WorldWideScience

Sample records for cationic diblock copolymer

  1. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    Science.gov (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  2. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Rati Ranjan; Yamada, Tasuku; Matsuoka, Hideki, E-mail: ratiranjan@immt.res.in, E-mail: matsuoka@star.polym.kyoto-u.ac.jp [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2011-09-19

    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  3. Neutral, anionic, cationic, and zwitterionic diblock copolymers featuring poly(2-methoxyethyl acrylate) hydrophobic segments

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Amphiphilic diblock copolymers incorporating hydrophobic poly(2-methoxyethyl acrylate) (PMEA) and hydrophilic neutral poly(ethylene glycol) monomethyl ether (mPEG), anionic poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA), cationic poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), and ...

  4. Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuzhao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Miaomiao [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada); Zheng, Anna [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining, E-mail: hxiao@unb.ca [Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3 (Canada)

    2014-10-01

    A water-soluble cationic diblock copolymer, CD-PAM-b-PMeDMA, was synthesized through atom transfer radical polymerization (ATRP) from a β-cyclodextrin (CD) macroinitiator with 10-active sites (10Br-β-CD). In order to reduce the cytotoxicity of the CD-PAM-b-PMeDMA, biocompatible polyacrylamide (PAM) was first introduced onto the surface of β-CD as a scaffold structure by ATRP using the 10Br-β-CD as a macroinitiator. The reaction conditions of AM were explored and optimized. The ATRP of [2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (MeDMA) was also performed to synthesize the second cationic block using the resulting CD-PAM as a macroinitiator. The resulting diblock copolymer shows an increased hydrodynamic radius in aqueous solution with a pretty low concentration compared with β-CD. In addition, it appears a near-uniform coniform after being deposited on mica ascribed to the presence of an asymmetric 10-arm structure. - Highlights: • A 10-arm diblock polymer was prepared by ATRP for the potential use as a non-viral gene delivery. • PAM was first synthesized in a controlled manner considering its biocompatibility. • The hydrodynamic radius of the copolymer in aqueous solution increase to 130 nm from 7.5 nm of CD. • The copolymer appears coniform after deposited on mica surface due to the charge attraction.

  5. Aggregation Behaviour of Cationic Diblock Copolymer (MTAC)10(BA)16: MesoDyn Simulation Study

    Institute of Scientific and Technical Information of China (English)

    CAO Xiao-Rong; TAN Ye-Bang; XU Gui-Ying

    2007-01-01

    The aggregation behaviour of an amphiphilic cationic block copolymer (MTAC)10(BA)16 in aqueous solution is investigated by MesoDyn simulation. Simulation results show that (MTAC)10(BA)16 can form spherical, irregular and network aggregates with the increasing volume fraction. The time evolution of order parameter shows that the process of aggregate formation can be divided into diffusion control stage and hydrophobic interaction control stage, while the time evolution of energy indicates that the aggregate formation is driven by enthalpy but not entropy. The order parameter of the hydrophobic blocks BA increases with the increasing (MTAC)10(BA)16 concentration, while the time needed for system balance has the contrary trend.

  6. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water.

    Science.gov (United States)

    Ohno, Sayaka; Ishihara, Kazuhiko; Yusa, Shin-Ichi

    2016-04-26

    A random copolymer (p(A/MaU)) of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and sodium 11-methacrylamidoundecanate (MaU) was prepared via conventional radical polymerization, which formed a unimer micelle under acidic conditions due to intramolecular hydrophobic interactions between the pendant undecanoic acid groups. Under basic conditions, unimer micelles were opened up to an expanded chain conformation by electrostatic repulsion between the pendant sulfonate and undecanoate anions. A cationic diblock copolymer (P163M99) consisting of poly(3-(methacrylamido)propyl)trimethylammonium chloride (PMAPTAC) and hydrophilic polybetaine, 2-(methacryloyloxy)ethylphosphorylcholine (MPC), blocks was prepared via controlled radical polymerization. Mixing of p(A/MaU) and P163M99 in 0.1 M aqueous NaCl under acidic conditions resulted in the formation of spherical polyion complex (PIC) micelles and vesicles, depending on polymer concentration before mixing. Shapes of the PIC micelles and vesicles changed under basic conditions due to collapse of the charge balance between p(A/MaU) and P163M99. The PIC vesicles can incorporate nonionic hydrophilic guest molecules, and the PIC micelles and vesicles can accept hydrophobic guest molecules in the hydrophobic core formed from p(A/MaU).

  7. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which...

  8. Composition fluctuations in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Mortensen, K.; Almdal, K.

    2000-01-01

    The thermal composition fluctuations of a deuterogenous polystyrene/polyethyleneoxide (dPS/PEO) homopolymer blend and corresponding diblock copolymer have been investigated by small angle neutron scattering (SANS). The measured susceptibilities could be described by theories, which take strong...

  9. Molecular Exchange in Ordered Diblock Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  10. Micellar structure of amphiphilic poly(2-oxazoline) diblock copolymers

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Ivanova, R.; Lüdtke, K.

    2007-01-01

    Amphiphilic diblock copolymers from poly(2-oxazoline)s in aqueous solution can form micelles. By means of small-angle neutron scattering, we have found that poly[(n-nonyl-2-oxazoline)-b-(methyl-2-oxazoline)] {P[(NOx)-b-(MOx)]} diblock copolymers in aqueous solution form micelles of core-shell type....... We have determined the core radius and the shell thickness of the micelles. Comparing the values obtained to the stretched lengths of the blocks leads to the conclusion that the P(NOx) core blocks are stretched, whereas the P(MOx) shell blocks are coiled....

  11. Relaxation processes in a lower disorder order transition diblock copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora, E-mail: aurora.nogales@csic.es [Instituto de Estructura de la Materia, IEM-CSIC. C/ Serrano 121, Madrid 28006 (Spain); Hernández, Rebeca [Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC. C/ Juan de la Cierva 3, Madrid 28006 (Spain); Sprung, Michael [Petra III at DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  12. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.;

    1997-01-01

    contribution of the Flory-Huggins parameter at larger pressure fields. This gives rise to a shift of the phase boundaries to higher temperatures and to a strong reduction of the Ginzburg parameter. Diblock copolymers show a different behavior. Neither the entropic term of the Flory-Huggins parameter nor...

  13. Unexpected phase behavior of an asymmetric diblock copolymer

    DEFF Research Database (Denmark)

    Papadakis, Christine Maria; Almdal, Kristoffer; Mortensen, Kell;

    1999-01-01

    We report on measurements of the transmitted depolarized light intensity and on small-angle neutron scattering (SANS) measurements on a compositionally asymmetric poly(ethylene propylene)-poly(dimethylsiloxane) diblock copolymer studied in the bulk. SANS measurements were made both on isotropic a...

  14. Structural study of symmetric diblock copolymer thin films

    DEFF Research Database (Denmark)

    Gadegaard, Nikolaj

    2000-01-01

    Thin diblock copolymer film have been investigated by x-ray and neutron reflectivity as well as small angle x-ray and neutron scattering. Two model systems have been investigated. PS-PDMS (25 kg/mol-25 kg/mol), which has a glass transition temperature ofca. 100 deg.C for the PS-block. This means...

  15. Macroscopic lamellae orientations of diblock copolymer induced by dynamic shear

    Institute of Scientific and Technical Information of China (English)

    张红东; 杨玉良

    1997-01-01

    Computer simulation based on the coupled map lattices has been carried out for morphologies of the diblock copolymeric system under applied periodic shear deformation.The main effort is concentrated on the influence of pre-annenling history on the lamellae orientations in dynamically sheared diblock copolymers.It is found that whatever the quenching temperature is,the perpendicular orientation (i.e.the lamellae normal is parallel to the vorticity axis) is always observed if the dynamic shear deformation with shear amplitude F=1.0 and reduced shear frequency=0.005 is applied during annealing.In contrast to that,the parallel orientation (i.e.the lamellae normal is parallel to the velocity gradient direction) is observed if the dynamic shear with the same amplitude and frequency is applied to a thoroughly annealed (with the annealing time t>4 000) diblock copolymer.Therefore,it is pointed out that the selection of lamellar orientations in dynamically sheared diblock copolymers is not solely dependent on th

  16. Numerical investigation of local defectiveness control of diblock copolymer patterns

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2016-09-01

    Full Text Available We numerically investigate local defectiveness control of self-assembled diblock copolymer patterns through appropriate substrate design. We use a nonlocal Cahn-Hilliard (CH equation for the phase separation dynamics of diblock copolymers. We discretize the nonlocal CH equation by an unconditionally stable finite difference scheme on a tapered trench design and, in particular, we use Dirichlet, Neumann, and periodic boundary conditions. The value at the Dirichlet boundary comes from an energy-minimizing equilibrium lamellar profile. We solve the resulting discrete equations using a Gauss-Seidel iterative method. We perform various numerical experiments such as effects of channel width, channel length, and angle on the phase separation dynamics. The simulation results are consistent with the previous experimental observations.

  17. Amphiphilic diblock copolymers for molecular recognition

    OpenAIRE

    Nehring, Rainer

    2009-01-01

    In this thesis, the synthesis and the characterization of poly(butadiene)-blockpoly( ethylene oxide) copolymers with terminal Me2+-NTA groups (copper or nickel) is described for the first time. A convenient “one-pot” procedure that allows control over the individual block lengths of the copolymer and the end-group functionalization was successfully established. The formation of the metal-polymer complex has been confirmed by EPR and UV/VIS spectroscopy. Mixing of the Ni2+-NT...

  18. Universality between Experiment and Simulation of a Diblock Copolymer Melt

    Science.gov (United States)

    Beardsley, Thomas M.; Matsen, Mark W.

    2016-11-01

    The equivalent behavior among analogous block copolymer systems involving chemically distinct molecules or mathematically different models has long hinted at an underlying universality, but only recently has it been rigorously demonstrated by matching results from different simulations. The profound implication of universality is that simple coarse-grained models can be calibrated so as to provide quantitatively accurate predictions to experiment. Here, we provide the first compelling demonstration of this by simulating a polyisoprene-polylactide diblock copolymer melt using a previously calibrated lattice model. The simulation successfully predicts the peak in the disordered-state structure function, the position of the order-disorder transition, and the latent heat of the transition in excellent quantitative agreement with experiment. This could mark a new era of precision in the field of block copolymer research.

  19. Morphology of diblock copolymers under confinement

    Science.gov (United States)

    Ackerman, David; Ganapathysubramanian, Baskar

    The structure adopted by polymer chains is of particular intrest for materials design. In particular, a great deal of effort has been made to study diblock polymers due to the importance they have in industrial applications. The bulk structure of most systems has been the most widely studied. However, when under the effect of confinement, the polymer chains are forced to adopt structures differing from the familiar bulk phases. As many applications utilize polymers in sizes and shapes that lead to these non bulk structures, the confinement effects are important. A commonly used tool for computationally determining structures is the continuum self consistant field theory (SCFT). We discuss our highly scalable parallel framework for SCFT using real space methods (finite element) that is especially well suited to modelling complex geometries. This framework is capable of modeling both Gaussian and worm like chains. We illustate the use of the software framework in determining structures under varying degrees of confinement. We detail the method used and present selected results from a systematic study of confinement using arbitrary structures.

  20. MICELLAR PARAMETERS OF DIBLOCK COPOLYMERS AND THEIR INTERACTIONS WITH IONIC SURFACTANTS

    Institute of Scientific and Technical Information of China (English)

    Noor Rehman; Abbas Khan; Iram Bibi; Mohammad Siddiq

    2012-01-01

    The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene) (E39B18) with anionic surfactant sodium dodecyl sulphate (SDS) and cationic surfactant hexadecyltrimethylammonium bromide (CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration (CMC) and thereby the free energy of micellization (AGmic),free energy of adsorption (AGads),surface excess concentration (F) and minimum area per molecule (A).Conductivity measurements were used to determine the critical micelle concentration (CMC),critical aggregation concentration (CAC),polymer saturation point (PSP),degree of ionization (α) and counter ion binding (β).Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks (I1/I13) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number (N),number of binding sites (n) and free energy of binding (AGb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.

  1. Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle dynamics

    Institute of Scientific and Technical Information of China (English)

    FENG Jian; HUANG Yongmin; LIU Honglai; HU Ying

    2007-01-01

    Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication.Unfortunately,the ordered structure only exists at micrometerscale areas,which precludes its use in many advanced applications.To overcome this disadvantage,the diblock copolymer confined in a restricted system with a patterned surface is proved to be an effective means to prohibit the formation of defects and obtain perfect ordered domains.In this work,the morphologies of a thin film of diblock copolymer confined between patterned and neutral surfaces were studied by dissipative particle dynamics.It is shown that the morphology of the symmetric diblock copolymer is affected by the ratio of the pattern period on the surface to the lamellar period of the symmetric diblock copolymer and by the repulsion parameters between blocks and wall particles.To eliminate the defects in the lamellar phase,the pattern period on the surface must match the lamellar period.The difference in the interface energy of different compartments of the pattern should increase with increasing film thickness.The pattern period on the surface has a scaling relationship with the chain length,which is the same as that between the lamellar period and the chain length.The lamellar period is also affected by the polydispersity of the symmetric diblock copolymer.The total period is the average of the period of each component multiplied by the weight of its volume ratio.The morphologies of asymmetric diblock copolymers are also affected by the pattern on the surface,especially when the matching period of the asymmetric diblock copolymer is equal to the pattern period,which is approximately equal to the lamellar period of a symmetric diblock copolymer with the same chain length.

  2. THE EFFECTS OF PATTERNED SURFACES ON THE PHASE SEPARATION FOR DIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Lin-li He; Lin-xi Zhang

    2009-01-01

    The phase behaviors of symmetric diblock copolymer thin films confined between two hard, parallel and diversified patterned surfaces are investigated by three-dimensional dissipative particle dynamics (DPD) simulations. The induction of diversified patterned surfaces on phase separation of symmetric diblock copolymer films in snapshots, density profiles and concentration diagrams of the simulated systems are presented. The phase separations can be controlled by the patterned surfaces. In the meantime, the mean-square end-to-end distance of the confined polymer chains (R2) is also discussed. Surface-induced phase separation for diblock copolymers can help us to create novel and controlled nanostructured materials.

  3. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    Science.gov (United States)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  4. Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers

    Science.gov (United States)

    2013-04-17

    chloroform solutions were then mixed with deionized water containing 0.1 wt % amphiphilic cationic surfactant (CTAB), emulsified by ultrasonication, and...This block copolymer solution was emulsified by ultrasonication in 15 mL of deionized water containing CTAB (Sigma-Aldrich, 0.1 wt %) as a

  5. Clear antismudge unimolecular coatings of diblock copolymers on glass plates.

    Science.gov (United States)

    Macoretta, Danielle; Rabnawaz, Muhammad; Grozea, Claudia M; Liu, Guojun; Wang, Yu; Crumblehulme, Alison; Wyer, Martin

    2014-12-10

    Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer. Investigated is the effect of varying the catalyst amount, polymer amount, as well as block copolymer type and composition on the structure, morphology, and oil- and water-repellency of the coatings. Under optimized conditions, the prepared coatings were optically clear and resistant to writing by a permanent marker. The marker's trace was the faintest on PFPO-b-PIPSMA coatings. In addition, the PFPO-b-PIPSMA coatings were far more wear-resistant than the PIPSMA-b-PFOEMA coatings.

  6. Crystalline free energies of micelles of diblock copolymer solutions

    CERN Document Server

    D'Adamo, Giuseppe; 10.1063/1.3509391

    2012-01-01

    We report a characterization of the relative stability and structural behavior of various micellar crystals of an athermal model of AB-diblock copolymers in solution. We adopt a previously devel- oped coarse-graining representation of the chains which maps each copolymer on a soft dumbbell. Thanks to this strong reduction of degrees of freedom, we are able to investigate large aggregated systems, and for a specific length ratio of the blocks f = MA/(MA + MB) = 0.6, to locate the order-disorder transition of the system of micelles. Above the transition, mechanical and thermal properties are found to depend on the number of particles per lattice site in the simulation box, and the application of a recent methodology for multiple occupancy crystals (B.M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)) is necessary to correctly define the equilibrium state. Within this scheme we have performed free energy calculations at two reduced density {\\rho}/{\\rho}\\ast = 4,5 and for several cubic structures as FCC,BCC,A1...

  7. Synthesis, Characterization and Photoinduction of Optical Anisotropy in Liquid Crystalline Diblock Azo-Copolymers

    DEFF Research Database (Denmark)

    Forcén, P; Oriol, L; Sánchez, C

    2007-01-01

    Diblock copolymers with polymethyl methacrylate and side chain liquid crystalline WC) azopolymethacrylate blocks were synthesized by atom transfer radical polymerization (ATRP). The azobeazene content in these copolymers ranges from 52 to 7 wt %. For an azo conteat dowri to 20% they exhibit a LC ...

  8. Adsorption of charged di-block copolymers : effect on colloidal stability.

    NARCIS (Netherlands)

    Israëls, R.

    1994-01-01

    In this thesis we present Scheutjens-Fleer (SF) calculations on the adsorption of diblock copolymers. More specifically, we restrict ourselves to adsorption at uncharged surfaces, while the specific type of block copolymers we consider have one uncharged adsorbing "anchor" block and one non-adsorbin

  9. Controlled self-assembly in homopolymer and diblock copolymer

    Science.gov (United States)

    Zhuang, Lei

    This thesis work studies the process, mechanism and control of self-assembly in homopolymers and diblock copolymers. These studies are aimed at finding novel patterning methods that can lead to low cost lithography technologies capable of creating micrometer to nanometer patterns over a large area. We first present a new phenomenon called Lithographically-Induced Self-Assembly (LISA) that can create ordered arrays of pillars in a homopolymer film with a mask placed close to its surface. We demonstrate that the shape, size and morphology of the ordered pillar arrays can be controlled with a patterned mask. A model is developed based on the instability in a fluidic film induced by the Coulomb force from charge accumulation in the polymer film and the mask. Experimental results are shown to support the model. We also investigate the behavior of defects that destroy the ordering of the LISA array and propose ways to prevent them. This self-assembly phenomenon is used as a patterning technique to define the active area of an organic light emitting diode (OLED). The device shows significantly improved lifetime due to the restriction of defect growth. Another patterning technology that is closely related to LISA, Lithographically-Induced Self-Construction (LISC), is also introduced. LISC can form mesas of polymer from the initial thin film and they inherit the shape and size of the mask patterns. A model based on the dynamics of LISA pillar formation and mass conservation is presented and provides a guideline for choosing LISC process parameters. In the final part of the thesis, we study a technique to control the orientation of diblock copolymer phase separation in a thin film by applying a pressure on the film through a flat mask. The result is a well-ordered grating pattern of the phase separation with a period of tens of nanometers. The effect of pressure and film thickness on the final pattern is investigated by experiments. We suggest that the increased ordering is

  10. Lamellae orientation in dynamically sheared diblock copolymer melts

    Science.gov (United States)

    Koppi, Kurt A.; Tirrell, Matthew; Bates, Frank S.; Almdal, Kristoffer; Colby, Ralph H.

    1992-11-01

    Two distinct lamellae orientaitons have been identified by small-angle neutron scattering (SANS) in dynamically sheared poly(ethylene-propylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer melts. Near the order-disorder transition temperature, Tto T_ODT, and at low shear frequencies, the lamellae arrange with unit normal perpendicular to the flow direction and parallel to the velocity gradient direction (parallel orientation). Higher frequency processing leads to lamellae with unit normal permendicular to both the flow and velocity gradient directions (perpendicular orientation). The crossover from low to high frequency behavior occurs at ω≈tau^{-1} where tau is the relaxation time for local domain deformations. At temperatures further from the ODT, Torientation is obtained at all shearing frequencies. Based on dynamic and steady shear rheological measurements we propose two mechanisms to account for these results. The perpendicular orientation is proposed to arise from shear-induced disordering, followed by reordering in the perpendicular direction due to the effect of vorticity. Parallel lamellae are believed to be a manifestation of defect mediated stress relaxation. These findings are supported by additional experiments on various other shear-oriented polyolefin diblock copolymers. Nous avons identifié, par diffusion de neutrons aux petits angles, deux orientation différentes des lamelles dans des échantillons de copolymères séquencés poly(éthylène-propylène)- poly(éthylétylène) (PEP-PEE) qui ont été cisaillés dynamiquement. A des températures proches de la transition ordre-désordre et aux fréquences de cisaillement faibles, la normale aux couches est perpendiculaire à la direction d'écoulement et parallèle au gradient de vitesse (orientation parllèle). Aux fréquences plus élevées, la normale est perpendiculaire à la direction d'écoulement et au gradient de vitesse (orientation perpendiculaire). Le changement d

  11. Non-Newtonian Behavior of Diblock and Triblock Copolymer Solutions

    Science.gov (United States)

    Watanabe, Hiroshi

    2006-03-01

    Non-Newtonian flow behavior was examined for butadiene-styrene (BS) diblock and BSB triblock copolymers dissolved in a S-selective solvent, dibutyl phthalate (DBP). Spherical domains of the non-solvated B blocks were arranged on a bcc lattice in both solutions at equilibrium, as revealed from SANS. The solutions exhibited significant thinning under steady flow, which was well correlated with the disruption of the bcc lattice detected with SANS. The lattice disruption was most prominent at a shear rate comparable to the frequency of B/S concentration fluctuation. For the BS/DBP solution, the recovery of the lattice structure after cessation of flow was the slowest for the most heavily disrupted lattice, as naturally expected. In contrast, for the BSB/DBP solution, the recovery rate was insensitive to the magnitude of lattice disruption. This peculiar behavior of the BSB solution suggests that the rate-determining step of the recovery in this solution is the transient B/S mixing required for reformation of the S bridges connecting the B domains.

  12. Synthesis of amphiphilic diblock copolymer for surface modification of Ethylene-Norbornene copolymers

    DEFF Research Database (Denmark)

    Levinsen, Simon; Svendsen, Winnie Edith; Horsewell, Andy

    2014-01-01

    The aim of this work is to produce polymer modifiers in order to develop hydrophilic polymeric surfaces for use in microfluidics. The use of hydrophilic polymers in microfluidics will have many advantages e.g. preventing protein absorbance. Here we present an amphiphilic diblock copolymer......-norbornene copolymer TOPAS. Through matching of the radius of gyration for the model polymer and TOPAS the miscibility was achieved. The poly(ethylene-1-butene) polymer was synthesized from a hydrogenated anionic polymerized polybutadiene polymer. As hydrophilic block poly(ethylene oxide) was subsequently added also...... with anionic polymerization. Recent miscibility results between the model polymer and TOPAS will be presented, as well ongoing efforts to study the hydrophilic surface....

  13. Spherical/gyroid phase diagram of the diblock copolymer in the median selective solvent

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effect of the median selective solution on the lamellar,spherical and gyroid structures is studied. The self-consistent field equations of the diblock copolymer solution are solved by using the reciprocal space method. It is shown that the spherical and gyroid phases have the lowest free energy in the certain range of the solution concentration. Furthermore,the phase diagram of the ordered structures in the diblock copolymer solution with the median selective solvent is calculated,which is consistent with the experimental results.

  14. STRUCTURE EVOLUTION OF THE CYLINDRICAL PHASE OF DIBLOCK COPOLYMERS IN FILMS

    Institute of Scientific and Technical Information of China (English)

    Hong-ge Tan; Zi-yu Wang; Wen-fang Zhu; Qing-gong Song; Hui Li; Cui-qin Bai

    2008-01-01

    In the weak segregation limit,the structure evolution of the hexagonal cylindrical phase of diblock copolymers in films was investigated.Employing the Landau-Brazovskii mean field theory,we obtained three amplitude parameters as functions of temperature,surface field strength and film thickness.By controlling confinement size and surface field strength,lamellae and undulated lamellae appear in the cylindrical bulk phase of diblock copolymers."Phase diagrams" of confinement-induced structures are constructed at different surface field strengths.The obtained theoretical results are in agreement with relevant theoretical and experimental results.

  15. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Kyle T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  16. Chiral imprinting of diblock copolymer single-chain particles.

    Science.gov (United States)

    Njikang, Gabriel; Liu, Guojun; Hong, Liangzhi

    2011-06-07

    This Article reports the molecular imprinting of polymer single-chain particles that have a radius ∼3.7 nm. For this, the template L-phenylalanine anilide or L-ΦAA and a diblock copolymer PtBA-b-P(CEMA-r-CA) were used. Here, PtBA denotes poly(tert-butyl acrylate), and P(CEMA-r-CA) denotes a random block consisting of cinnamoyloxyethyl methacrylate (CEMA) and carboxyl-bearing (CA) units. In CHCl(3)/cyclohexane (CHX) with 64 vol % of CHX or at f(CHX) = 64%, a block-selective solvent for PtBA, PtBA-b-P(CEMA-r-CA) formed spherical micelles. The core consisted of the insoluble P(CEMA-r-CA) block and L-ΦAA, which complexed with the CA groups. Pumping slowly this micellar solution into stirred CHCl(3)/(CHX) at f(CHX) = 64% triggered micelle dissociation into single-chain micelles, which comprised presumably a solubilized PtBA tail and a collapsed P(CEMA-r-CA)/L-ΦAA head. Because the solvent reservoir was under constant UV irradiation, the photo-cross-linkable units in the P(CEMA-r-CA) head cross-linked, and the single-chain micelles were converted into cross-linked single-chain micelles or tadpoles. Synchronizing the micelle addition and photoreaction rates allowed the preparation, from this protocol, of essentially pure tadpoles at high final polymer concentrations. Imprinted tadpoles were procured after L-ΦAA was extracted from the tadpole heads. Under optimized conditions, the produced imprinted tadpoles had exceptionally high binding capacity and high selectivity for L-ΦAA. In addition, the rates of L-ΦAA release from and rebinding by the particles were high.

  17. SYNTHESIS OF pH-RESPONSIVE AMPHIPHILIC DIBLOCK COPOLYMERS CONTAINING POLYISOBUTYLENE via OXYANION-INITIATED POLYMERIZATION AND THEIR MULTIPLE SELF-ASSEMBLY MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Huai-chao Wang; Ming-zu Zhang; Pei-hong Ni; Jin-lin He; Ying Hao; Yi-xian Wu

    2013-01-01

    Two pH-responsive amphiphilic diblock copolymers,namely polyisobutylene-block-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PIB-b-PDMAEMA) and polyisobutylene-block-poly(metharylic acid) (PIB-b-PMAA),were synthesized via oxyanion-initiated polymerization,and their multiple self-assembly behaviors have been studied.An exo-o1efin-terminated highly reactive polyisobutylene (HRPIB) was first changed to hydroxyl-terminated PIB (PIB-OH) via hydroboration-oxidation of C=C double bond in the chain end,and then reacted with KH to yield a potassium alcoholate of PIB (PIB-O-K+).PIB-O-K+ was immediately used as a macroinitiator to polymerize DMAEMA monomer,resulting in a cationic diblock copolymer PIB-b-PDMAEMA.With the similar synthesis procedure,the anionic diblock copolymer PIB-b-PMAA could be prepared via a combination of oxyanion-initiated polymerization of tert-butyl methacrylate (tBMA) and subsequent hydrolysis of tert-butyl ester groups in PtBMA block.The functional PIB and block copolymers have been fully characterized by 1H-NMR,FT-IR spectroscopy,and gel permeation chromatography (GPC).These samples allowed us to systematically investigate the effects of block composition on the pH responsivity and various self-assembled morphologies of the copolymers in THF/water mixed solvent.Transmission electron microscopy (TEM) images revealed that these diblock copolymers containing small amount of original PIB without exo-olefin-terminated group are able to self-assemble into micelles,vesicles with different particle sizes and cylindrical aggregates,depending on various factors including block copolymer composition,solvent polarity and pH value.

  18. SYNTHESIS AND CHARACTERIZATION OF POLY(STYRENE—ETHYLENE OXIDE)DIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    GuoTianying; SongMoudao; 等

    1998-01-01

    Well-defined diblock copolymers of styrene(St) and ethylene oxide(EO) have been prepared by sequential living anionic polymerization of the two comonomers in THF.Diphenyl methyl potassum has been used as initiator.The block copolymers were characterized in detail by methods of size exclusion chromatography(SEC),1H-NMR,FT-IR,dynamic mechanical analysis(DMA) and WAXD.

  19. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    CERN Document Server

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S

    2002-01-01

    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  20. Influence of Chain Rigidity on the Phase Behavior of Wormlike Diblock Copolymers

    Science.gov (United States)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-03-01

    We utilize the wormlike chain model in the framework of the self-consistent field theory to investigate the influence of chain rigidity on the phase diagram of AB diblock copolymers in the full three-dimensional space. We develop an efficient numerical scheme that can be used to calculate the physical properties of ordered microstructures self-assembled from semiflexible block copolymers. The calculation describes the entire physical picture of the phase diagram, crossing from the flexible over to rodlike polymer behavior.

  1. Influence of diblock copolymer on the morphology and properties of polystyrene/poly(dimethylsiloxane) blends

    DEFF Research Database (Denmark)

    Chuai, Chengzhi; Li, Shu; Almdal, Kristoffer;

    2004-01-01

    Blends of polystyrene (PS) and poly(dimethylsiloxane) (PDMS), with and without diblock copolymers (PS-b-PDMS), were prepared by melt mixing. The melt rheology behavior of the blends was studied with a capillary rheometer. The morphology of the blends was examined with scanning electron microscopy...

  2. Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films

    DEFF Research Database (Denmark)

    Potemkin, Igor I.; Busch, Peter; Smilgies, Detlef-M;

    2007-01-01

    We propose a theoretical explanation of the parallel and perpendicular lamellar orientations in free surface films of symmetric polystyrene-block-polybutadiene diblock copolymers on silicon substrates (with a native SiOx layer). Two approaches are developed: A correction to the strong segregation...

  3. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low and interme...

  4. Wormlike aggregates from a supramolecular coordination polymer and a diblock copolymer

    NARCIS (Netherlands)

    Yan, Y.; Besseling, N.A.M.; Keizer, de A.; Drechsler, M.; Fokkink, R.G.; Cohen Stuart, M.A.

    2007-01-01

    The formation of wormlike micelles in mixed systems of a supramolecular coordination polymer Zn-L2EO4 and a diblock copolymer P2MVP41-b-PEO205 is investigated by light scattering and Cryo-TEM. By direct mixing at a stoichiometric charge ratio, the above mixtures proved to be capable of formation of

  5. Preparation of polystyrene-poly(ethylene glycol) diblock copolymer by "living" free radical polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Gao, Bo; Kops, Jørgen

    1998-01-01

    terminated with a TEMPO unit (MPEG-TEMPO), which was further used to prepare the diblock copolymer PS-b-PEG by 'living' free radical polymerisation of styrene. The product was purified and identified by H-1 n.m.r. and GPC. However, large amounts of homopolystyrene was also formed by simultaneous thermal...

  6. Self-oscillating AB diblock copolymer developed by post modification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Takeshi, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota; Yoshida, Ryo, E-mail: ueki@cross.t.u-tokyo.ac.jp, E-mail: ryo@cross.t.u-tokyo.ac.jp [Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shibayama, Mitsuhiro [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwano-ha, Kashiwa, Chiba 277-8581 (Japan)

    2015-06-15

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle at reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.

  7. Synthesis and Characterization of a Systematic Series of All-Conjugated Diblock Copolymers

    Science.gov (United States)

    Smith, Kendall; Verduzco, Rafael

    2012-02-01

    All-conjugated block copolymers can potentially self-assemble into nanoscale structures beneficial for charge separation and transport, but due to synthetic challenges a comprehensive investigation of all-conjugated block copolymers has not been carried out . Here we detail a novel synthetic approach to all-conjugated block copolymers and characterize the structure of a systematic series of materials. The materials are prepared via copper-catalyzed azide-alkyne click chemistry followed by selective solvent removal of homopolymer impurities. This allows us to readily vary the molecular weight and type of each block in order to systematically study the properties of a family of block copolymers. As a system relevant to organic photovoltatics, we investigate a series of diblock copolymers based on poly(9,9-dioctyl-fluorene) and poly(3-alkylthiophene). This series of block copolymers is characterized with respect to phase behavior, including micro-phase segregation and crystallinity, optical properties, and charge mobilities.

  8. SANS, SAXS, rheology and birefringence-strengths and weaknesses in probing phase behaviour of a diblock copolymer

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Eskimergen, Rüya; Mortensen, Kell

    2004-01-01

    Asymmetrically composed diblock copolymers exhibit multiphase behaviour and transit the lamellae, gyroid and hexagonal cylindrical phases before reaching the order–disorder temperature, TODT. During a heating experiment towards TODT we observe that birefringence measurements are more sensitive th...

  9. Durability and performance of polystyrene- b -poly(vinylbenzyl trimethylammonium) diblock copolymer and equivalent blend anion exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Vandiver, Melissa A. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Caire, Benjamin R. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Poskin, Zach [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Li, Yifan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden Colorado 80401; Seifert, Sönke [X-Ray Science Division, Argonne National Laboratory, Argonne Illinois 60439; Knauss, Daniel M. [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden Colorado 80401; Herring, Andrew M. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401; Liberatore, Matthew W. [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden Colorado 80401

    2014-11-01

    Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study, a polystyrene-b-poly(vinylbenzyl trimethylammonium) diblock copolymer was evaluated as potential AEM and compared with the equivalent homopolymer blend. The diblock had a 92% conversion of reactive sites with an IEC of 1.72 ± 0.05 mmol g-1, while the blend had a 43% conversion for an IEC of 0.80 ± 0.03 mmol g-1. At 50°C and 95% relative humidity, the chloride conductivity of the diblock was higher, 24–33 mS cm-1, compared with the blend, 1–6 mS cm-1. The diblock displayed phase separation on the length scale of 100 nm, while the blend displayed microphase separation (~10 μm). Mechanical characterization of films from 40 to 90 microns thick found that elasticity and elongation decreased with the addition of cations to the films. At humidified conditions, water acted as a plasticizer to increase film elasticity and elongation. While the polystyrene-based diblock displayed sufficient ionic conductivity, the films' mechanical properties require improvement, i.e., greater elasticity and strength, before use in fuel cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41596.

  10. Microelectrode Arrays and the Use of PEG-Functionalized Diblock Copolymer Coatings

    Directory of Open Access Journals (Sweden)

    Sakshi Uppal

    2014-09-01

    Full Text Available PEG-modified diblock copolymer surfaces have been examined for their compatibility with microelectrode array based analytical methods. The use of PEG-modified polymer surfaces on the arrays was initially problematic because the redox couples used in the experiments were adsorbed by the polymer. This led the current measured by cyclic voltammetry for the redox couple to be unstable and increase with time. However, two key findings allow the experiments to be successful. First, after multiple cyclic voltammograms the current associated with the redox couple does stabilize so that a good baseline current can be established. Second, the rate at which the current stabilizes is consistent every time a particular coated array is used. Hence, multiple analytical experiments can be conducted on an array coated with a PEG-modified diblock copolymer and the data obtained is comparable as long as the data for each experiment is collected at a consistent time point.

  11. The lamellar period in symmetric diblock copolymer thin films studied by neutron reflectivity and AFM

    DEFF Research Database (Denmark)

    Gadegaard, N.; Almdal, K.; Larsen, N.B.;

    1999-01-01

    The lamellar structure of a symmetric diblock copolymer was studied as a function of temperature. We used dPEP-PDMS with a molecular weight of 8.3 kg/mol as model system. The polymer was dissolved in chloroform and spin-casted on silicon wafers into thin uniform films. The degree and direction of...... structure with a periodicity comparable to what was found by neutron reflectivity. (C) 1999 Elsevier Science B.V. All rights reserved.......The lamellar structure of a symmetric diblock copolymer was studied as a function of temperature. We used dPEP-PDMS with a molecular weight of 8.3 kg/mol as model system. The polymer was dissolved in chloroform and spin-casted on silicon wafers into thin uniform films. The degree and direction...

  12. ARTICLES: Dissipative Particle Dynamics Simulation of Microscopic Properties in Diblock Copolymer Films

    Science.gov (United States)

    Xu, Yi; Song, Xiao-yu; Zhang, Zhang; Wang, Yong; Chen, Jie; Zhu, Xian

    2010-06-01

    Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.

  13. Effect of shear on cubic phases in gels of a diblock copolymer

    DEFF Research Database (Denmark)

    Hamley, I.W.; Pople, J.A.; Fairclough, J.P.A.;

    1998-01-01

    The effect of shear on the orientation of cubic micellar phases formed by a poly(oxyethylene)poly(oxybutylene) diblock copolymer in aqueous solution has been investigated using small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS was performed on samples oriented in...... to form a macroscopically oriented domain. Shear only homogenized the sample, producing a powder SAXS pattern from a fcc structure....

  14. Structure of Poly(styrene-b-ethylene-alt-propylene) Diblock Copolymer Micelles in Squalane

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo-Hyung; Bates, Frank S.; Lodge, Timothy P.; (UMM)

    2009-11-04

    The temperature dependence of the micellar structures formed by poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers in squalane, a highly selective solvent for the PEP blocks, has been studied using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Four SEP diblock copolymers were prepared by sequential anionic polymerization of styrene and isoprene, followed by hydrogenation of the isoprene blocks, to yield SEP(17-73), SEP(26-66), SEP(36-69), and SEP(42-60), where the numbers indicate block molecular weights in kDa. All four polymers formed well-defined spherical micelles. In dilute solution, DLS provided the temperature-dependent mean hydrodynamic radius, R{sub h}, and its distribution, while detailed fitting of the SAXS profiles gave the core radius, R{sub c}, the equivalent hard sphere radius, R{sub hs}, and an estimate of the aggregation number, N{sub agg}. In general, the micelles became smaller as the critical micelle temperature (CMT) was approached, which was well above the glass transition of the core block. As concentration increased the micelles packed onto body centered cubic lattices for all four copolymers, which underwent order-disorder transitions upon heating near the dilute solution CMTs. The results are discussed in terms of current understanding of block copolymer solution self-assembly, and particular attention is paid to the issue of equilibration, given the high glass transition temperature of the core block.

  15. Structure of poly(styrene-b-ethylene-alt-propylene) diblock copolymer micelles in squalane.

    Science.gov (United States)

    Choi, Soo-Hyung; Bates, Frank S; Lodge, Timothy P

    2009-10-22

    The temperature dependence of the micellar structures formed by poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers in squalane, a highly selective solvent for the PEP blocks, has been studied using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Four SEP diblock copolymers were prepared by sequential anionic polymerization of styrene and isoprene, followed by hydrogenation of the isoprene blocks, to yield SEP(17-73), SEP(26-66), SEP(36-69), and SEP(42-60), where the numbers indicate block molecular weights in kDa. All four polymers formed well-defined spherical micelles. In dilute solution, DLS provided the temperature-dependent mean hydrodynamic radius, R(h), and its distribution, while detailed fitting of the SAXS profiles gave the core radius, R(c), the equivalent hard sphere radius, R(hs), and an estimate of the aggregation number, N(agg). In general, the micelles became smaller as the critical micelle temperature (CMT) was approached, which was well above the glass transition of the core block. As concentration increased the micelles packed onto body centered cubic lattices for all four copolymers, which underwent order-disorder transitions upon heating near the dilute solution CMTs. The results are discussed in terms of current understanding of block copolymer solution self-assembly, and particular attention is paid to the issue of equilibration, given the high glass transition temperature of the core block.

  16. Interfacial toughening and consequent improvement in fracture toughness of carbon fiber reinforced epoxy resin composites: induced by diblock copolymers

    Directory of Open Access Journals (Sweden)

    X. D. Zhou

    2013-11-01

    Full Text Available Carbon fibers chemically grafted with hydroxyl-terminated diblock copolymer poly (n-butylacrylate-b-poly (glycidyl methacrylate (OH-PnBA-b-PGMA, were used as the reinforcement for epoxy composites. The multi-filament composite specimens were prepared and measured by dynamic mechanical analysis (DMA, to study the interfacial toughness of carbon fiber reinforced epoxy composites with the diblock copolymers. The loss modulus and loss factor peaks of β-relaxation indicated that composites with diblock copolymers could dissipate more energy at small strain and possess better interfacial toughness, whereas composites without the ductile block PnBA having the worse interfacial toughness. The glass transition temperature and the apparent activation energy calculated from the glass transition showed that the strong interfacial adhesion existed in the composites with diblock copolymers, corresponding with the value of interfacial shear strength. Therefore, a strengthening and toughening interfacial structure in carbon fiber/epoxy composites was achieved by introducing the diblock copolymer OH-PnBA-b-PGMA. The resulting impact toughness, characterized with an Izod impact tester, was better than that of composite without the ductile block PnBA.

  17. Study of polystyrene-poly(ethylene oxide) diblock copolymer monolayers as barriers to protein adsorption

    Science.gov (United States)

    Jogikalmath, Gangadhar

    Protein adsorption resistant surfaces find use in many biomedical applications, such as catheters, dialysis devices and biosensors that involve blood contacting surfaces. To ensure long-term functioning of a device in an environment containing protein, there is a need to produce homogeneous surfaces that are resistant to protein adsorption. A polymer brush covered surface, produced by either physical adsorption or chemical grafting of hydrophilic polymers to surfaces, is one of the approaches used in creating such surfaces. High grafting densities needed to make an effective barrier are usually not realized in chemical grafting/adsorption from solution, due to self-exclusion of surface grafted molecules. In this dissertation polymer brush surfaces formed by chemically grafted PEO molecules and transferred monolayers of PS-b-PEO diblock copolymers are investigated using atomic force microscopy (AFM), surface plasmon resonance (SPR) and surface pressure measurement techniques. An AFM adhesion mapping technique was used to evaluate the surface heterogeneity of chemically modified PEO and transferred diblock copolymer monolayer surfaces. The behavior of PS-b-PEO molecules at the air-water interface was studied using Langmuir trough. The stability of transferred diblock copolymer monolayers was investigated using AFM. Using SPR, protein adsorption to the diblock copolymer layers was investigated as a function of protein size (using HSA and ferritin) as a function of grafting density of PEO in the monolayer. It was seen that a lower density of the PS-b-PEO monolayer was sufficient to prevent ferritin adsorption (larger protein) while a higher density brush layer was required to achieve complete prevention of HSA adsorption to the surface. The effect of mobility of the polymer brush layer on protein adsorption prevention was analyzed using SPR and surface pressure measurements. It was seen that the copolymer monolayer (at the air-buffer interface) rearranged itself to

  18. Effect of shear on the symmetric diblock copolymer/nanorod mixture: A dissipative particle dynamics study

    Institute of Scientific and Technical Information of China (English)

    He Lin-Li; Zhang Rui-Fen; Ji Yong-Yun

    2012-01-01

    The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics.We consider a wide range of nanorod concentrations,where the nanorods each have a preferential affinity to one of the blocks.Our results suggest that shear not only aligns the orientations of the diblock copolymer templates and nanorods towards flow direction,but also regulates the distribution of the nanorods within the polymer matrix.Meanwhile,the shear-induced reorientation and morphology transitions of the systems also significantly depend on the nanorod concentration.At certain nanorod concentrations,the competitions between shearinduced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of the composites.For high nanorod concentrations,no morphology transition is observed,but reorientation is present,in which the sheared nanorods are arranged into hexagonal packing arrays.Additionally,the orientation behaviour of nanorods is determined directly by the applied shear,also interfered with by the shear-stretched copolymer molecules.

  19. Shear induced order in SEP diblock copolymer micelles: multiple BCC slip systems

    Science.gov (United States)

    Torija, Maria A.; Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.

    2010-03-01

    Poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers are solvated by squalane leading to glassy poly(styrene) domains dispersed in a viscoelastic medium. For diblocks containing less than about 50% by weight poly(styrene) and at SEP concentrations greater than 6 w. % these mixtures self-assemble into glassy spherical microdomains that order on a body centered cubic (BCC) lattice. We have investigated how polycrystalline configurations respond to large amplitude oscillatory shear as a function of shear rate, strain amplitude and block copolymer composition. Structure was characterized by small-angle X-ray scattering measurements while simultaneously deforming the mixtures with an in-situ rheometer. All three slip systems associated with plastic deformation in BCC metals110,211,321, were identified with the x-ray beam oriented perpendicular to the shear plane. Higher shear rates and larger strain amplitudes produced more slip within the 211 system. These results represent one of the most comprehensive assessments of BCC structure in solvated copolymers and will be discussed within the context of the associated linear viscoelastic behavior.

  20. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  1. Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

    Science.gov (United States)

    Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun

    2015-12-01

    The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.

  2. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au). 9 tabs., 40 ills., 81 refs.

  3. Stress relaxation experiments on a lamellar polystyrene-polyisoprene diblock copolymer melt

    DEFF Research Database (Denmark)

    Holmqvist, P.; Castelletto, V.; Hamley, I.W.;

    2001-01-01

    via dynamic light scattering experiments. The slowest relaxation process may be related to the shear-induced orientation of the lamellae. It is shown that time-strain separability G(t, gamma)= G(t)h(gamma) can be applied, and the damping function h(gamma) is consistent with a strongly strain......The non-linear rheology of the lamellar phase of a polystyrene-polyisoprene diblock copolymer is studied by oscillatory shear experiments. The relaxation of the shear modulus, G(t, gamma) is studied as a function of strain amplitude, gamma, up to large amplitude strains, gamma = 100%. The decay...

  4. Pressure dependence of the order-disorder transition in several diblock copolymers studied with SANS

    DEFF Research Database (Denmark)

    Schwahn, D.; Frielinghaus, H.; Mortensen, K.;

    1998-01-01

    Thermal composition fluctuations in three diblock copolymers were studied with SANS as a function of temperature and pressure (0.1-200 MPa). In all cases the phase diagram shows an unusual shape insofar as with increasing pressure the order disorder temperature T(ODT) first decreases and then inc...... and then increases. The pressure induced changes of T(ODT) are caused by the increase of the enthalpic and entropic terms of the Flory-Huggins parameter. (C) 1998 Elsevier Science B.V. All rights reserved....

  5. Synthesis and pH-dependent micellization of diblock copolymer mixtures.

    OpenAIRE

    Van Butsele, Kathy; Sibret, Pierre; Fustin, Charles-André; Gohy, Jean-François; Passirani, Catherine; Benoît, Jean-Pierre; Jérôme, Robert; Jérôme, Christine

    2009-01-01

    International audience; This work focused on the preparation and the aqueous solution properties of hybrid polymeric micelles consisting of a hydrophobic poly(epsilon-caprolactone) (PCL) core and a mixed shell of hydrophilic poly(ethylene oxide) (PEO) and pH-sensitive poly(2-vinylpyridine) (P2VP). The hybrid micelles were successfully prepared by the rapid addition of acidic water to a binary solution of PCL(34)-b-PEO(114) and PCL(32)-b-P2VP(52) diblock copolymers in N,N-dimethylformamide. Th...

  6. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    Science.gov (United States)

    Pierce, Flint; Tsige, Mesfin; Perahia, Dvora; Grest, Gary S

    2008-12-18

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  7. Ordered phases of diblock copolymers in selective solvent.

    Science.gov (United States)

    Grason, Gregory M

    2007-03-21

    The authors propose a mean-field model to explore the equilibrium coupling between micelle aggregation and lattice choice in neutral copolymer and selective solvent mixtures. They find both thermotropic and lyotropic transitions from face-centered cubic to body-centered cubic ordered phases of spherical micelles, in agreement with experimental observations of these systems over a broad range of conditions. The stability of the nonclosed packed phase can be attributed to two physical mechanisms: the large entropy of lattice phonons near crystal melting and the preference of the intermicelle repulsions for the body-centered cubic structure when the lattice becomes sufficiently dense at higher solution concentrations. Both mechanisms are controlled by the decrease of micelle aggregation and subsequent increase of lattice density as solvent selectivity is reduced. These results shed new light on the relationship between micelle structure--"crewcut" or "hairy"--and long-range order in micelle solutions.

