag, Rob; Moffett, James; Navidad, Alicia; Nishioka, Jun; Noble, Abigail; Obata, Hajime; Ohnemus, Daniel C.; Owens, Stephanie; Planchon, Frederic; Pradoux, Catherine; Puigcorbe, Viena; Quay, Paul; Radic, Amandine; Rehkaemper, Mark; Remenyi, Tomas; Rijkenberg, Micha J. A.; Rintoul, Stephen; Robinson, Laura F.; Roeske, Tobias; Rosenberg, Mark; van der Loeff, Michiel Rutgers; Ryabenko, Evgenia; Saito, Mak A.; Roshan, Saeed; Salt, Lesley; Sarthou, Geraldine; Schauer, Ursula; Scott, Peter; Sedwick, Peter N.; Sha, Lijuan; Shiller, Alan M.; Sigman, Daniel M.; Smethie, William; Smith, Geoffrey J.; Sohrin, Yoshiki; Speich, Sabrina; Stichel, Torben; Stutsman, Johnny; Swift, James H.; Tagliabue, Alessandro; Thomas, Alexander; Tsunogai, Urumu; Twining, Benjamin S.; van Aken, Hendrik M.; van Heuven, Steven; van Ooijen, Jan; van Weerlee, Evaline; Venchiarutti, Celia; Voelker, Antje H. L.; Wake, Bronwyn; Warner, Mark J.; Woodward, E. Malcolm S.; Wu, Jingfeng; Wyatt, Neil; Yoshikawa, Hisayuki; Zheng, Xin-Yuan; Xue, Zichen; Zieringer, Moritz; Zimmer, Louise A.; de Baar, Henricus

    2015-01-01

    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace

  14. Using Drosophila for Studies of Intermediate Filaments.

    Science.gov (United States)

    Bohnekamp, Jens; Cryderman, Diane E; Thiemann, Dylan A; Magin, Thomas M; Wallrath, Lori L

    2016-01-01

    Drosophila melanogaster is a useful organism for determining protein function and modeling human disease. Drosophila offers a rapid generation time and an abundance of genomic resources and genetic tools. Conservation in protein structure, signaling pathways, and developmental processes make studies performed in Drosophila relevant to other species, including humans. Drosophila models have been generated for neurodegenerative diseases, muscular dystrophy, cancer, and many other disorders. Recently, intermediate filament protein diseases have been modeled in Drosophila. These models have revealed novel mechanisms of pathology, illuminated potential new routes of therapy, and make whole organism compound screens feasible. The goal of this chapter is to outline steps to study intermediate filament function and model intermediate filament-associated diseases in Drosophila. The steps are general and can be applied to study the function of almost any protein. The protocols outlined here are for both the novice and experienced Drosophila researcher, allowing the rich developmental and cell biology that Drosophila offers to be applied to studies of intermediate filaments.

  15. C and C* among intermediate rings

    NARCIS (Netherlands)

    J. Sack; S. Watson

    2013-01-01

    Given a completely regular Hausdorff space X, an intermediate ring A(X) is a ring of real valued continuous functions between C*(X) and C(X). We discuss two correspondences between ideals in A(X) and z-filters on X, both reviewing old results and introducing new results. One correspondence, ZA, exte

  16. Synthesis of the key intermediate of ramelteon

    Institute of Scientific and Technical Information of China (English)

    Shan Bao Yu; Hao Min Liu; Yu Luo; Wei Lu

    2011-01-01

    Asymmetric conjugated addition of allylcopper reagents derived from an allyl Grignard reagent and CuBr·Me2S to chiral α,β-unsaturated N-acyl oxazolidinones has been achieved. The synthetic procedure was applied to the preparation of the key intermediate of the novel nonbenzodiazepine hypnotic drug, ramelteon.

  17. What Should be Taught in Intermediate Macroeconomics?

    Science.gov (United States)

    de Araujo, Pedro; O'Sullivan, Roisin; Simpson, Nicole B.

    2013-01-01

    A lack of consensus remains on what should form the theoretical core of the undergraduate intermediate macroeconomic course. In determining how to deal with the Keynesian/classical divide, instructors must decide whether to follow the modern approach of building macroeconomic relationships from micro foundations, or to use the traditional approach…

  18. Moroccan Arabic Intermediate Reader, Part II.

    Science.gov (United States)

    Alami, Wali A.; Hodge, Carlton T., Ed.

    The first section of this companion volume to "Moroccan Arabic Intermediate Reader, Part I" (AL 002 041) presents the Arabic script version of the pre-drills in Lessons IA-IIB in that volume. The second and major section comprises 20 lessons consisting of pre-drills, texts, notes, and questions. All material in this volume appears in Arabic script…

  19. Software Testing An ISEB Intermediate Certificate

    CERN Document Server

    Hambling, Brian

    2009-01-01

    Covering testing fundamentals, reviews, testing and risk, test management and test analysis, this book helps newly qualified software testers to learn the skills and techniques to take them to the next level. Written by leading authors in the field, this is the only official textbook of the ISEB Intermediate Certificate in Software Testing.

  20. Financial intermediation and the monetary transmission mechanism

    OpenAIRE

    Iris Claus; Christie Smith

    1999-01-01

    The article explores the role of financial intermediation in the monetary transmission mechanism. It discusses how and why shocks that affect lenders' willingness to lend can have an impact on economic activity, and why this needs to be factored into analyses of the interaction of monetary policy, the financial sector and the real economy.

  1. Multiphase Gas in Intermediate Redshift Galaxies

    CERN Document Server

    Churchill, C W; Charlton, J; Januzzi, B; Churchill, Chris; Mellon, Rick; Charlton, Jane

    2000-01-01

    We present 40 quasar absorption line systems at intermediate redshifts (z~1), with focus on one of the most kinematically complex known, as examples of how the unique capabilities of space-based and ground-based facilities can be combined to glean much broader insights into astrophysical systems.

  2. Intermediality and politics in theatre and performance

    NARCIS (Netherlands)

    G.S. Dapp

    2013-01-01

    This dissertation applies the concepts of intermediality and politics to five performances by Rimini Protokoll, Christoph Schlingensief, and Igneous, and analyzes the implications that emerge on both a significational and a theoretical level. Based on the specific mediality involved, it argues that

  3. Teaching Vocabulary and Morphology in Intermediate Grades

    Science.gov (United States)

    Palumbo, Anthony; Kramer-Vida, Louisa; Hunt, Carolyn V.

    2015-01-01

    Direct vocabulary instruction of Tier 2 and Tier 3 words in intermediate-grade curricula is an important tool of literacy instruction because English is a language grafted from many roots and has not developed a one-to-one phoneme-grapheme correspondence. In addition to knowing graphemes and phonemes, students must formally learn words that cross…

  4. Trusted intermediating agents in electronic trade networks

    NARCIS (Netherlands)

    Klos, T.B.; Alkemade, F.

    2005-01-01

    Electronic commerce and trading of information goods significantly impact the role of intermediaries: consumers can bypass intermediating agents by forming direct links to producers. One reason that traditional intermediaries can still make a profit, is that they have more knowledge of the market, s

  5. Changes to the Intermediate Accounting Course Sequence

    Science.gov (United States)

    Davidson, Lesley H.; Francisco, William H.

    2009-01-01

    There is an ever-growing amount of information that must be covered in Intermediate Accounting courses. Due to recent accounting standards and the implementation of IFRS this trend is likely to continue. This report incorporates the results of a recent survey to examine the trend of spending more course time to cover this additional material.…

  6. Aromatic C-H Bond Functionalization Induced by Electrochemically in Situ Generated Tris(p-bromophenyl)aminium Radical Cation: Cationic Chain Reactions of Electron-Rich Aromatics with Enamides.

    Science.gov (United States)

    Li, Long-Ji; Jiang, Yang-Ye; Lam, Chiu Marco; Zeng, Cheng-Chu; Hu, Li-Ming; Little, R Daniel

    2015-11-01

    An effective Friedel-Crafts alkylation reaction of electron-rich aromatics with N-vinylamides, induced by electrochemically in situ-generated TBPA radical cation, has been developed; the resulting adducts are produced in good to excellent yields. In the "ex-cell" type electrolysis, TBPA is transformed to its oxidized form in situ and subsequently employed as an electron transfer reagent to initiate a cationic chain reaction. An easily recoverable and reusable polymeric ionic liquid-carbon black (PIL-CB) composite was also utilized as a supporting electrolyte for the electrochemical generation of TBPA cation radical, without sacrificing efficiency or stability after four electrolyses. Cyclic voltammetry analysis and the results of control experiments demonstrate that the reaction of electron-rich aromatics and N-vinylamides occurs via a cationic chain reaction, which takes place though an oxidative activation of a C-H bond of electron-rich aromatics instead of oxidation of the N-vinylamide as previously assumed.

  7. The geometry and efficacy of cation-pi interactions in a diagonal position of a designed beta-hairpin.

    Science.gov (United States)

    Tatko, Chad D; Waters, Marcey L

    2003-11-01

    Cation-pi interactions are common in proteins, but their contribution to the stability and specificity of protein structure has not been well established. In this study, we examined the impact of cation-pi interactions in a diagonal position of a beta-hairpin peptide through comparison of the interaction of Phe or Trp with Lys or Arg. The diagonal interactions ranged from -0.20 to -0.48 kcal/mole. Our experimental values for the diagonal cation-pi interactions are similar to those found in alpha-helical studies. Upfield shifting of the Lys and Arg side chains indicates that the geometries of cation-pi interactions adopted in the 12-residue beta-hairpin are comparable to those found in protein structures. The Lys was found to interact through the polarized Cepsilon, and the Arg is stacked against the aromatic ring of Phe or Trp. Folding of these peptides was found to be enthalpically favorable (DeltaH degrees equals approximately -3 kcal/mole) and entropically unfavorable (DeltaS degrees equals approximately -8 cal mole(-1) K(-1)).

