Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
Modelling current transfer to cathodes in metal halide plasmas
International Nuclear Information System (INIS)
Benilov, M S; Cunha, M D; Naidis, G V
2005-01-01
This work is concerned with investigation of the main features of current transfer to cathodes under conditions characteristic of metal halide (MH) lamps. It is found that the presence of MHs in the gas phase results in a small decrease of the cathode surface temperature and of the near-cathode voltage drop in the diffuse mode of current transfer; the range of stability of the diffuse mode expands. Effects caused by a variation of the work function of the cathode surface owing to formation of a monolayer of alkali metal atoms on the surface are studied for particular cases where the monolayer is composed of sodium or caesium. It is found that the formation of the sodium monolayer affects the diffuse mode of current transfer only moderately and in the same direction that the presence of metal atoms in the gas phase affects it. Formation of the caesium monolayer produces a dramatic effect: the cathode surface temperature decreases very strongly, the diffuse-mode current-voltage characteristic becomes N-S-shaped
Karwa, Rajendra
2017-01-01
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...
Super-iron Nanoparticles with Facile Cathodic Charge Transfer
Energy Technology Data Exchange (ETDEWEB)
M Farmand; D Jiang; B Wang; S Ghosh; D Ramaker; S Licht
2011-12-31
Super-irons contain the + 6 valence state of iron. One advantage of this is that it provides a multiple electron opportunity to store additional battery charge. A decrease of particle size from the micrometer to the nanometer domain provides a higher surface area to volume ratio, and opportunity to facilitate charge transfer, and improve the power, voltage and depth of discharge of cathodes made from such salts. However, super-iron salts are fragile, readily reduced to the ferric state, with both heat and contact with water, and little is known of the resultant passivating and non-passivating ferric oxide products. A pathway to decrease the super-iron particle size to the nano-domain is introduced, which overcomes this fragility, and retains the battery capacity advantage of their Fe(VI) valence state. Time and power controlled mechanosynthesis, through less aggressive, dry ball milling, leads to facile charge transfer of super-iron nanoparticles. Ex-situ X-ray Absorption Spectroscopy is used to explore the oxidation state and structure of these iron oxides during discharge and shows the significant change in stability of the ferrate structure to lower oxidation state when the particle size is in the nano-domain.
Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp
International Nuclear Information System (INIS)
Wang Wen-Li; Xu Xin-Ye
2011-01-01
We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)
MASS TRANSFER IN FERMENTATION PROCESSES
Directory of Open Access Journals (Sweden)
A. Shevchenko
2018-04-01
Full Text Available The peculiarities of anaerobic fermentation processes with the accumulation of dissolved ethyl alcohol and carbon dioxide in the culture media are considered in the article.The solubility of CO2 is limited by the state of saturation in accordance with Henry’s law. This, with all else being equal, limits the mass transfer on the interface surface of yeast cells and the liquid phase of the medium. A phenomenological model of the media restoration technologies based on the unsaturation index on СО2 is developed. It is shown that this restoration in the existing technologies of fermentation of sugar-rich media occurs, to a limited extent, in self-organized flow circuits, with variable values of temperatures and hydrostatic pressures, due to the creation of unsaturated local zones.It is shown that increasing the height of the media in isovolumetric apparatuses leads to an increase in the levels of flow circuits organization and to the improvement of the desaturation and saturation modes of the liquid phase and intensification of mass transfer processes. Among the deterministic principles of restoring the saturation possibilities of the media, there are forced variables of pressures with time pauses on their lower and upper levels. In such cases, the possibilities of short-term intensive desaturations in full media volumes, the restoration of their saturation perception of CO2, and the activation of fermentation processes are achieved. This direction is technically feasible for active industrial equipment.The cumulative effect of the action of variable pressures and temperatures corresponds to the superposition principle, but at the final stages of fermentation, the pressure and temperature values are leveled, so the restoration of the unsaturation state slows down to the level of the bacteriostatic effect. The possibility of eliminating the disadvantages of the final stage of fermentation by means of programmable variable pressures is shown
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...
Interfacial stability with mass and heat transfer
International Nuclear Information System (INIS)
Hsieh, D.Y.
1977-07-01
A simplified formulation is presented to deal with interfacial stability problems with mass and heat transfer. For Rayleigh-Taylor stability problems of a liquid-vapor system, it was found that the effect of mass and heat transfer tends to enhance the stability of the system when the vapor is hotter than the liquid, although the classical stability criterion is still valid. For Kelvin-Holmholtz stability problems, however, the classical stability criterion was found to be modified substantially due to the effect of mass and heat transfer
Mass transfer measurements in foams
International Nuclear Information System (INIS)
Leblond, J.G.; Fournel, B.
2004-01-01
Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)
Mass transfer in counter current flows
Energy Technology Data Exchange (ETDEWEB)
Doichinova, Maria D.; Popova, Petya G.; Boyadjiev, Christo B. [Bulgarian Academy of Science, Institute of Chemical Engineering, Sofia (Bulgaria)
2011-07-01
A theoretical analysis of gas-liquid counter-current flow in laminar boundary layers with flat phase boundary based on similarity variables method has been done. The obtained numerical results for the energy dissipation, mass transfer rate and their ratio are compared with analogous results for concurrent flows. A diffusion type of model is proposed for modeling of the mass transfer with chemical reaction in the column apparatuses in the cases of circulation zones. The presence of rising and descending flows (the change of the velocity direction) leads to using three coordinate systems. An iterative algorithm for the concentration distribution calculation is proposed. The influence of the zones breadths on the mass transfer efficiency in the column is investigated. Key words: efficiency, mass transfer, velocity distribution, column apparatuses, circulation zones.
Mass Transfer Operations for the Practicing Engineer
Theodore, Louis
2011-01-01
Part of the Essential Engineering Calculations Series, this book presents step-by-step solutions of the basic principles of mass transfer operations, including sample problems and solutions and their applications, such as distillation, absorption, and stripping. Presenting the subject from a strictly pragmatic point of view, providing both the principles of mass transfer operations and their applications, with clear instructions on how to carry out the basic calculations needed, the book also covers topics useful for readers taking their professional exams.
Ozone mass transfer and kinetics experiments
International Nuclear Information System (INIS)
Bollyky, L.J.; Beary, M.M.
1981-12-01
Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction
Gas mass transfer for stratified flows
International Nuclear Information System (INIS)
Duffey, R.B.; Hughes, E.D.
1995-01-01
We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature
Mills, A F
1999-01-01
The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.
Conjugate heat and mass transfer in heat mass exchanger ducts
Zhang, Li-Zhi
2013-01-01
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi
Role of cathode identity in liquid chromatography particle beam glow discharge mass spectrometry
Energy Technology Data Exchange (ETDEWEB)
Krishna, M.V. Balarama [Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-1905 (United States); Marcus, R.K. [Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-1905 (United States)], E-mail: marcusr@clemson.edu
2008-06-15
A detailed evaluation of the role of cathode identity on the analytical and spectral characteristics of various organic, organometallic and metal analytes using liquid chromatography-particle beam/glow discharge mass spectrometry (LC-PB/GDMS) has been carried out. A d.c. discharge, operating with argon as the support gas, was used throughout this work. In this study, Cu which has a relatively high sputtering rate, Ni which has moderate sputtering rate and Ta which has very low sputtering rate, are taken as cathode materials to study the ionization, fragmentation, and analytical characteristics of organic (caffeine, epigallocatechin gallate, peptide as representative compounds), organometallic (selenomethionine, triethyl lead chloride as representative compounds) and metal (Fe, La, Cs and Pb) species. A range of discharge gas pressures (26.6-106.4 Pa) and currents (0.2-1.5 mA) were investigated with the test cathodes to determine their influence on the spectral composition and overall analytical response for the various test species. Calibration plots were obtained for all of the species for each of the three cathodes to determine the respective limits of detection. Relative detection limits in the range of 0.02 to 15 ng mL{sup -1} (0.002-1.5 ng, absolute) for the test species were found to be in the order of Cu > Ni > Ta; which follows the order of the sputtering characteristics of the respective cathodes. These studies rendered information about the respective discharge parameters' role in choosing the most appropriate cathode identity in PB-GDMS for application in the areas of organic, organometallic and inorganic species analysis.
Mass Transfer in Mira-Type Binaries
Directory of Open Access Journals (Sweden)
Mohamed S.
2012-06-01
Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.
Convective mass transfer around a dissolving bubble
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell
DEFF Research Database (Denmark)
Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen
2011-01-01
This article summarizes a multi-phase model of a polymer electrolyte membrane fuel cell based on the formerly commercial CFD code CFX-4. It is three-dimensional in nature and includes multiphase heat and mass transfer in porous media. An overview is given and some numerical issues are discussed...... heat and mass transfer properties are superior. Another important aspect of this study is the wetting status of the electrolyte menbrane and the effective drag of water through the menbrane, which indicates what fraction of the product water created at the cathode side diffuses through the membrane...
Hou, Jie
2015-01-01
Two types of proton-blocking composites, La2NiO4+δ-LaNi0.6Fe0.4O3-δ (LNO-LNF) and Sm0.2Ce0.8O2-δ-LaNi0.6Fe0.4O3-δ (SDC-LNF), were evaluated as cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs) based on the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte, in order to compare and investigate the influence of two different oxygen transfer mechanism on the performance of the cathode for H-SOFCs. The X-ray diffraction (XRD) results showed that the chemical compatibility of the components in both compounds was excellent up to 1000°C. Electrochemical studies revealed that LNO-LNF showed lower area specific polarization resistances in symmetrical cells and better electrochemical performance in single cell tests. The single cell with LNO-LNF cathode generated remarkable higher maximum power densities (MPDs) and lower interfacial polarization resistances (Rp) than that with SDC-LNF cathode. Correspondingly, the MPDs of the single cell with the LNO-LNF cathode were 490, 364, 266, 180 mW cm-2 and the Rp were 0.103, 0.279, 0.587, 1.367 Ω cm2 at 700, 650, 600 and 550°C, respectively. Moreover, after the single cell with LNO-LNF cathode optimized with an anode functional layer (AFL) between the anode and electrolyte, the power outputs reached 708 mW cm-2 at 700°C. These results demonstrate that the LNO-LNF composite cathode with the interstitial oxygen transfer mechanism is a more preferable alternative for H-SOFCs than SDC-LNF composite cathode with the oxygen vacancy transfer mechanism.
Radiation-induced Mass Transfer through Membranes
Czech Academy of Sciences Publication Activity Database
Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel
2009-01-01
Roč. 36, č. 2 (2009), s. 125-128 ISSN 0735-1933 R&D Projects: GA AV ČR(CZ) IAA400720804 Institutional research plan: CEZ:AV0Z40720504 Keywords : mass transfer * adiation * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.189, year: 2009
Mass transfer in a salt repository
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.
1985-05-01
To meet regulatory requirements for radioactive waste in a salt repository it is necessary to predict the rates of corrosion of the waste container, the release rates of radionuclides from the waste package, and the cumulative release of radionuclides into the accessible environment. The mechanisms that may control these rates and an approach to predicting these rates from mass-transfer theory are described. This new mechanistic approach is suggested by three premises: (a) a brine inclusion originally in a salt crystal moves along grain boundaries after thermal-induced migration out of the crystal, (b) brine moves along a grain boundary under the influence of a pressure gradient, and (c) salt surrounding a heat-generating waste package will soon creep and consolidate as a monolithic medium surrounding and in contact with the waste package. After consolidation there may be very little migration of intergranular and intragranular brine to the waste package. The corrosion rate of the waste container may then be limited by the rate at which brine reaches the container and may be calculable from mass-transfer theory, and the rate at which dissolved radionuclides leave the waste package may be limited by molecular diffusion in intragranular brine and may be calculable from mass-transfer theory. If porous nonsalt interbeds intersect the waste-package borehole, the release rate of dissolved radionuclides to interbed brine may also be calculable from mass-transfer theory. The logic of these conclusions is described, as an aid in formulating the calculations that are to be made
Mass transfer and transport in salt repositories
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.
1989-02-01
Salt is a unique rock isolation of nuclear waste because it is ''dry'' and nearly impermeable. In this paper we summarize some mass-transfer and transport analyses of salt repositories. First we analyses brine migration. Heating by high-level waste can cause brine in grain boundaries to move due to pressure-gradients. We analyze brine migration treating salt as a thermoelastic solid and found that brine migration is transient and localized. We use previously developed techniques to estimate release rates from waste packages by diffusion. Interbeds exist in salt and may be conduits for radionuclide migration. We analyze steady-state migration due to brine flow in the interbed, as a function of the Peclet number. Then we analyze transient mass transfer, both into the interbed and directly to salt, due only to diffusion. Finally we compare mass transfer rates of a waste cylinder in granite facing a fracture and in salt facing an interbed. In all cases, numerical illustrations of the analytic solution are given. 10 refs., 4 figs., 3 tabs
International Nuclear Information System (INIS)
Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah
2013-01-01
The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines
International Nuclear Information System (INIS)
Almeida, P G C; Benilov, M S; Cunha, M D; Faria, M J
2009-01-01
Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current-voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.
Mixing and Mass Transfer in Industrial Bioreactors
DEFF Research Database (Denmark)
Villadsen, John
2015-01-01
Design of a real reactor for a real process in industrial scale requires much more than the design of the "ideal" reactors. This insight is formulated in empirical relations between key process parameters, such as mass and heat transfer coefficients, and the power input to the process. Mixing...... formulas are not in any way quantitatively correct, but based on dimensional analysis one is able to extrapolate from small-to large-scale operation. It is shown that linear scale-up may not give the smallest power input for a given mixing objective. The introduction presented is the basis...... for the visionary scale-up/scale-down design principles....
Bieniek, M. S.; Santos, D. F. N.; Almeida, P. G. C.; Benilov, M. S.
2018-04-01
General scenarios of transitions between different spot patterns on electrodes of DC gas discharges and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of arc discharges, it is shown that any transition between different modes of current transfer is related to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes on axially symmetric cathodes, frequently observed in the experiment, represent an indication of the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations of transitions on cathodes of DC glow microdischarges are analyzed and those potentially related to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated numerically and the computed patterns are found to conform to those observed in the course of the corresponding transitions in the experiment.
Handbook of heat and mass transfer. Volume 2
International Nuclear Information System (INIS)
Cheremisinoff, N.P.
1986-01-01
This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors
Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian
2010-03-01
A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.
Mass transfer in a geologic environment
International Nuclear Information System (INIS)
Zavoshy, S.J.; Chambre, P.L.; Pigford, T.H.
1984-11-01
A new analytical solution is presented that predicts the rate of dissolution of species from a waste package surrounded by a wet porous medium. By equating the rate of diffusive mass transfer into the porous rock to the rate of liquid-surface chemical reaction, an analytical solution for the time-dependent dissolution rate and the time-dependent concentration of dissolved species at the waste surface is obtained. From these results it is shown that for most of the important species in a package of radioactive waste the surface liquid quickly reaches near-saturation concentrations and the dissolution rate can be predicted by the simpler theory that assumes saturation concentrations in the surface liquid. 26 refs., 3 figs., 1 tab
Mass transfer in nano-fluids: A review
International Nuclear Information System (INIS)
Ashrafmansouri, Seyedeh-Saba; Esfahany, Mohsen Nasr
2014-01-01
Growing attention has been recently paid to nano-fluids because of their potential for augmenting transfer processes - i.e., heat and mass transfer. Conflicting results have been reported in the literature on mass transfer in nano-fluids. The aim of this paper is to summarize the literature on mass transfer in nano-fluids stating the conflicts and possible reasons. Literature on mass transfer in nano-fluids has been reviewed in two sections. The first section concentrates on surveying mass diffusivity in nano-fluids while the second section focuses on convective mass transfer in nano-fluids. In each section, published articles, type of nano-fluids used, size and concentration range of nanoparticles, measurement methods, maximum observed enhancement, and suggested mass transport mechanisms are summarized. (authors)
International Nuclear Information System (INIS)
Berthoud, T.; Briand, A.; Khelifa, N.; Mauchien, P.
1987-01-01
The resonance ionization mass spectrometry in our laboratory is aimed at simplification of isotope measurements of elements present in mixtures and at measurement of very small isotopes. An atomization source which produces an atomic beam collimated from a discharge in a hollow cathode has been developed. First results of this spectrometry with an uranium atomic jet are presented [fr
Lab. experiments of mass transfer in the London clay
International Nuclear Information System (INIS)
Bourke, P.J.; Gilling, D.; Jefferies, N.L.; Lineham, T.R.; Lever, D.A.
1989-01-01
Aqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data are compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models
Enhancement of heat and mass transfer by cavitation
International Nuclear Information System (INIS)
Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N
2015-01-01
In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment
Second Law Analysis in Convective Heat and Mass Transfer
Directory of Open Access Journals (Sweden)
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
Mass transfer in water-saturated concretes
International Nuclear Information System (INIS)
Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.
1990-01-01
Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed
Overall mass-transfer coefficients in non-linear chromatography
DEFF Research Database (Denmark)
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationshi...
Heat or mass transfer from an open cavity
Kuiken, H.K.
1978-01-01
This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat
THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER
Directory of Open Access Journals (Sweden)
Alexander P. Solodov
2013-01-01
Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations.
Hydrodynamics and mass transfer in trickle leaching process
International Nuclear Information System (INIS)
Jin Suoqing; Xiang Qinfang; Guo Jianzheng
1995-01-01
The initial research results of the hydrodynamic behavior and mass transfer of the trickle leaching process are summarized. It was shown that the dropping mode, the height of uranium ore heap and the flow rate of the dropping fluid affect the mass transfer of the trickle leaching process. Based on the concept of the keeping form of liquid in ore particle bed and the diffusion in porous medium, a mass transfer pattern, i.e. 'double-membrane transfer process' controlled by porous diffusion, was presented and proved for trickle leaching process
Heat and mass transfer in buildings
International Nuclear Information System (INIS)
Kristoffersen, Astrid Rusaas
2005-01-01
This thesis has presented four journal papers about ventilation and heat transfer in buildings. Ventilation and heat transfer in buildings are elements that decide our indoor air quality, thermal comfort and energy use in buildings. Models and experiments are tools to understand the complex physics of heat and air transfer in buildings. As computers are, getting cheaper and more powerful, there is a need to develop reliable models that can predict heat and air transfer in buildings. The first paper in this thesis addressed the widely used multizone model. This model is mainly used to find the airflows between zones in a building. A multizone model is often coupled to an energy analysis program, and affects therefore the calculated energy use in a building. The first paper in this thesis, titled ''Effect of room air recirculation delay on the decay rate of tracer gas concentration'' discussed the impact of a recirculating ventilation system on the decay of the tracer gas concentration in the room. The delay of the tracer gas through the ventilation system affects the concentration in the room, and must be accounted for when calculating the amount of fresh air that the ventilation system supplies. The second paper titled ''CFD Investigation of Room Ventilation for Improved Operation of a Downdraft Table: Novel Concepts'' investigated the performance of a downdraft table by changing the ventilation configuration in the room by use of Computational Fluid Dynamics (CFD). CFD can provide a microscopic description of the airflow and the behavior of pollutants and temperature distribution in a room. This paper calculated the airflow pattern in the room without influence of thermal effects, and demonstrated the usage of CFD. It was found that the total airflow could be reduced compared to an existing configuration (and hence reduce energy costs), and at the same time increasing the performance of the downdraft table (increasing the indoor air quality). A room with a
Heat and mass transfer effects in a direct methanol fuel cell: A 1D model
Energy Technology Data Exchange (ETDEWEB)
Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [INETI - Unidade de Electroquimica e Materiais, Paco do Lumiar, 22,1649-038 (Portugal)
2008-07-15
Models are a fundamental tool for the design process of fuel cells and fuel cell systems. In this work, a steady-state, one-dimensional model accounting for coupled heat and mass transfer, along with the electrochemical reactions occurring in the DMFC, is presented. The model output is the temperature profile through the cell and the water balance and methanol crossover between the anode and the cathode. The model predicts the correct trends for the influence of current density and methanol feed concentration on both methanol and water crossover. The model estimates the net water transfer coefficient through the membrane, {alpha}, a very important parameter to describe water management in the DMFC. Suitable operating ranges can be set up for different MEA structures maintaining the crossover of methanol and water within acceptable levels. The model is rapidly implemented and is therefore suitable for inclusion in real-time system level DMFC calculations. (author)
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsung
2017-01-01
This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-S...
Kurimoto, Naoya; Omoda, Ryo; Mizumo, Tomonobu; Ito, Seitaro; Aihara, Yuichi; Itoh, Takahito
2018-02-01
Quinoid compounds are important candidates of organic active materials for lithium-ion batteries. However, its high solubility to organic electrolyte solutions and low redox potential are known as their major drawbacks. To circumvent these issues, we have designed and synthesized a tandem-tetracyanoquinonedimethane type cathode-active material, 11,11,12,12,13,13,14,14-octacyano-1,4,5,8-anthradiquinotetramethane (OCNAQ), that has four redox sites per molecule, high redox potential and suppressed solubility to electrolyte solution. Synthesized OCNAQ has been found to have two-step redox reactions by cyclic voltammetry, and each step consists of two-electron reactions. During charge-discharge tests using selected organic cathode-active materials with a lithium metal anode, the cell voltages obtained from OCNAQ are higher than those for 11,11-dicyanoanthraquinone methide (AQM) as expected, due to the strong electron-withdrawing effect of the cyano groups. Unfortunately, even with the use of the organic active material, the issue of dissolution to the electrolyte solution cannot be suppressed completely; however, appropriate choice of the electrolyte solutions, glyme-based electrolyte solutions in this study, give considerable improvement of the cycle retention (98% and 56% at 10 and 100 cycles at 0.5C, respectively). The specific capacity and energy density obtained in this study are 206 mAh g-1 and 554 mWh g-1 with respect to the cathode active material.
Mass transfer in horizontal flow channels with thermal gradients
International Nuclear Information System (INIS)
Bendrich, G.; Shemilt, L.W.
1997-01-01
Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)
Convective heat and mass transfer in rotating disk systems
Shevchuk, Igor V
2009-01-01
The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.
Solubility is the most important mass transfer factor
International Nuclear Information System (INIS)
Slobodov, A.A.; Zarembo, V.I.
1992-01-01
The existence of the quantitative correlation between mass transfer and equilibrium solubility of corrosion products of construction materials in water circuits of power plants is shown. Thermodynamic and mathematical methods of modeling and calculating for these processes are developed. The results for iron based materials - aqueous solution systems in a wide range of temperature, pH, oxygen-hydrogen concentrations are presented. The optimization conditions for mass transfer, sedimentation of corrosion products for BWR, PWR reactors, etc. have been obtained
Principles of heat and mass transfer
Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S
2013-01-01
Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.
Heat and mass transfer in building services design
Moss, Keith
1998-01-01
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
(iii) The gas phase is ideal from thermodynamic point of view. (iv) Only mass transfer and no heat transfer takes place through the porous filter. (v) The thermal conductivity and specific heat of the hydride bed are assumed to be constant. This assumption underestimates the bed performance slightly, because in actual case ...
Mass transfer from smooth alabaster surfaces in turbulent flows
Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.
1987-11-01
The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
2.3 Hydrogen mass balance ε. ∂ρg. ∂t. + div(ρgVg) ... staggered grids to catch the heat transfer across the control volume by convection effectively. .... temperature decreases due to fall in the reaction rate and increase in heat transfer from the.
Fluid dynamics and mass transfer in a gas centrifuge
International Nuclear Information System (INIS)
Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.
1982-01-01
The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)
Transference of mass in fermentation process
International Nuclear Information System (INIS)
Rios E, R.; Buitrago H, G
1998-01-01
Based on bibliographical references, in a theoretical model based on a fermentation process, the relationship between the speed of oxygen transfer and the biochemistry demand is implemented, in order to discover the different conditions of aeration and of agitation speed, under those which the microbial growth is not affected by deficiency in the oxygen supply. This correlation was adapted to the cultivation of B. Thuringiensis, and of this form, maximum biomass concentration to the one, which is possible to supply oxygen efficiently with a group of defined operation conditions, could be estimated
Energy Technology Data Exchange (ETDEWEB)
Haddad, Djamel; Benmoussa, Hocine [Laboratory (LESEI), Faculty of Engineering, University of Batna (Algeria); Bourmada, Noureddine; Oulmi, Kafia [Laboratory LCCE, Faculty of Science, University of Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP, 62 Avenue-Observatoire, Bouzareah, Alger (Algeria)
2009-06-15
The objective of our study is to quantify the mass water transferred by various modes: diffusion, convection and migration. For the water transfer, the principal forces considered in the model are, the convection force, the osmotic force (i.e. diffusion) and the electric force (migration). The first of these forces results from a pressure gradient, the second of a concentration gradient and the third of a protons' migration from the anode to the cathode, which has an effect on the dipole of the water molecules (resistance force to the advancement). The numerical tool used to solve the equations' system is the finite element method. The results obtained numerically considering this method are concentration profiles and concentration variation with time and membrane thickness. These results illustrate the contribution of each mass transfer mode. (author)
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)
2014-11-25
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
A mass transfer in heterogeneous systems by the adsorption method (
Directory of Open Access Journals (Sweden)
N. Bošković-Vragolović
2009-01-01
Full Text Available A mass transfer coefficient between: a liquid and single sphere and a liquid and column wall in packed and fluidized beds of a spherical inert particle have been studied experimentally using the adsorption method. The experiments were conducted in a column 40 mm in diameter for packed and fluidized beds, and in a two-dimensional column 140 mm×10 mm for the flow past single sphere. In all runs, the mass transfer rates were determined in the presence of spherical glass particles, 3 mm in diameter, for packed and fluidized beds. The mass transfer data were obtained by studying transfer for flow past single sphere, 20 mm in diameter. This paper discusses the possibilities of application of the adsorption method for fluid flow visualization. Local and average mass transfer coefficients were determined from the color intensity of the surface of the foils of silica gel. Correlations, Sh = f(Re and jD = f(Re, were derived using the mass transfer coefficient data.
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsong
2014-01-01
This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...
Studies on mass transfer in electrochemical systems
Energy Technology Data Exchange (ETDEWEB)
Sundstroem, L.G.
1997-10-01
The first part is of an introductory nature. It contains a description of the methods used, a discussion of the physics of electrochemical cells with a liquid electrolyte, and a summary of the different studies made, including both those which have been reported in papers, and those which have not. Contributions with novel aspects include (* a derivation of the electro-neutrality condition from Maxwell`s equations of electrodynamics, and **) an argument in favour of the use of mass-averaged velocity in ion transport expressions. The second part focuses on specific cases. It consists of seven research papers which give a more detailed presentation of the main studies 40 refs, 6 figs
Mass Transfer and Porous Media (MTPM)
Energy Technology Data Exchange (ETDEWEB)
Rotenberg, B.; Marry, V.; Malikova, N.; Vuilleumier, R.; Giffaut, E.; Turq, P.; Robinet, J.C.; Diaz, N.; Sardini, P.; Goutelard, F.; Menut, D.; Parneix, J.C.; Sammartino, S.; Pret, D.; Coelho, D.; Jougnot, D.; Revil, A.; Boulin, P.F.; Angulo-Jaramillo, R.; Daian, J.F.; Talandier, J.; Berne, P.; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; Van der Lee, J.; Birchall, D.J.; Harrington, J.F.; Noy, D.J.; Sellin, P.; Bildstein, O.; Piault, E.; Trotignon, L.; Montarnal, P.; Deville, E.; Genty, A.; Le Potier, C.; Imbert, C.; Semete, P.; Desgree, P.; Fevrier, B.; Courtois, A.; Touze, G.; Sboui, A.; Roberts, J.E.; Jaffre, J.; Glaus, M.A.; Rosse, R.; Van Loon, L.R.; Matray, J.M.; Parneix, J.C.; Tinseau, E.; Pret, D.; Mayor, J.C.; Ohkubo, T.; Kikuchi, H.; Yamaguchi, M.; Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Siitari-Kauppi, M.; Leskinen, A.; Rigato, V.; Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.; Dai, Z.; Samper, J.; Wolfsberg, A.; Levitt, D.; Cormenzana, J.L.; Missana, T.; Mingarro, M.; Schampera, B.; Dultz, S.; Riebe, B.; Samper, J.; Yang, Q.; Genty, A.; Perraud, D.; Poller, A.; Mayer, G.; Croise, J.; Marschall, P.; Krooss, B.; Matray, J.M.; Tanaka, T.; Vogel, P.; Lavanchy, J.M.; Enssle, C.P.; Cruchaudet, M.; Dewonck, S.; Descostes, M.; Blin, V.; Radwan, J.; Poinssot, C.; Mibus, J.; Sachs, S.; Devol-Brown, I.; Motellier, S.; Tinseau, E.; Thoby, D.; Marsal, F.; DeWindt, L.; Tinseau, E.; Pellegrini, D.; Bauer, A.; Fiehn, B.; Marquardt, Ch.; Romer, J.; Gortzen, A.; Kienzler, B
2007-07-01
This session gathers 48 articles (posters) dealing with: interlayer / micro-pore exchange of water and ions in clays: a molecular dynamics study; the multi-scale characterisation of mineral and textural spatial heterogeneities in Callovo-Oxfordian argilite and its consequence on solute species diffusion modelling; the diffusion of ions in unsaturated clay rocks: Theory and application to the Callovo- Oxfordian argillite; the porous media characterization with respect to gas transfer in Callovo Oxfordian argillite; the predictions on a 2-D cementation experiment in porous medium: intercomparison on the Comedie project; the large-scale gas injection test (LASGIT) at the Aespoe hard rock laboratory in Sweden; simulating the geochemical coupling between vitrified waste, canister and near-field on the alliances platform; toward radionuclide transport calculations on whole radioactive waste disposal with CAST3M platform; the experimental study of the water permeability of a partially saturated argillite; a mixed hexahedral finite elements for Darcy flow calculation in clay porous media; the diffusive properties of stainless steel filter discs before and after use in diffusion experiments with compacted clays; the structural organization of porosity in the Opalinus clay at the Mont Terri Rock Laboratory under saturated and unsaturated conditions; the evaluation of pore structure in compacted saturated Bentonite using NMR relaxometry; diffusion coefficients measurement in consolidated clays: a combination of micro-scale profiling and solid pore structure analyses; the numerical interpretation of in-situ DIR diffusion experiments on the Callovo- Oxfordian clay at the Meuse/Haute-Marne URL the identification of relative conductivity models for water flow and solute transport in unsaturated compacted Bentonite; diffusion experiments in Callovo- Oxfordian clay from the Meuse/Haute-Marne URL, France: experimental setup and data analyses; the transport in organo
Electromagnetic control of mass transfer at liquid/liquid interfaces
International Nuclear Information System (INIS)
Saadi, B.
2006-04-01
Most metallurgical processes, such as steel refining or nuclear waste processing; the interfaces between two liquid phases are the regions of mass transfer. These transfers require the implementation of a means of stirring to accelerate the kinetics of the pollutants transfer between both phases. This thesis deals with the use of the electromagnetic forces to stir, without any material contact, the bath core and the interface in order to control or even increase the kinetic transfers. To achieve this, two complementary experimental installations were used. The first experiment allows the measurement of the Indium transfer, initially dissolved in mercury towards a covering electrolyte layer and the velocity field in mercury. The performed experiments, determine the topology of the fields flows speeds in the mercury bath, moreover the behaviour of the transfer kinetics versus the intensity of the magnetic field are established. This evolution is correlated with the dynamic behaviour of the mercury surface. The second installation allows the characterization of an element transfer (Pb, Zr or Ce) initially contained in a fluorinated salt towards an antimony matrix containing lithium. It appears that all transfers kinetics are very fast. The proposed experimental set-up is particularly efficient for Cerium transfer (limited by the interface) but does not present any action for Zirconium transfer. (author)
Energy Technology Data Exchange (ETDEWEB)
Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)
2017-01-15
An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range
Mass transfer dynamics in double degenerate binary systems
International Nuclear Information System (INIS)
Dan, M; Rosswog, S; Brueggen, M
2009-01-01
We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.
Effect of rotation on convective mass transfer in rotating channels
International Nuclear Information System (INIS)
Pharoah, J.G.; Djilali, N.
2002-01-01
Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)
Liquid-gas mass transfer at drop structures
DEFF Research Database (Denmark)
Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes
2017-01-01
-water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...
Molecular engineering problems in heat and mass transfer
International Nuclear Information System (INIS)
Kotake, S.
1991-01-01
As for developing, manufacturing and applying new materials of advanced functions such as high-performance devices and high-temperature materials, fundamental understanding of the phenomena from the standpoint of molecular and atomic levels has been required. In these problems, the processes of heat and mass transfer play an important role, being one of the rate-controlling factors. But the energy levels associated with heat and mass transfer are of the orders much less than those of chemical reaction, and it is not easy to understand the thermal problems on the molecular and atomic basis. This paper views the processes of heat and mass transfer from the dynamical motions of atom and molecule for thermal engineering problems. Especially, problems are considered of heat conduction in fine-ceramics, sintered materials of high heat conductivity or high heat-insulation, phase change of condensation in vapor deposition processes such as CVD and PVD, and radiation in laser processing
Mass transfer resistance in ASFF reactors for waste water treatment.
Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M
1996-01-01
Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.