  8. A self-consistent field study of diblock copolymer/charged particle system morphologies for nanofiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Ye, Xianggui; Edwards, Brian J., E-mail: bje@utk.edu [Materials Research and Innovation Laboratory (MRAIL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2013-12-28

    A combination of self-consistent field theory and density functional theory was used to examine the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Both neutral and interacting particles were examined, with and without favorable/unfavorable energetic potentials between the particles and the block segments. The phase diagrams of the various systems were constructed, allowing the identification of three types of ordered mesophases composed of lamellae, hexagonally packed cylinders, and spheroids. In particular, we examined the conditions under which the mesophases could be generated wherein the tethered particles were primarily located within the interface between the two blocks of the copolymer. Key factors influencing these properties were determined to be the particle position along the diblock chain, the interaction potentials of the blocks and particles, the block copolymer composition, and molecular weight of the copolymer.

  9. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.

    Science.gov (United States)

    Jeong, Darae; Kim, Junseok

    2015-11-01

    We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition, we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm is simple and fast. Numerous computational experiments are provided to study microphase separation patterns for diblock copolymers on curved surfaces in three-dimensional space.

  10. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.

    Science.gov (United States)

    Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M

    2016-02-18

    Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.

  11. 3D-ising and Lifshitz critical behavior in a mixture of a polymer blend and a corresponding diblock copolymer

    DEFF Research Database (Denmark)

    Schwahn, D.; Mortensen, K.; Frielinghaus, H.;

    2000-01-01

    Thermal composition fluctuations and the associated crossover from the 3D-Ising to the isotropic Lifshitz universality class have been studied in a three-component mixture made of a critical polymer blend and the corresponding diblock copolymer. The rather complex phase diagram and the critical...

  12. Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Rittig, F.; Almdal, K.;

    2004-01-01

    The structure and dynamics of a strongly asymmetric poly(ethylene propylene)poly (dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range...

  13. A theoretical and simulation study of the self-assembly of a binary blend of diblock copolymers

    KAUST Repository

    Padmanabhan, Poornima

    2012-01-01

    Pure diblock copolymer melts exhibit a narrow range of conditions at which bicontinuous and cocontinuous phases are stable; such conditions and the morphology of such phases can be tuned by the use of additives. In this work, we have studied a bidisperse system of diblock copolymers using theory and simulation. In particular, we elucidated how a short, lamellar-forming diblock copolymer modifies the phase behavior of a longer, cylinder-forming diblock copolymer. In a narrow range of intermediate compositions, self-consistent field theory predicts the formation of a gyroid phase although particle-based simulations show that three phases compete: the gyroid phase, a disordered cocontinuous phase, and the cylinder phase, all having free energies within error bars of each other. Former experimental studies of a similar system have yielded an unidentified, partially irregular bicontinuous phase, and our simulations suggest that at such conditions the formation of a partially transformed network phase is indeed plausible. Close examination of the spatial distribution of chains reveals that packing frustration (manifested by chain stretching and low density spots) occurs in the majority-block domains of the three competing phases simulated. In all cases, a double interface around the minority-block domains is also detected with the outer one formed by the short chains, and the inner one formed by the longer chains. © 2012 American Institute of Physics.

  14. Complex Macrophase-Separated Nanostructure Induced by Microphase Separation in Binary Blends of Lamellar Diblock Copolymer Thin Films

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    ) after spin-coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as-prepared binary blend thin films feature mainly perpendicular lamellae...

  15. Micellar Structures of Hydrophilic/Lipophilic and Hydrophilic/Fluorophilic Poly(2-oxazoline) Diblock Copolymers in Water

    DEFF Research Database (Denmark)

    Ivanova, Ruzha; Komenda, Thomas; Bonné, Tune B.

    2008-01-01

    Amphiphilic poly(2-alkyl-2-oxazoline) diblock copolymers of 2-methyl-2-oxazoline (MOx) building the hydrophilic block and either 2-nonyl-2-oxazoline (NOx) for the hydrophobic or 2-(1H,1H',2H,2H'-perfluorohexyl)-2-oxazoline (FOx) for the fluorophilic block were synthesized by sequential living...

  16. Modeling the Heat Capacity of Spider Silk Inspired Di-block Copolymers

    Science.gov (United States)

    Huang, W.; Krishnaji, S.; Kaplan, D.; Cebe, P.

    2011-03-01

    We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1-6), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. Using temperature modulated differential scanning calorimetry (TMDSC), we captured the effect of bound water acting as a plasticizer for copolymer films which had been cast from water solution and dried. We determined the water content by thermogravimetry and used the weight loss vs. temperature to correct the mass in TMDSC experiments. Our result shows that non-freezing bound water has a strong plasticization effect which lowers the onset of the glass transition by about 10circ; C. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition were also characterized by TMDSC. We then calculated the solid state heat capacities of our novel block copolymers below the glass transition (Tg) based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known from the ATHAS Data Bank. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this model can serve as a standard method to predict the solid state Cp for other biologically inspired block copolymers. Support was provided from the NSF CBET-0828028 and the MRI Program under DMR-0520655 for thermal analysis instrumentation.

  17. Incorporation of Amphipathic Diblock Copolymer in Lipid Bilayer for Improving pH Responsiveness

    Directory of Open Access Journals (Sweden)

    Tian Xia

    2016-01-01

    Full Text Available Diblock copolymers (mPEG-b-PDPA, which were designed to possess pH-sensitivity as well as amphipathy, were used as an intelligent lock in the liposomal membrane. The so-called pH-sensitive liposomes were prepared by simple mixing of the synthesized mPEG-b-PDPA with phospholipids and cholesterol. Fluorescence polarization at pH 7.4 showed that the membrane stability of the hybrid liposome was significantly increased compared with the pure liposome. Therefore, in the neutral environment, the leakage of doxorubicin (DOX was inhibited. However, when pH decreased to 6.0, DOX release rate increased by 60% due to the escape of copolymer. The effects of the membrane composition and the PDPA segment length on bilayer membrane functions were investigated. These results revealed that the synthesized copolymers increased the difference in DOX cumulative release between pH 7.4 and 6.0, that is, improved the pH-controllability of the drug release from hybrid liposomes.

  18. Coil fraction-dependent phase behaviour of a model globular protein–polymer diblock copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Carla S. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Olsen, Bradley D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-01-01

    The self-assembly of the model globular protein–polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) is explored across a range of polymer coil fractions from 0.21 to 0.82 to produce a phase diagram for these materials as a function of molecular composition. Overall, four types of morphologies were observed: hexagonally packed cylinders, perforated lamellae, lamellae, and disordered nanostructures. Across all coil fractions and morphologies, a lyotropic re-entrant order–disorder transition in water was observed, with disordered structures below 30 wt% and above 70 wt% and well-ordered morphologies at intermediate concentrations. Solid state samples prepared by solvent evaporation show moderately ordered structures similar to those observed in 60 wt% solutions, suggesting that bulk structures result from kinetic trapping of morphologies which appear at lower concentrations. While highly ordered cylindrical nanostructures are observed around a bioconjugate polymer volume fraction of 0.3 and well-ordered lamellae are seen near a volume fraction of 0.6, materials at lower or higher coil fractions become increasingly disordered. Notable differences between the phase behaviour of globular protein–polymer block copolymers and coil–coil diblock copolymers include the lack of spherical nanostructures at either high or low polymer coil fractions as well as shifted phase boundaries between morphologies which result in an asymmetric phase diagram.

  19. Phase diagram of rod-coil diblock copolymer melts by self-consistent field theory

    Science.gov (United States)

    Yan, Dadong; Tang, Jiuzhou; Jiang, Ying; Zhang, Xinghua; Chen, Jeff

    A unified phase diagram is presented for rod-coil diblock copolymer melts in the isotropic phase regime as a function of the asymmetric parameter. The study is based on free-energy calculation, which incorporates three-dimensional spatial variations of the volume fraction with angular dependence. The wormlike-chain model is used in a self-consistent field treatment. Body-centered cubic, A15, hexagonal, gyroid, and lamellar structures where the rod segments are packed inside the convex rod-coil interface are found stable. As the conformational asymmetric parameter increases, the A15 phase region expands and the gyroid phase region reduces. The stability of the structures is analyzed by concepts such as packing frustration, spinodal limit, and interfacial curvature.

  20. Structural Changes in Lamellar Diblock Copolymer Thin Films upon Swelling in Nonselective Solvents

    DEFF Research Database (Denmark)

    Rudov, Andrey A.; Patyukova, Elena S.; Neratova, Irina V.;

    2013-01-01

    by an increase of their number. In doing so, the lamellar thickness reveals nonmonotonous behavior: affine growth (low degree of solvent uptake) is succeeded by a decrease in thickness (high degree of solvent uptake). Whereas the first regime reflects a finite size (film thickness) effect, the decrease is a more...... common effect, which is also valid for perpendicular lamellae, and is due to shrinkage of the diblock copolymers due to the shielding of unfavorable AB contacts by the solvent molecules. The film swelling leads to an increase of the number of perpendicular lamellae as well. However, such an increase...... swelling. This process is much faster and satisfies the space-filling condition at the thinning of the lamellae. That is why tilted lamellae are often observed in experiments and computer simulations. We demonstrate also that the distribution of the absorbed solvent in the film is inhomogeneous...

  1. Film thickness dependent ordering dynamics of lamellar forming diblock copolymer thin films.

    Science.gov (United States)

    Peters, Robert D; Dalnoki-Veress, Kari

    2012-12-01

    Ellipsometry is used in a novel way to study the ordering dynamics of symmetric poly(styrene-methyl methacrylate) diblock copolymer thin films. Ordered thin films form lamellae parallel to the substrate which can form islands or holes at the free surface to ensure commensurability of the layers. The sensitivity of ellipsometry provides the unique ability to probe morphological changes during the ordering process before the ultimate formation of islands or holes at the free surface. We observe three distinct stages in the ordering process: i) an ordering into an intermediate state, ii) an incubation time where the film structure remains constant and iii) the nucleation of islands or holes to achieve equilibrium lamellar morphology. The time-resolved measurement of an incubation period and initial ordering stage provides a means for studying the effect of thickness on the ordering kinetics. The dependence of incubation time on the commensurability of the initial film height is explained using strong segregation theory.

  2. Phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry

    Science.gov (United States)

    Guo, Yu-qi; Pan, Jun-xing; Sun, Min-na; Zhang, Jin-jun

    2017-01-01

    We investigate the phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry. The results demonstrate that the system occurs the phase transition from a disordered structure to ordered parallel lamellae and then to the tilted layered structure as the number of rods increases. The dynamic evolution of the domain size and the order parameter of the microstructure are also examined. Furthermore, the influence of rod property, rod-phase interaction, rod-rod interaction, rod length, and polymerization degree on the behavior of the polymer system is also investigated systematically. Moreover, longer amphiphilic nanorods tend to make the polymer system form the hexagonal structure. It transforms into a perpendicular lamellar structure as the polymerization degree increases. Our simulations provide an efficient method for determining how to obtain the ordered structure on the nanometer scales and design the functional materials with optical, electronic, and magnetic properties.

  3. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes

    Science.gov (United States)

    Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst

    2013-07-01

    Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging

  4. Defect-free Perpendicular Diblock Copolymer Films: The Synergistic Effect of Surface Topography and Chemistry

    CERN Document Server

    Man, Xingkun; Tang, Jiuzhou; Yan, Dadong; Andelman, David

    2016-01-01

    We propose a direct self-assembly mechanism towards obtaining defect-free perpendicular lamellar phases of diblock copolymer (BCP) thin films. In our numerical study, a thin BCP film having a flat top surface is casted on a uni-directional corrugated solid substrate. The substrate is treated chemically and has a weak preference toward one of the two BCP components. Employing self-consistent field theory (SCFT), we find that there is an enhanced synergy between two substrate characteristics: its topography (geometrical roughness) combined with a weak surface preference. This synergy produces the desired perpendicular lamellar phase with perfect inplane ordering. Defect-free BCP lamellar phases are reproducible for several random initial states, and are obtained for a range of substrate roughness and chemical characteristics, even for a uni-directional multi-mode substrate roughness. Our theoretical study suggests possible experiments that will explore the interplay between uni-directional substrate corrugation...

  5. A Quantitative Study of Tethered Chains in Various Solution Conditions Using Langmuir Diblock Copolymer Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Michael S.

    1999-08-13

    This article summarizes our investigations of tethered chain systems using Langmuir monolayer of polydimethysiloxane-poly styrene (PDMS-PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension lower or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (SIGMA) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (SIGMA < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong-stretching limit invoked in analytical SCF and scaling theories is not valid over this Z range. On the other hand, over a large portion of this range (SIGMA < 5) tethered layers are well described by a renormalization group theory addressing weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This apparently nonequilibrium effect is attributed to steric interactions and limited lateral interpenetration. This effect may explain several outstanding discrepancies regarding the adsorption of end-functionalized chains and diblock copolymers onto solid surfaces.

  6. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    Science.gov (United States)

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  7. Islands and holes on the free surface of thin diblock copolymer films. I. Characteristics of formation and growth

    OpenAIRE

    Coulon, G.; Collin, B.; Ausserre, D.; Chatenay, D.; Russell, T.P.

    1990-01-01

    When deposited on a silicon substrate, symmetric polystyrene/polymethylmethacrylate P(S-b-MMA) diblock copolymers form, at equilibrium, a multilayer structure parallel to the substrate. If the top layer is incomplete, islands or holes are formed in this layer. The kinetics of formation and growth of islands or holes is investigated, here, by in situ interference microscopy. The present study is focused on dense systems (≃ 30 % of islands (or holes) in area coverage). In the early stage, the w...

  8. Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    KAUST Repository

    Misichronis, Konstantinos

    2016-03-31

    The synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) diblock copolymers (PCHD: ∼90% 1,4 and ∼10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27≤ϕPS≤0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)-shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence of the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS-b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc.

  9. Micelles of a diblock copolymer of styrene and ethylene oxide in mixtures of 2,6-lutidine and water.

    Science.gov (United States)

    Tuzar, Z; Kadlec, P; Stepánek, P; Kríz, J; Nallet, F; Noirez, L

    2008-12-16

    We studied the micelle formation of a diblock copolymer of styrene and ethylene oxide in mixtures of 2,6-dimethylpyridine (2,6-lutidine) and water. Micelles are formed in a broad solvent composition range with a volume fraction of water ranging from 0.05 to 0.85, where neither polystyrene nor polyethylene oxide homopolymers are soluble. The diffusion behavior of pure solvent mixtures and in solutions of copolymer micelles is reported. In LTD/water mixtures, two diffusive processes corresponding to self-difusion and two modes belonging to mutual diffusion and diffusion of solvent clusters have been found. In copolymer solutions, the mode of copolymer micelle diffusion replaces the mode of solvent cluster diffusion. Quasielastic light scattering, small-angle neutron scattering, and pulsed-field gradient NMR have been employed in our study.

  10. The effect of hydrophilic and hydrophobic block length on the rheology of amphiphilic diblock Polystyrene-b-Poly(sodium methacrylate) copolymers prepared by ATRP

    NARCIS (Netherlands)

    Raffa, Patrizio; Stuart, Marc C.A.; Broekhuis, Antonius A.; Picchioni, Francesco

    2014-01-01

    Following our previous investigation on the effect of molecular architecture on the rheology of Polystyrene-b-Poly(sodium methacrylate) copolymers (PS-b-PMAA), we consider here diblock PS-b-PMAA copolymers characterized by a different length of either the hydrophilic or the hydrophobic block. Variou

  11. Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry

    Science.gov (United States)

    Yu, Bin; Deng, Jian-Hua; Wang, Zheng; Li, Bao-Hui; Shi, An-Chang

    2015-04-01

    The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regular triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period LL. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period LL are observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel's cross section. In the case of triangle-shaped cross sections, stacked parallel lamellae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shaped cross sections, concentric lamellae are the signature morphology for strongly selective surfaces, whereas for weakly selective surfaces, stacked parallel lamellae, and several types of folding lamellae are obtained in the case of square-shaped cross sections, and stacked parallel lamellae are the majority morphologies in the case of ellipse-shaped cross sections when the length of the minor axis is commensurate with the bulk lamellar period. The mean-square end-to-end distance, the average contact number between different species and the surface concentration of the A-monomers are computed to elucidate the mechanisms of the formation of the different morphologies. It is found that the resulting morphology is a consequence of competition among the chain stretching, interfacial energy, and surface energy. Our results suggest that the self-assembled morphology and the orientation of lamellae can be manipulated by the shape, the size, and the surface property of the confining channels. Project

  12. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    Science.gov (United States)

    An, Hyosung; Mike, Jared; Smith, Kendall; Swank, Lisa; Lin, Yen-Hao; Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie

    Structural energy storage materials combining load-bearing mechanical properties and high energy storage performance are desired for applications in wearable devices or flexible displays. Vanadium pentoxide (V2O5) is a promising cathode material for possible use in flexible battery electrodes, but it remains limited by low Li+ diffusion coefficient and electronic conductivity, severe volumetric changes upon cycling, and limited mechanical flexibility. Here, we demonstrate a route to address these challenges by blending a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT- b-PEO), with V2O5 to form a mechanically flexible, electro-mechanically stable hybrid electrode. V2O5 layers were arranged parallel in brick-and-mortar-like fashion held together by the P3HT- b-PEO binder. This unique structure significantly enhances mechanical flexibility, toughness and cyclability without sacrificing capacity. Electrodes comprised of 10 wt% polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes.

  13. Amphiphilic diblock copolymer and polycaprolactone blends to produce new vesicular nanocarriers.

    Science.gov (United States)

    Penott-Chang, Evis; Walther, Andreas; Millard, Pierre; Jäger, Alessandro; Jäger, Eliezer; Müller, Axel H E; Guterres, Sílvia S; Pohlmann, Adriana R

    2012-04-01

    New Melatonin-loaded vesicular nanocarriers were prepared by interfacial deposition using a blend of an amphiphilic diblock copolymer, poly(methyl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate), PMMA-b-PDMAEMA, with poly(epsilon-caprolactone), PCL. Particle size and morphology of the nanocarriers was evaluated. Dynamic light scattering shows that the nanocarriers have hydrodynamic radii between 100 and 180 nm, with unimodal particle size distribution for each formulation. Shape and structure were visualized by transmission electron microscopy (TEM), cryogenic TEM and scanning electron microscopy. Standard TEM for nanocapsules showed an oily core surrounded by a thin layer composed by PCL/PMMA-b-PDMAEMA. Cryo-TEM also indicated the presence of spherical nano-objects with a diffuse polymer corona. Encapsulation efficiencies were determined assaying the nanoparticles by HPLC and higher values of ca. 25% are shown by the nanocapsules. We could successfully incorporate platinum nanoparticles into the nanocarrier as evidenced by TEM, which opens up the possibility for promising applications like monitoring the encapsulated drug in the body.

  14. Phase diagrams of diblock copolymers in electric fields: a self-consistent field theory study.

    Science.gov (United States)

    Wu, Ji; Wang, Xianghong; Ji, Yongyun; He, Linli; Li, Shiben

    2016-04-21

    We investigated the phase diagrams of diblock copolymers in external electrostatic fields by using real-space self-consistent field theory. The lamella, cylinder, sphere, and ellipsoid structures were observed and analyzed by their segment distributions, which were arranged to two types of phase diagrams to examine the phase behavior in weak and strong electric fields. One type was constructed on the basis of Flory-Huggins interaction parameter and volume fraction. We identified an ellipsoid structure with a body-centered cuboid arrangement as a stable phase and discussed the shift of phase boundaries in the electric fields. The other type of phase diagrams was established on the basis of the dielectric constants of two blocks in the electric fields. We then determined the regions of ellipsoid phase in the phase diagrams to examine the influence of dielectric constants on the phase transition between ellipsoidal and hexagonally packed cylinder phases. A general agreement was obtained by comparing our results with those described in previous experimental and theoretical studies.

  15. Structure of Poly(3-(2'-ethyl)hexylthiophene) (P3EHT) Containing Diblock Copolymers Controlled via Thermal Processing

    Science.gov (United States)

    Davidson, Emily; Segalman, Rachel

    Poly(3-alkylthiophene)s with modified alkyl side chains crystallize confined within block copolymer microphases, serving as a good model system for the confined crystallization of semiflexible polymers. We hypothesize that the diblock structure may impose an equilibrium degree of crystalline conjugated chain folding which here is only accessible for small degrees of undercooling. Crystallization of these P3ATs in soft confinement drives microdomain expansion; here, we show that this expansion is minimized for crystallization at small degrees of undercooling. Upon heating, domains return to their melt structure over three distinct regimes. These regimes directly correspond to thermal features we assign to the relaxation of a rigid-amorphous fraction at the diblock interface, melt-recrystallization which reorganizes the degree of chain folding, and a final complete melting transition.

  16. Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers.

    Science.gov (United States)

    Krogstad, Daniel V; Choi, Soo-Hyung; Lynd, Nathaniel A; Audus, Debra J; Perry, Sarah L; Gopez, Jeffrey D; Hawker, Craig J; Kramer, Edward J; Tirrell, Matthew V

    2014-11-13

    A complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied. The poly(allyl glycidyl ether) blocks were functionalized with either guanidinium or sulfonate groups via postpolymerization modification. Mixing of oppositely charged block copolymers resulted in the formation of nanometer-scale coacervate domains. Small angle neutron scattering (SANS) experiments were used to investigate the size and spacing of the coacervate domains. The SANS patterns were fit using a previously vetted, detailed model consisting of polydisperse core-shell micelles with a randomly distributed sphere or body-centered cubic (BCC) structure factor. For increasing polymer concentration, the size of the coacervate domains remained constant while the spatial extent of the poly(ethylene oxide) (PEO) corona decreased. However, increasing salt concentration resulted in a decrease in both the coacervate domain size and the corona size due to a combination of the electrostatic interactions being screened and the shrinkage of the neutral PEO blocks. Additionally, for the triblock copolymers that formed BCC ordered domains, the water content in the coacervate domains was calculated to increase from approximately 16.8% to 27.5% as the polymer concentration decreased from 20 to 15 wt %.

  17. Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, Matthew T.; Hickey, Robert J.; Xie, Shuyi; So, Soonyong; Bates, Frank S.; Lodge, Timothy P. (UMM)

    2016-11-21

    We examine the relationship between structure and ionic conductivity in salt-containing ternary polymer blends that exhibit various microstructured morphologies, including lamellae, a hexagonal phase, and a bicontinuous microemulsion, as well as the disordered phase. These blends consist of polystyrene (PS, Mn ≈ 600 g/mol) and poly(ethylene oxide) (PEO, Mn ≈ 400 g/mol) homopolymers, a nearly symmetric PS–PEO block copolymer (Mn ≈ 4700 g/mol), and lithium bis(trifluoromethane)sulfonamide (LiTFSI). These pseudoternary blends exhibit phase behavior that parallels that of well-studied ternary polymer blends consisting of A and B homopolymers compatibilized by an AB diblock copolymer. The utility of this framework is that all blends have nominally the same number of ethylene oxide, styrene, Li+, and TFSI– units, yet can exhibit a variety of microstructures depending on the relative ratio of the homopolymers to the block copolymer. For the systems studied, the ratio r = [Li+]/[EO] is maintained at 0.06, and the volume fraction of PS homopolymer is kept equal to that of PEO homopolymer plus salt. The total volume fraction of homopolymer is varied from 0 to 0.70. When heated through the order–disorder transition, all blends exhibit an abrupt increase in conductivity. However, analysis of small-angle X-ray scattering data indicates significant structure even in the disordered state for several blend compositions. By comparing the nature and structure of the disordered states with their corresponding ordered states, we find that this increase in conductivity through the order–disorder transition is most likely due to the elimination of grain boundaries. In either disordered or ordered states, the conductivity decreases as the total amount of homopolymer is increased, an unanticipated observation. This trend with increasing homopolymer loading is hypothesized to result from an increased density of

  18. Amphiphilic PEO-b-PBLG diblock and PBLG-b-PEO-b-PBLG triblock copolymer based nanoparticles: doxorubicin loading and in vitro evaluation.

    Science.gov (United States)

    Kakkar, Dipti; Mazzaferro, Silvia; Thevenot, Julie; Schatz, Christophe; Bhatt, Anant; Dwarakanath, Bilikere S; Singh, Harpal; Mishra, Anil K; Lecommandoux, Sebastien

    2015-01-01

    Huisgen's 1,3-dipolar cycloaddition ("Click Chemestry") has been used to prepare amphiphilic PEO-b-PBLG diblock and PBLG-b-PEO-b-PBLG triblock copolymers as potential carriers of anticancer drugs. Spherical and flower shaped micelles (D ≈ 100 nm) were obtained from diblock and triblock copolymers respectively. DOX was effectively encapsulated up to 18 wt.% and 50-60% of it was steadily released from the micelles over a period of 7 d. Flow cytometry and fluorescence microscopy confirmed the effective intracellular uptake as well as the sustained release of DOX from micelles. These results suggest that the diblock as well as triblock copolymers are promising carriers for intra-cellular drug delivery.

  19. Short-range ordered photonic structures of lamellae-forming diblock copolymers for excitation-regulated fluorescence enhancement

    Science.gov (United States)

    Kim, Se Hee; Kim, Ki-Se; Char, Kookheon; Yoo, Seong Il; Sohn, Byeong-Hyeok

    2016-05-01

    Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence

  20. Preparation and Characterization of Nimodipine-loaded Methoxy Poly (ethylene glycol)-poly (lactic acid) Diblock Copolymer Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHA Liu-sheng; LI Lan; ZHAO Hui-peng

    2006-01-01

    Amphiphilic diblock copolymers, methoxy poly (ethylene glycol)-poly(lactic acid) (MePEG-PLA), were synthesized from monomers of DL-lactide and methoxy poly (ethylene glycol) by a ring opening bulk polymerization in the presence of stannous octoate. Their chemical structure and physical properties were investigated using FTIR, NMR, GPC, and fluorescence spectroscopy. To estimate the feasibility as colloidal drug carrier, nimodipine (ND) was loaded into MePEG-PLA block copolymer nanoparticles by phaseseparation/dialysis method. The mean diameter and drug loading efficiency of ND-loaded MePEG-PLA copolymer nanoparticles depended on PLA/MePEG block composition of the copolymer and drug/polymer feed ratio in preparation. NMR study confirmed that nimodipine was entrapped into the hydrophobic inner core of MePEG-PLA copolymer nanoparticles and hydrophilic PEG chains were located on the surface of the drug-loaded polymer nanoparticles. In vitro release experiments exhibited the sustained release behavior of nimodipine from MePEG-PLA copolymer nanoparticles, without any burst effect.

  1. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra-Large Pores through Assembly of Diblock Copolymer Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing [Waseda University, Tokyo, Japan; Liu, Jiang [Curtin University of Technology, Perth, Australia; Li, Cuiling [KEK, Tsukuba, Ibaraki, Japan; Li, Yunqi [Waseda University, Tokyo, Japan; Tade, Moses O. [Curtin University of Technology, Perth, Australia; Dai, Sheng [ORNL; Yamauchi, Yusuke [Waseda University, Tokyo, Japan

    2015-01-01

    In this study, the synthesis of highly nitrogen-doped mesoporous carbon spheres (NMCS) is reported. The large pores of the NMCS were obtained through self-polymerization of dopamine (DA) and spontaneous co-assembly of diblock copolymer micelles. The resultant narrowly dispersed NMCS possess large mesopores (ca. 16 nm) and small particle sizes (ca. 200 nm). Lastly, the large pores and small dimensions of the N-heteroatom-doped carbon spheres contribute to the mass transportation by reducing and smoothing the diffusion pathways, leading to high electrocatalytic activity.

  2. Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends: Simulation and Self-Consistent Field Theory

    KAUST Repository

    Martínez-Veracoechea, Francisco J.

    2009-03-10

    A combination of particle-based simulations and self-consistent field theory (SCFT) is used to study the stabilization of multiple ordered bicontinuous phases in blends of a diblock copolymer (DBC) and a homopolymer. The double-diamond phase (DD) and plumber\\'s nightmare phase (P) were spontaneously formed in the range of homopolymer volume fraction simulated via coarse-grained molecular dynamics. To the best of our knowledge, this is the first time that such phases have been obtained in continuum-space molecular simulations of DBC systems. Though tentative phase boundaries were delineated via free-energy calculations, macrophase separation could not be satisfactorily assessed within the framework of particle-based simulations. Therefore, SCFT was used to explore the DBC/homopolymer phase diagram in more detail, showing that although in many cases two-phase coexistence of a DBC-rich phase and a homopolymer-rich phase does precede the stability of complex bicontinuous phases the DD phase can be stable in a relatively wide region of the phase diagram. Whereas the P phase was always metastable with respect to macrophase separation under the thermodynamic conditions explored with SCFT, it was sometimes nearly stable, suggesting that full stability could be achieved in other unexplored regions of parameter space. Moreover, even the predicted DD- and P-phase metastability regions were located significantly far from the spinodal line, suggesting that these phases could be observed in experiments as "long-lived" metastable phases under those conditions. This conjecture is also consistent with large-system molecular dynamics simulations that showed that the time scale of mesophase formation is much faster than that of macrophase separation. © 2009 American Chemical Society.

  3. The impact of substrate interaction in directed self-assembly of symmetric diblock copolymer thin films

    Science.gov (United States)

    Seidel, Robert

    Block copolymers (BCP) are a class of materials that have attracted significant attention due to their ability to self-assemble into dense arrays of nanoscale features. These materials are being investigated for their use in applications such as nanolithography, but for commercial implementation require the ability to control or direct the self-assembly process. Chemoepitaxial directed self-assembly (DSA) is one avenue to achieving this control, where a BCP thin film self-assembles in the presence of precisely defined chemical boundary conditions. In such a process, the equilibrium structure of the BCP film and the kinetic pathways it evolves along to reach equilibrium are both a function of the thermodynamic landscape, which is in turn controlled by the chemical pattern. This thesis contributes to the significant body of work attempting to detail the relationship between chemical pattern parameters and the thermodynamics of assembly (both kinetic and equilibrium). We restrict our investigation to the assembly of lamellae-forming diblock copolymers on line/space chemical patterns that employ density multiplication, with a focus on developing technology for nanopatterning beyond the resolution limit of traditional lithography. In the first chapter we introduce the fundamental ideas of BCP DSA and develop the concepts of free energy balance that are crucial to framing the discussion in the following chapters. The second chapter explores using poly(methyl methacrylate) as a guide material and shows how the greater strength of guiding interaction for this system has the ability to guide complex, frustrated non-bulk morphologies. The third chapter develops a novel concept of using process conditions to generate so-called 'three-tone' chemical patterns with multiple guiding regions per patterned stripe. The fourth chapter looks at how guide stripe strength impacts and affects assembly kinetics, equilibrium structure, and process metrics such as line edge roughness (LER

  4. Self-assembly behaviour of amphiphilic diblock copolymer in selective solvents studied by synchrotron small-angle x-ray scattering

    Institute of Scientific and Technical Information of China (English)

    李福绵; 李子臣; 荣利霞; 魏柳禾; 董宝中; 洪新国

    2003-01-01

    The aggregation behaviour of styrene-vinyl benzoic acid (PSm-b-PVBAn) amphiphilic diblock copolymers in selective solvents with different m and n was investigated by synchrotron small-angle x-ray scattering (SAXS). We have carried out a detailed analysis of scattering intensity, dimension, shape and microstructure of the diblock copolymers of narrow distribution in water, methanol, ethanol and isopropanol selective solvents, respectively. We have found that the aggregation behaviour of the copolymer depends on the nature of the solvent and the micelle forms fiat disc objects with the ratio of radius ω=0.4. The average radius gyration Rg of the copolymer decreases as solvents change from isopropanol to ethanol and to methanol, and increases with increasing pH in aqueous solution, but decreases with the addition of COCl2 in ethanol solvent. The scattering intensity of diblock copolymer micelle follows I(h) ∝ h-α in different selective solutions, suggesting that the PSm-b-PVBAn coils have self-similar structure behaviour or a fractal structure in the selective solvents. All of these revealed that the aggregation behaviour of the diblock copolymer changes dramatically with experimental condition in the selective solvent. The increase of mass fractal dimension (Dm) from 2.12 to 2.47 indicates that the copolymer chain changes from a swollen coil to a rather compact disc in the course of changing solvents, decreasing surface fractal dimension (Ds) from 2.98 to 2.58 indicates that the copolymer micelle change from a rather rough surface to a smooth form in the course of increasing pH in aqueous solutions, and increasing Dm and Ds from 2.29 to 2.35 and 2.70 to 2.90, respectively, indicates the shrinkage of copolymer micelle to a rather compact and rough disc form by adding COCl2 in ethanol solvents.

  5. Control over self-assembly of diblock copolymers on hexagonal and square templates for high area density circuit boards.

    Science.gov (United States)

    Feng, Jie; Cavicchi, Kevin A; Heinz, Hendrik

    2011-12-27

    Self-assembled diblock copolymer melts on patterned substrates can induce a smaller characteristic domain spacing compared to predefined lithographic patterns and enable the manufacture of circuit boards with a high area density of computing and storage units. Monte Carlo simulation using coarse-grain models of polystyrene-b-polydimethylsiloxane shows that the generation of high-density hexagonal and square patterns is controlled by the ratio N(D) of the surface area per post and the surface area per spherical domain of neat block copolymer. N(D) represents the preferred number of block copolymer domains per post. Selected integer numbers support the formation of ordered structures on hexagonal (1, 3, 4, 7, 9) and square (1, 2, 5, 7) templates. On square templates, only smaller numbers of block copolymer domains per post support the formation of ordered arrays with significant stabilization energies relative to hexagonal morphology. Deviation from suitable integer numbers N(D) increases the likelihood of transitional morphologies between square and hexagonal. Upon increasing the spacing of posts on the substrate, square arrays, nested square arrays, and disordered hexagonal morphologies with multiple coordination numbers were identified, accompanied by a decrease in stabilization energy. Control over the main design parameter N(D) may allow an up to 7-fold increase in density of spherical block copolymer domains per surface area in comparison to the density of square posts and provide access to a wide range of high-density nanostructures to pattern electronic devices.

  6. Self-assembly behaviour of amphiphilic diblock copolymer in selective solvents studied by synchrotron small-angle x-ray scattering

    Institute of Scientific and Technical Information of China (English)

    荣利霞; 魏柳禾; 董宝中; 洪新国; 李福绵; 李子臣

    2003-01-01

    The aggregation behaviour of styrene-vinyl benzoic acid (PSm-b-PVBAn) amphiphilic diblock copolymers inselective solvents with different m and n was investigated by synchrotron small-angle x-ray scattering (SAXS). We havecarried out a detailed analysis of scattering intensity, dimension, shape and microstructure of the diblock copolymersof narrow distribution in water, methanol, ethanol and isopropanol selective solvents, respectively. We have found thatthe aggregation behaviour of the copolymer depends on the nature of the solvent and the micelle forms flat disc objectswith the ratio of radius w=0.4. The average radius gyration Rg of the copolymer decreases as solvents change fromisopropanol to ethanol and to methanol, and increases with increasing pH in aqueous solution, but decreases with theaddition of CoCl2 in ethanol solvent. The scattering intensity of diblock copolymer micelle follows I(h) ∞ h-α indifferont selective solutions, suggesting that the PSm-b-PVBAn coils have self-similar structure behaviour or a fractalstructure in the selective solvents. All of these revealed that the aggregation behaviour of the diblock copolymer changesdramatically with experimental condition in the selective solvent. The increase of mass fractal dimension (Dm) from2.12 to 2.47 indicates that the copolymer chain changes from a swollen coil to a rather compact disc in the course ofchanging solvents, decreasing surface fractal dimension (Ds) from 2.98 to 2.58 indicates that the copolymer micellechange from a rather rough surface to a smooth form in the course of increasing pH in aqueous solutions, and increasingDm and Ds from 2.29 to 2.35 and 2.70 to 2.90, respectively, indicates the shrinkage of copolymer micelle to a rathercompact and rough disc form by adding CoCl2 in ethanol solvents.

  7. Self-diffusion investigations on a series of PEP-PDMS diblock copolymers with different morphologies by pulsed field gradient NMR

    DEFF Research Database (Denmark)

    Rittig, F.; Karger, J.; Papadakis, C.M.;

    1999-01-01

    We report on temperature-dependent self-diffusion measurements of compositionally different and non-entangled poly(ethylene-co-propylene)-b-poly(dimethylsiloxane) PEP-PDMS diblock copolymers in the melt above and below the order-to-disorder transition temperature. Depending on the dimensionality ...

  8. EFFECT OF AMPHIPHILIC POLY (STYRENE-B-ETHYLENE OXIDE) DIBLOCK COPOLYMER INTERCALATED LAYERED SILICATE AS FILLER ON ACRYLONITRILE-BUTADIENE-STYRENE RESIN

    Institute of Scientific and Technical Information of China (English)

    Guo Tianying; Zhang Jie; Hao Guangjie; Song Moudao; Zhang Banghua

    2003-01-01

    The diblock copolymers intercalated layered silicate was prepared via a melt dispersion technique. Then the effect of intercalated hybrid as filler on acrylonitrile- butadiene-styrene resin was characterized by X-ray diffraction, transmission electron microscopy, stress-strain measurements in elongation.

  9. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers

    Science.gov (United States)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.

  10. The effect of hydrophilic and hydrophobic block length on the rheology of amphiphilic diblock Polystyrene-b-Poly(sodium methacrylate) copolymers prepared by ATRP.

    Science.gov (United States)

    Raffa, Patrizio; Stuart, Marc C A; Broekhuis, Antonius A; Picchioni, Francesco

    2014-08-15

    Following our previous investigation on the effect of molecular architecture on the rheology of Polystyrene-b-Poly(sodium methacrylate) copolymers (PS-b-PMAA), we consider here diblock PS-b-PMAA copolymers characterized by a different length of either the hydrophilic or the hydrophobic block. Various copolymers characterized by different PS or PMAA block length have been prepared by ATRP (kinetics is also discussed) and studied from the point of view of their rheological behaviour in water. To the best of our knowledge, this is the first systematic investigation concerning the effect of block length on the rheology of diblock polyelectrolytes. We found that the hydrophobic block length has small influence on the rheology. Surprisingly, the polymers with shortest PMAA blocks yield the strongest gels at high concentration. A simple model based on the classical theories of self-assembly and percolation of amphiphilic polymers has been here developed in order to explain the observed data.

  11. Collective dynamics and self-diffusion in a diblock copolymer melt in the body-centered cubic phase.

    Science.gov (United States)

    Papadakis, C M; Rittig, F; Almdal, K; Mortensen, K; Stĕpánek, P

    2004-12-01

    The structure and dynamics of a strongly asymmetric poly(ethylene propylene)-poly(dimethylsiloxane) (PEP-PDMS) diblock copolymer in the melt have been studied over a wide temperature range. Small-angle neutron scattering reveals that the sample exhibits two stable phases in this temperature range: Above the order-to-disorder transition temperature, it is disordered, whereas the domain structure is body-centered cubic (bcc) below, being stable down to the lowest temperatures measured. In the disordered state, dynamic light scattering (DLS) in the polarized geometry reveals the heterogeneity mode and the cluster mode. In the bcc phase, the PEP and the PDMS blocks form the micellar cores and the matrix, respectively. Here, two modes are observed in DLS, and the diffusion coefficients measured using pulsed field gradient (PFG) NMR are broadly distributed with the most probable diffusion coefficient coinciding with the slow DLS mode. We attribute the fast process in the bcc state to concentration fluctuations of the micellar cores (PEP), relaxing by mutual diffusion of the micelles with copolymers dissolved in the PDMS matrix. The slower process in the bcc state is ascribed to activated long-range self-diffusion of single copolymers from micelle to micelle through the PDMS matrix. This assignment is corroborated by the good coincidence of the reduced diffusivities with the ones from the literature. However, this mode may also be assigned to the rearrangement of entire micelles.

  12. Phase behavior and ionic conductivity of concentrated solutions of polystyrene-poly(ethylene oxide) diblock copolymers in an ionic liquid.

    Science.gov (United States)

    Simone, Peter M; Lodge, Timothy P

    2009-12-01

    Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10(-7) to 1 x 10(-3) S/cm at temperatures from 25 - 100 degrees C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.

  13. Considerations in binding diblock copolymers on hydrophilic alginate beads for providing an immunoprotective membrane

    NARCIS (Netherlands)

    Spasojevic, Milica; Bhujbal, Swapnil; Paredes, Genaro; de Haan, Bart J.; Schouten, Arend J.; de Vos, Paul

    2014-01-01

    Alginate-based microcapsules are being proposed for treatment of many types of diseases. A major obstacle however in the successes is that these capsules are having large lab-to-lab variations. To make the process more reproducible, we propose to cover the surface of alginate capsules with diblock p

  14. Di-block co-polymer derived nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant;

    2010-01-01

    Nanoporous liquid core waveguides are fabricated by selectively UV modifying a nanoporous polymer. The starting point is a diblock polymer where 1,2-polybutadiene (PB) molecules are bound to PDMS. When the PB is cross linked it self-assembles into PB with a network of 14 nm diameter PDMS filled...

  15. The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study.

    KAUST Repository

    Martinez-Veracoechea, Francisco J.

    2009-11-24

    Using self-consistent field theory, the Plumber\\'s Nightmare and the double diamond phases are predicted to be stable in a finite region of phase diagrams for blends of AB diblock copolymer (DBC) and A-component homopolymer. To the best of our knowledge, this is the first time that the P phase has been predicted to be stable using self-consistent field theory. The stabilization is achieved by tuning the composition or conformational asymmetry of the DBC chain, and the architecture or length of the homopolymer. The basic features of the phase diagrams are the same in all cases studied, suggesting a general type of behavior for these systems. Finally, it is noted that the homopolymer length should be a convenient variable to stabilize bicontinuous phases in experiments. © 2009 American Chemical Society.

  16. A poly(acrylic acid)-block-poly(L-glutamic acid) diblock copolymer with improved cell adhesion for surface modification.

    Science.gov (United States)

    Cao, Bin; Yan, Shifeng; Zhang, Kunxi; Song, Zhijiang; Cao, Tian; Chen, Xuesi; Cui, Lei; Yin, Jingbo

    2011-07-07

    A novel PAA-b-PLGA diblock copolymer is synthesized and characterized that has excellent cell adhesion and biocompatibility. Fluorescent DiO labeling is used to monitor the attachment and growth of hASCs on the film surface, and cell proliferation over time is studied. Results show that PLLA modified by a CS/PAA-b-PLGA multilayer film can promote the attachment of human hASCs and provide an advantageous environment for their proliferation. The multilayer film presents excellent biocompatibility and cell adhesive properties, which will provide a new choice for improving the cell attachment in surface modification for tissue engineering. Hydroxyl, carboxyl and amine groups in the CS/PAA-b-PLGA multilayer film may be combined with drugs and growth factors for therapy and differentiation.

  17. Self-assembly of lamella-forming diblock copolymers confined in nanochannels:Effect of confinement geometry

    Institute of Scientific and Technical Information of China (English)

    于彬; 邓建华; 王铮; 李宝会; 史安昌

    2015-01-01

    The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regu-lar triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period LL. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period LL are observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel’s cross section. In the case of triangle-shaped cross sections, stacked parallel lamel-lae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shaped cross sections, concentric lamellae are the signature morphology for strongly selective surfaces, whereas for weakly selective surfaces, stacked parallel lamellae, and several types of folding lamellae are obtained in the case of square-shaped cross sections, and stacked parallel lamellae are the majority morphologies in the case of ellipse-shaped cross sections when the length of the minor axis is commensurate with the bulk lamellar period. The mean-square end-to-end distance, the average contact number between different species and the surface concentration of the A-monomers are computed to elucidate the mechanisms of the formation of the different morphologies. It is found that the resulting morphology is a consequence of competition among the chain stretching, interfacial energy, and surface energy. Our results suggest that the self-assembled morphology and the orientation of lamellae can be manipulated by the shape, the size, and the surface property of the confining channels.

  18. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    M Jacquin; P Muller; H Cottet; O Theodoly

    2011-12-31

    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  19. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    Science.gov (United States)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  20. Methoxypolyethylene glycol-block-polycaprolactone diblock copolymers reduce P-glycoprotein efflux in the absence of a membrane fluidization effect while stimulating P-glycoprotein ATPase activity.

    Science.gov (United States)

    Zastre, Jason; Jackson, John K; Wong, Wesley; Burt, Helen M

    2007-04-01

    We have previously shown that amphiphilic diblock copolymers composed of methoxypolyethylene glycol-b-polycaprolactone (MePEG-b-PCL) increased the cellular accumulation and reduced the basolateral to apical flux of the P-glycoprotein substrate, rhodamine 123 (R-123) in caco-2 cells. The purpose of this study was to investigate membrane perturbation effects of MePEG-b-PCL diblock copolymers with erythrocyte membranes and caco-2 cells and the effect on P-gp ATPase activity. The diblock copolymer MePEG(17)-b-PCL(5) induced increasing erythrocyte hemolysis at concentrations which correlated with increasing accumulation of R-123 into caco-2 cells. However, no increase in cellular accumulation of R-123 by non-P-gp expressing cells was observed, suggesting that diblock did not enhance the transmembrane passive diffusion of R-123, but that the accumulation enhancement effect of the diblock in caco-2 cells was likely mediated primarily via P-gp inhibition. Fluorescence anisotropy measurements of membrane fluidity and P-gp ATPase activity demonstrated that MePEG(17)-b-PCL(5) decreased caco-2 membrane fluidity while stimulating ATPase activity approximately threefold at concentrations that maximally enhanced R-123 caco-2 accumulation. These results suggest that inhibition of P-gp efflux by MePEG(17)-b-PCL(5) does not appear to be related to increases in membrane fluidity or through inhibition in P-gp ATPase activities, which are two commonly reported cellular effects for P-gp inhibition mediated by surfactants.

  1. Adsorption of polymers, polymer blends and a diblock copolymer onto conducting polypyrrole. A study by surface analytical techniques

    Science.gov (United States)

    Chehimi, M. M.; Abel, M.-L.; Fricker, F.; Delamar, M.; Jada, A.; Brown, A. M.; Watts, J. F.

    1998-06-01

    Adsorption of PMMA and PVC, PMMA and PVC blends, and a diblock copolymer P(S/EO), onto polypyrrole (PPy) was monitored by XPS, ToF-SSIMS and inverse gas chromatography (IGC). It is shown that the solvent nature influences adsorption rate and the morphology of the coating. There is also evidence for PVC and PEO block-enrichment at the PPy-blend and PPy-P(S/EO) interfaces, respectively. L'adsorption de PMMA et PVC, de leurs mélanges (PMMA+PVC) et d'un copolymère à blocs (poly(styrène-b-oxyde d'éthylène), P(S/EO)) sur le polypyrrole (PPy) a été suivie par XPS, ToF-SSIMS et chromatographie inverse en phase gazeuse. Il est démontré que la nature du solvant influence la quantité de polymère adsorbé et la morphologie des revêtements. En outre, les interfaces PPy-(PMMA+PVC) et PPy-P(S/EO) sont riches respectivement en PVC et en blocs PEO.

  2. Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide).

    Science.gov (United States)

    Ogura, Michihiro; Tokuda, Hiroyuki; Imabayashi, Shin-ichiro; Watanabe, Masayoshi

    2007-08-28

    A thermoresponsive diblock copolymer, poly(ethyl glycidyl ether)-block-poly(ethylene oxide) (PEGE-b-PEO), is synthesized by successive anionic ring-opening polymerization of ethyl glycidyl ether and ethylene oxide using 2-phenoxyethanol as a starting material, and its solution behavior is elucidated in water. In a dilute 1 wt % solution, the temperature-dependent alteration in the polymer hydrodynamic radius (RH) is measured in the temperature range between 5 and 45 degrees C by pulse-gradient spin-echo NMR and dynamic light scattering. The RH value increased with temperature in two steps, where the first step at 15 degrees C corresponds to the core-shell micelle formation and the second step at 40 degrees C corresponds to the aggregation of the core-shell micelles. The formation of the core-shell micelles is supported by the solubilization of a dye (1,6-diphenyl-1,3,5-hexatriene) in the hydrophobic core, which is recognized for a copolymer solution in the temperature range between 20 and 40 degrees C. In this temperature range, the core-shell micelles and the unimers coexist and the fraction of the former gradually increases with increasing temperature, suggesting equilibrium between the micelles and the unimers. In the concentrated regime (40 wt % solution), the solution forms a gel and the small-angle X-ray scattering measurements reveal the successive formation of hexagonal and lamellar liquid crystal phases with increasing temperature.

