WorldWideScience

Sample records for cathode ray tube

  1. Cyclotron resonance in a cathode ray tube

    International Nuclear Information System (INIS)

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  2. X-ray Tube Using a Graphene Flower Cloth Field Emission Cathode

    Science.gov (United States)

    Iwai, Yusuke; Muramatsu, Kazuo; Tsuboi, Shougo; Jyouzuka, Atsuo; Nakamura, Tomonori; Onizuka, Yoshihiro; Mimura, Hidenori

    2013-10-01

    We have successfully fabricated a filament-less X-ray tube using a graphene flower cloth (GFC) field emission cathode. The GFC has numerous nanoprotrusions formed by self-standing graphene structures. The field emission current and the field enhancement factor β were 500 µA and 5600, respectively. The stability of voltage defined as a variance coefficient (σ/mean) of voltage was calculated to be 0.04% while maintaining the X-ray tube current of 300 µA. We applied our X-ray tube with the GFC field emitter to the X-ray fluorescence (XRF) analysis of stainless steel.

  3. Foaming of waste cathode ray tube panel glass via CaCO3

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    The disposal of obsolete electrical and electronic equipment has become a global environmental problem. However, with responsible collecting, dismantling and materials separation, majority of materials can be recycled. Cathode ray tube (CRT) glass represents as much as two-thirds of the weight...

  4. Calculating the spectral distribution of radiation from X-ray tubes with grounded cathode

    International Nuclear Information System (INIS)

    In implementing current versions of X-ray fluorescence analysis (the method of functional parameters, the method of fundamental coefficients, etc.), it is necessary to have information about the spectral composition of primary X- ray radiation whose source is usually provided by X-ray tubes. The radiation of tubes with grounded anode is well understood. However, state-of-the-art X-ray spectral equipment normally incorporates X-ray tubes with grounded cathode. In this case a high positive potential returns backscattered electrons to the anode surface, which leads to an enhancement of both the braking and characteristic components of primary radiation. This process appears to play an important role because backscattered electrons account for tens of percent of the number of those incident on anode, and a maximum in their energy distribution with increasing atomic number of anode approaches the energy of primary electrons. We have obtained the expression for spectral intensity of primary radiation from X-ray tubes with grounded cathode which takes into account the return of backscattered electrons to the anode surface and their energy distribution. Calculations of spectral distributions were performed for different anode materials. Results were compared with those obtained at high voltage on the X- ray tube's cathode. As would be expected, the contribution of the effect under consideration increases with increasing atomic number of anode material, and for some spectral intensities at high Z it is as high as ten percent or more. Furthermore, the spectral distribution of braking radiation is markedly distorted when compared to the case of grounded anode, and characteristic lines increase in intensity. Further investigation involves assessing the influence of the detected distortions on the accuracy of X-ray fluorescence determination of element contents in materials of complex composition. (author)

  5. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    Science.gov (United States)

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable.

  6. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    Science.gov (United States)

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. PMID:26463115

  7. A Century-Old Question: Does a Crookes Paddle Wheel Cathode Ray Tube Demonstrate That Electrons Carry Momentum?

    Science.gov (United States)

    Humphrey, T. E.; Calisa, Vaishnavi

    2014-01-01

    In 1879, in the midst of the debate between English and continental scientists about the nature of cathode rays, William Crookes conducted an experiment in which a small mill or "paddle wheel" was pushed along tracks inside a cathode ray tube (CRT) (similar to that shown in Fig. 1) when connected to a high-voltage induction coil. Crookes…

  8. Lead recovery from scrap cathode ray tube funnel glass by hydrothermal sulphidisation.

    Science.gov (United States)

    Yuan, Wenyi; Meng, Wen; Li, Jinhui; Zhang, Chenglong; Song, Qingbin; Bai, Jianfeng; Wang, Jingwei; Li, Yingshun

    2015-10-01

    This research focused on the application of the hydrothermal sulphidisation method to separate lead from scrap cathode ray tube funnel glass. Prior to hydrothermal treatment, the cathode ray tube funnel glass was pretreated by mechanical activation. Under hydrothermal conditions, hydroxyl ions (OH(-)) were generated through an ion exchange reaction between metal ions in mechanically activated funnel glass and water, to accelerate sulphur disproportionation; no additional alkaline compound was needed. Lead contained in funnel glass was converted to lead sulphide with high efficiency. Temperature had a significant effect on the sulphidisation rate of lead in funnel glass, which increased from 25% to 90% as the temperature increased from 100 °C to 300 °C. A sulphidisation rate of 100% was achieved at a duration of 8 h at 300 °C. This process of mechanical activation and hydrothermal sulphidisation is efficient and promising for the treatment of leaded glass.

  9. Thermogravimetric Investigation of the Lead Volatilization from Waste Cathode-Ray Tube Glass

    OpenAIRE

    Grause, Guido; Takahashi, Kenshi; Yoshioka, Toshiaki

    2016-01-01

    The treatment of lead-containing cathode-ray tube (CRT) glass is an important environmental issue. One approach is the removal of lead by chloride volatilization. In the present work, the reaction of CRT glass with PVC as the chlorinating agent and Ca(OH)2 as the chlorine absorber was investigated by thermogravimetric analysis (TGA) in air. Seven reaction steps occurring at different temperatures were identified as dehydrochlorination of PVC/HCl absorption, CO2 absorption, Ca(OH)2 dehydration...

  10. Calibration of medium-resolution monochrome cathode ray tube displays for the purpose of board examinations

    OpenAIRE

    Evanoff, Michael G.; Roehrig, Hans; Giffords, Robert S.; Capp, M. Paul; Rovinelli, Richard J.; Hartmann, William H.; Merritt, Christopher

    2001-01-01

    This report discusses calibration and set-up procedures for medium-resolution monochrome cathode ray tubes (CRTs) taken in preparation of the oral portion of the board examination of the American Board of Radiology (ABR). The board examinations took place in more than 100 rooms of a hotel. There was one display-station (a computer and the associated CRT display) in each of the hotel rooms used for the examinations. The examinations covered the radiologic specialties cardiopulmonary, musculosk...

  11. The chemistry of artificial lighting devices lamps, phosphors and cathode ray tubes

    CERN Document Server

    Ropp, Richard C

    1993-01-01

    Both the early use of artificial lighting and current manufacturing methods concerning incandescent and fluorescent lamps are covered in this book. The protocols for manufacture of fluorescent lamp phosphors and those used in cathode ray tubes are also treated in some detail. This text surveys the amazing, vast array of artificial lighting devices known to date in terms of how they arose and are, or have been used by mankind. A complete description of the formulations and methodology for manufacturing all known phosphors is given. The book will serve as a repository of such phosphor manufactur

  12. The glass-like glazed coating made of cathode-ray tube faceplates cullet

    Directory of Open Access Journals (Sweden)