RESEARCH OF THE MASS TRANSFER AT MEMBRANE CLEANING OF BIOGAZ
Directory of Open Access Journals (Sweden)
Marat SATAYEV
2015-04-01
Full Text Available Everyone has long known the benefits and effectiveness of biogas. Particularly, getting biogas from the agricultural waste is very promising. But, the question is if we can use such a useful and effective biogas at 100%. Today, we use only a half of the benefit, because to get the biogas we spend more energy than we get. In this regard, the work on the study of the biogas development is extremely important. The study of the biogas formation requires numerous experiments. This article analyzes the biogas mass transfer with the membrane purification and identification of the of mass transfer mechanisms through the membrane pores.
Mass transfer apparatus and method for separation of gases
Energy Technology Data Exchange (ETDEWEB)
Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.
2018-01-16
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES
Directory of Open Access Journals (Sweden)
A. G. Kulakov
2005-01-01
Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.
Heat and mass transfer enhancement in absorbing processes
International Nuclear Information System (INIS)
Hijikata, Kunio; Lee, S.K.
1993-01-01
The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)
Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei
2018-02-01
A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.
International Nuclear Information System (INIS)
Abdel-Aziz, M.S.M.; El-Shazly, A.H.; Farag, H.A.; Sedahmed, G.H.
2011-01-01
Highlights: → The work explores a new electrochemical reactor by using square rotating cylinders. → The results show that it is superior to the traditional circular rotating cylinder. → A dimensionless design equation for the new reactor was correlated. → The oxalic acid removal by the new reactor was succeeded and found promising. → The energy consumption per kg oxalic acid removed by the unit was calculated. - Abstract: Rates of mass transfer at a rotating square cylinder were measured by an electrochemical technique which involved measuring the limiting current of the cathodic reduction of K 3 Fe(CN) 6 in a large excess of NaOH solution. Variables studied were: cylinder rotation speed, physical properties of the solution and cylinder equivalent diameter. The data for the condition 1577 0.33 Re 0.45 For a given set of conditions the rate of mass transfer at the square rotating cylinder was found to be higher than that at the traditional circular rotating cylinder by an amount ranging from 47% to 200% depending on Re. The use of the square rotating cylinder electrode in removing oxalic acid from wastewater by anodic oxidation on Pb/PbO anode was examined and found to be promising.
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John
2014-01-16
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
International Nuclear Information System (INIS)
2015-01-01
The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately
Mass transfer parameters of celeriac during vacuum drying
Beigi, Mohsen
2017-04-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
Behaviour of and mass transfer at gas-evolving electrodes
Janssen, L.J.J.
1989-01-01
A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into
Modelling toluene oxidation : Incorporation of mass transfer phenomena
Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.
The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the
Mass transfer with chemical reaction in multiphase systems
International Nuclear Information System (INIS)
Alper, E.
1983-01-01
These volumes deal with the phenomenon of 'mass transfer with chemical reaction' which is of industrial, biological and physiological importance. In process engineering, it is encountered both in separation processes and in reaction engineering and both aspects are covered here in four sections: introduction; gas-liquid system; liquid-liquid system; and gas-liquid-solid system
Heat and mass transfer in the unsteady hydromagnetic free ...
African Journals Online (AJOL)
Heat and mass transfer in the unsteady hydromagnetic free-convection flow in a rotating binary fluid I. ... By imposing a time dependent perturbation on the constant plate temperature and concentration and assuming a differential approximation for the radiative flux, the coupled non linear problem is solved for the ...
Mass transfer analysis for terephthalic acid biodegradation by ...
African Journals Online (AJOL)
Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...
Mass transfer processes in crystalline aggregates containing a fluid phase
Visser, H.J.M.
1999-01-01
Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the
Mass transfer processes in crystalline aggregates containing a fluid phase
Visser, H.J.M.
1999-01-01
Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the simplest
MASS TRANSFER KINETICS AND EFFECTIVE DIFFUSIVITIES DURING COCOA ROASTING
Directory of Open Access Journals (Sweden)
Y. M. BAGHDADI
2017-01-01
Full Text Available The current studies investigated the effects of temperature and moisture addition on the mass transfer kinetics of cocoa nibs during roasting. Experiments were carried out by roasting 500 gm of cocoa nibs inside an air ventilated oven at three temperature levels (120°C, 140°C and 160°C under medium air flowrate for one hour. Two types of samples were prepared namely the raw and soaked nib samples. The soaked nib samples were prepared by soaking the raw nibs in 200 ml of water at room temperature for 5 and 10 hours. Mathematical modelling was carried out to model the mass transfer process using semi-empirical models. Modelling showed that both Page and two-term models were able to give close fitting between the experimental and predicted values. Effective diffusivity values were estimated in the order of magnitude of 10-5 m2/s for the mass transfer process. Results obtained from these studies fill the current knowledge gap on the mass transfer kinetics of cocoa roasting.
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
Kinetics and mass transfer phenomena in anaerobic granular sludge
Gonzalez-Gil, G.; Seghezzo, L.; Lettinga, G.; Kleerebezem, R.
2001-01-01
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (Vup). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (KS) for each
Heat and mass transfer during baking: product quality aspects
Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.
2005-01-01
Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
Modelling of heat and mass transfer processes in neonatology
Energy Technology Data Exchange (ETDEWEB)
Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
Modelling of heat and mass transfer processes in neonatology
International Nuclear Information System (INIS)
Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C
2008-01-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices
International Nuclear Information System (INIS)
Hara, Toru; Konarov, Aishuak; Mentbayeva, Almagul; Kurmanbayeva, Indira; Bakenov, Zhumabay
2015-01-01
Although sulfur has a high theoretical gravimetric capacity, 1672 mAh/g, its insulating nature requires a large amount of conducting additives: this tends to result in a low mass-loading of active material (sulfur), and thereby, a lower capacity than expected. Therefore, an optimal choice of conducting agents and of the method for sulfur/conducting-agent integration is critically important. In this paper, we report that the areal capacity of 4.9 mAh/cm 2 was achieved at sulfur mass loading of 4.1 mg/cm 2 by casting sulfur/polyacrylonitrile/ketjenblack (S/PAN/KB) cathode composite into carbon fiber paper. This is the highest value among published/reported ones even though it does not contain expensive nanosized carbon materials such as carbon nanotubes, graphene, or graphene derivatives, and competitive enough with the conventional LiCoO 2 -based cathodes (e.g., LiCoO 2 , <20 mg/cm 2 corresponding to <2.8 mAh/cm 2 ). Furthermore, the combination of sulfur/PAN-based composite and PAN-based carbon fiber paper enabled the sulfur-based composite to be used even in carbonate-based electrolyte solution that many lithium/sulfur battery researchers avoid the use of it because of severer irreversible active material loss than in electrolyte solutions without carbonate-based solutions, and even at the highest mass-loading ever reported (the more sulfur is loaded, the more decomposed sulfides deposit at an anode surface).
Bibliography on augmentation of convective heat and mass transfer
International Nuclear Information System (INIS)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report
Fem Formulation for Heat and Mass Transfer in Porous Medium
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
Mass and charge transfer within a floating water bridge
Fuchs, Elmar C.; Agostinho, Luewton L. F.; Eisenhut, Mathias; Woisetschläger, Jakob
2010-11-01
When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge 1-8. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the charge and mass transfer through the water bridge are investigated with schlieren visualization and laser interferometry. It can be shown that the addition of a pH dye increases the H+ and OH- production with subsequent electrolysis, whereas schlieren and interferometric methods reveal another mechanism where charge and mass transfer appear to be coupled. Whereas this mechanism seems to be responsible for the electrolysis-less charge and mass transfer in the water bridge, it is increasingly superseded by the electrochemical mechanism with rising conductivity. Thus it can be shown that a pH dye does only indirectly visualize the charge transfer in the water bridge since it is dragged along with the water flow like any other dye, and additionally promotes conventional electrochemical conduction mechanisms, thereby enhancing electrolysis and reducing the masscoupled charge transport and thus destabilizing the bridge.
Study of molecular iodine-epoxy paint mass transfer
Energy Technology Data Exchange (ETDEWEB)
Belval-Haltier, E [Inst. de Protection et Surete Nucleaire, IPSN, CEN Cadarache, St. Paul-lez-Durance (France)
1996-12-01
The mass transfer phenomena may have a significant influence on the quantity of I{sub 2} which could be released following a severe accident of a nuclear power plant and specially the mass transfer of iodine onto containment surfaces. So, the objective of the present work was to evaluate which phase limited the adsorption process of iodine onto gaseous epoxy paint under a range of conditions which may be relevant to a severe reactor accident. In this aim, a series of experiments was conducted in which the sorption kinetics of molecular iodine, labelled with {sup 131}I, was measured by monitoring continuously the accumulation of this species on the epoxy surface. For each test condition, the initial deposition velocity was determined and the corresponding gas phase mass transfer, kg, was estimated by using the heat transfer analogy for a laminar flow passing over a flat plate. Then, the surface reaction rate, Kr, was deduced from these two values. Experiments performed indicated that iodine adsorption onto epoxy paint is highly dependent on temperature, relative humidity of the carrier gas and moisture content of the painted coupon. In dry air flow conditions, the adsorption of iodine onto paint was found to increase with temperature and to be limited by the surface reaction rate, Kr. The I{sub 2} adsorption rate was found to increase with the humidity of carrier gas and in some studied conditions, the initial deposition velocity appeared to be controlled by gas phase mass transfer rather than surface interaction. The same phenomenon has been observed with an increase of the initial water content of the painted coupon. (author) 6 figs., 1 tab., 8 refs.
Mass transfer in stellar X-ray sources
International Nuclear Information System (INIS)
Verbunt, F.
1982-01-01
This thesis deals with mass transfer in the binary stars that emit X-rays. Optical observations on two sources are presented: 2A0311-227 and Cen X-4. The transferred matter will often enter a gaseous disk around the compact star, and spiral inwards slowly through this disk. The conditions for the formation of such a disk are investigated and the equations governing its structure are presented. Different models are discussed and it is concluded that different models lead to very similar results for those regions of the disk where gas pressure is more important than radiative pressure, and that these results agree fairly well with observations. No consistent model has been constructed as yet for the region where radiative pressure is dominant. Theoretically one predicts that the optical light emitted by a disk around a neutron star is mainly caused by X-ray photons from the immediate surroundings of the neutron star that hit the outer disk surface, are absorbed, thermalised, and re-emitted in the optical and ultraviolet regions of the spectrum. This expectation is verified by comparison with the collected observational data of low-mass X-ray binaries. Finally the author investigates which mechanism is responsible for the mass transfer in systems where the mass-losing star is less massive than the sun. (Auth.)
Evaporative mass transfer behavior of a complex immiscible liquid.
McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L
2008-09-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.
Heat and mass transfer in porous cavity: Assisting flow
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.
Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger
International Nuclear Information System (INIS)
Webb, R.L.; Perez-Blanco, H.
1986-01-01
This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement
Heat transfer from a tube bank with mass transfer in a duct
International Nuclear Information System (INIS)
Nouri, A.; Lavasani, A. M.
2005-01-01
An experimental investigation on heat transfer coefficient is present from three horizontal tubes in a vertical array in a duct for 500 D <6000. A mass transfer measuring technique based on psychrometry chart is used to determine heat transfer coefficient. The diameter of the tubes is 11 mm each spaced 40 mm apart and in-line pitch ratio varies in the range 0.055< D/W<0.22. The experimental results show that the Nusselt number of each tube increases by increasing D/W. Also the increase of the second the Nusselt number is more than that of the third one
Chaotic scattering in heavy-ion reactions with mass transfer
International Nuclear Information System (INIS)
Rodriguez Padron, Emilio; Guzman Martinez, Fernando
1998-01-01
The role of the mass transfer in heavy ion collisions is analyzed in the framework of a simple semi phenomenological model searching for chaotic scattering effects. The model couples the relative motion of the ions to a collective degree of freedom. The collective degree of freedom is identified by the mass asymmetry of the system. A Saxon-Woods potential is used for nucleus-nucleus interaction whiles a harmonic potential rules the temporal behaviour of the collective degree of freedom. This model shows chaotic scattering which could be an explanation for certain types of cross-section fluctuations observed in this kind of reactions
Measurements of Critical Heat Flux using Mass Transfer System
Energy Technology Data Exchange (ETDEWEB)
Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)
2016-05-15
In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.
Interferometric study of mass transfer enchancement by turbulence promoters
International Nuclear Information System (INIS)
Hanson, K.J.
1979-04-01
The use of small obstacles to thin the downstream mass transfer boundary layer has been investigated with a traveling, dual-beam laser interferometer. Plots of boundary layer thickness as a function of the distance from the leading edge of the electrode were developed to study the effects of obstacle shape, the distance of the obstacle from the electrode surface, and Reynolds number for the purposes of determining the optimum conditions to achieve high mass transfer rates. Parameters which characterize the efficiency of the obstacles, the minimum boundary layer thickness in the wake, and the recovery distance downstream of each obstacle have been introduced to quantitatively describe the results. In addition, the effect of local turbulence near the obstacles on the deposit morphology has been described
Transfer of momentum, mass and charge in heavy ion collisions
International Nuclear Information System (INIS)
Beck, F.; Feldmeier, H.; Dworzecka, M.
1979-01-01
A model for the first two phases of heavy ion collisions based on the transport of single nucleons through the window between the two scattering nuclei is described in some detail. It is pointed out that the model can account simultaneously for a large portion of the energy transfer from relative to intrinsic motion and for the observed variances in mass and charge numbers for reaction times up to the order of 10 -21 s. (P.L.)
MASS TRANSFER IN PORE STRUCTURES OF SUPPORTED CATALYSTS
Directory of Open Access Journals (Sweden)
F.R.C. Silva
1997-09-01
Full Text Available The effects of gas-solid interaction and mass transfer in fixed-bed systems of supported catalysts were analyzed for g -Al2O3 (support and Cu/g -Al2O3 (catalyst systems. Evaluations of the mass transfer coefficients in the macropores and of the diffusivity in the micropores, as formed by the crystallite agglomerates of the metallic phases, were obtained. Dynamic experiments with gaseous tracers permitted the quantification of the parameters based on models for these two pore structures. With a flow in a range of 18 cm3 s-1 to 39.98 cm3 s-1 at 45oC, 65oC and 100oC, mass transfer coefficients km =4.33x10-4 m s-1 to 7.38x10-4 m s-1 for macropore structures and diffusivities Dm =1.29x10-11 m2 s-1 to 5.35x10-11 m2 s-1 for micropore structures were estimated
Mass transfer models analysis for the structured packings
International Nuclear Information System (INIS)
Suastegui R, A.O.
1997-01-01
The models that have been developing, to understand the mechanism of the mass transfer through the structured packings, present limitations for their application, existing then uncertainty in order to use them in the chemical industrial processes. In this study the main parameters used in the mass transfer are: the hydrodynamic of the bed of the column, the geometry of the bed, physical-chemical properties of the mixture and the flow regime of the operation between the flows liquid-gas. The sensibility of each one of these parameters generate an arduous work to develop right proposals and good interpretation of the phenomenon. With the purpose of showing the importance of these parameters mentioned in the mass transfer, this work is analyzed the process of absorption for the system water-air, using the models to the structured packings in packed columns. The models selected were developed by Bravo and collaborators in 1985 and 1992, in order to determine the parameters previous mentioned for the system water-air, using a structured packing built in the National Institute of Nuclear Research. In this work is showed the results of the models application and their discussion. (Author)
International Nuclear Information System (INIS)
Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi
2012-01-01
Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.
Yu, Yingchang; Lu, Chao; Zhang, Meining
2015-08-04
Herein, it is the first report that a cathodic electrochemiluminescence (ECL) resonance energy transfer (ERET) system is fabricated by layer-by-layer (LBL) electrostatic assembly of CoAl layered double hydroxide (LDH) nanosheets with a mixture of blue BSA-gold nanoclusters (AuNCs) and Ru(bpy)3(2+) (denoted as AuNCs@Ru) on an Au electrode. The possible ECL mechanism indicates that the appearance of CoAl-LDH nanosheets generates a long-range stacking order of the AuNCs@Ru on an Au electrode, facilitating the occurrence of the ERET between BSA-AuNC donors and Ru(bpy)3(2+) acceptors on the as-prepared AuNCs@Ru-LDH ultrathin films (UTFs). Furthermore, it is observed that the cathodic ECL intensity can be quenched efficiently in the presence of 6-mercaptopurine (6-MP) in a linear range of 2.5-100 nM with a detection limit of 1.0 nM. On the basis of these interesting phenomena, a facile cathodic ECL sensor has successfully distinguished 6-MP from other thiol-containing compounds (e.g., cysteine and glutathione) in human serum and urine samples. The proposed sensing scheme opens a way for employing the layered UTFs as a platform for the cathodic ECL of Ru(bpy)3(2+).
Mass transfer model for two-layer TBP oxidation reactions
International Nuclear Information System (INIS)
Laurinat, J.E.
1994-01-01
To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development
Proton Transfer Time-of-Flight Mass Spectrometer
Energy Technology Data Exchange (ETDEWEB)
Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-01
The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H_{3}O^{+}), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.
Dynamics of Mass Transfer in Wide Symbiotic Systems
de Val-Borro, Miguel; Karovska, M.; Sasselov, D.
2010-01-01
We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.
Dullaart, R. P. F.; de Vries, R.; Dallinga-Thie, G. M.; van Tol, A.; Sluiter, W. J.
Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP
Heat and mass transfer and hydrodynamics in swirling flows (review)
Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.
2017-02-01
Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.
Heat and mass transfers in the jets; Transferts de chaleur et de masse dans les jets
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
This day on the heat and mass transfers in the jets, was organized by the SFT (French Society of Thermic) to present the state of the art in the domain. Fifteen presentations allowed the participants to discuss about turbulent flows, simulation of fluid flow and jets impacts. (A.L.B.)
Investigating mass transfer in symbiotic systems with hydrodynamic simulations
de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.
2014-06-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.
Direct geoelectrical evidence of mass transfer at the laboratory scale
Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy
2012-10-01
Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.
Mass Transfer From Fundamentals to Modern Industrial Applications
Asano, Koichi
2006-01-01
This didactic approach to the principles and modeling of mass transfer as it is needed in modern industrial processes is unique in combining a step-by-step introduction to all important fundamentals with the most recent applications. Based upon the renowned author's successful new modeling method as used for the O-18 process, the exemplary exercises included in the text are fact-proven, taken directly from existing chemical plants. Fascinating reading for chemists, graduate students, chemical and process engineers, as well as thermodynamics physicists.
Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing
Arzymatov, B.; Deulin, E.
2016-07-01
A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.
Mass Transfer Model for a Breached Waste Package
International Nuclear Information System (INIS)
Hsu, C.; McClure, J.
2004-01-01
The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss
Mass transfer in porous media with heterogeneous chemical reaction
Directory of Open Access Journals (Sweden)
Souza S.M.A.G.Ulson de
2003-01-01
Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.
Membrane introduction proton-transfer-reaction mass spectrometry
International Nuclear Information System (INIS)
Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.
2002-01-01
Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)
Mass transfer effects in hygroscopic measurements of aerosol particles
Directory of Open Access Journals (Sweden)
M. N. Chan
2005-01-01
Full Text Available The tandem differential mobility analyzer (TDMA has been widely utilized to measure the hygroscopicity of laboratory-generated and atmospheric submicrometer particles. An important concern in investigating the hygroscopicity of the particles is if the particles have attained equilibrium state in the measurements. We present a literature survey to investigate the mass transfer effects in hygroscopicity measurements. In most TDMA studies, a residence time in the order of seconds is used for humidification (or dehumidification. NaCl and (NH42SO4 particles are usually used to verify the equilibrium measurements during this residence time, which is presumed to be sufficient for other particles. There have been observations that not all types of submicrometer particles, including atmospheric particles, attain their equilibrium sizes within this time scale. We recommend that experimentation with different residence times be conducted and that the residence time should be explicitly stated in future TDMA measurements. Mass transfer effects may also exist in the measurements of other properties related to the water uptake of atmospheric particles such as relative humidity dependent light scattering coefficients and cloud condensation nuclei activity.
Mass transfer of steels for FBR in sodium loop
International Nuclear Information System (INIS)
Susukida, Hiroshi; Yonezawa, Toshio; Ueda, Mitsuo; Imazu, Takayuki; Kiyokawa, Teruyuki.
1976-06-01
In order to grasp quantitatively the corrosion and mass transfer of steels for FBR in sodium loop and to establish their allowable stress value and corrosion rate, a special sodium loop for material testing was designed and fabricated and the steels were given 3010 hours exposing test in the sodium loop. This paper gives the outline of the sodium loop and the results of the test. (1) Carburization and a slight increase in weight were observed in the specimens of type 304 stainless steel exposed in the sodium loop for 3010 hours, while decarburization was observed in the specimens of 2 1/4 Cr-1 Mo steel. It is considered that these phenomena were caused by the downstream factor of the sodium loop. (2) A remarkable decrease of Charpy absorbed energy was observed in the specimens of type 304 stainless steel exposed in the sodium loop. It is considered that this resulted from the weakening of the grain boundary due to heat history and mass transfer. (3) The specimens exposed in the sodium loop must be washed by ultrasonic waves in a water bath after washing in alcohol. (auth.)
Heat and mass transfer in air-fed pressurised suits
International Nuclear Information System (INIS)
Tesch, K.; Collins, M.W.; Karayiannis, T.G.; Atherton, M.A.; Edwards, P.
2009-01-01
Air-fed pressurised suits are used to protect workers against contamination and hazardous environments. The specific application here is the necessity for regular clean-up maintenance within the torus chamber of fusion reactors. The current design of suiting has been developed empirically. It is, therefore, very desirable to formulate a thermo-fluids model, which will be able to define optimum designs and operating parameters. Two factors indicate that the modelling should be as comprehensive as possible. Firstly, the overall thermo-fluids problem is three-dimensional and includes mass as well as heat transfer. The fluid field is complex, bounded on one side by the human body and on the other by what may be distensible, porous and multi-layer clothing. In this paper, we report firstly the modelling necessary for the additional mass and heat transport processes. This involves the use of Fick's and Fourier's laws and conjugate heat transfer. The results of an initial validation study are presented. Temperatures at the outlet of the suits were obtained experimentally and compared with those predicted by the overall CFD model. Realistic three-dimensional geometries were used for the suit and human body. Calculations were for turbulent flow with single- and two-component (species) models
Lee, Jung Gil
2017-11-03
In order to improve water production of membrane distillation (MD), the development of high performance membrane having better mass transfer and enhancement of convection heat transfer in MD module have been continuously investigated. This paper presents the relationship between the heat and mass transfer resistance across the membrane and the performance improvement. Various ranges of mass transfer coefficient (MTC) from normal (0.3×10−6 to 2.1×10−6kg/m2sPa: currently available membranes) to high (>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer and convection heat transfer on the MD performance parameters including temperature polarization coefficient (TPC), mean permeate flux, and specific energy consumption were investigated in a direct contact MD (DCMD) configuration. Results showed that improving the MTC at the low ranges is more important than that at the high ranges where the heat transfer resistance becomes dominant and hence the convection heat transfer coefficient must be increased. Therefore, an effort on designing MD modules using feed and permeate spacers and controlling the membrane surface roughness to increase the convection heat transfer and TPC in the channel aiming to enhance the flux is required because the currently developed mass transfer has almost reached the critical point.
Investigation of wall mass transfer characteristics downstream of an orifice
International Nuclear Information System (INIS)
El-Gammal, M.; Ahmed, W.H.; Ching, C.Y.
2012-01-01
Highlights: ► Numerical simulations were performed for the mass transfer downstream of an orifice. ► The Low Reynolds Number K-ε turbulence model was used. ► The numerical results were in good agreement with existing experimental results. ► The maximum Sherwood number downstream of the orifice was significantly affected by the Reynolds number. ► The Sherwood number profile was well correlated with the turbulence kinetic energy profile close to the wall. - Abstract: Numerical simulations were performed to determine the effect of Reynolds number and orifice to pipe diameter ratio (d o /d) on the wall mass transfer rate downstream of an orifice. The simulations were performed for d o /d of 0.475 for Reynolds number up to 70,000. The effect of d o /d was determined by performing simulations at a Reynolds number of 70,000 for d o /d of 0.375, 0.475 and 0.575. The momentum and mass transport equations were solved using the Low Reynolds Number (LRN) K-ε turbulence model. The Sherwood number (Sh) profile downstream of the orifice was in relatively good agreement with existing experimental results. The Sh increases sharply downstream of the orifice, reaching a maximum within 1–2 diameters downstream of the orifice, before relaxing back to the fully developed pipe flow value. The Sh number well downstream of the orifice was in good agreement with results for fully developed pipe flow estimated from the correlation of . The peak Sh numbers from the simulations were higher than that predicted from and .
Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao
2017-08-01
Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.
On Two-Scale Modelling of Heat and Mass Transfer
International Nuclear Information System (INIS)
Vala, J.; Stastnik, S.
2008-01-01
Modelling of macroscopic behaviour of materials, consisting of several layers or components, whose microscopic (at least stochastic) analysis is available, as well as (more general) simulation of non-local phenomena, complicated coupled processes, etc., requires both deeper understanding of physical principles and development of mathematical theories and software algorithms. Starting from the (relatively simple) example of phase transformation in substitutional alloys, this paper sketches the general formulation of a nonlinear system of partial differential equations of evolution for the heat and mass transfer (useful in mechanical and civil engineering, etc.), corresponding to conservation principles of thermodynamics, both at the micro- and at the macroscopic level, and suggests an algorithm for scale-bridging, based on the robust finite element techniques. Some existence and convergence questions, namely those based on the construction of sequences of Rothe and on the mathematical theory of two-scale convergence, are discussed together with references to useful generalizations, required by new technologies.
On Two-Scale Modelling of Heat and Mass Transfer
Vala, J.; Št'astník, S.
2008-09-01
Modelling of macroscopic behaviour of materials, consisting of several layers or components, whose microscopic (at least stochastic) analysis is available, as well as (more general) simulation of non-local phenomena, complicated coupled processes, etc., requires both deeper understanding of physical principles and development of mathematical theories and software algorithms. Starting from the (relatively simple) example of phase transformation in substitutional alloys, this paper sketches the general formulation of a nonlinear system of partial differential equations of evolution for the heat and mass transfer (useful in mechanical and civil engineering, etc.), corresponding to conservation principles of thermodynamics, both at the micro- and at the macroscopic level, and suggests an algorithm for scale-bridging, based on the robust finite element techniques. Some existence and convergence questions, namely those based on the construction of sequences of Rothe and on the mathematical theory of two-scale convergence, are discussed together with references to useful generalizations, required by new technologies.
Prediction of heat and mass transfer in innovative nuclear reactors
International Nuclear Information System (INIS)
Ambrosini, W.; Forgione, N.; Manfredini, A.; Oriolo, F.
2000-01-01
This paper proposes a short review of the different forms adopted to express the analogy between heat and mass transfer for application in correlating data from condensation and evaporation experiments. In particular, the assumptions at the basis of the various forms presented by classical textbooks as well as recent research work are qualitatively discussed, proposing a unified treatment of the different models. On this background, the results of the application of one of the considered forms of the analogy to a problem having relevance for nuclear reactor safety are then discussed. The work performed in this frame is related to condensation on finned tube heat exchangers, proposed as key components in passive containment cooling systems adopted in some innovative reactor concepts. The application of the model to the experimental dana also allowed to obtain interesting information about the effect of different parameters on the cooling capabilities of this compact heat exchangers. (author)
Mass transfer inside oblate spheroidal solids: modelling and simulation
Directory of Open Access Journals (Sweden)
J. E. F. Carmo
2008-03-01
Full Text Available A numerical solution of the unsteady diffusion equation describing mass transfer inside oblate spheroids, considering a constant diffusion coefficient and the convective boundary condition, is presented. The diffusion equation written in the oblate spheroidal coordinate system was used for a two-dimensional case. The finite-volume method was employed to discretize the basic equation. The linear equation set was solved iteratively using the Gauss-Seidel method. As applications, the effects of the Fourier number, the Biot number and the aspect ratio of the body on the drying rate and moisture content during the process are presented. To validate the methodology, results obtained in this work are compared with analytical results of the moisture content encountered in the literature and good agreement was obtained. The results show that the model is consistent and it may be used to solve cases such as those that include disks and spheres and/or those with variable properties with small modifications.
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Devices with extended area structures for mass transfer processing of fluids
TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.
2009-04-21
A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.
Influence of the boundary conditions on heat and mass transfer in spacer-filled channels
Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.
2017-11-01
The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels
Kinetics and mass-transfer phenomena in anaerobic granular sludge.
Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R
2001-04-20
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.
Collective charge and mass transfer in heavy ion reactions
International Nuclear Information System (INIS)
Hahn, J.
1982-01-01
In this thesis the dynamics of the charge and mass asymmetry degree of freedom was studied in the framework of the fragmentation theory by means of a time-dependent Schroedinger equation. New is the introduction of a friction potential which describes the coupling of these collective degrees of freedom to the not explicitely treated other collective respectively internal degrees of freedom. Thereby it was shown that the measured widths of the isobaric charge distributions in the 86 Kr+sup(92,98)Mo reaction can be explained mainly by the quantum mechanical uncertainty in the charge asymmetry degree of freedom. The charge equilibration occurring at the begin of a deep inelastic collision can therefore by considered as a quantum mechanical, collective, damped motion which is connected with the excitation of the isovector giant dipole resonance of the nucleus-nucleus system. The study of the mass transfer in the reactions 132 Xe+ 120 Sn and 86 Kr+ 166 Er shows, how important at the begin of a deep inelastic collision shell structures and their conservation are for a large part of the reaction, even if the elemental distribution show no maxima in the region of magic shell closures. The experimental width are up to 10 MeV/A well described under conservation of the shell structure. (orig./HSI) [de
Mass balance model parameter transferability on a tropical glacier
Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg
2013-04-01
The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer
Deviations from mass transfer equilibrium and mathematical modeling of mixer-settler contactors
International Nuclear Information System (INIS)
Beyerlein, A.L.; Geldard, J.F.; Chung, H.F.; Bennett, J.E.
1980-01-01
This paper presents the mathematical basis for the computer model PUBG of mixer-settler contactors which accounts for deviations from mass transfer equilibrium. This is accomplished by formulating the mass balance equations for the mixers such that the mass transfer rate of nuclear materials between the aqueous and organic phases is accounted for. 19 refs
Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics
Energy Technology Data Exchange (ETDEWEB)
Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)
2016-04-15
It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.
Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics
Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan
2018-06-01
Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.
Characterization and Upscaling of Pore Scale Hydrodynamic Mass Transfer
Gouze, P.; Roubinet, D.; Dentz, M.; Planes, V.; Russian, A.
2017-12-01
Imaging reservoir rocks in 3D using X-ray microtomography with spatial resolution ranging from about 1 to 10 mm provides us a unique opportunity not only to characterize pore space geometry but also for simulating hydrodynamical processes. Yet, pores and throats displaying sizes smaller than the resolution cannot be distinguished on the images and must be assigned to a so called microporous phase during the process of image segmentation. Accordingly one simulated mass transfers caused by advection and diffusion in the connected pores (mobile domain) and diffusion in the microporous clusters (immobile domain) using Time Domain Random Walk (TDRW) and developed a set of metrics that can be used to monitor the different mechanisms of transport in the sample, the final objective being of proposing a simple but accurate upscaled 1D model in which the particle travel times in the mobile and immobile domain and the number of mobile-immobile transfer events (called trapping events) are independently distributed random variables characterized by PDFs. For TDRW the solute concentration is represented by the density distribution of non-interacting point-like solute particles which move due to advection and dispersion. The set of metrics derives from different spatial and temporal statistical analyses of the particle motion, and is used for characterizing the particles transport (i) in the mobile domain in relation with the velocity field properties, (ii) in the immobile domain in relation with the structure and the properties of microporous phase and at the mobile-immobile interface. We specifically focused on how to model the trapping frequency and rate into the immobile domain in relation with the structure and the spatial distribution of the mobile-immobile domain interface. This thorough analysis of the particle motion for both simple artificial structures and real rock images allowed us to derive the parametrization of the upscaled 1D model.
Yang, Wulin; Watson, Valerie J; Logan, Bruce E
2016-08-16
Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.
Mass transfer of nonvolatile organic compounds from porous media
Khachikian, Crist Simon
This thesis presents data pertaining to the mass transfer of nonvolatile organic compounds from porous media. Physical properties of porous solids, including surface and pore areas, are studied. Information from these studies, along with dissolution data, are used to develop correlations relating the Sherwood Number to the Peclet Number. The contaminant used in this study is naphthalene; the solids used are Moffett Sand (MS), Borden Sand (BS), Lampblack (LB), and Silica Gel (SG). Surface area results indicate that contamination at 0.1% reduces the area of MS and SG by 48 and 37%, respectively, while contamination at 1.0% reduces the area of MS, BS, and SG by 59, 56, and 40%, respectively. Most of the reduction in area originates in the reduction of pore areas and volumes, where the contaminant precipitates. After long-term storage, surface areas did not recover to their original values due to an "irreversible" fraction of naphthalene. Treatment with heat or solvent or both was necessary to completely remove the contamination. For lampblack, treatment at 100°C decreased areas while treatment at 250°C increased them. Treatment at 250°°C probably opened pores while that at 100°C may have blocked more pores by redistributing the tar-like contaminant characteristic of lampblack. Contaminated MS and SG solids are packed in columns through which water is pumped. The effluent began at a relatively high concentration (˜70% of solubility) for both samples. However, SG column concentrations dropped quickly, never achieving steady state while the MS samples declined more gradually towards steady state. The high pore areas of the SG samples are believed to cause this behavior. The steady state portion of the MS dissolution history is used to develop mass transfer correlations. The correlation in this study differs from previous work in two major ways: (1) the exponent on the Pe is three times larger and (2) the limiting Sh is 106 times smaller. These results suggest that
Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and concentration profiles for a wide range of processes and conditions, for both film and penetration model. With the aid of this mass transfer model it is demonstrated that the absorption rates in syst...