  3. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing – An in-situ, time-resolved GISAXS study

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Zhang, Jianqi; Perlich, Jan

    2016-01-01

    -block-polybutadiene (PS-b-PB) diblock copoly-mer (28.0 kg/mol). The films are prepared by spin-coating Si wafers from toluene solutions and have film thicknesses of 215 nm and 332 nm. The as-prepared films have mainly the parallel lamellar orientation with a lamellar thickness Dlam,par significantly lower than in the bulk...

  4. Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles.

    Science.gov (United States)

    Qi, Wei; Ghoroghchian, P Peter; Li, Guizhi; Hammer, Daniel A; Therien, Michael J

    2013-11-21

    Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant

  5. Effect of temperature on the interfacial behavior of a polystyrene-b-poly(methyl methacrylate) diblock copolymer at the air/water interface.

    Science.gov (United States)

    Seo, Yongsok; Cho, Chung Yeon; Hwangbo, Minyoung; Choi, Hyoung Jin; Hong, Soon Man

    2008-03-18

    Monolayers of a polystyrene-poly(methyl methacrylate) (PS-PMMA) diblock copolymer at the air-water interface were studied by measuring the surface pressure-area isotherms at several temperatures. Langmuir film balance experiments and atomic force microscopy showed that the diblock copolymer molecules formed surface micelles. In the plot of the surface pressure versus surface area per repeating unit, the monolayer changed from the gas phase to the liquid expanded phase at lower surface pressure for systems at low temperature compared to those at high temperature. In addition, a plateau, corresponding to the transition from the liquid expanded to liquid condensed phase, appeared in that plot at lower surface pressure for systems with a higher subphase (water) temperature. Hysteresis was observed in the compression-expansion cycle process. Increasing the subphase temperature alleviated this hyteresis gap, especially at low surface pressures. The minimum in the plot of the surface pressure versus surface area per repeating unit in the expansion process (which arises from the transition) and the transition plateau appeared more vividly at higher water temperature. These dynamic experimental results show that PS-PMMA diblock copolymers, in which both blocks are insoluble in water, do not form complicated entanglements in two-dimensional space. Although higher water temperature provided more entropy to the chains, and thus more conformational freedom, it did not change the surface morphology of the condensed film because both blocks of PS-PMMA are insoluble in water.

  6. Sequentially Different AB Diblock and ABA Triblock Copolymers as P3HT:PCBM Interfacial Compatibilizers for Bulk-Heterojunction Photovoltaics.

    Science.gov (United States)

    Fujita, Hiroyuki; Michinobu, Tsuyoshi; Fukuta, Seijiro; Koganezawa, Tomoyuki; Higashihara, Tomoya

    2016-03-01

    The P3HT:PCBM (P3HT = poly(3-hexylthiophene, PCBM = phenyl-C61-butyric acid methyl ester) bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells using the AB diblock and ABA triblock copolymers (A = polystyrene derivative with donor-acceptor units (PTCNE) and B = P3HT) as compatibilizers were fabricated. Under the optimized blend ratio of the block copolymer, the power conversion efficiency (PCE) was enhanced. This PCE enhancement was clearly related to the increased short-circuit current (J(sc)) and fill factor (FF). The incident photon to current efficiency (IPCE) measurement suggested that the P3HT crystallinity was improved upon addition of the block copolymers. The increased P3HT crystallinity was consistent with the increased photovoltaic parameters, such as J(sc), FF, and consequently the PCE. The surface energies of these block copolymers suggested their thermodynamically stable location at the interface of P3HT:PCBM, showing the efficient compatibilizing performance, resulting in enlarging and fixing the interfacial area and suppressing the recombination of the generated carriers. Grazing incidence X-ray scattering (GIXS) results confirmed the superior compatibilizing performance of the ABA triblock copolymer when compared to the AB diblock copolymer by the fact that, after blending the ABA triblock copolymer in the P3HT:PCBM system, the enhanced crystallinity of matrix P3HT was observed in the excluded areas of the less-aggregated PCBM domains, changing the P3HT crystalline domain orientation from "edge-on" to "isotropic". This is, to the best of our knowledge, the first sequential effect (AB vs ABA) of the block copolymers on the compatibilizing performances based on BHJ OPV device systems.

  7. THERMAL ANALYSIS OF POLYPROPYLENE-b-POLYETHYLENE DIBLOCK COPOLYMERS AND CORRESPONDING BLENDS

    Institute of Scientific and Technical Information of China (English)

    QI Yuchen; WANG Lixiao; CHEN Donglin; HUANG Baotong

    1984-01-01

    Difference in thermal behavior of presumed polypropylene-b-polyethylene block copolymers (PP-PE) and corresponding PP+PE blends was studied. Different views in the literature were unified in our observation that faster cooling rate yielded only one exothermal peak for the blends, while slower cooling rates revealed both PP and PE exothermal peaks. Further details on when a single or double exothermal peaks would appear are discussed. Melting and crystallization temperatures for both PP and PE in blends were found to be a few degrees higher than for PP and PE in block copolymers. Thus, thermal analysis can be used to identify PP-PE block copolymers. These phenomena and the lower △Hf-values of PP and PE in block copolymers than the △Hf-values of pure homo-PP and -PE (for PE even more so) are explained in terms of restricted block movement due to covalent bond between blocks and of crystallization processes in block copolymers. The presence of block structure in the PP-PE samples studied is inferred.

  8. Directed self-assembly of diblock copolymers in multi-VIA configurations: effect of chemopatterned substrates on defectivity

    Science.gov (United States)

    Carpenter, Corinne L.; Delaney, Kris T.; Fredrickson, Glenn H.

    2016-03-01

    Directed self-assembly (DSA) of block copolymers has gained much attention for its potential as a low-cost, high-throughput patterning tool to supplement existing lithographic techniques, and in particular for its ability to easily pattern vertical interconnect accesses (VIAs).1 Single-hole shrink has been extensively explored, but the continued push towards higher-resolution patterns requires more efficient, less space-consuming approaches. The lithographic resolution limits the minimum distance between two features, and the single-hole templates take up valuable real estate on the wafer.2 To accommodate denser features and relax the resolution requirements of the lithographic techniques, it is prudent to move to multi-VIA configurations in which two or more features are assembled in a single guiding template (such as a peanut,3 or a rounded rectangle4). This allows considerably denser feature patterning, but comes at the cost of more plentiful and complicated defect modes than those found in single-hole shrink features. Most systems contain persistent horizontal structures (eg. rings, U-defects, or bars as shown in Figure 1) that prove detrimental to the etch process and yield undesirable configurations. Largely unexplored is the tandem use of chemoepitaxy and graphoepitaxy to suppress defect modes in multi- VIA templates. Specifically, chemically selective patterning of the substrate beneath a template could act synergistically with the template's lateral guidance to lower defectivity. In this study, we use three-dimensional self-consistent field theory (SCFT) simulations to investigate the equilibrium and metastable defective configurations of di-block copolymer DSA systems in the presence of chemically selective or neutral template sidewalls and preferentially attractive striped substrates. We identify chemo-patterning schemes that maximize defect energies, including sidewall interaction strength and chemical preference. In addition, we discuss chemo

  9. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    Science.gov (United States)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  10. Nucleation of the BCC phase from disorder in a diblock copolymer melt: Testing approximate theories through simulation

    Science.gov (United States)

    Spencer, Russell K. W.; Curry, Paul F.; Wickham, Robert A.

    2016-10-01

    We examine nucleation of the stable body-centred-cubic (BCC) phase from the metastable uniform disordered phase in an asymmetric diblock copolymer melt. Our comprehensive, large-scale simulations of the time-dependent, mean-field Landau-Brazovskii model find that spherical droplets of the BCC phase nucleate directly from disorder. Near the order-disorder transition, the critical nucleus is large and has a classical profile, attaining the bulk BCC phase in an interior that is separated from disorder by a sharp interface. At greater undercooling, the amplitude of BCC order in the interior decreases and the nucleus interface broadens, leading to a diffuse critical nucleus. This diffuse nucleus becomes large as the simulation approaches the disordered phase spinodal. We show that our simulation follows the same nucleation pathway that Cahn and Hilliard found for an incompressible two-component fluid, across the entire metastable region. In contrast, a classical nucleation theory calculation based on the free energy of a planar interface between coexisting BCC and disordered phases agrees with simulation only in the limit of very small undercooling; we can expand this region of validity somewhat by accounting for the curvature of the droplet interface. A nucleation pathway involving a classical droplet persists, however, to deep undercooling in our simulation, but this pathway is energetically unfavourable. As a droplet grows in the simulation, its interface moves with a constant speed, and this speed is approximately proportional to the undercooling.

  11. Supramolecular Assemblies from Poly(styrene-block-poly(4-vinylpyridine Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid

    Directory of Open Access Journals (Sweden)

    Jean-François Gohy

    2013-06-01

    Full Text Available Supramolecular assemblies involving interaction of a small organic molecule, 2-hydroxy-6-Naphthoic acid (HNA, with poly(styrene-block-poly(4-vinylpyridine (PS-b-P4VP diblock copolymers are utilized to obtain micellar structures in solution, nanostructured thin films on flat substrates and, finally, nanoporous thin films. The formation of hydrogen bonds between HNA and the poly(4-vinylpyridine (P4VP blocks is confirmed by spectroscopic measurements. The accordingly P4VP/HNA hydrogen-bonded complexes are poorly soluble in 1,4-dioxane, resulting in the formation of micellar structures with a P4VP/HNA core and a polystyrene (PS corona. Those micelles have been spin-coated onto silicon wafers, resulting in nanostructured thin films consisting of P4VP/HNA dot-like features embedded in a PS matrix. The morphology of those films has been tuned by solvent annealing. Selective dissolution of HNA by methanol results in the formation of a nanoporous thin film. The P4VP/HNA nanodomains have been also cross-linked by borax, and the thin films have been further dissolved in a good solvent for PS, leading to micelles with a structure reminiscent of the thin films.

  12. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS: Different Behavior of Parallel and Perpendicular Lamellae.

    Science.gov (United States)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M; Perlich, Jan; Kyriakos, Konstantinos; Jaksch, Sebastian; Papadakis, Christine M

    2014-08-26

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP(-β), in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently from parallel ones, which is due to the fact that their initial lamellar thicknesses differ strongly. Quantitatively, the swelling process is composed of three regimes and the drying process of two regimes. The first two regimes of swelling are associated with a significant structural rearrangement of the lamellae; i.e., the lamellae first become thicker, and then perpendicular and randomly oriented lamellae vanish, which results in a purely parallel orientation at the end of the swelling process. The rearrangement is attributed to the increase of mobility of the polymer chains imparted by the solvent and to a decrease of total free energy of the thin film. In the third regime of swelling, the scaling exponent is found to be β = -0.32. During drying, the deswelling is nonaffine which may be a consequence of the increase of nonfavorable segmental interactions as the solvent is removed.

  13. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    Science.gov (United States)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  14. Stability of the perforated layer (PL) phase in diblock copolymer melts

    DEFF Research Database (Denmark)

    Hajduk, Damian A; Takenouchi, Hiroshi; Hillmyer, Marc A;

    1997-01-01

    We reexamine the stability of hexagonally modulated layer (HML) and hexagonally perforated layer (HPL) morphologies in a number of block copolymer systems of low to moderate molecular weight. Using small-angle X-ray scattering and dynamic mechanical spectroscopy, we show that these structures are...

  15. Transformations to and from the gyroid phase in a diblock copolymer

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Almdal, Kristoffer; Mortensen, K;

    1998-01-01

    Simultaneous small-angle scattering and in situ dynamic mechanical measurements offer an excellent opportunity to relate the macroscopic dynamical mechanical response of block copolymers and their mesoscopic structural behavior. We use small-angle neutron scattering and rheology to examine the or...

  16. Highly-Ordered Magnetic Nanostructures on Self-Assembled α-Al{sub 2}O{sub 3} and Diblock Copolymer Templates

    Energy Technology Data Exchange (ETDEWEB)

    Erb, Denise

    2015-08-15

    This thesis shows the preparation of nanostructured systems with a high degree of morphological uniformity and regularity employing exclusively selfassembly processes, and documents the investigation of these systems by means of atomic force microscopy (AFM), grazing incidence small angle X-ray scattering (GISAXS), and nuclear resonant scattering of synchrotron radiation (NRS). Whenever possible, the X-ray scattering methods are applied in-situ and simultaneously in order to monitor and correlate the evolution of structural and magnetic properties of the nanostructured systems. The following systems are discussed, where highly-ordered magnetic nanostructures are grown on α-Al{sub 2}O{sub 3} substrates with topographical surface patterning and on diblock copolymer templates with chemical surface patterning: - Nanofaceted surfaces of α-Al{sub 2}O{sub 3} - Magnetic nanostructures on nanofaceted α-Al{sub 2}O{sub 3} substrates - Thin films of microphase separated diblock copolymers - Magnetic nanostructures on diblock copolymer thin film templates The fact that the underlying self-assembly processes can be steered by external factors is utilized to optimize the degree of structural order in the nanostructured systems. The highly-ordered systems are well-suited for investigations with X-ray scattering methods, since due to their uniformity the inherently averaged scattered signal of a sample yields meaningful information on the properties of the contained nanostructures: By means of an in-situ GISAXS experiment at temperatures above 1000 C, details on the facet formation on α-Al{sub 2}O{sub 3} surfaces are determined. A novel method, merging in-situ GISAXS and NRS, shows the evolution of magnetic states in a system with correlated structural and magnetic inhomogeneity with lateral resolution. The temperature-dependence of the shape of Fe nanodots growing on diblock copolymer templates is revealed by in-situ GISAXS during sputter deposition of Fe. Combining in

  17. Controlling Assembly and Crystallization of S-layers on Diblock Copolymer Patterns

    Science.gov (United States)

    Gunkel, Ilja; Lingenfelder, Magalí; Stel, Bart; Gu, Xiaodan; Russell, Thomas; Deyoreo, James

    2013-03-01

    Block copolymers (BCPs) self-assemble into arrays of nanoscopic morphologies, including lamellar, cylindrical, and spherical microdomains, that serve as ideal templates for the fabrication of nanostructured materials. The size of the microdomains is a function of the polymer size so tuning the copolymer's molecular weight allows for a precise control over the dimension of the BCP morphologies. Moreover, the heterogeneous chemical nature of BCPs allows them to be used as templates for well-defined protein adsorption. Here, we used nanoscopic BCP patterns as templates to study the assembly of S-layer proteins SbpA from Lysinibacillus sphaericus (ATCC 4525) by in-situ Atomic Force Microscopy (AFM). The templates were formed by polystyrene-b-poly(ethylene oxide) BCPs of various molecular weights after spin coating on solid surfaces and subsequent controlled solvent-vapor annealing. Our results show that by controlling the chemical contrast in templates of different geometry and periodicity, protein assemblies could be directed exclusively to the hydrophobic domains of the template. More importantly, our high-resolution AFM measurements indicate that the proteins crystallized in their native lattice while following the structure of the underlying template by preferential adsorption.

  18. Electric field effects on alignment of lamellar structures in diblock copolymer thin films studied by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiuli

    2006-12-07

    We investigated the lamellar orientation in thin films of a diblock copolymer P(S-b-MMA), under competing effects of surface interactions and an electric field applied perpendicular to the substrate. The surface effects tend to align the lamellae parallel to the substrate while the electric field tends to align the lamellae perpendicular to the substrate. Using neutron reflectivity, neutron diffuse scattering, and neutron small-angle scattering, we achieved a quantitative analysis of the internal structure of the films. Film thickness was found to play a non-trivial role in determining the structure of the films. A complete alignment by the surface effects was observed in the thinner films by annealing. The parallel orientation remains stable even if an electric field as strong as 40 V/{mu}m is applied. In the thicker films, a mixed orientation with boundary layers parallel and the central part partially perpendicular to the substrate was observed after annealing. The mixed orientation becomes unstable under a small compressive stress, and will be converted into a completely parallel orientation. The parallel orientation induced by the compressive stress remains stable as long as the electric field is weaker than several ten V/{mu}m. Only a field of about 40 V/{mu}m is able to stabilize the above mentioned mixed orientation. A fully perpendicular orientation was never observed in our experiments. Diffuse scattering shows a mosaic structure in the absence of an electric field, whose mosaicity will be increased by the torque exerted by an electric field. The lateral correlation length of the lamellar domains is estimated as 1-2 {mu}m. Limited by the small q{sub x}-range we have used, a clear statement on the existence of the electric-field-induced structural undulations predicted by the Onuki's theory cannot be made from our experiments. (orig.)

  19. THERMOSENSITIVE POLYION COMPLEX MICELLES PREPARED BY SELF-ASSEMBLY OF TWO OPPOSITELY CHARGED DIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Pan He; Chang-wen Zhao; Chun-sheng Xiao; Zhao-hui Tang; Xue-si Chen

    2013-01-01

    Polyion complex (PIC) micelles were spontaneously formed in aqueous solutions through electrostatic interaction between two oppositely charged block copolymers,poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) and poly(N-isopropylacrylamide)-b-poly(L-lysine).Their controlled synthesis was achieved via the ring opening polymerization of N-carboxyanhydrides (NCA),ε-benzyloxycarbonyl-L-lysine (Lys(Z)-NCA) or γ-benzyl-L-glutamate (BLG-NCA) with amino-terminated poly(N-isopropylacrylamide) macroinitiator and the subsequent deprotection reaction.The formation of PIC micelles was confirmed by dynamic light scattering and transmission electron microscopy.Turbidimetric characterization suggested that the formed PIC micelles had a concentration-dependent thermosensitivity and their phase transition behaviors could be easily adjusted either by the block length of coplymers or the concentration of micelles.

  20. Surface characterization of poly(L-lactic acid)-methoxy poly(ethylene glycol) diblock copolymers by static and dynamic contact angle measurements, FTIR, and ATR-FTIR.

    Science.gov (United States)

    Mert, O; Doganci, E; Erbil, H Y; Demir, A S

    2008-02-05

    The surface composition and surface free energy properties of two types of amphiphilic and semicrystalline diblock copolymers consisting of poly(L-lactic acid) coupled to (methoxy poly(ethylene glycol) (PLLA-MePEG) having differing block lengths of PEG were investigated by using static and dynamic contact angle measurements, transmission Fourier infrared spectroscopy (FTIR), and attenuated total reflection spectroscopy (ATR-FTIR) and compared with results obtained from PLLA and MePEG homopolymers. The contact angle results were evaluated by using the van Oss-Good method (acid-base method), and it was determined that the Lewis base surface tension coefficient (gamma-) of the copolymers increased with an increase of the PEG molar content at the copolymer surface. This result is in good agreement with the transmission FTIR and ATR-FTIR results but not proportional to them, indicating that the surfaces of the copolymers are highly mobile and that the molecular rearrangement takes place upon contact with a polar liquid drop. The dynamic contact angle measurements showed that the strong acid-base interaction between the oxygen atoms in the copolymer backbone of the relatively more hydrophilic PEG segments with the Lewis acidic groups of the polar and hydrogen-bonding water molecules enabled the surface molecules to restructure (conformational change) at the contact area, so that the PEG segments moved upward, whereas the apolar methyl pendant groups of PLLA segments buried downward.

  1. Synthesis and characterization of amphiphilc block copolymer poly(methyl acrylic acid)-block-polytetrahydrofuran

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Under the specially designated condition the polymerization of both tetrahydrofuran (THF) and tert-butyl methacrylate (tBMA) is a living one. The diblock copolymer, poly(tert-butyl methacrylate)-block-polytetrahydrofuran (PtBMA-b-PTHF), was successfully synthesized by means of the coupling reaction of living cationic PTHF+, SbF6- with living anionic PtBMA-, Li+. LiCl, which has a beneficial effect on the molecular weight distribution (MWD) in the anionic polymerization of (meth)acrylates, hinders the coupling reaction of living chains and cannot be used in the preparation of tBMA precursor. The hydrolysis of the aforementioned diblock copolymer under acid condition results in the amphiphilic diblock copolymer, i.e. poly(methyl acrylic acid)-block-polytetra- hydrofuran (PMAA-b-PTHF). The diblock copolymers were characterized with GPC and IR.

  2. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    Science.gov (United States)

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film.

  3. SYNTHESIS, CHARACTERIZATION AND QUENCHING BEHAVIOR OF A CATIONIC POLY(p-PHENYLENEVINYLENE) RELATED COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Guang-wei Zhang; Qu-li Fan; Yan-qin Huang; Wei Huang

    2009-01-01

    A cationic poly(p-phenylene vinylene) related copolymer without bulky phenylene substitutents attached to the conjugated backbone was prepared through Wittig reaction. The molecular structure and optical properties were highly investigated through ~1H-NMR, UV and PL spectroscopy. The quenching behavior was also investigated, and the results demonstrate that incomplete quenching exists, which is consistent with the cationic poly(p-phenylene vinylene) related copolymer containing bulky phenylene substitutents, probably correlated with the conformation of conjugated backbone and intermolecular aggregation.

  4. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers.

    Science.gov (United States)

    Mao, Hailiang; Pan, Pengju; Shan, Guorong; Bao, Yongzhong

    2015-05-28

    A novel in situ formed gel system with potential biodegradability and biocompatibility is developed by mixing the diblock and triblock poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) copolymers with opposite configurations of PLA blocks. In situ gelation of such system is extremely fast, which happens within 10 s after mixing. In situ gelation, gel-to-sol transition, crystalline structure, microstructures, and mechanical properties of PLA-PEG/PLA-PEG-PLA enantiomerically mixed gels are significantly influenced by the mixing ratio, degree of polymerization for PEG block in triblock (DPPEG,tri) and diblock copolymers (DPPEG,di). It is found that in situ gelation of PLA-PEG/PLA-PEG-PLA enantiomeric mixture just happen at relatively smaller PLA-PEG/PLA-PEG-PLA mass ratio and larger DPPEG,tri. Hydrodynamic diameters of PLA-PEG and PLA-PEG-PLA copolymers in dilute solution increase remarkably upon mixing, indicating the formation of bridging networks. Stereocomplexed crystallites are formed for the PLA hydrophobic domains in PLA-PEG/PLA-PEG-PLA enantiomeric mixtures. As indicated by synchrotron-radiation SAXS analysis, the enantiomeric mixture changes from a compactly to loosely aggregated structure and the intermicellar distance enhances with increasing DPPEG,tri, DPPEG,di, or PLA-PEG-PLA fraction. Gelation mechanism of PLA-PEG/PLA-PEG-PLA enantiomeric mixture is proposed, in which part of PLA-PEG-PLA chains act as the connecting bridges between star and flower-like micelles and the stereocomplexed crystallites in micelle cores act as physically cross-linked points.

  5. Polyelectrolyte Complexes of a Cationic All Conjugated Fluorene Thiophene Diblock Copolymer with Aqueous DNA

    DEFF Research Database (Denmark)

    Knaapila, Matti; Costa, Telma; Garamus, Vasil M.;

    2015-01-01

    We report on the structural and colorimetric effects of interaction of aqueous ∼0.06–1% poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-6-trimethylammoniumhexyl)thiophene] bromide (PF2/6-P3TMAHT) with double-stranded DNA to form PF2/6-P3TMAHT(DNA)x where x is the molar ratio of DNA base pairs to P3T...... photoluminescence (PL) is significantly quenched by DNA with increasing x, and the changing P3TMAHT/PF2/6 band ratio allows quantitative DNA detection. Sixteen-fold dilution does not change aggregate structure, but PL is blue-shifted, indicating weakened intermolecular interactions....

  6. Morphology and Crystallization of Thin Films of Asymmetric Organic-Organometallic Diblock Copolymers of Isoprene and Ferrocenyldimethylsilane

    NARCIS (Netherlands)

    Lammertink, Rob G.H.; Hempenius, Mark A.; Vancso, G. Julius

    2000-01-01

    The morphology of thin films of asymmetric block copolymers of poly(isoprene-block-ferrocenyldimethylsilane) was studied using atomic force microscopy, transmission electron microscopy, and optical microscopy. Block copolymers with the organometallic (ferrocenylsilane) phase between 20 and 28 vol %

  7. FhuA deletion variant Δ1-159 overexpression in inclusion bodies and refolding with Polyethylene-Poly(ethylene glycol) diblock copolymer.

    Science.gov (United States)

    Dworeck, Tamara; Petri, Anne-Kathrin; Muhammad, Noor; Fioroni, Marco; Schwaneberg, Ulrich

    2011-05-01

    Membrane protein isolation is a challenging problem. In fact especially their extraction from the respective membrane is difficult and often goes along with losses in yield. Usually expensive detergents are needed to extract the target protein from the membrane. Therefore finding an efficient overexpression and extraction method and an alternative to detergents is desirable. In this study we describe a new and fast method to express, extract and purify an engineered variant of the FhuA protein (FhuA Δ1-159) that acts as passive diffusion channel, using a diblock copolymer as an alternative to detergents like octyl-POE (n-octylpolyoxyethylene). The N-terminal leader sequence, facilitating the protein's transport to the outer membrane was deleted (FhuA Δ1-159 Δsignal), resulting in protein accumulation in easy to isolate inclusion bodies. Urea was used to solubilise the unfolded protein and dialysis against phosphate-buffer containing the commercially available diblock copolymer PE-PEG[Polyethylene-Poly(ethyleneglycol)] lead to protein refolding. Circular dichroism spectroscopy revealed a high β-sheet percentage within the refolded protein secondary structure indicating the successful reconstitution of FhuA Δ1-159 Δsignal native state. Furthermore the channel functionality of FhuA Δ1-159 Δsignal was verified by measuring the in and out-flux through the protein when inserted into liposome membrane, using the HRP/TMB (HRP=Horse Radish Peroxidase, TMB=3,3',5,5'-tetramethylbenzidine) assay system.

  8. Reduction of the inflammatory responses against alginate-poly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLL diblock copolymers.

    Directory of Open Access Journals (Sweden)

    Milica Spasojevic

    Full Text Available Large-scale application of alginate-poly-L-lysine (alginate-PLL capsules used for microencapsulation of living cells is hampered by varying degrees of success, caused by tissue responses against the capsules in the host. A major cause is proinflammatory PLL which is applied at the surface to provide semipermeable properties and immunoprotection. In this study, we investigated whether application of poly(ethylene glycol-block-poly(L-lysine hydrochloride diblock copolymers (PEG-b-PLL can reduce the responses against PLL on alginate-matrices. The application of PEG-b-PLL was studied in two manners: (i as a substitute for PLL or (ii as an anti-biofouling layer on top of a proinflammatory, but immunoprotective, semipermeable alginate-PLL100 membrane. Transmission FTIR was applied to monitor the binding of PEG-b-PLL. When applied as a substitute for PLL, strong host responses in mice were observed. These responses were caused by insufficient binding of the PLL block of the diblock copolymers confirmed by FTIR. When PEG-b-PLL was applied as an anti-biofouling layer on top of PLL100 the responses in mice were severely reduced. Building an effective anti-biofouling layer required 50 hours as confirmed by FTIR, immunocytochemistry and XPS. Our study provides new insight in the binding requirements of polyamino acids necessary to provide an immunoprotective membrane. Furthermore, we present a relatively simple method to mask proinflammatory components on the surface of microcapsules to reduce host responses. Finally, but most importantly, our study illustrates the importance of combining physicochemical and biological methods to understand the complex interactions at the capsules' surface that determine the success or failure of microcapsules applicable for cell-encapsulation.

  9. Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers

    KAUST Repository

    Zhang, Hefeng

    2015-12-17

    A series of hydroxyl-terminated polyisobutylene-b-polyethylene (PIB-b-PE-OH) copolymers were synthesized by combining living cationic polymerization and polyhomologation. Allyl-terminated PIBs, synthesized by living cationic polymerization, were hydroborated with BH3·THF to produce 3-arm boron-linked stars, PIB3B, which served as macroinitiators for the in situ polyhomologation of dimethylsulfoxonium methylide. The resulting 3-arm star block copolymers, (PIB-b-PE)3B, were oxidized/hydrolysed to afford PIB-b-PE-OH. Characterization of all intermediates and final products by high temperature gel permeation chromatography (HT-GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR) revealed the well-defined character of the copolymers. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC).

  10. Temperature effects on the stability of gold nanoparticles in the presence of a cationic thermoresponsive copolymer

    Science.gov (United States)

    Pamies, Ramón; Zhu, Kaizheng; Kjøniksen, Anna-Lena; Nyström, Bo

    2016-11-01

    New hybrid complexes composed by a thermoresponsive copolymer and gold nanoparticles (Rh = 22 nm) have been characterized by dynamic light scattering (DLS) and UV-visible spectroscopy. A cationic thermoresponsive triblock copolymer, methoxy-poly(ethylene glycol)- block-poly( N-isopropylacrylamide)- block-poly((3-acrylamidopropyl) trimethyl ammonium chloride), abbreviated as MPEG- b-PNIPAAM- b-PN(+), has been synthesized by atom transfer radical polymerization (ATRP). We have evaluated the thermal response at low concentrations of this triblock copolymer in bulk solution and the effect of concentration on the interaction between this thermosensitive copolymer and the gold nanoparticles (AuNPs) to form new hybrid complexes (60-1000 nm) at different temperatures. The thermosensitive nature of the copolymer causes both aggregation and contraction of the aggregates at elevated temperatures. The AuNPs were found to be separately embedded in the hybrid complexes. Interestingly, the AuNPs prevent macroscopic phase separation of the system at high temperatures.

  11. Same-single-cell analysis using the microfluidic biochip to reveal drug accumulation enhancement by an amphiphilic diblock copolymer drug formulation.

    Science.gov (United States)

    Khamenehfar, Avid; Wan, Chung Ping Leon; Li, Paul C H; Letchford, Kevin; Burt, Helen M

    2014-11-01

    Multidrug resistance (MDR) is one of the major obstacles in drug delivery, and it is usually responsible for unsuccessful cancer treatment. MDR may be overcome by using MDR inhibitors. Among different classes of these inhibitors that block drug efflux mediated by permeability-glycoprotein (P-gp), less toxic amphiphilic diblock copolymers composed of methoxypolyethyleneglycol-block-polycaprolactone (MePEG-b-PCL) have been studied extensively. The purpose of this work is to evaluate how these copolymer molecules can reduce the efflux, thereby enhancing the accumulation of P-gp substrates (e.g., daunorubicin or DNR) in MDR cells. Using conventional methods, it was found that the low-molecular-weight diblock copolymer, MePEG17-b-PCL5 (PCL5), enhanced drug accumulation in MDCKII-MDR1 cells, but the high-molecular-weight version, MePEG114-b-PCL200 (PCL200), did not. However, when PCL200 was mixed with PCL5 (and DNR) in order to encapsulate them to facilitate drug delivery, there was no drug enhancement effect attributable to PCL5, and the reason for this negative result was unclear. Since drug accumulation measured on different cell batches originated from single cells, we employed the same-single-cell analysis in the accumulation mode (SASCA-A) to find out the reason. A microfluidic biochip was used to select single MDR cells, and the accumulation of DNR was fluorescently measured in real time on these cells in the absence and presence of PCL5. The SASCA-A method allowed us to obtain drug accumulation information faster in comparison to conventional assays. The SASCA-A results, and subsequent curve-fitting analysis of the data, have confirmed that when PCL5 was encapsulated in PCL200 nanoparticles as soon as they were synthesized, the ability of PCL5 to enhance DNR accumulation was retained, thus suggesting PCL200 as a promising delivery system for encapsulating P-gp inhibitors, such as PCL5.

  12. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations

    Science.gov (United States)

    Li, Yuan; Qi, Xian Rong; Maitani, Yoshie; Nagai, Tsuneji

    2009-02-01

    The purpose of this study was to characterize the properties in vitro, i.e. release, degradation, hemolytic potential and anticancer activity, and in vivo disposition of all-trans-retinoic acid (ATRA) in rats after administration of ATRA-loaded micelle-like nanoparticles. The amphiphilic block copolymers consisted of a micellar shell-forming mPEG block and a core-forming PLA block. The mPEG-PLA nanoparticles prepared by an acetone volatilization dialysis procedure were identified as having core-shell structure by 1H NMR spectroscopy. Critical association concentration, drug contents, loading efficiency, particle size and ξ potential were evaluated. The release of ATRA from the nanoparticles and the degradation of PLA were found to be mostly associated with the compositions of the nanoparticles. ATRA release was faster at smaller molecular weight of copolymer and lower drug contents. In vitro, the incorporation of ATRA in mPEG-PLA nanoparticles reduced the hemolytic potential of ATRA. Furthermore, anticancer activity of ATRA against HepG2 cell was increased by encapsulation, which showed an enhancement of tumor treatment of ATRA. In vivo, after intravenous injection to rats, the levels of ATRA in the blood stream and the bioavailability were higher for ATRA-loaded mPEG-PLA nanoparticles than those for ATRA solution. In conclusion, the structure of the mPEG-PLA diblock copolymer could be modulated to fit the demand of in vitro and in vivo characterizations of nanoparticles. The mPEG-PLA nanoparticles' loading ATRA have a promising future for injection administration.

  13. Final Report: Grant DE-FG02-05ER15682. Simulation of Complex Microphase Formation in Pure and Nanoparticle-filled Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Fernando A. Escobedo

    2009-11-18

    The goal of this project was to use molecular simulation to quantify the impact of additives on the onset and structure of bicontinuous phases in linear diblock copolymers (DBC). The focus was on understanding how additives with selective affinity for a given block will distribute and perturb the structure of complex bicontinuous phases (like gyroid, double diamond, and plumbers nightmare whose minority component block forms two interweaving 3D networks) in DBCs; it was hypothesized that a suitable choice of additive type, size, affinity, and concentration may suppress or stabilize a particular bicontinuous phase. The ultimate goal in this line of investigation is to elucidate the rational design of the optimal additive for which the composition range of stability of a particular bicontinuous phase is maximized. Ours are the first published simulation studies to report on the formation of the gyroid phase in DBC melts and of other bicontinuous phases in DBC-modified by homopolymer. The following tasks were carried out: (i) simulation of bicontinuous phases of pure DBCs via both on-lattice Monte Carlo simulations and continuum-space Monte Carlo and molecular dynamics simulations, (ii) determination of the effect of selective additives (homopolymer) of different sizes on such bicontinuous phases, and (iii) development of novel Monte Carlo methods to map out reliable phase diagrams and improve ergodic sampling; in particular, optimized expanded-ensemble techniques for measuring free-energies and for chemical potential equilibration.

  14. Biosynthesis and characterization of diblock copolymer of p(3-hydroxypropionate)-block-p(4-hydroxybutyrate) from recombinant Escherichia coli

    DEFF Research Database (Denmark)

    Tripathi, Lakshmi; Wu, Linping; Meng, Dechuan

    2013-01-01

    Poly(4-hydroxybutyrate) (P4HB) is a highly elastic polymer, whereas poly(3-hydroxypropionate) (P3HP) is a polymer with enormous tensile strength. This study aimed to biosynthesize a block copolymer consisting of soft P4HB block with a strong P3HP block to gain unique and excellent material...

  15. Effect of Small Molecule Osmolytes on the Self-Assembly and Functionality of Globular Protein-Polymer Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Carla S.; Xu, Liza; Olsen, Bradley D. [MIT

    2013-12-05

    Blending the small molecule osmolytes glycerol and trehalose with the model globular protein–polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) (mCherry-b-PNIPAM) is demonstrated to improve protein functionality in self-assembled nanostructures. The incorporation of either additive into block copolymers results in functionality retention in the solid state of 80 and 100% for PNIPAM volume fractions of 40 and 55%, respectively. This represents a large improvement over the 50–60% functionality observed in the absence of any additive. Furthermore, glycerol decreases the thermal stability of block copolymer films by 15–20 °C, while trehalose results in an improvement in the thermal stability by 15–20 °C. These results suggest that hydrogen bond replacement is responsible for the retention of protein function but suppression or enhancement of thermal motion based on the glass transition of the osmolyte primarily determines thermal stability. While both osmolytes are observed to have a disordering effect on the nanostructure morphology with increasing concentration, this effect is less pronounced in materials with a larger polymer volume fraction. Glycerol preferentially localizes in the protein domains and swells the nanostructures, inducing disordering or a change in morphology depending on the PNIPAM coil fraction. In contrast, trehalose is observed to macrophase separate from the block copolymer, which results in nanodomains becoming more disordered without changing significantly in size.

  16. Preparation and Cross-Linking of All-Acrylamide Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly in Aqueous Solution

    Science.gov (United States)

    2017-01-01

    Various carboxylic acid-functionalized poly(N,N-dimethylacrylamide) (PDMAC) macromolecular chain transfer agents (macro-CTAs) were chain-extended with diacetone acrylamide (DAAM) by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization at 70 °C and 20% w/w solids to produce a series of PDMAC–PDAAM diblock copolymer nano-objects via polymerization-induced self-assembly (PISA). TEM studies indicate that a PDMAC macro-CTA with a mean degree of polymerization (DP) of 68 or higher results in the formation of well-defined spherical nanoparticles with mean diameters ranging from 40 to 150 nm. In contrast, either highly anisotropic worms or polydisperse vesicles are formed when relatively short macro-CTAs (DP = 40–58) are used. A phase diagram was constructed to enable accurate targeting of pure copolymer morphologies. Dynamic light scattering (DLS) and aqueous electrophoresis studies indicated that in most cases these PDMAC–PDAAM nano-objects are surprisingly resistant to changes in either solution pH or temperature. However, PDMAC40–PDAAM99 worms do undergo partial dissociation to form a mixture of relatively short worms and spheres on adjusting the solution pH from pH 2–3 to around pH 9 at 20 °C. Moreover, a change in copolymer morphology from worms to a mixture of short worms and vesicles was observed by DLS and TEM on heating this worm dispersion to 50 °C. Postpolymerization cross-linking of concentrated aqueous dispersions of PDMAC–PDAAM spheres, worms, or vesicles was performed at ambient temperature using adipic acid dihydrazide (ADH), which reacts with the hydrophobic ketone-functionalized PDAAM chains. The formation of hydrazone groups was monitored by FT-IR spectroscopy and afforded covalently stabilized nano-objects that remained intact on exposure to methanol, which is a good solvent for both blocks. Rheological studies indicated that the cross-linked worms formed a stronger gel compared to linear precursor

  17. Durability and Performance of Polystyrene-b-Poly(vinylbenzyl trimethylammonium) Diblock Copolymer and Equivalent Blend Anion Exchange Membranes

    Science.gov (United States)

    2015-01-01

    SECURITY CLASSIFICATION OF: Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study... Anion Exchange Membranes The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...Copolymer and Equivalent Blend Anion Exchange Membranes Report Title Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion

  18. Complementary study based on DFT to describe the structure and properties relationship of diblock copolymer based on PVK and PPV

    Energy Technology Data Exchange (ETDEWEB)

    Mbarek, M.; Abbassi, F.; Alimi, K., E-mail: kamel.alimi@fsm.rnu.tn

    2016-09-15

    The structure-properties relationships of copolymer involving N-vinylcarbazole (PVK) and poly (p-phenylene-vinylene) (PPV) blocks, denoted PVK–PPV, was investigated by calculations based on density functional theory (DFT) and completed by experimental analyses. Thus, vibrational, optical and emission spectra of model compound have been simulated and compared to the experiments observations published recently. Ionization potentials (IPs), electron affinities (EAs) and energy gaps were determined. Furthermore, quantum yields, radiative and nonradiative exciton lifetime was highlighted.

  19. Micelles and gels of oxyethylene-oxybutylene diblock copolymers in aqueous solution: The effect of oxyethylene-block length

    DEFF Research Database (Denmark)

    Derici, L.; Ledger, S.; Mai, S.M.

    1999-01-01

    Block copolymer E(90)B(10) (E = oxyethylene, B = oxybutylene) was synthesised and characterised by gel permeation chromatography and (13)C NMR spectroscopy. Dynamic light scattering (DLS) and static light scattering (SLS) were used to characterise the micelles in solution (both in water and in aq......Block copolymer E(90)B(10) (E = oxyethylene, B = oxybutylene) was synthesised and characterised by gel permeation chromatography and (13)C NMR spectroscopy. Dynamic light scattering (DLS) and static light scattering (SLS) were used to characterise the micelles in solution (both in water.......e., the association number, the hard-sphere radius, the micelle volume fraction and the corresponding expansion factors. A comparison of the appropriate quantities showed good agreement between the two techniques. SANS gave additional information e.g., volume fraction profiles for the micelles and volume fraction...... of water in the micelle core. Moderately concentrated solutions of copolymer E(90)B(10) were studied in the gel state by small-angle X-ray scattering (SAXS) in tandem with rheology (oscillatory shear). Values for the dynamic elastic modulus (G') of the gels significantly exceeded 10(4) Pa across the range...

  20. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    Science.gov (United States)

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant

  1. Testing the vesicular morphology to destruction: birth and death of diblock copolymer vesicles prepared via polymerization-induced self-assembly.

    Science.gov (United States)

    Warren, Nicholas J; Mykhaylyk, Oleksandr O; Ryan, Anthony J; Williams, Mark; Doussineau, Tristan; Dugourd, Philippe; Antoine, Rodolphe; Portale, Giuseppe; Armes, Steven P

    2015-02-11

    Small angle X-ray scattering (SAXS), electrospray ionization charge detection mass spectrometry (CD-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) are used to characterize poly(glycerol monomethacrylate)55-poly(2-hydroxypropyl methacrylate)x (G55-Hx) vesicles prepared by polymerization-induced self-assembly (PISA) using a reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization formulation. A G55 chain transfer agent is utilized to prepare a series of G55-Hx diblock copolymers, where the mean degree of polymerization (DP) of the membrane-forming block (x) is varied from 200 to 2000. TEM confirms that vesicles with progressively thicker membranes are produced for x = 200-1000, while SAXS indicates a gradual reduction in mean aggregation number for higher x values, which is consistent with CD-MS studies. Both DLS and SAXS studies indicate minimal change in the overall vesicle diameter between x = 400 and 800. Fitting SAXS patterns to a vesicle model enables calculation of the membrane thickness, degree of hydration of the membrane, and the mean vesicle aggregation number. The membrane thickness increases at higher x values, hence the vesicle lumen must become smaller if the external vesicle dimensions remain constant. Geometric considerations indicate that this growth mechanism lowers the total vesicle interfacial area and hence reduces the free energy of the system. However, it also inevitably leads to gradual ingress of the encapsulated water molecules into the vesicle membrane, as confirmed by SAXS analysis. Ultimately, the highly plasticized membranes become insufficiently hydrophobic to stabilize the vesicle morphology when x exceeds 1000, thus this PISA growth mechanism ultimately leads to vesicle "death".

  2. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example.

    Science.gov (United States)

    Velluto, Diana; Demurtas, Davide; Hubbell, Jeffrey A

    2008-01-01

    Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block.

  3. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  4. Design of cationic graft copolymers as a potential inducer of B-Z transition.

    Science.gov (United States)

    Shimada, Naohiko; Kano, Arihiro; Maruyama, Atsushi

    2009-01-01

    Biological roles of transition from B form to Z form of DNA (B-Z transition) have recently received attention. The B-Z transition was also employed as driving machinery of a nano-mechanical DNA device. However, there are little reports of effective inducer of the B-Z transition. We previously reported that poly((L)-Lysine)-graft-dextran induces B-Z transition and grafted dextran plays an important role for the B-Z transition. In this report, we designed cationic graft copolymer as a potential inducer of B-Z transition. Series of the copolymers consisting of poly((L)-Lysine) backbone and abundant of dextran (Dex) or poly(ethylene glycol) (PEG) side chains were prepared. The B-Z transition of poly(dG-dC)/Poly(dG-dC) were observed in the presence of these copolymers. The copolymers having higher content of Dex or PEG effectively induced the B-Z transition compared to that having lower content. The result indicated that not only electrostatic interaction between DNA and the poly((L)-Lysine) backbone but also hydrophilic graft chains play a role for the B-Z transition. We speculated that Dex- or PEG-enriched environment is favorable for Z form.

  5. Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO 2

    KAUST Repository

    Nedelcu, Mihaela

    2010-01-01

    We present a material and device based study on the fabrication of mesoporous TiO2 and its integration into dye-sensitized solar cells. Poly(isoprene-block-ethyleneoxide) (PI-b-PEO) copolymers were used as structure directing agents for the sol-gel based synthesis of nanoporous monolithic TiO2 which was subsequently ground down to small particles and processed into a paste. The TiO2 synthesis and the formation of tens of micrometre thick films from the paste is a scalable approach for the manufacture of dye sensitised solar cells (DSCs). In this study, we followed the self-assembly of the material through the various processing stages of DSC manufacture. Since this approach enables high annealing temperatures while maintaining porosity, excellent crystallinity was achieved. Internal TiO 2 structures ranging from the nanometre to micrometre scale combine a high internal surface area with the strong scattering of light, which results in high light absorption and an excellent full-sun power conversion efficiency of up to 6.4% in a robust, 3 μm thick dye-sensitized solar cell. © 2010 The Royal Society of Chemistry.

  6. Comparative study of self-assembled ZnO nanostructures in poly(styrene-acrylic acid) diblock copolymers-[PS]{sub m}/[PAA]{sub n}-on Si and SiO{sub 2}/Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ali, H.A. [Electrical and Computer Engineering Department, University of Maryland, College Park, Maryland 20742 (United States); Iliadis, A.A. [Electrical and Computer Engineering Department, University of Maryland, College Park, Maryland 20742 (United States)]. E-mail: agis@eng.umd.edu

    2004-12-22

    A comparative study of the structural characteristics exhibited by the self-assembled ZnO nanoclusters developed on Si and SiO{sub 2}/Si surfaces using diblock copolymers of styrene-acrylic acid, [PS]{sub m}/[PAA]{sub n}, with block repeat unit ratios m/n of 159/63 and 106/17, is reported. These copolymer systems are expected to have self-assembled nanosized spherical domains of the minority acid blocks in solid phase but with domain sizes dependent on their respective block ratios and molecular block lengths. Templating of the ZnO nanoclusters with these copolymer systems enabled the development of the nanoclusters with two different size distributions on the Si and SiO{sub 2}/Si surfaces. The templating process involved the incorporation of a ZnCl{sub 2} precursor into the functional group of the acid blocks in liquid phase at room temperature, application of the doped solution onto the surfaces by spin-casting for the formation of the thin nanocomposite film with ZnCl{sub 2} nanoclusters and subsequent conversion into ZnO by a dry ozone process. The ZnO nanoclusters in the [PS]{sub 159}/[PAA]{sub 63} copolymer and [PS]{sub 106}/[PAA]{sub 17} copolymer were found to have a size distribution of 250-350 and 40-140 nm, respectively. Over-doping with ZnCl{sub 2} precursor resulted in increased size of nanoclusters due to agglomeration in both copolymer systems.

  7. Control of morphology and corona composition in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers: effects of solvent, water content, and mixture composition.

    Science.gov (United States)

    Vyhnalkova, Renata; Müller, Axel H E; Eisenberg, Adi

    2014-11-11

    The morphologies and corona compositions in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers are influenced by controllable assembly parameters such as water content, block copolymer molar ratios, and solvent effects as well as the hydrophilic block lengths and block length ratios. All these factors can affect the morphology of the aggregates as well as their corona composition, the latter especially in vesicles, where two interfaces are involved. The morphologies and corona compositions of the aggregates were investigated by transmission electron microscopy and electrophoretic mobility, respectively. They depend, to a large extent, on the solubility of P4VP and PAA in the given organic solvent (e.g., DMF, THF, or dioxane), which influences the coil dimensions of the hydrophilic chains. The water content affects both the size and the shape of the block copolymer aggregates as well as the corona composition. Water acts as a precipitant for the hydrophobic block in the common solvent and, therefore, its progressive addition to the solution changes the interaction parameter with the hydrophobic block. The block copolymer molar ratio has an effect on both the morphology and the corona composition of the aggregates. With increasing PS-b-P4VP content in the mixture, the morphology transforms gradually from large compound micelles (LCMs), through coexistence of LCMs and small spherical micelles (SSMs), and eventually to vesicles. As expected, the corona composition of the aggregates is also affected by the block copolymer molar ratio, and changes progressively from pure PAA to a mixture of PAA and P4VP and to pure P4VP with increasing PS-b-P4VP content. It is clear that the use of mixtures of the soluble chains offers the opportunity of fine-tuning the corona composition in block copolymer aggregates under assembly conditions.