  8. Isomerization of propargyl cation to cyclopropenyl cation: Mechanistic elucidations and effects of lone pair donors

    Indian Academy of Sciences (India)

    Zodinpuia Pachuau; Kiew S Kharnaior; R H Duncan Lyngdoh

    2013-03-01

    This ab initio study examines two pathways (one concerted and the other two-step) for isomerization of the linear propargyl cation to the aromatic cyclopropenyl cation, also probing the phenomenon of solvation of this reaction by simple lone pair donors (NH3, H2O, H2S and HF) which bind to the substrate at two sites. Fully optimized geometries at the B3LYP/6-31G(d) level were used, along with single point QCISD(T)/6-311+G(d,p) and accurate G3 level calculations upon the DFT optimized geometries. For the unsolvated reaction, the two-step second pathway is energetically favoured over the one-step first pathway. Lone pair donor affinity for the various C3H$^{+}_{3}$ species follows the uniform order NH3 > H2S>H2O>HF. The activation barriers for the solvated isomerizations decrease in the order HF>H2O>H2S>NH3 for both pathways. The number of lone pairs on the donor heteroatom as well as the heteroatom electronegativity are factors related to both these trends. Compared to the unsolvated cases, the solvated reactions have transition states which are usually ‘later’ in position along the reaction coordinate, validating the Hammond postulate.

  9. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.

    Science.gov (United States)

    Nguyen, Tran B; Tyndall, Geoffrey S; Crounse, John D; Teng, Alexander P; Bates, Kelvin H; Schwantes, Rebecca H; Coggon, Matthew M; Zhang, Li; Feiner, Philip; Milller, David O; Skog, Kate M; Rivera-Rios, Jean C; Dorris, Matthew; Olson, Kevin F; Koss, Abigail; Wild, Robert J; Brown, Steven S; Goldstein, Allen H; de Gouw, Joost A; Brune, William H; Keutsch, Frank N; Seinfeld, John H; Wennberg, Paul O

    2016-04-21

    We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH2OO + H2O (k(H2O)∼ 1 × 10(-15) cm(3) molec(-1) s(-1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H2O2, and 21% formic acid + H2O; and CH2OO + (H2O)2 (k(H2O)2∼ 1 × 10(-12) cm(3) molec(-1) s(-1)) yields 40% HMHP, 6% formaldehyde + H2O2, and 54% formic acid + H2O. Competitive rate determinations (kSO2/k(H2O)n=1,2∼ 2.2 (±0.3) × 10(4)) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO2] ∼ 10 ppb). The importance of the CH2OO + (H2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH2OO does not substantially affect the lifetime of SO2 or HCOOH in the Southeast US, e.g., CH2OO + SO2 reaction is a minor contribution (production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast

  10. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.

    Science.gov (United States)

    Nguyen, Tran B; Tyndall, Geoffrey S; Crounse, John D; Teng, Alexander P; Bates, Kelvin H; Schwantes, Rebecca H; Coggon, Matthew M; Zhang, Li; Feiner, Philip; Milller, David O; Skog, Kate M; Rivera-Rios, Jean C; Dorris, Matthew; Olson, Kevin F; Koss, Abigail; Wild, Robert J; Brown, Steven S; Goldstein, Allen H; de Gouw, Joost A; Brune, William H; Keutsch, Frank N; Seinfeld, John H; Wennberg, Paul O

    2016-04-21

    We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH2OO + H2O (k(H2O)∼ 1 × 10(-15) cm(3) molec(-1) s(-1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H2O2, and 21% formic acid + H2O; and CH2OO + (H2O)2 (k(H2O)2∼ 1 × 10(-12) cm(3) molec(-1) s(-1)) yields 40% HMHP, 6% formaldehyde + H2O2, and 54% formic acid + H2O. Competitive rate determinations (kSO2/k(H2O)n=1,2∼ 2.2 (±0.3) × 10(4)) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO2] ∼ 10 ppb). The importance of the CH2OO + (H2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH2OO does not substantially affect the lifetime of SO2 or HCOOH in the Southeast US, e.g., CH2OO + SO2 reaction is a minor contribution (production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast

  11. Interconnects for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Huang, Wenhua

    Presently, one of the principal goals of solid oxide fuel cells (SOFCs) research is to reduce the stack operating temperature to between 600 and 800°C. However, one of the principal technological barriers is the non-availability of a suitable material satisfying all of the stability requirements for the interconnect. In this work two approaches for intermediate temperature SOFC interconnects have been explored. The first approach comprises an interconnect consisting of a bi-layer structure, a p-type oxide (La0.96Sr0.08MnO 2.001/LSM) layer exposed to a cathodic environment, and an n-type oxide (Y0.08Sr0.88Ti0.95Al0.05O 3-delta/YSTA) layer exposed to anodic conditions. Theoretical analysis based on the bi-layer structure has established design criteria to implement this approach. The analysis shows that the interfacial oxygen partial pressure, which determines the interconnect stability, is independent of the electronic conductivities of both layers but dependent on the oxygen ion layer interconnects, the oxygen ion conductivities of LSM and YSTA were measured as a function of temperature and oxygen partial pressure. Based on the measured data, it has been determined that if the thickness of YSTA layer is around 0.1cm, the thickness of LSM layer should be around 0.6 mum in order to maintain the stability of LSM. In a second approach, a less expensive stainless steel interconnect has been studied. However, one of the major concerns associated with the use of metallic interconnects is the development of a semi-conducting or insulating oxide scale and chromium volatility during extended exposure to the SOFC operating environment. Dense and well adhered Mn-Cu spinet oxide coatings were successfully deposited on stainless steel by an electrophoretic deposition (EPD) technique. It was found that the Mn-Cu-O coating significantly reduced the oxidation rate of the stainless steel and the volatility of chromium. The area specific resistance (ASR) of coated Crofer 22 APU is

  12. Condensation of nonstochiometric DNA/polycation complexes by divalent cations.

    Science.gov (United States)

    Budker, Vladimir; Trubetskoy, Vladimir; Wolff, Jon A

    2006-12-15

    This study found that divalent cations induced the further condensation of partially condensed DNA within nonstochiometric polycation complexes. The addition of a few mmol of a divalent cation such as calcium reduced by half the inflection point at which DNA became fully condensed by poly-L-lysine (PLL) and a variety of other polycations. The effect on DNA condensation was initially observed using a new method, which is based on the concentration-dependent self-quenching of fluorescent moieties (e.g., rhodamine) covalently linked to the DNA backbone at relatively high densities. Additional analyses, which employed ultracentrifugation, dynamic light scattering, agarose gel electrophoresis, and atomic force microscopy, confirmed the effect of divalent cations. These results provide an additional accounting of the process by which divalent cations induce greater chromatin compaction that is based on the representation of chromatin fibers as a nonstoichiometric polyelectrolyte complex. They also offer a new approach to assemble nonviral vectors for gene therapy.

  13. Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates

    OpenAIRE

    Ana Caroline Lustosa de Melo Carvalho; Thiago de Sousa Fonseca; Marcos Carlos de Mattos; Maria da Conceição Ferreira de Oliveira; Telma Leda Gomes de Lemos; Francesco Molinari; Diego Romano; Immacolata Serra

    2015-01-01

    Biocatalysis offers an alternative approach to conventional chemical processes for the production of single-isomer chiral drugs. Lipases are one of the most used enzymes in the synthesis of enantiomerically pure intermediates. The use of this type of enzyme is mainly due to the characteristics of their regio-, chemo- and enantioselectivity in the resolution process of racemates, without the use of cofactors. Moreover, this class of enzymes has generally excellent stability in the presence of ...

  14. Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells

    OpenAIRE

    Söderström, T; Haug, F.-J.; Niquille, X.; Terrazzoni, V; Ballif, C.

    2009-01-01

    The micromorph solar cell (stack of amorphous and microcrystalline cells) concept is the key for achieving high efficiency stabilized thin film silicon solar cells. We introduce a device structure that allows a better control of the light in-coupling into the two subcell components. It is based on an asymmetric intermediate reflector, which increases the effective thickness of the a-Si:H by a factor of more than three. Hence, the a- Si:H thickness reduction dimi...

  15. Micromorph n-i-p tandem cells with asymmetric intermediate reflectors

    OpenAIRE

    Haug, Franz-Josef; Söderström, Thomas; Terrazzoni-Daudrix, Vanessa; Ballif, Christophe; Sai, Hitoshi; Kondo, Michio

    2010-01-01

    We present tandem thin film silicon solar cells in n-i-p configuration with 12% initial efficiency. The stabilized efficiency of these devices is 10%. The result has become possible by the combination of a microcrystalline bottom cell with high current density and an asymmetric intermediate reflector that establishes a well adapted surface texture for the amorphous top cell. After successfully integrating these two steps, we obtain micromorph tandems cells with size of typically 0.25 cm2. The...

  16. Sulfometuron incorporation in cationic micelles adsorbed on montmorillonite

    OpenAIRE

    Mishael, Y. G.; Undabeytia López, Tomás; Rytwo, Giora; Papahadjopoulos Sternberg, B.; Rubin, Baruch; Nir, Shlomo

    2002-01-01

    The aim of this study was to understand the interactions between alkylammonium cations present as monomers and micelles and a clay mineral, montmorillonite, to develop slow release formulations of anionic herbicides, such as sulfometuron (SFM) whose leaching in soils is an environmental and economic problem. In the proposed formulation the herbicide is incorporated in positively charged micelles of quaternary amine cations, which in turn adsorb on the negatively charged clay. The adsorption o...

  17. Microscopic Theory of Cation Exchange in CdSe Nanocrystals

    OpenAIRE

    Ott, Florian D.; Spiegel, Leo L.; Norris, David J.; Erwin, Steven C.

    2014-01-01

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We used density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key...

  18. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  19. Mercury release from deforested soils triggered by base cation enrichment.