Heterogeneous studies in pulping of wood: Modelling mass transfer of alkali
Simão, João P. F.; Egas, Ana P. V.; Carvalho, M. Graça; Baptista, Cristina M. S. G.; Castro, José Almiro A. M.
2008-01-01
In this paper a heterogeneous lumped parameter model is proposed to describe the mass transfer of effective alkali during the kraft pulping of wood. This model, based on the spatial mean of the concentration profile of effective alkali along the chip thickness, enables the estimation of the effective diffusion coefficient that characterizes the internal resistance to mass transfer and the contribution of the external resistance to mass transfer which has often been neglected. http://www.sc...
Curran, Francis M.; Haag, Thomas W.; Raquet, John F.
1989-01-01
Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.
DEFF Research Database (Denmark)
Nielsen, Anders Michael; Nielsen, Lars Peter; Feilberg, Anders
2009-01-01
A membrane inlet mass spectrometer (MIMS) was used in combination with a developed computer model to study and improve management of a biofilter (BF) treating malodorous ventilation air from a meat rendering facility. The MIMS was used to determine percentage removal efficiencies (REs) of selected...... sulfur gases and to provide toluene retention profiles for the model to determine the air velocity and overall mass-transfer coefficient of toluene. The mass-transfer coefficient of toluene was used as a reference for determining the mass transfer of sulfur gases. By presenting the model to scenarios...... of a filter bed with a consortium of effective sulfur oxidizers, the most likely mechanism for incomplete removal of sulfur compounds from the exhaust air was elucidated. This was found to be insufficient mass transfer and not inadequate bacterial activity as anticipated by the manager of the BF. Thus...
Heat and mass transfer in a vertical flue ring furnace
Energy Technology Data Exchange (ETDEWEB)
Jacobsen, Mona
1997-12-31
The main emphasis of this thesis was the design of a mathematical simulation model for studying details in the baking of anodes in the Hydro Aluminium anode baking furnace. The change of thermal conductivity, density, porosity and permeability during heat treatment was investigated. The Transient Plane Source technique for measuring thermal conductivity of solids was used on green carbon materials during the baking process in the temperature range 20-600 {sup o}C. Next, change of mass, density, porosity and permeability of anode samples were measured after being baked to temperatures between 300 and 1200 {sup o}C. The experimental data were used for parameter estimation and verification of property models for use in the anode baking models. Two distinct mathematical models have been modified to study the anode baking. A transient one-dimensional model for studying temperature, pressure and gas evolution in porous anodes during baking was developed. This was extended to a two-dimensional model incorporating the flue gas flow. The mathematical model which included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation and turbulent channel flow, was developed by source code modification of the Computational Fluid Dynamics code FLUENT. The two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke and anode was used for studying the effect of different firing strategies, raw materials properties and packing coke thickness. The model proved useful for studying the effects of heating rate, geometry and anode properties. 152 refs., 73 figs, 11 tabs.
Micro-scale mass-transfer variations during electrodeposition
Energy Technology Data Exchange (ETDEWEB)
Sutija, D.P.
1991-08-01
Results of two studies on micro-scale mass-transfer enhancement are reported: (1) Profiled cross-sections of striated zinc surfaces deposited in laminar channel flow were analyzed with fast-fourier transforms (FFT) to determine preferred striation wavelengths. Striation frequency increases with current density until a minimum separation between striae of 150 {mu}m is reached. Beyond this point, independent of substrate used, striae meld together and form a relatively smooth, nodular deposit. Substrates equipped with artificial micron-sized protrusions result in significantly different macro-morphology in zinc deposits. Micro-patterned electrodes (MPE) with hemispherical protrusions 5 {mu}m in diameter yield thin zinc striae at current densities that ordinarily produce random nodular deposits. MPEs with artificial hemi-cylinders, 2.5 {mu}m in height and spaced 250 {mu}m apart, form striae with a period which matches the spacing of micron-sized ridges. (2) A novel, corrosion-resistant micromosaic electrode was fabricated on a silicon wafer. Measurements of mass-transport enhancement to a vertical micromosaic electrode caused by parallel bubble streams rising inside of the diffusion boundary-layer demonstrated the presence of two co-temporal enhancement mechanisms: surface-renewal increases the limiting current within five bubble diameters of the rising column, while bubble-induced laminar flows cause weaker enhancement over a much broader swath. The enhancement caused by bubble curtains is predicted accurately by linear superposition of single-column enhancements. Two columns of smaller H{sub 2} bubbles generated at the same volumetric rate as a single column of larger bubbles cause higher peak and far-field enhancements. 168 refs., 96 figs., 6 tabs.
Mass transfer kinetics during osmotic dehydration of pomegranate arils.
Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati
2011-01-01
The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.
Lee, Jung Gil; Jeong, Sanghyun; Alsaadi, Ahmad Salem; Ghaffour, NorEddine
2017-01-01
(>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer
Zhang, Xiaoyuan; He, Weihua; Yang, Wulin; Liu, Jia; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.
2016-01-01
The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.
Sirotkin, N. A.; Titov, V. A.
2018-04-01
An atmospheric-pressure dc discharge in air ( i = 10-50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2( C 3Π u → B 3Π g , 0-2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.
Mathematical micro-model of a solid oxide fuel cell composite cathode
International Nuclear Information System (INIS)
Kenney, B.; Karan, K.
2004-01-01
In a solid oxide fuel cell (SOFC), the cathode processes account for a majority of the overall electrochemical losses. A composite cathode comprising a mixture of ion-conducting electrolyte and electron-conducting electro-catalyst can help minimize cathode losses provided microstructural parameters such as particle-size, composition, and porosity are optimized. The cost of composite cathode research can be greatly reduced by incorporating mathematical models into the development cycle. Incorporated with reliable experimental data, it is possible to conduct a parametric study using a model and the predicted results can be used as guides for component design. Many electrode models treat the cathode process simplistically by considering only the charge-transfer reaction for low overpotentials or the gas-diffusion at high overpotentials. Further, in these models an average property of the cathode internal microstructure is assumed. This paper will outline the development of a 1-dimensional SOFC composite cathode micro-model and the experimental procedures for obtaining accurate parameter estimates. The micro-model considers the details of the cathode microstructure such as porosity, composition and particle-size of the ionic and electronic phases, and their interrelationship to the charge-transfer reaction and mass transport processes. The micro-model will be validated against experimental data to determine its usefulness for performance prediction. (author)
Energy Technology Data Exchange (ETDEWEB)
Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)
1996-04-01
Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.
Compact Rare Earth Emitter Hollow Cathode
Watkins, Ronald; Goebel, Dan; Hofer, Richard
2010-01-01
A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this
Sigma Orionis E as a mass-transfer binary system
International Nuclear Information System (INIS)
Hesser, J.E.; Walborn, N.R.; Ugarte, P.
1976-01-01
It is stated that this star, which was the first He-rich B star to be discovered, has been found to show a very broad and rapidly varying Hα emission feature. Spectroscopic, spectrophotometric and photometric observations made independently in December 1974 showed the star to be variable, with a period of about 1.19 days. Incomplete phase coverage in the data, as well as uncertainty about the nature of the periodicity, has, however, hampered the development of a model to account for the observations. The results of new continuous uvbyβ photometry carried out in December 1975 and January 1976 are here given, together with some possible interpretations. The observations were made using a single channel refrigerated pulse counting 1P21 photometer on the 0.4 m telescope at the Cerro Tololo Inter-American Observatory. Differential photometric techniques were employed. The comparison star was HR1861, a uvby standard star with colours nearly identical with those of sigma Ori E. The resultant light and colour curves are reproduced, and show two distinct minima, which are discussed. An improved estimate of the period was obtained, and comparison with earlier data indicated that the period is reasonably stable over a two to three year interval. Some characteristics of the rather peculiar light curves are pointed out. The data are interpreted in terms of a mass transfer binary in which a collapsed white dwarf is surrounded by a rapidly rotating accretion disk containing a uv bright spot with energy provided by the impinging stream of gas from the other star. If this model is correct, high frequency optical monitoring might provide additional information. The implications of the model for current theories of stellar evolution in massive binaries are thought to be sufficiently significant to justify further extensive observations. (U.K.)
Mass and heat transfer on B7 ordered packing in hydrogen isotope separation by distillation
International Nuclear Information System (INIS)
Croitoru, Cornelia; Pop, Floarea; Titescu, Gheorghe; Stefanescu, Ioan; Trancota, Dan; Peculea, Marius
2002-01-01
This work presents theoretical and experimental data referring to mass and heat transfer on B7 ordered packing in deuterium isotope separation by distillation. The first part is devoted to the study of mass transfer in hydrogen isotopic distillation while the second one treats the mass and heat transfer in water isotopic distillation. A stationary mathematical model for the mass and heat transfer was developed based on multitubular column model with wet wall. This model allowed the calculation starting from theoretical data of the ordered packing efficiency, expressed by the transfer unit height, TUH. Also, from theoretical data the mass and heat transfer coefficients were determined. A test of the mathematical model was performed with the experimental data obtained from two laboratory installations for hydrogen isotope separation by distillation. From the first installation, experimental data concerning the B7 ordered packing efficiency were obtained for the deuterium separation by cryogenic distillation at the - 250 deg C level. With the second one data referring to the mass and heat transfer on the same packing were obtained for the deuterium separation by water distillation under vacuum at the 60 deg C level. The values of TUH, mass and heat transfer coefficients as theoretically evaluate and experimentally checked are in agreement with the respective values obtained in separation processes in chemical industry. This is the fact which endorses utilization of the model of multitubular column with wet wall for describing the transfer processes in distillation columns equipped with B7 ordered packing
Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems
Sun, Ning
Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface
Mixing and mass transfer in a pilot scale U-loop bioreactor
DEFF Research Database (Denmark)
Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay
2017-01-01
A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients we...
Racz, I.G.; Groot Wassink, J.; Klaassen, R.
1986-01-01
Concentration polarisation, decreasing the efficiency in membrane separation processes, can be reduced by increasing mass transfer between membrane surface and bulk of the feed stream. Analogous to techniques used in plate heat exchangers efforts have been made to enhance mass transfer in a plate
Analysis of combined heat and mass transfer of water- Vapor in a ...
African Journals Online (AJOL)
In this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System {lJ program, inserting the proper initial and ...
Analysis of combined heat and mass transfer of water-vapor in a ...
African Journals Online (AJOL)
Jn this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System [J] program, inserting the proper initial and ...
Abstracts of international symposium on heat and mass transfer under plasma conditions
International Nuclear Information System (INIS)
1994-01-01
The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting
Abstracts of international symposium on heat and mass transfer under plasma conditions
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-12-31
The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.
Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and
Mass transfer with complex reversible chemical reactions. II: Parallel reversible chemical reactions
Versteeg, Geert; van Beckum, F.P.H.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and
Mass transfer with complex reversible chemical reactions. II: parallel reversible chemical reactions
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, van F.P.H.; van Swaaij, W.P.M.
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and
CO2 Mass transfer model for carbonic anhydrase-enhanced aqueous MDEA solutions
DEFF Research Database (Denmark)
Gladis, Arne Berthold; Deslauriers, Maria Gundersen; Neerup, Randi
2018-01-01
In this study a CO2 mass transfer model was developed for carbonic anhydrase-enhanced MDEA solutions based on a mechanistic kinetic enzyme model. Four different enzyme models were compared in their ability to predict the liquid side mass transfer coefficient at temperatures in the range of 298...
Marcelis, C.L.M.; Leeuwen, van M.; Polderman, H.G.; Janssen, A.J.H.; Lettinga, G.
2003-01-01
A mathematical model was developed in order to describe the mass transfer rate of dibenzothiophene within the oil droplet to the oil/water interface of droplets created in a stirred tank reactor. The mass transfer rate of dibenzothiophene was calculated for various complex hydrocarbon distillates
Simultaneous heat and mass transfer on oscillatory free convection boundary layer flow
International Nuclear Information System (INIS)
Hossain, M.A.
1985-11-01
The problem of simultaneous heat and mass transfer in two-dimensional free convection from a semi-infinite vertical flat plate is investigated. An integral method is used to find a solution for zero wall velocity and for a mass transfer velocity at the wall with small-amplitude oscillatory wall temperature. Low and high-frequency solutions are developed separately and are discussed graphically with the effects of the parameters Gr (the Grashof number for heat transfer), Gc (the Grashof number for mass transfer) and Sc (the Schmidt number) for Pr=0.71 representing aid at 20 deg. C. (author)
Mass transfer Simulation of Two-dimensional Natural Convection of Mixture Layer in an IVR
Energy Technology Data Exchange (ETDEWEB)
Kim, Su-Hyeon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
This study is focusing on the angle dependent heat flux distribution at the reactor vessel plenum due to mixture layer natural convection experiment. We simulated heat transfer using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. An S-bend shaped copper is used as the volumetric heat source, which is simulated as a heater in previous heat transfer studies. The advantage of mass transfer experiment is the achievement of the high buoyancy condition similar to reactor vessel because of high Pr. This study performed mass transfer experiment using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. The experimental result was compared with previous 2D study (SIGMA CP)
Determination and correlation of mass transfer coefficients in a stirred cell
International Nuclear Information System (INIS)
Herranz, J.; Bloxom, S.R.; Keeler, J.B.; Roth, S.R.
1975-01-01
In the proposed Molten Salt Breeder Reactor flowsheet, a fraction of the rare earth fission products is removed from the fuel salt in mass transfer cells. To obtain design parameters for this extraction, the effect of cell size, blade diameter, phase volume, and agitation rate on the mass transfer for a high density ratio system (mercury/water) in nondispersing square cross section contactors was determined. Aqueous side mass transfer coefficients were measured by polarography over a wide range of operating conditions. Correlations for the experimental mass transfer coefficients as functions of the operating parameters are presented. Several techniques for measuring mercury-side mass transfer coefficients were evaluated and a new one is recommended
Mass transfer in electromembrane extraction - The link between theory and experiments
DEFF Research Database (Denmark)
Huang, Chuixiu; Jensen, Henrik; Seip, Knut Fredrik
2016-01-01
typically been combined with chromatography, mass spectrometry, and electrophoresis for analyte separation and detection. At the moment, close to 125 research papers have been published with focus on electromembrane extraction. Electromembrane extraction is a hybrid technique between electrophoresis....... This review summarizes recent efforts to describe the fundamentals of mass transfer in electromembrane extraction, and aim to give an up-to-date understanding of the processes involved....... and liquid–liquid extraction, and the fundamental principles for mass transfer have only partly been investigated. Thus, although there is great interest in electromembrane extraction, the fundamental principle for mass transfer has to be described in more detail for the scientific acceptance of the concept...
Impact of kinetic mass transfer on free convection in a porous medium
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
Mass transfer effects in feeder flow-accelerated corrosion wall thinning
International Nuclear Information System (INIS)
Pietralik, J.
2008-01-01
Flow conditions play a dominant role in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, flow conditions determine the local distribution of wall thinning. Recent plant data of feeders and laboratory tests confirms that there is a close relationship between local flow conditions, expressed by mass transfer coefficient, and FAC rate in CANDU feeder bends. The knowledge of local effects can be useful for minimizing the number of inspected components, predicting the location of the highest FAC rate for a given piping component, and determining what components or feeders should be replaced. A similar evaluation applies also to FAC in heat transfer equipment such as heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local mass transfer parameters. For FAC where the flow is dominant, the FAC rate is proportional to mass flux of ferrous ions. The mass flux is the product of the mass transfer coefficient and the concentration difference, or degree of saturation. The mass transfer coefficient describes the intensity of the transport of corrosion products (ferrous ions) from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate in the mass-transfer controlled FAC. The degree of saturation reduces the mass flux, thus reducing the FAC rate. This effect can be significant in long piping, e.g., in outlet feeders. The paper presents plant and laboratory evidence for the relationship between local mass transfer conditions and the FAC rate. It shows correlations for mass transfer coefficient in components that are highly susceptible to FAC and most important flow parameters that affect mass transfer coefficient. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)
Turbulent heat/mass transfer at oceanic interfaces
Energy Technology Data Exchange (ETDEWEB)
Enstad, Lars Inge
2005-07-01
The thesis studies heat/mass transfer and uses various simulation techniques. A numerical method has been developed. 4 papers which describes the work, are included. In the first paper we look at such flow configuration where the flow is driven by a constant pressure gradient and the interface is cooled from above. Papers 2 and 3. 2: The effect of stable density stratification on turbulent vortical structures near an atmosphere-ocean interface driven by low wind shear. 3: Low shear turbulence structures beneath a gas-liquid interface under neutral and stable stratified conditions. A well known feature of the upper layer of the ocean is the presence of counter-rotating streamwise vorticity, so called Langmuir circulation. Earlier numerical investigations show that similar vortex structures appear on small scale induced by shear instability only. Short wave solar radiation may create a stable situation which affects the turbulence near the interface. In these papers we investigate such a flow situation by employing a uniform and constant shear stress at the interface together with a similar heat flux into the interface. In both articles we also use a two-point correlation to give a statistical representation of the streamwise vorticity. The spatial extent and intensity are decreased by stable stratification. In addition, in article 3, we find that the Reynolds stress is damped by stable stratification. This leads to an increased mean velocity since decreased Reynolds stress is compensated by a larger mean velocity gradient. The cospectra of the Reynolds stress in the spanwise direction show that the production of Reynolds stress is decreased at lower wave numbers and thus shifted to higher wave numbers in the presence of stable stratification. The streak structure created by the streamwise vorticity is disorganized by stable stratification. Article 4: A numerical study of a density interface using the General Ocean Turbulence Model (GOTM) coupled with a Navier Stokes
Brusseau, Mark L.; Guo, Zhilin
2018-01-01
It is evident based on historical data that groundwater contaminant plumes persist at many sites, requiring costly long-term management. High-resolution site-characterization methods are needed to support accurate risk assessments and to select, design, and operate effective remediation operations. Most subsurface characterization methods are generally limited in their ability to provide unambiguous, real-time delineation of specific processes affecting mass-transfer, transformation, and mass removal, and accurate estimation of associated rates. An integrated contaminant elution and tracer test toolkit, comprising a set of local-scale groundwater extraction-and injection tests, was developed to ameliorate the primary limitations associated with standard characterization methods. The test employs extended groundwater extraction to stress the system and induce hydraulic and concentration gradients. Clean water can be injected, which removes the resident aqueous contaminant mass present in the higher-permeability zones and isolates the test zone from the surrounding plume. This ensures that the concentrations and fluxes measured within the isolated area are directly and predominantly influenced by the local mass-transfer and transformation processes controlling mass removal. A suite of standard and novel tracers can be used to delineate specific mass-transfer and attenuation processes that are active at a given site, and to quantify the associated mass-transfer and transformation rates. The conceptual basis for the test is first presented, followed by an illustrative application based on simulations produced with a 3-D mathematical model and a brief case study application.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Mass-transfer characterization in a parallel-plate electrochemical reactor with convergent flow
International Nuclear Information System (INIS)
Colli, A.N.; Bisang, J.M.
2013-01-01
Highlights: • A convergent laminar flow enhances and becomes more uniform the mass-transfer rate. • The mass-transfer rate is increased under convergent turbulent flow conditions. • The mass-transfer rate under convergent laminar flow can be theoretically predicted. • A convergent duct improves the reactor behaviour and the concept is easily applicable. -- Abstract: A continuous reduction in the cross-section area is analysed as a means of improving mass-transfer in a parallel-plate electrochemical reactor. Experimental local mass-transfer coefficients along the electrode length are reported for different values of the convergent ratio and Reynolds numbers, using the reduction of ferricyanide as a test reaction. The Reynolds numbers evaluated at the reactor inlet range from 85 to 4600 with interelectrode gaps of 2 and 4 mm. The convergent flow improves the mean mass-transfer coefficient by 10–60% and mass-transfer distribution under laminar flow conditions becomes more uniform. The experimental data under laminar flow conditions are compared with theoretical calculations obtained by a computational fluid dynamics software and also with an analytical simplified model. A suitable agreement is observed between both theoretical treatments and with the experimental results. The pressure drop across the reactor is reported and compared with theoretical predictions
Heat and mass transfer and hydrodynamics in two-phase flows in nuclear power plants
International Nuclear Information System (INIS)
Styrikovich, M.A.; Polonskii, V.S.; Tsiklauri, G.V.
1986-01-01
This book examines nuclear power plant equipment from the point of view of heat and mass transfer and the behavior of impurities contained in water and in steam, with reference to real water regimes of nuclear power plants. The transfer processes of equipment are considered. Heat and mass transfer are analyzed in the pre-crisis regions of steam-generating passages with non-permeable surfaces, and in capillary-porous structures. Attention is given to forced convection boiling crises and top post-DNB heat transfer. Data on two-phase hydrodynamics in straight and curved channels are correlated and safety aspects of nuclear power plants are discussed
Molecular theory of mass transfer kinetics and dynamics at gas-water interface
International Nuclear Information System (INIS)
Morita, Akihiro; Garrett, Bruce C
2008-01-01
The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.
International Nuclear Information System (INIS)
Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui
2016-01-01
Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.
Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning; Yu, Xiqian; Senanayake, Sanjaya D; Cho, Sung-Jin; Kim, Kwang-Bum; Chung, Kyung Yoon; Yang, Xiao-Qing; Nam, Kyung-Wan
2014-12-24
Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy (TR-XRD/MS) techniques upon heating up to 600 °C. The TR-XRD/MS results indicate that the content of Ni, Co, and Mn significantly affects both the structural changes and the oxygen release features during heating: the more Ni and less Co and Mn, the lower the onset temperature of the phase transition (i.e., thermal decomposition) and the larger amount of oxygen release. Interestingly, the NMC532 seems to be the optimized composition to maintain a reasonably good thermal stability, comparable to the low-nickel-content materials (e.g., NMC333 and NMC433), while having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The origin of the thermal decomposition of NMC cathode materials was elucidated by the changes in the oxidation states of each transition metal (TM) cations (i.e., Ni, Co, and Mn) and their site preferences during thermal decomposition. It is revealed that Mn ions mainly occupy the 3a octahedral sites of a layered structure (R3̅m) but Co ions prefer to migrate to the 8a tetrahedral sites of a spinel structure (Fd3̅m) during the thermal decomposition. Such element-dependent cation migration plays a very important role in the thermal stability of NMC cathode materials. The reasonably good thermal stability and high capacity characteristics of the NMC532 composition is originated from the well-balanced ratio of nickel content to manganese and cobalt contents. This systematic study provides insight into the rational design of NMC-based cathode materials with a desired balance between thermal stability and high energy density.
Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes
Zhang, Fang
2012-11-01
Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.
Study on the mass transfer of oxygen in an electrolytic reduction process of ACP
International Nuclear Information System (INIS)
Park, Byung Heung; Park, Sung Bin; Seo, Chung Seok; Park, Seong Won
2005-01-01
The Advanced Spent Fuel Conditioning Process (ACP) is a molten-salt-based back-end fuel cycle technology developed at KAERI. The target fuel type for the process is the oxide fuel unloaded from PWRs which are the main prototype reactor commercially operating in Korea. The volume and the radiotoxicity of the spent fuel decrease to quarters of the initial volume and radiotoxicity after being reduced to metal forms and removing some elements into a molten salt. The reduction of the two properties improves the convenience in managing the spent fuels and makes it possible for disposal sites to be made the best use of. Metallization of the spent oxide fuels is accomplished in an electrolytic reduction cell where a molten LiCl is adopted as an electric medium and Li 2 O is added to increase the activity of the oxygen ion in the system. A porous magnesia filter, a SUS solid conductor, and the metal oxides to be reduced constitute a cathode and anodes are made of platinum. The only cation in the liquid phase is lithium at the first stage and the ion diffuses through the pores of the magnesia filter and then receives electrons to become a metal. The reduced lithium metal snatches oxygen from the metal oxides in the filter and transforms into lithium oxide which diffuses back to the molten salt phase leaving the reduced metal at the inside of the filter. The lithium oxide is dissociated to lithium and oxygen ions once it dissolves in the molten salt if the concentration is within the solubility limit. Hence the actual diffusing element is oxygen in an ionic state rather than the lithium oxide since there is no concentration gradient for the lithium ion to move on - the lithium ion is the main cation in the system though some alkali and alkaline-earth metals dissolve in the molten salt phase to be cations. The analysis of the mass transfer of oxygen in the electrolytic reduction process is, thus, of importance for the metallization process to be completely interpreted
Frumkin-Butler-Volmer theory and mass transfer
Soestbergen, van M.
2012-01-01
An accurate mathematical description of the charge transfer rate at electrodes due to an electro chemical reaction is an indispensable component of any electrochemical model. In the current work we use the generalized Frumkin-Butler-Volmer (gFBV) equation to describe electrochemical reactions, an
Fuzzy cluster quantitative computations of component mass transfer in rocks or minerals
International Nuclear Information System (INIS)
Liu Dezheng
2000-01-01
The author advances a new component mass transfer quantitative computation method on the basis of closure nature of mass percentage of components in rocks or minerals. Using fuzzy dynamic cluster analysis, and calculating restore closure difference, and determining type of difference, and assisted by relevant diagnostic parameters, the method gradually screens out the true constant component. Then, true mass percentage and mass transfer quantity of components of metabolic rocks or minerals are calculated by applying the true constant component fixed coefficient. This method is called true constant component fixed method (TCF method)
A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.
Geller, Aaron M; Mathieu, Robert D
2011-10-19
In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.
Heat and mass transfer intensification and shape optimization a multi-scale approach
2013-01-01
Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes. A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...
Mass transfer intensification of nanofluid single drops with effect of temperature
Energy Technology Data Exchange (ETDEWEB)
Saien, Javad; Zardoshti, Mahdi [Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)
2015-11-15
The hydrodynamics and mass transfer of organic nanofluid single drops in liquid-liquid extraction process were investigated within temperature range of 20 to 40 .deg. C. Nanofluid drops of toluene+acetic acid, containing surface modified magnetite nanoparticles (NPs) with concentration within the range of (0.0005-0.005) wt%, were conducted in aqueous continuous phase. The rate of solute mass transfer was generally enhanced with NPs until about 0.002wt%, and small drops benefited more. The enhancement reached 184.1% with 0.002 wt% of NPs at 40 .deg. C; however, adding more NPs led to the mass transfer to either remain constant or face a reduction, depending on the applied temperature. The mass transfer coefficient was nicely reproduced using a developed correlation for enhancement factor of molecular diffusivity as a function of Reynolds and Schmidt numbers.
Experimental assessment of heat and mass transfer of modular nozzles of cooling towers
Merentsov, N. A.; Lebedev, V. N.; Golovanchikov, A. B.; Balashov, V. A.; Nefed'eva, E. E.
2018-01-01
Data of experimental study of hydrodynamics, heat and mass transfer of modular nozzles of cooling towers and some comparative characteristics of the packed device with nozzles, which have wide industrial application, are given in the article.
Energy Technology Data Exchange (ETDEWEB)
Randrup, J.
1979-07-01
This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.
International Nuclear Information System (INIS)
Vorotyntsev, M.A.
1991-01-01
Key problems of turbulent mass transfer at a solid wall are reviewed: closure problem for the concentration field, information on wall turbulence, applications of microelectrodes to study the structure of turbulence, correlation properties of current fluctuations. (author). 26 refs
Xia, Peipei; Liu, Haiqing; Tian, Yang
2009-04-15
Direct and reversible electron transfer of myoglobin (Mb), for the first time, is achieved at nanopyramidal gold surface, which was fabricated by one-step electrodeposition, with redox formal potential of 0.21+/-0.01 V (vs. Ag/AgCl) and an apparent heterogeneous electron-transfer rate constant (k(s)) of 1.6+/-0.2 s(-1). Electrochemical investigation indicates that Mb is stably confined on the nanopyramidal gold surface and maintains electrocatalytic activity toward hydrogen peroxide (H(2)O(2)). The facilitated electron transfer combined with the intrinsic catalytical activity of Mb substantially construct the third-generation biosensor for H(2)O(2). The positive redox potential of Mb at the nanostructured gold electrode gives a strong basis for determination of H(2)O(2) with high selectivity. Besides this advantage, the present biosensor also exhibits quick response time, broad linear range, and good sensitivity. The dynamic detection linear range is from 1 microM to 1.4 mM with a detection limit of 0.5 microM at 3sigma. The striking analytical performance of the present biosensor, as well as the biocompatibility of gold nanostructures provided a potential for continuous, on-line detection of H(2)O(2) in the biological system.
Power generation by packed-bed air-cathode microbial fuel cells
Zhang, Xiaoyuan; Shi, Juan; Liang, Peng; Wei, Jincheng; Huang, Xia; Zhang, Chuanyi; Logan, Bruce E.
2013-01-01
(122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm
Katuri, Krishna; Kalathil, Shafeer; Ragab, Ala'a; Bian, Bin; AlQahtani, Manal Faisal; Pant, Deepak; Saikaly, Pascal
2018-01-01
Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.
Katuri, Krishna
2018-04-30
Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.
International Nuclear Information System (INIS)
Kritsuk, E.L.; Mishina, L.V.; Shegidevich, L.N.
1986-01-01
The hydrodynamically stabilized chemically nonequilibrium turbulent flow in a tube with the inert impermeable surface and constant specific heat flow on the wall is considered. The reversible homogeneous reaction of nitrogen dioxide dissociation 2NO 2 ↔ 2NO+O 2 takes place in the flow. Chemically equilibrium flow with homogeneous profile of temperature and concentration arrives into the channel inlet. After application of simplifying assumptions, the expressions for characteristics of heat and mass transfer have been written down, which are valid in the whole range of the flow parameter variation from frozen up to chemically equilibrium flow. An integral transformation method is suggested for a radial coordinate which allows a wall region to be extended, thereby essentially extending the step of integration. A solution in quadratures has been obtained for the heat and mass transfer problem in an inert fluid flow for the developed process section. The elimination method has been employed to solve the boundary-value second-kind problem for the function governing heat and mass transfer in a chemically nonequilibrium turbulent flow over the developed heat and mass transfer section. The results of calculations are presented
Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts
International Nuclear Information System (INIS)
Webb, S.; Itamura, M.
2004-01-01
Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt
The evolution of the mass-transfer functions in liquid Yukawa systems
Energy Technology Data Exchange (ETDEWEB)
Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2016-09-15
The results of analytic and numerical investigation of mass-transfer processes in nonideal liquid systems are reported. Calculations are performed for extended 2D and 3D systems of particles that interact with a screened Yukawa-type Coulomb potential. The main attention is paid to 2D structures. A new analytic model is proposed for describing the evolution of mass-transfer functions in systems of interacting particles, including the transition between the ballistic and diffusion regimes of their motion.
Mass transfer and slag-metal reaction in ladle refining : a CFD approach
Ramström, Eva
2009-01-01
In order to optimise the ladle treatment mass transfer modelling of aluminium addition and homogenisation time was carried out. It was stressed that incorporating slag-metal reactions into the mass transfer modelling strongly would enhance the reliability and amount of information to be analyzed from the CFD calculations. In the present work, a thermodynamic model taking all the involved slag metal reactions into consideration was incorporated into a 2-D fluid flow model of an argon stirr...
Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor
Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van
1995-01-01
A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by
Modeling of heat and mass transfer in lateritic building envelopes
International Nuclear Information System (INIS)
Meukam, Pierre
2004-10-01
The aim of the present work is to investigate the behavior of building envelopes made of local lateritic soil bricks subjected to different climatic conditions. The analysis is developed for the prediction of the temperature, relative humidity and water content behavior within the walls. The building envelopes studied in this work consist of lateritic soil bricks with incorporation of natural pozzolan or sawdust in order to obtain small thermal conductivity and low-density materials, and limit the heat transfer between the atmospheric climate and the inside environment. In order to describe coupled heat and moisture transfer in wet porous materials, the coupled equations were solved by the introduction of diffusion coefficients. A numerical model HMtrans, developed for prediction of beat and moisture transfer in multi-layered building components, was used to simulate the temperature, water content and relative humidity profiles within the building envelopes. The results allow the prediction of the duration of the exposed building walls to the local weather conditions. They show that for any of three climatic conditions considered, relative humidity and water content do not exceed 87% and 5% respectively. There is therefore minimum possibility of water condensation in the materials studied. The durability of building envelopes made of lateritic soil bricks with incorporation of natural pozzolan or sawdust is not strongly affected by the climatic conditions in tropical and equatorial regions. (author)
Mass transfer effects on vertical oscillating plate with heat flux
Directory of Open Access Journals (Sweden)
Muthucumaraswamy R.