  8. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  9. The influence of chain stretching on the phase behavior of multiblock copolymer and comb copolymer melts

    NARCIS (Netherlands)

    Angerman, HJ; ten Brinke, G

    2003-01-01

    The subject of this paper is inspired by microphase-separated copolymer melts in which a small-scale structure is present inside one of the phases of a large-scale structure. Such a situation can arise in a diblock copolymer melt, if one of the blocks of the diblock is in itself a multiblock copolym

  10. Inner Stucture of Thin Films of Lamellar Poly(styrene-b-butadiene) Diblock Copolymers as revealed by Grazing-Incidence Small-Angle Scattering

    DEFF Research Database (Denmark)

    Busch, Peter; Posselt, Dorthe; Smilgies, Detlef-Matthias;

    2007-01-01

    The lamellar orientation in supported, thin films of poly(styrene-b-butadiene) (P(S-b-B)) depends on block copolymer molar mass. We have studied films from nine block copolymer samples with molar masses between 13.9 and 183 kg/mol using grazing-incidence small-angle X-ray scattering (GISAXS) and ...

  11. Comparing blends and blocks: Synthesis of partially fluorinated diblock polythiophene copolymers to investigate the thermal stability of optical and morphological properties

    Directory of Open Access Journals (Sweden)

    Pierre Boufflet

    2016-10-01

    Full Text Available The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophenes and poly(3-octylthiophene (F-P3OT-b-P3OT. Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP conditions. We compare the behavior of the block copolymer to that of the corresponding homopolymer blends. In both types of system, we find the fluorinated segments tend to dominate the UV–visible absorption and molecular vibrational spectral features, as well as the thermal behavior. In the block copolymer case, non-fluorinated segments appear to slightly frustrate the aggregation of the more fluorinated block. However, in situ temperature dependent Raman spectroscopy shows that the intramolecular order is more thermally stable in the block copolymer than in the corresponding blend, suggesting that such materials may be interesting for enhanced thermal stability of organic photovoltaic active layers based on similar systems.

  12. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane.

    Science.gov (United States)

    Wang, Haihua; Shen, Yiding; Fei, Guiqiang; Li, Xiaorui; Liang, Yong

    2008-08-01

    A series of cationic waterborne polyurethane dispersions (SiPU) modified with hydroxysilane (HPMS) were successfully synthesized based on poly(oxytetramethylene) glycols (PTMG) and isophorone isocyanate (IPDI), and the films were obtained by casting the dispersions on tetrafluoroethylene (TFE) plates. Effects of HPMS content on micromorphology, particle size of the dispersions were studied, as well as thermal properties, phase behavior and surface structure of the films. The particles had the morphology of a solid sphere, with particle size varying from 17.1 nm to 114.4 nm corresponding to the increase of HPMS concentration, which can be attributed to the increase of interfacial tension. XPS spectra indicated the surface migration of Si element in the process of film forming, and the SiPU surface was mainly composed of soft segments. DSC analysis, together with TG-DTG-DTA results demonstrated the HPMS soft segment merged with the transition region of PU matrix, forming part of polyurethane backbone, but an improved microphase separation was observed when HPMS concentration greater than 15%. It was also found that incorporation of flexible HPMS prevented the degradation of polyurethane backbone, resulting in the increase of thermal stability in ultimate copolymer.

  13. Control of corona composition and morphology in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers: effects of pH and block length.

    Science.gov (United States)

    Vyhnalkova, Renata; Müller, Axel H E; Eisenberg, Adi

    2014-05-06

    The corona compositions and morphologies in aggregates of mixtures of amphiphilic polystyrene-block-poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers are influenced by controllable assembly parameters such as the hydrophilic block length and solution pH. The morphologies and corona compositions of the aggregates were investigated by transmission electron microscopy and electrophoretic mobility, respectively. When mineral acids or bases are present during aggregate formation, they can exert a strong influence on the corona composition. Morphology changes were also seen with changing pH, as well as changes in corona composition, specifically for vesicles. Because of complications introduced by the presence of ions, the general hypothesis that the external corona of the vesicles is composed of the longer chains, while the shorter chains form the inner corona, which is valid only in mixtures containing only nonionic chains without any additives (no acids or bases) or within a well-defined narrow pH range. In addition to the numerical block lengths and the pH, the solubility of the hydrophilic blocks can also influence the morphology and as well as the interfacial composition of vesicles; as the numerically longer chains become less soluble, they can contract and move to the interior, while the numerically shorter but more soluble chains go to the external corona. A remarkable morphological feature of the pH continuum is that for some compositions vesicles are observed in four distinct pH regions, separated by pH ranges in which other morphologies dominate. The effect of pH and microion content on coil dimensions of the PVP and PAA chains in the block copolymers is most likely responsible for the observed behavior.

  14. Langmuir monolayers of non-ionic polymers: Equilibrium of metastability? Case study of PEO and its PPO-PEO diblock copolymers

    NARCIS (Netherlands)

    Deschenes, L.; Saint-Germain, F.; Lyklema, J.

    2015-01-01

    Stability and reorganization in Langmuir films of PEO in PEO homopolymers and PPO–PEO block copolymers were investigated using film balance measurements. The apparent fractional losses of EO segments transferred into the subphase resulting from successive compression–expansion cycles have been estim

  15. Temperature-triggered gelation of aqueous laponite dispersions containing a cationic poly(N-isopropyl acrylamide) graft copolymer.

    Science.gov (United States)

    Liu, R; Tirelli, N; Cellesi, F; Saunders, B R

    2009-01-06

    In this work, temperature-triggered gelation of aqueous laponite dispersions containing a cationic poly(N-isopropylacrylamide) (PNIPAm) graft copolymer was investigated. The copolymer used was PDMA(+)(30)-g-(PNIPAm(210))(14) [Liu et al. Langmuir 2008, 24, 7099]. DMA(+) is quarternarized N,N-dimethylaminoethyl methacrylate. The presence of small concentrations of laponite enabled temperature-triggered gel formation to occur at low copolymer concentrations (e.g., 1 wt %). Dynamic rheological measurements of the gels showed that they had storage modulus values of up to 400 Pa when the total solid volume fraction (polymer and laponite) was only about 0.02. The storage modulus was dependent on both the temperature and the composition of the dispersion used for preparation. The key component that provided the temperature-triggered gels with their elasticity was found to be self-assembled nanocomposite (NC) sheets. These NC sheets spontaneously formed at room temperature upon addition of laponite to the copolymer solution. The NC sheets had lateral dimensions on the order of hundreds of micrometers and a thickness of a few micrometers. The NC sheets were present within the temperature-triggered gels and formed elastically effective chains. The NC sheets exhibited temperature-triggered contraction with a contraction onset temperature of 27 degrees C. A conceptual model is proposed to qualitatively explain the relationship between gel elasticity and dispersion composition.

  16. Time-of-flight secondary ion mass spectrometry study of the orientation of a bifunctional diblock copolymer attached to a solid substrate.

    Science.gov (United States)

    Jasieniak, Marek; Suzuki, Shuko; Monteiro, Michael; Wentrup-Byrne, Edeline; Griesser, Hans J; Grøndahl, Lisbeth

    2009-01-20

    A block copolymer consisting of a phosphate-containing moiety (poly[2-(methacryloyloxy)ethyl phosphate], PMOEP) and a keto-containing moiety (poly[2-(acetoacetoxy)ethyl methacrylate], PAAEMA) showed good stability after attachment to an APS amine-modified glass slide, as did both of the respective homopolymers. The PAAEMA homopolymer can attach to the APS amine groups via covalent linkages, while the PMOEP homopolymer most likely attaches through electrostatic interactions involving deprotonated phosphate and protonated amine groups. To elucidate the conformation of the block copolymer after attachment, particularly with respect to the PMOEP segment orientation, principal component analysis (PCA) of time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of the surface-attached polymer layers was performed. Comparison with the pure homopolymer spectra and interpretation after PCA indicate that the adsorbed conformation is not random. Rather, the copolymer is adsorbed in a conformation that preferentially exposes the PMOEP block toward the outer surface. We thus conclude that the most likely conformation of PMOEP-b-PAAEMA immobilized onto the APS-modified glass slide is via covalent interfacial linkages involving the PAAEMA block with the result that the surface is enriched in PMOEP tails. This in turn implies that under the conditions applied (dry DMF) the covalent coupling of keto groups to the amine groups of the aminated slide is more efficient than the proton transfer required for the generation of electrostatic attractions. This (partially) preferential orientation of the PMOEP-b-PAAEMA copolymer could have significant implications on interfacial interactions such as those involved in nucleation and the subsequent mineralization sequence of events in hydroxyapatite formation. The present study demonstrates that ToF-SIMS is a powerful tool not only for the investigation of the surface composition of adsorbed layers, but also for probing the molecular

  17. Perfluorinated carbon-chain copolymers with functional groups and cation exchange membranes based on them: synthesis, structure and properties

    Science.gov (United States)

    Kirsh, Yu E.; Smirnov, S. A.; Popkov, Yu M.; Timashev, Sergei F.

    1990-06-01

    The review is devoted to perfluorinated polymers with sulphonic and carboxylic acid groups and to cation exchange membranes based on them. The synthesis is described of copolymers of tetrafluoroethylene with perfluorovinyl ethers containing functional groups by radical copolymerisation in an organic medium and in aqueous emulsions. Special features of the copolymerisation and approaches to obtaining copolymers with set characteristics are discussed. Data are presented on the structure and physicochemical properties of the polymeric films. Attempts to form membranes from the polymers obtained, the means of strengthening them and methods for chemical modification are described. Data are correlated on the influence of structure and polymer composition and the nature of the functional groups on the electrochemical characteristics of membranes. Special features of the functioning of perfluorinated membranes in the process for making chlorine and alkali by the electrolysis of sodium chloride solution are considered. The bibliography has 104 references.

  18. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  19. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

    Science.gov (United States)

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar

    2015-01-01

    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.

  20. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions† †Electronic supplementary information (ESI) available: GPC chromatograms, additional transmission electron micrographs, digital photographs, visible absorption spectra and laser diffraction data, further optical and fluorescence micrographs. See DOI: 10.1039/c6nr03856e Click here for additional data file.

    Science.gov (United States)

    Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.

    2016-01-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56–poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA–PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20–100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56–poly(benzyl methacrylate)300 [PGMA56–PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56–PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39–poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39–PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to

  1. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer.

    Science.gov (United States)

    Wu, Binquan; Liang, Yong; Tan, Yi; Xie, Chunmei; Shen, Jin; Zhang, Mei; Liu, Xinkuang; Yang, Lixin; Zhang, Fujian; Liu, Liang; Cai, Shuyu; Huai, De; Zheng, Donghui; Zhang, Rongbo; Zhang, Chao; Chen, Ke; Tang, Xiaolong; Sui, Xuemei

    2016-02-01

    The purpose of this research is to develop nanoparticles (NPs) of star-shaped copolymer mannitol-functionalized PLGA-TPGS for Genistein delivery for liver cancer treatment, and evaluate their therapeutic effects in liver cancer cell line and hepatoma-tumor-bearing nude mice in comparison with the linear PLGA nanoparticles and PLGA-TPGS nanoparticles. The Genistein-loaded M-PLGA-TPGS nanoparticles (MPTN), prepared by a modified nanoprecipitation method, were observed by FESEM and TEM to be near-spherical shape with narrow size distribution. The nanoparticles were further characterized in terms of their size, size distribution, surface charge, drug-loading content, encapsulation efficiency and in vitro drug release profiles. The data showed that the M-PLGA-TPGS nanoparticles were found to be stable, showing almost no change in particle size and surface charge during 3-month storage of their aqueous solution. In vitro Genistein release from the nanoparticles exhibited biphasic pattern with burst release at the initial 4days and sustained release afterwards. The cellular uptake efficiency of fluorescent M-PLGA-TPGS nanoparticles was 1.25-, 1.22-, and 1.29-fold higher than that of the PLGA-TPGS nanoparticles at the nanoparticle concentrations of 100, 250, and 500μg/mL, respectively. In the MPTN group, the ratio of apoptotic cells increased with the drug dose increased, which exhibited dose-dependent effect and a significant difference compared with Genistein solution group (pnanoparticles have higher antitumor efficacy than that of linear PLGA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, the star-shaped copolymer M-PLGA-TPGS could be used as a potential and promising bioactive material for nanomedicine development for liver cancer treatment.

  2. Langmuir monolayers of non-ionic polymers: equilibrium or metastability? Case study of PEO and its PPO-PEO diblock copolymers.

    Science.gov (United States)

    Deschênes, Louise; Saint-Germain, François; Lyklema, Johannes

    2015-07-01

    Stability and reorganization in Langmuir films of PEO in PEO homopolymers and PPO-PEO block copolymers were investigated using film balance measurements. The apparent fractional losses of EO segments transferred into the subphase resulting from successive compression-expansion cycles have been estimated. The apparent loss is mainly Γ(max), M(n) and time-dependent. At surface concentrations Γ⩽0.32 mg/m(2), PEO films are in equilibrium. For 0.32⩽Γ⩽0.7 mg/m(2), the losses remain modest. Further compression leads to densification of the monolayer, requiring the interplay of thermodynamics and kinetic factors In the plateau regime, the loss is higher and constant for 1⩽Γ(max)⩽2 mg/m(2) upon maintaining the achieved surface area for 15 min. Similar losses were obtained for PEO homopolymers of high Mn and PPO353-PEO2295. It suggests that the PEO remains anchored in a metastable state at the air-water interface at surface concentration well above the onset of the plateau. Additional losses are incurred for PEO homopolymers for monolayers kept compressed in the plateau for 2 h. For the interpretation of these phenomena a combination of elements from self-consistent field theory and scaling is desirable with as a trend an increasing contribution of the latter with increasing surface concentration.

  3. Synthesis of cationic hyperbranched multiarm copolymer and its application in self-reducing and stabilizing gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel hyperbranched multiarm copolymer of HBPO-star-PDEAEMA with a hydrophobic poly(3-ethyl-3-(hydroxymethyl) oxetane)(HBPO) core and many cationic poly(2-(N,N-diethylamino) ethyl methacrylate)(PDEAEMA) arms has been synthesized through an atom transfer radical polymerization(ATRP) method,and been applied to spontaneously reduce and stabilize gold nanoparticles(AuNPs) in water without other additional agents.The size of the nanoparticles could be effectively controlled at about 4 nm,and the nanoparticles are extremely stable in solution without aggregation even for one year.It was found that solution pH and the molar ratio of N/Au have certain effects on the size and stability of AuNPs.This work provides a simple method for the synthesis of uniform and highly stable AuNPs.

  4. ABA TRIBLOCK COPOLYMERS WITH PENDANT HYDROXYL GROUPS PREPARED BY CONTROLLED CATIONIC POLYMERIZATION AND THEIR USE AS DELIVERY CARRIER FOR PACLITAXEL

    Institute of Scientific and Technical Information of China (English)

    Ping Ren; Yi-bo Wu; Wen-li Guo; Shu-xin Li; Ying Chen

    2013-01-01

    To improve the hydrophilicity of poly(styrene-b-isobutylene-b-styrene) (SIBS),this study focuses on the synthesis of novel functional ABA triblock copolymer thermoplastic elastomers (TPEs) with polyisobutylene (PIB) as rubbery segments.The precursor poly{(styrene-co-4-[2-(tert-butyldimethylsiloxy) ethyl]styrene)-b-isobutylene-b-(styrene-co-4-[2-(tert-butyldimethylsiloxy)ethyl]styrene)}(P(St-co-TBDMES)-PIB-P(St-co-TBDMES)) triblock copolymer was first synthesized by living sequential cationic copolymerization of isobutylene (IB) with styrene (St) and 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) using 1,4-di(2-chloro-2-propyl)benzene (DiCumC1)/titanium tetrachloride (TiCl4)/2,6-di-tert-butylpyridine (DtBP) as the initiating system.Then,P(St-co-TBDMES)-PIB-P(St-co-TBDMES) was hydrolyzed in the presence of tetra-butylammonium fluoride to yield poly{[styrene-co-4-(2-hydroxyethyl)styrene]-b-isobutylene-b-[styrene-co-4-(2-hydroxyethyl)styrene]} (P(St-co-HOES)-PIB-P(St-co-HOES)) with pendant hydroxyl groups.P(St-co-HOES)-PIB-P(St-co-HOES) used as the paclitaxel carrier was also investigated in this study.Comparing with SIBS,P(St-co-HOES)-PIB-P(St-co-HOES) has exhibited better compatibility with paclitaxel and higher release rate.

  5. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer.

    Science.gov (United States)

    You, Lijun; Lu, Feifei; Li, Dan; Qiao, Zhongming; Yin, Yeping

    2009-12-15

    A novel flocculant (CATCS) based on corn starch and chitosan was prepared and its flocculation behaviors were studied. The synthesis conditions of CATCS were discussed and the production obtained was characterized using Fourier infrared spectra and scanning electron microscopy. Flocculation properties of the products were evaluated in terms of transmittance, removal of organic contaminant and solid suspending substances. Influences of temperature, pH and flocculant dosage on flocculation efficiency of CATCS were examined. CATCS had better flocculation performance at lower temperature for the wastewater investigated. CATCS showed better flocculation performance than cationic starch and chitosan in 5 g/L kaolin suspension trended to performance well in acidic and alkaline solution. The comparison of the flocculation performance between CATCS, Fe2(SO4)3 and polyacrylamide showed CATCS had much efficient flocculation performance. In addition, cationic starch was prepared from corn starch using microwave-assisted method.

  6. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer

    Energy Technology Data Exchange (ETDEWEB)

    You Lijun; Lu Feifei; Li Dan; Qiao Zhongming [Department of chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070 (China); Yin Yeping, E-mail: yljyoyo@yahoo.cn [Department of chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070 (China)

    2009-12-15

    A novel flocculant (CATCS) based on corn starch and chitosan was prepared and its flocculation behaviors were studied. The synthesis conditions of CATCS were discussed and the production obtained was characterized using Fourier infrared spectra and scanning electron microscopy. Flocculation properties of the products were evaluated in terms of transmittance, removal of organic contaminant and solid suspending substances. Influences of temperature, pH and flocculant dosage on flocculation efficiency of CATCS were examined. CATCS had better flocculation performance at lower temperature for the wastewater investigated. CATCS showed better flocculation performance than cationic starch and chitosan in 5 g/L kaolin suspension trended to performance well in acidic and alkaline solution. The comparison of the flocculation performance between CATCS, Fe{sub 2} (SO{sub 4}){sub 3} and polyacrylamide showed CATCS had much efficient flocculation performance. In addition, cationic starch was prepared from corn starch using microwave-assisted method.

  7. Synthesis and self-assembly behavior of chiral amphiphilic diblock copolymers bearing L- phenylalanine%侧基带有L-苯丙氨酸的手性两亲嵌段共聚物的合成及其自组装行为

    Institute of Scientific and Technical Information of China (English)

    周勇; 汪瑾; 郭素珍

    2011-01-01

    Novel chiral amphiphilic diblock copolymers bearing L-phenylalanine was synthesized using a “click” reaction of N3-L-phenylalanine and MPEO-b-PGPE. The structure and composition of copolymers were characterized by 1H-NMR and elemental analysis. Additionally, the self - assembly behavior of these chiral copolymers was investigated in sodium dihydrogen phosphate buffer ( pH 4.5): the CMC of copolymer MPEO-b-PGTP determined by the measurement of surface tension was 2.1 mg/mL; the size and morphology of the micelles were studied using TEM; the specific optical rotation ( [α] 25D ) of the micellar solutions was also measured; the result indicated that the copolymers can form chiral micelles in sodium dihydrogen phosphate buffer (pH = 4.5 ).%N3-苯丙氨酸与嵌段共聚物聚乙二醇-b-聚炔丙基缩水甘油(MPEO-b-PGPE)发生"click"反应,合成了具有光学活性的两亲嵌段共聚物聚乙二醇-B-聚L-苯丙氨酸三唑基缩水甘油(MPEO-b-PGTP),用1H-NMR和元素分析对其结构和组成进行表征.并对其自组装行为进行研究,滴体积法测定MPEO-b-PGTP溶液(pH=4.5)的临界胶束浓度为2.1mg/mL;用电子透射显微镜(TEM)直接观察聚合物MPEO-b-PGTP形成胶束的形态和尺寸;旋光仪测定结果表明其在水中自组装形成的胶束具有手性.

  8. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaolong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Wang, Gangmin [Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040 (China); Shi, Ting [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Shao, Zhihong [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China); Zhao, Peng; Shi, Donglu [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Ren, Jie [Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804 (China); Lin, Chao, E-mail: chaolin@tongji.edu.cn [The Institute for Translational Nanomedicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, Tongji University School of Medicine, Shanghai 200092 (China); Wang, Peijun, E-mail: tjpjwang@sina.com [Department of Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065 (China)

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T{sub 1}-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2′-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25 kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T{sub 1}-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. - Highlights: • Novel cationic gadolinium-chelated poly(urethane amide)s (GdCPUAs) are prepared. • GdCPUAs can induce a high transfection efficacy in different cancer cells. • GdCPUAs reveal good cyto-compatibility against cancer cells. • GdCPUAs may be applied as T{sub 1}-contrast agents for magnetic resonance imaging. • GdCPUAs hold high potential for cancer theranostics.

  9. Molar mass characterization of cationic methyl methacrylate-ethyl acrylate copolymers using size-exclusion chromatography with online multi-angle light scattering and refractometric detection.

    Science.gov (United States)

    Wittgren, Bengt; Welinder, Anette; Porsch, Bedrich

    2003-06-20

    Size-exclusion chromatography (SEC) combined with online multi-angle light scattering (MALS) and refractometric (RI) detection has been employed for the molar mass characterisation of water-insoluble cationic methyl methacrylate-ethyl acrylate copolymers (Eudragit RS and RL). Due to their positive charge, cationic polymers are particularly difficult to separate on a SEC column, in worst cases being completely adsorbed on the oppositely charged packing material. This work has examined how a careful addition of salt (LiCl) to the copolymer solution in ethanol decreases the electrostatic interactions, clearly seen as a decrease in elution volume from the SEC column as well as an improved recovery. At a certain level of ionic strength, typically about 50 mM, the copolymer recovery from the SEC column reached 100% and molar mass distributions corresponding to the complete sample could be obtained. The combined MALS/RI detection gives the opportunity to measure the absolute molar mass independent of recovery and retention. Thus, in this study, it turned out to be a favourable tool for tracing the changes in elution behaviour of the charged copolymer as the ionic strength was increased.

  10. Roles of Novel Reactive Cationic Copolymers of 3-Chloro-2-hydroxypropylmethyldiallylammonium Chloride and Dimethyldiallylammonium Chloride in Fixing Anionic Dyes on Cotton Fabric

    OpenAIRE

    2013-01-01

    The roles of novel reactive cationic copolymers (P(CMDA-DMDAAC)s) of 3-chloro-2-hydroxypropylmethyldiallylammonium chloride (CMDA) and dimethyldiallylammonium chloride (DMDAAC) in fixing anionic dyes on cotton fabric were studied by modern instrumental analysis technologies such as FT-IR spectra and SEM analysis, to achieve the new theoretical guides for the wide applications of those dye fixatives. The FT-IR spectra of the obtained insoluble-water color lakes verified that they could be form...

  11. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    NARCIS (Netherlands)

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructu

  12. 通过阴离子型和阳离子型活性链的偶合反应合成甲基丙烯酸甲酯-四氢呋喃嵌段共聚物%Synthesis of Poly (methyl methacrylate)-biock-polytetrahydrofuran by Coupling of Cationic and Anionic Living Chains

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The diblock copolymer poly (methyl methacrylate)-block-polytetrahydrofuran (PMMA-bPTHF) was successfully synthesized by means of the coupling reaction of living cationic PTHF+,SbF-6 and living anionic PMMA-,Li+.Lithium chloride,which is frequently used as a ligand in the polymerization of (meth)acrylates,obstructs the coupling reaction between the anionic and the cationic precursors due to the combination of the chlorine anion with the PTHF cation.Thus,the anionic polymerization should be carried out in the absence of LiCl.

  13. Fluctuations, conformational asymmetry and block copolymer phase behaviour

    DEFF Research Database (Denmark)

    Bates, F.S.; Schulz, M.F.; Khandpur, A.K.;

    1994-01-01

    Phase behaviour near the order-disorder transition (ODT) of 58 model hydrocarbon diblock copolymers, representing four different systems, is summarized. Six distinct ordered-state microstructures are reported, including hexagonally modulated lamellae (HML), hexagonally perforated layers (HPL) and...

  14. Surface energies and self-assembly of block copolymers on grafted surfaces.

    Science.gov (United States)

    Trombly, David M; Pryamitsyn, Victor; Ganesan, Venkat

    2011-09-30

    We present a theoretical analysis of the self-assembly of diblock copolymers on surfaces grafted with random copolymers. Our results demonstrate that the surface energies of homopolymeric components on grafted surfaces differ from the corresponding values for self-assembled morphologies. Moreover, grafted random copolymers are shown to adapt their conformations in response to the morphology of the overlaying block copolymer film to create chemical inhomogeneities which modulate the interfacial interactions. Consequently, the surface energy differences between the different components on the grafted substrate do not serve as a useful measure to predict the stability of self-assembly of the diblock copolymer film.

  15. Hierarchical structure formation in supramolecular comb-shaped block copolymers

    NARCIS (Netherlands)

    Hofman, Anton; ten Brinke, Gerrit; Loos, Katja

    2016-01-01

    Block copolymers are known to spontaneously form ordered structures at the nano-to mesoscale. Although the number of different morphologies is rather limited in diblock copolymer systems, their phase behavior becomes increasingly more complex with each additional building block. Synthesis of such al

  16. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  17. Dual hydrophilic and salt responsive schizophrenic block copolymers – synthesis and study of self-assembly

    NARCIS (Netherlands)

    Vasantha, Vivek Arjunan; Jana, Satyasankar; Lee, Serina Siew Chen; Lim, Chin-Sing; Teo, Serena Lay Ming; Parthiban, Anbanandam; Vancso, Julius G.

    2015-01-01

    A new class of dual hydrophilic diblock copolymers (BCPs) possessing poly(ethylene glycol) (PEG) and zwitterionic polysulfabetaine (PSB) was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. These BCPs formed schizophrenic micelles undergoing core–shell transitio

  18. Small-angle neutron scattering studies on water soluble complexes of poly(ethylene glycol)-based cationic random copolymer and SDS

    Indian Academy of Sciences (India)

    C K Nisha; V Manorama; Souvik Maiti; K N Jayachandran; V K Aswal; P S Goyal

    2004-08-01

    The interaction of cationic random copolymers of methoxy poly(ethylene glycol) monomethacrylate and (3-(methacryloylamino)propyl) trimethylammonium chloride with oppositely charged surfactant, sodium dodecyl sulphate, and the influence of surfactant association on the polymer conformation have been investigated by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCP-SDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were analysed using the log-normal distribution of the polydispersed spherical aggregate model for the local structure in these complexes. For all the systems the median radius and the polydispersity were found to be in the range of 20 ± 2 Å and 0:6 ± 0:05, respectively.

  19. Nanostructure of Cationic Polymer Brush at the Air/Water Interface

    Directory of Open Access Journals (Sweden)

    Matsuoka Hideki

    2013-08-01

    Full Text Available Cationic amphiphilic diblock copolymers were synthesized by RAFT polymerization and the nanostructure of their monolayers was investigated by π-A isotherm and X-ray reflectivity. Carpet layer (dense hydrophilic block layer formation under the hydrophobic layer was confirmed and a “brush” layer was found beneath the carpet layer. However, the thickness of brush layer was much thinner than that of the fully-stretched chain length. The critical salt concentration was found to be 0.01 M NaCl, which is much lower than that of the previous strongly anionic brush. These differences were probably caused by the low effective charge on the brush chains due to the hydrophobic nature of the quarternized ammonium cation.

  20. Gyroid Membranes made from Nanoporous Blck Copolymers

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Plzemystaw; Vigild, Martin Etchells; Ndoni, Sokol;

    2007-01-01

    of the membrane and its nanoporosity is e.g. obtained by cross-linking the majority blocks and selectively etching the minority blocks. Here we report on ultrafiltration membranes prepared from a 1,2-polybutadiene-b-polydimethylsiloxane diblock copolymer with gyroid structure. Different experimental methods...

  1. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Hoppe, E T; Jaksch, S

    2011-01-01

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the subs......We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular...

  2. Block copolymer/ferroelectric nanoparticle nanocomposites

    Science.gov (United States)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  3. Micellization of quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) copolymers in water

    OpenAIRE

    2001-01-01

    Micellization of a series of amphiphilic quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) (PQDMAEMA-b-PMMA) copolymers has been studied in water. The alkyl halide used for the quaternization of the aminated block has an effect on the solution properties of the diblocks, that have been investigated by dynamic light scattering and surface tension measurements. When a short length alkyl halide is used, the diblock copolymers behave like traditional amphiphile...

  4. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik;

    2004-01-01

    The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride or tetrabut......The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride...

  5. Roles of Novel Reactive Cationic Copolymers of 3-Chloro-2-hydroxypropylmethyldiallylammonium Chloride and Dimethyldiallylammonium Chloride in Fixing Anionic Dyes on Cotton Fabric

    Directory of Open Access Journals (Sweden)

    Yikai Yu

    2013-01-01

    Full Text Available The roles of novel reactive cationic copolymers (P(CMDA-DMDAACs of 3-chloro-2-hydroxypropylmethyldiallylammonium chloride (CMDA and dimethyldiallylammonium chloride (DMDAAC in fixing anionic dyes on cotton fabric were studied by modern instrumental analysis technologies such as FT-IR spectra and SEM analysis, to achieve the new theoretical guides for the wide applications of those dye fixatives. The FT-IR spectra of the obtained insoluble-water color lakes verified that they could be formed from the electrostatic interactions of the P(CMDA-DMDAACs with anionic dyes, which were further confirmed by the FT-IR analysis of the anionic dyes on dyeing cotton sample fixed by P(CMDA-DMDAACs. The FT-IR spectra of cotton samples fixed by P(CMDA-DMDAACs showed the absorptions of P(CMDA-DMDAACs and the signs similar to the formation of new ether linkage on cotton fabric even after being repeatedly washed, which were further confirmed by the SEM analysis of the fixed dyeing cotton samples. Thus, the reactive units (CMDA of the obtained P(CMDA-DMDAACs could be expected to bring about the covalent bonds with the hydroxyl groups of cotton (cellulose to form an ether linkage when fixing, resulting in the stronger interactions of P(CMDA-DMDAACs with cotton fabric, as well as their electrostatic forces with anionic dyes to produce the insoluble-water color lakes, for the development of fastness of anionic dyes on cotton fabric.

  6. Phase coexistence calculations via a unit-cell Gibbs ensemble formalism for melts of reversibly bonded block copolymers

    Science.gov (United States)

    Mester, Zoltan; Lynd, Nathaniel; Fredrickson, Glenn

    2013-03-01

    Melts of block copolymer blends can exhibit coexistence between compositionally and morphologically distinct phases. We derived a unit-cell approach for a field theoretic Gibbs ensemble formalism to rapidly map out such coexistence regions. We also developed a canonical ensemble model for the reversible reaction of supramolecular polymers and integrated it into the Gibbs ensemble scheme. This creates a faster method for generating phase diagrams in complex supramolecular systems than the usual grand canonical ensemble method and allows us to specify the system in experimentally accessible volume fractions rather than chemical potentials. The integrated approach is used to calculate phase diagrams for AB diblock copolymers reversibly reacting with B homopolymers to form a new diblocks we term ``ABB.'' For our case, we use a diblock that is sixty percent A monomer and a homopolymer that is the same length as the diblock. In the limits of infinite reaction favorability (large equilibrium constant), the system approaches cases of an ABB diblock-B homopolymer blend when the AB diblock is the limiting reactant and AB diblock-ABB diblock blend when the homopolymer is the limiting reactant. As reaction favorability is decreased, the phase boundaries shift towards higher homopolymer compositions so that sufficient reaction can take place to produce the ABB diblock that has a deciding role stabilizing the observed phases.

  7. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  8. Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.; Morse, David C.; Lodge, Timothy P.; Bates, Frank S. (UMM)

    2016-10-13

    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) results that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.

  9. Multiple ordered phases in a block copolymer melt

    DEFF Research Database (Denmark)

    Almdal, K.; Koppi, K.A.; Bates, F.S.;

    1992-01-01

    A poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer containing 65% by volume PEP was investigated using small-angle neutron scattering (SANS) and rheological measurements. Four distinct phases have been identified as a function of temperature: three ordered phases at low tem...

  10. Organisation and shape of micellar solutions of block-copolymers

    NARCIS (Netherlands)

    Gaspard, J.P.; Creutz, S.; Bouchat, P.; Jerome, R.; Cohen Stuart, M.A.

    1997-01-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The m

  11. Micellization kinetics in block copolymer solutions : Scaling model

    NARCIS (Netherlands)

    Dormidontova, EE

    1999-01-01

    The kinetics of micelle evolution of diblock copolymers from unimers toward the equilibrium state is studied analytically on the basis of consideration of the kinetic equations. The association/dissociation rate constants for unimer insertion/expulsion and micelle fusion/fission are calculated by ap

  12. Synthesis and characterization of ferrocene containing block copolymers

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Wang, Zhongli; Kirkensgaard, Jacob Judas Kain

    2017-01-01

    Narrowly dispersed diblock copolymers containing poly(methyl methacrylate) [PMMA] or poly(nonafluorohexyl methacrylate) [PF9MA] as the first block and poly(ferrocenylmethyl methacrylate) [PFMMA] as the second block, were prepared by anionic polymerization for the first time. Disordered bulk morph...

  13. Physical properties of copolymer layers : Morphology, forces and rheology

    NARCIS (Netherlands)

    Stamouli, Amalia

    2000-01-01

    The aim of this thesis was to get a better understanding of the normal and lateral interactions of adsorbed diblock copolymer monolayers. The goal was to couple these interaction with the microscopic structural properties of the polymer layers. Therefore, two instruments were used, the Atomic Force

  14. Physical properties of copolymer layers : morphology, forces and rheology

    NARCIS (Netherlands)

    Stamouli, Amalia

    2000-01-01

    The aim of this thesis was to get a better understanding of the normal and lateral interactions of adsorbed diblock copolymer monolayers. The goal was to couple these interaction with the microscopic structural properties of the polymer layers. Therefore, two instruments were used, the Atomic Force

  15. Parallel Computing Properties of Tail Copolymer Chain

    Directory of Open Access Journals (Sweden)

    Hong Li

    2013-08-01

    Full Text Available The properties of a AB diblock copolymer chain are calculated by Monte Carlo methods. Monomer A contacting to the surface has an adsorption energy E=-1 and monomer B E= 0. The polymer chain is simulated by self-avoiding walk in simple cubic lattice. The adsorption properties and the conformation properties of the polymer chain are computed by using message passing interface (MPI. The speedup is close to linear speedup by parallel computing independent samples.    

  16. Block and Graft Copolymers of Polyhydroxyalkanoates

    Science.gov (United States)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  17. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke

    2016-04-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (abbreviated as PS-b-P2VP-b-PEO).

  18. Pressure and temperature effects in homopolymer blends and diblock copolymers

    DEFF Research Database (Denmark)

    Frielinghaus, H.; Schwahn, D.; Mortensen, K.;

    1997-01-01

    fluctuations. Phase boundaries, the Flory-Huggins interaction parameter and the Ginzburg number were obtained. The packing of the molecules changes with pressure. Therefore, the degree of thermal fluctuation as a function of packing and temperature was studied. While in polymer blends packing leads, in some...... of the entropic and of the enthalpic parts, respectively, of the Flory-Huggins interaction parameter....

  19. Encapsulation of Curcumin in Diblock Copolymer Micelles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Alizadeh

    2015-01-01

    Full Text Available Application of nanoparticles has recently promising results for water insoluble agents like curcumin. In this study, we synthesized polymeric nanoparticle-curcumin (PNPC and then showed its efficiency, drug loading, stability, and safety. Therapeutic effects of PNPC were also assessed on two cell lines and in an animal model of breast cancer. PNPC remarkably suppressed mammary and hepatocellular carcinoma cells proliferation (P<0.05. Under the dosing procedure, PNPC was safe at 31.25 mg/kg and lower doses. Higher doses demonstrated minimal hepatocellular and renal toxicity in paraclinical and histopathological examinations. Tumor take rate in PNPC-treated group was 37.5% compared with 87.5% in control (P<0.05. Average tumor size and weight were significantly lower in PNPC group than control (P<0.05. PNPC increased proapoptotic Bax protein expression (P<0.05. Antiapoptotic Bcl-2 protein expression, however, was lower in PNPC-treated animals than the control ones (P<0.05. In addition, proliferative and angiogenic parameters were statistically decreased in PNPC-treated animals (P<0.05. These results highlight the suppressing role for PNPC in in vitro and in vivo tumor growth models. Our findings provide credible evidence for superior biocompatibility of the polymeric nanocarrier in pharmacological arena together with an excellent tumor-suppressing response.

  20. Optofluidic Applications of Diblock Copolymer Derived Nanoporous Polymers

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi

    have been tried: photo-oxidation and thiol-ene click chemistry. The former uses UV irradiation in presence of oxygen to hydrophilize the polymer surfaces, while the latter grafts functional groups onto the polymer. To perfom thiol-ene chemistry, two thiols: mercaptosuccinic acid (MSA) and sodium...... mercaptoethanesulfonate (MESNA) are used. The prepared devices are characterized by measuring their propagation loss using substitution method. A propagation loss of 0.62±0.03 dB/mm are obtained in the photo-oxidation modified waveguides. The MSA and MESNA modified waveguides yield a propagation loss of 0.26±0.05 d...

  1. MISCIBILITY IN COPOLYMER/HOMOPOLYMER BLENDS

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming

    1988-01-01

    In order to study the miscibility of a copolymer with its corresponding homopolymers, varieties of multicomponent polymers including simple graft, multibranch, diblock, triblock and four-arm block copolymers and so-called ABCPs were synthesized and characterized. The morphologies of the blends comprising the covolymers and the corresponding homopolymers were examined by electron microscopy. It is concluded that beeides molecular weight, architecture of a copolymers has apparent effect on the miscibility, i.e. the more complex is molecular architecture, the greater is conformation restriction in microdomain formation and the less is solubility of homopolymer in corresponding domains. In addition, a density gradient model is suggested for describing the segment distribution of the bound and free chains in block-homopolymer systems. Using this model, Helfand's theory is extended to the blends of copolymer and homopolymer predicting the miscibility which is in good agreement with the experimental results.

  2. New Polytetrahydrofuran Graft Copolymers.

    Science.gov (United States)

    1979-03-15

    chioroprene) , chiorobutyl - ~~~~~ rubber , bromobutyl rubber , chlorinated EPDM , chlorinated poly(buta— diene) and chlorinated butadiene styrene copolymer...for initial detailed studies (3 ,4 , 6 , 7 — 9 ) . Many soluble metal salts with cations capable of stabilizing an on].um ion polymerization (SO3CF 3

  3. Phase Transition Induced by Small Molecules in Confined Copolymer Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling

    2007-01-01

    We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.

  4. Helical Ordering in Chiral Block Copolymers

    Science.gov (United States)

    Zhao, Wei; Hong, Sung Woo; Chen, Dian; Grason, Gregory; Russell, Thomas

    2012-02-01

    Introducing molecular chirality into the segments of block copolymers can influence the nature of the resultant morphology. Such an effect was found for poly(styrene-b-L-lactide) (PS-b-PLLA) diblock copolymers where hexagonally packed PLLA helical microdomains (H* phase) form in a PS matrix. However, molecular ordering of PLLA within the helical microdomains and the transfer of chirality from the segmental level to the mesoscale is still not well understood. We developed a field theoretic model to describe the interactions between segments of chiral blocks, which have the tendency to form a ``cholesteric'' texture. Based on the model, we calculated the bulk morphologies of chiral AB diblock copolymers using self-consistent field theory (SCFT). Experiments show that the H* phase only forms when microphase separation between PS and PLLA block happens first and crystallization of PLLA block is suppressed or happens within confined microdomain. Hence, crystalline ordering is not necessary for H* phase formation. The SCFT offers the chance to explore the range of thermodynamic stability of helical structures in the phase diagram of chiral block copolymer melts, by tuning parameters not only like the block segregation strength and composition, but also new parameters such as the ratio between preferred helical pitch to the radius of gyration and the Frank elastic constant for inter-segment distortions.

  5. Block Copolymer Compatibilizers for Morphological Control on the Equilibrium Structural Characteristics of Polymer/Fullerene Blends

    Science.gov (United States)

    Kipp, Dylan; Ganesan, Venkat

    2014-03-01

    We develop a single chain in mean field model for the equilibrium morphologies of solar cells based on the homopolymer/block copolymer/fullerene blend. Using our model, we study the ability of the block copolymer compatibilizer to provide morphological control on the domain and interfacial characteristics of the equilibrium structures. We focus our efforts on the case of a semiflexible homopolymer and a semiflexible/flexible diblock copolymer as these are emblematic of the kinds of molecules used in photovoltaic applications. Our results reveal a novel progression of morphologies in transitioning the ternary composition space, the rigidity of the semiflexible chains, and the flexible block ratio of the diblock copolymer. To elucidate the morphologies, we first present a series of ternary phase diagrams and then use a simple morphological characterization scheme to evaluate the domain sizes and interfacial quantities characterizing our equilibrium structures.

  6. Structure-Properties Relationship in Proton Conductive Sulfonated Polystyrene-Polymethyl Methacrylate Block Copolymers.

    Science.gov (United States)

    Rubatat, Laurent; Li, Chaoxu; Dietsch, Herve; Nykainen, Antti; Ruokolainen, Janne; Mezzenga, Raffaele

    2009-03-01

    We report on the dependence of proton conductivity on the morphologies of sulfonated polystyrene-poly(methyl methacrylate) (sPS-PMMA) diblock copolymers. Three diblock copolymers of varying molecular weight and block volume fraction were studied, for each one several sulfonation degrees of the PS block were considered. The investigation of the morphologies of the self-assembled sPS-PMMA diblocks was carried out by means of small angle neutron scattering and transmission electron microscopy. Depending on molecular weight and sulfonation degrees, isotropic phase (ISO), lamellar phase (LAM), cylindrical hexagonal phase (HEX) and hexagonally perforated lamellae (HPL) were observed. Proton conductivity, normalized by the volume fraction of the conductive domains (formed by PS, sPS and water), was shown to rise monotonically with the following sequence of morphologies: ISO to HEX to HPL to LAM.

  7. Toward a Block-Copolymer-Emulsified, Tough Blend of Isotactic Polystyrene and Polybutadiene: HIiPS.

    Science.gov (United States)

    1991-02-14

    OFFICE OF NAVAL RESEARCH Contract N00014-91-J-1045 R&T Code 4132047 --- 02-1 TECNICA RPORT NO. 2 Toward a Block-Copolymer-Emulsified, Tough Blend of... molecular weight polydispersities in the final materials (>6) due to the continuous restructuring of the catalytic sites; some chains break off and die...presented an opportunity to mix and match different molecular weight polystyrenes and polybutadienes so as to tailor-make diblock copolymers of varying

  8. Epitaxial relationships for hexagonal-to-cubic phase transition in a block copolymer mixture

    DEFF Research Database (Denmark)

    Schulz, M.F.; Bates, F.S.; Almdal, K.;

    1994-01-01

    Small-angle neutron scattering experiments have revealed an epitaxial relationship between the hexagonal cylinder phase, and a bicontinuous cubic phase with Ia3dBAR space group symmetry, in a poly(styrene)-poly(2-vinylpyridine) diblock copolymer mixture. Proximity to the order-disorder transition...

  9. Microphase separation and liquid-crystalline ordering of rod-coil copolymers

    NARCIS (Netherlands)

    AlSunaidi, A.; Otter, den W.K.; Clarke, J.H.R.

    2009-01-01

    Microphase separation and liquid-crystalline ordering in diblock and triblock rod-coil copolymers (with rod-to-coil fraction f = 0.5) were investigated using the dissipative particle dynamics method. When the isotropic disordered phases of these systems were cooled down below their order-disorder tr

  10. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng;

    2014-01-01

    Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl ...

  11. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations.

    Science.gov (United States)

    Gavrilov, Alexey A; Kudryavtsev, Yaroslav V; Chertovich, Alexander V

    2013-12-14

    Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D∕N(1∕2) ~ (χN)(1∕6), whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.

  12. Morphology Control of Copolymer Thin Films by Nanoparticles

    OpenAIRE

    Shagolsem, Lenin Singh

    2014-01-01

    Diblock-Copolymers (DBCs), created by covalently joining two chemically distinct polymer blocks, spontaneously form various nanoscale morphologies such as lamellae, cylinders, spheres, etc. due to the chemical incompatibility of its constituent blocks. This effect is called microphase separation in the literature. Because of this self-organizing property DBCs find applications in many areas e.g. in creating selective membranes, and in polymer based modern electronic devices like organic photo...

  13. Polymers and block copolymers of fluorostyrenes by ATRP

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Borkar, Sachin; Abildgaard, Lillian;

    2002-01-01

    Fully or partly fluorinated polymers have many desirable and intriguing properties. In the framework of a larger program on design and control of new functional block copolymers we recently employed the Atom Transfer Radical Polymerization (ATRP) protocol on 2,3,4,5,6-pentafluorostyrene (FS). We...... materials based on 2,3,5,6-tetrafiuoro-4-methoxy-styrene (TFMS). TFMS homopolymers as well as diblock copolymers with FS are produced by ATRP. Both types of novel polymers were subsequently demethylated and different side chains introduced on the resulting hydroxy sites....

  14. Effect of the Emulsification and Initiation System on Properties of the Cationic Styrene/acrylate Copolymer Emulsion%乳化及引发体系对阳离子苯丙乳液性能的影响

    Institute of Scientific and Technical Information of China (English)

    黄谨; 张宏伟

    2011-01-01

    以苯乙烯(st)、丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)、二甲基二烯丙基氯化铵(DMDAAC)为原料,以N-羟甲基丙烯酰胺(NMA)为功能性单体,采用种子乳液聚合法合成了阳离子苯丙乳液;研究了引发剂种类及用量、乳化剂的种类及配比对阳离子苯丙乳液性能的影响。研究结果表明,使用水溶性偶氮引发剂Y和阴/阳离子复配乳化剂(配比为1:5)合成的阳离子苯丙乳液性能相对最好;在相同单体配比条件下,合成的乳液不仅固含量高,粒径小,机械稳定性好,而且其成膜吸水率低。%The cationic styrene/acrylate copolymer emulsion was prepared by use of styrene(St) ,methyl methacry- late ( MMA ) , butyl acrylate ( BA ), N-hydroxymethyl acrylamide (NMA) and dimethyldiallylammonium chloride ( DM- DAAC) as co-monomers in a process of seed emulsion polymerization. The effects of kinds and amount of initiators, kinds and ratio of emulsifiers on properties of the emulsion were investigated. The results indicated that, the proper- ties of emulsion was best when using water soluble azo initiator Y and anionic/cationic compound emulsifiers( ratio was 1: 5) ;this emulsion had higher solid content, smaller particle size,better mechanical stability and lower water absorbency of copolymer film than the other emulsions with the same monomer ratio.

  15. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    Science.gov (United States)

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  16. One-step routes from di- and triblock copolymer precursors to hydrophilic nanoporous poly(acrylic acid)-b-polystyrene

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars;

    2008-01-01

    Nanoporous polystyrene with hydrophilic pores was prepared from di- and triblock copolymer precursors. The precursor material was either a poly(tert-butyl acryl ate)-b-polystyrene (PtBA-b-PS) diblock copolymer synthesized by atom transfer radical polymerization (ATRP) or a polydimethylsiloxane......-b-poly(tertbutyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer synthesized by a combination of living anionic polymerization and ATRP. In the latter copolymer, PS was the matrix and mechanically stable component, PtBA was converted by acidic deprotection to hydrophilic poly(acrylic acid) (PAA) providing...