    N.І. Zavgorodnya

    2016-05-01

    Full Text Available The tendency of the current time is to find ways of expedient municipal solid waste recycling as a secondary raw material with similar physicochemical and mechanical characteristics for the purpose of efficient use of resources and reduction of harmful impact on the environment. Due to the termination the production of monitors and television sets with cathode-ray tubes, a significant part of them is grow out of use in the form of dimensional waste. Kinescopes of these electric devices contain valuable components including the screen and conical glass and cathode-luminophors. Existing trends in the world of CRT faceplates cullet recycling argue for reasonability of recycling ways of this valuable secondary raw materials. Aim: The aim of researches is to determine the impact of the full replacement of quartz sand by faceplates cullet and using the zinc sulfide, reconstituted of used cathode-luminophors, as a secondary raw material in the production of glass-like glaze on the basic properties of color glaze. Materials and Methods: Cathode-ray tube faceplates are cut off during removal process, washed from dirt, dried, crushed by press, milled in a cheek grinder and finally crushed in a barrel mill. The slurried impurity (clay, dyes of desired color, including ZnS, water are added to this powder. The received mix is processed of wet grinding for slip production. Slip is surfaced on glass-ceramic tile, dried up, burned at maximum temperature of 900ºС. Results: Experimental research has shown that glass-forming, modifying and intermediate oxides of inorganic substances are added to the glaze with the CRT faceplates cullet. The Chasiv Yar clay belongs to the group with significant gas emission. The water vapor arising during the clay dehydration plays role of the "carrier" of heavy non-volatile components, considerably accelerates gas processes and increases activity of gas components. Zinc sulphide, dissolved in the silicate glaze melts when heated

  13. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  14. Innovated application of mechanical activation to separate lead from scrap cathode ray tube funnel glass.

    Science.gov (United States)

    Yuan, Wenyi; Li, Jinhui; Zhang, Qiwu; Saito, Fumio

    2012-04-01

    The disposal of scrap cathode ray tube (CRT) funnel glass has become a global environmental problem due to the rapid shrinkage of new CRT monitor demand, which greatly reduces the reuse for remanufacturing. To detoxificate CRT funnel glass by lead recovery with traditional metallurgical methods, mechanical activation by ball milling was introduced to pretreat the funnel glass. As a result, substantial physicochemical changes have been observed after mechanical activation including chemical breakage and defects formation in glass inner structure. These changes contribute to the easy dissolution of the activated sample in solution. High yield of 92.5% of lead from activated CRT funnel glass by diluted nitric acid leaching and successful formation of lead sulfide by sulfur sulfidization in water have also been achieved. All the results indicate that the application of mechanical activation on recovering lead from CRT funnel glass is efficient and promising, which is also probably appropriate to detoxificate any other kind of leaded glass.

  15. Evaluation of Cathode-Ray Tube protection for the electronic tabular display subsystem (ETABS) engineering model

    Science.gov (United States)

    Wilson, A. R.

    1981-09-01

    This report describes the safety evaluation of the 25-inch (diagonal) rectangular cathode-ray tube (CRT) that is used in the engineering model of the Electronic Tabular Display Subsystem (ETABS). An evaluation of ETABS will be performed at the Federal Aviation Administration (FAA) Technical Center for possible application in FAA Air Route Traffic Control Centers (ARTCC). The safety evaluation included standard industry pressure testing and special implosion testing on 12 CRT samples. Eleven of the twelve CRT samples satisfactorily met the safety requirements for both the pressure and implosion testing. One CRT cracked when subjected to 45 pounds per square inch (psi) of air pressure; however, the CRT did not implode. The 25-inch rectangular CRT will therefore provide a high degree of safety for use in each of the two tabular displays of the ETABS engineering model.

  16. 40 CFR 261.39 - Conditional Exclusion for Used, Broken Cathode Ray Tubes (CRTs) and Processed CRT Glass...

    Science.gov (United States)

    2010-07-01

    ... complete until any such claim is resolved in accordance with 40 CFR 260.2. (v) The export of CRTs is... CFR part 266, subpart C instead of the requirements of this section. ... Cathode Ray Tubes (CRTs) and Processed CRT Glass Undergoing Recycling. 261.39 Section 261.39 Protection...

  17. 40 CFR 261.40 - Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet...

  18. Exposure to hazardous substances in Cathode Ray Tube (CRT) recycling sites in France

    Energy Technology Data Exchange (ETDEWEB)

    Lecler, Marie-Thérèse, E-mail: marie-therese.lecler@inrs.fr; Zimmermann, François; Silvente, Eric; Clerc, Frédéric; Chollot, Alain; Grosjean, Jérôme

    2015-05-15

    Highlights: • Chemical risks were assessed in the nine cathode ray tube screens recycling facilities. • The main hazardous agents are dust containing lead, cadmium, barium and yttrium. • Exposure and pollutant levels are described for different operations and processes. • All the operations and processes are concerned by significant levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The Waste Electrical and Electronic Equipment (WEEE) or e-waste recycling sector has grown considerably in the last fifteen years due to the ever shorter life cycles of consumables and an increasingly restrictive policy context. Cathode Ray Tubes (CRTs) from used television and computer screens represent one of the main sources of e-waste. CRTs contain toxic materials such as lead, cadmium, barium, and fluorescent powders which can be released if recycling of CRTs is not appropriate. Exposure to these harmful substances was assessed in nine workshops where CRT screens are treated. Particulate exposure levels were measured using a gravimetric method and metals were analysed by plasma emission spectrometry. The maximum levels of worker exposure were 8.8 mg/m{sup 3}, 1504.3 μg/m{sup 3}, 434.9 μg/m{sup 3}, 576.3 μg/m{sup 3} and 2894.3 μg/m{sup 3} respectively for inhalable dust, barium, cadmium, lead and yttrium. The maximum levels of airborne pollutants in static samples were 39.0 mg/m{sup 3}, 848.2 μg/m{sup 3}, 698.4 μg/m{sup 3}, 549.3 μg/m{sup 3} and 3437.9 μg/m{sup 3} for inhalable dust, barium, cadmium, lead and yttrium. The most harmful operations were identified, and preventive measures for reducing the chemical risk associated with screen recycling were proposed. Workplace measurements were used to define recommendations for reducing the chemical risks in CRT screens recycling facilities and for promoting the design and development of “clean and safe” processes in emerging recycling channels.

  19. Exposure to hazardous substances in Cathode Ray Tube (CRT) recycling sites in France

    International Nuclear Information System (INIS)

    Highlights: • Chemical risks were assessed in the nine cathode ray tube screens recycling facilities. • The main hazardous agents are dust containing lead, cadmium, barium and yttrium. • Exposure and pollutant levels are described for different operations and processes. • All the operations and processes are concerned by significant levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The Waste Electrical and Electronic Equipment (WEEE) or e-waste recycling sector has grown considerably in the last fifteen years due to the ever shorter life cycles of consumables and an increasingly restrictive policy context. Cathode Ray Tubes (CRTs) from used television and computer screens represent one of the main sources of e-waste. CRTs contain toxic materials such as lead, cadmium, barium, and fluorescent powders which can be released if recycling of CRTs is not appropriate. Exposure to these harmful substances was assessed in nine workshops where CRT screens are treated. Particulate exposure levels were measured using a gravimetric method and metals were analysed by plasma emission spectrometry. The maximum levels of worker exposure were 8.8 mg/m3, 1504.3 μg/m3, 434.9 μg/m3, 576.3 μg/m3 and 2894.3 μg/m3 respectively for inhalable dust, barium, cadmium, lead and yttrium. The maximum levels of airborne pollutants in static samples were 39.0 mg/m3, 848.2 μg/m3, 698.4 μg/m3, 549.3 μg/m3 and 3437.9 μg/m3 for inhalable dust, barium, cadmium, lead and yttrium. The most harmful operations were identified, and preventive measures for reducing the chemical risk associated with screen recycling were proposed. Workplace measurements were used to define recommendations for reducing the chemical risks in CRT screens recycling facilities and for promoting the design and development of “clean and safe” processes in emerging recycling channels