    Science.gov (United States)

    Farella, N; Lucotte, M; Davidson, R; Daigle, S

    2006-09-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide. PMID:16781764

  20. Suppression of the two-dimensional electron gas in LaGaO 3 /SrTiO 3 by cation intermixing

    KAUST Repository

    Nazir, S.

    2013-12-03

    Cation intermixing at the n-type polar LaGaO 3 /SrTiO 3 (001) interface is investigated by first principles calculations. Ti"Ga, Sr"La, and SrTi"LaGa intermixing are studied in comparison to each other, with a focus on the interface stability. We demonstrate in which cases intermixing is energetically favorable as compared to a clean interface. A depopulation of the Ti 3d xy orbitals under cation intermixing is found, reflecting a complete suppression of the two-dimensional electron gas present at the clean interface.

  1. Evidence for long-term changes in base cations in the atmospheric aerosol

    Science.gov (United States)

    Lee, David S.; Espenhahn, Sarah E.; Baker, Steven

    1998-09-01

    cations in air, and thus deposition may offset some of the benefits resulting from emissions control of acidic gases, if acid-sensitive receptors are to show stabilization or recovery.

  2. Modulatory role of bivalent cations on reward system.

    Science.gov (United States)

    Nechifor, M; Chelărescu, D

    2008-01-01

    Bivalent cations (Ca, Mg, Zn, Mn etc.) modulate activity of reward system (RS). At physiologic levels they may influence all components of RS. There are influenced behavioral reactions at physiological stimuli and all essential elements of drug dependence (compulsive intake of substance, craving, reinforcement, withdrawal syndrom, relapse and reinstatement of intake) The fact that some cations (e.g. calcium) enhance some of the aspects of drug dependence and others (e.g. magnesium, zinc) decrease intensity of this process show that ratio between intra- and extracellular in the brain of these cations is important for the function of RS. Among actions of different cations at the level of RS there are important differences. Their mecahanism of action are common in part and specific in other. It is important the fact that modulatory action appear at physiologic cation concentrations (that could be reached at therapeutic doses). Modulatory action is related to ratio between concetrations of different bivalent cations and is exerted both in normal or pathologic conditions.

  3. Synthesis and characterisation of cationically modified phospholipid polymers.

    Science.gov (United States)

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A

    2004-07-01

    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  4. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  5. Density functional theory study of interaction, bonding and affinity of group IIb transition metal cations with nucleic acid bases

    Science.gov (United States)

    Bagchi, Sabyasachi; Mandal, Debasish; Ghosh, Deepanwita; Das, Abhijit K.

    2012-05-01

    The structure, bonding, and energetics of the complexes obtained from the interaction between the most stable tautomeric forms of free DNA and RNA bases and Zn2+, Cd2+ and Hg2+ cations have been studied using density functional B3LYP method. The 6-311+G (2df, 2p) basis set along with LANL2DZ pseudopotentials for the cations are used in the calculations. The tautomerization paths of the nucleobases are investigated and transition states between the tautomeric forms of the free bases are located. The relative stability of the complexes and the tautomers of the free nucleobases are discussed referring to MIA and relative energy values. For uracil, thymine and adenine, interaction of the metal cations with the most stable tautomers form the least stable molecular complexes. For cytosine and guanine, the stability of the metalated complexes differs significantly. The enthalpy (ΔH), entropy (TΔS) and free energy (ΔG) of the complexes at 298 K have also been calculated.

  6. Financial Intermediation, Monetary Uncertainty, and Bank Interest Margins Financial Intermediation, Monetary Uncertainty, and Bank Interest Margins

    OpenAIRE

    Leonardo Hernández

    1992-01-01

    Financial Intermediation, Monetary Uncertainty, and Bank Interest Margins This paper studies a simple model of financial intermediation in order to understand how the lending-borrowing spread or interest margin) charged by financial intermediaries is determined in equilibrium in a monetary economy. The main conclusion of the paper concerns the effect on the spread of changes in the distribution of monetary innovations. Thus, changes in the monetary-policy-rule followed by the Central Bank whi...

  7. The Swinburne intermediate-latitude pulsar survey

    Science.gov (United States)

    Edwards, R. T.; Bailes, M.; van Straten, W.; Britton, M. C.

    2001-09-01

    We have conducted a survey of intermediate Galactic latitudes using the 13-beam 21-cm multibeam receiver of the Parkes 64-m radio telescope. The survey covered the region enclosed by 5°Swinburne workstation cluster resulted in the detection of 170 pulsars of which 69 were new discoveries. Eight of the new pulsars, by virtue of their small spin periods and period derivatives, may be recycled and have been reported elsewhere. The slow pulsars discovered are typical of those already known in the volume searched, being of intermediate to old age. Several pulsars experience pulse nulling and two display very regular drifting subpulses. We discuss the new discoveries and provide timing parameters for the 48 slow pulsars for which we have a phase-connected solution.

  8. Intermediate filaments in small configuration spaces.

    Science.gov (United States)

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576

  9. Evolutionary Characteristics of China's Intermediate Manufactures

    Institute of Scientific and Technical Information of China (English)

    Minsung Kang; Jeong-Dong Lee

    2007-01-01

    China's economic development is characterized by progressive integration with international production chains as an assembly producer. Japan and South Korea are the major partners providing intermediate products to China. The present paper analyzes the Chinese intermediate sector's present condition and evolutionary characteristics revealed in bilateral trade with Japan and South Korea. The analysis uses the framework of new trade theory represented by "intra-industry trade". Trade statistics from 1997 to 2004 are analyzed using the database published by the OECD. Results show that China's inter-industrial evolution is characterized by its expanding positioning in the manner of the flying geese development paradigm of Asian countries. Furthermore, intra-industrial evolution is characterized by a concentration on price competitiveness. The framework and results of the industrial analysis presented in this paper assist in the understanding of China's manufacturing evolution and of the policy-making decisions taken in the process.

  10. Is TW Pictoris really an intermediate polar?

    CERN Document Server

    Norton, A J

    1998-01-01

    We present the results of a long ROSAT HRI observation of the candidate intermediate polar TW Pic. The power spectrum shows no sign of either the previously proposed white dwarf spin period or the proposed binary orbital period (1.996 hr and 6.06 hr respectively). The limits to the X-ray modulation are less than 0.3% in each case. In the absence of a coherent X-ray pulsation, the credentials of TW Pic for membership of the intermediate polar subclass must be suspect. We further suggest that the true orbital period of the binary may be the shorter of the two previously suggested, and that the longer period may represent a quasi-periodic phenomenon associated with the accretion disc.

  11. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    OpenAIRE

    El-Mellouhi, fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-01-01

    In the past few years, the meteoric development of hybrid organic--inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (\\ce{CH3NH3+}) by alternative molecular cations allowing an enhanced electronic coupling between the...

  12. Entropy of Intermediate-Mass Black Holes

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    Observational searches for Intermediate-Mass Black Holes (IMBHs), defined to have masses between 30 and 300,000 solar masses, provide limits which allow up to ten percent of what is presently identified as halo dark matter to be in the form of IMBHs. These concentrate entropy so efficiently that the halo contribution can be bigger than the core supermassive black hole. Formation of IMBHs is briefly discussed.

  13. Desperately Seeking Intermediate-Mass Black Holes

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    Observational searches for Intermediate Mass Black Holes (IMBHs), defined to have masses between 30 and 300,000 solar masses, provide limits which allow up to ten percent of what is presently identified as halo dark matter to be in the form of IMBHs. These concentrate entropy so efficiently that the halo contribution can be bigger than the core supermassive black hole. Formation of IMBHs is briefly discussed.

  14. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis

    OpenAIRE

    Diver, Steven T.

    2007-01-01

    This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in en...

  15. International express student's book : pre-intermediate

    CERN Document Server

    Taylor, Liz

    1996-01-01

    The New Edition of International Express Pre-Intermediate retains all the keys features of this popular and successel four-level course. It combines engaging, up-to-date topics with a time-efficient and student-centred approach to language work, and clearly focused activities that reflect learner's real communicative needs - the ideal course for professional adults who use English for work, travel, and socializing.

  16. Mobile phones in conflicts of financial intermediation

    OpenAIRE

    Asongu, Simplice A; Tchamyou, Vanessa S.

    2015-01-01

    To the best our knowledge, in the first empirical macroeconomic examination of the nexus between financial intermediation and mobile phones, Asongu employs two conflicting financial system definitions in the assessment of how mobile phones have stimulated financial development in Africa. Within the framework of the dominant International Monetary Fund's International Financial Statistics (2008) definition, mobile phones are established to be negatively associated with financial intermediary d...

  17. Mobile Phones in Conflicts of Financial Intermediation

    OpenAIRE

    Asongu, Simplice; Tchamyou, Vanessa

    2015-01-01

    To the best our knowledge, in the first empirical macroeconomic examination of the nexus between financial intermediation and mobile phones, Asongu employs two conflicting financial system definitions in the assessment of how mobile phones have stimulated financial development in Africa. Within the framework of the dominant International Monetary Fund’s International Financial Statistics (2008) definition, mobile phones are established to be negatively associated with financial intermediary d...

  18. Leveraging Efforts on Remittances and Financial Intermediation

    OpenAIRE

    Manuel Orozco; Rachel Fedewa

    2006-01-01

    This report seeks to analyze the efforts among financial institutions to leverage the relationship between financial intermediation and remittance transfers. The impact of family remittances has been highlighted in the literature as an important one for development. A development impact is one that addresses issues relating to the distribution of wealth and overall improvements in the quality of people's lives. More recently, policy recommendations have stressed the importance of linking remi...

  19. An Idealized View of Financial Intermediation

    OpenAIRE

    Sissoko, Carolyn

    2007-01-01

    Using the monetary model developed in Sissoko (2007), where the general equilibrium assumption that every agent buys and sells simultaneously is relaxed, we observe that in this environment fiat money can implement a Pareto optimum only if taxes are type-specific. We then consider intermediated money by assuming that financial intermediaries whose liabilities circulate as money have an important identifying characteristic: they are widely viewed as default-free. The paper demonstrates that de...