  17. On the Use of Self-Assembling Block Copolymers to Toughen A Model Epoxy

    Science.gov (United States)

    Chen, Yilin

    Block copolymers have been receiving considerable attention in toughening epoxy due to their ability to form a wide variety of nanostructures. This study focuses on using both triblock and diblock copolymers to improve the fracture toughness of an aromatic-amine cured epoxy system. The curing system consisted of 1,3- phenylenediamine (mPDA) as curing agent and aniline as a chain extender. Three triblock copolymers and three diblock copolymers were incorporated in the same lightly crosslinked model epoxy system, which was chosen to mimic an underfill material in flip-chip packaging for the microelectronics industry. In this research, rubber particles were formed in situ using self-assembling block copolymers. Mechanical, thermal and microscopic studies were conducted with the main goal to study the relationship between the block parameters and the final morphologies and their effects on static and dynamic mechanical properties of the toughened resin, especially fracture toughness. In these block-copolymer-modified epoxies, spherical micelles and wormlike micelles were obtained by varying block lengths, molecular weight, polarities and compositions. It was found that miscibility of the epoxy-miscible block played a crucial role in the formation of different types of morphologies. At a low loading level, diblock copolymers were able to toughen the model epoxy as effectively as triblock copolymers. The fracture toughness was improved to almost three times with respect to that of the neat resin with addition of 10 phr AM*-27. At the same time, other mechanical properties, such as yield strength and modulus, were well retained. Incorporation of block copolymers did not have a significant effect on glass transition temperature but caused an increase in coefficient of thermal expansion (CTE) of the modified epoxy. Particle cavitation and matrix void growth were proved to be the toughening mechanisms for SBM-Modified epoxies. However, these typical toughening mechanisms for

  18. Organic Solar Cells with Controlled Nanostructures Based on Microphase Separation of Fullerene-Attached Thiophene-Selenophene Heteroblock Copolymers.

    Science.gov (United States)

    Chen, Peihong; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Kikitsu, Tomoka; Hashizume, Daisuke; Koganezawa, Tomoyuki; Tajima, Keisuke

    2017-02-08

    Heteroblock copolymers consisting of poly(3-hexylthiophene) and fullerene-attached poly(3-alkylselenophene) (T-b-Se-PCBP) were synthesized for organic photovoltaic applications by quasi-living catalyst transfer polycondensation and subsequent conversion reactions. Characterization of the polymers confirmed the formation of well-defined diblock structures with high loading of the fullerene at the side chain (∼40 wt %). Heteroblock copolymer cast as a thin film showed a clear microphase-separated nanostructure approximately 30 nm in repeating unit after thermal annealing, which is identical to the microphase-separated nanostructure of diblock copolymer consisting of poly(3-hexylthiophene) and fullerene-attached poly(3-alkylthiophene) (T-b-T-PCBP). These heteroblock copolymers provide an ideal platform for investigating the effects of nanostructures and interfacial energetics on the performance of organic photovoltaic devices.

  19. Modular synthesis of a block copolymer with a cleavable linkage via “click” chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A diblock copolymer poly(ethylene glycol)-block-polystyrene or PEG-b-PS with an olefinic double bond at the PEG and PS junction has been prepared by modular synthesis via"click"chemistry.This involved the synthesis of PS by atom transfer radical polymerization and the nucleophilic substitution of the terminal bromide group with azide to yield azide-terminated PS. PEG with an alkynyl terminal group was prepared from reacting carboxyl-end-functionalized PEG with 4-hydroxybut-2-enyl prop-2-ynyl succinate,which contained an alkynyl group as well as an olefin group.The PS and PEG polymers were linked via the 1,3-dipolar cycloaddition of the end azide and alkyne groups.The obtained copolymer was characterized by 1H NMR spectroscopy and size exclusion chromatography(SEC).SEC analysis indicated that the diblock copolymer produced could be readily cleaved by ozonolysis to regenerate the constituent homopolymers.

  20. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng

    2014-10-27

    Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were characterized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.

  1. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno, Nicolas

    2015-10-27

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  2. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed...... functional nanoporous polymers based on nanoporous 1,2- polybuatdiene 1,2-PB, which is derived from a 1,2-PB-b-PDMS diblock copolymer precursor. As a result, nanoporous 1,2-PB with pores decorated of polyacrylates, sulfonated polymers and poly(ethylene glycol) are created. A method of vapor phase deposition...... has also been generated to obtain nanoporous polymers with functional coatings on pore walls. Vapor phase polymerization of pyrrole is performed to incorporate an ultra thin film of polypyrrole into nanoporous 1,2-PB. The preliminary test shows that nanoporous 1,2-PB gains conductivity. Generally...

  3. Mechanism of Molecular Exchange in Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  4. Influence of Architecture, Concentration, and Thermal History on the Poling of Nonlinear Optical Chromophores in Block Copolymer Domains

    Energy Technology Data Exchange (ETDEWEB)

    Leolukman, Melvina; Paoprasert, Peerasak; Wang, Yao; Makhija, Varun; McGee, David J.; Gopalan, Padma (UW)

    2008-10-02

    Factors affecting the electric-field-induced poling of nonlinear optical chromophores in block copolymer domains were investigated by encapsulating the chromophores in a linear-diblock copolymer [poly(styrene-b-4-vinylpyridine)] and linear-dendritic (poly(methyl methacrylate)-dendron) block copolymer via hydrogen bonding. Temperature-dependent Fourier transform infrared spectroscopy and morphology evaluation by X-ray scattering and transmission electron microscopy were used with in situ second harmonic generation to correlate domain architectures, processing conditions such as thermal history, and chromophore concentrations with poling efficiency. Poling of chromophores encapsulated in the minority domain (spheres or cylinders) of a linear-diblock copolymer was inhibited by the increasing chromophore concentration within the domain and the chemical nature of the majority domain. Chromophore encapsulation in the majority domain produced the most favorable conditions for poling as measured by in situ second harmonic generation. Thermal annealing of the linear-diblock copolymer/chromophore composites resulted in chromophore aggregation with a corresponding decrease in nonlinear optical activity. The linear-dendron/chromophore system presented the most effective architecture for spatially dispersing chromophores. These findings suggest that while well-ordered phase-separated systems such as block copolymers enhance chromophore isolation over homopolymer systems, a more effective approach is to explore polymer chains end functionalized with chromophores.

  5. Chain exchange in triblock copolymer micelles

    Science.gov (United States)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  6. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    Science.gov (United States)

    Zhang, Qiyi; Yang, Wenyan; Hu, Kaiyan

    2016-11-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. Project supported by the National Natural Science Foundation of China (Grant No. 20804060) and the Research Foundation of Chongqing University of Science and Technology, China (Grant No. CK2013B16).

  7. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery.

    Science.gov (United States)

    Han, Shangcong; Wan, Haiying; Lin, Daoshu; Guo, Shutao; Dong, Hongxu; Zhang, Jianhua; Deng, Liandong; Liu, Ruming; Tang, Hua; Dong, Anjie

    2014-02-01

    Nanoparticles (NPs) assembled from amphiphilic polycations have been certified as potential carriers for gene delivery. Structural modification of polycation moieties may be an efficient route to further enhance gene delivery efficiency. In this study two electroneutral monomers with different hydrophobicities, 2-hydroxyethyl methacrylate (HEMA) and 2-hydroxyethyl acrylate (HEA), were incorporated into the cationic poly(dimethylamino ethyl methacrylate) (PDMAEMA) side-chains of amphiphilic poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) (PCD) by random co-polymerization, to obtain poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl methacrylate) (PCD-HEMA) and poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl acrylate) (PCD-HEA). Minimal HEA or HEMA moieties in PDMAEMA do not lead to statistically significant changes in particle size, zeta potential, DNA condensation properties and buffering capacity of the naked NPs. However, the incorporation of HEMA and HEA lead to reductions and increases, respectively, in the surface hydrophilicity of the naked NPs and NPs/DNA complexes, which was confirmed by water contact angle assay. These simple modifications of PDMAEMA with HEA and HEMA moieties significantly affect the gene transfection efficiency on HeLa cells in vitro: PCD-HEMA NP/DNA complexes show a much higher transfection efficiency than PCD NPs/DNA complexes, while PCD-HEA NPs/DNA complexes show a lower transfection efficiency than PCD NP/DNA complexes. Fluorescence activated cell sorter and confocal laser scanning microscope results indicate that the incorporation of hydrophobic HEMA moieties facilitates an enhancement in both cellular uptake and endosomal/lysosomal escape, leading to a higher transfection efficiency. Moreover, the process of endosomal/lysosomal escape confirmed in our research that PCD and its derivatives do not just rely on the proton sponge mechanism, but also

  8. Vertical vs Lateral Macrophase Separation in Thin Films of Block Copolymer Mixtures: Computer Simulations and GISAXS Experiments.

    Science.gov (United States)

    Berezkin, Anatoly V; Jung, Florian; Posselt, Dorthe; Smilgies, Detlef M; Papadakis, Christine M

    2017-03-20

    Mixtures of two diblock copolymers of very different lengths may feature both macro- and microphase separation; however, not much is known about the mechanisms of separation in diblock copolymer thin films. In the present work, we study thin films of mixtures of two compositionally symmetric block copolymers, both in the one-phase and in the two-phase state, combining coarse-grained molecular simulations (dissipative particle dynamics, DPD) with scattering experiments (grazing-incidence small-angle X-ray scattering, GISAXS). We reveal that the film thickness and selective adsorption of different blocks to the substrate control the distribution of macrophases within the film as well as the orientation of the lamellae therein. In thick films, the mixtures separate in the vertical direction into three layers: Two layers being rich in short copolymers are formed near the film interfaces, whereas a layer being rich in long copolymers is located in the film core. The lamellar orientation in the layers rich in short copolymers is dictated by the surface selectivity, and this orientation only weakly affects the vertical orientation of lamellae in the film core. This provides the opportunity to control the domain orientation in the copolymer films by mixing block copolymers with low-molecular additives instead of relying on a more complicated chemical modification of the substrate. In thinner films, a lateral phase separation appears.

  9. STRUCTURE OF CRYSTALLINE DOMAINS IN SEMICRYSTALLINE BLOCK COPOLYMER THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Guo-dong Liang; Jun-ting Xu; Zhi-qiang Fan

    2006-01-01

    Thin film morphology of a symmetric semicrystalline oxyethylene/oxybutylene diblock copolymer (E76B38) on silicon was investigated by tapping mode atomic force microscopy (AFM). It is found that the nascent thin film is composed of multiple polymer layers having mixed thicknesses of L ≈ L0 and L ≈ L0/2 (L0 is the long period of the block copolymer in bulk) besides the first layer near the substrate. This shows that the crystalline domain in the block copolymer consists of double poly(oxyethylene) layers. Annealing leads to disappearance of the polymer layers with thickness L ≈ L0/2, indicating that such polymer layers are metastable.

  10. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance.

    Science.gov (United States)

    Lin, Nien-Jung; Yang, Hui-Shan; Chang, Yung; Tung, Kuo-Lun; Chen, Wei-Hao; Cheng, Hui-Wen; Hsiao, Sheng-Wen; Aimar, Pierre; Yamamoto, Kazuo; Lai, Juin-Yih

    2013-08-13

    Stable biofouling resistance is significant for general filtration requirements, especially for the improvement of membrane lifetime. A systematic group of hyper-brush PEGylated diblock copolymers containing poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) was synthesized using an atom transfer radical polymerization (ATRP) method and varying PEGMA lengths. This study demonstrates the antibiofouling membrane surfaces by self-assembled anchoring PEGylated diblock copolymers of PS-b-PEGMA on the microporous poly(vinylidene fluoride) (PVDF) membrane. Two types of copolymers are used to modify the PVDF surface, one with different PS/PEGMA molar ratios in a range from 0.3 to 2.7 but the same PS molecular weights (MWs, ∼5.7 kDa), the other with different copolymer MWs (∼11.4, 19.9, and 34.1 kDa) but the similar PS/PEGMA ratio (∼1.7 ± 0.2). It was found that the adsorption capacities of diblock copolymers on PVDF membranes decreased as molar mass ratios of PS/PEGMA ratio reduced or molecular weights of PS-b-PEGMA increased because of steric hindrance. The increase in styrene content in copolymer enhanced the stability of polymer anchoring on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be in the range between 1.5 and 2.0 with copolymer MWs above 20.0 kDa for the ultrastable resistance of protein adsorption on the PEGylated PVDF membranes. The PVDF membrane coated with such a diblock copolymer owned excellent biofouling resistance to proteins of BSA and lysozyme as well as bacterium of Escherichia coli and Staphylococcus epidermidis and high stable microfiltration operated with domestic wastewater solution in a membrane bioreactor.

  11. Preparation of New Amphiphilic Liquid-Crystal Diblock Copolymers Bearing Side-on Cholesteryl Mesogen and Their Self-aggregation%具有侧挂胆固醇液晶元的两亲嵌段功能大分子的合成及自组装研究

    Institute of Scientific and Technical Information of China (English)

    胡方振; 陈圣典; 李慧; 孙景景; 盛瑞隆; 罗挺; 曹阿民

    2013-01-01

    采用可逆加成-断裂链转移(RAFT)聚合法,合成了系列具有刚性疏水胆固醇液晶元的聚甲基丙烯酸甘油酯-嵌段-聚甲基丙烯酸亚己基胆固醇酯(PGMA-b-PMA6Chol)两亲嵌段功能大分子.运用核磁共振(NMR)和凝胶渗透色谱(GPC)表征了其化学结构及分子量,并对其热性质、液晶相结构及相转变行为分别运用热台偏振光显微镜(POM)、热重分析仪(TGA)、示差扫描量热仪(DSC)和二维小角X射线散射(2D-SAXS)表征.采用纳米沉淀法研究了所得嵌段大分子的溶液自组装,动态光散射(DLS)和扫描电子显微镜(SEM)的研究发现溶液自组装聚集体为尺寸0.7~2.0rn的球形结构,其中含有较高刚性链段质量比例的嵌段大分子组装形成开口中空结构的聚集体,且其尺寸随着溶液温度的升高减小,呈现可逆温度变化响应性.结果表明刚性疏水胆固醇液晶单元和具有多羟基结构的亲水性甲基丙烯酸甘油酯的嵌段共聚可以调控该类嵌段大分子自组装及溶液聚集体形貌.%Amphiphilic block copolymers bearing rigid hydrophobic liquid crystal mesogen have recently attracted broad interests since they could spontaneously self-assemble into functional objects at the micron and/or nanometer scales, and these soft matters bearing high-order hierarchical structures have potential applications in micro-reactors, advanced catalysts, biosensors, drug delivery, biotechnology and so forth. In this work, we designed and successfully prepared a new series of amphiphilic liquid crystal poly(glyceryl methaciylate)-b-poly(6-cholesteryloxyhexyl methacrylate) (PGMA-b-PMA6Chol) with hydrophobic PMA6Chol block bearing end-on cholesteryl mesogen through sequential controlled reversible addition-fragmentation chain transfer polymerization (RAFT) and successive removal of ketal protection groups. Then, their structures and comonomer composition were examined by nuclear magnetic resonance (NMR) and gel permeation

  12. Influence of 1,2-PB matrix cross-linking on structure and properties of selectively etched 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Andreasen, Jens Wenzel; Vigild, Martin Etchells;

    2007-01-01

    A series of samples with varying cross-linking degree were prepared from the same 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) diblock copolymer precursor. The stability of nanopores generated after PDMS cleaving depends on the cross-linking degree of 1,2-PB. The swelling ratio...

  13. Polystyrene-Poly(sodium methacrylate) Amphiphilic Block Copolymers by ATRP : Effect of Structure, pH, and Ionic Strength on Rheology of Aqueous Solutions

    NARCIS (Netherlands)

    Raffa, Patrizio; Brandenburg, Piter; Wever, Diego A. Z.; Broekhuis, Antonius A.; Picchioni, Francesco

    2013-01-01

    Three well-defined polystyrene-poly(sodium methacrylate) amphiphilic block copolymers characterized by different molecular architecture (diblock, triblock, and four-arm star) have been synthesized by ATRP. The rheology of their water solutions has been evaluated by measuring dynamic moduli and shear

  14. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.

    Science.gov (United States)

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien

    2005-01-01

    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  15. Controlled titania sponge structures templated with block copolymers for applications in inorganic-organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Rawolle, M.; Sarkar, K.; Prams, S.M.; Zhong, Q.; Mueller-Buschbaum, P. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Funktionelle Materialien; Lellig, P.; Memesa, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Gutmann, J.S. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Mainz Univ. (Germany). Inst. fuer Physikalische Chemie; Perlich, J. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Funktionelle Materialien; DESY, Hamburg (Germany). HASYLAB; Roth, S.V. [DESY, Hamburg (Germany). HASYLAB

    2010-07-01

    Titania films with a well-defined morphology which have a huge application potential in photovoltaics are prepared by combining sol-gel chemistry and an amphiphilic diblock copolymer as structure directing agent in a 'good-poor' solvent induced microphase separation process. Using the diblock copolymer poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide) PDMS-b-MA(PEO) we can create a sponge structure with pores on two different size scales in a reproducible way. On the one hand mesoporous structures with pores on the nanometer scale provide a large surface area for charge generation. On the other hand macropores on a micrometer scale ensure an easier infiltration of holeconducting material and enhance the surface roughness for better light absorption. (orig.)

  16. DNA Island Formation on Binary Block Copolymer Vesicles.

    Science.gov (United States)

    Luo, Qingjie; Shi, Zheng; Zhang, Yitao; Chen, Xi-Jun; Han, Seo-Yeon; Baumgart, Tobias; Chenoweth, David M; Park, So-Jung

    2016-08-17

    Here, we report DNA-induced polymer segregation and DNA island formation in binary block copolymer assemblies. A DNA diblock copolymer of polymethyl acrylate-block-DNA (PMA-b-DNA) and a triblock copolymer of poly(butadiene)-block-poly(ethylene oxide)-block-DNA (PBD-b-PEO-b-DNA) were synthesized, and each was coassembled with a prototypical amphiphilic polymer of poly(butadiene)-block-poly(ethylene oxide) (PBD-b-PEO). The binary self-assembly of PMA-b-DNA and PBD-b-PEO resulted in giant polymersomes with DNA uniformly distributed in the hydrophilic PEO shell. When giant polymersomes were connected through specific DNA interactions, DNA block copolymers migrated to the junction area, forming DNA islands within polymersomes. These results indicate that DNA hybridization can induce effective lateral polymer segregation in mixed polymer assemblies. The polymer segregation and local DNA enrichment have important implications in DNA melting properties, as mixed block copolymer assemblies with low DNA block copolymer contents can still exhibit useful DNA melting properties that are characteristic of DNA nanostructures with high DNA density.

  17. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  18. Conformational Antibody Binding to a Native, Cell-Free Expressed GPCR in Block Copolymer Membranes

    OpenAIRE

    de Hoog, Hans-Peter M.; Esther M Lin JieRong; Sourabh Banerjee; Décaillot, Fabien M.; Madhavan Nallani

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for l...

  19. Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations

    Science.gov (United States)

    Zheng, Wang; Bao-Hui, Li

    2016-01-01

    Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress. Project supported by the National Natural Science Foundation of China (Grant Nos. 20990234, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1257), the Programme of Introducing Talents of Discipline to Universities, China, and by the Tianhe No. 1, China.

  20. Monte Carlo simulation of AB-copolymers with saturating bonds

    DEFF Research Database (Denmark)

    Chertovich, A.C.; Ivanov, V.A.; Khokhlov, A.R.;

    2003-01-01

    Structural transitions in a single AB-copolymer chain where saturating bonds can be formed between A- and B-units are studied by means of Monte Carlo computer simulations using the bond fluctuation model. Three transitions are found, coil-globule, coil-hairpin and globule-hairpin, depending...... on the nature of a particular AB-sequence: statistical random sequence, diblock sequence and 'random-complementary' sequence (one-half of such an AB-sequence is random with Bernoulli statistics while the other half is complementary to the first one). The properties of random-complementary sequences are closer...

  1. Effect of Macromolecular Architecture on the Morphology of Polystyrene Polyisoprene Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeev [ORNL; Goswami, Monojoy [ORNL; Mays, Jimmy [ORNL; Sides, Scott [ORNL; Sumpter, Bobby G [ORNL; Dadmun, Mark D [ORNL; Dyer, Caleb W [ORNL; Driva, Paraskevi [ORNL; Chen, Jihua [ORNL

    2013-01-01

    The impact of block connectivity on the morphologies of four block copolymers of varying architecture containing polystyrene (PS) and polyisoprene (PI) has been studied. The volume fraction of PS and molecular weight are held constant while varying the architecture from a linear PS-PI diblock copolymer to three different miktoarm star architectures: PS2PI, PSPI2, and PS2PI2. Morphologies of the PS2PI and PSPI2 miktoarm stars are different from those observed for the linear copolymer and dependent on the connectivity of the copolymer blocks. The change in morphology with connectivity indicates that combining two chains at a junction point leads to chain crowding, where subsequent excluded volume effects drive the change in morphology for each sample. The PS2PI2 miktoarm star exhibits the same morphology as the linear diblock but with a reduction in the size of the domains. The extent of the decrease in domain size indicates that chain stretching impacts the formation of this morphology. Experimentally observed morphologies for different chain architectures are generally consistent with three-dimensional self-consistent field theory simulations, taking into account conformational asymmetry and experimental uncertainty in the copolymer composition. Furthermore, these results generally agree with analytical theory predictions that account for architectural and conformational asymmetry.

  2. π-Conjugated Copolymers of Thiophene: Effect of Chain Architecture on the Physical and Optoelectronic Properties for Photovoltaic Applications

    Science.gov (United States)

    Amonoo, Jojo; Glynos, Emmanouil; Chen, Chelsea; Li, Anton; Locke, Jonas; McNeil, Anne; Green, Peter

    2012-02-01

    We found that polymer chain architecture strongly influences phase separation capabilities of the donor-acceptor blend in bulk heterojunction organic photovoltaic devices. Ni-catalyzed controlled polymerization was utilized to access new conjugated copolymers of 3-hexylthiophene and 3-(hexyloxy)methylthiophene, two donor polymers. Monomer sequence was controlled along the copolymer chain by the rate of addition of the comonomers, to achieve diblock, random and gradient copolymer chain architectures. This allowed us to study the effect of copolymer sequence of polythiophene based copolymer/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend on the structure, nanoscale morphology and local charge transport properties using conductive and photoconductive atomic force microscopy. The gradient configuration showed the largest phase separation behavior with PCBM.

  3. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  4. Communication: Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, N. Arun; Ganesan, Venkat

    2012-03-01

    We apply the methodology of self-consistent Brownian dynamics simulations to study the self-assembly behavior in melts of semiflexible-flexible diblock copolymers as a function of the persistence length of the semiflexible block. Our results reveal a novel progression of morphologies in transitioning from the case of flexible-coil to rod-coil copolymers. At even moderate persistence lengths, the morphologies in the semiflexible-block rich region of the phase diagram transform to liquid crystalline phases. In contrast, the phases in the flexible-block rich region of the phase diagram persist up to much larger persistence lengths. Our analysis suggests that the development of orientational order in the semiflexible block to be a critical factor influencing the morphologies of self-assembly.

  5. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles

    Science.gov (United States)

    Nowak, Andrew P.; Breedveld, Victor; Pakstis, Lisa; Ozbas, Bulent; Pine, David J.; Pochan, Darrin; Deming, Timothy J.

    2002-05-01

    Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli. Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90°C and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations-α-helix, β-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.

  6. Synthesis of poly[methyl(3,3,3-trinuoropropyl)siloxane]b-poly(ethylene oxide)block copolymers

    Institute of Scientific and Technical Information of China (English)

    Xiao-li ZHAN; Bi CHEN; Qing-hua ZHANG; Ling-min YI; Bo JIANG; Feng-qiu CHEN

    2008-01-01

    A series of new amphiphilic poly[methyl(3,3,3-trifluoropropyl)siloxane]-b -poly(ethylene oxide)(PMTFPS-b-PEO)diblock copolymers with different ratios of hydrophobic segment to hydrophilic segment were prepared by coupling reactions of end-functional PMTFPS and PEO homopolymers.Copolymers were shown to be well defined and narrow molecular weight distribution(MWD)(1.07~1.3)by characterizations such as gel permeation chromatography(GPC)and 1H-nudear magnetic resonance(1H-NMR).

  7. Effect of Copolymer Chain Architecture on Active Layer Morphology and Device Performance

    Science.gov (United States)

    Amonoo, Jojo; Li, Anton; Sykes, Matthew; Huang, Bingyuan; Palermo, Edmund; McNeil, Anne; Shtein, Max; Green, Peter

    2014-03-01

    The optimum morphological structure that determines the device performance of bulk heterojunction thin film polymer solar cells is greatly influenced by the extent of phase separation between the polymer and fullerene components, which ultimately defines the length scales and purity of the donor- and acceptor-rich phases. Block copolymer thin films have been widely studied for their ability to microphase separate into well-defined nanostructures. Nickel-catalyzed chain-growth copolymerizations of thiophene and selenophene derivatives afforded well-defined π-conjugated copolymers of poly(3-hexylthiophene) (P3HT) and poly(3-hexylselenophene) (P3HS) to achieve diblock, random and gradient copolymer chain architectures. This allowed us to study the effect of copolymer sequence and nanoscale morphology of P3HT-P3HS copolymer/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) on device performance. With the use of energy-filtered transmission electron microscopy and conductive and photoconductive atomic force microscopy we found that copolymer sequence strongly influences the phase separation capabilities of the copolymer-fullerene blend in bulk heterojunction organic photovoltaic devices.

  8. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  9. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(epsilon-caprolactone)] copolymers.

    Science.gov (United States)

    Mao, Jing; Gan, Zhihua

    2009-11-10

    An amphiphilic diblock copolymer PG-b-PCL with well-controlled structure and pendant hydroxyl groups along hydrophilic block was synthesized by sequential anionic ring-opening polymerization. The micellization and drug release of PG-b-PCL copolymers using pyrene as a fluorescence probe were investigated for determining the influences of copolymer composition and lipase concentration on drug loading capacity and controlled release behavior. The biodegradation of PG-b-PCL copolymers was studied with microspheres as research samples. It has been concluded that the polar hydroxyl groups along each repeat unit of hydrophilic PG block in PG-b-PCL copolymer have great influences on drug encapsulation, drug release, and enzymatic degradation of micelles and microspheres.

  10. Discovery of a Frank-Kasper sigma phase in sphere-forming block copolymer melts.

    Science.gov (United States)

    Lee, Sangwoo; Bluemle, Michael J; Bates, Frank S

    2010-10-15

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma (σ) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the σ phase in undiluted linear block copolymers (and certain branched dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.

  11. Stability of ordered phases in block copolymer melts and solutions

    Indian Academy of Sciences (India)

    Kell Mortensen

    2008-11-01

    Block copolymer melts and solutions assemble into nanosized objects that order into a variety of phases, depending on molecular parameters and mutual interactions. Beyond the classical phases of lamella ordered sheets, hexagonally ordered cylinders and cubic ordered spheres, the complex bicontinuous gyroid phase and the modulated lamellar phase are observed near the phase boundaries. The stability of these phases has been discussed on the basis of theoretical calculations. Here, we will discuss new experimental results showing that the given ordered phase depends critically on both molecular purity and mechanical treatment of the sample. While a variety of block copolymer micellar systems have been shown to undergo the liquid-to-bcc-to-fcc phase sequence upon varying micellar parameters (or temperature), we find for a purified system a different sequence, namely liquid-to-fcc-to-bcc [1]. The latter sequence is by the way the one predicted for pure block copolymer melts. External fields like shear or stress may also affect the ordered phase. Applying well-controlled large-amplitude oscillatory shear can be used to effectively control the texture of soft materials in the ordered states. As an example, we present results on a body-centred-cubic phase of a block copolymer system, showing how a given texture can be controlled with the application of specific shear rate and shear amplitude [2,3]. Shear may however also affect the thermodynamic ground state, causing shear-induced ordering and disordering (melting), and shear-induced order–order transitions. We will present data showing that the gyroid state of diblock copolymer melts is unstable when exposed to large amplitude/frequency shear, transforming into the hexagonal cylinder phase [4]. The transformation is completely reversible. With the rather slow kinetics in the transformation of copolymer systems, it is possible in detail to follow the complex transformation process, where we find transient ordered

  12. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  13. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    -ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently...

  14. Effect of film thickness on the phase behaviors of diblock copolymer thin film.

    Science.gov (United States)

    Jung, Jueun; Park, Hae-Woong; Lee, Sekyung; Lee, Hyojoon; Chang, Taihyun; Matsunaga, Kazuyuki; Jinnai, Hiroshi

    2010-06-22

    A phase diagram was constructed for a polystyrene-block-polyisoprene (PS-b-PI, M(W) = 32 700, f(PI) = 0.670) in thin films on Si wafer as a function of film thickness over the range of 150-2410 nm (7-107L(0) (L(0): domain spacing)). The PS-b-PI exhibits a variety of ordered phases from hexagonally perforated lamellar (HPL) via double gyroid (DG) to hexagonally packed cylinder (HEX) before going to the disordered (DIS) phase upon heating. The morphology of the PS-b-PI in thin film was investigated by grazing incidence small-angle X-ray scattering, transmission electron microscopy, and transmission electron microtomography. In thin film, the phase transition temperature is difficult to be determined unequivocally with in situ heating processes since the phase transition is slow and two phases coexist over a wide temperature range. Therefore, in an effort to find an "equilibrium" phase, we determined the long-term stable phase formed after cooling the film from the DIS phase to a target temperature and annealing for 24 h at the temperature. The temperature windows of stable ordered phases are strongly influenced by the film thickness. As the film thickness decreases, the temperature window of layer-like structures such as HPL and HEX becomes wider, whereas that of the DG stable region decreases. For the films thinner than 160 nm (8L(0)), only the HPL phase was found. In the films exhibiting DG phase, a perforated layer structure at the free surface was found, which gradually converts to the internal DG structure. The relief of interfacial tension by preferential wetting appears to play an important role in controlling the morphology in very thin films.

  15. LANGMUIR BEHAVIOR AND ULTRATHIN FILMS OF NEW LINEAR-DENDRITIC DIBLOCK COPOLYMERS. (R825224)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Nano-porous Materials from Diblock Copolymers and its Membrane Application

    DEFF Research Database (Denmark)

    Szewczykowski, Piotr Przemyslaw

    Denne afhandling omhandler undersøgelser vedrørende karakterisering af nano-porøse materialer fremstillet ud fra selvorganiserende diblok copolymerer og deres anvendelse som membranmaterialer. Phd-projektet havde til formål at forstå og fremstille nano-porøse materialer ud fra block copolymerer b...

  17. Nanowire and Mesh Conformations of Diblock Copolymer Blends at the Air/Water Interface

    NARCIS (Netherlands)

    Seo, Young-Soo; Kim, K.S.; Galambos, Arielle; Lammertink, R.G.H.; Vancso, G.J.; Sokolov, J.; Rafailovich, M.

    2004-01-01

    We investigated the structures formed when blends of poly(styrene-b-ferrocenyl silane) (PS-b-FS) and poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP) were spread at the air/water interface. The results demonstrated that new structures were formed which were distinct from those formed when either of the

  18. Solar cells based on block copolymer semiconductor nanowires: effects of nanowire aspect ratio.

    Science.gov (United States)

    Ren, Guoqiang; Wu, Pei-Tzu; Jenekhe, Samson A

    2011-01-25

    The solution-phase self-assembly of nanowires (NWs) from diblock copolymer semiconductors, poly(3-butylthiophene)-block-poly(3-octylthiophene), of different block compositions gave crystalline NWs of similar width (13-16 nm) but a tunable average aspect ratio (length/width) of 50-260. The power conversion efficiency of bulk heterojunction solar cells comprising the diblock copolythiophene NWs and PC(71)BM was found to increase with increasing aspect ratio, reaching 3.4% at the highest average aspect ratio of 260. The space charge limited current mobility of holes in neat films of the copolymer NWs and in copolymer NWs/PC(71)BM films (∼1.0 × 10(-4) cm(2)/(V s)) was invariant with aspect ratio, reflecting the parallel orientation of the NWs to the substrate. The enhancement of photovoltaic efficiency with increasing aspect ratio of NWs was explained in terms of increased exciton and charge photogeneration and collection in the bulk heterojunction solar cells.

  19. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  20. Hydrophilic block azidation of PCL-b-PEO block copolymers from epichlorohydrin.

    Science.gov (United States)

    Liu, Junjie; Gan, Zhihua

    2014-05-01

    Amphiphilic diblock copolymers poly(ϵ-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) with well-controlled pendant azido groups along the hydrophilic PEO block, that is, poly(ϵ-caprolactone)-b-poly(ethylene oxide-co-glycidyl azide) (PCL-b-P(EO-co-GA)), are synthesized from poly(ϵ-caprolactone)-b-poly(ethylene oxide-co-epichlorohydrin) (PCL-b-P(EO-co-ECH)). The further conversion of those azido groups along the hydrophilic block of copolymers into amino or carboxyl groups via click chemistry is studied. The micelles self-assembled from PCL-b-P(EO-co-GA) with azido groups on the shell are crosslinked by the dialkynyl-PEO. The micelles with crosslinked shell show better stability, higher drug loading capacities, subsequent faster drug release rate, and higher cytotoxicity to cancer cells. The introduction of azido groups into PCL-b-PEO amphiphilic diblock copolymers from epichlorohydrin in PEO hydrophilic block in this work provides a new method for biofunctionalization of micelles via mild click chemistry.

  1. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    Science.gov (United States)

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.

  2. Biodegradable amphiphilic block copolymers containing functionalized PEO blocks:Controlled synthesis and biomedical potentials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of controllable amphiphilic block copolymers composed of poly(ethylene oxide)(PEO) as the hydrophilic block and poly(ε-caprolactone)(PCL) as the hydrophobic block with the amino terminal group at the end of the PEO chain(PCL-b-PEO-NH2) were synthesized.Based on the further reaction of reactive amino groups,diblock copolymers with functional carboxyl groups(PCL-b-PEO-COOH) and functional compounds RGD(PCL-b-PEO-RGD) as well as the triblock copolymers with thermosensitive PNIPAAm blocks(PCL-b-PEO-b-PNIPAAM) were synthesized.The well-controlled structures of these copolymers with functional groups and blocks were characterized by gel permeation chromatography(GPC) and 1H NMR spectroscopy.These copolymers with functionalized hydrophilic blocks were fabricated into microspheres for the examination of biofunctions via cell culture experiments and in vitro drug release.The results indicated the significance of introducing functional groups(e.g.,NH2,COOH and RGD) into the end of the hydrophilic block of amphiphilic block copolymers for biomedical potentials in tissue engineering and controlled drug release.

  3. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  4. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    Science.gov (United States)

    de Hoog, Hans-Peter M; Lin JieRong, Esther M; Banerjee, Sourabh; Décaillot, Fabien M; Nallani, Madhavan

    2014-01-01

    G-protein coupled receptors (GPCRs) play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  5. Conformational antibody binding to a native, cell-free expressed GPCR in block copolymer membranes.

    Directory of Open Access Journals (Sweden)

    Hans-Peter M de Hoog

    Full Text Available G-protein coupled receptors (GPCRs play a key role in physiological processes and are attractive drug targets. Their biophysical characterization is, however, highly challenging because of their innate instability outside a stabilizing membrane and the difficulty of finding a suitable expression system. We here show the cell-free expression of a GPCR, CXCR4, and its direct embedding in diblock copolymer membranes. The polymer-stabilized CXCR4 is readily immobilized onto biosensor chips for label-free binding analysis. Kinetic characterization using a conformationally sensitive antibody shows the receptor to exist in the correctly folded conformation, showing binding behaviour that is commensurate with heterologously expressed CXCR4.

  6. Effects of different cations on properties of ionomers of maleated styrene-butadiene-styrene triblock copolymer%阳离子对顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物离聚体性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘大刚; 谢洪泉; 高玉

    2011-01-01

    The ionomers containing different cations, such as sodium, lithium, potassium, calcium,zinc, lead, magnesium, and ethyl ammonium were synthesized from the ionization of maleated styrenebutadiene-styrene triblock copolymer ( SBS ) .Effects of different cations on the thermal, mechanical, oil resistance and adhesive properties of the ionomers were studied. The results showed that, in addition to the glass transition temperatures (Tg) of butadiene and styrene blocks, the ionomers exhibited third Tg, which is due to the dissociation of the ionic domains. For the monovalent alkali metal cation neutralized ionomers, the higher the ionic potential, the higher the dissociation temperature of ionic domains, tensile strength and lap shear strength to iron plates and the order from large to small was Li+ > Na+> K+; for the divalent cation neutralized ionomers, the dissociation temperature of ionic domains decreased in the order of Ca2+> Zn2+>Pb2+ , whereas the tensile strength decreased in the order of Ca2+> Zn2 + > Mg2 + , but all were lower than those of the monovalent alkali metal cation neutralized ionomers. The oil resistance of the divalent cation neutralized ionomers was better than that of the monovalent cation neutralized ionomers or SBS.The lap shear strength of zinc ion neutralized ionomer to iron plates was the highest of all, being 0. 594 MPa.%将顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)离子化得到含不同阳离子的离聚体,考察了不同阳离子对离聚体热性能、物理机械性能、耐油性能和粘接性能的影响.结果表明,离聚体有3个玻璃化转变温度(Tg),其中2个是SBS固有的Tg,另一个是离子微区的离解温度;对于含1价阳离子的离聚体,离子电离势越高,离聚体的离解温度、拉伸强度和搭接剪切强度基本越高,即从大到小依次为含锂离聚体、含钠离聚体、含钾离聚体;含2价阳离子离聚体的离解温度从大到小依次为含钙离聚

  7. Tunable Morphologies from Charged Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Monojoy [ORNL; Sumpter, Bobby G [ORNL; Mays, Jimmy [ORNL; Messman, Jamie M [ORNL

    2010-01-01

    The bulk morphologies formed by a new class of charged block copolymers, 75 vol % fluorinated polyisoprene (FPI) 25 vol% sulfonated polystyrene (PSS) with 50% sulfonation, are characterized, and the fundamental underlying forces that promote the self-assembly processes are elucidated. The results show how the bulk morphologies are substantially different from their uncharged diblock counterparts (PS-PI) and also how morphology can be tuned with volume fraction of the charged block and the casting solvent. A physical understanding based on the underlying strong electrostatic interactions between the charged block and counterions is obtained using Monte Carlo (MC) and Molecular Dynamics (MD) simulations. The 75/25 FPI-PSS shows hexagonal morphologies with the minority blocks (PSS) forming the continuous phase due to charge percolation and the FPI blocks arranged in hexagonal cylinders. Some long-range order can be sustained even if lipophobicity is increased (addition of water), albeit with lower dimensional structures. However, thermal annealing provides sufficient energy to disrupt the percolated charges and promotes aggregation of ionic sites which leads to a disordered system. Diverse and atypical morphologies are readily accessible by simply changing the number distribution of the charges on PSS block.

  8. Molecular Exchange Dynamics in Block Copolymer Micelles

    Science.gov (United States)

    Bates, Frank; Lu, Jie; Choi, Soohyung; Lodge, Timothy

    2012-02-01

    Poly(styrene-b-ethylene propylene) (PS-PEP) diblock copolymers were mixed with squalane (C30H62) at 1% by weight resulting in the formation of spherical micelles. The structure and dynamics of molecular exchange were characterized by synchrotron small-angle x-ray scattering (SAXS) and time resolved small-angle neutron scattering (TR-SANS), respectively, between 100 C and 160 C. TR-SANS measurements were performed with solutions initially containing deuterium labeled micelle cores and normal cores dispersed in a contrast matched squalane. Monitoring the reduction in scattering intensity as a function of time at various temperatures revealed molecular exchange dynamics highly sensitive to the core molecular weight and molecular weight distribution. Time-temperature superposition of data acquired at different temperatures produced a single master curve for all the mixtures. Experiments conducted with isotopically labeled micelle cores, each formed from two different but relatively mondisperse PS blocks, confirmed a simple dynamical model based on first order kinetics and core Rouse single chain relaxation. These findings demonstrate a dramatic transition to nonergodicity with increasing micelle core molecular weight and confirm the origins of the logarithmic exchange kinetics in such systems.

  9. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles.

    Science.gov (United States)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B; Borgens, Richard B; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(d,l-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  10. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles

    Science.gov (United States)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B.; Borgens, Richard B.; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(D,L-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  11. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  12. Self-assembled Block Copolymers with Various Architectures Designed by ATRP

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja

    /L do to hydrophobic association of the PS blocks in the corona. Effect of the hydrophobe length and polymer topology has been additionally investigated (6). iv. Hydrophilic nanoporous polymers with various morphologies and pore size (7) have been mastered by novel synthetic strategies using two...... of the macromolecular building blocks they self assemble in attractive morphologies and exhibit interesting rheology. The designed at the Danish Polymer Centre by ATRP self-assembling block copolymers will be demonstrated by several examples: i. Diblock copolymers of PMMA with side chain liquid crystalline (LC...... methodologies, which will be discussed. In contact with water, they showed spontaneous water uptake (8). References (1). Hansen, N.M.L.; Jankova, K.; Hvilsted, S. European Polymer Journal 43(2), pp 255-293 (2007); Bednarek, M.; Jankova, K.; Hvilsted, S. J. Polym. Sci., Part A: Polym. Chem. 45, pp 333-340 (2007...

  13. Development and characterization of cation exchange sorbent of St - DVB copolymer support for solid-phase extraction%St-DVB基质阳离子交换固相萃取填料的研制及应用

    Institute of Scientific and Technical Information of China (English)

    申书昌; 李媛媛; 柏叶春

    2011-01-01

    以玉米淀粉为分散剂,偶氮二异丁腈 (AIBN)为引发剂,二乙烯基苯(DVB)为交联剂,在在氮气保护下,用悬浮聚合法制备了交联苯乙烯-二乙烯苯(St-DVB )高分子微球,用浓硫酸进行磺化,制成了以St-DVB为基质的阳离子交换固相萃取填料.考察了搅拌速度对交联聚苯乙烯微球粒径大小及分布的影响.分别用TEM,SEM/EDS和傅里叶红外光谱法对填料进行了形貌及结构分析,测定了磺化物的磺化度.自制阳离子交换固相萃取小柱,对水中的莠去津进行了应用试验,考察了性能.%In this paper, used eom-starch as dispersing agent, 2,2-azobisisobutyronitrile as initiator of polymerization, divinyl benzene as cross-linking agent,polystyrene-divinyl benzene microspheres were prepared by suspension polymerization under nitrogen.The polystyrene-divinyl benzene microspheres were sulfonated by concentrated sulfuric acid, the polystyrene-divinyl benzene sulphonic acid material as a cation exchange sorbent for solid phase extraction packing. stirring speed were investigated to cress-linked polystyrene partiele size and distribution. The form , structure and composition of the polystyrene-divinyl benzene and the polystyrene -divinyl benzene sulphonie acid mierospheres were characterized by means of transmission electron mieraseope , scanning electron microscope/energy dispersive X-ray spectrometer and fourier transform infrared spectroscopy measurement respectively the sulfonate sulfonation degree was Determinated by acid-soda titration method. The cation exchange solid phase extraction column made using the self-made and a plastic syringe. The atrazine in water was detected by solid phase extraetion-HPLC

  14. Effects of PEO Content on the Morphological Behavior of PS-PI-PEO Triblock Copolymers

    Science.gov (United States)

    Bailey, Travis S.; Bates, Frank S.

    2000-03-01

    Many studies involving ABC triblock copolymers have focused on the unique morphologies that particular molecules or blends express. However, investigations of thermally induced morphological changes in these molecules have been limited. A series of poly(styrene-isoprene-ethyleneoxide) ABC-triblock copolymers were sythesized with increasing PEO content. Consistency among all triblocks was achieved through ethylene oxide addition to the same hydroxy-functionalized poly(styrene-isoprene) diblock (MW = 18000g/mol, vol. frac. PS =0.5). Final triblock PEO volume fractions ranged from 0.029 to 0.207. All triblocks in the series showed order-to-disorder transitions (ODTs), ranging from 84C to 215C. Interestingly, initial addition of PEO resulted in a marked depression of the ODT relative to the parent diblock (116C). Characterization of these triblocks, using a combination of techniques including reology, SAXS, and TEM, shows multiple changes in morphology over the range of compositions studied, as well as possible order-to-order transitions (OOTs) associated with triblocks of specific compositions. Progression of these morphological changes with increasing PEO content will be discussed.

  15. A Comparative Study of Cellular Uptake and Subcellular Localization of Doxorubicin Loaded in Self-Assemblies of Amphiphilic Copolymers with Pendant Dendron by MDA-MB-231 Human Breast Cancer Cells.

    Science.gov (United States)

    Viswanathan, Geetha; Hsu, Yu-Hsuan; Voon, Siew Hui; Imae, Toyoko; Siriviriyanun, Ampornphan; Lee, Hong Boon; Kiew, Lik Voon; Chung, Lip Yong; Yusa, Shin-Ichi

    2016-06-01

    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.

  16. Effect of Surfactants on Association Characteristics of Di- and Triblock Copolymers of Oxyethylene and Oxybutylene in Aqueous Solutions: Dilute Solution Phase Diagrams, SANS, and Viscosity Measurements at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Sanjay H. Punjabi

    2011-01-01

    Full Text Available The interactions in poly(oxyethylene (E – poly(oxybutylene (B of EB or EBE type block copolymers-sodium dodoecyl sulfate (SDS or dodecyltrimethylammonium bromide (DTAB and/or t-octylphenoxy polyethoxyethanol, (TX-100 have been monitored as a function of surfactant concentration and temperature. The addition of ionic surfactants to copolymer micellar solutions in general induced not only shape transition from spherical to prolate ellipsoids at 30∘C in the copolymer micelles but also destabilize them and even suppress the micelle formation at high surfactant loading. DTAB destabilizes the copolymer micelles more than SDS. TX-100, being nonionic, however, forms stable mixed micelles. The block copolymer-surfactant complexes are hydrophilic in nature and are characterized by high turbid and cloud points. Triblock copolymer micelles got easily destabilized than the diblock copolymer ones, indicating the importance of the interaction between the hydrophilic E chains and surfactants. The effects of destabilization of the copolymer micelles are more dominating than the micellar growth at elevated temperatures, which is otherwise predominant in case of copolymer micelles alone.

  17. Molecular exchange in block copolymer micelles: when corona chains overlap

    Science.gov (United States)

    Lu, Jie; Lodge, Timothy; Bates, Frank; Choi, Soohyung

    2013-03-01

    The chain exchange kinetics of poly(styrene-b-ethylenepropylene) (PS-PEP) diblock copolymer micelles in squalane (C30H62) was investigated using time-resolved small angle neutron scattering (TR-SANS). The solvent is a mixture of h-squalane and d-squalane that contrast-matches a mixed 50/50 h/d PS micelle core. As isotope labeled chains exchange, the core contrast decreases, leading to a reduction in scattering intensity. This strategy therefore allows direct probing of the chain exchange rate. Separate copolymer micellar solutions containing either deuterium labeled (dPS) or normal (hPS) poly(styrene) core blocks were prepared and mixed at room temperature, below the core glass transition temperature. The samples were heated to several temperatures (around 100 °C) and monitored by TR-SANS every 5 min. As polymer concentration was increased from 1% to 15% by volume, we observed a significant slowing down of chain exchange rate. Similar retarded kinetics was found when part of the solvent in the 1% solution was replaced by homopolymer PEP (comparable size as corona block). Furthermore, if all the solvent is replaced with PEP, no exchange was detected for up to 3hr at 200 °C. These results will be discussed in terms of a molecular model for chain exchange Infineum, Iprime, NIST, ORNL

  18. Rich Variety of Three-Dimensional Nanostructures Enabled by Geometrically Constraining Star-like Block Copolymers.

    Science.gov (United States)

    Wang, Chao; Xu, Yuci; Li, Weihua; Lin, Zhiqun

    2016-08-01

    The influence of star-like architecture on phase behavior of star-like block copolymer under cylindrical confinement differs largely from the bulk (i.e., nonconfinement). A set of intriguing self-assembled morphologies and the corresponding phase diagrams of star-like (AB)f diblock copolymers with different numbers of arms f (i.e., f = 3, 9, 15, and 21) in four scenarios (ϕA = 0.3 and V0 > 0; ϕA = 0.3 and V0 0; and ϕA = 0.7 and V0 0 represent that the pore wall of cylindrical confinement prefers the inner A block (i.e., A-preferential) and B block (i.e., B-preferential), respectively) were for the first time scrutinized by employing the pseudospectral method of self-consistent mean-field theory. Surprisingly, a new nanoscopic phase, that is, perforated-lamellae-on-cylinder (denoted PC), was observed in star-like (AB)3 diblock copolymer at ϕA = 0.3 and V0 > 0. With a further increase in f, a single lamellae (denoted L1) was found to possess a larger phase region. Under the confinement of A-preferential wall (i.e., V0 0, where an inverted cylinder was formed in bulk, the PC phase became stable, and its free energy decreased as f increased, suggesting the propensity to form PC phase under this condition. Moreover, in stark contrast to the phase transition of C1 → L1 → PC (C1, a single cylindrical microdmain) at ϕA = 0.3 and V0 > 0, when subjected to the A-preferential wall (ϕA = 0.7), a different phase transition sequence (i.e., C1 → PC → L1) was identified due to the formation of a double-layer structure. On the basis of our calculations, the influence of star-like architecture on (AB)f diblock copolymer under the imposed cylindrical confinement, particularly the shift of the phase boundaries as a function of f, was thoroughly understood. These self-assembled nanostructures may hold the promise for applications as lithographic templates for nanowires, photonic crystals, and nanotechnology.