2007-01-01
Full Text Available Theoretical solution of unsteady viscous incompressible flow past an infinite vertical oscillating plate with uniform heat flux and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The temperature from the plate to the fluid at an uniform rate and the mass is diffused uniformly. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle chemical reaction parameter, thermal Grashof number, mass Grashof number Schmidt number and time are studied. The solutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter.
Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan
2017-09-01
To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.
Energy Technology Data Exchange (ETDEWEB)
He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian
2017-12-01
The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.
Mass-transfer studies in an electrochemical reactor with a small interelectrode gap
International Nuclear Information System (INIS)
Colli, A.N.; Toelzer, R.; Bergmann, M.E.H.; Bisang, J.M.
2013-01-01
Highlights: • Turbulence promoters increase from two to eight times the mass-transfer coefficients. • Turbulence promoters become more uniform the mass-transfer distribution. • Expanded plastics with an open structure are appropriate as turbulence promoters. -- Abstract: This paper reports the distribution of the local mass-transfer coefficient along the electrode length for an electrochemical reactor with parallel-plate electrodes and narrow interelectrode gaps of 1 and 2.2 mm, using the reduction of ferricyanide as a test reaction. The studies were performed at different flow rates, Reynolds numbers ranging from 370 to 3700, with the empty reactor and also the interelectrode gap was filled with two types of expanded plastics and a woven plastic mesh as turbulence promoters. The effect of both the interelectrode gap and the partial placing of the turbulence promoter along the electrode length on the mass-transfer behaviour was also analyzed. In all cases the pressure drop across the reactor was measured. A more uniform distribution of the local mass-transfer coefficient, ±15% related to its mean value, and an important increase of the mean mass-transfer coefficient, enhancement factor ranging from 2 to 8, were observed, depending on the type of turbulence promoter, the volumetric flow rate, and the interelectrode gap
Mass transfer in liquid phase catalytic exchange column of trickle bed type
International Nuclear Information System (INIS)
Yamanishi, Toshihiko; Iwai, Yasunori; Okuno, Kenji
1995-09-01
The mechanism of mass transfer in a liquid phase catalytic exchange column was discussed for a trickle bed type. A new model has been proposed on the basis of this mass transfer mechanism; and several problems for the previous reported models were pointed out in the derivation of the model. An overall rate equation was first derived from the vapor-hydrogen exchange in the model. The mass transfer for the vapor-hydrogen exchange was decomposed to the following three steps: the mass transfer in a gas boundary layer on a catalyst particle; the mass transfer within the pores in the catalyst; and the chemical reaction on the surface of the catalyst. The water-vapor scrubbing process was considered as a series of the mass transfers in gas and liquid boundary layers on the wetted surfaces of the catalyst and packings or wall of the column. Significant subjects to be studied were proposed from the viewpoint of the validity of the model and the optimization of the column. (author)
Zhang, Fang
2011-02-01
Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.
Mass transfer and the period gap of cataclysmic variables
International Nuclear Information System (INIS)
Verbunt, F.
1984-01-01
Three different explanations for the period gap of cataclysmic variables are investigated in some detail, and compared with the observations. The static picture is ruled out; strong continued magnetic braking is shown to be unlikely; disrupted magnetic braking is shown to provide a good explanation. A simple derivation is given for the magnetic braking of a star as a function of the magnetic-field strength and the wind mass flux. A field strength of >= 100 gauss and a wind of 10 -10 Msub(solar mass) yr -1 are needed for the secondary of a cataclysmic variable to explain the braking. These values are rather high, but perhaps not unfeasible. (author)
International Nuclear Information System (INIS)
Huang, Binbin; Zhu, Yuanyuan; Li, Jing; Zeng, Guangming; Lei, Chao
2017-01-01
Highlights: • Thermodynamics of dissociative electron transfer to C–Cl bonds at Ag are studied. • The catalyzed dissociative electron transfer theory was proposed for the first time. • The adsorption of organic chlorides onto Ag plays a key role for dechlorination. • The catalytic property of Ag is ascribed to the lower of intrinsic barrier energy. • The relationship of electrocatalysis and molecular electrochemistry is indicated. - Abstract: The relationship between electrocatalysis and molecular electrochemistry for the reductive dechlorination of organic chlorides has been a central topic for decades. Herein, we try to reveal the catalytic property of silver electrode by investigating the thermodynamics of dissociative electron transfer (DET) to C–Cl bonds of polychloroethanes (PCAs) on both inert (GC) and catalytic (Ag) electrodes. By extending the “sticky” DET model reported by Savéant, we show that the catalyzed DET model can well describe the activation-driving force relationships for the electrocatalytic dechlorination on Ag, where in addition to the possible ion-dipole interations, the adsorption of chlorinated species onto Ag surface, which is found to play a fundamental role in the electrocatalysis process in this study, is introduced in the new developed DET model. In this work, we firstly report that the catalytic property of Ag electrode characterizing with drastically postive shift of reduction potential is ascribed to the lower of intrinsic barrier free energy, rather than the activation free energy, for the reductive dechlorination. Moreover, the intrinsic relationship of electrocatalysis and molecular electrochemistry is clearly indicated and quantitatively developed. These results may provide new insights in uncovering both the nature of catalytic property of Ag and the relationship of electrocatalysis and molecular electrochemistry for PCAs and other halocarbons.
Mass Transfer to Clean Bubbles at Low Turbulent Energy Dissipation.
Czech Academy of Sciences Publication Activity Database
Alves, S. S.; Vasconcelos, J.M.T.; Orvalho, Sandra
2006-01-01
Roč. 61, 4 (2006) , s. 1334-1337 ISSN 0009-2509 Grant - others:FEDER(PT) POCTI/EQU/47689/2002 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble * mass tranfer * turbulence Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.629, year: 2006
Heat and mass transfer involving droplets containing soluble solids
International Nuclear Information System (INIS)
Oscarson, J.L.; Briggs, D.E.
1977-01-01
The mass loss and temperature history of aqueous drops containing dissolved solids were measured under varying conditions of air velocity and temperature. The data taken from these drops were compared with the computer solution to a diffusional model. Very good agreement was obtained
Energy Technology Data Exchange (ETDEWEB)
Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)], E-mail: ogurler@uludag.edu.tr; Oz, H. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey); Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, GU2 7XX (United Kingdom)
2009-01-15
The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.
International Nuclear Information System (INIS)
Gurler, O.; Oz, H.; Yalcin, S.; Gundogdu, O.
2009-01-01
The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature
Energy Technology Data Exchange (ETDEWEB)
Koyama, Shigeru; Yu, Jian; Ishibashi, Akira
1999-07-01
In the face of the phase-out of HCFC22 for its effect on globe environment, the alternative refrigerant has been paid attention in the refrigeration and heat pump industry. In the present stage, it is found that any pure refrigerant is not a good substitute of HCFC22 for the system in use. The authors have to use binary or ternary refrigerant mixtures as the substitute to meet industrial requirement. But until now, although the heat transfer characteristics of the refrigerant mixtures can be measured in experiments and predicted in some degree, the mass transfer characteristics in condensation process, which is a main part in most systems, can not be clarified by both experimental and theoretical methods. In the present study a non-equilibrium model for condensation of binary refrigerant mixtures inside a horizontal microfin tube is proposed. In this model it is assumed that the phase equilibrium is only established at the vapor-liquid interface, while the bulk vapor and the bulk liquid are in non-equilibrium in the same cross section. The mass transfer characteristic in vapor core is obtained from the analogy between mass and momentum transfer. In the liquid layer, the mass fraction distribution is neglected, but the mass transfer coefficient is treated as infinite that can keep a finite value for the mass transfer rate in liquid phase. From the calculation results compared with the experimental ones for the condensation of HFC134a/HCFC123 and HCFC22/CFC114 mixtures, it is found that the calculated heat flux distribution along the tube axis is in good agreement with that of experiment, and the calculated values of condensing length agree well with the experimental ones. Using the present model, the local mass faction distribution, the diffusion mass transfer rate and the mass transfer characteristics in both vapor and liquid phase are demonstrated. From these results, the effect of mass transfer resistance on condensation heat transfer characteristics for binary
Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Day-Lewis, Fred [U.S. Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John [U.S. Geological Survey, Storrs, CT (United States)
2014-03-20
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van
1989-01-01
An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass
Intensification of mass transfer in wet textile processes by power ultrasound
Moholkar, V.S.; Nierstrasz, Vincent; Warmoeskerken, Marinus
2003-01-01
In industrial textile pre-treatment and finishing processes, mass transfer and mass transport are often rate-limiting. As a result, these processes require a relatively long residence time, large amounts of water and chemicals, and are also energy-consuming. In most of these processes, diffusion and
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and
Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD
DEFF Research Database (Denmark)
Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina
2017-01-01
Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for process development and scale up. In particular key process parameters such as mixing time and volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing...... and mass transfer performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time...... transfer coefficients were in accordance with the experimental data. This work illustrates the possibility of predicting the two phase fluid dynamic performance of an agitated pilot scale bioreactor using validated CFD models. These models can be applied to illustrate the effect of changing the physical...
DEFF Research Database (Denmark)
Nie, Jinzhe; Fang, Lei
2014-01-01
Laboratory experimental studies were conducted to investigate the mass transfer of contaminants through a total heat recovery unit with polymer membranes foils. The studies were conducted in twin climate chambers which simulated outdoor and indoor thermal climates. One manufacturd total heat...... chemical gases were used to simulate air contaminants. The concentrations of dosed contaminants in the supply and exhaust air upstream and downstream of the total heat recovery unit were measured with Multi-Gas Monitor Innova 1316 in real time. Experiment results showed that 5% to 9% of dosed contaminants...... could transfer from exhaust air to supply air through the enthalpy recovery unit. The mass transfer efficiency of contaminants was independent of the hygro-thermal differences between indoor and outdoor climate conditions. The mass transfer ratio of the chemical contaminants in the total heat recovery...
DEFF Research Database (Denmark)
Grathwohl, Peter; Haberer, Cristina; Ye, Yu
Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...
3D modelling of coupled mass and heat transfer of a convection-oven roasting process
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist
2013-01-01
A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations...... are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change...
Prediction of transpiration effects on heat and mass transfer by different turbulence models
International Nuclear Information System (INIS)
Bucci, M.; Sharabi, M.; Ambrosini, W.; Forgione, N.; Oriolo, F.; He, S.
2008-01-01
The paper reports the results of a study related to transpirating flows, stimulated by the interest that these phenomena, occurring in the presence of simultaneous heat and mass transfer, have for nuclear reactor applications. The work includes a summary and the follow-up of previous experimental and numerical investigations on filmwise condensation and falling film evaporation and of a recent review of different forms of the heat and mass transfer analogy. The particular objective here pursued is to compare transpiration effects as predicted by different turbulence models with classical suction and blowing multipliers based on stagnant layer theories, in the attempt to clarify their quantitative implications on the predicted mass transfer rates. A commercial and an in-house CFD code have been adopted for evaluating the heat and mass transfer rates occurring over a flat plate exposed to an air-vapour stream, with uniform bulk steam mass fraction and temperature boundary conditions at the wall. This simple configuration was purposely selected since it is a simplified representation of the test section of an experimental facility presently in operation at the University of Pisa. This allows a direct comparison between the heat and mass transfer coefficients predicted by CFD models and classical correlations for Nusselt and Sherwood numbers
Simulation of heat and mass transfer in boiling water with the Melodif code
International Nuclear Information System (INIS)
Freydier, P.; Chen, O.; Olive, J.; Simonin, O.
1991-04-01
The Melodif code is developed at Electricite de France, Research and Development Division. It is an eulerian two dimensional code for the simulation of turbulent two phase flows (a three dimensional code derived from Melodif, ASTRID, is currently being prepared). Melodif is based on the two fluid model, solving the equations of conservation for mass, momentum and energy, for both phases. In such a two fluid model, the description of interfacial transfers between phases is a crucial issue. The model used applies to a dominant continuous phase, and a dispersed phase. A good description of interfacial momentum transfer exists in the standard MELODIF code: the drag force, the apparent mass force... are taken into account. An important factor for interfacial transfers is the interfacial area per volume unit. With the assumption of spherical gas bubbles, an equation has been written for this variable. In the present wok, a model has been tested for interfacial heat and mass transfer in the case of boiling water: it is assumed that mass transfer is controlled by heat transfer through the latent massic energy taken in the phase that vaporizes (or condenses). This heat and mass transfer model has been tested in various configurations: - a cylinder with water flowing inside, is being heated. Boiling takes place near the wall, while bubbles migrating to the core of the flow recondense. This roughly simulates a sub-cooled boiling phenomenon. - a box containing liquid water is depressurized. Boiling takes place in the whole volume of the fluid. The Melodif code can simulate this configuration due to the implicitation of the relation between interphase mass transfer and the pressure variable
Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow
Energy Technology Data Exchange (ETDEWEB)
Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)
2014-12-15
Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in
Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow
International Nuclear Information System (INIS)
Kang, Chang Woo; Yang, Kyung Soo
2014-01-01
Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the
Heat and mass transfer in the HYLIFE ICF reactor cavity
International Nuclear Information System (INIS)
Glenn, L.A.
1981-01-01
A quasi-one dimensional method was developed for calculating transient, compressible, viscous flow across a complex array of tubes or jets. The method also accounts for the diffusion of radiation and for heat and mass exchange between the fluid and the jets. The application was to the impulsive crossflow of a lithium plasma through a close-packed annular arrangement of liquid lithium jets, a problem that arises in the design of inertial confinement fusion reactors. It was found that approximately 2/3 of the energy initially contained in the plasma will diffuse into the liquid jets, not including an additional 7-10% which will go towards jet surface vaporization. Nevertheless, the peak hoop stress in the first wall of the reactor appears to derive from direct impact of the plasma, rather than from the subsequent impact of the jets or fragments thereof. (orig.)
Heat and Mass Transfer with Condensation in Capillary Porous Bodies
Directory of Open Access Journals (Sweden)
Salah Larbi
2014-01-01
Full Text Available The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study.
Heat and mass transfer with condensation in capillary porous bodies.
Larbi, Salah
2014-01-01
The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study.
Numerical study of heat and mass transfer in inertial suspensions in pipes.
Niazi Ardekani, Mehdi; Brandt, Luca
2017-11-01
Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).
Numerical Study on Mass Transfer of a Vapor Bubble Rising in Very High Viscous Fluid
Directory of Open Access Journals (Sweden)
T. Kunugi
2014-09-01
Full Text Available This study focused on a bubble rising behavior in a molten glass because it is important to improve the efficiency of removal of bubbles from the molten glass. On the other hand, it is expected that some gas species which exists in a bubble are transferred into the molten glass through the bubble interface, i.e., the mass transfer, subsequently, it may cause a bubble contraction in the molten glass. In this paper, in order to understand the bubble rising behavior with its contraction caused by the mass transfer through the bubble interface in the very high viscous fluid such as the molten glass, a bubble contraction model has been developed. The direct numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver coupled with the mass transfer equation and the bubble contraction model regarding the mass transfer from the rising bubble in very high viscous fluid have been performed. Here, the working fluids were water vapor as the gas species and the molten glass as the very high viscous fluid. Also, the jump conditions at the bubble interface for the mass transfer were examined. Furthermore, the influence of the bubble contraction for the bubble rising compared to that in the water as a normal viscous fluid was investigated. From the result of the numerical simulations, it was found that the bubble rising behavior was strongly affected not only by the viscosity of the working fluid but also by the bubble contraction due to the mass transfer through the bubble interface.
Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column
International Nuclear Information System (INIS)
Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong
2015-01-01
Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k L a), interfacial area (a) and liquid side true mass transfer coefficient (k L ) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O 2 and chemical absorption of CO 2 in the column. The values of k L a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k L increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases
Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column
Energy Technology Data Exchange (ETDEWEB)
Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)
2015-02-15
Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k{sub L}a), interfacial area (a) and liquid side true mass transfer coefficient (k{sub L}) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O{sub 2} and chemical absorption of CO{sub 2} in the column. The values of k{sub L}a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k{sub L} increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases.
Calculation of the mass transfer coefficient for the combustion of a carbon particle
Energy Technology Data Exchange (ETDEWEB)
Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, P.le Tecchio 80, 80125 Napoli (Italy)
2010-01-15
In this paper we address the calculation of the mass transfer coefficient around a burning carbon particle in an atmosphere of O{sub 2}, N{sub 2}, CO{sub 2}, CO, and H{sub 2}O. The complete set of Stefan-Maxwell equations is analytically solved under the assumption of no homogeneous reaction in the boundary layer. An expression linking the oxygen concentration and the oxygen flux at the particle surface (as a function of the bulk gas composition) is derived which can be used to calculate the mass transfer coefficient. A very simple approximate explicit expression is also given for the mass transfer coefficient, that is shown to be valid in the low oxygen flux limit or when the primary combustion product is CO{sub 2}. The results are given in terms of a correction factor to the equimolar counter-diffusion mass transfer coefficient, which is typically available in the literature for specific geometries and/or fluid-dynamic conditions. The significance of the correction factor and the accuracy of the different available expressions is illustrated for several cases of practical interest. Results show that under typical combustion conditions the use of the equimolar counter-diffusion mass transfer coefficient can lead to errors up to 10%. Larger errors are possible in oxygen-enriched conditions, while the error is generally low in oxy-combustion. (author)
International Nuclear Information System (INIS)
Sonetaka, Noriyoshi; Fan, Huan-Jung; Kobayashi, Seiji; Su, Yang-Chih; Furuya, Eiji
2009-01-01
In general, the adsorption uptake curve (AUC) can be easily determined in either intraparticle diffusion or liquid film mass transfer dominating systems. However, for both intraparticle diffusion and liquid film mass transfer controlling systems, the characterization of AUC is much more complicated, for example, when relatively small adsorbent particles are employed. In addition, there is no analytical solution available for both intraparticle diffusion and liquid film mass transfer controlling systems. Therefore, this paper is trying to characterize AUC for both intraparticle diffusion and liquid film mass transfer controlling adsorption systems using the shallow bed reactor technique. Typical parameters influencing AUC include liquid film mass transfer coefficient (k F ), effective intraparticle diffusivity (D S ), influent concentration (c 0 ) and equilibrium parameters (such as Freundlich isotherm constants k and 1/n). These parameters were investigated in this research and the simulated results indicated that the ratio of k F /D S and Freundlich constant 1/n had impact on AUC. Biot number (Bi) was used to replace the ratio of k F /D S in this study. Bi represents the ratio of the rate of transport across the liquid layer to the rate of intraparticle diffusion. Furthermore, Bi is much more significant than that of 1/n for AUC. Therefore, AUC can be characterized by Bi. In addition, the obtained Bi could be used to determine D S and k F simultaneously. Both parameters (D S and k F ) are important for designing and operating fixed bed reactors.
Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed
2004-04-01
Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.
To the generalization of experimental data on heat and mass transfer in evaporation and condensation
International Nuclear Information System (INIS)
Berman, L.D.
1980-01-01
Similarity equations for heat-and-mass transfer in binary gas or steam-gas layers in the processes of liquid evaporation, condensation and desublimation of vapours, desorption and absorption and porous body cooling are considered. It is accepted that steam-gas components obey to the equation of ideal gas state and that evaporation and condensation condititons permit to neglect the influence of compressability of gas (steam-gas) mixture, non-isothermality of boundary layer and interphase kinetic resistance to mass transfer onto the interfaces. It is concluded that the results of considered experimental and theoretical investigations of the above processes are in a satisfactory agreement and show insignificance of the effect of hydrodynamic conditions determining the regime of main steam-gas mixture flow on relative heat-and-mass transfer coefficients. According to the theoretical calculation results with increase of the factor of M steam-gas mixture non-uniformity mass transfer intensity in evaporation decreases, while in condensation it grows, but M effect on the mass transfer coefficient is rather small and sowhat increases in the case of a turbulent boundary layer evaporation. In condensation it is less than in evaporation
Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.
Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg
2004-05-20
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.
Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping
2018-04-01
Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.
Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)
Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.
2016-07-01
A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.
On the Mass and Heat Transfer in the Porous Electrode of a Fuel Cell
Energy Technology Data Exchange (ETDEWEB)
Revuelta Bayod, A.
2004-07-01
In the first part of this report a reduced model of the mass transport in the PEMFC cathode gas diffusion layer is formulated ro an interrogated flow field design of the cathode bipolar plate. The non-dimensional formulation of the problem allows to identify the leading parameters which determines the fundamental species distribution and flow field structure. The effect of the forced convection of the gases into the porous electrode, caused by the interrogated flow field, is quantified through the Peclet numbers of the active species, and the non-dimensional polarization curves are obtained. In the second part, the diffusion-thermal instability is analyzed in a porous gas diffusion layer (GDL) of a fuel cell. The investigation presented provides an initial guideline to future theoretical and experimental investigations on one aspect of the fuel cell performance not previously considered, with impact on the fuel cell life-time. Starting from the simples possible 1D-model of the flow into the porous electrode, the steady solution of the model is presented an analyzed depending on a minimum number of non-dimensional parameters. From this steady solution, a linear stability analysis is formulated, taking into account the temporal-spatial perturbations transversal to the gas flow direction, and the marginal stability regions are determined from the corresponding dispersion relation. (Author) 33 refs.
Power generation by packed-bed air-cathode microbial fuel cells
Zhang, Xiaoyuan
2013-08-01
Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676±93mW/m2, followed by semi-coke (376±47mW/m2), graphite (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. © 2013 Elsevier Ltd.
International Nuclear Information System (INIS)
Sun, Hong; Xie, Chen; Chen, Hao; Almheiri, Saif
2015-01-01
Highlights: • A two-dimensional model is developed to study the HT-PEMFC with ab-PBI membrane. • The temperature distribution in the ab-PBI membrane is uneven. • With the increase of temperature, the resistance in ab-PBI membrane decreases. • Porosity has the most significant effect on the performance of HT-PEMFC. - Abstract: A two-dimensional, single-phase model is developed to study high temperature proton exchange membrane (HT-PEM) fuel cell with poly(2,5-benzimidazole) (ab-PBI) membrane. In this model, simulation region not only includes the cathode and anode, but also includes ab-PBI membrane; the continuity boundary condition at the interface between the catalyst layer (CL) and the gas diffusion layer (GDL) at each side of the cell is omitted by including the catalyst layers in the respective unified domains for the cathode and the anode. The flows, species, energy, current density are all coupled in the model. Experiments have been conducted to validate the proposed numerical simulations, and it is found that there is a good agreement between the modeling results and those obtained experimentally. By this simulation, not only the oxygen and water fraction distribution in the cathode, but also the temperature distribution and resistance distribution in the ab-PBI membrane are obtained, and the effects of the cell temperature, the porosity in the diffusion layer and its thickness on the current density are analyzed. The innovative researching results are that the temperature distribution is uneven in the ab-PBI membrane and its resistance is greatly affected by the operating temperature. Other results show that the increase of the cell temperature and the porosity in the diffusion layer, and the decrease of the diffusion layer thickness all improve the performance of HT-PEM fuel cells by promoting its internal mass transfer.
Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van
1993-01-01
Absorption determined by mass transfer in the liquid is described well with the Graetz-Lévèque equation adapted from heat transfer. The influence of a chemical reaction on the mass transfer was simulated with a numerical model and tested on the absorption of CO2 in a hydroxide solution. Absorption
Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind
Energy Technology Data Exchange (ETDEWEB)
Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)
2017-09-10
A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.
Generalized Couette Poiseuille flow with boundary mass transfer
Marques, F.; Sanchez, J.; Weidman, P. D.
1998-11-01
A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.
Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu
The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...
Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media
International Nuclear Information System (INIS)
Roy Haggerty
2004-01-01
Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the
Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold
DEFF Research Database (Denmark)
Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof
2015-01-01
We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic...... response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics...... of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design. (C)2015 Optical Society of America...
Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow
Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi
2016-11-01
The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.
Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study
Directory of Open Access Journals (Sweden)
Putra Meilana Dharma
2017-01-01
Full Text Available Green pigments are used in many industrial branches including food, drinks, soap and cosmetics. Chlorophyll can substitute synthetic dyes which may affect health. Chlorophyll can be extracted from pandan leaves; the pandan crop grows in many tropical areas. The effects of temperature, 30–70°C and agitation speed, 100–400 rpm on chlorophyll extraction from pandan leaves, using ethanol and the evaluation of mass transfer coefficient, using dimensionless analysis were investigated. The optimal conditions of extraction was obtained at 60°C and 300 rpm; the chlorophyll concentration was 107.1 mg L-1. The volumetric mass transfer coefficient increased with the temperature and agitation speed. Determination of volumetric mass transfer coefficient and dimensionless correlations are useful for further process development or industrial applications.
The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite
International Nuclear Information System (INIS)
Jubin, R.T.
1994-12-01
The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH 3 I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, only bulk loading data exist for the adsorption of CH 3 I onto Ag-Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process. It can be concluded from the analysis of the experimental data obtained by the single-pellet type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH 3 I onto Ag-Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10 -14 cm 2 /s. The system was also shown to be isothermal under all conditions of this study. Two other conclusions were also obtained. First, the gas film resistance to mass transfer for the 1/16 and 1/8-in.-diam Ag-Z pellets can be ignored under the conditions used in this study. Finally, it was shown that by decreasing the water vapor content of the feed gas, the chemical reaction rate appeared to become the initial rate-limiting factor for the mass transfer. 75 refs
Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles
Directory of Open Access Journals (Sweden)
Jaćimovski Darko R.
2014-01-01
Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022
Implementation of a new interfacial mass and energy transfer model in RETRAN-3D
International Nuclear Information System (INIS)
Macian, R.; Cebulh, P.; Coddington, P.; Paulsen, M.
1999-01-01
The RETRAN-3D MOD002.0 best estimate code includes a five-equation flow field model developed to deal with situations in which thermodynamic non-equilibrium phenomena are important. Several applications of this model to depressurization and pressurization transients showed serious convergence problems. An analysis of the causes for the numerical instabilities identified the models for interfacial heat and mass transfer as the source of the problems. A new interfacial mass and energy transfer model has thus been developed and implemented in RETRAN-3D. The heat transfer for each phase is equal to the product of the interfacial area density, a heat transfer coefficient and the temperature difference between the interface at saturation and the bulk temperature of the respective phase. However, in the context of RETRAN-3D, the vapor remains saturated in a two-phase volume, and no vapor heat transfer is thus calculated. The values of interfacial area density and heat transfer coefficient are obtained based on correlations appropriate for different flow regimes. A flow regime map, based on the work of Taitel and Dukler, with void fraction and mixture mass flux as map coordinates, is used to identify the flow regime present in a given volume. The new model has performed well when assessed against data from four experimental facilities covering depressurization, condensation and steady state void distribution. The results also demonstrate the viability of the approach followed to develop the new model for a five-equation based code. (author)
Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model
International Nuclear Information System (INIS)
Park, Jehun; Lee, Jae W.
2016-01-01
This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.
Influence of drying air parameters on mass transfer characteristics of apple slices
Beigi, Mohsen
2016-10-01
To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.
Convective mass transfer in helical pipes: effect of curvature and torsion
Energy Technology Data Exchange (ETDEWEB)
Litster, S.; Djilali, N. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Pharoah, J.G. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Queen' s University at Kingston, Department of Mechanical Engineering, Kingston, ON (Canada)
2006-03-01
A 3D numerical analysis of the flow and mass transfer in helical pipes is presented. The interpretation of the flow patterns and their impact on mass transfer is shown to require a non-orthogonal pseudo-stream function based visualization. The strong coupling between torsion and curvature effects, and the resulting secondary flow regimes are well characterized by a parameter combining both the Dean (Dn) and Germano numbers (Gn). For membrane separation applications, helical modules combining high curvature with low torsion would alleviate concentration polarization and yield appreciable flux improvement. (orig.)
Heat-And-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Nopens, Ingmar
2012-01-01
The main drawback of Membrane Bioreactors (MBRs) is the fouling of the membrane. One way to reduce this fouling is through controlling the hydrodynamics of the two-phase slug flow near the membrane surface. It has been proven in literature that the slug flow pattern has a higher scouring effect...... to remove particulates due to the high shear rates and high mass transfer between the membrane surface and the bulk region. However, to calculate the mass transfer coefficient in an efficient and accurate way is not straightforward. Indeed, for accurate determination, numerous complex experimental...
Mass Transfer Coefficients and Bubble Sizes in Oxidative Ladle Refining of Silicon
Bjørnstad, Erlend Lunnan
2016-01-01
The mass transfer of [Al] and [Ca] between three synthetic SiO_{2}-CaO-Al_{2}O_{3} slags, and 8N silicon, has been investigated to find the overall mass transfer coefficient k_{i,t} for the individual species. Samples were kept at 1873K for 5, 10, 20, 30 and 180min before quenching. The metal phase was later analyzed by ICP-MS to view how the concentrations of impurities change with respect to time. This work then compares these results to industrial data gathered from ladles used for oxidati...
Mass Transfer and Kinetics Study of Heterogeneous Semi-Batch Precipitation of Magnesium Carbonate
DEFF Research Database (Denmark)
Han, B.; Qu, H. Y.; Niemi, H.
2014-01-01
Precipitation kinetics and mass transfer of magnesium carbonate (MgCO3) hydrates from a reaction of magnesium hydroxide (Mg(OH)(2)) and CO2 were analyzed. The effect of CO2 flow rate and mixing intensity on precipitation was investigated under ambient temperature and atmospheric pressure. Raman...... on the dissolution of Mg(OH)(2). In the researched system, the main driver of the precipitation kinetics was the mass transfer of CO2. Nesquehonite (MgCO3 center dot 3H(2)O), as needle-like crystals, was precipitated as the main product. Raman spectroscopy can serve as a potential tool to monitor the carbonation...
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
Flooding and mass transfer in Goodloe-packed columns, Part 2
International Nuclear Information System (INIS)
Ayala, J.S.; Brian, B.W.; Sharon, A.C.
1977-01-01
Krypton gas is recovered from HTGR off-gas streams by countercurrent absorption in liquid carbon dioxide. Goodloe stainless steel wire mesh packing was chosen for the absorption columns since the process operates at -20 0 C and about 20 atm pressure. Flooding points and an overall mass transfer coefficient for Goodloe-packed columns were determined with a carbon dioxide-air-water system for 6.4 and 15.2-cm-ID columns. Flood points were obtained for liquid-to-gas mass velocity ratios of 20 to 800. A mixing model, assuming plug flow for the gas and dispersed flow for the liquid, was used to calculate an overall mass transfer coefficient, K/sub L/a. K/sub L/a, based on mass concentrations, ranged from 0.01 to 0.08 sec/sup -T/ and was found to increase with increasing liquid flow rate
DEFF Research Database (Denmark)
Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang
2010-01-01
greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation...... constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under...... the conditions that the liquid temperature is lower than the air temperature. Although there are differences of mass transfer coefficients between these two methods, the mass transfer coefficients determined by these two methods are significantly related....
Curry, D. M.; Cox, J. E.
1972-01-01
Coupled nonlinear partial differential equations describing heat and mass transfer in a porous matrix are solved in finite difference form with the aid of a new iterative technique (the strongly implicit procedure). Example numerical results demonstrate the characteristics of heat and mass transport in a porous matrix such as a charring ablator. It is emphasized that multidimensional flow must be considered when predicting the thermal response of a porous material subjected to nonuniform boundary conditions.
Light-Time Effect and Mass Transfer in the Triple Star SW Lyncis
Directory of Open Access Journals (Sweden)
Chun-Hwey Kim
1999-06-01
Full Text Available In this paper all the photoelectric times of minimum for the triple star SW Lyn have been analyzed in terms of light-time e ect due to the third-body and secular period decreases induced by mass transfer process. The light-time orbit determined recently by Ogloza et al.(1998 were modi ed and improved. And it is found that the orbital period of SW Lyn have been decreasing secularly. The third-body revolves around the mass center of triple stars every 5y.77 in a highly eccentric elliptical orbit(e=0.61. The third-body with a minimum mass of 1.13M may be a binary or a white dwarf. The rate of secular period-decrease were obtained as ¡âP/P = -12.45 x 10^-11, implying the mass-transfer from the massive primary star to the secondary. The mass losing rate from the primary were calculated as about 1.24 x 10^-8M /y. It is noticed that the mass-transfer in SW Lyn system is opposite in direction to that deduced from it's Roche geometry by previous investigators.
Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array
O'Neill, William J.
This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.
International Nuclear Information System (INIS)
2009-01-01
This book contains the short papers from the International Symposium on Convective heat and Mass Transfer in sustainable Energy ( Conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
International Nuclear Information System (INIS)
2009-01-01
This book contains the short papers from the International Symposium on convective heat and Mass Transfer in sustainable Energy ( conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black
Zhang, Xiaoyuan; Xia, Xue; Ivanov, Ivan; Huang, Xia; Logan, Bruce E.
2014-01-01
Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.
Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black
Zhang, Xiaoyuan
2014-02-04
Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.
Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.
1997-12-01
Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.
Mass transfer between gas and particles in a gas-solid trickle flow reactor
Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria
1992-01-01
Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at
Numerical Problems and Agent-Based Models for a Mass Transfer Course
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.