  20. Water-soluble lead in cathode ray tube funnel glass melted in a reductive atmosphere.

    Science.gov (United States)

    Okada, Takashi

    2016-10-01

    In the reduction-melting process, lead can be recovered from cathode ray tube funnel glass (PbO=25wt%); however, resulting glass residues still contain approximately 1-2wt% of unrecovered lead. For environmental protection in the residue disposal or recycling, it is important to evaluate the quantities of water-soluble species among the unrecovered lead. This study examined water-soluble lead species generated in the reduction-melting process of the funnel glass and factors determining their generation. In the reduction-melting, metallic lead was generated by reducing lead oxides in the glass, and a part of the metallic lead remained in the glass residue. Such unrecovered metallic lead can dissolve in water depending on its pH level and was regarded as water-soluble lead. When 10g Na2CO3 was added to 20g funnel glass during reduction-melting, the resulting glass contained high concentrations of sodium. In a water leaching of the glass, the obtained leachate was alkalized by the sodium-rich glass (pH=12.7-13.0). The unrecovered metallic lead in the glass was extracted in the alkalized leachate. The quantity of the unrecovered metallic lead (water-soluble lead) in the glass decreased when the melting time, melting temperature, and carbon dosage were controlled during reduction-melting. PMID:27209518

  1. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  2. Calibration of medium-resolution monochrome cathode ray tube displays for the purpose of board examinations.

    Science.gov (United States)

    Evanoff, M G; Roehrig, H; Giffords, R S; Capp, M P; Rovinelli, R J; Hartmann, W H; Merritt, C

    2001-06-01

    This report discusses calibration and set-up procedures for medium-resolution monochrome cathode ray tubes (CRTs) taken in preparation of the oral portion of the board examination of the American Board of Radiology (ABR). The board examinations took place in more than 100 rooms of a hotel. There was one display-station (a computer and the associated CRT display) in each of the hotel rooms used for the examinations. The examinations covered the radiologic specialties cardiopulmonary, musculoskeletal, gastrointestinal, vascular, pediatric, and genitourinary. The software used for set-up and calibration was the VeriLUM 4.0 package from Image Smiths in Germantown, MD. The set-up included setting minimum luminance and maximum luminance, as well as positioning of the CRT in each examination room with respect to reflections of roomlights. The calibration for the grey scale rendition was done meeting the Digital Imaging and communication in Medicine (DICOM) 14 Standard Display Function. We describe these procedures, and present the calibration data in. tables and graphs, listing initial values of minimum luminance, maximum luminance, and grey scale rendition (DICOM 14 standard display function). Changes of these parameters over the duration of the examination were observed and recorded on 11 monitors in a particular room. These changes strongly suggest that all calibrated CRTs be monitored over the duration of the examination. In addition, other CRT performance data affecting image quality such as spatial resolution should be included in set-up and image quality-control procedures. PMID:11442114

  3. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production. PMID:21705136

  4. Increased micronucleated cell frequency related to exposure to radiation emitted by computer cathode ray tube video display monitors

    OpenAIRE

    Karina Carbonari; Luciane Gonçalves; Daniela Roth; Patrick Moreira; Ricardo Fernández; Maria da Graça Martino-Roth

    2005-01-01

    It is well recognized that electromagnetic fields can affect the biological functions of living organisms at both cellular and molecular level. The potential damaging effects of electromagnetic fields and very low frequency and extremely low frequency radiation emitted by computer cathode ray tube video display monitors (VDMs) has become a concern within the scientific community. We studied the effects of occupational exposure to VDMs in 10 males and 10 females occupationally exposed to VDMs ...

  5. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  6. Removal of lead from cathode ray tube funnel glass by combined thermal treatment and leaching processes.

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Yonezawa, Susumu

    2015-11-01

    The reduction melting process is useful to recover toxic lead from cathode ray tube funnel glass; however, this process generates SiO2-containing residues that are disposed in landfill sites. To reduce the volume of landfill waste, it is desirable to recycle the SiO2-containing residues. In this study, SiO2 powder was recovered from the residue generated by reduction melting. The funnel glass was treated by a process combining reduction melting at 1000°C and annealing at 700°C to recover a large quantity of lead from the glass. The oxide phase generated by the thermal treatment was subjected to water leaching and acid leaching with 1M hydrochloric acid to wash out unwanted non-SiO2 elements for SiO2 purification. In the water washing, the oxide phase was microparticulated, and porous structures formed on the oxide surfaces. This increased the surface area of the oxide phase, and the unwanted elements were effectively washed out during the subsequent acid leaching. By controlling the acid leaching time and the amount of added acid, porous and amorphous SiO2 (purity >95 wt%) was recovered. In the obtained SiO2-concentrated product, unrecovered lead remained at concentrations of 0.25-0.79 wt%. When the Na2CO3 dosage in the thermal treatment was increased, the lead removal by acid leaching was enhanced, and the lead concentration in the obtained product decreased to 0.016 wt%. PMID:26022339

  7. Factors influencing leaching of PBDEs from waste cathode ray tube plastic housings.

    Science.gov (United States)

    Stubbings, William A; Harrad, Stuart

    2016-11-01

    Samples of waste cathode ray tube (CRT) plastic housings were exposed to Milli-Q® water containing dissolved humic matter at concentrations of 0, 100 and 1000mgL(-1) as leaching fluid under laboratory conditions, and polybrominated diphenyl ethers (PBDEs) determined in the resulting leachate. Despite the relatively hydrophobic physicochemical properties of PBDEs, concentrations of ƩPBDEs in the leachate from the leaching experiments in this study ranged from 14,000 to 200,000ngL(-1). PBDE leaching appears to be a second order process, whereby a period of initially intense dissolution of more labile PBDEs is followed by a slower stage corresponding to external diffusion of the soluble residue in the material. The bulk of transfer of PBDEs to the leaching fluid occurs within the first 6h of contact, during which time we suggest that the most labile PBDEs are "washed" off the surface of the CRT plastics. The predominant congeners in the chips were BDE-209 (2600mgkg(-1)) and BDE 183 (220mgkg(-1)). The impacts on PBDE leaching of leachate pH and temperature were also examined. Increasing the temperature of leaching fluids from 20 to 80°C, enhances the leachability of BDE-209 and BDE-99 from plastics. In all cases, the alkaline pH8.5 examined, resulted in the greatest PBDE concentrations in leachate. Agitation of the waste/leachate mixture enhances PBDE leaching from CRT plastics. Potential evidence for debromination of heavy congeners to the lower brominated and more bioavailable BDEs was observed. Specifically, BDEs-47, -85 and -100 were detected in the leachates, but were absent from the CRT plastics themselves. PMID:27436776

  8. Removal of lead from cathode ray tube funnel glass by generating the sodium silicate.

    Science.gov (United States)