  20. Financial intermediation and the rights offer paradox

    OpenAIRE

    Koenig-Matsoukis, Laure

    2010-01-01

    In this study, we investigate the trading dynamics around rights issues. We employ signed and unsigned trading activity measures in order to provide evidence of costly financial intermediation. We, first, document short selling activity by underwriters and shareholders during rights issues leading to significant negative abnormal returns during the offer. Further, we provide evidence that rights tend to be sold below their fair value. Our results, therefore, suggest that the lack of use of ri...

  1. FIRM - A Graph-Based Intermediate Representation

    OpenAIRE

    Braun, Matthias; Buchwald, Sebastian; Zwinkau, Andreas

    2011-01-01

    We present our compiler intermediate representation Firm. Programs are always in SSA-form enabling a representation as graphs. We argue that this naturally encodes context information simplifying many analyses and optimizations. Instructions are connected by dependency edges relaxing the total to a partial order inside a basic block. For example alias analysis results can be directly encoded in the graph structure. The paper gives an overview of the representation and focuses on its construct...

  2. Far from the intermediate nuclear field

    International Nuclear Information System (INIS)

    Pairing correlations in nuclear physics; the BCS state and quasi-particles; the layer model; collision effects on nuclear dynamics; the theory of cluster formation (application to nucleus fragmentation); short range correlations (few-particle systems); deuterium electron scattering; dibaryonic resonances; traditional and exotic hadron probes of nuclear structure; spectral fluctuations and chaotic motion; corrections to the intermediate nuclear field (nonrelativistic and other effects); and heavy nuclei splitting and nuclear superfluidity are introduced

  3. Interest Based Financial Intermediation: Analysis and Solutions

    OpenAIRE

    Shaikh, Salman

    2012-01-01

    Interest is prohibited in all monotheist religions. Apart from religion, interest is also regarded as unjust price of money capital by pioneer secular philosophers as well as some renowned economists. However, it is argued by some economists that modern day, market driven interest rate in a competitive financial market is different from usury and that the interest based financial intermediation has served a useful purpose in allocation of resources as well as in allocation of risk, given the ...

  4. Intermediate Trainee Perspectives of Family Therapy Skills

    OpenAIRE

    Benson, Margo

    2004-01-01

    Marriage and family therapy training involves the development of therapy skills that lead to effective treatment, and the family therapy literature recognizes the importance of skill development in training. The training literature dealing with specific skills most often refers to beginning-level skills and obtains data largely from supervisors and trainers. Intermediate-level skills appear to be overlooked and no apparent attention is given from the perspective of trainees. This research ...

  5. UEP LT Codes with Intermediate Feedback

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Popovski, Petar; Østergaard, Jan

    2013-01-01

    We analyze a class of rateless codes, called Luby transform (LT) codes with unequal error protection (UEP). We show that while these codes successfully provide UEP, there is a significant price in terms of redundancy in the lower prioritized segments. We propose a modification with a single inter...... intermediate feedback message. Our analysis shows a dramatic improvement on the decoding performance of the lower prioritized segment....

  6. Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing

    DEFF Research Database (Denmark)

    Teilum, Kaare; Maki, Kosuke; Kragelund, Birthe B;

    2002-01-01

    state. The kinetic data are fully accounted for by three-state mechanisms with either on- or off-pathway intermediates. The intermediate accumulates to a maximum population of 40%, and its stability depends only weakly on denaturant concentration, which is consistent with a marginally stable ensemble...... energy transfer. Although the folding of ACBP was initially described as a concerted two-state process, the tryptophan fluorescence measurements revealed a previously unresolved phase with a time constant tau = 80 micros, indicating formation of an intermediate with only slightly enhanced fluorescence...... of partially collapsed states with approximately 1/3 of the solvent-accessible surface buried. The findings indicate that ultrafast mixing methods combined with sensitive conformational probes can reveal transient accumulation of intermediate states in proteins with apparent two-state folding mechanisms....

  7. On the stability of cationic complexes of neon with helium--solving an experimental discrepancy.

    Science.gov (United States)

    Bartl, Peter; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2013-10-21

    Helium nanodroplets are doped with neon and ionized by electrons. The size-dependence of the ion abundance of HenNex(+), identified in high-resolution mass spectra, is deduced for complexes containing up to seven neon atoms and dozens of helium atoms. Particularly stable ions are inferred from anomalies in the abundance distributions. Two pronounced anomalies at n = 11 and 13 in the HenNe(+) series confirm drift-tube data reported by Kojima et al. [T. M. Kojima et al., Z. Phys. D, 1992, 22, 645]. The discrepancy with previously published spectra of neon-doped helium droplets, which did not reveal any abundance anomalies [T. Ruchti et al., J. Chem. Phys., 1998, 109, 10679-10687; C. A. Brindle et al., J. Chem. Phys., 2005, 123, 064312], is most likely due to limited mass resolution, which precluded unambiguous analysis of contributions from different ions with identical nominal mass. However, calculated dissociation energies of HenNe(+) reported so far do not correlate with the present data, possibly because of challenges in correctly treating the linear, asymmetric [He-Ne-He](+) ionic core in HenNe(+). Anomalies identified in the distributions of HenNex(+) for x > 1, including prominent ones at He12Ne2(+) and He14Ne2(+), may help to better understand solvation of Ne(+) and Nex(+) in helium.

  8. Stability and efficacy of synthetic cationic antimicrobial peptides nebulized using high frequency acoustic waves.

    Science.gov (United States)

    Wang, Ying; Rezk, Amgad R; Khara, Jasmeet Singh; Yeo, Leslie Y; Ee, Pui Lai Rachel

    2016-05-01

    Surface acoustic wave (SAW), a nanometer amplitude electroelastic wave generated and propagated on low-loss piezoelectric substrates (such as LiNbO3), is an extremely efficient solid-fluid energy transfer mechanism. The present study explores the use of SAW nebulization as a solution for effective pulmonary peptide delivery. In vitro deposition characteristics of the nebulized peptides were determined using a Next Generation Cascade Impactor. 70% of the peptide-laden aerosols generated were within a size distribution favorable for deep lung distribution. The integrity of the nebulized peptides was found to be retained, as shown via mass spectrometry. The anti-mycobacterial activity of the nebulized peptides was found to be uncompromised compared with their non-nebulized counterparts, as demonstrated by the minimum inhibition concentration and the colony forming inhibition activity. The peptide concentration and volume recoveries for the SAW nebulizer were significantly higher than 90% and found to be insensitive to variation in the peptide sequences. These results demonstrate the potential of the SAW nebulization platform as an effective delivery system of therapeutic peptides through the respiratory tract to the deep lung. PMID:27375820

  9. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    Science.gov (United States)

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. PMID:26928967

  10. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    Science.gov (United States)

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene.

  11. Synthesis of Poly(cyclohexene oxide-Montmorillonite Nanocomposite via In Situ Photoinitiated Cationic Polymerization with Bifunctional Clay

    Directory of Open Access Journals (Sweden)

    Işıl Bayram

    2013-01-01

    Full Text Available Poly(cyclohexene oxide (PCHO/clay nanocomposites were prepared by means of in situ photoinitiated cationic polymerization with initiator moieties immobilized within the silicate galleries of the clay particles. Diphenyliodonium molecules were intercalated via cation exchange process between Cloisite Ca and diphenyliodonium. The polymerization of CHO through the interlayer galleries of the clay can provide a homogenous distribution of the clay layers in the polymer matrix in nanosize and results in the formation of PCHO/clay nanocomposites. The rates of clay loadings were changed to 1%, 3%, and 5% so as to investigate the effect of clay and initiator amount on polymer. X-ray diffraction (XRD spectroscopy, thermogravimetric analysis (TGA, and transmission electron microscopy (TEM methods were used for the characterization of modified clay and nanocomposite materials. Thermal stability of PCHO/MMT nanocomposites was also studied by both differential scanning calorimetry (DSC and thermogravimetric analysis (TGA.

  12. Transformation of Vesicles in Aqueous Two-Phase System of an Anionic Gemini Surfactant and a Cationic Conventional Surfactant Mixture

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong; HUANG Yi-Xiong; ZHAO Jian-Xi; HUANG Chang-Cang

    2008-01-01

    Transformation of vesicles formed in DTAB/C11-p-PhCNa aqueous surfactant two-phase (ASTP) was observed by the transmission electron microscopy (TEM). The trans-conformation of the gemini surfactant in the aggregates was considered to be the important factor for constructing the multi-lamellar structure of the vesicle wall. The cation-π interaction between the quaternary ammonium cation and the aromatic ring in the spacer was determined by the UV-Vis spectrum analysis, which, as well as the general electrostatic attraction and hydrophobic force, contributes to the stability of the multi-lamellar structure. The concentrations of the surface-active ions were measured for understanding the mechanism of vesicle transformation. The results show that isoelectric mixing of the two components benefits the growth of vesicles both in size and wall thickness.

  13. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  14. Controlling DNA compaction with cationic amphiphiles for efficient delivery systems A step forward towards non-viral Gene Therapy

    Science.gov (United States)

    Savarala, Sushma

    The synthesis of pyridinium cationic lipids, their counter-ion exchange, and the transfection of lipoplexes consisting of these lipids with firefly luciferase plasmid DNA (6.7 KDa), into lung, prostate and breast cancer cell lines was investigated. The transfection ability of these newly synthesized compounds was found to be twice as high as DOTAP/cholesterol and Lipofectamine TM (two commercially available successful transfection agents). The compaction of the DNA onto silica (SiO2) nanoparticles was also investigated. For this purpose, it was necessary to study the stability and fusion studies of colloidal systems composed of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), a zwitterionic lipid, and mixtures of DMPC with cationic DMTAP (1,2-dimyristoyl-3-trimethylammonium-propane).