  19. Preparation and Characterization of Copolymer Micelles Formed by Poly(ethylene glycol)-Polylactide Block Copolymers as Novel Drug Carriers

    Institute of Scientific and Technical Information of China (English)

    姜维; 王运东; 甘泉; 张建铮; 赵秀文; 费维扬; 贝建中; 王身国

    2006-01-01

    Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.

  20. New cation-exchange membranes for hyperfiltration processes

    NARCIS (Netherlands)

    Velden, van der P.M.; Smolders, C.A.

    1977-01-01

    A new route for the preparation of cation exchange membranes from polystyrene-polyisoprene-polystyrene (SIS) block copolymers has been studied, using N-chlorosulfonyl isocyanate. At temperatures of 0° to 20°C, N-chlorosulfonyl isocyanate reacts readily with the olefin group in polyisoprenes, resulti

  1. Composition and solution properties of fluorinated block copolymers and their surface structures in the solid state

    Institute of Scientific and Technical Information of China (English)

    NI HuaGang; XUE DongWu; WANG XiaoFang; ZHANG Wei; WANG XinPing; SHEN ZhiQuan

    2009-01-01

    A series of diblock copolymers composed of methyl methacrylate and 2-perfluorooctylethyl methacry-late (PMMA144-b-PFMAn) with various PFMA block lengths were prepared by atom transfer radical po-lymerization (ATRP). The surface structures and properties of these polymers in the solid state and in solution were investigated using contact angle measurement, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, surface tension and dynamic laser light scattering (DLS). It was found that with increasing PFMA block length, water and oil repellency de-creased, the ratio of F/C increased with increasing film depth, and the degree of ordered packing of the perfluoroalkyl side chains at the surface decreased. When the number of PFMA block units reached 10, PMMA segments were detected at the copolymer surface, which was attributed to the PFMA block length affecting molecular aggregation structure of the copolymer in the solution and the interfacial structure at the air/liquid interface, which in turn affects surface structure formation during solution solidification. The results suggest that copolymer solution properties play an important role in struc-ture formation on the solid surface.

  2. Composition and solution properties of fluorinated block copolymers and their surface structures in the solid state

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of diblock copolymers composed of methyl methacrylate and 2-perfluorooctylethyl methacry-late(PMMA144-b-PFMAn) with various PFMA block lengths were prepared by atom transfer radical po-lymerization(ATRP).The surface structures and properties of these polymers in the solid state and in solution were investigated using contact angle measurement,X-ray photoelectron spectroscopy(XPS),sum frequency generation(SFG) vibrational spectroscopy,surface tension and dynamic laser light scattering(DLS).It was found that with increasing PFMA block length,water and oil repellency de-creased,the ratio of F/C increased with increasing film depth,and the degree of ordered packing of the perfluoroalkyl side chains at the surface decreased.When the number of PFMA block units reached 10,PMMA segments were detected at the copolymer surface,which was attributed to the PFMA block length affecting molecular aggregation structure of the copolymer in the solution and the interfacial structure at the air/liquid interface,which in turn affects surface structure formation during solution solidification.The results suggest that copolymer solution properties play an important role in struc-ture formation on the solid surface.

  3. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids

    Science.gov (United States)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-01-01

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a

  4. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  5. Multidensity integral-equation theory for short diblock hard-sphere-sticky-hard-sphere chains.

    Science.gov (United States)

    Wu, Ning; Chiew, Y C

    2010-04-01

    The multidensity Ornstein-Zernike integral equation theory is applied to study a simple model of hard sphere/sticky hard sphere diblock chains. The multidensity integral equation formalism has been successfully used to model the equilibrium structure and thermodynamic properties of homonuclear chains and shorter dimer fluids; to our knowledge it has not been applied to model diblock chains. In this work, a diblock chain fluids is represented by an m-component equal molar mixture of hard spheres with species 1,2,...,mh and sticky hard spheres with species mh+1,mh+2,...,m. Each spherical particle has two attractive sites A and B except species 1 and m, which have only one site per particle. In the limit of complete association, this mixture yields a system of monodisperse diblock chains. A general solution of this model is obtained in the Percus-Yevick, Polymer Percus-Yevick and ideal chain approximations. Both structural and thermodynamic properties of this model are investigated. From this study, a microphase separation is predicted for relatively short diblock symmetric and asymmetric chains. This microphase separation is enhanced at lower temperature and higher density. When chain length increases, the phase transition changes from a microphase level to a macrophase level. The size of microdomain structure is found to be dependent on total chain length, relative ratio of block lengths, temperature, and density.

  6. Ordering transition in salt-doped diblock cpolymers.

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Jian; de Pablo, Juan J.

    2016-05-10

    Lithium salt-doped block copolymers offer promise for applications as solid electrolytes in lithium ion batteries. Control of the conductivity and mechanical properties of these materials, for membrane applications relies critically on the ability to predict and manipulate their microphase separation temperature. Past attempts to predict the so-called "order-disorder transition temperature" of copolymer electrolytes have relied on approximate treatments of electrostatic interactions. In this work, we introduce a coarse-grained simulation model that treats Coulomb interactions explicitly, and we use it to investigate the ordering transition of charged block copolymers. The order-disorder transition temperature is determined from the ordering free energy, which we calculate with a high level of precision using a density-of-states approach. Our calculations allow us to discern a delicate competition between two physical effects: ion association, which raises the transition temperature, and solvent dilution, which lowers the transition temperature. In the intermediate salt concentration regime, our results predict that the order-disorder transition temperature increases with salt content, in agreement with available experimental data.

  7. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo, E-mail: akiba@env.kitakyu-u.ac.jp

    2010-11-15

    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  8. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution

    Science.gov (United States)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo

    2010-11-01

    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  9. ANTIFOULING PROPERTIES OF POLY(VINYL CHLORIDE) MEMBRANES MODIFIED BY AMPHIPHILIC COPOLYMERS P(MMA-b-MAA)

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Liu; Yong-hua Zhang; Li-feng Fang; Bao-ku Zhu; Li-ping Zhu

    2012-01-01

    Three well-defined diblock copolymers ofpoly(methyl methacrylate-b-methaerylic acid) (P(MMA-b-MAA)) were synthesized using atom transfer radical polymerization method and varying poly(methacrylic acid) (PMAA) chain lengths.These copolymers were blended with PVC to fabricate porous membranes via phase inversion process.Membrane morphologies were observed by scanning electron microscopy (SEM),and chemical composition changes of the membrane surfaces were measured by X-ray photoelectron spectroscopy (XPS).Static and dynamic protein adsorption experiments were used to evaluate antifouling properties of the blend membranes.It was found that,the blend membranes containing longer PMAA arm length showed lower static protein adsorption,higher water permeation flux and better protein solution flux recovery.

  10. Self-assembly behavior of well-defined polymethylene-block-poly(ethylene glycol) copolymers in aqueous solution

    KAUST Repository

    Alkayal, Nazeeha

    2016-09-22

    A series of well-defined amphiphilic polymethylene-b-poly(ethylene glycol) (PM-b-PEG) diblock copolymers, with different hydrophobic chain length, were synthesized by combining Diels-Alder reaction with polyhomologation. The successful synthetic procedure was confirmed by size-exclusion chromatography (SEC) and 1H NMR spectroscopy. These block copolymers self-assembled into spherical micelles in aqueous solutions and exhibit low critical micelle concentration (CMC) of 2–4 mg/mL, as determined by fluorescence spectroscopy using pyrene as a probe. Measurements of the micelle hydrodynamic diameters, performed by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM), revealed a direct dependence of the micelle size from the polymethylene block length.

  11. Large amplitude oscillatory shear of block copolymer spheres on a body-centered cubic lattice: are micelles like metals?

    Science.gov (United States)

    Torija, Maria A; Choi, Soo-Hyung; Lodge, Timothy P; Bates, Frank S

    2011-05-19

    Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C(30)H(62)), an EP selective solvent, at a concentration of 10 wt%. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.

  12. Large Amplitude Oscillatory Shear of Block Copolymer Spheres on a Body-Centered Cubic Lattice: Are Micelles Like Metals?

    Energy Technology Data Exchange (ETDEWEB)

    Torija, Maria A.; Choi, Soo-Hyung; Lodge, Timothy P.; Bates, Frank S. (UMM)

    2013-03-07

    Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C{sub 30}H{sub 62}), an EP selective solvent, at a concentration of 10 wt %. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.

  13. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    Isoporous membranes are attractive for the regulation and detection of transport at the molecular level. A well-defined asymmetric membranes from diblock copolymers with an ordered nanoporous membrane morphologies were fabricated by the combination of block copolymer self-assembly and non-solvent-induced phase separation (NIPS) technique. This is a straightforward and fast one step procedure to develop integrally anisotropic (“asymmetric”) membranes having isoporous top selective layer. Membranes prepared via this method exhibit an anisotropic cross section with a thin separation layer supported from underneath a macroporous support. These membrane poses cylindrical pore structure with ordered nanopores across the entire membrane surfaces with pore size in the range from 20 to 40 nm. Tuning the pore morphology of the block copolymer membranes before and after fabrication are of great interest. In this thesis, we first investigated the pore morphology tuning of asymmetric block copolymer membrane by complexing with small organic molecules. We found that the occurrence of hydrogen-bond formation between PS-b-P4VP block copolymer and –OH/ –COOH functionalized organic molecules significantly tunes the pore morphology of asymmetric nanoporous membranes. In addition, we studied the complexation behavior of ionic liquids with PS-b-P4VP block copolymer in solutions and investigated their effect on final membrane morphology during the non-solvent induced phase separation process. We found that non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ionic liquids led to a lamella-structured membrane. Secondly, we demonstrated the catalytic activity of the gold nanoparticle-enhanced hollow fiber membranes by the reduction of nitrophenol. Also, we systematically investigated the pore morphology of isoporous PS-b-P4VP using 3D imaging technique. Thirdly, we developed well-distributed silver nanoparticles on the

  14. Block coordination copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  15. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  16. Synthesis and characterization of an elastin-mimetic amphiphilic block copolymer protein

    Science.gov (United States)

    Lee, Terrence Anita-Talley

    2000-10-01

    The overall goal in material science is to be able to control the molecular architecture of a material and thus its end properties. There is no method that offers greater control than the biological synthesis of proteins. From the DNA sequence to the final synthesized protein, the entire process is finitely controlled. This present work describes methods developed and used to synthesize protein polymers by manipulating this process. From the initial DNA sequence chosen, the end properties that the protein polymer will have are dictated. An amphiphilic diblock copolymer was designed based on environmentally responsive elastin-mimetic peptide sequences [(Val/Ile)-Pro-Gly-Xaa-Gly] (Xaa = Ala or Glu for the hydrophilic block, Val or Phe for the hydrophobic block) and synthesized using a genetic engineering approach. Differential scanning calorimetry measurements in aqueous solution revealed that reversible hydrophobic folding and assembly of the copolymer occurs above the inverse temperature transition, Tt, of the hydrophobic block. This process results in the formation of 50 nm protein-based micellar aggregates, which were characterized by electron microscopy and temperature-dependent dynamic light scattering techniques. The distribution of micellar aggregates can be altered reproducibly through variation of environmental conditions including pH and temperature. The uniform and defined macromolecular architecture of this protein copolymer permits greater control over the physical properties of the micelles, which therefore may facilitate applications in controlled release of small molecules.

  17. Effects of Substrate Interactions on Out-of-Plane Order in Thin Films of Lamellar Copolymers

    Science.gov (United States)

    Mitra, Indranil; Mahadevapuram, Nikhila; Bozhchenko, Alona; Strzalka, Joseph; Stein, Gila E.

    2014-03-01

    Block copolymer (BCP) thin films are widely studied and applied for low cost, large area nanopatterning of semiconductor devices and has a very low tolerance for both in-plane or out of plane defects. Here we study, defects in lamellar diblock copolymers as a function of film thickness and the types of interactions at the substrate interface. Thin films of poly (styrene-b-methyl methacrylate) (PS-PMMA) with equilibrium periodicity 46nm were prepared and annealed on silicon substrates that were functionalized with a random copolymer P(s-r-MMA) brush. The resulting structures were evaluated with optical, scanning force and, scanning electron microscopy, along with grazing-incidence small-angle X-ray scattering (GISAXS). The in-plane correlation length (OCL) increased with brush grafting density, and increased with distance from the substrate interface. Out-of-plane order improved with brush grafting density, but thick films always contain a high density of misoriented domains. Based on these findings, we propose that (1) substrate pinning either induces or traps the mis-oriented domains, and (2) out-of-plane orientation defects are difficult to remove, from a thick film, because the energetic penalty for bending a ``tall'' domain is very low. Funding from NHARP and the Department of Chemical and Biomolecular Engineering, University of Houston.

  18. SELF ASSEMBLY OF ABC TRIBLOCK COPOLYMER THIN FILMS ON A BRUSH-COATED SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    Zhi-bin Jiang; Rong Wang; Gi Xue

    2009-01-01

    Self assemblies of ABC triblock copolymer thin films on a densely brush-coated substrate were investigated by using the self-consistent field theory. The middle block B and the coated polymer form one phase and the alternating phase A and phase C occur when the film is very thin either for the neutral or selective hard surface (which is opposite to the brush-coated substrate). The lamellar phase is stable on the hard surface when it is neutral and interestingly, the short block tends to stay on this hard surface. The rippled structure forms when the cylindrical phase exists near the surface between grafted polymers and ABC block copolymers. Due to the existence of the hydrophilic brush-coated surface serving as a soft surface of the film, the energy fluctuation existing in the film confined by two hard surfaces disappears. The results are helpful for designing the nanopattern of the film and realizing the functional thin film, such as adding the functional short block A to the BC diblock copolymer.

  19. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  20. Interaction chromatography for characterization and large-scale fractionation of chemically heterogeneous copolymers

    Science.gov (United States)

    Han, Junwon

    The remarkable development of polymer synthesis techniques to make complex polymers with controlled chain architectures has inevitably demanded the advancement of polymer characterization tools to analyze the molecular dispersity in polymeric materials beyond size exclusion chromatography (SEC). In particular, man-made synthetic copolymers that consist of more than one monomer type are disperse mixtures of polymer chains that have distributions in terms of both chemical heterogeneity and chain length (molar mass). While the molecular weight distribution has been quite reliably estimated by the SEC, it is still challenging to properly characterize the chemical composition distribution in the copolymers. Here, I have developed and applied adsorption-based interaction chromatography (IC) techniques as a promising tool to characterize and fractionate polystyrene-based block, random and branched copolymers in terms of their chemical heterogeneity. The first part of this thesis is focused on the adsorption-desorption based purification of PS-b-PMMA diblock copolymers using nanoporous silica. The liquid chromatography analysis and large scale purification are discussed for the PS-b-PMMA block copolymers that have been synthesized by sequential anionic polymerization. SEC and IC are compared to critically analyze the contents of PS homopolymers in the as-synthesized block copolymers. In addition, I have developed an IC technique to provide faster and more reliable information on the chemical heterogeneity in the as-synthesized block copolymers. Finally, a large scale (multi-gram) separation technique is developed to obtain "homopolymer-free" block copolymers via a simple chromatographic filtration technique. By taking advantage of the large specific surface area of nanoporous silica (≈300m 2/g), large scale purification of neat PS-b-PMMA has successfully been achieved by controlling adsorption and desorption of the block copolymers on the silica gel surface using a

  1. STUDY ON PET-PA66 COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    WU Rongrui; SHI Weitong

    1992-01-01

    In this work the PET-PA66 copolymers are obtained. The characterization of chemical structure of copolymer chain by NMR method is also given . It is shown that when the 66 Nylon salt is added in the copolycondensation, the adipic acid and hexamethylenediamine reacted mainly by itself and the obtained copolymer is a random copolymer, and when the Nylon 66 oligomer is added, the obtained copolymer is a block copolymer. The result of NMR analysis is demonstrated by properties investigation.

  2. Adsorption and Aqueous Lubricating Properties of Charged and Neutral Amphiphilic Diblock Copolymers at a Compliant, Hydrophobic Interface

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Jankova Atanasova, Katja;

    2013-01-01

    ) or negatively charged poly(acrylic acid) (PAA) and of a hydrophobic block of polystyrene (PS) or poly(2-methoxyethyl acrylate) (PMEA), thus generating PEG-b-X or PAA-b-X, where X block is either PS or PMEA. The molecular weight ratios were roughly 1:1 with each block ca. 5 kDa. Comparing the neutral PEG...

  3. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  4. Responsive copolymers for enhanced petroleum recovery. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1995-05-01

    The authors describe second year efforts in synthesis, characterization, and rheology to develop polymers with significantly improved efficiency in mobility control and conformance. These advanced polymer systems would maintain high viscosities or behave as virtual gels under low shear conditions and at elevated electrolyte concentrations. At high fluid shear rates, associates would deaggregate yielding low viscosity solutions, reducing problems of shear degradation or face plugging during injection. Polymeric surfactants were also developed with potential for use in higher salt, higher temperature reservoirs for mobilization of entrapped oil. Chapters include: Ampholytic terpolymers of acrylamide with sodium 3-acrylamido-3-methylbutanoate and 2-acrylamido-2-methylpropanetrimethylammonium chloride; Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-methylpropane-dimethylammonio)-1-propanesulfonate; Copolymerization of maleic anhydride and N-vinylformamide; Reactivity ratio of N-vinylformamide with acrylamide, sodium acrylate, and n-butyl acrylate; Effect of the distribution of the hydrophobic cationic monomer dimethyldodecyl(2-acrylamidoethyl)ammonium bromide on the solution behavior of associating acrylamide copolymers; Effect of surfactants on the solution properties of amphipathic copolymers of acrylamide and N,N-dimethyl-N-dodecyl-N-(2-acrylamidoethyl)ammonium bromide; Associative interactions and photophysical behavior of amphiphilic terpolymers prepared by modification of maleic anhydride/ethyl vinyl ether copolymers; Copolymer compositions of high-molecular-weight functional acrylamido water-soluble polymers using direct-polarization magic-angle spinning {sup 13}C NMR; Use of factorial experimental design in static and dynamic light scattering characterization of water soluble polymers; and Porous medium elongational rheometer studies of NaAMB/AM copolymer solutions.

  5. Preparation, Stability, and Bio-Compatability of Block Copolymer Vesicles

    Science.gov (United States)

    Discher, Dennis; Lee, James C.-M.; Bermudez, Harry; Bates, Frank; Discher, Bohdana

    2001-03-01

    Vesicles made completely from diblock copolymers polymersomes can be stably prepared by a wide range of techniques common to liposomes. Processes such as film rehydration, sonication, and extrusion can generate many micron giants as well as monodisperse, 100 nm vesicles of PEO-PEE (polyethyleneoxide polyethylethylene) or PEO PBD (polyethyleneoxide polybutadiene). These thick-walled vesicles of polymer can encapsulate macromolecules just as liposomes can, but, unlike many pure liposome systems, these polymersomes exhibit no in-surface thermal transitions and a sub-population even survive autoclaving. Suspension in blood plasma has no immediate ill-effect on vesicle stability, and neither adhesion nor stimulation of phagocytes are apparent when giant polymersomes are held in direct, protracted contact. Proliferating cells, in addition, are unaffected when cultured for an extended time with an excess of polymersomes, and several injections of 10 mg doses into rats show no ill-effect. The results are consistent with the steric stabilization that PEG-lipid can impart to liposomes, but the present single-component polymersomes are far more stable mechanically and are not limited by PEG driven micellization.

  6. Dynamics of Chain Exchange in Block Copolymer Micelles

    Science.gov (United States)

    Lodge, Timothy

    Block copolymer micelles are rarely at equilibrium. The primary reason is the large number of repeat units in the insoluble block, Ncore, which makes the thermodynamic penalty for extracting a single chain (``unimer exchange'') substantial. As a consequence, the critical micelle concentration (CMC) is rarely accessed experimentally; however, in the proximity of a critical micelle temperature (CMT), equilibration is possible. We have been using time-resolved small angle neutron scattering (TR-SANS) to obtain a detailed picture of the mechanisms and time scales for chain exchange, at or near equilibrium. Our model system is poly(styrene)-block-poly(ethylene-alt-propylene)) (PS-PEP), in the PEP-selective solvent squalane (C30H62) . Equivalent micelles with either normal (hPS) or perdeuterated (dPS) cores are initially mixed in a blend of isotopically substituted squalane, designed to contrast-match a 50:50 hPS:dPS core. Samples are then annealed at a target temperature, and chain exchange is revealed quantitatively by the temporal decay in scattered intensity. The rate of exchange as function of concentration, temperature, Ncore, Ncorona, and chain architecture (diblock versus triblock) will be discussed.

  7. SYNTHESIS AND PHOTOCHROMISM OF ACRYLIC ESTER COPOLYMERS BEARING PENDANT VIOLOGEN GROUPS

    Institute of Scientific and Technical Information of China (English)

    SUN Xuehui; YANG Yukun

    1996-01-01

    A series of acrylic ester copolymers with viologen group as pendant were synthesized through the reaction of MMA-EBA (Ethenyl bromoacetate) copolymer with 4-(4'-pyridyl)-N-alkyl (or arylalkyl) pyridiniums. These viologen copolymers can exchange their anion with NH4PF6 in methanol to improve their solubility in organic solvents such as DMF and acetone. Compared with the corresponding low molecular viologens, these viologen copolymers have relatively lower color development rate under UV light and fade faster in air due to less affinity to photo-reductant and deficiency of association between their cation radicals. Their photofatigue resistant ability is also slightly better than that of low molecular viologens.

  8. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery

    Science.gov (United States)

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo. PMID:24424156

  9. A NEW METHOD TO SYNTHESIZE THE CATIONIC GRAFT STARCH

    Institute of Scientific and Technical Information of China (English)

    LinLi; BingyueLiu; YafengCao

    2004-01-01

    The cationic graft copolymer was synthesized byreversed phase emulsion copolymerization of starchwith diallydimethyl ammoniumlchlorid (DADMAC)and acrylamide (AM). The copolymerization wascarried out using (NH4)2S2Os-NH2CONH2 redox asinitiator and selecting Span-20 as emulsifier. Theeffects of emulsifier content in oil phase, volumeratio of oil to water, initiator concentration and moleratio of DADMAC to AM on the graftcopolymerization were discussed. The optimumcondition of synthetics was found with theorthogonal test method.

  10. Solution small-angle x-ray scattering as a screening and predictive tool in the fabrication of asymmetric block copolymer membranes

    KAUST Repository

    Dorin, Rachel Mika

    2012-05-15

    Small-angle X-ray scattering (SAXS) analysis of the diblock copolymer poly(styrene-b-(4-vinyl)pyridine) in a ternary solvent system of 1,4-dioxane, tetrahydrofuran, and N,N-dimethylformamide, and the triblock terpolymer poly(isoprene-b-styrene-b-(4-vinyl)-pyridine) in a binary solvent system of 1,4-dioxane and tetrahydrofuran, reveals a concentration-dependent onset of ordered structure formation. Asymmetric membranes fabricated from casting solutions with polymer concentrations at or slightly below this ordering concentration possess selective layers with the desired nanostructure. In addition to rapidly screening possible polymer solution concentrations, solution SAXS analysis also predicts hexagonal and square pore lattices of the final membrane surface structure. These results suggest solution SAXS as a powerful tool for screening casting solution concentrations and predicting surface structure in the fabrication of asymmetric ultrafiltration membranes from self-assembled block copolymers. (Figure presented) © 2012 American Chemical Society.

  11. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  12. Flash NanoPrecipitation of organic actives via confined micromixing and block copolymer stabilization

    Science.gov (United States)

    Johnson, Brian K.

    to quantify the induction time through knowledge of the mixing lifetime. Copolymer aggregation without an organic active to kinetically frozen nanoparticles occurs by a "fusion only" mechanism. By analogy to classical precipitation kinetics, the interfacial free energy of a diblock copolymer nanoparticle is determined for the first time. The composite dissertation provides a clear picture of Flash NanoPrecipitation for future research and applications.

  13. Protonation effects on electron transport through diblock molecular junctions:A theoretical study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Diblock oligomers are widely used in molecular electronics. Based on fully self-consistent nonequilib-rium Green’s function method and density functional theory, we study the electron transport properties of the molecular junction with a dipyrimidinyl-diphenyl (PMPH) diblock molecule sandwiched between two gold electrodes. Effects of different kinds of molecule-electrode anchoring geometry and protona-tion of the PMPH molecule are studied. Protonation leads to both conductance and rectification en-hancements. However, the experimentally observed rectifying direction inversion is not found in our calculation. The preferential current direction is always from the pyrimidinyl to the phenyl side. Our calculations indicate that the protonation of the molecular wire is not the only reason of the rectification inversion.

  14. Dynamics of Sulfonated Polystyrene Copolymers and Ionomers using Broadband Dielectric Spectroscopy

    Science.gov (United States)

    Atorngitjawat, Pornpen; Runt, James

    2006-03-01

    The dynamics of sulfonated polystyrene (SPS) copolymers in acid and neutralized forms were investigated using broadband dielectric relaxation spectroscopy. SPS copolymers were synthesized by sulfonation of a monodisperse polystyrene to 1 and 7 mol %. Neutralization was achieved by exchanging the protons of the acid functionality with Na, Cs and Zn cations. Multiple relaxation processes were observed above the glass transition temperature of the neutralized and unneutralized materials. For the unneutralized copolymers, a `chemical relaxation' was observed at temperatures above the segmental process, arising from the presence of hydrogen bonding. For the ionomers, a Maxwell-Wagner-Sillars process was observed due to the presence of ionic clusters. The `chemical relaxation' followed Arrhenius behavior and its relaxation strength decreased significantly with increasing temperature. The relaxation times of the MWS process of all ionomers followed a VFT form. A local relaxation in the glassy state was observed for unneutalized copolymers and ionomers neutralized with monovalent cations, while it was suppressed for ionomers neutralized with divalent cations.

  15. Cationic Organic/Inorganic Hybrids and Their Swelling Properties

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan; L. Ghimici; M. Cazacu

    2005-01-01

    @@ 1Introduction Specific properties of poly(dimethylsiloxanes), such as low glass transition temperature, low surface energy, good insulating properties, biological and chemical inertness, high diffusion coefficient of gases, make them very attractive for practical applications in the daily life. However, there is a great interest last time in the preparation of ionic organic/inorganic materials with new properties for new applications. Quaternary ammonium salt(QAS) groups included in siloxane copolymers could induce new interesting properties such as:permanent fungicidal and bactericidal properties, which make them very attractive as materials for sanitary applications, improved selectivity coefficients of the gas-separation membranes, ion-exchange properties and so forth. So far, QAS groups have been located in the side chain[1,2]. Our interest was focused on the preparation of some novel cationic polysiloxane copolymers containing QAS groups of both integral type and pendent type[3,4]. Our objectives for the present study concern the synthesis of some cationic organic/siloxane hybrid materials with swelling properties controlled by both the nature of cationic organic component and the ratio between the organic and inorganic counterparts. Such cationic hybrid materials could be of interest for the preparation of new stimuli-responsive hydrogels[5,6].

  16. Cationic quaternization of cellulose with methacryloyloxy ethyl trimethyl ammonium chloride via ATRP method

    Energy Technology Data Exchange (ETDEWEB)

    Supeno [Cenderawasih University, Jayapura, Papua, Indonesia and School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Daik, Rusli, E-mail: rusli@ukm.edu.my [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); El-Sheikh, Said M. [Nano-Structured Materials Division, Advanced Materials Department, Central Metallurgical Research and Development Institute, Cairo (Egypt)

    2014-09-03

    The synthesis of a cationic cellulose copolymer from cellulose macro-initiator (MCC-BiB) and quaternary compound monomer (METMA) via atom transfer radical polymerization (ATRP) was studied. By using dimethylformamide (DMF), the optimum condition for successful synthesis was at the mole ratio of MCC-BIB:Catalyst:METMA = 1:1:26. The highest copolymer recovery was 93.2 % for 6 h and at 40°C. The copolymer was insoluble in weak polar solvents such as THF and DMF but soluble in methanol and water. The chemistry of cellulose copolymer was confirmed by the FTIR and TGA in which the METMA monomer was used as a reference. The absence of CC bond in the CiB-g-METMA spectrum indicated that graft copolymerization occurred.

  17. Flory-Huggins parameter χ, from binary mixtures of Lennard-Jones particles to block copolymer melts

    Science.gov (United States)

    Chremos, Alexandros; Nikoubashman, Arash; Panagiotopoulos, Athanassios Z.

    2014-02-01

    In this contribution, we develop a coarse-graining methodology for mapping specific block copolymer systems to bead-spring particle-based models. We map the constituent Kuhn segments to Lennard-Jones particles, and establish a semi-empirical correlation between the experimentally determined Flory-Huggins parameter χ and the interaction of the model potential. For these purposes, we have performed an extensive set of isobaric-isothermal Monte Carlo simulations of binary mixtures of Lennard-Jones particles with the same size but with asymmetric energetic parameters. The phase behavior of these monomeric mixtures is then extended to chains with finite sizes through theoretical considerations. Such a top-down coarse-graining approach is important from a computational point of view, since many characteristic features of block copolymer systems are on time and length scales which are still inaccessible through fully atomistic simulations. We demonstrate the applicability of our method for generating parameters by reproducing the morphology diagram of a specific diblock copolymer, namely, poly(styrene-b-methyl methacrylate), which has been extensively studied in experiments.

  18. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Sepe, A; Hoppe, E T; Jaksch, S; Magerl, D; Zhong, Q; Papadakis, C M [Technische Universitaet Muenchen, Physikdepartment, Fachgebiet Physik weicher Materie/Lehrstuhl fuer funktionelle Materialien, James-Franck-Strasse 1, 85747 Garching (Germany); Perlich, J [HASYLAB at DESY, Notkestrasse 85, 22603 Hamburg (Germany); Posselt, D [IMFUFA, Department of Science, Systems and Models, Roskilde University, PO Box 260, 4000 Roskilde (Denmark); Smilgies, D-M, E-mail: papadakis@tum.de [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2011-06-29

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the substrate. In situ GISAXS measurements elucidate the structural changes during heat treatment at temperatures between 60 and 130 {sup 0}C. Thermal treatment below 100 {sup 0}C does not destroy the perpendicular lamellar order. In contrast, treatment between 105 and 120 {sup 0}C leads to a broad distribution of lamellar orientations which only partially recovers upon subsequent cooling. Treatment at 130 {sup 0}C leads to severe changes of the film structure. We attribute the change of behavior at 100 {sup 0}C to the onset of the glass transition of the polystyrene block and the related increase of long-range mobility. Our results indicate that the perpendicular lamellar orientation for high molar mass samples is not stable under all conditions.

  19. Nanofabrication of SERS device by an integrated block-copolymer and nanoimprint lithography method.

    Energy Technology Data Exchange (ETDEWEB)

    Nealey, Paul (University of Wisconsin); Liu, Charlie (University of Wisconsin); Skinner, Jack L.; Yang, Elaine; Steinhaus, Charles A.; Yang, Chu-Yeu Peter

    2010-05-01

    The integration of block-copolymers (BCPs) and nanoimprint lithography (NIL) presents a novel and cost-effective approach to achieving nanoscale patterning capabilities. The authors demonstrate the fabrication of a surface-enhanced Raman scattering device using templates created by the BCP-NIL integrated method. The method utilizes a poly(styrene-block-methyl methacrylate) cylindrical-forming diblock-copolymer as a masking material to create a Si template, which is then used to perform a thermal imprint of a poly(methyl methacrylate) (PMMA) layer on a Si substrate. Au with a Cr adhesion layer was evaporated onto the patterned PMMA and the subsequent lift-off resulted in an array of nanodots. Raman spectra collected for samples of R6G on Si substrates with and without patterned nanodots showed enhancement of peak intensities due to the presence of the nanodot array. The demonstrated BCP-NIL fabrication method shows promise for cost-effective nanoscale fabrication of plasmonic and nanoelectronic devices.

  20. Magnetic field directed self-assembly of liquid crystalline block copolymers for membrane applications

    Science.gov (United States)

    Gopinadhan, Manesh; Majewski, Pawel W.; Osuji, Chinedum O.

    2011-03-01

    The use of magnetic fields is presented as a facile approach to the control of long range order and alignment of block copolymers. Using SAXS we demonstrate the alignment of lamellar and hexagonally packed cylinder morphologies of a poly(ethylene oxide)-based LC diblock copolymer by slow cooling in the presence of the field through the order-disorder transition. Non-degenerate alignment of the lamellar system is enabled by sample rotation and alignment in the system is shown to be driven by the diamagnetic anisotropy of the LC mesogen, and not anisotropy resulting from crystallization of the PEO block. We consider the effects of lithium doping and field strength on the order-disorder transition of the system, and the effect of lithium content on the critical field required for attaining well aligned films. The controlled alignment of PEO channels over large areas offers a route to selective ion transport in solid state batteries. This work is funded by the NSF under DMR-0847534.

  1. pH-sensitive methacrylic copolymer gels and the production thereof

    Science.gov (United States)

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  2. Self-assembled all-conjugated block copolymer as an effective hole conductor for solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Wei-Chih; Lee, Yi-Huan; Chen, Chia-Yuan; Kau, Kuo-Chang; Lin, Lu-Yin; Dai, Chi-An; Wu, Chun-Guey; Ho, Kuo-Chuan; Wang, Juen-Kai; Wang, Leeyih

    2014-02-25

    An all-conjugated diblock copolymer, poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-hexylthiophene) (PPP-b-P3HT), was synthesized and applied as a hole transport material (HTM) for the fabrication of solid-state dye-sensitized solar cells (ss-DSCs). This copolymer is characterized by an enhanced crystallinity, enabling its P3HT component to self-organize into interpenetrated and long-range-ordered crystalline fibrils upon spin-drying and ultimately endowing itself to have a faster hole mobility than that of the parent P3HT homopolymer. Transient photovoltage measurements indicate that the photovoltaic cell based on PPP-b-P3HT as the HTM has a longer electron lifetime than that of the reference device based on P3HT homopolymer. Moreover, comparing the two ss-DSCs in terms of the electrochemical impedance spectra reveals that the electron density in the TiO2 conduction band is substantially higher in the PPP-b-P3HT device than in the P3HT cell. Above observations suggest that the PPP block facilitates an intimate contact between the copolymer and dye molecules absorbed on the nanoporous TiO2 layer, which significantly enhances the performance of the resulting device. Consequently, the PPP-b-P3HT ss-DSC exhibits a promising power conversion efficiency of 4.65%. This study demonstrates that conjugated block copolymers can function as superior HTMs of highly efficient ss-DSCs.

  3. Synthesis and characterisation of cationically modified phospholipid polymers.

    Science.gov (United States)

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A

    2004-07-01

    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  4. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  5. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  6. A multiscale modeling study of loss processes in block-copolymer-based solar cell nanodevices

    Science.gov (United States)

    Donets, Sergii; Pershin, Anton; Christlmaier, Martin J. A.; Baeurle, Stephan A.

    2013-03-01

    Flexible photovoltaic devices possess promising perspectives in opto-electronic technologies, where high mobility and/or large-scale applicability are important. However, their usefulness in such applications is currently still limited due to the low level of optimization of their performance and durability. For the improvement of these properties, a better understanding and control of small-scale annihilation phenomena involved in the photovoltaic process, such as exciton loss and charge carrier loss, is necessary, which typically implicates multiple length- and time-scales. Here, we study the causes for their occurrence on the example of nanostructured diblock- and triblock-copolymer systems by making use of a novel solar-cell simulation algorithm and explore new routes to optimize their photovoltaic properties. A particular focus is set on the investigation of exciton and charge carrier loss phenomena and their dependence on the inter-monomeric interaction strength, chain architecture, and external mechanical loading. Our simulation results reveal that in the regime from low up to intermediate χ-parameters an increasing number of continuous percolation paths is created. In this parameter range, the internal quantum efficiency (IQE) increases up to a maximum, characterized by a minimum in the number of charge losses due to charge recombination. In the regime of high χ-parameters both block-copolymer systems form nanostructures with a large number of bottlenecks and dead ends. These lead to a large number of charge losses due to charge recombination, charge trapping, and a deteriorated exciton dissociation, resulting in a significant drop in the IQE. Moreover, we find that the photovoltaic performance of the triblock-copolymer material decreases with increasing mechanical loading, caused by a growing number of charge losses due to charge recombination and charge accumulation. Finally, we demonstrate that the process of charge trapping in defects can be reversed

  7. "Click-functional" block copolymers provide precise surface functionality via spin coating.

    Science.gov (United States)

    Rengifo, Hernán R; Chen, Lu; Grigoras, Cristian; Ju, Jingyue; Koberstein, Jeffrey T

    2008-07-15

    There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.

  8. Drug-loading capacity and nuclear targeting of multiwalled carbon nanotubes grafted with anionic amphiphilic copolymers

    Directory of Open Access Journals (Sweden)

    Tsai HC

    2013-11-01

    Full Text Available Hsieh-Chih Tsai,1,* Jeng-Yee Lin,2,* Faiza Maryani,1 Chun-Chiang Huang,1 Toyoko Imae1,31Graduate Institute of Applied Science and Technology, 2Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 3Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan *These authors contributed equally to this work Abstract: In this study, three types of hybrid nanotubes (NTs, ie, oxidized multiwalled carbon NTs (COOH MWCNTs, heparin (Hep-conjugated MWCNTs (Hep MWCNTs, and diblock copolymer polyglycolic acid (PGA-co-heparin conjugated to MWCNTs (PGA MWCNTs, were synthesized with improved biocompatibility and drug-loading capacity. Hydrophilic Hep substituents on MWCNTs improved biocompatibility and acted as nucleus-sensitive segments on the CNT carrier, whereas the addition of PGA enhanced drug-loading capacity. In the PGA MWCNT system, the amphiphilic copolymer (PGA-Hep formed micelles on the side walls of CNTs, as confirmed by electron microscopy. The PGA system encapsulated the hydrophobic drug with high efficiency compared to the COOH MWCNT and Hep MWCNT systems. This is because the drug was loaded onto the PGA MWCNTs through hydrophobic forces and onto the CNTs by ∏–∏ stacking interactions. Additionally, most of the current drug-carrier designs that target cancer cells release the drug in the lysosome or cytoplasm. However, nuclear-targeted drug release is expected to kill cancer cells more directly and efficiently. In our study, PGA MWCNT carriers effectively delivered the active anticancer drug doxorubicin into targeted nuclei. This study may provide an effective strategy for the development of carbon-based drug carriers for nuclear-targeted drug delivery. Keywords: carbon nanotube, amphiphilic copolymer, drug loading, nucleus targeting, cancer therapy

  9. BARRIER PROPERTIES OF VINYLIDENE CHLORIDE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    LI Yuesheng; WENG Zhixue; HUANG Zhiming; PAN Zuren

    1996-01-01

    The permeability coefficients of a series of copolymers of vinylidene chloride (VDC)with methyl acrylate (MA), butyl acrylate (BA) or vinyl chloride (VC) (as comonomer)to oxygen and carbon dioxide have been measured at 1.0 MPa and 30℃, while those to water vapor have been measured at 30℃ and 100% relative humidity. All the copolymers are semicrystalline. VDC/MA copolymers have lower melting temperature compared with VDC/BA copolymers, while that melting temperature of VDC/VC copolymer is higher than that of VDC/acrylate copolymers with the same VDC content. The barrier property of the copolymers is predominantly controlled by crystallite, free volume fraction, and cohesive energy. The permeability coefficients of VDC/MA copolymers to oxygen, carbon dioxide, and water vapor were successfully correlated with the ratio of free volume to cohesive energy.

  10. Lignin poly(lactic acid) copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  11. Using click chemistry to modify block copolymers and their morphologies

    Science.gov (United States)

    Wollbold, Johannes

    Microphase separated block copolymers (BCPs) are emerging as promising templates and scaffolds for the fabrication of nanostructured materials. To achieve the desired nanostructures, it is necessary to establish convenient approaches to control the morphology of BCPs. It remains challenging to induce morphological transitions of BCPs via external fields. Click chemistry, especially alkyne/azide click chemistry, has been widely used to synthesize novel functionalized materials. Here, we demonstrate that alkyne/azide click chemistry can be used as an efficient approach to chemically modify BCPs and therefore induce morphological transitions. Alkyne-functionalized diblock copolymers (di-BCPs) poly(ethylene oxide)- block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) have been successfully synthesized. When the di-BCP is blended with an azide additive Rhodamine B azide and annealed at elevated temperatures, click reaction occurs between the two components. With the Rhodamine B structure attached to the polymer backbone, the di-BCP shows dramatic change in the interactions between the two blocks and the volume fraction of each block. As a result, morphological transitions, such as disorder-to-order transitions (DOTs) and order-to-order transitions (OOTs), are observed. The reaction kinetics and morphology evolution during the click chemistry induced DOTs have been investigated by in-situ and ex-situ characterizations, and fast kinetics properties are observed. Microphase separated morphologies after the DOTs or OOTs are dictated by the composition of neat di-BCPs and the mole ratio between the alkyne and azide groups. The DOTs of PEO-b-P(nBMA-r-PgMA) di-BCPs induced by alkyne/azide click chemistry have also been achieved in thin film geometries, with comparable kinetics to bulk samples. The orientation of the microdomains is dependent on the grafting density of Rhodamine B structure as well as film thickness. At higher grafting densities

  12. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    Science.gov (United States)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  13. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are industrially important copolymers often called Pluronics or Poloxamers. EPE copolymers form micelles with a core of P blocks and different micellar shapes depending on block leng...

  14. Copolymers For Capillary Gel Electrophoresis

    Science.gov (United States)

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  15. Cellular Interactions and Biocompatibility of Self-Assembling Diblock Polypeptide Hydrogels

    Science.gov (United States)

    Pakstis, Lisa; Ozbas, Bulent; Pochan, Darrin; Robinson, Clifford; Nowak, Andrew; Deming, Timothy

    2002-03-01

    Self-assembling peptide based hydrogels having a unique nano- and microscopic morphology are being studied for potential use as tissue engineering scaffolds. Low molecular weight ( ~20 kg/mol), amphiphilic, diblock polypeptides of hydrophilic lysine (K) or glutamic acid (E) and hydrophobic leucine (L) or valine (V) form hydrogels in aqueous solution at neutral pH and at very low volume fraction of polymer (vol. fraction polypeptide >=0.5 wt%). The morphology of these hydrogels has been characterized using laser confocal microscopy (LCM), small angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryoTEM) imaging. Studies of the interactions of the hydrogels with bacterial and mammalian cells reveal that these materials are non-cytotoxic and biocompatible. Hence, the chemistry of the assembled diblock polypeptides allows for cellular proliferation whereas the same chemistry in the homopolyeric form is cytotoxic. Current research is directed at the design and incorporation of binding sites within the polypeptide to specifically target interactions of the hydrogel with desired cells types.

  16. Effect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates

    Directory of Open Access Journals (Sweden)

    Ashish Punia

    2015-10-01

    Full Text Available Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol (PEG side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus than Escherichia coli (E. coli suggesting the deterring effect of S. aureus’ peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment.

  17. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  18. Synthesis, Characterization, and Flocculation Properties of Branched Cationic Polyacrylamide

    Directory of Open Access Journals (Sweden)

    Weimin Sun

    2013-01-01

    Full Text Available A water soluble branched cationic polyacrylamide (BCPAM was synthesized using solution polymerization. The polymerization was initiated using potassium diperiodatocuprate, K5[Cu(HIO62](Cu(III, initiating the self-condensing vinyl copolymerization of acrylamide and acryloxyethyltrimethyl ammonium chloride (DAC monomer. The resulting copolymer was characterized by the use of Fourier-transform infrared (FTIR spectroscopy and nuclear magnetic resonance (NMR spectroscopy. Its flocculation properties were evaluated with standard jar tests of sewage. The effects of initiator concentration, monomer concentration, reaction temperature, and the mass ratio of monomers on intrinsic viscosity and flocculation properties of the product were determined using single-factor experiments and orthogonal experiment.

  19. A NEW METHOD TO SYNTHESIZE THE CATIONIC GRAFT STARCH

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Bingyue Liu; Yafeng Cao

    2004-01-01

    The cationic graft copolymer was synthesized by reversed phase emulsion copolymerization of starch with diallydimethyl ammoniumlchlorid (DADMAC)and acrylamide (AM). The copolymerization was carried out using (NH4)2S2O8-NH2CONH2 redox as initiator and selecting Span-20 as emulsifier. The effects of emulsifier content in oil phase, volume ratio of oil to water, initiator concentration and mole ratio of DADMAC to AM on the graft copolymerization were discussed. The optimum condition of synthetics was found with the orthogonal test method.

  20. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon [Purdue

    2016-02-01

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.

  1. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    Science.gov (United States)

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  2. Polyether-polyester graft copolymer

    Science.gov (United States)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  3. Liquid ethylene-propylene copolymers

    Science.gov (United States)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  4. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate amphiphilic block copolymer using atom transfer radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Asymmetric and semi-symmetric amphiphilic diblock copolymers polystyrene-block-poly (dimethylaminoethyl methacrylate (PS-b-PDMAEMA with the same PS block length of 62 repeat units and quite short (3 repeat units or equivalent (47 repeat units length of PDMAEMA have been prepared simply by varying the ratio of the bromine-terminated macroinitiator polystyrene (PS-Br to DMAEMA using atom transfer radical polymerization (ATRP. The chemical structures and compositions of the PS-b-PDMAEMA block copolymers are studied by nuclear magnetic resonance (NMR spectroscopy, gel permeation chromatography (GPC, and elementary analysis (EA. The self-assembly behaviors of copolymers in N,N-dimethyl formamide (DMF with different pH and dioxane/water binary solvent mixture by direct dissolution method (DD, are studied by transmission electron microscopy (TEM, electron diffracting analysis (EDA, and energy-dispersive analysis of X-rays (EDAX techniques. Transmission electron microscopy results suggest that asymmetric block copolymer PS62-b-PDMAEMA3 (the numbers in the form of footnotes represent repeated units of each monomer in the copolymer can form spherical core-shell micelles, large compound reverse micelles (LCRMs, hexagonal/rhombic phases, reverse hexagonal/rhombic phases, vesicles, reverse vesicles and necklace-like reverse micelles, controlled by common or selective solvent and pH, while most of the aggregates of semi-symmetric PS62-b-PDMAEMA47 are simply spherical, such as spherical core-shell micelles and reverse spherical core-shell micelles, besides hexagonal/rhombic phases. All above structures are controlled by three components of the free energy of aggregation: core-chain stretching, interfacial energy and intercoronal chain interaction.

  5. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    Science.gov (United States)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  6. The sensitivity of random polymer brush-lamellar polystyrene-b-polymethylmethacrylate block copolymer systems to process conditions.