    Hu, Biao; Zhao, Shuangshuang; Zhang, Shuhao

    2015-01-01

    In the disposal of electronic waste, cathode ray tube (CRT) funnel glass is an environmental problem of old television sets. Removal of the lead from CRT funnel glass can prevent its release into the environment and allow its reuse. In this research, we reference the dry progress productive technology of sodium silicate, the waste CRT glass was dealt with sodium silicate frit melted and sodium silicate frit dissolved. Adding a certain amount of Na ₂CO₃to the waste CRT glass bases on the material composition and content of it, then the specific modulus of sodium silicate frit is obtained by melting progress. The silicon, potassium and sodium compounds of the sodium silicate frit are dissolved under the conditions of high temperature and pressure by using water as solvent, which shows the tendency that different temperature, pressure, liquid-solid ratio and dissolving time have effect on the result of dissolving. At 175°C(0.75MPa), liquid-solid ratio is 1.5:1, the dissolving time is 1h, the dissolution rate of sodium silicate frit is 44.725%. By using sodium sulfide to separate hydrolysis solution and to collect lead compounds in the solution, the recovery rate of lead in dissolving reached 100% and we can get clean sodium silicate and high purity of lead compounds. The method presented in this research can recycle not only the lead but also the sodium, potassium and other inorganic minerals in CRT glass and can obtain the comprehensive utilization of leaded glass.

  9. Optical profiles of cathode ray tube and liquid crystal display monitors: implication in cutaneous phototoxicity in photodynamic therapy

    Science.gov (United States)

    Lei, Tim C.; Pendyala, Srinivas; Scherrer, Larry; Li, Buhong; Glazner, Gregory F.; Huang, Zheng

    2016-01-01

    Recent clinical reports suggest that overexposure to light emissions generated from cathode ray tube (CRT) and liquid crystal display (LCD) color monitors after topical or systemic administration of a photosensitizer could cause noticeable skin phototoxicity. In this study, we examined the light emission profiles (optical irradiance, spectral irradiance) of CRT and LCD monitors under simulated movie and video game modes. Results suggest that peak emissions and integrated fluence generated from monitors are clinically relevant and therefore prolonged exposure to these light sources at a close distance should be avoided after the administration of a photosensitizer or phototoxic drug. PMID:23669681

  10. Hydrometallurgical Processing and Recovery of Nickel from Spent Cathode Ray Tubes

    Directory of Open Access Journals (Sweden)

    Coman V.

    2013-04-01

    Full Text Available Scientific and technological progress required for more and more advanced electrical and electronic equipment (EEE. Therefore, EEE manufacturing became one of the most important world activities, generating at the same time huge amounts of waste. In the last decades the accumulation of waste electrical and electronic equipment (WEEE has become a global problem (Widmer et al., 2005; Babu et al., 2007; Robinson, 2009. These wastes are a threat for the environment due to their high content of toxic materials and, at the same time, they are an important source of recyclable materials, and especially valuable metals (e.g. Au, Ag, Pd, Cu, Ni, Zn. Nowadays there are various approaches for the treatment and recycling of WEEE, involving pyro-, hydro- and bio-metallurgical processes (Cui and Zhang, 2008. Among WEEE, cathode ray tubes (CRT displays, used mainly in computer monitors and television sets, are regarded as the most polluting fraction of all WEEE (Nnorom et al., 2011. CRT recycling represents a challenge due to their high accumulation rate, proportional to the evolution of modern technologies (flat panel displays, their high content of toxic and noxious substances (heavy metals and organic compounds, improper storage, and the lack of a complete, pollution-free recycling solution. Previous studies have shown that some CRT metallic components (electron gun - EG, shadow mask contain important amounts of Ni (25 – 45% and Fe (50 – 70%, and small quantities of Mn, Co and Cr (Robotin et al., 2011. Ni and Ni alloys play an important role in modern technology, especially due to their magnetic and anticorrosion properties. Unfortunately, when exposed inappropriately, Ni can have negative environmental effects and can be harmful to human health (Denkhaus and Salnikow, 2002. In this context, Ni recycling from electronic waste is important for environmental and health reasons, and, at the same time, Ni recycling could be financially sustainable due to an

  11. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+for X-Ray or Cathode Ray Tubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Su; ZHONG Hai-Yang; SUN Jia-Shi; CHENG Li-Hong; LI Xiang-Ping; CHEN Bao-Jiu

    2012-01-01

    We report a reddish orange long-lasting phosphor of KY3F10:Sm3+ synthesized by a solid-state reaction for applications in x-ray or cathode-ray tubes.The spectrum contains a group of reddish orange emission lines originating from 4G5/2 → 6HJ transitions of Sm3+.The Judd-Ofelt theory is introduced to analyze the optical transitions of the Sm3+ ions.Moreover,phosphorescence characteristics are discussed.The energy charging and release processes of the phosphor are measured and the phosphorescence decay time with 10% of initial intensity is about 40.7 seconds.The order of kinetics and the activation energy are obtained according to the thermoluminescence curve.The phosphorescence mechanism is proposed based on structural analysis and thermoluminescence glow curve measurement.%We report a reddish orange long-lasting phosphor of KY3F10:Sm3+ synthesized by a solid-state reaction for applications in x-ray or cathode-ray tubes. The spectrum contains a group of reddish orange emission lines originating from 4G5/2 → 6Hj transitions of Sm3+. The Judd-Ofelt theory is introduced to analyze the optical transitions of the Sm3+ ions. Moreover, phosphorescence characteristics are discussed. The energy charging and release processes of the phosphor are measured and the phosphorescence decay time with 10% of initial intensity is about 40.7 seconds. The order of kinetics and the activation energy are obtained according to the thermoluminescence curve. The phosphorescence mechanism is proposed based on structural analysis and thermoluminescence glow curve measurement.

  12. Increased micronucleated cell frequency related to exposure to radiation emitted by computer cathode ray tube video display monitors

    Directory of Open Access Journals (Sweden)

    Karina Carbonari

    2005-09-01

    Full Text Available It is well recognized that electromagnetic fields can affect the biological functions of living organisms at both cellular and molecular level. The potential damaging effects of electromagnetic fields and very low frequency and extremely low frequency radiation emitted by computer cathode ray tube video display monitors (VDMs has become a concern within the scientific community. We studied the effects of occupational exposure to VDMs in 10 males and 10 females occupationally exposed to VDMs and 20 unexposed control subjects matched for age and sex. Genetic damage was assessed by examining the frequency of micronuclei in exfoliated buccal cells and the frequency of other nuclear abnormalities such as binucleated and broken egg cells. Although there were no differences regarding binucleated cells between exposed and control individuals our analysis revealed a significantly higher frequency of micronuclei (p < 0.001 and broken egg cells (p < 0.05 in individuals exposed to VDMs as compared to unexposed. We also found that the differences between individuals exposed to VDMs were significantly related to the sex of the individuals and that there was an increase in skin, central nervous system and ocular disease in the exposed individuals. These preliminary results indicate that microcomputer workers exposed to VDMs are at risk of significant cytogenetic damage and should periodically undergo biological monitoring.