2009-01-01
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
Directory of Open Access Journals (Sweden)
Eric Monflier
2012-11-01
Full Text Available The replacement of hazardous solvents and the utilization of catalytic processes are two key points of the green chemistry movement, so aqueous organometallic catalytic processes are of great interest in this context. Nevertheless, these processes require not only the use of water-soluble ligands such as phosphanes to solubilise the transition metals in water, but also the use of mass transfer agents to increase the solubility of organic substrates in water. In this context, phosphanes based on a cyclodextrin skeleton are an interesting alternative since these compounds can simultaneously act as mass transfer agents and as coordinating species towards transition metals. For twenty years, various cyclodextrin-functionalized phosphanes have been described in the literature. Nevertheless, while their coordinating properties towards transition metals and their catalytic properties were fully detailed, their mass transfer agent properties were much less discussed. As these mass transfer agent properties are directly linked to the availability of the cyclodextrin cavity, the aim of this review is to demonstrate that the nature of the reaction solvent and the nature of the linker between cyclodextrin and phosphorous moieties can deeply influence the recognition properties. In addition, the impact on the catalytic activity will be also discussed.
Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis
Directory of Open Access Journals (Sweden)
Zhijun Zhang
2014-01-01
Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.
Evaporation of Ventilated Water Droplet: Connection Between Heat and Mass Transfer
Czech Academy of Sciences Publication Activity Database
Smolík, Jiří; Ondráčková, Lucie; Schwarz, Jaroslav; Kulmala, M.
2001-01-01
Roč. 32, č. 6 (2001), s. 739-748 ISSN 0021-8502 Institutional research plan: CEZ:AV0Z4072921 Keywords : droplet evaporation * heat and mass transfer Subject RIV: CC - Organic Chemistry Impact factor: 1.605, year: 2001
International Nuclear Information System (INIS)
Do, Chuong; Hussey, Dennis; Wells, Daniel M.; Epperson, Kenny
2016-01-01
Optimization numerical method was implemented to determine several mass transfer coefficients in a crud-induced power shift risk assessment code. The approach was to utilize a multilevel strategy that targets different model parameters that first changes the major order variables, mass transfer inputs, then calibrates the minor order variables, crud source terms, according to available plant data. In this manner, the mass transfer inputs are effectively simplified as 'dependent' on the crud source terms. Two optimization studies were performed using DAKOTA, a design and analysis toolkit, with the difference between the runs, being the number of model runs using BOA, allowed for adjusting the crud source terms, therefore, reducing the uncertainty with calibration. The result of the first case showed that the current best estimated values for the mass transfer coefficients, which were derived from first principle analysis, can be considered an optimized set. When the run limit of BOA was increased for the second case, an improvement in the prediction was obtained with the results deviating slightly from the best estimated values. (author)
Impact of Heat and Mass Transfer on MHD Oscillatory Flow of Jeffery ...
African Journals Online (AJOL)
The objective of this paper is to study Dufour, Soret and thermal conductivity on unsteady heat and mass transfer of magneto hydrodynamic (MHD) oscillatory flow of Jeffery fluid through a porous medium in a channel. The partial differential equations governing the flow have been solved numerically using semi-implicit ...
Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor
Saayman, Jean; Nicol, Willie
2011-01-01
A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…
Analysis of coupled mass transfer and sol-gel reaction in a two-phase system
Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.
2006-01-01
The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons
Development of a model to determine mass transfer coefficient and oxygen solubility in bioreactors
Directory of Open Access Journals (Sweden)
Johnny Lee
2017-02-01
where T is in degree Kelvin, and the subscripts refer to degree Celsius; E, ρ, σ are properties of water. Furthermore, using data from published data on oxygen solubility in water, it was found that solubility bears a linear and inverse relationship with the mass transfer coefficient.
Biofilm structure and mass transfer in a gas phase trickle-bed biofilter.
Zhu, X; Suidan, M T; Alonso, C; Yu, T; Kim, B J; Kim, B R
2001-01-01
Mass transport phenomena occurring in the biofilms of gas phase trickle-bed biofilters are investigated in this study. The effect of biofilm structure on mass transfer mechanisms is examined using experimental observation from the operating of biofilters, microelectrode techniques and microscopic examination. Since the biofilms of biofilters used for waste gas treatment are not completely saturated with water, there is not a distinguishable liquid layer outside the biofilm. Results suggest that due to this characteristic, gas phase substrates (such as oxygen or volatile organic compounds) may not be limited by the aqueous phase because transport of the compound into the biofilm can occur directly through non-wetted areas. On the other hand, for substrates that are present only in the liquid phase, such as nitrate, the mass transfer limitation is more serious because of the limited liquid supply. Microscopic observations show that a layered structure with void spaces exists within the biofilm. Oxygen concentration distributions along the depth of the biofilms are examined using an oxygen microelectrode. Results indicate that there are some high dissolved oxygen zones inside the biofilm, which suggests the existence of passages for oxygen transfer into the deeper sections of the biofilm in a gas phase trickle-bed biofilter. Both the low gas-liquid mass transfer resistance and the resulting internal structure contribute to the high oxygen penetration within the biofilms in gas phase trickle-bed biofilters.
Solid foam packings for multiphase reactors: Modelling of liquid holdup and mass transfer
Stemmet, C.P.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.
2006-01-01
In this paper, experimental and modeling results are presented of the liquid holdup and gas–liquid mass transfer characteristics of solid foam packings. Experiments were done in a semi-2D transparent bubble column with solid foam packings of aluminum in the range of 5–40 pores per inch (ppi). The
Computational and experimental study of the effect of mass transfer on liquid jet break-up
Schetz, J. A.; Situ, M.
1983-06-01
A computational method has been developed to predict the effect of mass transfer on liquid jet break-up in coaxial, low velocity gas streams. Two conditions, both with and without the effect of mass transfer on the jet break-up, are calculated, and compared with experimental results and the classical linear theory. Methanol and water were used as the injectants. The numerical solution can predict the instantaneous shape of the jet surface and the break-up time, and it is very close to the experimental results. The numerical solutions and the experimental results both indicate that the wave number of the maximum instability is about 6.9, higher than 4.51 which was predicted by Rayleigh's linear theory. The experimental results and numerical solution show that the growth of the amplitude of the trough is faster than the growth of the amplitude of the crest, especially for a rapidly vaporizing jet. The numerical solutions show that for the small rates of evaporation, the effect of the mass transfer on the interface has a stabilizing effect near the wave number for maximum instability. Inversely, it has a destabilizing effect far from the wave number for maximum instability. For rapid evaporation, the effect of the mass transfer always has a destabilizing effect and decreases the break-up time of the jet.
Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges
Wexler, Adam D.; Drusová, Sandra; Fuchs, Elmar C.; Woisetschläger, Jakob; Reiter, Gert; Fuchsjäger, Michael; Reiter, Ursula
2017-01-01
Abstract: Here, we report on the feasibility and use of magnetic resonance imaging-based methods to the study of electrohydrodynamic (EHD) liquid bridges. High-speed tomographic recordings through the longitudinal axis of water bridges were used to characterize the mass transfer dynamics, mixing,
Irradiation of a barrier film: analysis of some mass transfer aspects
International Nuclear Information System (INIS)
Deschenes, L.; Arbour, A.; Brunet, F.; Court, M.A.; Doyon, G.J.; Fortin, J.; Rodrigue, N.
1995-01-01
Irradiation of a Nylon/PVDC/EVA barrier film caused changes in mass transfers of the packaging material. Sensory evaluation of irradiated water indicated development of off-odours and taints, even at 1 kGy. This behaviour differed with the irradiation source (gamma or beta). Aldehydes and polymer hydrocarbons were involved in the development of irradiation tainting from packaging film. (Author)
Effect of aging on mass transfer naphthalene from creosotes to water
International Nuclear Information System (INIS)
Alshafie, M.; Ghoshal, S.
2002-01-01
Semi-gelatinous interfacial films or 'skins' have been observed to form at the interface of creosote and water when creosote is aged (contacted over an extended time period) in water under quiescent conditions for a few days. The objective of the research is to investigate whether aging of creosote-water interfaces and the formation of interfacial films retard dissolution of a target solute, naphthalene, from samples of creosote. Mass transfer experiments were conducted in gently stirred flow-through reactors where the NAPL was coated on glass beads so as to keep the NAPL and the aqueous phases segregated. The aqueous concentration in the reactor effluent was determined in samples collected at different time points and the equilibrium partitioning coefficients and area-independent mass transfer coefficients were calculated. Over the period of one week, the mass transfer rate coefficients of the naphthalene from creosote to water underwent approximately 30% reduction. Further reduction was observed up to 3 weeks of aging. This significant reduction in mass transfer coefficient has important implications on potential rates of dissolution of the solutes, and thus on rates of clean up of creosote-contaminated sites. (author)
Heat and Mass Transfer at Hot Surface Ignition of Coal Particle
Glushkov Dmitrii O.; Kosintsev Andrey. G.; Shlegel Nikita E.; Vershinina Ksenia Yu.
2015-01-01
This paper describes the experimental investigations of the characteristics of heat and mass transfer during the conductive heating of a coal particle. We have established the boundary conditions of combustion initiation, and the conditions of thermal decomposition and solid fuel particles decay, characterized by the temperature of a heat source, and the duration of the respective stages.
Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle
Bliek, A.; Poelje, W.M.; van Swaaij, Willibrordus Petrus Maria; van Beckum, F.P.H.
1985-01-01
The objective of the present work is to elucidate the influence of intraparticle mass and heat transfer phenomena on the overall rate and product yields during devolatilization of a single coal particle in an inert atmosphere. To this end a mathematical model has been formulated which covers
Visualization and mass transfer with a bistable two-slot impinging jet
Czech Academy of Sciences Publication Activity Database
Trávníček, Zdeněk; Maršík, František
2003-01-01
Roč. 6, č. 4 (2003), s. 337-441 ISSN 1343-8875 R&D Projects: GA AV ČR IAA2076203 Institutional research plan: CEZ:AV0Z2076919 Keywords : visualization * mass transfer * impinging jet Subject RIV: BK - Fluid Dynamics Impact factor: 0.279, year: 2002
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
Mass-transfer in extraction and reextraction as a single-stage process
International Nuclear Information System (INIS)
Rodriguez del Cerro, M.; Trilleros, J.A.; Otero de la Gandara, J.L.
1987-01-01
The rate of mass transfer between water and naftenic acid and threebutilphosphate in kerosen are studied in the two possibilities to or from water. The two insoluble phases are brought in to intimate contact with dispersed phase droplets, in a single-stage process. The evolution of the equilibrium distribution of solute is taken in consideration. (author)
Directory of Open Access Journals (Sweden)
E. R. Gouveia
2000-12-01
Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.
Erosion and mass transfer of Mo, W and Nb under neutron irradiation of high temperature materials
International Nuclear Information System (INIS)
Berzhatyj, V.I.; Luk'yanov, A.N.; Zavalishin, A.A.; Tkach, V.N.; Fedorenko, A.I.
1980-01-01
Studies have been made of the medium composition in thermionic fuel elements of two types during reactor tests; erosion and mass transfer of electrode materials have been investigated in the after-reactor analysis of the tested fuel elements. The studies of electrode material evaporation at the conditions approaching (in environment temperature and composition) those of reactor tests of thermionic fuel elements have shown that the process proceeds in the form of metal oxides. Evaporation rates are determined, the mechanism of evaporation is discussed, and the analytical dependences are obtained for calculating the evaporation rates of Mo and W at certain temperature and gaseous medium composition. It is found that the main contribution to the material transfer off the Mo and Nb surfaces under a high-temperature reactor irradiation comes through the thermal evaporation; in the case of tungsten at the same experimental conditions the rates of mass transfer due to thermal evaporation and neutron sputtering are nearly the same [ru
Modelling of the processes of heat and mass transfer in adiabatic steam and drop flows
International Nuclear Information System (INIS)
Andrizhievskij, A.A.; Mikhalevich, A.A.; Nesterenko, V.B.; Trifonov, A.G.
1983-01-01
The mathematical models for investigating the local and integral characteristics of heat and mass transfer processes during simultaneous motion of adiabatic steam and drop flow and a flux of impurity particles are given. The mathematical model is constrUcted on the basis of one-dimensional stationary eqUations of conservation of mass, thermal energy and momentum of liquid and vapor phases. Dispersion composition of condensed moisture is described by the Nukiyama-Tanasava distribution function formed taking into account the Veber number critical value. Equations of motion and mass balance conservation for impurity particles are included into the mathematical model. These equations are considered as additional inactive phase
Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.
Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B
2012-10-01
In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of heat and mass transfer coefficients on the performance of automotive catalytic converters
Energy Technology Data Exchange (ETDEWEB)
Shamim, T. [Michigan Univ., Dept. of Mechanical Engineering, Dearborn, MI (United States)
2003-06-01
This paper numerically investigates the role of heat and mass transfer coefficients on the performance of automotive catalytic converters, which are employed to reduce engine exhaust emissions. The pollutant conversion performance of a converter is influenced by a number of physical and chemical processes that take place in gaseous and solid phases as the exhaust gases flow through the catalyst. A quantitative predictive understanding of these complex catalyst processes involving flow dynamics, heterogeneous surface reactions and heat and mass transport mechanisms is important in improving the converter design. The role of convective transport phenomena becomes important at high temperature when the mass transfer becomes rate-limiting to an increasing extent. The objective of the present study is to elucidate the influence of convective heat and mass transfer coefficients (mechanisms). The mathematical model considers the conservation of mass, momentum and energy in both gaseous and solid phases. In addition to the heterogeneous surface reactions, the model also takes into account the adsorption/desorption of oxygen in the catalyst during non-stoichiometric composition of air/fuel mixtures. The governing equations are solved by an implicit scheme using a successive line under a relaxation method. The converter performance under the transient conditions as simulated by the US Federal Test Procedure (US-FTP) is analysed. (Author)
Mass transfer during sulfuric acid concentration by evaporation into the air flow
Directory of Open Access Journals (Sweden)
V. K. Lukashov
2016-12-01
Full Text Available This article shows the results of the study of mass transfer under periodic concentration of sulfuric acid by evaporation inthe gas flow, neutral with respect to the components of acid.Used mathematical model for mass transferbases on the proposed simplified physical representations.This model has allowed to construct an algorithm for calculation the coefficient of mass transfer from the liquid phase into the gas flow. The algorithm uses the experimental data of change the amount of acid and concentration of the water taken from the laboratory tests. Time-based Nusselt diffusion criterion represent the results of the study at different modes of the evaporation process.It has been found that the character of the influence of temperature and initial acid concentration on Nusselt diffusion criterion depends on the variation range of the mass fraction of water in the acid.It is shown that these dependences are well approximated by an exponential function from the dimensionless parameters of the process. This allows usingthem for calculation the mass transfer coefficient into the gas phase in a batch process of concentrating in the range of investigated modes.
Mass savings domain of plasma propulsion for LEO to GEO transfer
International Nuclear Information System (INIS)
Choueiri, E.Y.; Kelly, A.J.; Jahn, R.G.
1993-01-01
A parametric model is used to study the mass savings of plasma propulsion over advanced chemical propulsion for lower earth orbit (LEO) to geosynchronous orbit (GEO) transfer. Such savings are characterized by stringent requirements of massive payloads (O(10) metric tons) and high power levels (O(100) kW). Mass savings on the order of the payload mass are possible but at the expense of longer transfer times (8--20 months). Typical of the savings domain is the case of a self-field magnetoplasmadynamic (MPD) thruster running quasi-steadily, at an I s of 2000 s, with 600 kW of input power, raising a 50 metric ton satellite in 270 days. The initial mass at LEO will be 65 tons less than a 155 ton LO 2 /LH 2 advanced chemical high thrust spacecraft. An optimum I s can only be found if the cost savings associated with mass savings are counterbalanced by the cost losses incurred by longer transfer times. A simplistic cost model that illustrates the overall trends in the optimization yielded an optimum I s of about 2200 s for a cost effective baseline MPD system
Bibliography on augmentation of convective heat and mass transfer-II
Energy Technology Data Exchange (ETDEWEB)
Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.
1983-12-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.
International Nuclear Information System (INIS)
Boccaccini, L.V.
1986-07-01
To take advantages of the semi-implicit computer models - to solve the two phase flow differential system - a proper averaging procedure is also needed for the source terms. In fact, in some cases, the correlations normally used for the source terms - not time averaged - fail using the theoretical time step that arises from the linear stability analysis used on the right handside. Such a time averaging procedure is developed with reference to the bubbly flow regime. Moreover, the concept of mass that must be exchanged to reach equilibrium from a non-equilibrium state is introduced to limit the mass transfer during a time step. Finally some practical calculations are performed to compare the different correlations for the average mass transfer rate developed in this work. (orig.) [de
Netcher, Andrea C; Duranceau, Steven J
2016-03-01
In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.
The influence of surface treatment on mass transfer between air and building material
DEFF Research Database (Denmark)
Kwiatkowski, Jerzy; Rode, Carsten; Hansen, Kurt Kielsgaard
2008-01-01
for the experiments: gypsum board and calcium silicate. The wallpaper and paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: coating, temperature and air movement. The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake......The processes of mass transfer between air and building structure and in the material influence not only the conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs water vapour can be used to moderate the amplitude of indoor relative humidity...... and therefore to participate in the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange between indoor air and building material. The aim of this work is to present the change of mass transfer under different climatic and material conditions. The measurements...
International Nuclear Information System (INIS)
Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck
2010-01-01
In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower
2013-01-01
In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581
International Nuclear Information System (INIS)
Agarwal, B.
2012-01-01
Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a mass spectrometric technique based on chemical ionization, which provides very rapid measurements (within seconds) of volatile organic compounds in air, usually without special sample preparation, and with a very low detection limit. The detection and study of product ion patterns of threat agents such as explosives and drugs and some major environmental pollutants (isocyanates and polychlorinated biphenyls (PCBs)) is explored in detail here using PTR-MS, specifically Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). The proton transfer reaction (PTR) principle works on the detection of the compound in the vapor phase. For some compounds, which have extremely low vapor pressures, both sample and inlet line heating were needed. Generally, the protonated parent molecule (MH+) is found to be the dominant product ion, which therefore provides us with a higher level of confidence in the assignment of a trace compound. However, for several compounds, dissociative proton transfer can occur at various degrees resulting in other product ions. Analysis of other compounds, such as the presence of taggants and impurities were carried out, and in certain compounds unusual E/N anomalies were discovered (E/N is an instrumental set of parameters, where E is the electric field strength and N is the number density). Head space measurements above four different drinks (plain water, tea, red wine and white wine) spiked with four different 'date rape' drugs were also conducted. (author)
Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor
Energy Technology Data Exchange (ETDEWEB)
Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)
2015-06-15
Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.
Mass Transfer Coefficientin Stirred Tank for p -Cresol Extraction Process from Coal Tar
International Nuclear Information System (INIS)
Fardhyanti, D S; Tyaningsih, D S; Afifah, S N
2017-01-01
Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such as p -cresol (11% v/v). It is widely used as a disinfectant. Extractionof p -Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p -Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted in the baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p -Cresol extraction increasesthe yield of p -Cresol and the mass transfer coefficient. The highest yield of p -Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10 -6 kg/m 2 s. (paper)
Mass Transfer Coefficientin Stirred Tank for p-Cresol Extraction Process from Coal Tar
Fardhyanti, D. S.; Tyaningsih, D. S.; Afifah, S. N.
2017-04-01
Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such asp-cresol (11% v/v). It is widely used as a disinfectant. Extractionof p-Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p-Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted inthe baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p-Cresol extraction increasesthe yield of p-Cresol and the mass transfer coefficient. The highest yield of p-Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10-6kg/m2s.
Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor
International Nuclear Information System (INIS)
Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno
2015-01-01
Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1
Numerical study of heat and mass transfer during evaporation of a thin liquid film
Directory of Open Access Journals (Sweden)
Oubella M’hand
2015-01-01
Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.
Interferometric study on the mass transfer in cryogenic distillation under magnetic field
Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.
2017-12-01
Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.
Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model
International Nuclear Information System (INIS)
Lee, Young Duk; Bae, Ho June; Ahn, Kook Young; Yu, Sang Seok; Hwang, Joon Young
2009-01-01
The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/Simulink □ environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier
Flow and Mass Transfer Performance in Short Pin-Fin Channels with Different Fin Shapes
Goldstein, R. J.; Chen, S. B.
1998-01-01
The mass transfer (analogous to heat transfer) and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF) and two stepped-diameter circular fins (SDCF1 and SDCF2). Flow visualization using oil-lampblack reveals complex flow characteristics assoc...
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
International Nuclear Information System (INIS)
Lemaitre, P.; Porcheron, E.
2008-01-01
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B M , which is useful in describing heat transfer associated with two-phase flow. (orig.)
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
Energy Technology Data Exchange (ETDEWEB)
Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)
2008-08-15
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)
Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)
International Nuclear Information System (INIS)
Lindinger, W.; Hansel, A.
1996-01-01
A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)
Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.
1995-06-01
Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.
DEFF Research Database (Denmark)
Gilbert, Dorthea; Jakobsen, Hans H.; Winding, Anne
2014-01-01
as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement...
Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.
2011-01-01
The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of
International Nuclear Information System (INIS)
Ma, Shuangchen; Chen, Gongda; Zhu, Sijie; Han, Tingting; Yu, Weijing
2016-01-01
Highlights: • Mass transfer coefficient models of ammonia escape were built. • Influences of temperature, inlet CO 2 and ammonia concentration were studied. • Mass transfer coefficients of ammonia escape and CO 2 absorption were obtained. • Studies can provide the basic data as a reference guideline for process application. - Abstract: The mass transfer of CO 2 capture using ammonia solution in the bubbling reactor was studied; according to double film theory, the mass transfer coefficient models and interface area model were built. Through our experiments, the overall volumetric mass transfer coefficients were obtained, while the interface areas in unit volume were estimated. The volumetric mass transfer coefficients of ammonia escaping during the experiment were 1.39 × 10 −5 –4.34 × 10 −5 mol/(m 3 s Pa), and the volumetric mass transfer coefficients of CO 2 absorption were 2.86 × 10 −5 –17.9 × 10 −5 mol/(m 3 s Pa). The estimated interface area of unit volume in the bubbling reactor ranged from 75.19 to 256.41 m 2 /m 3 , making the bubbling reactor a viable choice to obtain higher mass transfer performance than the packed tower or spraying tower.
Product analysis from D sub 2 O electrolysis with Pd and Ti cathodes
Energy Technology Data Exchange (ETDEWEB)
Brillas, E.; Esteve, J.; Sardin, G. (Barcelona Univ. (Spain)); Casado, J.; Domenech, X.; Sanchez-Cabeza, J.A. (Universidad Autonoma de Barcelona (Spain))
1991-02-01
The enrichment of tritium in the electrolyte and incorporation of T, Li and Pt in cathodes during the electrolysis of 0.1 M LiOD solutions with Pd and Ti cathodes in open cells have been studied. All electrolytes show an increase in their tritium activity which is explained by considering values for the T-D separation factor of all cathodes lower than 1. Accumulation of small amounts of T in the Pd bulk, proceeding from the absorption of the species pre-existing in the electrolyte, has been detected by electrolytic transfer of accumulated tritium to a 0.1 M LiOH solution, as well as by extraction of gases absorbed in the cathode, which were identified by mass spectrometry. Small quantities of Li and Pt are also incorporated in Pd and Ti cathodes, which increase by raising the current density. SIMS analysis of both cathodes show a preferential accumulation of Li and H in their surface layers and confirms the absence of T in Ti. (author).
Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions
International Nuclear Information System (INIS)
Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam
2012-01-01
Highlights: ► Mass transfer downstream of orifices was numerically and experimentally investigated. ► The surface wear pattern is measured and used to validate the present numerical results. ► The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. ► The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. ► The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO 4 ·½H 2 O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice. The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. The current study found to offer very
Mass transfer between a fluid and an immersed object in liquid–solid packed and fluidized beds
Directory of Open Access Journals (Sweden)
NEVENKA BOSKOVIC-VRAGOLOVIC
2005-11-01
Full Text Available Themass transfer coefficient between fluid and an immersed sphere in liquid packed and fluidized beds of inert spherical particles have been studied experimentally using a column 40 mm in diameter. The mass transfer data were obtained by studying the transfer of benzoic acid from the immersed sphere to flowing water using the dissolution method. In all runs, the mass transfer rates were determined in the presence of inert glass particles 0.50-2.98 mm in diameter. The influence of different parameters, such as: liquid velocity, particles size and bed voidage, on the mass transfer in packed and fluidized beds is presented. The obtained experimental data for mass transfer in the packed and particulate fluidized bed were correlated by a single correlation, thus confirming the similarity between the two systems.
Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M
2018-04-01
Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of
Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.
2018-04-01
Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of
Directory of Open Access Journals (Sweden)
Zhixian Huang
Full Text Available Abstract To investigate the mass transfer behavior of a liquid-liquid system with high density difference (∆ρ≈500 kg/m3, single drop experiments were performed by using the ternary chloroform-ethanol-water system. The mass transfer direction was from the dispersed phase to the continuous phase, while the aqueous phase was dispersed in chloroform to generate drops. The influences of drop diameter, initial solute concentration and temperature on the mass transfer were investigated. The effects of the drop diameter and initial solute concentration on interfacial instability of droplets hanging in the continuous phase were also observed. For the purpose of correlation, a mass transfer enhancement factor F was introduced and then correlated as a function of dimensionless variables. The modified correlation from the mass transfer coefficient model was found to fit well with the experimental values.
Why a New Code for Novae Evolution and Mass Transfer in Binaries?
Directory of Open Access Journals (Sweden)
G. Shaviv
2015-02-01
Full Text Available One of the most interesting problems in Cataclysmic Variables is the long time scale evolution. This problem appears in long time evolution, which is also very important in the search for the progenitor of SN Ia. The classical approach to overcome this problem in the simulation of novae evolution is to assume: (1 A constant in time, rate of mass transfer. (2 The mass transfer rate that does not vary throughout the life time of the nova, even when many eruptions are considered. Here we show that these assumptions are valid only for a single thermonuclear flash and such a calculation cannot be the basis for extrapolation of the behavior over many flashes. In particular, such calculation cannot be used to predict under what conditions an accreting WD may reach the Chandrasekhar mass and collapse. We report on a new code to attack this problem. The basic idea is to create two parallel processes, one calculating the mass losing star and the other the accreting white dwarf. The two processes communicate continuously with each other and follow the time depended mass loss.
Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface
Directory of Open Access Journals (Sweden)
Muhammad Qasim
2013-01-01
Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.
Kharkov, N. S.
2017-11-01
Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).
Transfer matrix in 1D Schroedinger problems with constant and position-dependent mass
International Nuclear Information System (INIS)
Perez-Alvarez, R.; Rodriguez-Coppola, H.
1987-10-01
We consider the transfer matrix method for obtaining properties of standard wells and barriers in one-dimensional Schroedinger problems with constant and position-dependent mass. We report the formulae for the energy levels of a well and the transmission coefficient of a barrier. We demonstrate the continuity between virtual bound states and bound states in a well of position-dependent mass and the relation between the zero energy gap states of a periodic potential problem with the corresponding energies of the non-periodic ones with transmission coefficient equal to one. The calculations were carried out for a wide class of potential profiles. (author). 30 refs, 2 figs
Directory of Open Access Journals (Sweden)
Rosinski Stefan
2003-01-01
Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Busigin, A. [NITEK USA Inc., Ocala, FL (United States)
2015-03-15
Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.
Gas-liquid mass transfer coefficient of methane in bubble column reactor
Energy Technology Data Exchange (ETDEWEB)
Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik [Sogang University, Seoul (Korea, Republic of); Yasin, Muhammad; Park, Shinyoung; Chang, In Seop [Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lee, Eun Yeol [Kyung Hee University, Yongin (Korea, Republic of)
2015-06-15
Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k{sub L}a). The feasibility of the new reactor was demonstrated by measuring k{sub L}a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k{sub L}a value of 102.9 h{sup -1} was obtained.
Mass transfer performance of blended alkanolamines for CO{sub 2} capture in packed absorbers
Energy Technology Data Exchange (ETDEWEB)
Setameteekul, A.; Veawab, A.; Aroonwilas, A.; Tontiwachwuthikul, P. [Regina Univ., SK (Canada)
2003-07-01
Acid gases are removed from industrial gas streams using the alkanolamine absorption process. There has been recent interest in extending the process to remove carbon dioxide from industrial waste gases. The process based on conventional alkanolamines is not economically viable because of the associated high energy costs. It was suggested that blended alkanolamines would significantly reduce energy consumption, thereby resulting in a reduction in process costs. The main disadvantage of using blended alkanolamines is a decrease in absorption performance. This study examines the mass transfer behaviour of carbon dioxide into blended alkanolamine solutions. It also compares their performance with the baseline performance of monoethanolamine (MEA). A series of absorption experiments were conducted in a bench-scale packed absorber. The blended alkanolamines included mixtures of MEA and methyldiethanolamine, as well as mixtures of diethanolamine and methyldiethanolamine. The results indicated the general mass transfer coefficient as a function of operating conditions.
Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin
2018-04-01
This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.
Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils
Izza, H.; Ben Abdessalam, S.; Korichi, M.
2018-03-01
Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.
Directory of Open Access Journals (Sweden)
C.S.K. Raju
2016-03-01
Full Text Available In this study we analyzed the flow, heat and mass transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magneticfield, viscous dissipation, heat source and chemical reaction. We presented dual solutions by comparing the results of the Casson fluid with the Newtonian fluid. The governing partial nonlinear differential equations of the flow, heat and mass transfer are transformed into ordinary differential equations by using similarity transformation and solved numerically by using Matlab bvp4c package. The effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented graphically. Also, the friction factor, Nusselt and Sherwood numbers are analyzed and presented in tabular form for both Casson and Newtonian fluids separately. Under some special conditions the results of the present study have an excellent agreement with existing studies for both Casson and Newtonian fluid cases.
Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid
Directory of Open Access Journals (Sweden)
Zheng Huan-Da
2017-01-01
Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.
Experimental analysis and evaluation of the mass transfer process in a trickle-bed reactor
Directory of Open Access Journals (Sweden)
J.D. Silva
2003-10-01
Full Text Available A transient experimental analysis of a three-phase descendent-cocurrent trickle-bed H2O/CH4-Ar/g -Al2O3 system was made using the stimulus-response technique, with the gas phase as a reference. Methane was used as a tracer and injected into the argon feed and the concentration vs time profiles were obtained at the entrance and exit of the bed, which were maintained at 298K and 1.013 10(5 Pa. A mathematical model for the tracer was developed to estimate the axial dispersion overall gas-liquid mass transfer and liquid-solid mass transfer coefficients. Experimental and theoretical results were compared and shown to be in good agreement. The model was validated by two additional experiments, and the values of the coefficients obtained above were confirmed.
Uranium and zirconium mass transfer testing of 5.5-cm-diam centrifugal contactors
International Nuclear Information System (INIS)
DeMuth, S.F.; Randolph, J.D.
1988-01-01
As part of the Consolidated Fuel Reprocessing Program of the Oak Ridge National Laboratory, compact centrifugal contacts were designed and prototypes build for the Breeder Reprocessing Engineering Test (BRET) facility with a throughput capacity of 0.1 t/d of heavy metals. While the construction of BRET has been put on hold indefinitely, development of the 5.5-cm-diam centrifugal contactors has advanced due to the contactor's broad applicability in other areas of fuel reprocessing and other liquid-liquid extraction. Due to the short residence time of the process fluids in a centrifugal contactor, it was necessary to measure the mass transfer efficiency for a typical process flowsheet. This was done with depleted uranium and 91 Zr. The results of mass transfer tests with uranium and zirconium are reported in this paper
Gas-liquid mass transfer coefficient of methane in bubble column reactor
International Nuclear Information System (INIS)
Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop; Lee, Eun Yeol
2015-01-01
Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h -1 was obtained
Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions
Makarov, M. S.; Makarova, S. N.
2016-01-01
Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.
The results of the measurements of mass- and heat-transfer in the wet cooling tower
International Nuclear Information System (INIS)
Fabjan, Lj.; Gaspersic, B.
1979-01-01
These are the results of our investigations carried out on a packing inside a wet cooling tower for the purpose of studying the mass and heat transfer at the counterflow of water and humid air. The measurements on the experimental tower of the corresponding mathematical model reflect the average coefficient of mass and heat transfer for the unity of the active volume. Further the measurements of pressure drop at the air flow were carried out and thus the coefficient of aerodynamic losses were obtained. The results of measurements are given in the corresponding equations with the dimensionless numbers and diagrams. They will be of great use for the planning of new cooling towers. (author)
Mass transfer and power characteristics of stirred tank with Rushton and curved blade impeller
Directory of Open Access Journals (Sweden)
Thiyam Tamphasana Devi
2017-04-01
Full Text Available Present work compares the mass transfer coefficient (kLa and power draw capability of stirred tank employed with Rushton and curved blade impeller using computational fluid dynamics (CFD techniques in single and double impeller cases. Comparative analysis for different boundary conditions and mass transfer model has been done to assess their suitability. The predicted local kLa has been found higher in curved blade impeller than the Rushton impeller, whereas stirred tank with double impeller does not show variation due to low superficial gas velocity. The global kLa predicted has been found higher in curved blade impeller than the Rushton impeller in double and single cases. Curved blade impeller also exhibits higher power draw capability than the Rushton impeller. Overall, stirred tank with curved blade impeller gives higher efficiency in both single and double cases than the Rushton turbine
A general real-time formulation for multi-rate mass transfer problems
Directory of Open Access Journals (Sweden)
O. Silva
2009-08-01
Full Text Available Many flow and transport phenomena, ranging from delayed storage in pumping tests to tailing in river or aquifer tracer breakthrough curves or slow kinetics in reactive transport, display non-equilibrium (NE behavior. These phenomena are usually modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT, among others. We present a MRMT formulation that can be used to represent all these models of non equilibrium. The formulation can be extended to non-linear phenomena. Here, we develop an algorithm for linear mass transfer, which is accurate, computationally inexpensive and easy to implement in existing groundwater or river flow and transport codes. We illustrate this approach by application to published data involving NE groundwater flow and solute transport in rivers and aquifers.