  15. Geo-polymers as Candidates for the Immobilisation of Low- and Intermediate-Level Waste

    International Nuclear Information System (INIS)

    Geo-polymers should be serious waste form candidates for intermediate level waste (ILW), insofar as they are more durable than Portland cement and can pass the PCT-B test for high-level waste. Thus an alkaline ILW could be considered to be satisfactorily immobilised in a geo-polymer formulation. However a simulated Hanford tank waste was found to fail the PCT-B criterion even for a waste loading as low as 5 wt%, very probably due to the formation of a soluble sodium phosphate compound(s). This suggests that it could be worth developing a 'mixed' GP waste form in which the amorphous material can immobilize cations and a zeolitic component to immobilize anions. The PCT-B test is demonstrably subject to significant saturation effects, especially for relatively soluble waste forms. (authors)

  16. Intermediate order in tetrahedrally coordinated silicon: evidence for chainlike objects

    Energy Technology Data Exchange (ETDEWEB)

    Tsu, D.V.; Chao, B.S.; Jones, S.J. [Energy Conversion Devices, Rochester Hills, MI (United States)

    2003-07-01

    In this report, we describe the nature of intermediate order in silicon as determined by recent measurements on thin films using transmission electron microscopy (TEM) and Raman scattering. The TEM images show in addition to the expected continuous random network (CRN), the presence of highly ordered quasi-one-dimensional ''chain-like objects'' (CLOs) that are 1-2 nm wide and tens of nm long that meander and show some evidence of cross-linking with each other. The presence of these objects correlate to a Raman feature centered at 490 cm{sup -1} whose width is 35-40 cm{sup -1}, and is used to quantify the heterogeneity in terms of the CLO and CRN (=475 cm{sup -1} scattering) concentrations. The 490 and 35 cm{sup -1} values are consistent with bond angle deviations approaching 0{sup o}, and thus reinforces an association with the CLOs. We find that in reference quality a-Si:H (made using pure SiH{sub 4}), the CLO concentration is about 5 vol%, while in state-of-the-art material using high H{sub 2} levels of dilution during processing, it increases to about 15%. Increased stability of such material to light-soaking is thus not mediated by a direct volumetric replacement of poor with high-quality components. Rather, an important characteristic of intermediate order in silicon is the low-dimensional aspect of its order, which allows it to influence more total volume than which it is itself composed. Consistent with these and other recent findings, we propose a tensegrity model of amorphous silicon. (author)

  17. Intermediates in Isotopic Exchange Reactions Involving Diborane

    International Nuclear Information System (INIS)

    By conventional mass spectrometric analysis, the self-exchange reaction of diborane was studied by using boron and hydrogen isotopes as tracers. The ratio of deuterium to boron exchange was found to be 2.8. This suggests that the reaction is not completely proceeding by exchange of BH3's as an entity, and that the mechanism is more complicated than simply a stripping reaction between diborane and a borane. It was therefore decided to attempt to get some knowledge of the intermediates that are present in diborane dissociation since they may shed light on the mechanism of the exchange. Using a specially constructed mass spectrometer of high sensitivity coupled with a flow reactor, it was possible to make a direct detection of the intermediate involved in the diborane equilibria. The intermediates BH3 and BH2 were found to be present and their ionization potentials were measured. In addition, a small amount of B3Hn was observed but the value of n could not be determined because of the weak peaks obtained. An attempt is made to interpret the self-exchange reaction of diborane in terms of these intermediates. The results suggest that diborane is in rapid equilibrium with borane (BH3). In addition, apparently diborane can also dissociate in BH2 which was about twice as abundant as BH3. The B3Hn intermediate that was observed is believed to arise from the reaction. BH3 + B2H6 -> B3H9. In applying this information to the isotopic self-exchange in diborane, it appears that the exchange cannot be going by a stripping mechanism such as BD3 + BH3 - BH3 - BD3 - BH3 + BH3, since the deuterium-to-boron isotopic ratio then should be 3. Another possible mechanism of exchange is BD3 + B2H6 ⇌ B3D3H6; the B3 complex can be pictured as a symmetrical one. If the bonds were all exactly equivalent the D/ 10B ratio would statistically become 3; however, some isotope effect may be present in the fragmentation of the complex and the ratio could deviate from 3. Another possible way in which

  18. Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth

    Directory of Open Access Journals (Sweden)

    W. Mindari

    2014-10-01

    Full Text Available Humic acid is believed to maintain the stability of the soil reaction, adsorption / fixation / chelate of cation, thereby increasing the availability of water and plant nutrients. On the other hand, the dynamics of saline soil cation is strongly influenced by the change of seasons that disrupt water and plant nutrients uptake. This experiment was aimed to examine the characteristics of the humic acid from compost, coal, and peat and its function in the adsorption of K+ and NH4+ cations, thus increasing the availability of nutrients and of maize growth. Eighteen treatments consisted of three humic acid sources (compost, peat and coal, two cation additives (K+ and NH4+, and three doses of humic acid-based buffer (10, 20, and 30 g / 3kg, were arranged in a factorial completely randomized with three replicates. The treatments were evaluated against changes in pH, electric conductivity (EC, cation exchange capacity (CEC, chlorophyll content, plant dry weight and plant height. The results showed that the addition of K+ and NH4+ affected pH, CEC, K+, NH4+, and water content of the buffer. Application of humic acid-based buffer significantly decreased soil pH from > 7 to about 6.3, decreased soil EC to 0.9 mS / cm, and increased exchangeable Na from 0.40 to 0.56 me / 100g soil, Ca from 15.57 to 20.21 me/100 g soil, Mg from 1.76 to 6.52 me/100 g soil, and K from 0.05-0.51 me / 100g soil. Plant growth (plant height, chlorophyll content, leaf area, and stem weight at 35 days after planting increased with increasing dose of humic acid. The dose of 2.0g peat humic acid + NH4+ / 3 kg of soil or 30g peat humic acid + K+ / 3 kg of oil gave the best results of maize growth.

  19. Thermodynamic and Kinetic Aspects Involved in the Development of Nanocarriers and Drug Delivery Systems Based on Cationic Biopolymers.

    Science.gov (United States)

    Bianco, Ismael D; Alasino, Roxana V; Leonhard, Victoria; Beltramo, Dante M

    2016-01-01

    During the last years we have seen an increasing number of reports describing new properties and potential applications of cationic polymers and derived nanostructures. This review gives a summary of their applications in drug delivery, the preparation methods for nano and microstructures and will attempt to give a glimpse on how their structure, chemical composition and properties may be affected or modulated as to make them suitable for an intended application as drug delivery nanocarriers. The compositional complexity with the existence of several reacting groups makes cationic nanostructures critically sensitive to the contribution of thermodynamic and kinetic parameters in the determination of the type and stability of a particular structure and its ability to respond to changes in environmental conditions in the right time frame. Curiously, and contrarily to what could be expected, despite the fact that cationic polymers can form strong electrostatic interactions the contribution of the entropic component has been often found to be very important for their association with negatively charged supramolecular structures. Some general considerations indicate that when considering a complex multimolecular system like a nanocarrier containing an active ingredient it is frequently possible to find conditions under which enthalpic and entropic contributions are compensated leading to stable structures with a marginal thermodynamic stability (free energy change close to zero) which make them able to respond relatively fast to changes in the environmental conditions and therefore suitable for the design of smart drug delivery systems. Like with other nanocarriers, it should always be kept in mind that the properties of cationic nanocarriers will depend not only on their chemical composition but also on the properties of the structures formed by them.

  20. Protonation of a hydroxide anion bridging two divalent magnesium cations in water probed by first-principles metadynamics simulation.

    Science.gov (United States)

    Park, Jung Mee; Boero, Mauro

    2010-09-01

    The protonation of a hydroxide anion (OH(-)) located between two magnesium cations (Mg(2+)) in aqueous solution has been investigated by first-principles metadynamics simulation. We observe that the complex Mg(2+)-OH(-)-Mg(2+) is stabilized by the coparticipation of the hydroxide anion to the first hydration shells of both the Mg(2+) cations. Contrary to the cases of OH(-) in pure water, the transfer of protons in the presence of the divalent metal ions turns out to be a slow chemical event. This can be ascribed to the decreased proton affinity of the bridging OH(-). Metadynamics simulation, used to overcome the difficulty of the long time scale required by the protonation of the bridging OH(-), has shown that the system possesses a great stability on the reactant state, characterized by a bioctahedral (6,6) solvation structure around the two Mg(2+) cations. The exploration of the free energy landscape shows that this stable bioctahedral configuration converts into a lower coordinated (5,6) structure, leading to a proton transfer from a water molecule belonging to the first solvation shell of the Mg(2+) ion having the lower coordination to the bridging OH(-); the free energy barrier for the protonation reaction is 11 kcal/mol, meaning that the bridging hydroxide is a weak base. During the proton transfer, the bridging OH(-) reverts to an H(2)O molecule, and this breaks the electrostatic coupling of the two Mg(2+) ions, which depart independently with their own hydration shells, one of which is entirely formed by water molecules. The second one carries the newly created OH(-). Our results show that the flexibility in the metal coordination plays a crucial role in both the protonation process of the bridging OH(-) and the separation of the metal cations, providing useful insight into the nature of proton transfer in binuclear divalent metal ions, with several biological implications, such as, for instance, transesterification of catalytic RNA.

  1. STABILIZED OSCILLATOR

    Science.gov (United States)

    Jessen, P.L.; Price, H.J.

    1958-03-18

    This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.

  2. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    Science.gov (United States)

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  3. Alkali Cation Chelation in Cold β-O-4 Tetralignol Complexes

    Science.gov (United States)

    DeBlase, Andrew F.; Dziekonski, Eric T.; Hopkins, John R.; Burke, Nicole L.; Kenttamaa, Hilkka I.; McLuckey, Scott A.; Zwier, Timothy S.