  13. Lead removal from cathode ray tube glass by the action of calcium hydroxide and poly(vinyl chloride)

    International Nuclear Information System (INIS)

    Highlights: • About 99.9% of lead is removed from CRT glass by PbCl2 volatilization. • PVC is used as chlorination agent with the aid of Ca(OH)2 as HCl absorbing material. • The residual calcium silicate has a lead content as low as 140 mg kg−1. • Lead leaching from the residue was below the detection limit. - Abstract: With the development of flat screen technology, the cathode ray tubes (CRTs) used in TV sets became obsolete, leaving huge amounts of lead-containing CRT glass for disposal. We developed a novel lead volatilization process in which PbCl2 was generated in the presence of poly(vinyl chloride) (PVC) as a chlorination agent and Ca(OH)2 as an HCl absorber. PVC was incinerated in air atmosphere and the resulting HCl was captured by Ca(OH)2 before exiting the reactor with the air flow. CaCl2 and Ca(OH)2 reacted with the lead glass forming volatile PbCl2 and crystalline Ca-silicates. Since the reactivity of lead glass with gaseous HCl is negligible, the presence of Ca(OH)2 was essential for the success of this method. At a temperature of 1000 °C, a molar Cl/Pb ratio of 16, and a molar Ca/Si ratio of about 2, approximately 99.9% of the lead was volatilized, leaving a residue with a lead content of 140 mg kg−1. The residual calcium silicate, with its low lead level, has the potential to be repurposed for other uses

  14. Reduction-melting combined with a Na₂CO₃ flux recycling process for lead recovery from cathode ray tube funnel glass.

    Science.gov (United States)

    Okada, Takashi; Yonezawa, Susumu

    2014-08-01

    With large quantity of flux (Na2CO3), lead can be recovered from the funnel glass of waste cathode-ray tubes via reduction-melting at 1000°C. To reduce flux cost, a technique to recover added flux from the generated oxide phase is also important in order to recycle the flux recovered from the reduction-melting process. In this study, the phase separation of sodium and the crystallization of water-soluble sodium silicates were induced after the reduction-melting process to enhance the leachability of sodium in the oxide phase and to extract the sodium from the phase for the recovery of Na2CO3 as flux. A reductive atmosphere promoted the phase separation and crystallization, and the leachability of sodium from the oxide phase was enhanced. The optimum temperature and treatment time for increasing the leachability were 700°C and 2h, respectively. After treatment, more than 90% of the sodium in the oxide phase was extracted in water. NaHCO3 can be recovered by carbonization of the solution containing sodium ions using carbon dioxide gas, decomposed to Na2CO3 at 50°C and recycled for use in the reduction-melting process. PMID:24816522

  15. Comparison of observer performance on soft-copy reading of digital chest radiographs: High resolution liquid-crystal display monitors versus cathode-ray tube monitors

    International Nuclear Information System (INIS)

    The purpose of this study is to compare observer performance for detection of abnormalities on chest radiographs with 5-megapixel resolution liquid-crystal displays (LCD) and 5-megapixel resolution cathode-ray tube (CRT) monitors under bright and subdued ambient light conditions. Six radiologists reviewed a total of 254 digital chest radiographs under four different conditions with a combination of two types of monitors (a 5-megapixel resolution LCD and a 5-megapixel resolution CRT monitor) and with two types of ambient light (460 and 50 lux). The abnormalities analyzed were nodules, pneumothorax and interstitial lung disease. For each reader, the detection performance using 5-megapixel LCD and 5-megapixel CRT monitors under bright and subdued ambient light conditions were compared using multi-case and multi-modality ROC analysis. For each type of ambient light, the average detection performance with the two types of monitors was also compared. For each reader, the observer performance of 5-megapixel LCD and 5-megapixel CRT monitors, under both bright and subdued ambient light conditions, showed no significant statistical differences for detecting nodules, pneumothorax and interstitial lung disease. In addition, there was no significant statistical difference in the average performance when the two monitor displays, under both bright and subdued ambient light conditions, were compared

  16. A comparison of the suitability of cathode ray tube (CRT) and liquid crystal display (LCD) monitors as visual stimulators in mfERG diagnostics.

    Science.gov (United States)

    Kaltwasser, Christoph; Horn, Folkert K; Kremers, Jan; Juenemann, Anselm

    2009-06-01

    The aim of this study was to determine up to which extent the specific characteristics of cathode ray tube (CRT) and liquid crystal display (LCD) monitors influence the retinal biosignal when used as stimulators in ocular electrophysiology. In a conventional CRT monitor, each pixel lights up only for a duration of a few milliseconds during each frame. In contrast, liquid crystal displays are quasi-static, i.e. each pixel has a constant luminance during the whole length of the frame, but lights up only with a certain delay after the trigger. These different display characteristics may affect the mfERG signal. The temporal and spatial luminance distributions of a CRT and an LCD monitor were measured in white flashes. The total amount of emitted light was calculated by integration of the intensity versus time curves. By means of an mfERG recording system (RETIsystem, Roland Consult, Brandenburg, Germany) first-order kernel (FOK) mfERG signals were computed and then analysed using customized MATLAB (TheMathWorks, Natick, MA, USA) software. With the two stimulator monitors, differences in the mfERG signal were observed. The latencies of mfERG responses recorded with the LCD monitor were significantly increased by 7.1 ms for N1 and 9.5 ms for P1 compared to the CRT. Due to a higher luminance, the N1 amplitude was significantly higher by approx. 2 dB in measurements with the LCD monitor while no significant difference could be detected with regard to the more contrast sensitive P1 amplitude. When using LCD monitors as stimulators the increase in latencies and differences in the luminance versus time profile must be taken into account. Prior to clinical application, the establishment of guidelines for the use of LCD monitors is recommended.

  17. X-ray tubes study and design

    CERN Document Server

    Sardari, D

    1990-01-01

    This thesis contain both theoretical and experimental works. Theoretical aspect includes X-Ray tubes case study and design principles, in the introduced design process, anode-cathode distance, vacuum needed, filament size, anode face angle and shape and size of focusing electrodes can be found. A method for specification of tungsten lager thickness on anode is also introduced. Using computer simulation, electron trajectory between cathode-anode is obtained, This work is presented in the first International Conference on Control and Modeling, Tehran, 1990. Experimental work contains manufacturing more than 10 tubes and test each of them. One of these tubes can with stand up to 50 KV. Filament can be heated by passing a 2.1 A current. In these conditions anode current is 1.2 m A. Using this tube, some radiographs have been taken.

  18. CRL X-RAY TUBE

    OpenAIRE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  19. Development of suitable potting material for dispenser cathodes of a high power microwave tube

    International Nuclear Information System (INIS)

    Highlights: ► Potting material. ► Doped alumina. ► Non-shrinkable. ► Dispenser cathode. ► Microwave tube. - Abstract: The present study aims to develop suitable advanced potting material for modern high performance dispenser cathodes for high power microwave tube through refinement of the alumina microstructure by using suitable dopant. Calcium oxide was selected as a dopant material and the resultant materials were characterized by X-ray diffraction studies and the microstructure monitored by SEM study and EDX analysis. The shrinkage, thermal and electrical properties of the resultant material was evaluated to establish its suitability to function as an advanced potting material.