    Science.gov (United States)

    Borah, Dipu; Rasappa, Sozaraj; Senthamaraikannan, Ramsankar; Shaw, Matthew T; Holmes, Justin D; Morris, Michael A

    2013-03-01

    The use of random copolymer brushes (polystyrene-r-polymethylmethacrylate--PS-r-PMMA) to 'neutralise' substrate surfaces and ordain perpendicular orientation of the microphase separated lamellae in symmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymers (BCPs) is well known. However, less well known is how the brushes interact with both the substrate and the BCP, and how this might change during thermal processing. A detailed study of changes in these films for different brush and diblock PS-b-PMMA molecular weights is reported here. In general, self-assembly and pattern formation is altered little, and a range of brush molecular weights are seen to be effective. However, on extended anneal times, the microphase separated films can undergo dimension changes and loss of order. This process is not related to any complex microphase separation dynamics but rather a degradation of methacrylate components in the film. The data suggest that care must be taken in interpretation of structural changes in these systems as being due to BCP only effects.

  7. Hemin-block copolymer micelle as an artificial peroxidase and its applications in chromogenic detection and biocatalysis.

    Science.gov (United States)

    Qu, Rui; Shen, Liangliang; Chai, Zhihua; Jing, Chen; Zhang, Yufeng; An, Yingli; Shi, Linqi

    2014-01-01

    Following an inspiration from the fine structure of natural peroxidases, such as horseradish peroxidase (HRP), an artificial peroxidase was constructed through the self-assembly of diblock copolymers and hemin, which formed a functional micelle with peroxidase-like activity. The pyridine moiety in block copolymer poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG-b-P4VP) can coordinate with hemin, and thus hemin is present in a five-coordinate complex with an open site for binding substrates, which mimics the microenvironment of heme in natural peroxidases. The amphiphilic core-shell structure of the micelle and the coordination interaction of the polymer to the hemin inhibit the formation of hemin μ-oxo dimers, and thereby enhance the stability of hemin in the water phase. Hemin-micelles exhibited excellent catalytic performance in the oxidation of phenolic and azo compounds by H2O2. In comparison with natural peroxidases, hemin-micelles have higher catalytic activity and better stability over wide temperature and pH ranges. Hemin-micelles can be used as a detection system for H2O2 with chromogenic substrates, and they anticipate the possibility of constructing new biocatalysts tailored to specific functions.

  8. Stretch or contraction induced inversion of rectification in diblock molecular junctions.

    Science.gov (United States)

    Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui

    2013-09-01

    Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.

  9. The effects of contact configurations on the rectification of dipyrimidinyl-diphenyl diblock molecular junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Guang-Ping; Hu Gui-Chao; Li Zong-Liang; Wang Chuan-Kui

    2011-01-01

    The transport properties of a conjugated dipyrimidinyl-diphenyl diblock oligomer sandwiched between two gold electrodes,as recently reported by [Díez-Pérez et al.Nature Chem.1 635 (2009)],are theoretically investigated using the fully self-consistent nonequilibrium Green's function method combined with density functional theory.Two kinds of symmetrical anchoring geometries are considered.Calculated current-voltage curves show that the contact structure has a strong effect on the rectification behaviour of the molecular diode.For the equilateral triangle configuration,pronounced rectification behaviour comparable to the experimental measurement is revealed,and the theoretical analysis indicates that the observed rectification characteristic results from the asymmetric shift of the perturbed molecular energy levels under bias voltage.While for the tetrahedron configuration,both rectification and negative differential conductivity behaviours are observed.The calculated results further prove the close dependence of the transporting characteristics of molecular junctions on contact configuration.

  10. Volatile organic compound detection using nanostructured copolymers.

    Science.gov (United States)

    Li, Bo; Sauvé, Genevieve; Iovu, Mihaela C; Jeffries-El, Malika; Zhang, Rui; Cooper, Jessica; Santhanam, Suresh; Schultz, Lawrence; Revelli, Joseph C; Kusne, Aaron G; Kowalewski, Tomasz; Snyder, Jay L; Weiss, Lee E; Fedder, Gary K; McCullough, Richard D; Lambeth, David N

    2006-08-01

    Regioregular polythiophene-based conductive copolymers with highly crystalline nanostructures are shown to hold considerable promise as the active layer in volatile organic compound (VOC) chemresistor sensors. While the regioregular polythiophene polymer chain provides a charge conduction path, its chemical sensing selectivity and sensitivity can be altered either by incorporating a second polymer to form a block copolymer or by making a random copolymer of polythiophene with different alkyl side chains. The copolymers were exposed to a variety of VOC vapors, and the electrical conductivity of these copolymers increased or decreased depending upon the polymer composition and the specific analytes. Measurements were made at room temperature, and the responses were found to be fast and appeared to be completely reversible. Using various copolymers of polythiophene in a sensor array can provide much better discrimination to various analytes than existing solid state sensors. Our data strongly indicate that several sensing mechanisms are at play simultaneously, and we briefly discuss some of them.

  11. Shape memory rubber bands & supramolecular ionic copolymers

    Science.gov (United States)

    Brostowitz, Nicole

    subject covered in this dissertation is supra-molecular ionic copolymers. Supramolecular interactions are non-covalent; e.g. hydrogen bonding, ionic interactions, van der Waals forces. Supramolecular interactions in polymers can be used to tailor the thermo-mechanical properties by controlling bond association and dissociation. Recent research has focused on hydrogen bonded systems due to established synthesis mechanisms. Reversibility of the supramolecular interactions can be triggered by environmental changes. Ionic interactions would provide greater bond strength and more control over operating conditions. Research has been limited on ionic copolymers due to complicated synthesis methods needed to include functionalization. Low molecular weight polymers were synthesized by atom transfer radical polymerization with post polymerization conversion to phosphonium end-groups. Both polystyrene and poly(methyl acrylate) were investigated with similar reaction conditions. Chromatography measured the molecular weight and indicated a low polydispersity consistent with controlled reactions. Copolymers were formed by interfacial mixing of the cationic polymers with multifunctional, anionic oligomers. Oligomers containing sulfonate groups were used to create linear or three-dimensional polymer networks. NMR and rheology was used to characterize the presence and effect of ionic groups when compared to the neat polymer.

  12. Cocontinuous polymer blends: The role of block copolymer in blend morphology evolution

    Science.gov (United States)

    Bell, Joel Richard

    Cocontinuous morphologies are distinguished by the mutual interpenetration of two polymer phases and allow for enhanced mechanical properties, static charge dissipation, and barrier properties. Cocontinuous morphologies form over a range of compositions, depending largely on mixing history and the relative polymer viscosities, elasticities, and interfacial tension. Because cocontinuous morphologies are thermodynamically unstable, they will coarsen when held above their glass or melt transition temperature. Since the unique properties of these blends depend directly on the continuous nature of the microstructure and its phase size, stabilization of the cocontinuous morphology is extremely important. To address this challenge, compatibilizers, e.g. block copolymers (bcp), are often added to hinder phase coarsening in blends of immiscible polymers and can improve bonding at interfaces. The effects of bcp on the cocontinuous morphology of polystyrene (PS)/polyethylene (PE) and PS/poly(methyl methacrylate) (PMMA) blends were studied using scanning electron microscopy (SEM) with image analysis, 3D imaging, mercury porosimetry, solvent extraction, and rheology. It was shown that diblock copolymers were able to suppress coarsening during annealing in cocontinuous PS/PE and PS/PMMA blends. Bcp effectiveness was dependent on molecular weight, concentration, and architecture. Self consistent mean field theory and bending elasticity theory were used to estimate the proper bcp architecture for maximum reduction in interfacial tension; experimental results agreed well with the theory. In addition to slowing coarsening, bcp was shown to widen the range of cocontinuity for both the PS/PE and PS/PMMA systems. To aid determination of the range of cocontinuity, a new technique for analyzing SEM micrographs was developed. The new technique classifies blend morphology according to the normalized fraction of drops present in the 2D microstructure. It was found that a blend becomes

  13. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  14. Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems.

    Science.gov (United States)

    Jelezova, Ivelina; Drakalska, Elena; Momekova, Denitsa; Shalimova, Natalia; Momekov, Georgi; Konstantinov, Spiro; Rangelov, Stanislav; Pispas, Stergios

    2015-10-12

    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells.

  15. Confinement Effects on Watery Domains in Hydrated Block Copolymer Electrolyte Membranes

    Science.gov (United States)

    Park, Moon Jeong; Kim, Sung Yeon; Yeo, Joomi

    2011-03-01

    The morphology of a series of diblock copolymers comprising randomly sulfonated polystyrene (PSS) and polymethylbutylene (PMB) blocks equilibrated with humid air was determined by in- situ small angle neutron scattering (SANS). In-situ SANS data were collected over a wide angular range permitting the determination of the superstructure of the hydrophilic PSS-rich and hydrophobic PMB-rich domains and the substructure within the hydrophilic PSS-rich domains. When the characteristic length of the superstructure is larger than 10 nm, the hydrophilic PSS domains are heterogeneous with periodically arranged watery domains. The scattering signature of the watery domains is very similar to the well-established ``ionomer peak.'' This peak vanishes when the neutron scattering length density of the water (H2O/D2O mixture) is matched to that of the PSS block. The spacing between watery domains depends only on sulfonation level of the PSS block. When the characteristic length of the superstructure is less than 10 nm, the watery substructure disappears and homogeneous hydrated PSS-rich domains are obtained.

  16. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    Science.gov (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  17. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  18. Understanding and controlling morphology formation in Langmuir-Blodgett block copolymer films using PS-P4VP and PS-P4VP/PDP.

    Science.gov (United States)

    Perepichka, Iryna I; Lu, Qing; Badia, Antonella; Bazuin, C Geraldine

    2013-04-09

    This contribution offers a comprehensive understanding of the factors that govern the morphologies of Langmuir-Blodgett (LB) monolayers of amphiphilic diblock copolymers (BCs). This is achieved by a detailed investigation of a wide range of polystyrene-poly(4-vinyl pyridine) (PS-P4VP) block copolymers, in contrast to much more limited ranges in previous studies. Parameters that are varied include the block ratios (mainly for similar total molecular weights, occasionally other total molecular weights), the presence or not of 3-n-pentadecylphenol (PDP, usually equimolar with VP, with which it hydrogen bonds), the spreading solution concentration ("low" and "high"), and the LB technique (standard vs "solvent-assisted"). Our observations are compared with previously published results on other amphiphilic diblock copolymers, which had given rise to contradictory interpretations of morphology formation. Based on the accumulated results, we re-establish early literature conclusions that three main categories of LB block copolymer morphologies are obtained depending on the block ratio, termed planar, strand, and dot regimes. The block composition boundaries in terms of mol % block content are shown to be similar for all BCs having alkyl chain substituents on the hydrophilic block (such as PS-P4VP/PDP) and are shifted to higher values for BCs with no alkyl chain substituents (such as PS-P4VP). This is attributed to the higher surface area per repeat unit of the hydrophilic block monolayer on the water surface for the former, as supported by the onset and limiting areas of the Langmuir isotherms for the BCs in the dot regime. 2D phase diagrams are discussed in terms of relative effective surface areas of the two blocks. We identify and discuss how kinetic effects on morphology formation, which have been highlighted in more recent literature, are superposed on the compositional effects. The kinetic effects are shown to depend on the morphology regime, most strongly

  19. Novel rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization.

    Science.gov (United States)

    Andjelkovic, Dejan D; Larock, Richard C

    2006-03-01

    Novel thermosetting copolymers, ranging from tough and ductile to very soft rubbers, have been prepared by the cationic copolymerization of regular (SOY) and 100% conjugated soybean oils (C(100)SOY) with dicyclopentadiene (DCP) catalyzed by Norway fish oil (NFO)-modified and SOY- and C(100)SOY-diluted boron trifluoride diethyl etherate (BFE). The gelation time of the reactions varies from 4 to 991 min at 110 degrees C. The yields of the bulk copolymers are essentially quantitative, while the yields of the cross-linked copolymers remaining after Soxhlet extraction with methylene chloride range from 69% to 88%, depending on the monomer stoichiometry and the catalyst used. (1)H NMR spectroscopy and Soxhlet extraction data indicate that these copolymers consist of a cross-linked soybean oil-DCP network plasticized by certain amounts of methylene chloride-soluble linear or less cross-linked soybean oil-DCP copolymers, unreacted oil, and some low molecular weight hydrolyzed oil. The molecular weights of these soluble fractions are in the range from 400 to 10,000 g/mol based on polystyrene standards. The bulk copolymers have glass transition temperatures ranging from -22.6 to 56.6 degrees C, while their tan delta peak values range from 0.7 to 1.2. Thermogravimetric analysis (TGA) indicates that these soybean oil-DCP copolymers are thermally stable below 200 degrees C, with 10% and 50% weight loss temperatures ranging from 280 to 372 degrees C and 470-554 degrees C, respectively. These properties suggest that these biobased thermosets may prove useful alternatives to current petroleum-based plastics and find widespread utility.

  20. Drug targeting to tumors using HPMA copolymers

    NARCIS (Netherlands)

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Re

  1. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems ...

  2. Micellization and Characterization of Block Copolymer Detergents

    DEFF Research Database (Denmark)

    Hvidt, Søren

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are used widely in industry as emulsifiers, anti-foaming agents, and in delayed drug release. EPE copolymers form micelles with a core of P blocks and different micellar shapes depen...

  3. STUDY ON POLYSULFONE-POLYESTER BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    DING Youjun; QI Daquan

    1988-01-01

    Synthesis and characterization of a series of Polysulfone (PSF)-Polyester (PEs) block copolymers were studied.The degree of randomness (B) of these block copolymers was calculated from the intensities of their proton signals in 1H NMR spectra and lies in the region of 0 < B < 1. It was shown that the degree of randomness (B) and the average sequence length (L) in block copolymers were relatively dependent on the reaction conditions, various feed ratios and structure of diols.The phenomenon was observed, when the PSF-PEs block copolymers dissolved in different solvents they had different viscosities and molecular conformations.The PSF-PEs block copolymers had better solvent resistance than homo-polysulfone.

  4. Synthesis of block copolymers derived from N-trityl-(S)-serine and pyrene end-labeled poly(methyl methacrylate) or poly(N-isopropylacrylamide) via ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania); Podasca, Viorica; Buruiana, Tinca [Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley 700487, Iasi (Romania)

    2012-10-15

    A new monomer bearing N-trityl-L-serine methyl ester in structure, methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (MTS), was prepared to be further polymerized by atom transfer radical polymerization (ATRP) with pyrene-endcapped poly(methyl methacrylate) (Py-PMMA-Br) or poly(N-isopropylacrylamide) (Py-PNIPA-Br). The resulting block copolymers, poly(methyl methacrylate-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine) (Py-PMMA-b-PMTS) and poly(N-isopropylacrylamide-block-methacryloyloxyethyl carbamoyloxy-N-trityl methyl serine (Py-PNIPA-b-PMTS) were characterized by {sup 1}H ({sup 13}C) NMR, ultraviolet, FTIR and fluorescence spectroscopy, thermal analysis, differential scanning calorimetry (DSC), atomic force microscopy (AFM), scanning electron microscopy (SEM), and gel permeation chromatography (GPC) measurements. The chemical composition in Py-PMMA-b-PMTS was estimated from the {sup 1}H NMR analysis that indicated a ratio of the repeating units of 46:19 (MMA:MTS). For the Py-PNIPA-b-PMTS the composition rate in the copolymer was 61:25 (NIPA:MTS). Quenching of the pyrene species with N,N-diethylaniline, nitrobenzene, nitrophenol, potassium iodide, p-nitrotoluene and tetracyanoquinodimethane (TCNQ) in DMF solution excited at 348 nm was evidenced, more efficiently being nitrophenol and TCNQ. In this case, the monomer emission at 388-409 nm underwent a significant decrease caused of an electron transfer from the electron-reach photoexcited pyrene molecule to the electron-deficient quenchers. - Highlights: Black-Right-Pointing-Pointer Diblock copolymers combine the fluorescence of pyrene-PMMA (PNIPA) with the characteristics of PMTS. Black-Right-Pointing-Pointer Such copolymers could be used for nitroderivatives detecting. Black-Right-Pointing-Pointer UV/vis and fluorescence measurements give a good correlation for LCST of Py-PNIPA-Br.

  5. INTERACTIONS BETWEEN CATIONIC POLYELECTROLYTE AND PULP FINES

    Directory of Open Access Journals (Sweden)

    Elina Orblin

    2011-05-01

    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  6. Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay

    Science.gov (United States)

    Kim, Sang-Kyum; Kwen, Hai-Doo; Choi, Seong-Ho

    2012-05-01

    Vinyl copolymer-clay nanocomposites were prepared by γ-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer-clay nanocomposites.

  7. Rapid self-assembly of block copolymers to photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  8. Preparation of amphiphilic block copolymer containing triazene moieties and fluorescence study

    Indian Academy of Sciences (India)

    Emil C Buruiana; Andreea L Chibac; Violeta Melinte; Tinca Buruiana

    2013-01-01

    The present study describes the synthesis via microwave accelerated reversible additionfragmentation chain transfer (RAFT) polymerization of an amphiphilic block copolymer poly(acrylic acid)-b-poly(dodecylacrylamide-co-1-(phenyl)-3-(2-methacryloyloxyethyl carbamoyloxyethyl)-3-methyltriazene-1) [PAA-b-(PDA-co-PUMA-T)]. The structure and the chemical composition of the block copolymer were confirmed by spectral/thermal analysis. The photoreactivity of the triazene sequences from PAA-b-(PDA-co-PUMA-T) was quantified by UV/vis irradiation in chloroform/dimethylformamide solutions and in thin film, indicating that the solvent polarity modifies with an order of magnitude the rate constant values. The lower rate constant in film state (film = 1.3 × 10−3 s-1), shows that the higher mobility of polymeric chains in solution allow a more rapid orientation, favourable to the triazene bond cleavage. The capability of block copolymer to form micelles in aqueous environment and implicitly, its critical micelle concentration (CMC) was evidenced through fluorescence measurements using pyrene probe (10-6 M), the CMC value being of 4.64 × 10−3 g L-1 PAA--(PDA--PUMA-T) (3.27 × 10−7 M). Experiments of fluorescence quenching with various metal cations (UO$^{2+}_{2}$, Fe2+, Fe3+, Ni2+, Cu2+, Co2+, Pb2+ and Hg2+) suggested that such a block copolymer could find applications as fluorescence-based chemosensor for the detection of iron cations in homogeneous organic solutions or aqueous environments by thin films.

  9. NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Guojun Liu

    2000-01-01

    Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, selfassembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films with nanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisopreneblock-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass fraction of 20% relative to the triblock or the total PtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrix of PCEMA and PI. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannels were formed by extracting out hPtBA with solvent. Alternatively, larger channels were obtained from extracting out hPtBA and hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeability constants ~6 orders of magnitude higher than that of low-density polyethylene films.

  10. Synthesis of ABA Tri-Block Co-Polymer Magnetopolymersomes via Electroporation for Potential Medical Application

    Directory of Open Access Journals (Sweden)

    Jennifer Bain

    2015-12-01

    Full Text Available The ABA tri-block copolymer poly(2-methyloxazoline–poly(dimethylsiloxane–poly(2-methyloxazoline (PMOXA–PDMS–PMOXA is known for its capacity to mimic a bilayer membrane in that it is able to form vesicular polymersome structures. For this reason, it is the subject of extensive research and enables the development of more robust, adaptable and biocompatible alternatives to natural liposomes for biomedical applications. However, the poor solubility of this polymer renders published methods for forming vesicles unreproducible, hindering research and development of these polymersomes. Here we present an adapted, simpler method for the production of PMOXA–PDMS–PMOXA polymersomes of a narrow polydispersity (45 ± 5.8 nm, via slow addition of aqueous solution to a new solvent/polymer mixture. We then magnetically functionalise these polymersomes to form magnetopolymersomes via in situ precipitation of iron-oxide magnetic nanoparticles (MNPs within the PMOXA–PDMS–PMOXA polymersome core and membrane. This is achieved using electroporation to open pores within the membrane and to activate the formation of MNPs. The thick PMOXA–PDMS–PMOXA membrane is well known to be relatively non-permeable when compared to more commonly used di-block polymer membranes due a distinct difference in both size and chemistry and therefore very difficult to penetrate using standard biological methods. This paper presents for the first time the application of electroporation to an ABA tri-block polymersome membrane (PMOXA–PDMS–PMOXA for intravesicular in situ precipitation of uniform MNPs (2.6 ± 0.5 nm. The electroporation process facilitates the transport of MNP reactants across the membrane yielding in situ precipitation of MNPs. Further to differences in length and chemistry, a tri-block polymersome membrane structure differs from a natural lipid or di-block polymer membrane and as such the application and effects of electroporation on this type of

  11. Coarse Grained Simulation of Lipid Membrane and Triblock Copolymers

    Science.gov (United States)

    Hatakeyama, Masaomi; Faller, Roland

    2008-02-01

    We investigated the interaction between DPPC (Dipalmitoyl phosphatidylcholine) bilayer and polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock copolymers using coarse grained simulation. We simulated two systems of DPPC bilayer and PEO-PPO-PEO triblock copolymer containing different mole fractions, and simulated DPPC vesicle with the copolymers. We found different adsorption mechanisms of triblock copolymers depending on concentration. And we also observed docking process between a lipid vesicle and a micelle of the copolymers.

  12. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  13. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers.

    Science.gov (United States)

    Dohm, Michelle T; Mowery, Brendan P; Czyzewski, Ann M; Stahl, Shannon S; Gellman, Samuel H; Barron, Annelise E

    2010-06-16

    Non-natural oligomers have recently shown promise as functional analogues of lung surfactant proteins B and C (SP-B and SP-C), two helical and amphiphilic proteins that are critical for normal respiration. The generation of non-natural mimics of SP-B and SP-C has previously been restricted to step-by-step, sequence-specific synthesis, which results in discrete oligomers that are intended to manifest specific structural attributes. Here we present an alternative approach to SP-B mimicry that is based on sequence-random copolymers containing cationic and lipophilic subunits. These materials, members of the nylon-3 family, are prepared by ring-opening polymerization of beta-lactams. The best of the nylon-3 polymers display promising in vitro surfactant activities in a mixed lipid film. Pulsating bubble surfactometry data indicate that films containing the most surface-active polymers attain adsorptive and dynamic-cycling properties that surpass those of discrete peptides intended to mimic SP-B. Attachment of an N-terminal octadecanoyl unit to the nylon-3 copolymers, inspired by the post-translational modifications found in SP-C, affords further improvements by reducing the percent surface area compression to reach low minimum surface tension. Cytotoxic effects of the copolymers are diminished relative to that of an SP-B-derived peptide and a peptoid-based mimic. The current study provides evidence that sequence-random copolymers can mimic the in vitro surface-active behavior of lung surfactant proteins in a mixed lipid film. These findings raise the possibility that random copolymers might be useful for developing a lung surfactant replacement, which is an attractive prospect given that such polymers are easier to prepare than are sequence-specific oligomers.

  14. Injectible bodily prosthetics employing methacrylic copolymer gels

    Science.gov (United States)

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  15. Temperature and pressure dependence of the order parameter fluctuations, conformational compressibility, and the phase diagram of the PEP-PDMS diblock copolymer

    DEFF Research Database (Denmark)

    Schwahn, D.; Frielinghaus, H.; Mortensen, K.;

    1996-01-01

    . The phase boundary shows an unusual shape. With increasing pressure it first decreases and then increases. Its origin is an increase, respectively, of the entropic and of the enthalpic part of the Flory-Huggins interaction parameter. The Ginzburg parameter describing the limit of the mean...

  16. Influence of diblock copolymer PCL-mPEG and of various iodinated oils on the formulation by the emulsion-solvent diffusion process of radiopaque polymeric nanoparticles.

    Science.gov (United States)

    Hallouard, François; Briançon, Stéphanie; Anton, Nicolas; Li, Xiang; Vandamme, Thierry; Fessi, Hatem

    2013-11-01

    This pioneer study in the domain of blood pool contrast media formulation presents the influence of poly-ɛ-caprolactone-monomethoxy poly(ethylene glycol) (PCL-mPEG) and oils on the formulation of polymeric nanoparticles by emulsion-solvent diffusion. The nature of the oil used had no influence on the encapsulation rate, even if particles were formulated with a mix of PCL/PCL-mPEG. It did, however, influence the particle size and polydispersity, with macroglycerides appearing to be the lipid structure best suited to obtain the smallest monodisperse particles. When we used PCL-mPEG to form a PEG-hydrated layer to surround the nanoparticles, its tension active property had a favorable effect on particle size and polydispersity. We also showed the strong deleterious effect on particle size and polydispersity when the polymer proportion was increased to over 1% (w/v) in the pre-emulsion organic phase. Conversely, increasing the oil proportion in this organic phase simply resulted in a slight to insignificant deleterious effect on size and polydispersity, enabling the oil proportion to be enhanced up to 3% (w/v). Finally, we showed the favorable combined effect of oil iodination and the presence of PCL-mPEG on particles formulated by emulsion-solvent diffusion leading to the preparation of smaller polymeric iodine-containing particles.

  17. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA–PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery

    Directory of Open Access Journals (Sweden)

    Vega E

    2012-03-01

    Full Text Available Estefanía Vega1, M Antònia Egea1, Ana Cristina Calpena2, Marta Espina1, M Luisa García11Department of Physical Chemistry, 2Department of Biopharmacy and Pharmaceutical Technology, Institute of Nanoscience and Nanotechnology, Faculty of Pharmacy, University of Barcelona, Barcelona, SpainAbstract: Poly(D,L-lactide-co-glycolide and poly(D,L-lactide-co-glycolide with poly(ethylene glycol nanospheres (NSs incorporating flurbiprofen (FB were freeze-dried with several cryoprotective agents and sterilized by γ-irradiation. Only when 5.0% (w/v hydroxypropyl-β-cyclodextrin (HPβCD was used, a complete resuspension by manual shaking and almost identical particle size of the NSs was obtained after freeze-drying. In vitro drug release and ex vivo corneal permeation of NSs with and without HPβCD were evaluated. The presence of HPβCD resulted in a reduction of burst effect, providing a more sustained release of the drug. A significant decrease in the FB transcorneal permeation of NSs containing HPβCD was obtained, related to the slower diffusion of FB observed in the in vitro results. The uptake mechanism of the NSs was examined by confocal microscopy, suggesting that NSs penetrate corneal epithelium through a transcellular pathway. Ocular tolerance was assessed in vitro and in vivo by the Eytex™ and Draize test, respectively. Long-term stability studies revealed that γ-irradiated NSs stored as freeze-dried powders maintained their initial characteristics. Stability studies of the resuspended NSs after 3 months of storage in the aqueous form showed that NSs were stable at 4°C, while formulations stored at 25°C and 40°C increased their initial particle size.Keywords: nanospheres, poly(D,L-lactide-co-glycolide, poly(ethylene glycol, hydroxypropyl-β-cyclodextrin, freeze-drying, γ-irradiation 

  18. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA–PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery

    Science.gov (United States)

    Vega, Estefanía; Egea, M Antònia; Calpena, Ana Cristina; Espina, Marta; García, M Luisa

    2012-01-01

    Poly(D,L-lactide-co-glycolide) and poly(D,L-lactide-co-glycolide) with poly(ethylene glycol) nanospheres (NSs) incorporating flurbiprofen (FB) were freeze-dried with several cryoprotective agents and sterilized by γ-irradiation. Only when 5.0% (w/v) hydroxypropyl-β-cyclodextrin (HPβCD) was used, a complete resuspension by manual shaking and almost identical particle size of the NSs was obtained after freeze-drying. In vitro drug release and ex vivo corneal permeation of NSs with and without HPβCD were evaluated. The presence of HPβCD resulted in a reduction of burst effect, providing a more sustained release of the drug. A significant decrease in the FB transcorneal permeation of NSs containing HPβCD was obtained, related to the slower diffusion of FB observed in the in vitro results. The uptake mechanism of the NSs was examined by confocal microscopy, suggesting that NSs penetrate corneal epithelium through a transcellular pathway. Ocular tolerance was assessed in vitro and in vivo by the Eytex™ and Draize test, respectively. Long-term stability studies revealed that γ-irradiated NSs stored as freeze-dried powders maintained their initial characteristics. Stability studies of the resuspended NSs after 3 months of storage in the aqueous form showed that NSs were stable at 4°C, while formulations stored at 25°C and 40°C increased their initial particle size. PMID:22457594

  19. Interplay between solid state transitions, conductivity mechanisms, and electrical relaxations in a [PVBTMA] [Br]-b-PMB diblock copolymer membrane for electrochemical applications.

    Science.gov (United States)

    Di Noto, Vito; Giffin, Guinevere A; Vezzù, Keti; Nawn, Graeme; Bertasi, Federico; Tsai, Tsung-han; Maes, Ashley M; Seifert, Soenke; Coughlin, E Bryan; Herring, Andrew M

    2015-12-14

    Understanding the structure-property relationships and the phenomena responsible for ion conduction is one of the keys in the design of novel ionomers with improved properties. In this report, the morphology and the mechanism of ion exchange in a model anion exchange membrane (AEM), poly(vinyl benzyl trimethyl ammonium bromide)-block-poly(methylbutylene) ([PVBTMA][Br]-b-PMB), is investigated with small angle X-ray scattering, high-resolution thermogravimetry, modulated differential scanning calorimetry, dynamic mechanical analysis, and broadband electrical spectroscopy. The hyper-morphology of the material consists of hydrophilic domains characterized by stacked sides of [PVBTMA][Br] which are sandwiched between "spaghetti-like" hydrophobic cylindrical parallel domains of the PMB block. The most important interactions in the hydrophilic domains occur between the dipoles of ammonium bromide ion pairs in the side chains of adjacent chains. A reordering of the ion pair dipoles is responsible for a disorder-order transition (Tδ) at high temperature, observed here for the first time in AEMs, which results in a dramatic decrease of the ionic conductivity. The overall mechanism of long range charge transfer, deduced from a congruent picture of all of the results, involves two distinct ion conduction pathways. In these pathways, hydration and the motion of the ionic side groups are crucial to the conductivity of the AEM. Unlike the typical perfluorinated sulfonated proton-conducting polymer, the segmental motion of the backbone is negligible.

  20. Testing the Vesicular Morphology to Destruction : Birth and Death of Diblock Copolymer Vesicles Prepared via Polymerization-Induced Self-Assembly

    NARCIS (Netherlands)

    Warren, Nicholas J.; Mykhaylyk, Oleksandr O.; Ryan, Anthony J.; Williams, Mark; Doussineau, Tristan; Dugourd, Philippe; Antoine, Rodolphe; Portale, Giuseppe; Armes, Steven P.

    2015-01-01

    Small angle X-ray scattering (SAXS), electrospray ionization charge detection mass spectrometry (CD-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) are used to characterize poly(glycerol monomethacrylate)(55)-poly(2-hydroxypropyl methacrylate)(x) (G(55)-H-x) vesicles

  1. Fluorinated ethylene propylene copolymer coating for the stability enhancement of electroactive and photoactive systems

    Science.gov (United States)

    Zhao, Luping; Neoh, K. G.; Zhang, Yan; Kang, E. T.

    2003-11-01

    The effectiveness of radio frequency sputtered fluorinated ethylene propylene copolymer (FEP) for the stability enhancement of electroactive and photoactive systems was investigated. Two kinds of electroactive polymer systems, polyaniline (PANI) coated low density polyethylene (LDPE) film and PANI-viologen assembly, were tested. In both cases, a sputtered FEP coating of coating of 40-50 nm in thickness. The deposition of a FEP coating on the photoactive viologen system (viologen grafted on LDPE film) prolonged its photochromic effect by inhibiting the diffusion of oxygen, and hence the reoxidation of the highly colored viologen radical cations to the dication state.

  2. Recyclable magnetic nanocluster crosslinked with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) copolymer for adsorption with antibody.

    Science.gov (United States)

    Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha

    2016-10-01

    Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications.

  3. Surface films of short fluorocarbon-hydrocarbon diblocks studied by molecular dynamics simulations: Spontaneous formation of elongated hemimicelles.

    Science.gov (United States)

    Piñeiro, Angel; Prieto, Gerardo; Ruso, Juan M; Verdes, Pedro V; Sarmiento, Félix

    2009-01-15

    Using grazing incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy (AFM) it has been recently demonstrated that linear fluorocarbon-hydrocarbon diblocks (FnHm) self-assemble in water/air interfaces forming elongated and circular hemimicelles. Those structures have been observed for diblocks with at least eight fluorinated carbons. Based on the lack of a collapse pressure for F6H16, and due to the fact that no stable surface pressure values are reached under compression, it has been concluded that these molecules do not form stable monolayers. It has been also suggested that F6H16 and shorter diblocks desorb from the water surface under compression. It is not easy to accept that a significant concentration of so hydrophobic molecules can be stable in aqueous solution even when the employed experimental techniques were not able to clearly detect a well defined structure on the interface. In the present work the adsorption and arrangement of F6H16 and F6H10 at the water surface are studied by molecular dynamics (MD) simulations as a function of the available area per molecule. Starting from a random mixture, the spontaneous formation of elongated hemimicelles is observed for both systems when the area per molecule is higher than approximately 50 A(2). For intermediate areas two pseudo-phases, one rich in hydrocarbons and the other with higher fluorocarbon concentration, are formed. For the systems with less than approximately 30 A(2) available per molecule the formation of multilayers is observed. This is the first time that the dynamics and structure of perfluoroalkane (PFA) films, and in particular of hemimicelles on a liquid surface, are observed and characterized at atomic level.

  4. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...... to evaluate the influence of the compatibility between gel and filler. Time-resolved SANS and small-angle X-ray scattering (SAXS) shows that the presence of silica particles affects the ordering of the polystyrene domains during gelsetting. The scattering pattern of silica-reinforced gels reveals strong...... a viscoclastic rubber to a plastic fluid and from a plastic fluid to a viscoelastic liquid are shifted to more elevated temperatures when silica is added to the triblock copolymer gel. (C) 2004 Elsevier Ltd. All rights reserved....

  5. Photoinitiated Polymerization of Cationic Acrylamide in Aqueous Solution: Synthesis, Characterization, and Sludge Dewatering Performance

    Directory of Open Access Journals (Sweden)

    Huaili Zheng

    2014-01-01

    Full Text Available A copolymer of acrylamide (AM with acryloyloxyethyl trimethyl ammonium chloride (DAC as the cationic monomer was synthesized under the irradiation of high-pressure mercury lamp with 2,2-azobis(2-amidinopropane dihydrochloride (V-50 as the photoinitiator. The compositions of the photoinduced copolymer were characterized by Fourier transform infrared spectra (FTIR, ultraviolet spectra (UV, and scanning electron microscope (SEM. The effects of 6 important factors, that is, photo-initiators concentration, monomers concentration, CO(NH22 (urea concentrations, pH value, mass ratio of AM to DAC, and irradiation time on the molecular weight and dissolving time, were investigated. The optimal reaction conditions were that the photo-initiators concentration was 0.3%, monomers concentration was 30 wt.%, irradiation time was 60 min, urea concentration was 0.4%, pH value was 5.0, and mass ratio of AM to DAC was 6 : 4. Its flocculation properties were evaluated with activated sludge using jar test. The zeta potential of supernatant at different cationic monomer contents was simultaneously measured. The results demonstrated the superiority of the copolymer over the commercial polyacrylamide as a flocculant.

  6. Drug targeting to tumors using HPMA copolymers

    OpenAIRE

    Lammers, T.G.G.M.

    2009-01-01

    Copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) are prototypic and well-characterized polymeric drug carriers that have been broadly implemented in the delivery of anticancer agents. HPMA copolymers circulate for prolonged periods of time, and by means of the Enhance Permeability and Retention (EPR) effect, they localize to tumors both effectively and selectively. As a consequence, the concentrations of attached active agents in tumors can be increased, and their accumulation in ...

  7. Silicone containing copolymers: Synthesis, properties and applications

    OpenAIRE

    Yılgör, Emel; Yılgör, İskender

    2013-01-01

    Accepted Manuscript Title: Silicone containing copolymers: Synthesis, properties and applications Author: Emel Yilgor Iskender Yilgor PII: S0079-6700(13)00141-X DOI: http://dx.doi.org/doi:10.1016/j.progpolymsci.2013.11.003 Reference: JPPS 848 To appear in: Progress in Polymer Science Received date: 1-8-2013 Revised date: 4-11-2013 Accepted date: 8-11-2013 Please cite this article as: Yilgor E, Yilgor I, Silicone containing copolymers: Synthesis, properties ...

  8. Responsive Copolymers for Enhanced Petroleum Recovery

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  9. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    Science.gov (United States)

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size 80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  10. "Schizophrenic"嵌段共聚物多重胶束化的研究%Schizophrenic Micellization of Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    张晓晖; 艾长军; 马敬红; 徐坚

    2011-01-01

    The schizophrenic micellization of block copolymers who can self-assembled into well-defined structures in aqueous solution in response to specific stimuli such as temperature, pH, ionic strength and light has draw much attention due to the attractive protential applications. A typical case in this new sub-field involved environmental-sensitive AB diblock copolymer synthesized by group transfer polymerization (GTP) or living radical polymerisation (ATRP or RAFT), allowing the formation of two distinct types of micelle structures ( A-core / Bcorona and B-core / A-corona structures) in response to external stimuli and the two structures can be reversibly converted into each other. This remarkable property was introduced by Armes and coworkers for ‘ smart' pHdependent micelles of poly [ 2- (diethylamino) ethyl methacrylate ] -block- poly [ 2- (N-morpholino) ethyl methacrylate]. Recent progress in synthesis and environmental-induced schizophrenic micellization of block copolymers,the morphology of aggregations self-assembled from schizophrenic block copolymers and fixed structure of micelles by crosslinker have been reviewed. Technical problems in synthesis and characterization of schizophrenic micellization are also discussed, including 1H-NMR spectra, zeta potential, light scattering, transmittance of the solution and stopped-flow spectrophotometric techniques. Furthermore, the problems in schizophrenic micellization those still should be resolved are pointed out ,and the direction of this research field is discussed.%在不同环境刺激下自组装形成多重胶束的"schizophrenic"嵌段共聚物由于诱人的潜在应用而引起广泛的关注.本文综述了各种刺激诱导形成多重胶束的"schizophrenic"嵌段共聚物研究情况,介绍了多重胶束化不同形态的影响因素和胶束稳定方面的进展.并对"schizophrenic"嵌段共聚物的合成与表征技巧进行了总结,最后讨论了当前研究中仍需解决的问题,并对其应用前景做了展望.

  11. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, September 22, 1993--December 22, 1993

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1993-12-31

    Synthetic efforts have focused on the development of ionically modified polymers based on monomers which contain an acrylamido functionality. The monomers may possess either cationic or anionic functionality which, depending on the pH of the polymer solution, may either be ionically charged or neutral. Thus, by adjusting the pH, the degree of ionization of the polymer may be controlled which will in turn influence the rheological behavior. Previous research in our laboratories has revealed that this behavior allows the selective synthesis of polymers operative over a wide range of conditions. This section describes the synthesis and solution behavior of cationic polyelectrolytes based on copolymers of acrylamide (AM) and 2-acrylamido-2-methylpropanetrimethylammonium chloride (AMPTAC), the ATAM series, as well as ampholytic terpolymers of acrylamide (AM), sodium 3-acrylamido-3-methylbutanoate (NaAMB), and 2-acrylamido-2-methylpropanetrimethylammonium chloride (AMPTAC), the ATABAM series. Monomers used in the ATAM and ATABAM series are shown.

  12. Cationic Ring Opening Copolymerization of 1,3-Dioxolane with Styrene by Montmorillonite Maghnite-H+Catalyst

    OpenAIRE

    Nabil Hamam; Mohammed Issam Ferrahi; Mohammed Belbachir

    2016-01-01

    In the present work, the copolymerization of 1,3-Dioxolane (DXL) with Styrene (St) catalyzed by Maghnite-H+ a montmorillonite sheet silicate clay exchanged with protons, was investigated. The cationic ring opening polymerization was initiated by Maghnite-H+ in bulk. The copolymer obtained was characterized by 1H-NMR, DSC and IR spectroscopy. The studies done, such as the effect of the amount of catalyser on the syntheses of poly (DXL -co- Styrene).

  13. Cationic Ring Opening Copolymerization of 1,3-Dioxolane with Styrene by Montmorillonite Maghnite-H+Catalyst

    Directory of Open Access Journals (Sweden)

    Nabil Hamam

    2016-06-01

    Full Text Available In the present work, the copolymerization of 1,3-Dioxolane (DXL with Styrene (St catalyzed by Maghnite-H+ a montmorillonite sheet silicate clay exchanged with protons, was investigated. The cationic ring opening polymerization was initiated by Maghnite-H+ in bulk. The copolymer obtained was characterized by 1H-NMR, DSC and IR spectroscopy. The studies done, such as the effect of the amount of catalyser on the syntheses of poly (DXL -co- Styrene.

  14. Polyhydroxyalkanoate copolymers from forest biomass.

    Science.gov (United States)

    Keenan, Thomas M; Nakas, James P; Tanenbaum, Stuart W

    2006-07-01

    The potential for the use of woody biomass in poly-beta-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, Mv) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (Tm) and glass transition temperature (Tg) decreased as a function of 3HVcontent, with Tm demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w

  15. Characterization of solution structure and its importance in thin film ordering of conjugated block copolymers for organic semiconductor devices

    Science.gov (United States)

    Brady, Michael; Ku, Sung-Yu; Cochran, Justin; Wang, Cheng; Hawker, Craig; Kramer, Edward; Chabinyc, Michael

    2014-03-01

    Fully conjugated diblock copolymers (CBCPs) form intriguing materials alternatives to polymer-small molecule blends for their control of mesoscopic order in low-cost organic semiconductor devices. In both bulk heterojunction (BHJ) photovoltaics, consisting of an interpenetrating network with high donor-acceptor interfacial area, and ambipolar transistors, the transport of charge carriers through continuous p- and n-type paths in thin films is a controlling factor in device performance. AFM, GIWAXS, NEXAFS spectroscopy, and RSoXS are used to probe the structure of films of CBCPs with a p-type P3HT block and an n-type DPP block. Thermal annealing in the P3HT melt after casting creates ordered domains with ~ 50 nm in-plane lamellar spacings, as confirmed with GISAXS and RSoXS. GIWAXS diffraction from the (h00) alkyl-stacking and (010) pi-stacking planes shows primarily edge-on orientation for crystals of both P3HT and DPP blocks. In addition, temperature-dependent solution SAXS and UV-Vis spectroscopy are used to probe the size and conformation of casting solution aggregates. Fibrillar DPP aggregates direct the crystallization of P3HT- b-DPP following film casting and enable the formation of wormlike domains after annealing and thus ideal morphologies for transport in organic devices.

  16. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.

    Science.gov (United States)

    Lipik, Vitali T; Kong, Jen Fong; Chattopadhyay, Sujay; Widjaja, Leonardus K; Liow, Sing S; Venkatraman, Subbu S; Abadie, Marc J M

    2010-11-01

    Although biodegradable polymers have found extensive application in medical devices, there are very few commercially available elastomeric biodegradable polymers. In this work, starting with the well-known monomers L-lactide and ε-caprolactone, we developed elastomers using a multiblock co-polymer approach. This ensures that the degradation products of such elastomers are also acceptable from a cytotoxicity standpoint. A series of polymers with various structures was synthesized utilizing a design of experiment approach. The basic structure is that of a diblock, with each block being modified by the addition of co-monomer. The synthesized polymers exhibited a range of mechanical properties from a typical thermoplastic polymer to that approaching a good thermoplastic elastomer. 13C nuclear magnetic resonance analysis, size exclusion chromatography and differential scanning calorimetry measurements have been utilized to relate the observed range of mechanical properties to the structure. In addition, the elastomeric nature has been established with the use of creep and recovery measurements. Such elastomers may find a variety of biomedical applications, ranging from stent coatings to atrial septal defect occluders.

  17. Molecular weight determination of block copolymers by pulsed gradient spin echo NMR.

    Science.gov (United States)

    Barrère, Caroline; Mazarin, Michaël; Giordanengo, Rémi; Phan, Trang N T; Thévand, André; Viel, Stéphane; Charles, Laurence

    2009-10-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is the technique of choice to achieve molecular weight data for synthetic polymers. Because the success of a MALDI-MS analysis critically depends on a proper matrix and cation selection, which in turn relates closely to the polymer chemical nature and size, prior estimation of the polymer size range strongly helps in rationalizing MALDI sample preparation. We recently showed how pulsed gradient spin echo (PGSE) nuclear magnetic resonance could be used as an advantageous alternative to size exclusion chromatography, to rationalize MALDI sample preparation and confidently interpret MALDI mass spectra for homopolymers. Our aim here is to extend this methodology to the demanding case of amphiphilic block copolymers, for which obtaining prior estimates on the Mw values appears as an even more stringent prerequisite. Specifically, by studying poly(ethylene oxide) polystyrene block copolymers of distinct molecular weights and relative block weight fractions, we show how PGSE data can be used to derive the block Mw values. In contrast to homopolymers, such determination requires not only properly recorded calibration curves for each of the polymers constituting the block copolymers but also an appropriate hydrodynamic model to correctly interpret the diffusion data.

  18. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    Science.gov (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  19. Preparation and Characterization of Polymeric Micelles from Poly(D,L-lactide) and Methoxypolyethylene Glycol Block Copolymers as Potential Drug Carriers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amphiphilic diblock copolymers composed of methoxy polyethylene glycol (MePEG) and poly(D,L-lactide) (PDLLA) were prepared for the preparation of polymeric micelles. The use of MePEG-PDLLA as drug carriers has been reported in the open literature, but there are only few data on the application of a series of MePEG-PDLLA copolymers with different lengths in the medical field. The shape of the polymeric micelles is also important in drug delivery. Studies on in vitro drug release profiles require a good sink condition. The critical micelle concentration of a series of MePEG-PDLLA has a significant role in drug release. To estimate their feasibility as a drug carrier, polymeric micelles made of MePEG-PDLLA block copolymer were prepared by the oil in water (O/W) emulsion method. From dynamic light scattering (DLS) measurements,the size of the micelle formed was less than 200 nm. The critical micelle concentration of polymeric micelles with various compositions was determined using pyrene as a fluorescence probe. The critical micelle concentration decreased with increasing number of hydrophobic segments. MePEG-PDLLA micelles have a considerably low critical micelle concentration (0.4-0.5 μg/mL), which is apparently an advantage in utilizing these micelles as drug carriers. The morphology of the polymeric micelles was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micelles were found to be nearly spherical. The yield of the polymeric micelles obtained from the ONV method is as high as 85%.

  20. Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanapathipillai, Mathumai [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    moieties depends on the pH of the solution. Polymers with polyzwitterions, anions and cations have been shown to exhibit pH responsive self assembly. Other stimuli responsive polymers include glucose sensitive polymers, calcium ion-sensitive polymers and so on. Progress in living radical polymerization (LRP) methods [10] has made it possible for the facile synthesis of these block copolymer systems with controlled molecular weights and well defined architectures. The overall theme of this work is to develop novel smart block copolymers for biomineralization and biomedical applications. Synthesis and characterization of self-assembling thermoreversible ionic block copolymers as templates in biomimetic nanocomposite synthesis using a bottom-up approach is a novel contribution in this respect. Further, we have extended these families of copolymers to include block copolymer-peptide conjugates to enhance biological specificity. Future directions on this work will focus on enhancing the polymer templating properties for biomineralization by expanding the family of block copolymers with organic polypeptides and biological polypeptide scaffolds as well as a detailed understanding of the polymer-inorganic nanocomposites at the molecular level using small angle scattering analysis. Glucose responsive polymer hydrogels for drug delivery, polymer-ligand conjugates for non-viral therapy and thermoresponsive injectable photocrosslinkable hydrogels for posttraumatic arthritis cartilage healing are other applications of these novel copolymers synthesized in our work.