    2016-06-01

    Lignins are the second most abundant naturally occurring polymer class, contributing to about 30% of the organic carbon in the biosphere. Their primary function is to provide the structural integrity of plant cell walls and have recently come under consideration as a potential source of biofuels because they have an energy content similar to coal. Herein, we employ cold ion spectroscopy (UV action and IR-UV double resonance) to unravel the spectroscopic signatures of G-type alkali metal cationized (X = Li+, Na+, K+) lignin tetramers connected by β-O-4 linkages. The conformation-specific spectroscopy reveals a variety of conformers, each containing distinct infrared spectra in the OH stretching region building on recent studies on the neutral and alkali metal cationized β-O-4 dimers. Based on comparisons of our infrared spectra to density functional theory [M05-2X/6-31+G*] harmonic level calculations for structures derived from a Monte Carlo conformational search, the alkali metal ion is discovered to engage in M+-OH-O interactions as important motifs that determine the secondary structures of these complexes. This interaction disappears in the major conformer of the K+ adduct, suggesting a reemergence of a neutral dimer segment as the metal binding energy decreases. Chelation of the metal cation by oxygen lone pair(s) of nearby oxygens in the β-O-4 linkage is observed to be the predominant driving force for 3D structure around the charge site, relegating OH-O H-bonds as secondary stabilizing elements.

  4. A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes.

    Science.gov (United States)

    Baschieri, Andrea; Monti, Filippo; Matteucci, Elia; Mazzanti, Andrea; Barbieri, Andrea; Armaroli, Nicola; Sambri, Letizia

    2016-08-15

    Two phosphorescent Ir(III) complexes bearing a mesoionic carbene ligand based on 1,2,3-triazolylidene are obtained for the first time. A silver-iridium transmetalation of the in situ-generated mesoionic carbene affords the cationic dichloro complex [Ir(trizpy)2Cl2](+) (3, trizpy = 1-benzyl-3-methyl-4-(pyridin-2-yl)-1H-1,2,3-triazolylidene) that reacts with a bis-tetrazolate (b-trz) dianionic ligand to give [Ir(trizpy)2(b-trz)](+) (5). The new compounds are fully characterized by NMR spectroscopy and mass spectrometry, and the X-ray structure of 3 is determined. The electrochemical behavior is somewhat different compared to most standard cationic iridium complexes. The first oxidation process is shifted to substantially higher potential in both 3 and 5, due to peculiar and different ligand-induced effects in the two cases, which stabilize the highest occupied molecular orbital; reduction processes are centered on the mesoionic carbene ligands. Both compounds exhibit a mostly ligand-centered luminescence band in the blue-green spectral region, substantially stronger in the case of 5 versus 3, both in CH3CN solution and in poly(methyl methacrylate) matrix at room temperature. Optimized geometries, orbital energies, spin densities, and electronic transitions are determined via density functional theory calculations, which support a full rationalization of the electrochemical and photophysical behavior. This work paves the way for the development of Ir-based emitters with neutral mesoionic carbene ligands and anionic ancillary ligands, a new concept in the area of cationic Ir(III) complexes. PMID:27483041

  5. Mucoadhesive dexamethasone acetate-polymyxin B sulfate cationic ocular nanoemulsion--novel combinatorial formulation concept.

    Science.gov (United States)

    Li, X; Müller, R H; Keck, C M; Bou-Chacra, N A

    2016-06-01

    Dexamethasone acetate (DEX) and polymyxin B sulfate (polymyxin B) were formulated as a cationic nanoemulsion for the treatment of ophthalmic infections. As novel concept, the positive charge to achieve mucoadhesion was not generated by toxicologically and regulatorily problematic cationic lipids or polymers, but by using a positively charged drug in combination with positively charged preservatives. The preservative also acts as co-surfactant to stabilize the emulsion. Nanoemulsions with the lipid phase Eutanol G-Lipoid S 100 (70%:30%) containing 0.05% (w/w) DEX were produced by high pressure homogenization, followed by dissolving the hydrophilic molecules in the water phase, e.g. polymyxin B (0.1%, w/w), cetylpyridinium chloride (0.01%, w/w) and glycerol (2.6%, w/w) to yield a combination product. The particles were below 200 nm with narrow size distribution. The osmolality (374 mOsm/kg), pH (5.31) and viscosity (2.45 mPa s at 37 degrees C) were compatible to the ocular administration. The zeta potential of the optimized formulation was shifted from approx. +9 mV to -11 mV after mucin incubation. The in vitro test revealed no potential cytotoxicity. The final products were stable after 180 days of storage at 4 degrees C and room temperature. The developed product is a viable alternative to the commercial ophthalmic suspensions. Moreover, this concept of generating the positive charge by cationic drug and/or preservative addition can be transferred to other ophthalmic products. PMID:27455551

  6. Gene transfection in high serum levels: case studies with new cholesterol based cationic gemini lipids.

    Directory of Open Access Journals (Sweden)

    Santosh K Misra

    Full Text Available BACKGROUND: Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH and oligo-oxyethylene -(CH2CH2On- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. METHODOLOGY/PRINCIPAL FINDINGS: To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM, dynamic light scattering (DLS, zeta potential measurements and X-ray diffraction (XRD. We studied the lipid/DNA complex (lipoplex formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50% greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. CONCLUSIONS/SIGNIFICANCE: -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies.

  7. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH{sub 2}Cl{sub 2}: Fluorescence from intermediate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, D.D.D.H [Department of Chemistry, The Open University of Sri Lanka, Nawala (Sri Lanka); Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Chandrika, U.G. [Department of Biochemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Jayaweera, P.M., E-mail: pradeep@sjp.ac.lk [Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka)

    2015-02-15

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH{sub 2}Cl{sub 2} solutions via chemical oxidation using anhydrous FeCl{sub 3}. UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S{sub 2}→S{sub 0} (1{sup 1}B{sub u}→1{sup 1}A{sub g}) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl{sub 3} in CH{sub 2}Cl{sub 2} shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region.

  8. Ionic Effects on VEGF G-Quadruplex Stability.

    Science.gov (United States)

    Kim, Byul G; Long, Ji; Dubins, David N; Chalikian, Tigran V

    2016-06-01

    In a potassium solution, a modified 22-meric DNA sequence Pu22-T12T13 from a region proximal to the transcription initiation site of the human VEGF gene adopts a single parallel-stranded G-quadruplex conformation with a 1:4:1 loop-size arrangement. We measured the thermal stability, TM, of the K(+)-stabilized Pu22-T12T13 G-quadruplex as a function of stabilizing K(+) ions and nonstabilizing Cs(+) and TMA(+) ions. The thermal stability, TM, of the Pu22-T12T13 G-quadruplex increases with the concentration of the stabilizing potassium ions, while it sharply decreases upon the addition of the nonstabilizing cations. We interpret these results as underscoring the opposing effects of internal binding and counterion condensation on the stability of the Pu22-T12T13 G-quadruplex. While centrally bound ions stabilize the G-quadruplex conformation, counterion condensation destabilizes it, favoring the coil conformation. From the initial slopes of the dependences of TM on the concentration of Cs(+) and TMA(+) cations, we estimate that the deleterious effect of counterion condensation stems from roughly one extra counterion associated with the coil relative to the G-quadruplex state of Pu22-T12T13. The reduced accumulation of counterions around the G-quadruplex state of Pu22-T12T13 relative to its coil state is due to the low surface charge density of the G-quadruplex reflecting its structural characteristics. On the basis of the analysis of our data along with the results of a previous study, we propose that the differential effect of internally (stabilizing) and externally (destabilizing) bound cations may be a general feature of parallel intramolecular G-quadruplexes. PMID:27196695

  9. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES

    International Nuclear Information System (INIS)

    OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n ∼ 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P(prime) and the associated large edge bootstrap current density JBS. the interplay between P(prime) and JBS as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because JBS is reduced

  10. SOME ASPECTS REGARDING MEANING OF INTERMEDIATE MANAGEMENT BALANCES

    Directory of Open Access Journals (Sweden)

    ILIE RĂSCOLEAN

    2014-10-01

    Full Text Available This paper presents some aspects regarding intermediate management balances as a pay instrument of production factors and financing future activities. Paper debate intermediate management balances determination and interpretation.

  11. Intermediate depth seismicity - a reflection seismic approach

    Science.gov (United States)

    Haberland, C.; Rietbrock, A.

    2004-12-01

    During subduction the descending oceanic lithosphere is subject to metamorphic reactions, some of them associated with the release of fluids. It is now widely accepted, that these reactions and associated dehydration processes are directly related with the generation of intermediate depth earthquakes (dehydration embrittlement). However, the structure of the layered oceanic plate at depth and the location of the earthquakes relative to structural units of the subducting plate (sources within the oceanic crust and/or in the upper oceanic mantle lithosphere?) are still not resolved yet. This is in mainly due to the fact that the observational resolution needed to address these topics (in the range of only a few kilometers) is hardly achieved in field experiments and related studies. Here we study the wavefields of intermediate depth earthquakes typically observed by temporary networks in order to assess their high-resolution potential in resolving structure of the down going slab and locus of seismicity. In particular we study whether the subducted oceanic Moho can be detected by the analysis of secondary phases of local earthquakes (near vertical reflection). Due to the irregular geometry of sources and receivers we apply an imaging technique similar to diffraction stack migration. The method is tested using synthetic data both based on 2-D finite difference simulations and 3-D kinematic ray tracing. The accuracy of the hypocenter location and onset times crucial for the successful application of stacking techniques (coherency) was achieved by the use of relatively relocated intermediate depth seismicity. Additionally, we simulate the propagation of the wavefields at larger distance (wide angle) indicating the development of guided waves traveling in the low-velocity waveguide associated with the modeled oceanic crust. We also present application on local earthquake data from the South American subduction zone.

  12. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates.