  20. A glass-sealed field emission x-ray tube based on carbon nanotube emitter for medical imaging

    Science.gov (United States)

    Yeo, Seung Jun; Jeong, Jaeik; Ahn, Jeung Sun; Park, Hunkuk; Kwak, Junghwan; Noh, Eunkyong; Paik, Sanghyun; Kim, Seung Hoon; Ryu, Jehwang

    2016-04-01

    We report the design and fabrication of a carbon nanotube based a glass-sealed field emission x-ray tube without vacuum pump. The x-ray tube consists of four electrodes with anode, focuser, gate, and cathode electrode. The shape of cathode is rectangular for isotropic focal spot size at anode target. The obtained x-ray images show clearly micrometer scale.

  1. X-ray tube arrangement

    International Nuclear Information System (INIS)

    An x-ray tube is described incorporating an elongated target/ anode over which the electron beam is deflected and from which x-rays are emitted. Improved methods of monitoring and controlling the amplitude of the beam deflection are presented. (U.K.)

  2. Development of suitable potting material for dispenser cathodes of a high power microwave tube

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kalyan S.; Ghosh, Sumana; Dandapat, Nandadulal [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Datta, Someswar, E-mail: sdatta@cgcri.res.in [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Basu, Debabrata [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Raju, R.S. [Microwave Tubes Division, CSIR - Central Electronics Engineering Research Institute, Pilani 333031, Rajasthan (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Potting material. Black-Right-Pointing-Pointer Doped alumina. Black-Right-Pointing-Pointer Non-shrinkable. Black-Right-Pointing-Pointer Dispenser cathode. Black-Right-Pointing-Pointer Microwave tube. - Abstract: The present study aims to develop suitable advanced potting material for modern high performance dispenser cathodes for high power microwave tube through refinement of the alumina microstructure by using suitable dopant. Calcium oxide was selected as a dopant material and the resultant materials were characterized by X-ray diffraction studies and the microstructure monitored by SEM study and EDX analysis. The shrinkage, thermal and electrical properties of the resultant material was evaluated to establish its suitability to function as an advanced potting material.

  3. Signal propagation in straw tubes with resistive cathode

    CERN Document Server

    Marzec, J; Pawlowski, Z; Konarzewski, B

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. We have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, our approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors. (7 refs).

  4. Effect of Cathode Ray Tubes Glass Sand as Fine Aggregate on Properties of Mortar%废弃阴极射线管玻璃砂对砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    赵晖; 孙伟

    2012-01-01

    The discarded cathode ray tubes glass represents an environmental problem due to the high content of lead. In this paper, fly ash and ground granulated blast furnace slag were used as mineral admixtures, the fresh, mechanical properties, the drying shrinkage, alkali-silica reaction (ASR) expansion and lead leaching properties of mortar with ground cathode ray tube glass sand (MG) fine aggregate at replacement levels of 0, 30%, 60% and 100% were investigated. The results show that the initial slump flow diame- ter and wet density of fresh mortar increase with the MG glass replacement level from 0 to 100%, the compressive strength, the flex- ural strength and static modulus of elasticity and the drying shrinkage values of mortar increase at the initial stages and trend towards the gradual decrease. The mortar with MG glass sand of 60% had higher mechanical properties and larger drying shrinkage values. The ASR expansion and the leaching value of lead in mortar increased with MG replacement levels from 0% to 100%. However, the ASR expansion and the leaching value of lead were on the safety range. The mortar with MG glass by adding mineral admixture could be used as a recycled material for the construction material in dry environments.%废弃阴极射线管(cathoderaytubes,CRT)玻璃因其含有有害物质铅而导致严重环境问题,为此,使用粉煤灰、磨细矿渣作为矿物掺合料,研究了磨细阴极射线管玻璃(groundcathoderaytubeglass,MG)取代0、30%、60%、100%(质量分数,下同)河砂细骨料时砂浆新拌性能、力学性能、干缩性能、碱骨料反应(alkali-silicareaction,ASR)膨胀性能、金属铅浸出值。结果表明:随着MG取代比例从0变化到100%,砂浆初始流动度与容重不段增加,硬化砂浆抗压强度、抗折强度和静弹性模量、干缩性能先增加后逐渐减小;MG取代比例为60%时,砂浆具有较高力学性能和

  5. Soft-Copy Reading in Digital Mammography of Microcalcifications: Diagnostic Performance of a 5-Megapixel Cathode Ray Tube Monitor versus a 3-Megapixel Liquid Crystal Display Monitor in a Clinical Setting

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, T.; Kasami, M.; Uchida, Y. [Dept. of Diagnostic Radiology, Dept. of Pathology, and Breast Center, Shizuoka Cancer Center Hospital, Shizuoka (Japan)

    2007-09-15

    Background: A recent study using dedicated contrast-detail phantoms showed that the image quality of a 3-megapixel (M) monitor can approach that of a 5M monitor in digital mammography. Purpose: To compare a 5M cathode ray tube (CRT) monitor with a 3M liquid crystal display (LCD) monitor for soft-copy reading of digital mammography of microcalcifications in a clinical setting. Material and Methods: 100 screen-detected microcalcification lesions (34 malignant and 66 benign) without mass that had been evaluated with 11-gauge stereotactic vacuum-assisted breast biopsy or definitive surgery were recruited into the study. One radiologist analyzed the soft-copy mammograms on a 5M CRT monitor and a 3M LCD monitor with 5 months between interpretations and scored the likelihood of malignancy and calcification distribution on a five-point scale. Calcification morphology and breast density were scored on a four-point scale. Positive predictive value (PPV) and negative predictive value (NPV) were calculated on the basis of a Breast Imaging Reporting and Data System. The interpretation time was also measured. Results: There was no significant difference in the likelihood of malignancy (P = 0.655), calcification morphology (P = 0.168), calcification distribution (P = 0.11), and breast density (P = 0.0608). The PPV and NPV of soft-copy reading on the 5M CRT monitor was 57% (30/53) and 91% (43/47), respectively, identical to the results using the 3M LCD monitor. The total interpretation time averaged 88 s for the 5M CRT monitor and 67 s for the 3M LCD monitor (P<0.0001). Conclusion: Soft-copy reading of a digital mammography of microcalcifications with a 3M LCD monitor was similar in diagnostic performance to a 5M CRT monitor in this study.

  6. Study of the three-step photoionization of uranium using a hollow cathode discharge tube

    International Nuclear Information System (INIS)

    The hollow cathode discharge (HCD) tube as a spectral light source has been developed. Because any element including refractory metals can be atomized by the cathode sputtering effect in HCD, a simple and reliable atomic vapor source produced by HCD has been widely used in laser spectroscopy. To the authors' knowledge, there is no previous work on the photoionization processes of metal atoms using an HCD tube. Here the authors report their study of the resonant three-step ionization of U in a homemade HCD tube

  7. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    Science.gov (United States)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular

  8. X-ray tube arrangements

    International Nuclear Information System (INIS)

    A technique for ensuring the rapid correction of both amplitude and offset errors in the deflectional movement of an electron beam along an X-ray emissive target is described. The movement is monitored at at least two positions during a sweep and differences, between the two movements and a desired movement, at these positions are combined in different proportions to produce a corrective servo signal. Such arrangements find application, for example, in computerised tomographic scanners. (author)

  9. Field emission digital display tube with nano-graphite film cathode

    Institute of Scientific and Technical Information of China (English)

    Jicai Deng; Zhanling Lu; Binglin Zhang

    2008-01-01

    The field emission digital display tube with a nano-crystalline graphite cold cathode is designed and fabricated. Under the control of the driving circuits, a dynamic digital display with uniform luminance distribution is realized. The luminance of the character segments is 190 cd/m2 at the operating voltage of 900 V. And the stable emission is attained with a fluctuation of about 3% at an average segment current of 75 μA. The results demonstrate that nano-crystalline graphite film is a promising material for cold cathode.