Natural convection mass transfer on a vertical steel structure submerged in a molten aluminum pool
International Nuclear Information System (INIS)
Cheung, F.B.; Yang, B.C.; Shiah, S.W.; Cho, D.H.; Tan, M.J.
1995-01-01
The process of dissolution mass transport along a vertical steel structure submerged in a large molten aluminum pool is studied theoretically. A mathematical model is developed from the conservation laws and thermodynamic principles, taking full account of the density variation in the dissolution boundary layer due to concentration differences. Also accounted for are the influence of the solubility of the wall material on species transfer and the motion of the solid/liquid interface at the dissolution front. The governing equations are solved by a combined analytical-numerical technique to determine the characteristics of the dissolution boundary layer and the rate of natural convection mass transfer. Based upon the numerical results, a correlation for the average Sherwood number is obtained. It is found that the Sherwood number depends strongly on the saturated concentration of the substrate at the moving dissolution front but is almost independent of the freestream velocity
Mass transfer behavior in lactic acid fermentation using immobilized lactobacillus delbrueckii
Energy Technology Data Exchange (ETDEWEB)
Wang, H.; Seki, M.; Furusaki, S. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering
1995-08-20
We performed simulation studies on mass transfer behavior for immobilized cells in lactic acid fermentation using the mathematical model developed previously. The simulations pointed to an unusual result; that lactate ion diffuses into the bead center from outside during the batch fermentation and the startup period of the continuous fermentation, whereas free lactic acid and protons diffuse in the opposite direction. This phenomenon is caused by the addition of base to keep pH constant in the broth. Also, using an appropriate buffer to control pH in the broth can reduce the inward diffusion of lactate ion and improve the productivity of lactic acid. A singular mass transfer phenomenon is expected to take place in other production processes using immobilized cells (or enzyme), where alkali solution is added to broth to keep pH constant. 9 refs., 6 figs.
Combined natural convection heat and mass transfer from vertical fin arrays
International Nuclear Information System (INIS)
Giri, A.; Narasimham, G.S.V.L.; Krishna Murthy, M.V.
2003-01-01
Natural convection transport processes play an important role in many applications like ice-storage air-conditioning. A mathematical formulation of natural convection heat and mass transfer over a shrouded vertical fin array is developed. The base plate is maintained at a temperature below the dew point of the surrounding moist air. Hence there occurs condensation of moisture on the base plate, while the fins may be partially or fully wet. A numerical study is performed by varying the parameters of the problem. The local and average Nusselt numbers decrease in streamwise direction and tend to approach fully developed values for sufficiently large values of the fin length. The results show that beyond a certain streamwise distance, further fin length does not improve the sensible and latent heat transfer performance, and that if dry fin analysis is used under moisture condensation conditions, the overall heat transfer will be underestimated by about 50% even at low buoyancy ratios
Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels
International Nuclear Information System (INIS)
Besedina, T.V.; Udot, A.V.; Yakushev, A.P.
1987-01-01
An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction
Energy Technology Data Exchange (ETDEWEB)
Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert
2006-11-01
Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still
International Nuclear Information System (INIS)
Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert
2006-01-01
Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still
A review of near-field mass transfer in geologic disposal systems
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.
1990-02-01
In this report we summarize the analyses of the time-dependent mass transfer of radionuclides from a waste solid into surrounding porous or fractured media that have been developed at the University of California, Berkeley. For each analysis we describe the conceptual model, we present the governing equations and the resulting analytic solutions, and we illustrate the results. Designers of geologic disposal systems for solid waste must predict the long-term time-dependent rate of dissolution of toxic contaminants in ground water, to provide the source term for predicting the later transport of these contaminants to the environment. Mass-transfer analysis is being used to predict rates of dissolution and release of radioactive constituents in future repositories for high-level radioactive waste, and it has been applied to predict the life of a copper container for high-level radioactive waste. Mechanistic analysis of mass-transfer is based on well-established theory of diffusive-convective transport. Its application requires experimental measurement of well-defined parameters such as porosity, solubility, diffusion coefficient, and pore velocity. Our first analysis assumed a waste solid in direct contact with porous rock. Subsequently we analyzed the more realistic situations of backfill between the waste and rock, rock with discrete fractures as well as pores, and the effects of waste constituents of high solubility. Those dealing with specifically with mass transfer in the near field are presented here. In order to have a consistent set of notation within this review, some of the notation here is different than in the reports cited. 71 refs., 47 figs., 7 tabs
Natural convection boundary layer with suction and mass transfer in a porous medium
International Nuclear Information System (INIS)
Bestman, A.R.
1989-03-01
The free convection boundary layer flow with simultaneous heat and mass transfer in a porous medium is studied when the boundary wall moves in its own plane with suction. The study also incorporates chemical reaction for the very simple model of a binary reaction with Arrhenius activation energy. For large suction asymptotic approximate solutions are obtained for the flow variables for various values of the activation energy. (author). 10 refs, 2 figs
Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage
Energy Technology Data Exchange (ETDEWEB)
Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)
2015-09-30
The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).
Modulated mass-transfer model for superhumps in SU Ursae Majoris stars
Mineshige, Shin
1988-01-01
The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.
Mass transfer controlled reactions in packed beds at low Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Fedkiw, P.S.
1978-12-01
The a priori prediction and correlation of mass-transfer rates in transport limited, packed-bed reactors at low Reynolds numbers is examined. The solutions to the governing equations for a flow-through porous electrode reactor indicate that these devices must operate at a low space velocity to suppress a large ohmic potential drop. Packed-bed data for the mass-transfer rate at such low Reynolds numbers were examined and found to be sparse, especially in liquid systems. Prior models to simulate the solid-void structure in a bed are reviewed. Here the bed was envisioned as an array of sinusoidal periodically constricted tubes (PCT). Use of this model has not appeared in the literature. The velocity field in such a tube should be a good approximation to the converging-diverging character of the velocity field in an actual bed. The creeping flow velocity profiles were calculated. These results were used in the convective-diffusion equation to find mass transfer rates at high Peclet number for both deep and shallow beds, for low Peclet numbers in a deep bed. All calculations assumed that the reactant concentration at the tube surface is zero. Mass-transfer data were experimentally taken in a transport controlled, flow-through porous electrode to test the theoretical calculations and to provide data resently unavailable for deeper beds. It was found that the sinusoidal PCT model could not fit the data of this work or that available in the literature. However, all data could be adequately described by a model which incorporates a channelingeffect. The bed was successfully modeled as an array of dual sized straight tubes.
Nadi, Fatemeh; Tzempelikos, Dimitrios
2018-01-01
In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.
Experimental study of convective coefficient of mass transfer of avocado (Persia americana Mill.)
Energy Technology Data Exchange (ETDEWEB)
Alves, Suerda Bezerra; Luiz, Marcia Ramos; Amorim, Joselma Araujo de; Gusmao, Rennam Pereira de; Gurgel, Jose Mauricio [Universidade Federal da Paraiba (LES/UFPB), Joao Pessoa, PB (Brazil). Lab. de Energia Solar
2010-07-01
Most of all energy consumed worldwide comes from fossil fuels derived from petroleum. With the petroleum crisis in the 70 were sought new energy sources, among them renewable. One such source is biodiesel energy, organic matter originated from animal and/or vegetable. Among the various plant species is the avocado (Persia americana Mill.) showing great potential in the production of petroleum extracted from the pulp and the alcohol removed from the seed. The main obstacle for obtaining the petroleum is the high humidity found in the pulp, being necessary to the drying process, which involves the transfer of heat and mass. The aim of this study was to use the mathematical model represented by Newton's Law of Cooling to simulate the mass transfer on the surface of the avocado pulp during the drying process. The equation of the mathematical model was solved numerically and the method of least squares was identified convective coefficient of Mass Transfer. The dryer used in the experimental process was operated with air flow in the vertical, air flow average fixed 3m/s and temperatures of 50, 60 and 70 deg C. The scheme of the dryer used in the research is composed of the following equipment: centrifugal fan, which drives the air-drying; valve, which allows control of airflow; electrical resistance, used for heating air; the drying chamber, where enables measurement of temperature and relative humidity; support for smaller trays; trays smaller, where the samples of the pulp of the avocado are placed; exit of the air of drying for the environment. The result presented shows the ratio of moisture content as a function of temperature over time, where it is possible to also observe that how much bigger the temperature of drying, greater will be the convective coefficient of mass transfer of the avocado. (author)
International Nuclear Information System (INIS)
Christensen, Kristi; Rutledge, Veronica; Garn, Troy
2011-01-01
In support of the Nuclear Energy Advanced Modeling Simulation Safeguards and Separations (NEAMS SafeSep) program, the Idaho National Laboratory (INL) worked in collaboration with Los Alamos National Laboratory (LANL) to further a modeling effort designed to predict mass transfer behavior for selected metal species between individual dispersed drops and a continuous phase in a two phase liquid-liquid extraction (LLE) system. The purpose of the model is to understand the fundamental processes of mass transfer that occur at the drop interface. This fundamental understanding can be extended to support modeling of larger LLE equipment such as mixer settlers, pulse columns, and centrifugal contactors. The work performed at the INL involved gathering the necessary experimental data to support the modeling effort. A custom experimental apparatus was designed and built for performing drop contact experiments to measure mass transfer coefficients as a function of contact time. A high speed digital camera was used in conjunction with the apparatus to measure size, shape, and velocity of the drops. In addition to drop data, the physical properties of the experimental fluids were measured to be used as input data for the model. Physical properties measurements included density, viscosity, surface tension and interfacial tension. Additionally, self diffusion coefficients for the selected metal species in each experimental solution were measured, and the distribution coefficient for the metal partitioning between phases was determined. At the completion of this work, the INL has determined the mass transfer coefficient and a velocity profile for drops rising by buoyancy through a continuous medium under a specific set of experimental conditions. Additionally, a complete set of experimentally determined fluid properties has been obtained. All data will be provided to LANL to support the modeling effort.
Study of hydrodynamic and mass transfer parameters in pulsed sieve-plate columns
International Nuclear Information System (INIS)
Safdari, J.
2001-01-01
One of the most important liquid-liquid extractor in industry is pulsed column. The pulsed columns are generally classified into the following categories: 1-Pulsed perforated-plate column. 2- Pulsed packed column. The pulsed plate column is differential contactor with the application of mechanical energy and is used for a diverse range of processes. Probably its best known application has been in the nuclear fuel industry. The pulsed plate column consists of a cylindrical shell with settling zones at the top and the bottom of the column. The liquids are fed continuously to the column (flowing counter-currently) and are removed continuously from opposite ends of the column. In this work using a pilot pulsed plate column and two different chemical systems (toluene/acetone/water and n-butyl acetate/acetone/water) various experiments are carried out. In each experiment direction of mass transfer is from organic phase (dispersed phase) into aqueous phase (continuous phase) and the continuous phase is water. The main objects of this thesis are as follow: a- Investigation of effect of operating parameters on dispersed phase hold up, volumetric overall mass transfer coefficients based on dispersed and continuous phase, extraction efficiency, pressure drop of column and flooding velocities (maximum column capacities). Obtained results in this part show that if the calorimetric flow rate of aqueous phase or pulsation intensity increase, hold up, volumetric overall mass transfer coefficients based on both two phases and extraction efficiency will increase and flooding velocities will decrease. Also results show that if volumetric flow rate of organic phase increase, hold up, volumetric mass transfer coefficients based on both two phases and pressure drop will increase and extraction efficiency and flooding velocities will decrease. b- Investigation of effect of internal circulation inside drops in designing pulsed perforated-plate column
Modulated mass-transfer model for superhumps in SU Ursae Majoris stars
International Nuclear Information System (INIS)
Mineshige, S.
1988-01-01
The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars. 52 references
Energy Technology Data Exchange (ETDEWEB)
Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others
1995-09-01
The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.
Heat and Mass Transfer Remote Control in Bioreactors of Technological Lines
Directory of Open Access Journals (Sweden)
Viktorija M. Mel’nick
2017-10-01
Full Text Available Background. The main problems that arise when using equipment for cultivation are to ensure the heat and mass transfer processes in devices, presence of turbulent and stagnant zones, high-energy consumption, low heat transfer coefficients when working with viscous fluids. Objective. The aim of the paper is the experimental determination of the remote control heat transfer advantages in production line bioreactors using ultrasonic beam compared to contact methods. Methods. An experimental study of the heat and mass transfer process in a bioreactor on the stand with UZP-6-1 immersion unit of the ultrasonic radiator with radiation frequency 42 kHz is carried out. Results. Sound waves emitted into a liquid form a concentration zone of passable sound energy in the confocal vessel form of a cylindrical surface and force the liquid to move along the inner surface of the glass along the ascending cylindrical spiral, forming a motive flow throughout the volume, causing peripheral layers of liquid and bottom layers to move in a horizontal and vertical planes, without leaving stagnant zones. The closer to the coincidence angle is the directed ultrasonic beam the greater is the effectiveness of the driving flow. Conclusions. The use of sound waves allows obtaining a high-quality product in technological lines based on bioreactors with minimal risk for the technological process. Radiation parameters and working volume physic-mechanical properties change allow fully using the properties of resonant manifestations of the sound wave influence on the working liquid with minimal costs.
Energy Technology Data Exchange (ETDEWEB)
Tobajas, M.; Garcia-Calvo, E. [Dept. de Ingenieria Quimica, Univ. de Alcala, Alcala de Henares (Spain)
2000-05-01
Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of K{sub L}a values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine K{sub L}a in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining K{sub L}a does not interfere with the microorganisms action. A theoretical mass transfer model has been used for K{sub L}a estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case. (orig.)
Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan
2016-01-01
After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.
International Nuclear Information System (INIS)
Li, Xiu-Wei; Zhang, Xiao-Song; Chen, Qing
2015-01-01
Highlights: • Experimental research has been made on the membrane air-conditioning system. • We develop mass transfer models for the membrane regeneration process. • The paper exposes the actual performance of the system. • Increase of membrane pairs improves the performance. - Abstract: Absorption air-conditioning system has great advantages in energy conservation and environmental protection. To improve the performance of the traditional system, the membrane regeneration absorption system was proposed. Its COP could approach 6 by regenerating absorbent solution with the ion exchange membranes. However, the theoretical conclusion has not been supported by the experiment. This paper presents the experimental research of the membrane regeneration process. It has investigated the mass transfer process, energy efficiency and actual performance under different working conditions. Based on that, a mass transfer model has been developed and the influences of some key parameters have been exposed. It found the regeneration performance is mainly influenced by the current intensity. The calculation results with the model agree well the experimental data. The actual efficiency was lower than 50%, caused by energy loss in heat and electrochemical reactions. The actual COP is between 1 and 3, lower current intensity and more membrane pairs could improve it.
Modelling mass and heat transfer in nano-based cancer hyperthermia.
Nabil, M; Decuzzi, P; Zunino, P
2015-10-01
We derive a sophisticated mathematical model for coupled heat and mass transport in the tumour microenvironment and we apply it to study nanoparticle delivery and hyperthermic treatment of cancer. The model has the unique ability of combining the following features: (i) realistic vasculature; (ii) coupled capillary and interstitial flow; (iii) coupled capillary and interstitial mass transfer applied to nanoparticles; and (iv) coupled capillary and interstitial heat transfer, which are the fundamental mechanisms governing nano-based hyperthermic treatment. This is an improvement with respect to previous modelling approaches, where the effect of blood perfusion on heat transfer is modelled in a spatially averaged form. We analyse the time evolution and the spatial distribution of particles and temperature in a tumour mass treated with superparamagnetic nanoparticles excited by an alternating magnetic field. By means of numerical experiments, we synthesize scaling laws that illustrate how nano-based hyperthermia depends on tumour size and vascularity. In particular, we identify two distinct mechanisms that regulate the distribution of particle and temperature, which are characterized by perfusion and diffusion, respectively.
International Nuclear Information System (INIS)
Janecky, D.R.
1988-01-01
A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs
Study of mass transfer at the air-water interface by an isotopic method
International Nuclear Information System (INIS)
Merlivat, L.
1975-01-01
It is shown by analysing the hydrogen and oxygen stable isotopes distribution in liquid and water vapor, that the processes taking place on a very small scale near the liquid can be investigated. The effect of molecular mass transfer is directly obtained without having to perform difficult measurements in the air in the immediate vicinity of the water surface. Experiments are carried out in the air-water tunnel especially designed for the simulation of ocean atmosphere energy exchanges. The wind velocities vary from 0.7 to 7m/sec. The experimental results obtained do not support the classical Reynolds' analogy between momentum and mass transfer down to the interface and the theory proposed by Sheppard, but they are in agreement with Sverdrup's, Kitaigorodskiy and Volkov's and Brutsaert's theories, all of which involve a layer just above the air-water interface through which mass transfer is dominated by molecular diffusion. The thickness of this layer in the two first theories is shown to decrease with increasing wind velocity. Direct application of Brutsaert's theory for roughness Reynolds numbers smaller than one is in good agreement with the experimental data obtained [fr
Yao, Ye
2016-07-01
The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.
The influence of mass transfer on solute transport in column experiments with an aggregated soil
Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter
1987-06-01
The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.
Effect of mass transfer in a recirculation batch reactor system for immobilized penicillin amidase.
Park, J M; Choi, C Y; Seong, B L; Han, M H
1982-10-01
The effect of external mass transfer resistance on the overall reaction rate of the immobilized whole cell penicillin amidase of E. coli in a recirculation batch reactor was investigated. The internal diffusional resistance was found negligible as indicated by the value of effectiveness factor, 0.95. The local environmental change in a column due to the pH drop was successfully overcome by employing buffer solution. The reaction rate was measured by pH-stat method and was found to follow the simple Michaelis-Menten law at the initial stage of the reaction. The values of the net reaction rate experimentally determined were used to calculate the substrate concentration at the external surface of the catalyst pellet and then to calculate the mass transfer coefficient, k(L), at various flow rates and substrate concentrations. The correlation proposed by Chilton and Colburn represented adequately the experimental data. The linear change of log j(D) at low log N(Re) with negative slope was ascribed to the fact that the external mass transfer approached the state of pure diffusion in the limit of zero superficial velocity.
Influence of mass transfer resistance on overall nitrate removal rate in upflow sludge bed reactors.
Ting, Wen-Huei; Huang, Ju-Sheng
2006-09-01
A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.
Applying rotary jet heads for mixing and mass transfer in a forced recirculation tank reactor system
DEFF Research Database (Denmark)
Nordkvist, Mikkel; Grotkjær, Thomas; Hummer, J.S.
2003-01-01
or an external loop.In this study, we determine mixing times in water and CMC solutions and oxygen mass transfer coefficients in water for a tank reactor system where a small fraction of the total liquid volume is rapidly circulated through an external loop and injected through the nozzles of rotary jet heads....... The system has a very simple design with no internal baffles or heat exchange area, and between batches the rotary jet heads are used for cleaning in place.Mixing time decreases and mass transfer increases with increasing circulation flow rate. For nozzle diameters between 5.5 and 10 mm and with one or two...... rotary jet heads, it is shown that a remarkable saving in power input for a fixed mixing time or mass transfer coefficient can be obtained by using a large nozzle diameter and two rather than one rotary jet heads.At the experimental conditions of the study the system is scaleable by simple formulas...
International Nuclear Information System (INIS)
Sieniutycz, S.; Berry, R.S.
1992-01-01
For coupled transfer of the energy and mass in a multicomponent system at mechanical equilibrium a simple thermodynamic theory is developed, and the damped wave equations of change are derived. We show that under nonstationary conditions, where relaxation of diffusive fluxes is essential, the evolution of the distributed coupled transfer of the energy and mass follows the path that minimizes the difference between the total entropy generated within the system and that exchanged by the system. The principle is also valid in the limit in which flux relaxation effects are negligible and the heat and mass transfer, whether steady or not, obeys Onsager's generalization of the Fourier and Fick laws. For coupled steady-state processes the principle goes into that of Onsager, yielding his phenomenological equations. In contrast to the local steady-state nature of Onsager's principle the new principle is global, valid for both stationary and transient situations, and requires no frozen fields. For an isolated, distributed system, in which transient relaxation to equilibrium is the only possible process, the principle implies the least possible increase of the system entropy between any two successive configurations
Mass transfer processes and field-scale transport of organic solutes
International Nuclear Information System (INIS)
Brusseau, M.L.
1990-01-01
The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)
Directory of Open Access Journals (Sweden)
Lulu Wang
2016-01-01
Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.
Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges
2012-11-09
The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems
Evaluation of magnetization transfer ratio in ascites and pelvic cystic masses
Energy Technology Data Exchange (ETDEWEB)
Okada, Susumu [Nippon Medical School, Inba, Chiba (Japan). Chiba-Hokuso Hospital; Kato, Tomoyasu; Yamashita, Takashi [and others
1997-12-01
To investigate the feasibility of magnetization transfer contrast (MTC) in characterization of pelvic cystic masses and ascites, in vitro studies were performed. Cystic fluids were taken from operative specimens of ten ovarian cystic masses (five mucinous cystadenomas, one cystadenocarcinoma, two serous cystadenocarcinomas, two clear cell carcinomas) and three non-ovarian pelvic cysts (one paraovarian cyst, one pseudomyxoma peritonei, one pelvic abscess). Samples of ascitic flied were drawn by peritoneal puncture in twenty patients (thirteen with peritonitis carcinomatosa, five with liver dysfunction, two with renal dysfunction). Total protein content in ascitic fluids was measured. Magnetization transfer ratio (MTR) was calculated by the signal intensities under the gradient echo sequence with and without the application of off-resonance pulses. The relative signal intensities (RSI) relative to water in T{sub 1} and T{sub 2} weighted images were obtained using spin echo sequence. There was no correlation between histological type of pelvic mass and MTR and RSI. Good correlation (R{sup 2}=0.761) was obtained between MTR and protein content in ascitic fluids, whereas no correlation was noted between RSI and protein content in ascitic fluids. These results suggest that MTC is not useful in the characterization of pelvic masses but is applicable in the differentiation between exudative ascites and transudative ascites. (author)
International Nuclear Information System (INIS)
Bhattacharyya, Krishnendu; Layek, G C; Seth, G S
2014-01-01
A mathematical model is presented to study the Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous incompressible fluid towards a shrinking surface. Suitable similarity transformations are used to convert the governing partial differential equations into self-similarity ordinary differential equations that are then numerically solved by shooting method. Dual solutions for temperature and concentration are obtained in the presence of Soret and Dufour effects. Graphical representations of the heat and mass transfer coefficients, the dimensionless thermal and solute profiles for various values of Prandtl number, Lewis number, Soret number and Dufour number are demonstrated. With Soret number the mass transfer coefficient which is related to mass transfer rate increases for both solutions and the heat transfer coefficient (related to heat transfer rate) for both solutions becomes larger with Dufour number. The Prandtl number causes reduction in heat and the mass transfer coefficients and similarly with the Lewis number mass transfer coefficient decreases. Also, double crossing over is found in dual dimensionless temperature profiles for increasing Soret number and in dual dimensionless concentration profiles for the increase in Dufour number. Due to the larger values of Dufour number the thermal boundary layer increases and for Prandtl number increment it decreases; whereas, the solute boundary layer thickness reduces with increasing values of Prandtl number and Lewis number. (paper)
Marin, Pricila; Borba, Carlos Eduardo; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando R; de Oliveira, Silvia Priscila Dias; Kroumov, Alexander Dimitrov
2014-01-01
Reactive blue 5G dye removal in a fixed-bed column packed with Dowex Optipore SD-2 adsorbent was modelled. Three mathematical models were tested in order to determine the limiting step of the mass transfer of the dye adsorption process onto the adsorbent. The mass transfer resistance was considered to be a criterion for the determination of the difference between models. The models contained information about the external, internal, or surface adsorption limiting step. In the model development procedure, two hypotheses were applied to describe the internal mass transfer resistance. First, the mass transfer coefficient constant was considered. Second, the mass transfer coefficient was considered as a function of the dye concentration in the adsorbent. The experimental breakthrough curves were obtained for different particle diameters of the adsorbent, flow rates, and feed dye concentrations in order to evaluate the predictive power of the models. The values of the mass transfer parameters of the mathematical models were estimated by using the downhill simplex optimization method. The results showed that the model that considered internal resistance with a variable mass transfer coefficient was more flexible than the other ones and this model described the dynamics of the adsorption process of the dye in the fixed-bed column better. Hence, this model can be used for optimization and column design purposes for the investigated systems and similar ones.
Study on heat and mass transfer characteristics of humid air-flow in a fin bundle
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong-Hwi [Air-Conditioner Research Laboratory, LG Electronics, Seoul 153-082 (Korea); Koyama, Shigeru; Kuwahara, Ken [Department of Energy and Environmental Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kwon, Jeong-Tae [Department of Mechanical Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea); Park, Byung-Duck [School of Mechanical and Automotive Engineering, Kyungpook National University, Sangju, Gyeongbuk 742-711 (Korea)
2010-11-15
This paper deals with the heat and mass transfer characteristics of humid air-flow under frosting conditions. A slit fin bundle was used for the simulation of fins of a heat exchanger. The effects of the cooling block temperature, air humidity and air velocity on the frosting characteristics were experimentally investigated. The frosted mass was affected considerably by the cooling block temperature and air humidity. However, the effect of air velocity on it was not so large. The pressure drop was affected remarkably by all experimental parameters in this study. Local heat flux distribution and frost thickness distribution on each fin were predicted from the measured fin temperatures and the mass and energy conservation equations on the frost surface and inside the frost layer. (author)
Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A; Wei, Jun; Cha, Kenny
2016-12-01
Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a
Heat and mass transfer from the mantle: heat flow and He-isotope constraints
Directory of Open Access Journals (Sweden)
B. G. Polyak
2005-06-01
Full Text Available Terrestrial heat flow density, q, is inversely correlated with the age, t, of tectono-magmatic activity in the Earth's crust (Polyak and Smirnov, 1966; etc.. «Heat flow-age dependence» indicates unknown temporal heat sources in the interior considered a priori as the mantle-derived diapirs. The validity of this hypothesis is demonstrated by studying the helium isotope ratio, 3He/4He = R, in subsurface fluids. This study discovered the positive correlation between the regionally averaged (background estimations of R- and q-values (Polyak et al., 1979a. Such a correlation manifests itself in both pan-regional scales (Norhtern Eurasia and separate regions, e.g., Japan (Sano et al., 1982, Eger Graben (Polyak et al., 1985 Eastern China rifts (Du, 1992, Southern Italy (Italiano et al., 2000, and elsewhere. The R-q relation indicates a coupled heat and mass transfer from the mantle into the crust. From considerations of heat-mass budget this transfer can be provided by the flux consisting of silicate matter rather than He or other volatiles. This conclusion is confirmed by the correlation between 3He/ 4He and 87Sr/86Sr ratios in the products of the volcanic and hydrothermal activity in Italy (Polyak et al., 1979b; Parello et al., 2000 and other places. Migration of any substance through geotemperature field transports thermal energy accumulated within this substance, i.e. represents heat and mass transfer. Therefore, only the coupled analysis of both material and energy aspects of this transfer makes it possible to characterise the process adequately and to decipher an origin of terrestrial heat flow observed in upper parts of the earth crust. An attempt of such kind is made in this paper.
Directory of Open Access Journals (Sweden)
Zhang Yuan
2016-01-01
Full Text Available A self-designed experimental installation for transient heat transfer in the modelling surrounding rock mass of high geothermal roadways was elaborated in this paper. By utilizing the new installation, the temperature variation rules in surrounding rock mass of the high geothermal roadway during mechanical ventilation were studied. The results show that the roadway wall temperature decreases dramatically at the early stage of ventilation, and the temperature at every position of the surrounding rock mass is decreasing constantly with time passing by. From roadway wall to deep area, the temperature gradually increases until reaching original rock temperature. The relationship between dimensionless temperature and dimensionless radius demonstrates approximately exponential function. Meanwhile, the temperature disturbance range in the simulated surrounding rock mass extends gradually from the roadway wall to deep area in the surrounding rock mass. Besides, as the air velocity increases, heat loss in the surrounding rock mass rises and the ratio of temperature reduction becomes larger, the speed of disturbance range expansion also gets faster.
Mass transfer model for two-layer TBP oxidation reactions: Revision 1
International Nuclear Information System (INIS)
Laurinat, J.E.
1994-01-01
To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments
International Nuclear Information System (INIS)
Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)
1980-01-01
To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru
User's manual for the FEHM application - A finite-element heat- and mass-transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions
The influence of pH on gas-liquid mass transfer in non-Newtonian fluids
Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde
2017-01-01
In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...
International Nuclear Information System (INIS)
Sokolov, V.V.; Smirnov, N.N.
1982-01-01
An investigation of the joint influence of hydrodynamic and concentration factors in sorption of iodine by AV-17-8 and anion exchange resins on the mass-transfer coefficient is the subject of this report. The method of central composite rotatable experimental design was used for quantitative assessment and derivation of the appropriate equations. The investigation yielded the necessary regression equations satisfactorily describing the influence of all the factors in the mass-transfer coefficient. the optimal mass-transfer conditions were determined. On the basis of the values obtained, recommendations are made on the optimal hydrodynamic conditions of operation of equipment with pneumatic circulation of the ion-exchanger
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Berube, P.R.; Nopens, I.
2011-01-01
by the gas flow. It was noted that coalescence of bubbles affects the MTH. Coalescence increased the “width” of the peaks (i.e. the estimate of the variability of the mass transfer coefficient) and the height of the peak (i.e. amount of time that a mass transfer coefficient of a given value is maintained......). A semi-empirical relationship based on the Lévêque relationship for the Sherwood number (mass transfer coefficient) was formulated for the laminar regime. A test case comparison between water and activated sludge was performed based on full-scale airlift MBR operational conditions. It was found...
Numerical investigation of vapor–liquid heat and mass transfer in porous media
International Nuclear Information System (INIS)
Xin, Chengyun; Rao, Zhonghao; You, Xinyu; Song, Zhengchang; Han, Dongtai
2014-01-01
Highlights: • The heat and mass transfer behaviors in porous media was investigated. • A modified separate flow model (MSFM) was developed. • The influence of heat flux direction on heat and fluid flow behaviors is great. • The saturation profile is weakly discontinuous on the phase interface. • A countercurrent flow exists in two-phase region. - Abstract: A modified separate flow model (MSFM) is developed to numerically investigate the heat and mass transfer behaviors in porous media in this paper. In the MSFM, the effects of capillarity, liquid phase change, nonisothermal two-phase region and the local thermal non-equilibrium (LTNE) are considered. The vapor and liquid velocities are both converted into intermediate variables in the simulations and conveniently convergent solutions are obtained because a special upwind scheme for the convection or boiling heat transfer source and variable convergence factors are simultaneously employed. Two typical numerical examples with a one-dimension model of porous media are studied that the high heat fluxes are vertical and parallel to the fluid flow direction, respectively. And the results indicated that the influence of heat flux direction on heat and fluid flow behaviors in porous media is great. The nonisothermal phenomenon in the two-phase region is obvious for the former while the LTNE phenomenon is remarkable in the two-phase region for the latter. The results also showed several similar behaviors that the saturation profile is weakly discontinuous on the phase interface and a countercurrent flow exists in two-phase region
Energy Technology Data Exchange (ETDEWEB)
Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)
1977-01-01
A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)
Polymer coatings as separator layers for microbial fuel cell cathodes
Watson, Valerie J.
2011-03-01
Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.
Ruth, van S.M.; Floris, V.; Fayoux, S.
2006-01-01
The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form
Emission mechanism in high current hollow cathode arcs
International Nuclear Information System (INIS)
Krishnan, M.