    Science.gov (United States)

    Kiviaho, Jenny K; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa; Kostiainen, Mauri A

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications. PMID:27219684

  13. Cesium ionophore II as an extraordinarily effective macrocyclic receptor for the barium cation

    Science.gov (United States)

    Makrlík, Emanuel; Böhm, Stanislav; Vaňura, Petr

    2015-02-01

    On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ba2+(aq) + 2ClO4-(aq) + 1(nb) ⇄ 1·Ba2+(nb) + 2ClO4- (nb) occurring in the two-phase water-nitrobenzene system (1 = cesium ionophore II; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log Kex (1·Ba2+, 2ClO4-) = 3.4 ± 0.1. Further, the extremely high stability constant of the 1·Ba2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Ba2+) = 16.7 ± 0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the cationic complex species 1·Ba2+ was derived. In the resulting 1·Ba2+ complex, the "central" cation Ba2+ is bound by four very strong bonding interactions to the respective four oxygen atoms of the parent receptor 1. The interaction energy, E(int), of the considered 1·Ba2+ complex was found to be -1050.4 kJ/mol, confirming also the formation of this significant complex.

  14. Lithium ionophore VIII as an extraordinarily effective receptor for the strontium cation: Experimental and theoretical study

    Science.gov (United States)

    Makrlík, Emanuel; Novák, Vít; Vaňura, Petr; Bouř, Petr

    2014-03-01

    From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Sr2+(aq) + 2A-(aq) + 1(nb) ⇔ 1ṡSr2+(nb) + 2A-(nb) taking place in the two-phase water-nitrobenzene system (A- = picrate, 1 = lithium ionophore VIII; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log Kex (1ṡSr2+, 2A-) = 7.8 ± 0.1. Further, the extremely high stability constant of the 1ṡSr2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1ṡSr2+) = 16.9 ± 0.1. Finally, by using DFT calculations, the most probable structure of the cationic complex species 1ṡSr2+ was derived. In the resulting complex, the "central" cation Sr2+ is bound by six very strong bond interactions to the corresponding six oxygen atoms of the parent ligand 1; the interaction energy of this complex was found to be -959.9 kJ/mol.

  15. Nanoparticles of cationic chimeric peptide and sodium polyacrylate exhibit striking antinociception activity at lower dose.

    Science.gov (United States)

    Gupta, Kshitij; Singh, Vijay P; Kurupati, Raj K; Mann, Anita; Ganguli, Munia; Gupta, Yogendra K; Singh, Yogendra; Saleem, Kishwar; Pasha, Santosh; Maiti, Souvik

    2009-02-20

    The current study investigates the performance of polyelectrolyte complexes based nanoparticles in improving the antinociceptive activity of cationic chimeric peptide-YFa at lower dose. Size, Zeta potential and morphology of the nanoparticles were determined. Size of the nanoparticles decreases and zeta potential increases with concomitant increase in charge ratio (Z(+/-)). The nanoparticles at Z(+/-)12 are spherical with 70+/-7 nm diameter in AFM and displayed positive surface charge and similar sizes (83+/-8 nm) by Zetasizer. The nanoparticles of Z(+/-) 12 are used in this study. Cytotoxicity by MTT assay on three different mammalian cell lines (liver, neuronal and kidney) revealed lower toxicity of nanoparticles. Hematological parameters were also not affected by nanoparticles compared to normal counts of water treated control group. Nanoparticles containing 10 mg/kg YFa produced increased antinociception, approximately 36%, in tail-flick latency test in mice, whereas the neat peptide at the same concentration did not show any antinociception activity. This enhancement in activity is attributed to the nanoparticle associated protection of peptide from proteolytic degradation. In vitro peptide release study in plasma also supported the antinociception profile of nanoparticles. Thus, our results suggest of a potential nanoparticle delivery system for cationic peptide drug candidates for improving their stability and bioavailability. PMID:19014986

  16. Cationic Nanoemulsions as a Gene Delivery System: Proof of Concept in the Mucopolysaccharidosis I Murine Model.

    Science.gov (United States)

    Fraga, Michelle; de Carvalho, Talita Giacomet; Diel, Dirnete da Silva; Kretzmann Filho, Nélson Alexandre; Teixeira, Helder Ferreira; Matte, Ursula

    2015-01-01

    Mucopolysaccharidosis I (MPS I) is an autosomal recessive lysosomal storage disease due to deficient a-L-iduronidase (IDUA) activity. It results in the accumulation of the glycosaminoglycans (GAGs) heparan and dermatan sulfate and leads to several clinical manifestations. This study describes the use of cationic nanoemulsions as a non-viral carrier for the plasmid named pIDUA, which has the gene that encodes for the IDUA enzyme. Cationic nanoemulsions, composed by a medium chain triglycerides oil core stabilized by DOTAP, DOPE and DSPE-PEG, were prepared by high pressure homogeneization. pIDUA was complexed with nanoemulsions in the end of manufacturing process. Physicochemical properties of complexes were influenced by the charge ratio used. From a charge ratio of +2/-, it was observed a total complexation of pIDUA with formulation as well as a protection of plasmid against DNAse I digestion. In vitro assay in fibroblasts of one MPS I patient presented greater and significant trasfection efficiency for pIDUA complexed to formulation in the +4/- charge ratio. This formulation was administered via the tail vein and the portal vein. Animals were compared to untreated MPS I mice. Transfection efficiency was measured as IDUA enzyme activity. After intravenous administration, IDUA activity was significantly higher in lungs and liver. The set of results shows the formulation obtained at the +4/- charge ratio as a promising non-viral gene delivery system, once showed increased enzyme activity both in vitro and in vivo. PMID:26328445

  17. Preparation and Properties of the Heteropolyoxometalates of Large Organic Cation with Molybdotungstosilicic Acids

    Institute of Scientific and Technical Information of China (English)

    WANG Dunjia; FANG Zhengdong; WEI Xianhong

    2008-01-01

    Some new heteropolyoxometalates of large organic cations with molybdotungstosilicic acids (general formula: (CTMA)4SiMoxW12-xO40·mH20·nDMF, x=0,2,4,6,8,10,12) were prepared by the reaction of cetyltrimethylammonium bromide (CTMAB,C16H33N(CH3)3Br) with H4SiMoxW12-xO40(x=0,2,4,6,8,10,12)in aqueous solution and recrystallization in DMF, and characterized by elemental analysis, IR spectra,TG-DTA and XRD techniques. The IR spectrum confirms the presence of Keggin structure and organic cations in these compounds, and it is indicated that the stretching vibration of the M-Od, M-Ob-M and Si-Oa becomes more red-shifted when molybdenum is gradually substituted for the tungsten atom. In particular, the thermal decomposition of the heteropolyoxometalates was studied in nitrogen atmosphere. The TG-DTA curves show that their thermal behaviors not only contain the release of water molecule, DMF molecule, CTMA and its fragments but also contains simultaneous collapse of Keggin anion. Their end products of the thermal decomposition are the mixture of WO3, MoO3 and SiO2. And from the final decomposition temperature of view, it is found that the thermal stability of these compounds gradually is decreased when the number of molybdenum atoms is increased.

  18. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    CERN Document Server

    Zhen, Junfeng; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7-20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species be...

  19. Reducing the Cation Exchange Capacity of Lithium Clay to Form Better Dispersed Polymer-Clay Nanocomposites

    Science.gov (United States)

    Liang, Maggie

    2004-01-01

    Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.

  20. THEORIES REGARDING FINANCIAL INTERMEDIATION AND FINANCIAL INTERMEDIARIES – A SURVEY

    OpenAIRE

    2009-01-01

    In this paper we propose to make a presentation of the main theories on financial intermediation and financial intermediaries. Modern theory of financial intermediation examine the main functions of financial intermediation, how the financial intermediation affect the economy as a whole and the effects of government policies on financial intermediaries. We will focus on issues of function of financial intermediaries, such as reduction of transaction costs, liquidity provision, information pro...

  1. Financial Intermediation, Variability and the Development Process

    OpenAIRE

    Carranza, L. (Luis); Galdón-Sánchez, J.E. (José E.)

    2002-01-01

    In this paper we build a model of financial intermediation that explains the GDP variability pattern of an economy during the development process. We find evidence that per capita output is more volatile in middle-income economies than in both low and high-income economies. We show that, if the model economy is in the early or in the mature stages of development, there is a unique equilibrium. However, in the middle stages of development, multi-ple equilibria arise. Moreover, we find that in ...

  2. The intermediate age open cluster NGC 2660

    CERN Document Server

    Sandrelli, S; Tosi, M P; Marconi, G

    1999-01-01

    We present CCD UBVI photometry of the intermediate old open cluster NGC2660, covering from the red giants region to about seven magnitudes below the main sequence turn-off. Using the synthetic Colour - Magnitude Diagram method, we estimate in a self-consistent way values for distance modulus ((m-M)0 ~= 12.2), reddening (E(B-V) ~= 0.40), metallicity ([Fe/H] about solar), and age (age ~ 1 Gyr). A 30% population of binary stars turns out to be probably present.

  3. The aftermath of the intermediate value theorem

    Directory of Open Access Journals (Sweden)

    Morales Claudio H

    2004-01-01

    Full Text Available The solvability of nonlinear equations has awakened great interest among mathematicians for a number of centuries, perhaps as early as the Babylonian culture (3000–300 B.C.E.. However, we intend to bring to our attention that some of the problems studied nowadays appear to be amazingly related to the time of Bolzano's era (1781–1848. Indeed, this Czech mathematician or perhaps philosopher has rigorously proven what is known today as the intermediate value theorem, a result that is intimately related to various classical theorems that will be discussed throughout this work.

  4. The aftermath of the intermediate value theorem

    Directory of Open Access Journals (Sweden)

    Claudio H. Morales

    2004-08-01

    Full Text Available The solvability of nonlinear equations has awakened great interest among mathematicians for a number of centuries, perhaps as early as the Babylonian culture (3000–300 B.C.E.. However, we intend to bring to our attention that some of the problems studied nowadays appear to be amazingly related to the time of Bolzano's era (1781–1848. Indeed, this Czech mathematician or perhaps philosopher has rigorously proven what is known today as the intermediate value theorem, a result that is intimately related to various classical theorems that will be discussed throughout this work.