  10. The study of neutron burst shape of a neutron tube driven by dispenser cathode

    Science.gov (United States)

    Grishnyaev, Evgeny; Polosatkin, Sergey

    2016-08-01

    A slim-shaped portable DD-neutron generator is developed at Budker institute of Nuclear Physics. The generator is a combination of Cockcroft-Walton voltage multiplier and a sealed gas-filled neutron tube driven by dispenser cathode. Neutron burst shape in pulsed mode of neutron tube operation is measured with stroboscopic time spectrometry, implemented on scintillation detector, and modeled with Comsol Script 1.3 and Comsol Multiphysics 3.5. Modeling appears to be in good agreement with experimental results. Measured pulse rise and fall times are 110 ns and 100 ns respectively.

  11. Reference factor F(CT)Q and X ray tube ionization yield R(TUBE)Q

    International Nuclear Information System (INIS)

    The operational facility procedures in diagnostic radiology standardization and calibration, through the relation between the X ray tube current and the ionization chamber current in a radiation quality Q, shown the reference factor F(CT)Q as the reality estimate to the X ray tube ionization yield, R(TUBE)Q . (author)

  12. Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns.

  13. Development of a microfocus x-ray tube with multiple excitation sources

    Science.gov (United States)

    Maeo, Shuji; Krämer, Markus; Taniguchi, Kazuo

    2009-03-01

    A microfocus x-ray tube with multiple targets and an electron gun with a focal spot size of 10 μm in diameter has been developed. The electron gun contains a LaB6 cathode and an Einzel lens. The x-ray tube can be operated at 50 W (50 kV, 1 mA) and has three targets, namely, Cr, W, and Rh on the anode that can be selected completely by moving the anode position. A focal spot size of 10 μm in diameter can be achieved at 0.5 mA current. As demonstration of the usability of a multiexcitation x-ray tube, the fluorescence x-rays have been measured using a powder specimen mixed of TiO2, Co, and Zr of the same quantity. The differences of excitation efficiency have clearly appeared according to the change in excitation source. From the results discussed here, it can be expected that the presented x-ray tube will be a powerful tool in microx-ray fluorescence spectrometers and various x-ray instruments.

  14. Studies on the hyperfine structure of La I in a hollow-cathode discharge tube

    International Nuclear Information System (INIS)

    Hyperfine structures (HFS) of La I are reported using Doppler-free intermodulated fluorescence, Doppler-limited laser-induced fluorescence and optogalvanic spectroscopy in a homemade hollow-cathode discharge tube. The A and B constants for the levels at 20197.34, 21447.86 cm-1 and A constants for the levels at 19379.40, 18156.97, 24910.38 and 24409.68 cm-1 are, to our knowledge, reported for the first time. A linewidth less than 40 MHz and the different resolutions of fluorescence and optogalvanic spectroscopy are observed. (author)

  15. Correlation of cathode parameters of high power grid tubes with material characteristics of cathode-grid units

    International Nuclear Information System (INIS)

    One way to increase the longevity of dispenser cathodes is based on reducing the Barium evaporation. This can be achieved by the decrease of the reaction 'activity' of the emitter impregnant with the porous tungsten (W) body, which supplies free Barium from the interior of the porous cathode to its surface

  16. In situ X-ray studies of film cathodes for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: •Synchrotron X-rays are used to study in operando the structural and chemical changes of LSM and LSCF film cathodes during half-cell operations. •A-site and B-site cations actively segregate or desegregate on the changes of temperature, pO2, and electrochemical potential. •Chemical lattice expansions show that oxygen-cathode interface is the primary source of rate-limiting processes. •The surface and subsurface of the LSM and LSCF films have different oxidation-states due to vacancy concentration changes. •Liquid-phase infiltration and coarsening processes of cathode materials into porous YSZ electrolyte backbone were monitored by USAXS. -- Abstract: Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone

  17. High speed electrostatic photomultiplier tube for the 1.06 micrometer wavelength. Cup and slat dynode chain combined with flat cathode and coax output produces 0.25 nsec rise time

    Science.gov (United States)

    Sparks, S. D.

    1973-01-01

    The Varian cup and slat dynode chain was modified to have a flat cathode. These modifications were incorporated in an all-electrostatic photomultiplier tube having a rise time of 0.25 n sec. The tube delivered under the contract had a flat S-20 opaque cathode with a useful diameter of 5 mm. The design of the tube is such that a III to V cathode support is mounted in place of the existing cathode substrate. This cathode support is designed to accept a transferred III to V cathode and maintain the cathode surface in the same position as the S-20 photocathode.

  18. Building lab-scale x-ray tube based irradiators

    Science.gov (United States)

    Haff, Ron; Jackson, Eric; Gomez, Joseph; Light, Doug; Follett, Peter; Simmons, Greg; Higbee, Brad

    2016-04-01

    Here we report the use of x-ray tube based irradiators as alternatives to gamma sources for laboratory scale irradiation. Irradiators were designed with sample placement in closest possible proximity to the source, allowing high dose rates for small samples. Designs using 1000 W x-ray tubes in single tube, double tube, and four tube configurations are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small samples, demonstrating feasibility for laboratory based irradiators for research purposes. Dose rates of 9.76, 5.45, and 1.7 Gy/min/tube were measured at the center of a 12.7 cm container of instant rice at 100 keV, 70 keV, and 40 keV, respectively. Dose uniformity varies dramatically as the distance from source to container. For 2.54 cm diameter sample containers containing adult Navel Orangeworm, dose rates of 50-60 Gy/min were measured in the four tube system.

  19. Reference factor F{sub (CT)Q} and X ray tube ionization yield R{sub (TUBE)Q}

    Energy Technology Data Exchange (ETDEWEB)

    Quaresma, D.S. [Observatorio Nacional, Rio de Janeiro, RJ (Brazil); Cardoso, R.S.; Peixoto, J.G.P., E-mail: dansq@on.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The operational facility procedures in diagnostic radiology standardization and calibration, through the relation between the X ray tube current and the ionization chamber current in a radiation quality Q, shown the reference factor F{sub (CT)Q} as the reality estimate to the X ray tube ionization yield, R{sub (TUBE)Q} . (author)

  20. Determination of tube voltage in X-ray equipment

    International Nuclear Information System (INIS)

    Next to filtration, tube voltage or tube potential difference is one of the most significant parameters for the quality of X-rays, especially with a view to its absolute value, its variation during exposure and its long-term constancy. Voltage control is major component pf quality assurance in diagnostic radiography. Various non-invasive methods are available for voltage measurements. The article reports the experience gained with the kV-indicating cassette, the X-ray analyses (NERO system) and the multi-channel analyser. (orig./HP)

  1. 21 CFR 892.5930 - Therapeutic x-ray tube housing assembly.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Therapeutic x-ray tube housing assembly. 892.5930 Section 892.5930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... assembly. (a) Identification. A therapeutic x-ray tube housing assembly is an x-ray generating tube...