  1. Thermoresponsive Poly(2-Oxazoline) Molecular Brushes by Living Ionic Polymerization: Modulation of the Cloud Point by Random and Block Copolymer Pendant Chains

    KAUST Repository

    Zhang, Ning

    2012-08-10

    Molecular brushes (MBs) of poly(2-oxazoline)s were prepared by living anionic polymerization of 2-isopropenyl-2-oxazoline to form the backbone and living cationic ring-opening polymerization of 2-n-propyl-2-oxazoline and 2-methyl-2-oxazoline to form random and block copolymers. Their aqueous solutions displayed a distinct thermoresponsive behavior as a function of the side-chain composition and sequence. The cloud point (CP) of MBs with random copolymer side chains is a linear function of the hydrophilic monomer content and can be modulated in a wide range. For MBs with block copolymer side chains, it was found that the block sequence had a strong and surprising effect on the CP. While MBs with a distal hydrophobic block had a CP at 70 °C, MBs with hydrophilic outer blocks already precipitated at 32 °C. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    Science.gov (United States)

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming).

  3. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  4. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  5. Charge Transport in Conjugated Block Copolymers

    Science.gov (United States)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  6. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  7. Chain exchange in block copolymer micelles

    Science.gov (United States)

    Lu, Jie; Bates, Frank; Lodge, Timothy

    2014-03-01

    Block copolymer micelles are aggregates formed by self-assembly of amphiphilic copolymers dispersed in a selective solvent, driven by unfavorable interactions between the solvent and the core-forming block. Due to the relatively long chains being subject to additional thermodynamic and dynamic constraints (e.g., entanglements, crystallinity, vitrification), block copolymer micelles exhibit significantly slower equilibration kinetics than small molecule surfactants. As a result, details of the mechanism(s) of equilibration in block copolymer micelles remain unclear. This present works focuses on the chain exchange kinetics of poly(styrene-b-ethylenepropylene) block copolymers in squalane (C30H62) using time-resolved small angle neutron scattering (TR-SANS). A mixture of h-squalane and d-squalane is chosen so that it contrast matches a mixed 50/50 h/d polystyrene micelle core. When the temperature is appropriate and isotopically labeled chains undergo mixing, the mean core contrast with respect to the solvent decreases, and the scattering intensity is therefore reduced. This strategy allows direct probing of chain exchange rate from the time dependent scattering intensity I(q, t).

  8. SCATTERING BY CYCLIC POLYMERS AND COPOLYMERS AT LARGE SCATTERING VECTORS

    NARCIS (Netherlands)

    KOSMAS, M; BENOIT, H; HADZIIOANNOU, G

    1994-01-01

    General formulae allowing the evaluation of the form factors of cyclic block copolymers are established and graphs for cyclic copolymers of the form (A-B)(N) are shown. When N is large, the linear and the cyclic copolymer have the same behaviour. It is possible to extend at large angle an analytical

  9. Adsorption of graft copolymers onto silica and titania.

    NARCIS (Netherlands)

    Bijsterbosch, H.D.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The adsorption of graft copolymers of poly(acrylamide) (PAAm, backbone) and poly(ethylene oxide) (PEO, side chains) from aqueous solution onto silica and titania was studied with reflectometry. Two high-molar-mass copolymers were used with different PEO graft densities (10 and 18% w/w PEO in copolym

  10. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers and resins. 181.32 Section... Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and resins listed in... of the vinyl chloride resin) resin—for use only in contact with oleomargarine. (iv)...

  11. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  12. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of...

  13. Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing

    Science.gov (United States)

    Goñi-de-Cerio, Felipe; Mariani, Valentina; Cohen, Dror; Madi, Lea; Thevenot, Julie; Oliveira, Hugo; Uboldi, Chiara; Giudetti, Guido; Coradeghini, Rosella; Garanger, Elisabeth; Rossi, François; Portugal-Cohen, Meital; Oron, Miriam; Korenstein, Rafi; Lecommandoux, Sébastien; Ponti, Jessica; Suárez-Merino, Blanca; Heredia, Pedro

    2013-11-01

    Drugs used for chemotherapy normally carry out adverse, undesired effects. Nanotechnology brings about new horizons to tackle cancer disease with a different strategy. One of the most promising approaches is the use of nanocarriers to transport active drugs. These nanocarriers need to have special properties to avoid immune responses and toxicity, and it is critical to study these effects. Nanocarriers may have different nature, but polypeptide-based copolymers have attracted considerable attention for their biocompatibility, controlled and slow biodegradability as well as low toxicity. Little has been done regarding specific nanocarriers toxicity. In this study, we performed a thorough toxicological study of two different block copolymer nanoparticles (NPs); poly(trimethylene carbonate)- block-poly( l-glutamic acid) (PTMC- b-PGA) and poly(ethylene glycol)- block-poly( γ-benzyl- l-glutamate) (PEG- b-PBLG) with sizes between 113 and 131 nm. Low blood-serum-protein interaction was observed. Moreover, general toxicity assays and other endpoints (apoptosis or necrosis) showed good biocompatibility for both NPs. Reactive oxygen species increased in only two cell lines (HepG2 and TK6) in the presence of PTMC- b-PGA. Cytokine production study showed cytokine induction only in one cell line (A549). We also performed the same assays on human skin organ culture before and after UVB light treatment, with a moderate toxicity after treatment independent of NPs presence or absence. Interleukin 1 induction was also observed due to the combined effect of PEG- b-PBLG and UVB light irradiation. Future in vivo studies for biocompatibility and toxicity will provide more valuable information, but, so far, the findings presented here suggest the possibility of using these two NPs as nanocarriers for nanomedical applications, always taking into account the application procedure and the way in which they are implemented.

  14. Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Goñi-de-Cerio, Felipe [GAIKER Technology Centre (Spain); Mariani, Valentina [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Cohen, Dror [Dead Sea Laboratories, AHAVA (Israel); Madi, Lea [Tel-Aviv University, Department of Physiology and Pharmacology, Sackler School of Medicine (Israel); Thevenot, Julie; Oliveira, Hugo [ENSCPB, Université de Bordeaux (France); Uboldi, Chiara; Giudetti, Guido; Coradeghini, Rosella [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Garanger, Elisabeth [ENSCPB, Université de Bordeaux (France); Rossi, François [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Portugal-Cohen, Meital; Oron, Miriam [Dead Sea Laboratories, AHAVA (Israel); Korenstein, Rafi [Tel-Aviv University, Department of Physiology and Pharmacology, Sackler School of Medicine (Israel); Lecommandoux, Sébastien [ENSCPB, Université de Bordeaux (France); Ponti, Jessica [European Commission, Nanobiosciences Unit, Institute for Health and Consumer Protection, Joint Research Centre (Italy); Suárez-Merino, Blanca; Heredia, Pedro, E-mail: heredia@gaiker.es [GAIKER Technology Centre (Spain)

    2013-11-15

    Drugs used for chemotherapy normally carry out adverse, undesired effects. Nanotechnology brings about new horizons to tackle cancer disease with a different strategy. One of the most promising approaches is the use of nanocarriers to transport active drugs. These nanocarriers need to have special properties to avoid immune responses and toxicity, and it is critical to study these effects. Nanocarriers may have different nature, but polypeptide-based copolymers have attracted considerable attention for their biocompatibility, controlled and slow biodegradability as well as low toxicity. Little has been done regarding specific nanocarriers toxicity. In this study, we performed a thorough toxicological study of two different block copolymer nanoparticles (NPs); poly(trimethylene carbonate)-block–poly(l-glutamic acid) (PTMC-b–PGA) and poly(ethylene glycol)-block–poly(γ-benzyl-l-glutamate) (PEG-b–PBLG) with sizes between 113 and 131 nm. Low blood–serum–protein interaction was observed. Moreover, general toxicity assays and other endpoints (apoptosis or necrosis) showed good biocompatibility for both NPs. Reactive oxygen species increased in only two cell lines (HepG2 and TK6) in the presence of PTMC-b–PGA. Cytokine production study showed cytokine induction only in one cell line (A549). We also performed the same assays on human skin organ culture before and after UVB light treatment, with a moderate toxicity after treatment independent of NPs presence or absence. Interleukin 1 induction was also observed due to the combined effect of PEG-b–PBLG and UVB light irradiation. Future in vivo studies for biocompatibility and toxicity will provide more valuable information, but, so far, the findings presented here suggest the possibility of using these two NPs as nanocarriers for nanomedical applications, always taking into account the application procedure and the way in which they are implemented.

  15. Amphiphilic star block copolymers as gene carrier Part I: Synthesis via ATRP using calix[4]resorcinarene-based initiators and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Anna; Xue, Yan; Wei, Dafu [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Guan, Yong, E-mail: yguan@ecust.edu.cn [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining [Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (Canada)

    2013-01-01

    In this work, a cationic star polymer [poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)] was prepared via atom transfer radical polymerization (ATRP), using brominated calix[4]resorcinarene as an initiator. Hydrophobic moieties, methyl methacrylate (MMA) and butyl acrylate (BA), were further incorporated via 'one-pot' method. Well-defined eight-armed star block copolymers bearing hydrophilic blocks inside and hydrophobic blocks outside were synthesized. The molecular weight, particle size, electrophoretic mobility and apparent charge density were determined by gel permeation chromatography (GPC), dynamic light scattering (DLS), phase analysis light scattering (PALS) and colloidal titration, respectively. The zeta potentials and apparent charge densities of the products exhibited the characteristics of polyelectrolyte. The incorporation of hydrophobic moieties generated electrostatic screening effect. The as-synthesized amphiphilic star copolymer is promising as a thermo-sensitive gene carrier for gene therapy. Highlights: Black-Right-Pointing-Pointer Amphiphilic cationic star block copolymers with well-controlled structures were prepared via ATRP. Black-Right-Pointing-Pointer The molecular structures and properties of the initiator and copolymers were systematically characterized. Black-Right-Pointing-Pointer The products exhibited the positive charged character, and hydrophobic moieties generated electrostatic screening effect.

  16. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    Science.gov (United States)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  17. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  18. Additive-driven assembly of block copolymers

    Science.gov (United States)

    Lin, Ying; Daga, Vikram; Anderson, Eric; Watkins, James

    2011-03-01

    One challenge to the formation of well ordered hybrid materials is the incorporation of nanoscale additives including metal, semiconductor and dielectric nanoparticles at high loadings while maintaining strong segregation. Here we describe the molecular and functional design of small molecule and nanoparticle additives that enhance phase segregation in their block copolymer host and enable high additive loadings. Our approach includes the use of hydrogen bond interactions between the functional groups on the additive or particle that serve as hydrogen bond donors and one segment of the block copolymer containing hydrogen bond acceptors. Further, the additives show strong selectively towards the targeted domains, leading to enhancements in contrast between properties of the phases. In addition to structural changes, we explore how large changes in the thermal and mechanical properties occur upon incorporation of the additives. Generalization of this additive-induced ordering strategy to various block copolymers will be discussed.

  19. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  20. Polaronic Tunnelling in Organic Triblock Copolymers

    Institute of Scientific and Technical Information of China (English)

    LIU De-Sheng; ZHANG Da-Cheng; XIE Shi-Jie; MEI Liang-Mo

    2005-01-01

    @@ Polaron tunnelling is studied in xPA/nPPP/xPA (PA for polyacetylene and PPP poly (p-phenylene)) triblock copolymer, which has a well-barrier-well structure. An extended tight-binding Hamiltonian including external electric field is adopted. Without electric field, the injected electrons would not extend over the whole copolymer chain but instead be confined in the segments of PA. This is different from the behaviour of the traditional semiconductors. It is found that the polaron can transfer to the potential barrier-PPP segment when the applied electric field reaches a certain value. The critical polaron tunnelling electric fields depend upon the lengths of PPP segments.

  1. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  2. Drug governs the morphology of polyalkylated block copolymer aggregates.

    Science.gov (United States)

    Le Dévédec, F; Her, S; Vogtt, K; Won, A; Li, X; Beaucage, G; Yip, C; Allen, C

    2017-02-16

    Polyalkylated copolymers based on mPEG-b-(AGE-C6,12 or 18)25 have been used to formulate clinically relevant concentrations of doxorubicin (DOX) and the impact of drug incorporation on copolymer aggregation behaviour was examined. The copolymer aggregates were analyzed by various microscopy techniques (TEM, cryo-TEM and AFM) and scattering methods (SANS, DLS). In the absence of the drug, the copolymers formed largely non-spherical aggregates (i.e. cylinders, vesicles). Drug incorporation during copolymer aggregate formation directed the formation of only spherical aggregates. As well, the nature of the core-forming block was found to influence drug release and cytotoxicity of the formulations.

  3. Block Copolymers of Ethylene Oxide and Styrene Oxide.New Copolymer Surfactants(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yang; David Attwood; Colin Booth

    2003-01-01

    @@ 3.2. Association Number Figure 5 shows the dependence of the weight-average association number (Nw,measured by static light scattering, solution temperature 30 °C) on hydrophobe block length for ES and ESEblock copolymers.

  4. Substrate tolerant direct block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2016-01-01

    simplifies the main stream BC lithography process, showing a broad substrate tolerance and allowing for efficient pattern transfer over wafer scale. PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are directly applied on substrates including polymers, silicon and graphene. A single oxygen...

  5. LEDs based on conjugated PPV block copolymers

    NARCIS (Netherlands)

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.

    1997-01-01

    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  6. Chiral Block Copolymer Structures for Metamaterial Applications

    Science.gov (United States)

    2015-01-27

    MONITOR’S REPORT NUMBER(S) AOARD-114078 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A: Approved for public release. Distribtion is...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...developed a platform process technology that can fabricate novel netwo morphologies from initial bicontinuous cubic phases through supergroup/subgroup

  7. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    1995-01-01

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  8. Nylon 46-polytetramethylene oxide segmented block copolymers

    NARCIS (Netherlands)

    Gaymans, R.J.; Schwering, P.; Haan, de J.L.

    1989-01-01

    Block copolymers were synthesized from amine-terminated polytetramethylene oxide (PMTO) (Mw 800 and 1130) and polyamide 4,6 salt. First prepolymers were prepared at 200–210°C in the presence of a solvent (pyrrolidone). The prepolymers were postcondensed at 255°C (where possible in the solid state) t

  9. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    Veld, in 't Peter J.A.; Shen, Zheng-Rong; Takens, Gijsbert A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min u

  10. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  11. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  12. Application of Et3NHCl-AlCl3 Ionic Liquid as an Initiator in Cationic Copolymerization of 1, 3-Pentadiene with Styrene

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan WANG; Hui SUN; Juan LI; Dong JIANG; Li Yi DAI

    2006-01-01

    The random copolymer poly (1, 3-pentadiene-co-styrene) formed through cationic copolymerization using the triethylamine hydrochloride and hydrous aluminium chloride (Et3NHC1-A1C13) room temperature ionic liquid as initiating agent in toluene was analyzed using IR spectra in conjunction with gel permeation chromatography (GPC). The room temperature ionic liquid was found to have high initiatic activity for copolymerization.

  13. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  14. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;

    2007-01-01

    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  15. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  16. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 22, 1993--March 21, 1994

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, C.; Hester, R.

    1994-06-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery. This report summarizes technical progress for the following tasks: advanced copolymer synthesis; and characterization of molecular structure of copolymers.

  17. COMPOSITIONAL HETEROGENEITY OF ETHYLENE OXIDE-BUTYLENE TEREPHTHALATE SEGMENTED COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    De-zhu Ma; Dong-sheng Li; Ming-chuan Zhao; Mo-zhen Wang; Ran Ye; Xiao-lie Luo

    1999-01-01

    A series of ethylene oxide-butylene terephthalate (EOBT) segmented copolymers with different soft segment length and hard segment content were synthesized. The compositional heterogeneity was studied by solvent extraction. The results show that the compositional heterogeneity increases when soft segment length and hard segment content increase. The compositional heterogeneity is also reflected in the crystallization behavior and morphology of soft and hard segment in EOBT segmented copolymer. The more compositional heterogeneous the EOBT segmented copolymer is, the more different the morphology and the crystallization behavior between separated fractions. Compared with ethylene oxide-ethylene terephthalate (EOET) segmented copolymer, compositional heterogeneity in EOBT segmented copolymer is weaker. But the compositional heterogeneity in EOBT segmented copolymer with long soft segment and high hard segment content is still obvious.

  18. Imide/Arylene Ether Copolymers Containing Phosphine Oxide

    Science.gov (United States)

    Jensen, Brian J.; Partos, Richard D.

    1993-01-01

    Phosphine oxide groups react with oxygen to form protective phosphate surface layers. Series of imide/arylene ether block copolymers containing phosphine oxide units in backbone synthesized and characterized. In comparison with commercial polyimide, these copolymers display better resistance to etching by oxygen plasma. Tensile strengths and tensile moduli greater than those of polyarylene ether homopolymer. Combination of properties makes copolymers attractive for films, coatings, adhesives, and composite matrices where resistance to atomic oxygen needed.

  19. Development of a High-Frequency Multilayer Copolymer Acoustic Projector

    Science.gov (United States)

    1994-03-31

    Vinylidene Fluoride/Trifluoroethylene Copolymers in Relation to Their Structures," Japanese Journal of Applied Physics , vol. 103, 1987, p. 554. 4. R. AI... Journal of Applied Physics , vol. 21, 1982, p. L455. 17. K. Rittenmyer, *Report on the Electromechanical Evaluation of PVDF Copolymer Materials," U. S...Ohigashi and K. Koga, "Ferroelectric Copolymers of Vinylidene Fluoride and Trifluoroethylene with a Large Electromechanical Coupling Factor,* Japanese

  20. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups.

    Science.gov (United States)

    Christ, Eva-Maria; Hobernik, Dominika; Bros, Matthias; Wagner, Manfred; Frey, Holger

    2015-10-12

    The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer microstructures. Kinetic studies via FTIR demonstrated a weak gradient-type character of the copolymers. MTT assays of the copolymers (up to 100 μg mL(-1)) on HEK and fibroblast cell lines (3T3, L929, WEHI) as well as viability tests on the fibroblast cells were carried out to assess the biocompatibility of the materials, confirming excellent biocompatibility. Transfection efficiency characterization by flow cytometry and confocal laser microscopy demonstrated cellular uptake of the copolymers. Antiadhesive properties of the materials on surfaces were assessed by adhesion assays with fibroblast cells.

  1. Formation of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  2. Rapid ordering of block copolymer thin films

    Science.gov (United States)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  3. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  4. Photothermal degradation of ethylene/vinylacetate copolymer

    Science.gov (United States)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  5. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  6. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    Science.gov (United States)

    2015-06-30

    biofouling program contractors. 15. SUBJECT TERMS antifouling; coatings; block copolymers; IR nanoscale imaging ; biocides 16. SECURITY CLASSIFICATION OF...diagnostics and drug delivery. In our scanned probe microscopy studies on collaborator coatings and marine organisms, we have provided teamwork . We have...Studies of Organisms on model fouiants: • H. elegans studies 3. Testing of other contractor materials 4. Imaging technology. We applied our organic

  7. A COMPARATIVE STUDY OF CHAIN DYNAMICS OF DI-AND TRI-BLOCK COPOLYMERS IN SEMIDILUTE SOLUTION IN A NON-SELECTIVE SOLVENT

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Liang-zhi Hong; To Ngai; Hai-ying Huang; Tian-bai He; Chi Wu

    2004-01-01

    The chain dynamics of a pair of diblock poly(styrene-b-butadiene) (PS210-b-PB960) and triblock poly(styrene-b-butadiene-b-styrene) (PS200-b-PB1815-b-PS200) copolymers in both dilute and semidilute toluene solutions has been comparatively studied by dynamic laser light scattering. As expected, the mutual diffusion of individual chain changes into a fast cooperative diffusion of the chain segments ("blobs") between two neighboring entanglement points for both the copolymers as the solution changes from dilute to semidilute. Further increases of the concentration lead to a second slow relaxation mode. For the triblock chains, there exists an additional middle relaxation between the fast and the slow modes.with 0.33 <α< 0.44, much smaller than 0.75 predicted or 0.72 observed for linear homopolymer chains in good solvent. It implies that the solvent quality of toluene for PB might not be as good as that for PS. Due to such a difference in solubility, it is reasonable to speculate that the PB and PS blocks are transiently segregated in semidilute solution. The relaxation of these transient PB and PS richer domains leads to the observed slow relaxation. Such a speculation is supported by the appearance of an additional slow relaxation mode in the study of polyisoprene-b-polystyrene-b-polyisoprene in semidilute solution in cyclohexane, a non-selective solvent, in which we alternated the solubility difference by a variation of the solution temperature.

  8. Controlled Release of Benzocaine from Monomer and Copolymer Carriers in Synthetic Gastro-intestinal Media

    Directory of Open Access Journals (Sweden)

    Houaria Merine

    2014-05-01

    Full Text Available New dosage forms able to control drug release in the gastro-intestinal media have been prepared and investigated in this paper. Two different type of medicinal agent bonding (MA, in our case Benzocaine (Bz, were chosen in order to examine drug release. i MA attached to ethylenic monomer (m,p-vinylbenzaldehyde, condensation reaction. ii The copolymer carrier (Cp is obtained by copolymerizing this monomer. These two carriers were well characterized by microanalysis, FTIR, DSC (Tg and GPC (Ip and the two fraction α and β were calculated from elemental analyses of Cp. The results showed good polydispersity and low average molecular weight. MA linked to an organic product by the azomethine function (C=N, hydrolytically sensitive, allowed controlled release of Bz, from the monomer carrier and from the bending Schiff bases groups. Theoretical and experimental analyses of controlled release of Bz kinetics from monomer and copolymer carriers were conducted for the case of contact with synthetic gastro-intestinal fluids at various pH (1,2; 6,0 and 8,0 at 37°C. The process was found to be controlled by the nature of media (heterogeneous, which involved the preliminary hydrolysis, and the drug (Bz diffusing out of structure of copolymer (Cp to the external aqueous media. The results obtained on the rate of delivery showed a clear difference between pH = 1,2 and pH = 6,0 and 8,0 based on: i The cation of p-aminoniumbenzoic acid (PABAH+ release at pH = 1,2 ii Bz release at pH = 6,0 and 8,0

  9. Effect of Molecular Architecture of PDMAEMA-POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion.

    Science.gov (United States)

    Vuoriluoto, Maija; Orelma, Hannes; Johansson, Leena-Sisko; Zhu, Baolei; Poutanen, Mikko; Walther, Andreas; Laine, Janne; Rojas, Orlando J

    2015-12-10

    Block copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) with varying block sizes were synthesized by consecutive reversible addition-fragmentation chain transfer (RAFT) polymerization and then exposed to cellulose substrates with different anionic charge density. The extent and dynamics of quaternized PDMAEMA-b-POEGMA adsorption on regenerated cellulose, cellulose nanofibrils (CNF), and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNF) was determined by using electromechanical and optical techniques, namely, quartz crystal microbalance (QCM-D) and surface plasmon resonance (SPR), respectively. PDMAEMA-b-POEGMA equilibrium adsorption increased with the anionic charge of cellulose, an indication of electrostatic interactions. Such an observation was further confirmed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Depending on their architecture, adsorption on TOCNF of some of the PDMAEMA-b-POEGMA copolymers produced a significant reduction in QCM frequency, as expected from large mass uptake, while surprisingly, other copolymers induced the opposite effect. This latter, remarkable behavior was ascribed to coupled water expulsion from the interface upon charge neutralization of anionic surface sites with adsorbing cationic polymer segments. These observations were further investigated with SPR and QCM-D measurements using deuterium oxide solvent exchange to determine the amount of coupled water at the TOCNF-block copolymer interface. Finally, random copolymers with similar composition adsorbed to a larger extent compared to the respective block copolymers, revealing the effect of adsorbed loops and tails as well as hydration.

  10. Control of Solid-State Dye-Sensitized Solar Cell Performance by Block-Copolymer-Directed TiO2 Synthesis

    KAUST Repository

    Docampo, Pablo

    2010-04-21

    Hybrid dye-sensitized solar cells are typically composed of mesoporous titania (TiO2), light-harvesting dyes, and organic molecular hole-transporters. Correctly matching the electronic properties of the materials is critical to ensure efficient device operation. In this study, TiO 2 is synthesized in a welldefined morphological confinement that arises from the self-assembly of a diblock copolymer - poly(isoprene-b-ethylene oxide) (Pl-b-PEO). The crystallization environment, tuned by the inorganic (TiO2 mass) to organic (polymer) ratio, is shown to be a decisive factor in determining the distribution of sub-bandgap electronic states and the associated electronic function in solid-state dye-sensitized solar cells. Interestingly, the tuning of the sub-bandgap states does not appear to strongly influence the charge transport and recombination in the devices. However, increasing the depth and breadth of the density of sub-bandgap states correlates well with an increase in photocurrent generation, suggesting that a high density of these sub-bandgap states is critical for efficient photo-induced electron transfer and charge separation. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Thermo-Responsive Polyurethane Hydrogels Based on Poly(ε-caprolactone Diol and Amphiphilic Polylactide-Poly(Ethylene Glycol Block Copolymers

    Directory of Open Access Journals (Sweden)

    Shan-hui Hsu

    2016-07-01

    Full Text Available Waterborne polyurethane (PU based on poly(ε-caprolactone (PCL diol and an amphiphilic polylactide-poly(ethylene glycol (PLA-PEG diblock copolymer was synthesized. The molar ratio of PCL/PLA-PEG was 9:1 with different PLA chain lengths. The PU nanoparticles were characterized by dynamic light scattering (DLS, small angle X-ray scattering (SAXS and rheological analysis. The water contact angle measurement, infrared spectroscopy, wide angle X-ray scattering (WAXS, thermal and mechanical analyses were conducted on PU films. Significant changes in physio-chemical properties were observed for PUs containing 10 mol % of amphiphilic blocks. The water contact angle was reduced to 12°–13°, and the degree of crystallinity was 5%–10%. The PU dispersions underwent sol-gel transition upon the temperature rise to 37 °C. The gelation time increased as the PLA chain length increased. In addition, the fractal dimension of each gel was close to that of a percolation cluster. Moreover, PU4 with a solid content of 26% could support the proliferation of human mesenchymal stem cells (hMSCs. Therefore, thermo-responsive hydrogels with tunable properties are promising injectable materials for cell or drug delivery.

  12. Mechanically and structurally robust sulfonated block copolymer membranes for water purification applications

    Science.gov (United States)

    Yeo, J.; Kim, S. Y.; Kim, S.; Ryu, D. Y.; Kim, T.-H.; Park, M. J.

    2012-06-01

    The effective removal of ionic pollutants from contaminated water using negatively charged nanofiltration membranes is demonstrated. Block copolymers comprising polystyrene (PS) and partially hydrogenated polyisoprene (hPI) were synthesized by varying chain architectures. A one step procedure of cross-linking (hPI blocks) and sulfonation reactions (PS chains) was then carried out, which was revealed as an effective method to enhance mechanical integrity of membranes while hydrophilic sulfonated chains remain intact. In particular, the control of chain architecture allows us to create a synergetic effect on optimizing charge densities of the membrane, water permeability, and mechanical integrity under water purification conditions. The best performing membrane can almost completely (>99%) reject various divalent cations and also show NO3- rejection > 85% and Na+ rejection > 87%. Well defined nanostructures (tens of nanometers) as well as the periodically arranged water domains (a few nanometers) within hydrophilic phases of the hydrated membranes were confirmed by in situ neutron scattering experiments.

  13. Preparation of lignosulfonate-acrylamide-chitosan ternary graft copolymer and its flocculation performance.

    Science.gov (United States)

    He, Kunpeng; Lou, Tao; Wang, Xuejun; Zhao, Wenhua

    2015-11-01

    As flocculant plays an important role in wastewater treatment, searching for high efficient and cost-effective flocculants has always become the challenge in chemical industry. In the current work, lignosulfonate-acrylamide-chitosan ternary copolymer was designed and prepared as a new kind of flocculant. The elemental analysis and structure characterization of FTIR and XRD showed that acrylamide successfully grafted onto the two natural polymers and amorphous macromolecules were formed. The natural polymers-based flocculant was water soluble and pH independent. As it had multiple functional groups from the raw materials, the amphoteric flocculant showed high color removal efficiency to anionic (acid blue 113, >95%), neutral (reactive black 5, >95%) and cationic dyes (methyl orange, >50%) in a wide range of flocculant dosage and pH windows. The ternary flocculant, based on lignosulfonate, chitosan, and acrylamide, might be a promising material in practical applications from the perspective of cost, source and performance.

  14. Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication.

    Science.gov (United States)

    Lee, Ashlynn L Z; Ng, Victor W L; Wang, Weixin; Hedrick, James L; Yang, Yi Yan

    2013-12-01

    Current antimicrobial strategies have mostly been developed to manage infections due to planktonic cells. However, microbes in their nature state will tend to exist by attaching to and growing on living and inanimate surfaces that result in the formation of biofilms. Conventional therapies for treating biofilm-related infections are likely to be insufficient due to the lower susceptibility of microbes that are embedded in the biofilm matrix. In this study, we report the development of biodegradable hydrogels from vitamin E-functionalized polycarbonates for antimicrobial applications. These hydrogels were formed by incorporating positively-charged polycarbonates containing propyl and benzyl side chains with vitamin E moiety into physically cross-linked networks of "ABA"-type polycarbonate and poly(ethylene glycol) triblock copolymers. Investigations of the mechanical properties of the hydrogels showed that the G' values ranged from 1400 to 1600 Pa and the presence of cationic polycarbonate did not affect the stiffness of the hydrogels. Shear-thinning behavior was observed as the hydrogels displayed high viscosity at low shear rates that dramatically decreased as the shear rate increased. In vitro antimicrobial studies revealed that the more hydrophobic VE/BnCl(1:30)-loaded hydrogels generally exhibited better antimicrobial/antifungal effects compared to the VE/PrBr(1:30) counterpart as lower minimum biocidal concentrations (MBC) were observed in Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and Candida albicans (fungus) (156.2, 312.5, 312.5 mg/L for VE/BnCl(1:30) and 312.5, 2500 and 625 mg/L for VE/PrBr(1:30) respectively). Similar trends were observed for the treatment of biofilms where VE/BnCl(1:30)-loaded hydrogels displayed better efficiency with regards to eradication of biomass and reduction of microbe viability of the biofilms. Furthermore, a high degree of synergistic antimicrobial effects was also observed through the co

  15. Feasibility study of semi-selective protein precipitation with salt-tolerant copolymers for industrial purification of therapeutic antibodies.

    Science.gov (United States)

    Capito, Florian; Bauer, Johann; Rapp, Almut; Schröter, Christian; Kolmar, Harald; Stanislawski, Bernd

    2013-11-01

    We present a feasibility study for an antibody capturing process from clarified cell culture fluid using semi-selective protein precipitation with salt-tolerant copolymers. Protein precipitation is mediated by hydrophobic and electrostatic interactions with the copolymer that can be customized for the respective target. Precipitation yield with different copolymers at ionic strength of 2-22.5 mS cm⁻¹ and pH 5.0-pH 5.7 was evaluated using pure monoclonal antibody solutions. Optimized parameters were used to elucidate yield and purity of various antibodies precipitated at physiological conditions from cell culture fluid of CHO, NS0, and SP2/0 cell culture fluid. Precipitated protein was easily redissolved in small volume, enabling concentrating monoclonal antibodies (mAb) more than 40-fold and up to 100-fold, while residual polymer was removed to >98% using cationic polymer attached to silica flakes. mAb recovery of >90% and host cell protein clearance of >80% were achieved, not requiring any pre-dilution of cell culture fluid. Precipitation showed no impact on mAb binding affinity when compared to non-precipitated mAb. The obtained yield and purity were lower compared to a protein A based purification and loss of mAb was factor 1.5-3.0 higher. Yet, for high titer mAb purification processes being implemented in the future, precipitation is an attractive option due to its ease of scalability and cost-effectiveness.

  16. Drug release property of a pH-responsive double-hydrophilic hyperbranched graft copolymer

    Institute of Scientific and Technical Information of China (English)

    SUN XiaoYi; ZHOU YongFeng; YAN DeYue

    2009-01-01

    In this paper, we report the synthesis and self-assembly of double-hydrophilie hyperbranched graft copolymers of HPG-g-PDMAEMA, which consist of a hyperbranched polyglycerol (HPG) core and several grafted poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) arms. HPG was synthesized by cationic polymerization. Then HPG-Br macroinitiator was obtained by esterification of HPG with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of HPG-g-PDMAEMA graft copolymers through atom transfer radical polymerization (ATRP) of DMAEMA monomers. The molecular structures were studied by 1H NMR arid GPC. The pyrene-based fluorescent probe method, 1H NMR and DLS were used to study the self-assembly behavior of HPG-g-PDMAEMA. The drug loading and pH-responsive release properties of HPG-g-PDMAEMA were also investigated by using coumarin 102 as a model drug. The results show that the HPG-g-PDMAEMA micelles can continuously release and re-encapsulate coumarin 102 as the pH continuously changes from 11.5 to 2.5; however, this process is not totally reversible.

  17. Drug release property of a pH-responsive double-hydrophilic hyperbranched graft copolymer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, we report the synthesis and self-assembly of double-hydrophilic hyperbranched graft copolymers of HPG-g-PDMAEMA, which consist of a hyperbranched polyglycerol (HPG) core and several grafted poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) arms. HPG was synthesized by cationic polymerization. Then HPG-Br macroinitiator was obtained by esterification of HPG with 2-bromoisobutyryl bromide, which was subsequently used in the preparation of HPG-g-PDMAEMA graft copolymers through atom transfer radical polymerization (ATRP) of DMAEMA monomers. The molecular structures were studied by 1H NMR and GPC. The pyrene-based fluorescent probe method, 1H NMR and DLS were used to study the self-assembly behavior of HPG-g-PDMAEMA. The drug loading and pH-responsive release properties of HPG-g-PDMAEMA were also investigated by using coumarin 102 as a model drug. The results show that the HPG-g-PDMAEMA micelles can continuously release and re-encapsulate coumarin 102 as the pH continuously changes from 11.5 to 2.5; however, this process is not totally reversible.

  18. Self-assembled PEG-b-PDPA-b-PGEM copolymer nanoparticles as protein antigen delivery vehicles to dendritic cells: preparation, characterization and cellular uptake

    Science.gov (United States)

    Li, Pan; Zhou, Junhui; Huang, Pingsheng; Zhang, Chuangnian; Wang, Weiwei; Li, Chen; Kong, Deling

    2017-01-01

    Antigen uptake by dendritic cells (DCs) is a key step for initiating antigen-specific T cell immunity. In the present study, novel synthetic polymeric nanoparticles were prepared as antigen delivery vehicles to improve the antigen uptake by DCs. Well-defined cationic and acid-responsive copolymers, monomethoxy poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate)-block-poly(2-(guanidyl) ethyl methacrylate) (mPEG-b-PDPA-b-PGEM, PEDG) were synthesized by reversible addition-fragmentation chain transfer polymerization of 2-(diisopropylamino)ethyl methacrylate) and N-(tert-butoxycarbonyl) amino ethyl methacrylate monomers, followed by deprotection of tert-butyl protective groups and guanidinylation of obtained primary amines. 1H NMR, 13C NMR and GPC results indicated the successful synthesis of well-defined PEDG copolymers. PEDG copolymers could self-assemble into nanoparticles in aqueous solution, which were of cationic surface charges and showed acid-triggered disassembly contributed by PGEM and PDPA moieties, respectively. Significantly, PEDG nanoparticles could effectively condense with negatively charged model antigen ovalbumin (OVA) to form OVA/PEDG nanoparticle formulations with no influence on its secondary and tertiary structures demonstrating by far-UV circular dichroism and UV–vis spectra. In vitro antigen cellular uptake by bone marrow DCs (BMDCs) indicated using PEDG nanoparticles as antigen delivery vehicles could significantly improve the antigen uptake efficiency of OVA compared with free OVA or the commercialized Alum adjuvant. Moreover, as the surface cationic charges of OVA/PEDG nanoparticle formulations reduced, the uptake efficiency decreased correspondingly. Collectively, our work suggests that guanidinylated, cationic and acid-responsive PEDG nanoparticles represent a new kind of promising antigen delivery vehicle to DCs and hold great potential to serve as immunoadjuvants in the development of vaccines. PMID:28149525

  19. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310...

  20. 21 CFR 177.1980 - Vinyl chloride-propylene copolymers.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... applicable to vinyl chloride-propylene copolymers used in food-packaging adhesives complying with § 175.105... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-propylene copolymers....

  1. From Block Copolymers to Nano-porous Materials

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Ndoni, Sokol; Berg, Rolf Henrik

    2003-01-01

    Quantitative etching of the polydimethylsiloxane block in a series of polystyrene-polydimethylsiloxane (PS-PDMS) block copolymers is reported. Reacting the block copolymer with anhydrous hydrogen fluoride (HF) renders a nanoporous material with the remaining PS maintaining the original morphology...

  2. Alternation and tunable composition in hydrogen bonded supramolecular copolymers.

    Science.gov (United States)

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P

    2014-03-07

    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  3. Self-assembled materials from thermosensitive and biohybrid block copolymers

    NARCIS (Netherlands)

    de Graaf, A.J.

    2012-01-01

    In this research, several block copolymers were synthesized and characterized with regard to possible pharmaceutical applications. All block copolymers were thermosensitive and self-assembled at 37 °C into structures like micelles and hydrogels, which can be used for innovative drug delivery purpose

  4. Morphological studies on block copolymer modified PA 6 blends

    Science.gov (United States)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  5. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  6. Synthesis and Solution Properties of Zwitterionic Copolymer of Acrylamide with 3-[(2-Acrylamido)dimethylammonio]propanesulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hui; Hu, Jing; Jin, Shuailin; Li, Rui Hai [Sichuan Univ., Chengdu (China)

    2013-09-15

    A novel zwitterionic monomer 3-[(2-acrylamido)dimethylammonio]propanesulfonate (DMADAS) was designed and synthesized in this study. Then it was polymerized with acrylamide (AM) by free radical polymerization in 0.5 mol/L NaCl solution with ammonium persulfate ((NH{sub 4}){sub 2}S{sub 2}O{sub 8}) and sodium sulfate (NaHSO{sub 3}) as initiator. The structure and composition of DMADAS and acrylamide-3-[(2-acrylamido)-dimethylammonio]propanesulfonate copolymer (P-AM-DMADAS) were characterized by FT-IR spectroscopy, {sup 1}H NMR and elemental analyses. Isoelectric point (IEP) of P-AM-DMADAS was tested by nanoparticle size and potential analyzer. Solution properties of copolymer were studied by reduced viscosity. Antipolyelectrolyte behavior was observed and was found to be enhanced with increasing DMADAS content in copolymer. The results showed that the viscosity of P-AM-DMADAS is 5.472 dl/g in pure water. Electrolyte was added, which weakened the mutual attraction between sulfonic acid group and quaternary ammonium group. The conformation became loose, which led to the increase of reduced viscosity. The ability of monovalent and divalent cation influencing the viscosity of zwitterionic copolymer obeyed the following sequence: Li{sup +} < Na{sup +} < K{sup +}, Mg{sup 2+} < Ca{sup 2+} < Ba{sup 2+}, and that of anion is in the order: Cl{sup -} < Br{sup -} < I{sup -}, CO{sub 3}{sup 2-} > SO{sub 3}{sup 2-} ≅ SO{sub 4}{sup 2-}.

  7. PREPARATION AND SURFACE PROPERTIES OF ACRYLIC COPOLYMERS CONTAINING FLUORINATED MONOMERS

    Institute of Scientific and Technical Information of China (English)

    Tai-jiang Gui; Hao Wei; Ying Zhao; Xiu-lin Wang; Du-jin Wang; Duan-fu Xu

    2006-01-01

    A series of copolymers comprising butylmethacrylate, styrene, butylacrylate, hydroxypropyl acrylate and perfluoroalkyl methacrylate were synthesized by the free radical polymerization using BPO as an initiator. The surface property of the copolymer films was subsequently characterized. The contact angle measurements and energy dispersive analysis of X-ray (EDAX) show that the length and content ofperfluoroalkyl side chains in the copolymers are crucial for the preparation of the film with low surface energy. At a given content of fluorinated monomers in the copolymers, the longer the perfluoroalkyl side chain, the larger the water contact angle of the copolymer films will be. On the other hand, the higher the content of fluorinated monomers, the lower the surface energy is. The water contact angle increases with the increase of the fluorinated monomer content and reaches a plateau at 3 wt% of fluorinated monomer content.

  8. Multicompartment Micelles From π-Shaped ABC Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    XIA Jun; ZHONG Chong-Li

    2007-01-01

    Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from n-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike,X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since π-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles.

  9. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  10. Structure and Mechanical Properties of Ethylene-butene Copolymers

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallinity of ethylene-butene copolymers prepared by copolymerization of ethylene and butene in the presence of a new highly active catalyst was studied by means of DSC, WAXD and DMA. The results show that the melting temperature, the crystallinity and the crystallite size decreased with increasing the content of butene in the copolymers. The copolymers have a high degree of branching, the butene segments are mainly in the amorphous regions of the copolymers, while the polyethylene sequence forms crystal phase acting as crosslinking bondage between the molecules at room temperature. The ethylene-butene copolymers have a low modulus, a low stress and a high strain analogous to the stress-strain behavior of non-cross thermoplastic elastomer.

  11. Small domain-size multiblock copolymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  12. Preparation of Impact and Weather Resistant Copolymer

    Institute of Scientific and Technical Information of China (English)

    LIANG Tao

    2001-01-01

    @@ Synthesis method of the resin is that crosslinked polybutyl acrylate latex is used as base latex. Styrene (St) and acrylonitrile (AN) are grafted onto polybutyl acrylate latex particle and turn into core-shell copolymer. The resin is a good resin's impact modifier. There are study of influence regularity about additive emulsifier, initiator, monomer concentration, the ratio of St to AN, chain transfer to graft polymerization. A kind of core-shell resin used as impact modifier is obtained. (A) Preparation of Crosslinked Butyl Acrylate Rubber Latex

  13. Preparation of Impact and Weather Resistant Copolymer

    Institute of Scientific and Technical Information of China (English)

    LIANG; Tao

    2001-01-01

    Synthesis method of the resin is that crosslinked polybutyl acrylate latex is used as base latex. Styrene (St) and acrylonitrile (AN) are grafted onto polybutyl acrylate latex particle and turn into core-shell copolymer. The resin is a good resin's impact modifier. There are study of influence regularity about additive emulsifier, initiator, monomer concentration, the ratio of St to AN, chain transfer to graft polymerization. A kind of core-shell resin used as impact modifier is obtained. (A) Preparation of Crosslinked Butyl Acrylate Rubber Latex  ……

  14. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2... accordance with the following prescribed conditions: (a) Ethylene-vinyl acetate-vinyl alcohol copolymers...

  15. SELECTIVE SEPARATION OF WATER-ETHANOL MIXTURES THROUGH COPOLYMERIC MEMBRANES:Ⅰ. ACRYLIC ACID AND ACRYLONITRILE COPOLYMER AND ITS IONIZED MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fuyao; ZHANG Yifeng; ZHAO Zhuomin; SHEN Zhiquan

    1993-01-01

    The copolymer of acrylic acid and acrylonitrile has been synthesized and pervaporation properties of the copolymeric membranes have been investigated. In order to elucidate the influence of membrane-permeate interaction on the pervaporation of water-ethanol mixtures and to prepare much improved membranes, the membranes have been treated with alkali metal, alkali earth metal and transition metal salt aqueous solutions. The treated membranes (ionized membranes)exhibited higher separation factors than the untreated membranes. The separation factors of various alkali metal cation membranes decreased in the following order: Li+>Na+>K+, and the permeation rates showed an opposite tendency. The dependence of pervaporation behavior on the copolymer composition ,feed concentration and operating temperature have been studied with both ionized and non-ionized membranes. The apparent activation energies of water and ethanol permeation were calculated.

  16. Controlling Structure in Sulfonated Block Copolymer Membranes

    Science.gov (United States)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  17. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  18. THERMO-TARGETED DRUG DELIVERY OF GELDANAMYCIN TO HYPERTHERMIC TUMOR MARGINS WITH DIBLOCK ELASTIN-BASED BIOPOLYMERS

    Science.gov (United States)

    Chen, Y; Youn, P; Furgeson, DY

    2011-01-01

    The tumor margins are the barrier to hepatocellular carcinoma (HCC) eradication for tumors > 3 cm. Indeed, inadequately treated tumor margins commonly result in local and regional HCC recurrence with increased size and mass. Tumor recurrence is a common problem with chemotherapy, radiotherapy, thermal ablation, and/or surgical resection, by the inability to properly treat the tumor core and the tumor margins. Here we present novel thermosensitive biopolymer-drug conjugates for thermo-targeted chemotherapy at hyperthermic isotherms produced by focal, locoregional thermal ablation. The chemotherapeutic target is heat shock protein 90 (HSP90), a key molecular chaperone of several, and potent pro-oncogenic pathways including Akt, Raf-1, and mutated p53 that is upregulated in HCC. To inhibit HSP90, we have chosen geldanamycin (GA), a potent HSP90 inhibitor. GA has gained significant attention for its low IC50 ~ 1nM and inhibition of Akt and Raf-1, amongst other critical pro-oncogenic pathways. Despite such evidence, clinical trials of GA have not shown promise due to off-target toxicity and poor formulation design. Here, we propose using diblock elastin-based biopolymers as a Ringsdorf macromolecular GA solubilizer - a new generation containing functional poly(Asp)/(Glu) blocks for facile drug conjugation and an ELP block for thermo-targeting of hyperthermic ablative margins. GA release is controlled by pH-sensitive, covalent hydrazone bonds with the biopolymer backbone to avoid systemic toxicity and off-target effects. The resultant biopolymer-conjugates form stable nanoconstructs and display tunable, acute phase transitions at high temperatures. Drug release kinetics are favorable with or without the presence of serum. Thermo-targeted chemotherapy and synchronous thermal ablation provide a unique opportunity for simultaneous destruction of the HCC ablative margins and tumor core for focal, locoregional control of HCC. PMID:21846483

  19. MOLECULAR DESIGN SYNTHESIS AND PROPERTIES OF SIX KINDS OF MULTIPHASE (STYRENE-ETHYLENE OXIDE) COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    XIE Hongquan; ZHOU Peiguang; SUN Wenbo; XIA Jun; LIU Jin; XIE Dong

    1991-01-01

    @@ Multiphase copolymers of styrene (S) and ethylene oxide (EO) are amphiphilic,because of the hydrophobic and amorphous polystyrene (PS) segments and the hydrophilic and crystalline polyoxyethylene (PEO). They have many uses including polymeric surfactants, electrostatic charge reducers, compatibilizer in polymer blending, phase transfer catalysts or solid polymer electrolytes. These copolymers include different types of block copolymers, graft copolymers and star-shaped block copolymers.

  20. Polyisobutylene chain end transformations: Block copolymer synthesis and click chemistry functionalizations

    Science.gov (United States)

    Magenau, Andrew Jackson David

    The primary objectives of this research were twofold: (1) development of synthetic procedures for combining quasiliving carbocationic polymerization (QLCCP) of isobutylene (IB) and reversible addition fragmentation chain transfer (RAFT) polymerization for block copolymer synthesis; (2) utilization of efficient, robust, and modular chemistries for facile functionalization of polyisobutylene (PIB). In the first study block copolymers consisting of PIB, and either PMMA or PS block segments, were synthesized by a site transformation approach combining living cationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. The initial PIB block was synthesized via quasiliving cationic polymerization using the TMPCl/TiCl4 initiation system and was subsequently converted into a hydroxylterminated PIB. Site transformation of the hydroxyl-terminated PIB into a macro chain transfer agent (PIB-CTA) was accomplished by N,N'-dicyclohexylcarbodiimide/dimethylaminopyridine-catalyzed esterification with 4-cyano-4-(dodecylsulfanylthiocarbonylsulfanyl)pentanoic acid. In the second study another site transformation approach was developed to synthesize a novel block copolymer, composed of PIB and PNIPAM segments. The PIB block was prepared via quasiliving cationic polymerization and end functionalized by in-situ quenching to yield telechelic halogen-terminated PIB. Azido functionality was obtained by displacement of the terminal halogen through nucleophilic substitution, which was confirmed by both 1H and 13C NMR. Coupling of an alkyne-functional chain transfer agent (CTA) to azido PIB was successfully accomplished through a copper catalyzed click reaction. Structure of the resulting PIB-based macro-CTA was verified with 1H NMR, FTIR, and GPC; whereas coupling reaction kinetics were monitored by real time variable temperature (VT) 1H NMR. In a third study, a click chemistry functionalization procedure was developed based upon the azide-alkyne 1,3-dipolar