1976-01-01
Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment
nTiO{sub 2} mass transfer and deposition behavior in an aquatic environment
Energy Technology Data Exchange (ETDEWEB)
Wei, Xiuzhen, E-mail: xzwei@zjut.edu.cn; He, Junhui; Wang, Meng; Fang, Jinfeng; Chen, Jinyuan, E-mail: cjy1128@zjut.edu.cn; Lv, Bosheng, E-mail: zjhzlbs@zjut.edu.cn [Zhejiang University of Technology, College of Environment (China)
2016-12-15
Nano-TiO{sub 2} (nTiO{sub 2}) is widely used in industry, and some of it is inevitably released into natural aquatic environments. nTiO{sub 2} can be deposited on the streambed or transported along the stream and streambed, and it can also undergo exchange-transfer processes in these systems. The behavior of nTiO{sub 2} in rivers includes deposition-transfer processes in the stream and exchange-transfer processes between the stream and streambed. In this work, the deposition, mass transfer, exchange, and aggregation behavior of nTiO{sub 2} in a simulated river were studied as a function of the solution pH, stream velocity, and anionic, cationic, and neutral surfactant concentrations. In these experiments, a recirculating flume was used to simulate a natural stream. The nTiO{sub 2} deposition and aggregation phenomena in the river and streambed were characterized. Of the three surfactants studied, the anionic surfactant enhanced the nTiO{sub 2} stability in the river and limited its aggregation most effectively, resulting in slow nTiO{sub 2} deposition and nTiO{sub 2} transport over long distances. This study provides information about nanoparticle transport phenomena in simulated natural aquatic systems.
nTiO_2 mass transfer and deposition behavior in an aquatic environment
International Nuclear Information System (INIS)
Wei, Xiuzhen; He, Junhui; Wang, Meng; Fang, Jinfeng; Chen, Jinyuan; Lv, Bosheng
2016-01-01
Nano-TiO_2 (nTiO_2) is widely used in industry, and some of it is inevitably released into natural aquatic environments. nTiO_2 can be deposited on the streambed or transported along the stream and streambed, and it can also undergo exchange-transfer processes in these systems. The behavior of nTiO_2 in rivers includes deposition-transfer processes in the stream and exchange-transfer processes between the stream and streambed. In this work, the deposition, mass transfer, exchange, and aggregation behavior of nTiO_2 in a simulated river were studied as a function of the solution pH, stream velocity, and anionic, cationic, and neutral surfactant concentrations. In these experiments, a recirculating flume was used to simulate a natural stream. The nTiO_2 deposition and aggregation phenomena in the river and streambed were characterized. Of the three surfactants studied, the anionic surfactant enhanced the nTiO_2 stability in the river and limited its aggregation most effectively, resulting in slow nTiO_2 deposition and nTiO_2 transport over long distances. This study provides information about nanoparticle transport phenomena in simulated natural aquatic systems.
Mass transfer behavior of tritium from air to water through the water surface
International Nuclear Information System (INIS)
Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo
2005-01-01
It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)
Absolute Properties of the Pulsating Post-mass Transfer Eclipsing Binary OO Draconis
Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim; Park, Jang-Ho
2018-01-01
OO Dra is a short-period Algol system with a δ Sct-like pulsator. We obtained time-series spectra between 2016 February and May to derive the fundamental parameters of the binary star and to study its evolutionary scenario. The radial velocity (RV) curves for both components were presented, and the effective temperature of the hotter and more massive primary was determined to be {T}{eff,1}=8260+/- 210 K by comparing the disentangling spectrum and the Kurucz models. Our RV measurements were solved with the BV light curves of Zhang et al. using the Wilson-Devinney binary code. The absolute dimensions of each component are determined as follows: M 1 = 2.03 ± 0.06 {M}⊙ , M 2 = 0.19 ± 0.01 {M}⊙ , R 1 = 2.08 ± 0.03 {R}⊙ , R 2 = 1.20 ± 0.02 {R}⊙ , L 1 = 18 ± 2 {L}⊙ , and L 2 = 2.0 ± 0.2 {L}⊙ . Comparison with stellar evolution models indicated that the primary star resides inside the δ Sct instability strip on the main sequence, while the cool secondary component is noticeably overluminous and oversized. We demonstrated that OO Dra is an oscillating post-mass transfer R CMa-type binary; the originally more massive star became the low-mass secondary component through mass loss caused by stellar wind and mass transfer, and the gainer became the pulsating primary as the result of mass accretion. The R CMa stars, such as OO Dra, are thought to have formed by non-conservative binary evolution and ultimately to evolve into EL CVn stars.
Aerodynamics, heat and mass transfer in steam-aerosol turbulent flows in containment
Energy Technology Data Exchange (ETDEWEB)
Nigmatulin, B.I.; Pershukov, V.A.; Ris, V.V. [Research & Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation)] [and others
1995-09-01
In this report an analysis of aerodynamic and heat transfer processes at the blowdown of gas-dispersed mixture into the containment volume is presented. A few models for description of the volume averaged and local characteristics are analyzed. The mathematical model for description of the local characteristics of the turbulent gas-dispersed flows was developed. The calculation of aerodynamic, heat and mass transfer characteristics was based on the Navier-Stokes, energy and gas mass fractions conservation equations. For calculation of dynamics and deposition of the aerosols the original diffusion-inertia model is developed. The pulsating characteristics of the gaseous phase were calculated on the base (k-{xi}) model of turbulence with modification to account thermogravitational force action and influence of particle mass loading. The appropriate boundary conditions using the {open_quotes}near-wall function{close_quotes} approach was obtained. Testing of the mathematical models and boundary conditions has shown a good agreement between computation and data of comparison. The described mathematical models were applied to two- and three dimensional calculations of the turbulent flow in containment at the various stages of the accident.
Mass and heat transfer mechanism in wood during radio frequency/vacuum drying and numerical analysis
Institute of Scientific and Technical Information of China (English)
Xiaoran Jia; Jingyao Zhao; Yingchun Cai
2017-01-01
The mass and heat transfer mechanisms during radio frequency/vacuum (RF/V) drying of square-edged timber were analyzed and discussed in detail,and a new one-dimensional mathematical model to describe the transport phenomena of mass and heat during continuous RF/V drying was derived from conservation equations based on the mass and heat transfer theory of porous materials.The new model provided a relatively fast and efficient way to simulate vacuum drying behavior assisted by dielectric heating.Its advantages compared with the conventional models include:(1) Each independent variable has a separate control equation and is solved independently by converting the partial differential equation into a difference equation with the finite volume method;(2) The calculated data from different parts of the specimen can be displayed in the evolution curves,and the change law of the parameters can be better described.After analyzing the calculated results,most of the important phenomena observed during RF/V drying were adequately described by this model.
Numerical study of heat and mass transfer during evaporation of a turbulent binary liquid film
Directory of Open Access Journals (Sweden)
Khalal Larbi
2015-01-01
Full Text Available This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.
Research on heat and mass transfer model for passive containment cooling system
International Nuclear Information System (INIS)
Jiang Xiaowei; Yu Hongxing; Sun Yufa; Huang Daishun
2013-01-01
Different with the traditional dry style containment design without external cooling, the PCCS design increased the temperature difference between the wall and the containment atmosphere significantly, and also the absolute temperature of the containment surfaces will be lower, affecting properties relevant in the condensation process. A research on the heat and mass transfer model has been done in this paper, especially the improvement on the condensation and evaporation model in the presence of noncondensable gases. Firstly, the Peterson's diffusion layer model was proved to equivalent to the stagnant film model adopted by CONTAIN code using the Clausius-Clapeyron equation, then a factor which can be used to stagnant film model was derived from the comparison between the Y.Liao's generalized diffusion layer model and the Peterson's diffusion layer model. Finally, the model in CONTAIN code used to compute the condensation and evaporation mass flux was modified using the factor, and the Wisconsin condensation tests and Westinghouse film evaporation on heated plate tests were simulated which had proved the improved model can predict more closer value of the heat and mass transfer coefficient to experimental value than original model. (authors)
Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower
Lee, Hyunsub; Son, Gihun
2017-11-01
Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.
Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.
Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E
2014-01-01
In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials
Cathodic protection -- Rectifier 46
International Nuclear Information System (INIS)
Lane, W.M.
1995-01-01
This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive waste
Cathodic protection -- Rectifier 47
International Nuclear Information System (INIS)
Lane, W.M.
1995-01-01
This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste
Directory of Open Access Journals (Sweden)
Kalidas Das
2016-10-01
Full Text Available The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge–Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.
Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer
Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John
2006-01-01
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
Influence of vapor-mass flux on simultaneous heat and moisture transfer in unsaturated porous media
International Nuclear Information System (INIS)
Hartley, J.G.; Boo, J.H.
1987-01-01
This paper evaluates the validity of neglecting vapor transport by moisture content gradients (VMG) and liquid transport by temperature gradients (LTG) in coupled heat and moisture transfer in moist porous media. A review of previous work reveals discrepancies between model predictions and experimental data. The results presented here show that these discrepancies result from neglecting VMG. The governing equations which describe the coupled heat and moisture transfer are solved numerically for an infinite slab of an unsaturated porous medium, and existing experimental and empirical data for a moist sandy silt soil are used. Predicted moisture content distributions during dry-out and drying rates are found to be significantly affected by VMG. Accurate results can be obtained when VMG is neglected in the energy equation provided that it is retained in the mass conservation equation
Simulation of the heat and mass transfer processes during the vacuum frying of potato chips
Directory of Open Access Journals (Sweden)
Ram Yamsaengsung
2008-01-01
Full Text Available A fundamental two-dimensional model to predict the heat and mass transfer that occur during the vacuum frying of potato chips was solved using the Finite Element toolbox in MATLAB 6.1. The simulation of the heat transfer process included the convection of heat from the surface to the product, the conduction of heat into the product, and a loss of heat using the heat source term representing evaporation. The mass transfer process was divided into two periods: (1 water loss and (2 oil absorption. The first scenario included a diffusion term and a source term. The source term represented the convection and evaporation of water from the product. For the second period, the diffusion term represented the gradual absorption of oil through capillary diffusion.From the simulation, a good agreement between the experimental data and the predicted values was obtained. From the heat transfer model, the rapid increase in temperature of the product toward the boiling point of water (at the associated pressure followed by its steady increase toward the temperature of the oil was validated. Furthermore, by separating the rate of moisture loss into two parts to represent the constant rate and falling rate period of drying, the model was able to predict an initial period of rapid moisture loss followed by a decreasing rate of moisture loss. The simulation also demonstrated the formation of the crust and the gradual movement of the crust inward. Finally, using two sets of diffusion coefficients that correlated to the two schemes of moisture loss, the model predicted the rapid flux of oil into the product during the constant drying stage, followed by a small amount of oil absorption into its interior once the crust had been established.
Energy Technology Data Exchange (ETDEWEB)
Waesche, S.; Hempel, D.C. [Technische Univ. Braunschweig (Germany). Inst. fuer Bioverfahrenstechnik; Horn, H. [Fachhochschule Magdeburg (Germany). Hydro- und Abfallchemie
1999-07-01
Substance transfer in the boundary layer bulk/biofilm can be only inadequately described by conventional model concepts. In such cases where the surface structure of a biofilm adapts to given hydraulic conditions, the substance transfer phenomena need to be studied in depth. In addition, the entire biofilm structure is much influenced both by substrate conditions and by hydrodynamic conditions during growth. With a view to quantifying these factors, biofilms were cultured under various substrate and hydrodynamic conditions in tube reactors with a diameter of 2.6 cm. For characterizing the cultured biofilms, biofilm density and substrate turnover measured as maximum mass transfer density were determined in each test series. Biofilm density (dry biomass/biofilm volume) was determined by gravimetry. Maximum mass transfer densities in biofilm were established in batch experiments with excess substrate. By means of oxygen microelectrodes, oxygen profiles in the biofilm were measured directly in the reactor. These measurements concerned biofilms of thicknesses ranging from 400 to 2000 {mu}m, where the biofilms did not yet exhibit erosion. (orig.) [German] Der Stoffuebergang in der Grenzschicht Bulk/Biofilm ist mit herkoemmlichen Modellvorstellungen nur ungenuegend beschreibbar. Eine sich an die aktuellen hydraulischen Bedingungen anpassende Oberflaechenstruktur des Biofilms erfordert eine intensive Untersuchung der Stoffuebergangsphaenomene in derartigen Systemen. Darueber hinaus wird die gesamte Biofilmstruktur sowohl von den Substratbedingungen als auch von den hydrodynamischen Bedingungen waehrend des Wachstums stark beeinflusst. Um diese Faktoren quantifizieren zu koennen, wurden Biofilme bei verschiedenen Substrat- und hydrodynamischen Bedingungen in Rohrreaktoren mit einem Durchmesser von 2,6 cm kultiviert. Zur Charakterisierung der kultivierten Biofilme wurde die Biofilmdichte und der Substratumsatz, gemessen als maximale Massestromdichte, bei jeder Versuchsreihe
Mass transfer coefficient factor in pipe bend - 3 D CFD analysis
International Nuclear Information System (INIS)
Prasad, Mahendra; Gaikwad, Avinash J.; Madasamy, P.; Krishnamohan, T.V.; Velumurugan, S.; Sridharan, Arunkumar; Parida, Smrutiranjan
2015-01-01
In power industries Flow Accelerated Corrosion (FAC) has been a concern for pipe wall thinning where high velocity fluid at elevated temperatures is used. Even straight pipes are found to have non uniform corrosion and this is enhanced in junctions such as bends, orifices etc. Mass transfer coefficient (MTC) which defines the amount of corrosion changes from its value in straight pipe (with same fluid parameters) for flow in bends, orifice etc due to changes in velocity profile in axial direction. In this paper, 3 D computational fluid dynamics (CFD) simulation is carried out for an experiment on 58° bend angle and 2D bend radius circular carbon steel pipe carrying water at 120°C under neutral pH conditions. The turbulent model K-ω with shear stress transport was used for this purpose. The mass transfer boundary layer (MTBL) thickness δ mtbl depends on Schmidt number (Sc), as δ mtbl ∼ δ h /(Sc 1/3 ). MTBL is significantly smaller than hydrodynamic boundary layer δ h for large Sc, hence boundary layer meshing was carried out deep into δ mtbl . Uniform velocity was applied at the inlet. The flow velocity was 3 m/s at room temperature while the experimental fluid velocity was 7 m/s. Lower value of fluid velocity is chosen due to the limitations of grid size since it depends inversely on fluid velocity. The ratio of MTC in bend to straight pipe is not strongly dependent on Sc. CFD simulation at lower temperature is sufficient to get approximate MTC in bends. The ratio of the mass transfer coefficient at some locations in bend to the straight pipe coefficient (MTCR) is determined through simulation. The MTC increased in the extrados of the bend towards the outlet. (author)
International Nuclear Information System (INIS)
Park, Sang Kyoo; Yang, Hei Cheon
2017-01-01
As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.
The effect of the coating layer thickness on VOC extraction performance of a ceramic polymer composite membrane has been investigated. It was found, under experimental condiitons representing typical field operation, the overall mass transfer rates of feed components were control...
Energy Technology Data Exchange (ETDEWEB)
Park, Sang Kyoo; Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)
2017-06-15
As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.
Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman
2018-03-01
In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.
International Nuclear Information System (INIS)
Singh, K.; Rawat, S. K.; Kumar, M.
2016-01-01
Heat and mass transfer behavior of unsteady flow of squeezing between two parallel plates in the sight of uniform magnetic field with slip velocity effect is investigated. The governing equations representing fluid flow have been transformed into nonlinear ordinary differential equations using similarity transformation. The equations thus obtained have been solved numerically using Runge-Kutta-Fehlberg method with shooting technique. Effects on the behavior of velocity, temperature, and concentration for various values of relevant parameters are illustrated graphically. The skin-friction coefficient and heat and mass transfer rate are also tabulated for various governing parameters. The results indicate that, for nano fluid flow, the rates of heat and mass transfer are inversely proportional to nanoparticle volume fraction and magnetic parameter. The rate of mass transfer increases with increasing values of Schmidt number and squeeze number.
Conference on heat mass transfer and properties of liquid metals TF-2002
International Nuclear Information System (INIS)
Efanov, A.D.; Kozlov, F.A.
2003-01-01
Results of the conference TF-2002 devoted to the combined approach to problems of harnessing liquid metals as coolants for NPU are presented. The conference takes place in Obninsk, 29 - 31 October, 2002. Papers of the conference involve items on thermal hydraulics, mass transfer and safety of NPU with liquid metal coolants, structure, physical and chemical properties of liquid metal and liquid metal solutions, decommissioning of units and ecology, application of liquid metals divorced with NPU. Most of the papers of the conference are devoted to the investigation into lead and lead-bismuth coolants [ru
Ftreign system studieo of hydrodynamics and heat-mass transfer at nuclear power plants
International Nuclear Information System (INIS)
Saltanov, G.A.
1981-01-01
Status and the main problems of system studies on hydrodynamics and heat-and-mass transfer at nuclear power plant transients and accidents are considered. Experimental benchmarks used for studying the loss of coolant accidents are described. The conclusion is made that contemporary level of measuring apparatus development and a large number of fast-response monitors of temperature, pressure and coolant level at most of described benchmarks permit to obtain sufficiently complete information of the behaviour of most important parts of a reactor unit during transients and accidents of different type [ru
A CFD model for determining mixing and mass transfer in a high power agitated bioreactor
DEFF Research Database (Denmark)
Bach, Christian; Albæk, Mads O.; Stocks, Stuart M.
performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was found to be most efficiently described by using the k-ε model with regards...... simulations, and the overall mass transfer coefficient was found to be in accordance with experimental data. This work illustrates the possibility of predicting the hydrodynamic performance of an agitated bioreactor using validated CFD models. These models can be applied in the testing of new bioreactor...
Energy Technology Data Exchange (ETDEWEB)
Flytzani-Stephanopoulos, M; Schmidt, L D
1979-01-01
Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.
Interfacial structures - Thermodynamical and experimental studies of the interfacial mass transfer
International Nuclear Information System (INIS)
Morel, Jean-Emile
1972-01-01
In the first section, we put forward hypotheses concerning the structure of the interfacial regions between two immiscible liquid phases. It appears that the longitudinal structure is comparable with that of a crystallized solid and that the transversal structure is nearest of that of a liquid. In the second section, we present a thermodynamical treatment of the irreversible phenomena in the interfacial region. The equation of evolution of a system consisting of two immiscible liquid phases are deduced. The third part allows an experimental verification of the theoretical relations. We also make clear, in certain cases, the appearance of a great 'interfacial resistance' which slows down the interfacial mass transfer. (author) [fr
Heat and mass transfer through a thick bed of cocoa beans during drying
Energy Technology Data Exchange (ETDEWEB)
Nganhou, J. [Laboratoire d' Energetique, B P 8390, ENSP Yaounde (Cameroon)
2004-07-01
This article relates to the establishment of macroscopic equations of thick and fixed hygroscopical porous medium allowing an analysis of couply phenomena of heat and mass transfers in drying operation. The drying is done through forced convection by imposing a circulation of hot air across the layer. The authors then make their study particular to the case of thick layer of cocoa beans grown in the region of Yaounde in cameroon. A study realized on a prototype constructed and tested in the laboratory enables the validation of the proposed model. (orig.)
Effect of some additives on mass transfer coefficient at a vibrating horizontal screen
Energy Technology Data Exchange (ETDEWEB)
Nosier, S.A.; El-Abd, M.Z. [Chemical Engineering Dept., Faculty of Engineering, Alexandria Univ. (Egypt); Zaki, M.M. [Environmental Engineering Dept., Faculty of Engineering, Zagazig Univ. (Egypt)
1998-01-01
The addition of small amounts of high molecular weight substances, such as polymers and surface-active agents, to fluids can produce significant reduction of friction in turbulent flow. The objectiv of the present work is to study the effect of drag-reducing additives such as Polyox WSR 301 and sodium lauryl sulfate (anionic surfactant) on the rate of mass transfer at a vibrating horizontal screen. The variables studied were the concentration of polymer and surfactant, frequency of vibration and amplitude of vibration. (orig.)
Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels
International Nuclear Information System (INIS)
Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.
1988-01-01
Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4
Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction
Directory of Open Access Journals (Sweden)
S. A. Shehzad
2013-03-01
Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.
International Nuclear Information System (INIS)
Haroun, Y.
2008-11-01
This work is done within the framework of gas treatment and CO 2 capture process development. The main objective of the present work is to fill the gap between classical experiments and industrial conditions by the use of Computational Fluid Dynamics (CFD). The physical problem considered corresponds to the liquid film flow down a corrugate surface under gravity in present of a gas phase. The chemical species in the gas phase absorb in the liquid phase and react. Numerical calculations are carried out in order to determine the impact of physical and geometrical properties on reactive mass transfer in industrial operating conditions. (author)
Czech Academy of Sciences Publication Activity Database
Kárászová, Magda; Šimčík, Miroslav; Friess, K.; Randová, A.; Jansen, J. C.; Růžička, Marek; Sedláková, Zuzana; Izák, Pavel
2013-01-01
Roč. 118, 30 OCT (2013), s. 255-263 ISSN 1383-5866 R&D Projects: GA ČR GAP106/10/1194; GA MŠk(CZ) 7C11009 Grant - others:RFCS(XE) RFCR-CT-2010-00009; INP(IT) PON01_01840; HA MŠk(CZ) CZ.1.05/2.1.00/03.0071 Institutional support: RVO:67985858 Keywords : biogas purification * supported ionic liquid membranes * mass transfer coefficients Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.065, year: 2013
The application of positron emission tomography to the study of mass transfer in fractured rock
International Nuclear Information System (INIS)
Gilling, D.; Jefferies, N.L.; Fowles, P.; Hawkesworth, M.R.; Parker, D.J.
1991-06-01
In order to predict the transport of dissolved radioelements through a fractured rock it is necessary to determine both the geometry of the fracture network and the hydraulic properties of the individual fractures. This paper describes a technique for studying mass transfer in a single fracture. The technique is positron emission tomography (PET) and it offers the potential for visualising quantitatively the migration of dissolved tracers. Preliminary experiments have been undertaken involving the flow of Na-22 and F-18 labelled solutions through artificial fractures. The results demonstrate that PET is well suited to this application. (author)
The application of positron emission tomography to the study of mass transfer in fractured rock
International Nuclear Information System (INIS)
Gilling, D.; Jefferies, N.L.; Fowles, P.; Hawkesworth, M.R.; Parker, D.J.
1991-06-01
Water flow in hard rocks takes place dominantly in fractures. In order to predict the transport of dissolved radioelements through a fractured rock it is necessary to determine both the geometry of the fracture network and the hydraulic properties of the individual fractures. This paper describes a technique for studying mass transfer in a single fracture. The technique is positron emission tomography (PET) and it offers the potential for visualising quantitatively the migration of dissolved tracers. Preliminary experiments have been undertaken involving the flow of Na-22 and F-18 labelled solutions through artificial fractures. The results demonstrate that PET is well suited to this application. (author)
The Pi-Theorem Applications to Fluid Mechanics and Heat and Mass Transfer
Yarin, L P
2012-01-01
This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.
PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS
Directory of Open Access Journals (Sweden)
Doroshenko A.V.
2014-12-01
Full Text Available Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibilities of the solar systems is executed as it applies in relation to the tasks of cooling of envi-ronments and air-conditioning systems.
Directory of Open Access Journals (Sweden)
Cláudio Vinicius Barbosa Monteiro
2010-07-01
Full Text Available The warming of a bottle of beer during a Friday evening happy hour directly involves transport phenomena, such as mass transfer due to condensation of air humidity on the bottle surface and heat transfer from the ambient to the bottle, which occurs by free convection and water condensation. Both processes happen simultaneously and are directly associated with the heat and mass transfer coefficients involved, which are affected by the ambient humidity and temperature. Several runs were made in several ambient conditions by exposing a cold bottle of beer to varied temperature and humidity and measuring the temperature of beer and the mass of water condensed on the bottle surface over time. From these measures, a theoretical and experimental methodology was developed and applied for the evaluation of the heat and mass transfer coefficients that govern this process. Both the relative humidity and ambient temperature exert a significant influence on the convective heat transfer coefficient. However, the mass transfer coefficient is affected only by the temperature.O aquecimento de uma garrafa de cerveja num “happy-hour” de sexta a tarde envolve diretamente os fenômenos de transferência de massa, devido à condensação da umidade do ar na superfície da garrafa, e de transferência de calor do meio para a garrafa, que ocorre por convecção natural e por condensação de vapor de água. Ambos os processos ocorrem simultaneamente e estão diretamente associados aos coeficientes de transferência de calor e massa envolvidos na dinâmica destes fenômenos e sofrem influência direta da umidade e temperatura ambientes. Neste contexto, efetuaram-se ensaios em diversas condições de temperatura e umidade ambientes, expondo-se uma garrafa de cerveja gelada ao ambiente e medindo-se a temperatura da cerveja e a massa de água condensada ao longo do tempo. A partir destas medidas, desenvolveu-se uma metodologia teórico-experimental que proporcionou a
International Nuclear Information System (INIS)
Zokaei-Kadijani, S.; Safdari, J.; Mousavian, M.A.; Rashidi, A.
2013-01-01
Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor
International Nuclear Information System (INIS)
Neretnieks, Ivars; Liu Longcheng; Moreno, Luis
2010-03-01
Models are presented for solute transport between seeping water in fractured rock and a copper canister embedded in a clay buffer. The migration through an undamaged buffer is by molecular diffusion only as the clay has so low hydraulic conductivity that water flow can be neglected. In the fractures and in any damaged zone seeping water carries the solutes to or from the vicinity of the buffer in the deposition hole. During the time the water passes the deposition hole molecular diffusion aids in the mass transfer of solutes between the water/buffer interface and the water at some distance from the interface. The residence time of the water and the contact area between the water and the buffer determine the rate of mass transfer between water and buffer. Simple analytical solutions are presented for the mass transfer in the seeping water. For complex migration geometries simplifying assumptions are made that allow analytical solutions to be obtained. The influence of variable apertures on the mass transfer is discussed and is shown to be moderate. The impact of damage to the rock around the deposition hole by spalling and by the presence of a cemented and fractured buffer is also explored. These phenomena lead to an increase of mass transfer between water and buffer. The overall rate of mass transfer between the bulk of the water and the canister is proportional to the overall concentration difference and inversely proportional to the sum of the mass transfer resistances. For visualization purposes the concept of equivalent flowrate is introduced. This entity can be thought as of the flowrate of water that will be depleted of its solute during the water passage past the deposition hole. The equivalent flowrate is also used to assess the release rate of radionuclides from a damaged canister. Examples are presented to illustrate how various factors influence the rate of mass transfer
Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo
2015-01-01
The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, bead...
Shi, Bobo; Zhou, Fubao
2014-01-01
The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was pr...
Experimental and computational investigations of heat and mass transfer of intensifier grids
International Nuclear Information System (INIS)
Kobzar, Leonid; Oleksyuk, Dmitry; Semchenkov, Yuriy
2015-01-01
The paper discusses experimental and numerical investigations on intensification of thermal and mass exchange which were performed by National Research Centre ''Kurchatov Institute'' over the past years. Recently, many designs of heat mass transfer intensifier grids have been proposed. NRC ''Kurchatov Institute'' has accomplished a large scope of experimental investigations to study efficiency of intensifier grids of various types. The outcomes of experimental investigations can be used in verification of computational models and codes. On the basis of experimental data, we derived correlations to calculate coolant mixing and critical heat flux mixing in rod bundles equipped with intensifier grids. The acquired correlations were integrated in subchannel code SC-INT.
Possible mechanism for mass transfer in X-ray binary systems with OB supergiant companions
International Nuclear Information System (INIS)
Alme, M.L.; Wilson, J.R.
1976-01-01
We have studied the ''beginning Roche lobe overflow'' phase of mass transfer. We find that before the primary fills its Roche lobe, radiation-driven density waves generated in the atmosphere produce a sufficient mass outflow rate to power a compact X-ray source. In particular, for a model of Cygnus X-1, if the radius of the photosphere is between 82 and 86 percent of the radius of the Roche equipotential, large-amplitude density waves with irregular periods of a few days are observed. These density waves, which are generated by radiation pressure effects, pass through the inner Lagrangian point with velocities approx.100 km s -1 , and can easily provide sufficient material to power the compact X-ray source
Guo, Xin; Yao, Lishan; Huang, Qingshan
2015-08-01
Effects of superficial gas velocity and top clearance on gas holdup, liquid circulation velocity, mixing time, and mass transfer coefficient are investigated in a new airlift loop photobioreactor (PBR), and empirical models for its rational control and scale-up are proposed. In addition, the impact of top clearance on hydrodynamics, especially on the gas holdup in the internal airlift loop reactor, is clarified; a novel volume expansion technique is developed to determine the low gas holdup in the PBR. Moreover, a model strain of Chlorella vulgaris is cultivated in the PBR and the volumetric power is analyzed with a classic model, and then the aeration is optimized. It shows that the designed PBR, a cost-effective reactor, is promising for the mass cultivation of microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Zhang, Ge; He, Wenna; Fang, Lei
2013-01-01
The transfer mechanism of volatile organic compounds (VOCs) being trapped inside the various types of adsorbents is usually regarded as mere diffusion. This paper investigated the contribution of convective mass transfer inside the adsorbents used for VOC air-cleaning. The adsorbents are typically...
Fluid and mass transfer at subduction interfaces-The field metamorphic record
Bebout, Gray E.; Penniston-Dorland, Sarah C.
2016-01-01
The interface between subducting oceanic slabs and the hanging wall is a structurally and lithologically complex region. Chemically disparate lithologies (sedimentary, mafic and ultramafic rocks) and mechanical mixtures thereof show heterogeneous deformation. These lithologies are tectonically juxtaposed at mm to km scales, particularly in more intensely sheared regions (mélange zones, which act as fluid channelways). This juxtaposition, commonly in the presence of a mobile fluid phase, offers up huge potential for mass transfer and related metasomatic alteration. Fluids in this setting appear capable of transporting mass over scales of kms, along flow paths with widely varying geometries and P-T trajectories. Current models of arc magmatism require km-scale migration of fluids from the interface into mantle wedge magma source regions and implicit in these models is the transport of any fluids generated in the subducting slab along and ultimately through the subduction interface. Field and geochemical studies of high- and ultrahigh-pressure metamorphic rocks elucidate the sources and compositions of fluids in subduction interfaces and the interplay between deformation and fluid and mass transfer in this region. Recent geophysical studies of the subduction interface - its thickness, mineralogy, density, and H2O content - indicate that its rheology greatly influences the ways in which the subducting plate is coupled with the hanging wall. Field investigation of the magnitude and styles of fluid-rock interaction in metamorphic rocks representing "seismogenic zone" depths (and greater) yields insight regarding the roles of fluids and elevated fluid pore pressure in the weakening of plate interface rocks and the deformation leading to seismic events. From a geochemical perspective, the plate interface contributes to shaping the "slab signature" observed in studies of the composition of arc volcanic rocks. Understanding the production of fluids with hybridized chemical
Directory of Open Access Journals (Sweden)
Shinsuke Akao
2010-01-01
Full Text Available Spherical LiFePO4/C powders were successfully produced at a rate of 100 g/h using a large type spray pyrolysis apparatus. Organic compounds such as citric acid and sucrose were used as carbon sources. Scanning electron microscopy observation showed that they had a spherical morphology with nonaggregation. X-ray diffraction analysis revealed that the olivine phase was obtained by heating at 600∘C under argon (95%/hydrogen (5% atmosphere. The chemical composition of LiFePO4/C powders was in good agreement with that of the starting solution. Electrochemical measurement revealed that the use of citric acid was most effective in ensuring a high rechargeable capacity and cycle stability. The rechargeable capacity of the LiFePO4/C cathode obtained using citric acid was 155 mAh/g at a discharge rate of 1 C. Because of the good discharge capacity of the LiFePO4/C cathode, it exhibited excellent cycle stability after 100 cycles at each discharge rate. Moreover, this high cycle stability of the LiFePO4/C cathode was maintained even at 50∘C.
International Nuclear Information System (INIS)
Park, Byung Heung; Kang, Dae Seung; Seo, Chung Seok; Park, Seong Won
2005-01-01
Isotopes of alkali and alkaline earth metals (AM and AEM) are the main contributors to the heat load and the radiotoxicity of spent fuel (SF). These components are separated from the SF and dissolved in a molten LiCl in an electrolytic reduction process. A mass transfer model is developed to describe the diffusion behavior of Cs, Sr, and Ba in the SF into the molten salt. The model is an analytical solution of Fick's second law of diffusion for a cylinder which is the shape of a cathode in the electrolytic reduction process. And the model is also applied to depict the concentration profile of the oxygen ion which is produced by the electrolysis of Li 2 O. The regressed diffusion coefficients of the model correlating the experimentally measured data are evaluated to be greater in the order of Ba, Cs, and Sr for the metal ions and the diffusion of the oxygen ion is slower than the metal ions which implies that different mechanisms govern the diffusion of the metal ions and the oxygen ions in a molten LiCl.
Influence of mass transfer and chemical reaction on ozonation of azo dyes
Energy Technology Data Exchange (ETDEWEB)
Choi, I.S.; Wiesmann, U. [Dept. of Environmental Engineering, Technical Univ. of Berlin, Berlin (Germany)
2003-07-01
Azo dyes can be only mineralised by chemical oxidation. In this paper the oxidation of reactive black 5 (RB 5) and reactive orange 96 (RO 96) with concentrations between 35 and 5700 mgL{sup -1} (RB 5) and between 20 and 2050 mgL{sup -1} (RO 96) is investigated. A lab scale bubble column was used, which was gassed by a mixture of O{sub 2} and O{sub 3}. The oxidation rate was influenced by mass transfer for all dye concentrations used. For lower dye concentrations mass transfer alone was decisive for reaction rate showing an enhancement factor of E {approx} 1. However, in the region of higher dye concentrations, the slope of the decreasing ozone concentration inside the liquid boundary layer increases more and more with increasing dye concentration as a result of a chemical oxidation. Therefore, the enhancement factor depends on the kind and concentration of the azo dyes. For RB 5 as an diazo dye an enhancement factor of E = 9 was observed for 3800 mgL{sup -1}, RO 96 as a mono azo dye with a remarkable higher chemical oxidation rate shows an E = 17 already for 2050 mgL{sup -1}. (orig.)
Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir
2018-03-01
The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.
Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products
Jou, R.-Y.; Lo, C.-T.
2011-01-01
In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.
International Nuclear Information System (INIS)
Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.
2011-01-01
A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)
Tirunehe, Gossaye; Norddahl, B
2016-04-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.
Photometric Analysis and Modeling of Five Mass-Transferring Binary Systems
Geist, Emily; Beaky, Matthew; Jamison, Kate
2018-01-01
In overcontact eclipsing binary systems, both stellar components have overfilled their Roche lobes, resulting in a dumbbell-shaped shared envelope. Mass transfer is common in overcontact binaries, which can be observed as a slow change on the rotation period of the system.We studied five overcontact eclipsing binary systems with evidence of period change, and thus likely mass transfer between the components, identified by Nelson (2014): V0579 Lyr, KN Vul, V0406 Lyr, V2240 Cyg, and MS Her. We used the 31-inch NURO telescope at Lowell Observatory in Flagstaff, Arizona to obtain images in B,V,R, and I filters for V0579 Lyr, and the 16-inch Meade LX200GPS telescope with attached SBIG ST-8XME CCD camera at Juniata College in Huntingdon, Pennsylvania to image KN Vul, V0406 Lyr, V2240 Cyg, and MS Her, also in B,V,R, and I.After data reduction, we created light curves for each of the systems and modeled the eclipsing binaries using the BinaryMaker3 and PHOEBE programs to determine their fundamental physical parameters for the first time. Complete light curves and preliminary models for each of these neglected eclipsing binary systems will be presented.
Study of water mass transfer dynamics in frescoes by dielectric spectroscopy
International Nuclear Information System (INIS)
Olmi, R.; Riminesi, C.
2008-01-01
The knowledge of moisture content (M C) is essential for determining the state of preservation of various types of hand-work: from building materials such as bricks and concrete, to objects of artistic value, in particular frescoes and mural paintings. In all above, moisture is the primary source of damages, as it affects the durability of porous materials. Dielectric properties of porous materials are strongly affected by the presence of water, suggesting dielectric spectroscopy as a suitable non-invasive diagnostic technique. The development of a quantitative relationship between M C and permittivity requires to investigate the dynamics of water mass transfer in porous media, and to determine its effect on the dielectric properties. In this paper a coupled mass transfer/dielectric problem is introduced and solved numerically, based on a finite element model. Results are compared to experimental dielectric measurements performed on plaster samples by the open coaxial method. The application of the dielectric technique to frescoes monitoring is proposed, showing the results obtained is an on-site study.
An overview of challenges in modeling heat and mass transfer for living on Mars.
Yamashita, Masamichi; Ishikawa, Yoji; Kitaya, Yoshiaki; Goto, Eiji; Arai, Mayumi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Hirafuji, Masayuki; Omori, Katsunori; Shiraishi, Atsushi; Tani, Akira; Toki, Kyoichiro; Yokota, Hiroki; Fujita, Osamu
2006-09-01
Engineering a life-support system for living on Mars requires the modeling of heat and mass transfer. This report describes the analysis of heat and mass transfer phenomena in a greenhouse dome, which is being designed as a pressurized life-support system for agricultural production on Mars. In this Martian greenhouse, solar energy will be converted into chemical energy in plant biomass. Agricultural products will be harvested for food and plant cultivation, and waste materials will be processed in a composting microbial ecosystem. Transpired water from plants will be condensed and recycled. In our thermal design and analysis for the Martian greenhouse, we addressed the question of whether temperature and pressure would be maintained in the appropriate range for humans as well as plants. Energy flow and material circulation should be controlled to provide an artificial ecological system on Mars. In our analysis, we assumed that the greenhouse would be maintained at a subatmospheric pressure under 1/3-G gravitational force with 1/2 solar light intensity on Earth. Convection of atmospheric gases will be induced inside the greenhouse, primarily by heating from sunlight. Microclimate (thermal and gas species structure) could be generated locally around plant bodies, which would affect gas transport. Potential effects of those environmental factors are discussed on the phenomena including plant growth and plant physiology and focusing on transport processes. Fire safety is a crucial issue and we evaluate its impact on the total gas pressure in the greenhouse dome.
Balasubramanian, Saravana K; Coger, Robin N
2005-01-01
Bioartificial liver devices (BALs) have proven to be an effective bridge to transplantation for cases of acute liver failure. Enabling the long-term storage of these devices using a method such as cryopreservation will ensure their easy off the shelf availability. To date, cryopreservation of liver cells has been attempted for both single cells and sandwich cultures. This study presents the potential of using computational modeling to help develop a cryopreservation protocol for storing the three dimensional BAL: Hepatassist. The focus is upon determining the thermal and concentration profiles as the BAL is cooled from 37 degrees C-100 degrees C, and is completed in two steps: a cryoprotectant loading step and a phase change step. The results indicate that, for the loading step, mass transfer controls the duration of the protocol, whereas for the phase change step, when mass transfer is assumed negligible, the latent heat released during freezing is the control factor. The cryoprotocol that is ultimately proposed considers time, cooling rate, and the temperature gradients that the cellular space is exposed to during cooling. To our knowledge, this study is the first reported effort toward designing an effective protocol for the cryopreservation of a three-dimensional BAL device.
International Nuclear Information System (INIS)
Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra
2013-01-01
Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L"−"1) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K_s, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined
Energy Technology Data Exchange (ETDEWEB)
Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra [Anna University, Chennai (India)
2013-04-15
Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L{sup −1}) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K{sub s}, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined.
On Entropy Generation and the Effect of Heat and Mass Transfer Coupling in a Distillation Process
Burgos-Madrigal, Paulina; Mendoza, Diego F.; López de Haro, Mariano
2018-01-01
The entropy production rates as obtained from the exergy analysis, entropy balance and the nonequilibrium thermodynamics approach are compared for two distillation columns. The first case is a depropanizer column involving a mixture of ethane, propane, n-butane and n-pentane. The other is a weighed sample of Mexican crude oil distilled with a pilot scale fractionating column. The composition, temperature and flow profiles, for a given duty and operating conditions in each column, are obtained with the Aspen Plus V8.4 software by using the RateFrac model with a rate-based nonequilibrium column. For the depropanizer column the highest entropy production rate is found in the central trays where most of the mass transfer occurs, while in the second column the highest values correspond to the first three stages (where the vapor mixture is in contact with the cold liquid reflux), and to the last three stages (where the highest temperatures take place). The importance of the explicit inclusion of thermal diffusion in these processes is evaluated. In the depropanizer column, the effect of the coupling between heat and mass transfer is found to be negligible, while for the fractionating column it becomes appreciable.
Mass transfer effect of the stalk contraction-relaxation cycle of Vorticella convallaria
Zhou, Jiazhong; Admiraal, David; Ryu, Sangjin
2014-11-01
Vorticella convallaria is a genus of protozoa living in freshwater. Its stalk contracts and coil pulling the cell body towards the substrate at a remarkable speed, and then relaxes to its extended state much more slowly than the contraction. However, the reason for Vorticella's stalk contraction is still unknown. It is presumed that water flow induced by the stalk contraction-relaxation cycle may augment mass transfer near the substrate. We investigated this hypothesis using an experimental model with particle tracking velocimetry and a computational fluid dynamics model. In both approaches, Vorticella was modeled as a solid sphere translating perpendicular to a solid surface in water. After having been validated by the experimental model and verified by grid convergence index test, the computational model simulated water flow during the cycle based on the measured time course of stalk length changes of Vorticella. Based on the simulated flow field, we calculated trajectories of particles near the model Vorticella, and then evaluated the mass transfer effect of Vorticella's stalk contraction based on the particles' motion. We acknowlege support from Laymann Seed Grant of the University of Nebraska-Lincoln.
Impact of gamma-irradiation on some mass transfer driven operations in food processing
Energy Technology Data Exchange (ETDEWEB)
Rastogi, N.K. [Department of Food Engineering, Central Food Technological Research Institute, Mysore 570 020 (India)]. E-mail: nkrastogi@cftri.com
2005-08-01
The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity.
Impact of gamma-irradiation on some mass transfer driven operations in food processing
International Nuclear Information System (INIS)
Rastogi, N.K.
2005-01-01
The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity
Aerosol formation from heat and mass transfer in vapour-gas mixtures
International Nuclear Information System (INIS)
Clement, C.F.
1985-01-01
Heat and mass transfer equations and their coupling to the equation for the aerosol size distribution are examined for mixtures in which pressure changes are slow. Specific results in terms of Cn (the condensation number) and Le (the Lewis number - the ratio of the relative rates of evaporation and condensation) are obtained for the proportion of vapour condensing as a aerosol during the cooling and heating of a mixture in a well-mixed cavity. The assumption of allowing no supersaturations, the validity of which is examined, is shown to lead to maximum aerosol formation. For water vapour-air mixtures predictions are made as to temperature regions in which aerosols will evaporate or not form in cooling processes. The results are also qualitatively applied to some atmospheric effects as well as to water aerosols formed in the containment of a pressurized water reactor following a possible accident. In this context, the present conclusion that the whereabouts of vapour condensation is controlled by heat and mass transfer, contrasts with previous assumptions that the controlling factor is relative surface areas. (U.K.)
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow
International Nuclear Information System (INIS)
Baier, G.; Graham, M.D.
1998-01-01
The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations
Directory of Open Access Journals (Sweden)
Jiazhou Wu
2018-06-01
Full Text Available A three-dimensional multiphysical transient model was developed to investigate keyhole formation, weld pool dynamics, and mass transfer in laser welding of dissimilar materials. The coupling of heat transfer, fluid flow, keyhole free surface evolution, and solute diffusion between dissimilar metals was simulated. The adaptive heat source model was used to trace the change of keyhole shape, and the Rayleigh scattering of the laser beam was considered. The keyhole wall was calculated using the fluid volume equation, primarily considering the recoil pressure induced by metal evaporation, surface tension, and hydrostatic pressure. Fluid flow, diffusion, and keyhole formation were considered simultaneously in mass transport processes. Welding experiments of 304L stainless steel and industrial pure titanium TA2 were performed to verify the simulation results. It is shown that spatters are shaped during the welding process. The thickness of the intermetallic reaction layer between the two metals and the diffusion of elements in the weld are calculated, which are important criteria for welding quality. The simulation results correspond well with the experimental results.
Mass transfer experiments for the heat load during in-vessel retention of core melt
Energy Technology Data Exchange (ETDEWEB)
Park, Hae Kyun; Chung, Bum Jin [Dept. of Nuclear Engineering, Kyung Hee University, Seoul (Korea, Republic of)
2016-08-15
We investigated the heat load imposed on the lower head of a reactor vessel by the natural convection of the oxide pool in a severe accident. Mass transfer experiments using a CuSO{sub 4}–H{sub 2}SO{sub 4} electroplating system were performed based on the analogy between heat and mass transfer. The Ra′{sub H} of 10{sup 14} order was achieved with a facility height of only 0.1 m. Three different volumetric heat sources were compared; two had identical configurations to those previously reported, and the other was designed by the authors. The measured Nu's of the lower head were about 30% lower than those previously reported. The measured angular heat flux ratios were similar to those reported in existing studies except for the peaks appearing near the top. The volumetric heat sources did not affect the Nu of the lower head but affected the Nu of the top plate by obstructing the rising flow from the bottom.
FEHMN 1.0: Finite element heat and mass transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1991-04-01
A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user's guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs
Mass transfer of CO2 to groundwaters from a near-surface waste disposal site
International Nuclear Information System (INIS)
Caron, F.; Wilkinson, S.R.; Manni, G.; Torok, J.
1995-01-01
Gaseous 14 CO 2 originating from buried low-level radioactive wastes (LLRW) in a near-surface disposal site can be released to the environment via two major paths: gas-phase diffusion through soils to the atmosphere, and dissolution in groundwater, followed by aqueous migration. Aqueous migration would give the highest dose to an individual, especially if C-14 was converted to an organic form and ingested. Gaseous diffusion would give a lower dose, largely because of atmospheric dispersion and dilution. The objective of this study was to develop the capability to estimate which of the two paths will likely be dominant for typical near-surface disposal facilities. The main missing parameter for making this estimate was a mass-transfer coefficient (K L ) of 14 CO 2 to groundwaters, which was determined experimentally using a large sand box. The K L thus determined was approximately 10 to 20 times smaller than for an open liquid surface. This suggests that there is a potential resistance to mass transfer, probably caused by the capillary fringe. The value obtained was incorporated into a simple model of CO 2 transport around a typical near-surface disposal site. The model suggests that CO 2 transport via both gaseous release and aqueous migration paths are of similar magnitude for a repository located ∼2 m above the water table. (author). 11 refs., 2 tabs., 2 figs
A study of heat and mass transfer on magnetohydrodynamic (MHD flow of nanoparticles
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
2018-03-01
Full Text Available Investigation of the flow, heat and mass transfer of a nanofluid over a suddenly moved flat plate is presented using Buongiorno's model. This study is different from some of the previous studies as the effects of Brownian motion and thermophoresis on nanoparticles volume fraction are passively controlled on the boundary rather than actively. The partial differential equations governing the flow are reduced to a system of nonlinear ordinary differential equations. Viable similarity transforms are used for this purpose. A well-known numerical scheme called Runge-Kutta-Fehlberg method coupled with shooting procedure has been used to find the solution of resulting system of equations. Discussions on the effects of different emerging parameters is provided using graphical aid. A table is also given that provides the results of different parameters on local Nusselt and Sherwood numbers. The passive control model can be used to control the boundary layer thickness as well as the rate of mass transfer at the wall. Keywords: Nanofluid, Brownian motion, Thermophoresis, Nusselt number, Sherwood number
Plasma generation using the hollow cathod
International Nuclear Information System (INIS)
Moon, K.J.
1983-01-01
A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)
Energy Technology Data Exchange (ETDEWEB)
Saadi, B
2006-04-15
Most metallurgical processes, such as steel refining or nuclear waste processing; the interfaces between two liquid phases are the regions of mass transfer. These transfers require the implementation of a means of stirring to accelerate the kinetics of the pollutants transfer between both phases. This thesis deals with the use of the electromagnetic forces to stir, without any material contact, the bath core and the interface in order to control or even increase the kinetic transfers. To achieve this, two complementary experimental installations were used. The first experiment allows the measurement of the Indium transfer, initially dissolved in mercury towards a covering electrolyte layer and the velocity field in mercury. The performed experiments, determine the topology of the fields flows speeds in the mercury bath, moreover the behaviour of the transfer kinetics versus the intensity of the magnetic field are established. This evolution is correlated with the dynamic behaviour of the mercury surface. The second installation allows the characterization of an element transfer (Pb, Zr or Ce) initially contained in a fluorinated salt towards an antimony matrix containing lithium. It appears that all transfers kinetics are very fast. The proposed experimental set-up is particularly efficient for Cerium transfer (limited by the interface) but does not present any action for Zirconium transfer. (author)
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
International Nuclear Information System (INIS)
Leishear, R.
2009-01-01
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels
International Nuclear Information System (INIS)
Croitoru, C.; Pop, F.; Titescu, Gh.; Culcer, M.; Iliescu, M.; Stefanescu, I.; Trancota, D.; Peculea, M.
2002-01-01
The paper presents theoretical and experimental data concerning mass and heat transfer on B7 ordered packing, at deuterium separation by distillation. The first section of the paper is dedicated to the mass transfer study of hydrogen distillation, while the second section deals with mass and heat transfer in water distillation. A mathematical model was worked out and compared with experimental data, obtained from two laboratory distillation plants for deuterium separation. From the first plant experimental data concerning B7 ordered packing efficiency of hydrogen cryogenic distillation at 250 deg. C level were obtained. Data concerning mass and heat transfer on the same packing in deuterium separation by water vacuum distillation at 60 deg. C level were obtained in the second plant. HUT values, mass and heat transfer coefficients both theoretically evaluated and experimentally determined were found to be comparable with those obtained from chemical industry separation processes. The fact justifies the use of multi-tubular column model for description of transfer processes in distillation columns equipped with B7 structured packing. (authors)
Model for heat and mass transfer in freeze-drying of pellets.
Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda
2009-07-01
Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.
Lorah, Michelle M.; Herman, Janet S.
1988-01-01
This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.
The phenomenon of microscale flow and mass transfer in medicinal herb materials
Energy Technology Data Exchange (ETDEWEB)
Yang, J.H.; Di, Q.Q.; Sun, M.D. [Tianjin Univ., Tianjin (China). School of Mechanical Engineering; Zhang, T.J.; Gong, S.X. [Tianjin Inst. of Pharmaceutical Research, Tianjin (China)
2008-07-01
Microwave assisted extraction (MAE) is a combination of a microwave technique and conventional solvent extraction used in the modernization of traditional Chinese medicine. The effective component of medicinal herbs is mostly cellular material which can be released via solvent extraction. The material is diffused to solvents via the porous membrane wall. The structure of herb morphology and characteristics of the solute's molecular weight play an important role in the extraction process of target compounds. Astragalus pieces were chosen for this study in which an ultra-filtration membrane method was used to determine the molecular weight distribution characteristics of Astragalus water extraction liquid in the process of MAE. The fine structure of matrix materials was also characterized by scanning election microscopy (SEM). The phenomenon of mass flow and mass transfer in the plant porous media was discussed along with the enhancement mechanism of microwave field on medicinal plant solvent extraction. The results showed that the water-soluble components in the parenchyma cells of Astragalus pieces pass through the plasmodesma with a diameter of 10 nm to adjacent cell, then through an aperture with a diameter of 0.1 {mu}m to 1 {mu}m into a trachea with a diameter of about 10 {mu}m. The water-soluble components then come onto the surface of matrix material and the main solution via the trachea. The main mass transfer occurs by the trachea and its aperture. It was concluded that in order to promote the dissolution of effective components in medicinal herb in the extraction process, a suitable extraction technology is needed to maintain the permeability of transportation tissue and parenchyma in materials. 11 refs., 1 tab., 3 figs.
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Gernaey, Krist; Adler-Nissen, Jens
2012-01-01
to uncertainty in the model predictions. The aim of the current paper is to address this uncertainty challenge in the modelling of food production processes using a combination of uncertainty and sensitivity analysis, where the uncertainty analysis and global sensitivity analysis were applied to a heat and mass......Similar to other processes, the modelling of heat and mass transfer during food processing involves uncertainty in the values of input parameters (heat and mass transfer coefficients, evaporation rate parameters, thermo-physical properties, initial and boundary conditions) which leads...
International Nuclear Information System (INIS)
Balasubramonian, S.; Sivakumar, D.; Kumar, Shekhar; Kamachi Mudali, U.
2014-01-01
The rotating disc contactor is the widely used liquid-liquid extraction equipment for its high throughput and efficiency. In this work mass transfer performance of the miniature RDC column for the 30% TBP/nitric acid biphasic system was studied in terms of the operating variables such as rotor speed and flow rate of the aqueous and organic phase. The RDC column used in the experiments was shown. The column shell is made up of thick glass having diameter of 10.5 cm and height 100 cm. The rotor diameter is 5.3 cm and stator opening diameter is 6.3 cm. Totally 25 number of rotor discs were welded in the rotating shaft. This shaft was aligned in such a way that each rotor was placed in the centre of the compartment formed in between the two stator rings. The experiments were carried out to study the effect of rotor speed and superficial velocity of the dispersed and continuous phase on mass transfer efficiency. The organic solvent was made as the continuous phase and O/A ratio was set as 4 in both the continuous to dispersed phase(c-d) and dispersed to continuous phase (d-c) mass transfer experiments. The Number of Transfer Units (NTU) was estimated based on the solvent phase. The graphical representation of NTU was shown. The NTU value was observed as 4 and 3 respectively for extraction and stripping at the combined through put of 60 L/h and the rotor speed of 1000 rpm. This corresponds to the Height of Transfer Unit (HTU) value of 15 cm and 20 cm respectively for d-c and c-d mass transfer. The estimated overall mass transfer coefficient was increasing with rotor speed and superficial velocity of the liquid phases. The overall mass transfer coefficient also increases with increase in hold up
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John
2014-03-10
. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.
Mass transfer of a neutral solute in porous microchannel under streaming potential.
Mondal, Sourav; De, Sirshendu
2014-03-01
The mass transport of a neutral solute in a porous wall, under the influence of streaming field, has been analyzed in this study. The effect of the induced streaming field on the electroviscous effect of the fluid for different flow geometries has been suitably quantified. The overall electroosmotic velocity profile and expression for streaming field have been obtained analytically using the Debye-Huckel approximation, and subsequently used in the analysis for the mass transport. The analysis shows that as the solution Debye length increases, the strength of the streaming field and, consequently, the electroviscous effect diminishes. The species transport equation has been coupled with Darcy's law for quantification of the permeation rate across the porous wall. The concentration profile inside the mass transfer boundary layer has been solved using the similarity transformation, and the Sherwood number has been calculated from the definition. In this study, the variation of the permeation rate and solute permeate concentration has been with the surface potential, wall retention factor and osmotic pressure coefficient has been demonstrated for both the circular as well as rectangular channel cross-section. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modeling study of a Li–O2 battery with an active cathode
International Nuclear Information System (INIS)
Li, Xianglin; Huang, Jing; Faghri, Amir
2015-01-01
In this study, a new organic lithium oxygen (Li–O 2 ) battery structure is proposed to enhance battery capacity. The electrolyte is forced to recirculate through the cathode and then saturated with oxygen in a tank external to the battery. The forced convection enhances oxygen transport and alleviates the problem of electrode blockage during discharge. A two dimensional, transient, non-isothermal simulation model is developed to study the heat and mass transfer within the battery and validate the proposed design. Results show that this novel active cathode design improves the battery capacity at all discharge current densities. The capacity of the Li–O 2 battery is increased by 15.5 times (from 12.2 mAh g −1 to 201 mAh g −1 ) at the discharge current of 2.0 mA cm −2 when a conventional passive electrode is replaced by the newly designed active electrode. Furthermore, a cathode with non-uniform porosity is suggested and simulation results show that it can reach a higher discharge capacity without decreasing its power density. Detailed mass transport processes in the battery are also studied. - Highlights: • Electrolyte is circulated through the cathode and externally saturated with oxygen. • A two-dimensional, transient, non-isothermal model is developed for a Li–O 2 battery. • The new design's capacity can be 15.5 times that of a battery with passive cathode. • A cathode with non-uniform porosity is proposed to further enhance battery capacity
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
Heat and mass transfer analysis for paraffin/nitrous oxide burning rate in hybrid propulsion
Ben-Basat (Sisi), Shani; Gany, Alon
2016-03-01
This research presents a physical-mathematical model for the combustion of liquefying fuels in hybrid combustors, accounting for blowing effect on the heat transfer. A particular attention is given to a paraffin/nitrous oxide hybrid system. The use of a paraffin fuel in hybrid propulsion has been considered because of its much higher regression rate enabling significantly higher thrust compared to that of common polymeric fuels. The model predicts the overall regression rate (melting rate) of the fuel and the different mechanisms involved, including evaporation, entrainment of droplets of molten material, and mass loss due to melt flow on the condensed fuel surface. Prediction of the thickness and velocity of the liquid (melt) layer formed at the surface during combustion was done as well. Applying the model for an oxidizer mass flux of 45 kg/(s m2) as an example representing experimental range, it was found that 21% of the molten liquid undergoes evaporation, 30% enters the gas flow by the entrainment mechanism, and 49% reaches the end of the combustion chamber as a flowing liquid layer. When increasing the oxidizer mass flux in the port, the effect of entrainment increases while that of the flowing liquid layer along the surface shows a relatively lower contribution. Yet, the latter is predicted to have a significant contribution to the overall mass loss. In practical applications it may cause reduced combustion efficiency and should be taken into account in the motor design, e.g., by reinforcing the paraffin fuel with different additives. The model predictions have been compared to experimental results revealing good agreement.
International Nuclear Information System (INIS)
Hong, Sung Kook; Rhee, Dong Ho; Cho, Hyung Hee
2005-01-01
Impingement/effusion cooling technique is used for combustor liner or turbine parts cooling in gas turbine engine. In the impingement/effusion cooling system, the crossflow generated in the cooling channel induces an adverse effect on the cooling performance, which consequently affects the durability of the cooling system. In the present study, to reduce the adverse effect of the crossflow and improve the cooling performance, circular pin fins are installed in impingement/effusion cooling system and the heat transfer characteristics are investigated. The pin fins are installed between two perforated plates and the crossflow passes between these two plates. A blowing ratio is changed from 0.5 to 1.5 for the fixed jet Reynolds number of 10,000 and five circular pin fin arrangements are considered in this study. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The results show that local distributions of heat/mass transfer coefficient are changed due to the installation of pin fins. Due to the generation of vortex and wake by the pin fin, locally low heat/mass transfer regions are reduced. Moreover, the pin fin prevents the wall jet from being swept away, resulting in the increase of heat/mass transfer. When the pin fin is installed in front of the impinging jet, the blockage effect on the crossflow enhances the heat/mass transfer. However, the pin fin installed just behind the impinging jet blocks up the wall jet, decreasing the heat/mass transfer. As the blowing ratio increases, the pin fins lead to the higher Sh value compared to the case without pin fins, inducing 16%∼22% enhancement of overall Sh value at high blowing ratio of M=1.5
Dimensionless groups for multidimensional heat and mass transfer in adsorbed natural gas storage
Energy Technology Data Exchange (ETDEWEB)
Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], E-mail: lasphaier@mec.uff.br
2010-07-01
This paper provides a new methodology for analyzing heat and mass transfer in gas storage via adsorption. The foundation behind the proposed methodology comprises a set of physically meaningful dimensionless groups. A discussion regarding the development of such groups is herein presented, providing a fully normalized multidimensional formulation for describing the transport mechanisms involved in adsorbed gas storage. After such presentation, data from previous literature studies associated with the problem of adsorbed natural gas storage are employed for determining realistic values for the developed parameters. Then, a one-dimensional test-case problem is selected for illustrating the application of the dimensionless formulation for simulating the operation of adsorbed gas reservoirs. The test problem is focused on analyzing an adsorbed gas discharge operation. This problem is numerically solved, and the solution is verified against previously published literature data. The presented results demonstrate how a higher heat of sorption values lead to reduced discharge capacities. (author)
Heat and mass transfer in semiconductor melts during single-crystal growth processes
Kakimoto, Koichi
1995-03-01
The quality of large semiconductor crystals grown from melts is significantly affected by the heat and mass transfer in the melts. The current understanding of the phenomena, especially melt convection, is reviewed starting from the results of visualization using model fluids or silicon melt, and continuing to the detailed numerical calculations needed for quantitative modeling of processing with solidification. The characteristics of silicon flows are also reviewed by focusing on the Coriolis force in the rotating melt. Descriptions of flow instabilities are included that show the level of understanding of melt convection with a low Prandtl number. Based on hydrodynamics, the origin of the silicon flow structure is reviewed, and it is discussed whether silicon flow is completely turbulent or has an ordered structure. The phase transition from axisymmetric to nonaxisymmetric flow is discussed using different geometries. Additionally, surface-tension-driven flow is reviewed for Czochralski crystal growth systems.
DEFF Research Database (Denmark)
Molina, Henrik; Horn, David M; Tang, Ning
2007-01-01
Electron transfer dissociation (ETD) is a recently introduced mass spectrometric technique that provides a more comprehensive coverage of peptide sequences and posttranslational modifications. Here, we evaluated the use of ETD for a global phosphoproteome analysis. In all, we identified a total...... of 1,435 phosphorylation sites from human embryonic kidney 293T cells, of which 1,141 ( approximately 80%) were not previously described. A detailed comparison of ETD and collision-induced dissociation (CID) modes showed that ETD identified 60% more phosphopeptides than CID, with an average of 40% more...... fragment ions that facilitated localization of phosphorylation sites. Although our data indicate that ETD is superior to CID for phosphorylation analysis, the two methods can be effectively combined in alternating ETD and CID modes for a more comprehensive analysis. Combining ETD and CID, from this single...
DEFF Research Database (Denmark)
Tirunehe, Gossay; Norddahl, B.
2016-01-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC....../s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular...... membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (KLa) by a factor of 1.2–1.9 compared to the flat sheet membrane....
International Nuclear Information System (INIS)
Sunsandee, Niti; Leepipatpiboon, Natchanun; Ramakul, Prakorn
2013-01-01
The enantioselective separation of levocetirizine via a hollow fiber supported liquid membrane was examined. O,O'-dibenzoyl-(2R,3R)-tartaric acid ((-)-DBTA) diluted in 1-decanol was used as a chiral selector extractant. The influence of concentrations of feed and stripping phases, and extractant concentration in the membrane phase, was also investigated. A mathematical model focusing on the extraction side of the liquid membrane system was presented to predict the concentration of levocetirizine at different times. The extraction and recovery of levocetirizine from feed phase were 75.00% and 72.00%, respectively. The mass transfer coefficients at aqueous feed boundary layer (k_f) and the organic liquid membrane phase (k_m) were calculated as 2.41x10"2 and 1.89x10"2 cm/s, respectively. The validity of the developed model was evaluated through a comparison with experimental data, and good agreement was obtained
Modelling heat and mass transfer in bread baking with mechanical deformation
International Nuclear Information System (INIS)
Nicolas, V; Glouannec, P; Ploteau, J-P; Salagnac, P; Jury, V; Boillereaux, L
2012-01-01
In this paper, the thermo-hydric behaviour of bread during baking is studied. A numerical model has been developed with Comsol Multiphysics© software. The model takes into account the heat and mass transfers in the bread and the phenomenon of swelling. This model predicts the evolution of temperature, moisture, gas pressure and deformation in French 'baguette' during baking. Local deformation is included in equations using solid phase conservation and, global deformation is calculated using a viscous mechanic model. Boundary conditions are specified with the sole temperature model and vapour pressure estimation of the oven during baking. The model results are compared with experimental data for a classic baking. Then, the model is analysed according to physical properties of bread and solicitations for a better understanding of the interactions between different mechanisms within the porous matrix.
Directory of Open Access Journals (Sweden)
Poonia Hemant
2010-01-01
Full Text Available An unsteady, two-dimensional, hydromagnetic, laminar mixed convective boundary layer flow of an incompressible and electrically-conducting fluid along an infinite vertical plate embedded in the porous medium with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer are discussed. The results show that increased cooling (Gr > 0 of the plate and the Eckert number leads to a rise in the velocity profile. Also, an increase in Eckert number leads to an increase in the temperature. Effects of Sc on velocity and concentration are discussed and shown graphically.
Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun
2013-01-01
Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.
A simplified kinetic and mass transfer modelling of the thermal hydrolysis of vegetable oils
DEFF Research Database (Denmark)
Forero-Hernandez, Hector Alexander; Jones, Mark Nicholas; Sarup, Bent
2017-01-01
This work presents a combined modelling approach to investigate the kinetics and masstransfer effects on the hydrolysis of vegetable oils under subcritical conditions. The primary purpose of this simplified model is to interpret experimental data collected from typical batch tests and to estimate...... parameters for the proposed model. Due to its heterogeneous nature, the hydrolysis reaction is affected not only by the chemical kinetics but also by the rate of mass transfer between the oil and water as well as their specific contact area in this two phase emulsion. Considering these properties, a model...... and improvement accompanied by Monte Carlo uncertainty analysis. Since the lack of experimental data is a crucial issue in the hydrolysis of vegetable oils, this model-based analysis of data is of substantial value to provide necessary information for detailed modeling and characterization of the process....
Comparison of holographic setups used in heat and mass transfer measurement
Doleček, R.; Psota, P.; Lédl, V.; Vít, T.; Kopecký, V.
2014-03-01
The authors of the paper deal with measurement of heat and mass transfer for several years and they have frequently used few techniqes for measurement of refractive index distribution based on holographic interferometry. Some of the well known techniques have been modified some and some new ones developped. Every technique could be applied with success in different type of meassurement and obviously every one has set of properties making them unique. We decided to digest few different basic techniques and describe its properties in this paper with the aim to help the reader select the proper one for their measurement. The list of techniques and its properties is not comprehensive but schould serve as a basic orientation in the field.
Comparison of holographic setups used in heat and mass transfer measurement
Directory of Open Access Journals (Sweden)
Doleček R.
2014-03-01
Full Text Available The authors of the paper deal with measurement of heat and mass transfer for several years and they have frequently used few techniqes for measurement of refractive index distribution based on holographic interferometry. Some of the well known techniques have been modified some and some new ones developped. Every technique could be applied with success in different type of meassurement and obviously every one has set of properties making them unique. We decided to digest few different basic techniques and describe its properties in this paper with the aim to help the reader select the proper one for their measurement. The list of techniques and its properties is not comprehensive but schould serve as a basic orientation in the field.