  5. Thermoelectric power generator with intermediate loop

    Science.gov (United States)

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  6. Observational constraints on dual intermediate inflation

    CERN Document Server

    Barrow, John D; Magueijo, João

    2014-01-01

    We explore the observational implications of models of intermediate inflation driven by modified dispersion relations, specifically those representing the phenomenon of dimensional reduction in the ultraviolet limit. These models are distinct from the standard ones because they do not require violations of the strong energy condition, and this is reflected in their structure formation properties. We find that they can naturally accommodate deviations from exact scale-invariance. They also make clear predictions for the running of the spectral index and tensor modes, rendering the models straightforwardly falsifiable. We discuss the observational prospects for these models and the implications these may have for quantum gravity scenarios.

  7. Ligand Intermediates in Metal-Catalyzed Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  8. q-Gamow States for intermediate energies

    CERN Document Server

    Plastino, A; Zamora, D J

    2016-01-01

    In a recent paper [Nuc. Phys. A {\\bf 948}, (2016) 19] we have demonstrated the possible existence of Tsallis' q-Gamow states. Now, accelerators' experimental evidence for Tsallis' distributions has been ascertained only at very high energies. Here, instead, we develop a different set of q-Gamow states for which the associated q-Breit-Wigner distribution could easily be found at intermediate energies, for which accelerators are available at many locations. In this context, it should be strongly emphasized [Physica A {\\bf 388} (2009) 601] that, empirically, one never exactly and unambiguously "detects" pure Gaussians, but rather q-Gaussians. A prediction is made via Eq.(3.30)

  9. Double photoionization of He at intermediate energies

    International Nuclear Information System (INIS)

    The ratio of double-to-single ionization of He has been measured between 280 and 1210 eV to investigate its behavior in this partially unexplored region. These measurements, compared with the most recent theories of Pan and Kelly (private communication) and of Hino, show the importance of including not only ground state but also final state correlations, in contrast to the high-energy behavior discussed by Dalgarno and Sadeghpour where consideration of final-state correlations proves inessential. The author's intermediate-energy results also appear to indicate the importance of including higher-order effects in the theory

  10. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  11. [Intermediate energy nuclear physics]: Technical progress report

    International Nuclear Information System (INIS)

    This report summarizes work carried out between October 1, 1987 and August 1, 1988 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under Contract DE-FG02-86ER40269 with the United States Department of Energy. The contract supports experimental work in intermediate energy nuclear physics. The experimental program is very broadly based, ranging from pion-nucleon studies at TRIUMF, to inelastic pion scattering and charge exchange reactions at LAMPF, to nucleon charge exchange at LAMPF/WNR and to electron scattering at NIKHEF. In addition, a number of other topics related to accelerator physics are described in this report

  12. Intermediate form of osteopetrosis with recessive inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Kaibara, N.; Katsuki, I.; Hotokebuchi, T.; Takagishi, K.

    1982-11-01

    The clinical and radiographic features of the intermediate form of osteopetrosis in two sibs are presented in which the disorder appears to have been inherited as a recessive trait. Although this form of osteopetrosis has been poorly delineated, its recognition is practically important in order to give an accurate prognosis. This paper also presents an unusual complication of bilateral avascular necrosis of the femoral head in the younger sib. Radiographic changes of the femoral heads suggest those of Legg-Calve-Perthes disease, though the possibility of avascular necrosis following unrecognized femoral neck fracture is not completely excluded.

  13. The discovery of the intermediate vector bosons

    International Nuclear Information System (INIS)

    The discovery of the intermediate vector bosons in 1983 at CERN marked the culmination of a long effort to unify the theory of weak and electromagnetic forces. Here a brief outline of development of the electroweak theory which unifies these forces is given first. Its essential feature is the prediction of the existence of the W+- and Z0 bosons with rest masses of about ninety times the proton mass and lifetimes around 10-24s. Then the experimental methods used at CERN to produce and to detect these very massive and short-lived particles are described. (author)

  14. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Pederson, L.R.; Stevenson, J.W.; Raney, P.E. [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    The phase stability and sintering behavior of materials used in SOFCs has been evaluated. The sintering behavior of Ca and Sr doped lanthanum. manganite (the preferred SOFC cathode material) is highly dependent on the relative proportion of A and B site cations in the material. Ca and Sr doped lanthanum chromite (the preferred interconnect material) have been shown to rapidly expand in reducing atmospheres at temperatures as low as 700{degrees}C. This expansion is due to the reduction of Cr{sup 4+} to Cr{sup 3+} in reducing environments.

  15. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling.

    Science.gov (United States)

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H

    2016-01-01

    In the past few years, the meteoric development of hybrid organic-inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3(+)) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials' constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3(+), CH3SH2(+), and SH3(+) cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies. PMID:27457130

  16. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    Science.gov (United States)

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-07-01

    In the past few years, the meteoric development of hybrid organic–inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies.

  17. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling

    Science.gov (United States)

    El-Mellouhi, Fedwa; Bentria, El Tayeb; Rashkeev, Sergey N.; Kais, Sabre; Alharbi, Fahhad H.

    2016-07-01

    In the past few years, the meteoric development of hybrid organic-inorganic perovskite solar cells (PSC) astonished the community. The efficiency has already reached the level needed for commercialization; however, the instability hinders its deployment on the market. Here, we report a mechanism to chemically stabilize PSC absorbers. We propose to replace the widely used methylammonium cation (CH3NH3+) by alternative molecular cations allowing an enhanced electronic coupling between the cation and the PbI6 octahedra while maintaining the band gap energy within the suitable range for solar cells. The mechanism exploits establishing a balance between the electronegativity of the materials’ constituents and the resulting ionic electrostatic interactions. The calculations demonstrate the concept of enhancing the electronic coupling, and hence the stability, by exploring the stabilizing features of CH3PH3+, CH3SH2+, and SH3+ cations, among several other possible candidates. Chemical stability enhancement hence results from a strong, yet balanced, electronic coupling between the cation and the halides in the octahedron. This shall unlock the hindering instability problem for PSCs and allow them to hit the market as a serious low-cost competitor to silicon based solar cell technologies.

  18. Responsive Aqueous Foams Stabilized by Silica Nanoparticles Hydrophobized in Situ with a Conventional Surfactant.

    Science.gov (United States)

    Zhu, Yue; Pei, Xiaomei; Jiang, Jianzhong; Cui, Zhenggang; Binks, Bernard P

    2015-12-01

    In the recent past, switchable surfactants and switchable/stimulus-responsive surface-active particles have been of great interest. Both can be transformed between surface-active and surface-inactive states via several triggers, making them recoverable and reusable afterward. However, the synthesis of these materials is complicated. In this paper we report a facile protocol to obtain responsive surface-active nanoparticles and their use in preparing responsive particle-stabilized foams. Hydrophilic silica nanoparticles are initially hydrophobized in situ with a trace amount of a conventional cationic surfactant in water, rendering them surface-active such that they stabilize aqueous foams. The latter can then be destabilized by adding equal moles of an anionic surfactant, and restabilized by adding another trace amount of the cationic surfactant followed by shaking. The stabilization-destabilization of the foams can be cycled many times at room temperature. The trigger is the stronger electrostatic interaction between the oppositely charged surfactants than that between the cationic surfactant and the negatively charged particles. The added anionic surfactant tends to form ion pairs with the cationic surfactant, leading to desorption of the latter from particle surfaces and dehydrophobization of the particles. Upon addition of another trace amount of cationic surfactant, the particles are rehydrophobized in situ and can then stabilize foams again. This principle makes it possible to obtain responsive surface-active particles using commercially available inorganic nanoparticles and conventional surfactants.

  19. Long G2 accumulates recombination intermediates and disturbs chromosome segregation at dysfunction telomere in Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Ahmed G.K.; Masuda, Kenta; Yukawa, Masashi; Tsuchiya, Eiko [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ueno, Masaru, E-mail: scmueno@hiroshima-u.ac.jp [Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2015-08-14

    Protection of telomere (Pot1) is a single-stranded telomere binding protein which is essential for chromosome ends protection. Fission yeast Rqh1 is a member of RecQ helicases family which has essential roles in the maintenance of genomic stability and regulation of homologous recombination. Double mutant between fission yeast pot1Δ and rqh1 helicase dead (rqh1-hd) maintains telomere by homologous recombination. In pot1Δ rqh1-hd double mutant, recombination intermediates accumulate near telomere which disturb chromosome segregation and make cells sensitive to microtubule inhibitors thiabendazole (TBZ). Deletion of chk1{sup +} or mutation of its kinase domain shortens the G2 of pot1Δ rqh1-hd double mutant and suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of that double mutant. In this study, we asked whether the long G2 is the reason for the TBZ sensitivity of pot1Δ rqh1-hd double mutant. We found that shortening the G2 of pot1Δ rqh1-hd double mutant by additional mutations of wee1 and mik1 or gain of function mutation of Cdc2 suppresses both the accumulation of recombination intermediates and the TBZ sensitivity of pot1Δ rqh1-hd double mutant. Our results suggest that long G2 of pot1Δ rqh1-hd double mutant may allow time for the accumulation of recombination intermediates which disturb chromosome segregation and make cells sensitive to TBZ. - Ηighlights: • We show link between long G2 and accumulation of toxic recombination intermediates. • Accumulation of recombination intermediates at telomere results in TBZ sensitivity. • Activation of DNA damage checkpoint worsens cells' viability in presence of TBZ.

  20. 22 CFR 140.10 - Intermediate credit institutions.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Intermediate credit institutions. 140.10... TRAFFICKERS Enforcement § 140.10 Intermediate credit institutions. (a) Treatment as non-governmental entity or as a foreign government entity. Intermediate credit institutions (“ICIs”) shall be subject to...