  2. 21 CFR 892.1760 - Diagnostic x-ray tube housing assembly.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray tube housing assembly. 892.1760 Section 892.1760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... assembly. (a) Identification. A diagnostic x-ray tube housing assembly is an x-ray generating tube...

  3. Improvements in or relating to X-ray generating tubes

    International Nuclear Information System (INIS)

    The design of a novel X-ray generating tube for use in computerised tomography is described in detail. It consists of a rotating anode which can translate along the axis of rotation thereby producing a scan in a direction parallel to the axis of rotation of the anode. Rotation and translation of the anode are achieved by induction between a stator and a rotor. In a development of the anode, a ''helter-skelter'' form is used for the anode surface; rotation of this anode will cause the generated X-ray beam to scan in a direction parallel to the axis of rotation. (U.K.)

  4. X-ray flat panel detectors and X-ray tubes contributing to development of X-ray diagnostic systems

    International Nuclear Information System (INIS)

    X-ray flat panel detectors (FPDs) and X-ray tubes are key devices allowing X-ray diagnostic systems to support more sophisticated medical care. FPDs provide valuable information for the diagnosis of various diseases through the conversion of X-ray images of the human body into electronic signals, while X-ray tubes are used in a wide range of applications such as computed tomography (CT), angiography, fluoroscopy, mammography, and dental systems. Toshiba Electron Tubes and Devices Co., Ltd. has developed and commercialized FPDs providing high-quality diagnostic X-ray images with low dose exposure through the development of cutting-edge technologies including a fine crystal formation technology for cesium iodide (CsI) scintillators, thin-film transistor (TFT) arrays with photodiodes, and so on. In the field of X-ray tubes that can generate a high output of X-rays, we have developed a liquid metal hydrodynamic bearing (LM bearing) technology for various diagnostic systems including medical CT systems with a long lifetime and high rotation speed, and cardiovascular imaging systems with quiet operation. Furthermore, LM bearing technology reduces the burden on the environment by replacing insulating oil with water coolant for the cooling system and making the X-ray tubes more compact. (author)

  5. Performance of the CMS Drift Tube Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    Studies of the performance of the CMS drift tube barrel muon system are described, with results based on data collected during the CMS Cosmic Run at Four Tesla. For most of these data, the solenoidal magnet was operated with a central field of 3.8 T. The analysis of data from 246 out of a total of 250 chambers indicates a very good muon reconstruction capability, with a coordinate resolution for a single hit of about 260 microns, and a nearly 100% efficiency for the drift tube cells. The resolution of the track direction measured in the bending plane is about 1.8 mrad, and the efficiency to reconstruct a segment in a single chamber is higher than 99%. The CMS simulation of cosmic rays reproduces well the performance of the barrel muon detector.

  6. X-ray fluorescence (XRF) set-up with a low power X-ray tube.

    Science.gov (United States)

    Gupta, Sheenu; Deep, Kanan; Jain, Lalita; Ansari, M A; Mittal, Vijay Kumar; Mittal, Raj

    2010-10-01

    The X-ray fluorescence set-up with a 100 W X-ray tube comprises a computer controlled system developed for remote operation and monitoring of tube and an adjustable stable 3D arrangement to procure variable excitation energies with low scattered background. The system was tested at different filament currents/anode voltages. The MDL of the set-up at 0.05-1.00 mA/4-12 kV is found approximately (1-100)ppm for K and L excitations and approximately (200-700)ppm for M excitations of elements and improves with filament current and anode voltage. Moreover, L measurements for Sm and Eu at five K X-ray energies of elements(Z=29-40) and analytical determination in some synthetic samples were undertaken. PMID:20570160

  7. X-ray fluorescence (XRF) set-up with a low power X-ray tube

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sheenu; Deep, Kanan [Nuclear Science Laboratories, Physics Department, Punjabi University, Patiala 147 002 (India); Jain, Lalita; Ansari, M.A. [Laser Electronic Support Section, Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (India); Mittal, Vijay Kumar [Nuclear Science Laboratories, Physics Department, Punjabi University, Patiala 147 002 (India); Mittal, Raj, E-mail: rmsingla@yahoo.co [Nuclear Science Laboratories, Physics Department, Punjabi University, Patiala 147 002 (India)

    2010-10-15

    The X-ray fluorescence set-up with a 100 W X-ray tube comprises a computer controlled system developed for remote operation and monitoring of tube and an adjustable stable 3D arrangement to procure variable excitation energies with low scattered background. The system was tested at different filament currents/anode voltages. The MDL of the set-up at 0.05-1.00 mA/4-12 kV is found {approx}(1-100) ppm for K and L excitations and {approx}(200-700) ppm for M excitations of elements and improves with filament current and anode voltage. Moreover, L measurements for Sm and Eu at five K X-ray energies of elements(Z=29-40) and analytical determination in some synthetic samples were undertaken.

  8. Research on the Relationship of X-ray Tube Structure and Focal Spot%X射线管结构与焦斑关系研究

    Institute of Scientific and Technical Information of China (English)

    王奇志; 沙京田; 任翔; 徐卫平; 卓琳

    2013-01-01

    X射线管是X射线机的心脏,是产生X射线的源泉[1].其焦斑大小及分布对整机图像清晰度起着决定性的作用.通过对X射线管结构特点、焦斑产生机理、电极结构与焦斑相关性实验的测试数据及理论分析等多方面的论述,探讨了X射线管结构尺寸对焦斑的影响.通过系列实验及理论分析表明:X射线管阴极结构对焦斑有巨大的影响.借助计算机模拟仿真计算,合理设计阴极结构,能够获取大小适中、分布均匀的焦斑,从而达到改善X射线机图像清晰度的目的.%X-ray tube is the core part of the X-ray machine and the source[1]of X-ray. The focus size and distribution play a decisive role in the definition of the X-ray machine. In relation to the X-ray tube structure characteristics, focus formation mechanism, the test experimental data of the correlation of the electrode structure with focusing, theoretical analysis and so on, the effect caused by X-ray tube structure and size are discussed. A series of experiments and theoretical analysis shows that cathode structure of X-ray tube has significant effect upon focus. With the help of simulation calculation, the reasonable cathode structure is obtained to produce uniform and moderate size focus, thus to improve image-definition purpose of X-ray machine.

  9. Impulse electron gun with plasma cathode for realization of large diameter tube-shaped beams

    International Nuclear Information System (INIS)

    There are presented the results of investigations of a plasma electron source based on the gas discharge in a coaxial system of electrodes with longitudinal magnetic field. The examination is fulfilled from the viewpoint of applying the source as a plasma cathode for hybrid plasma-waveguide slow-wave structures on the basis of a disk-loaded coaxial. The source is optimized in order to get a powerful (up to 100 kW) nonrelativistic electron beam with the annular cross-section of a large diameter in the regime of relatively long current pulses (up to 0.2 ms) under the gas pressure ∼ 5 centre dot 10-4 mm Hg in the area of the discharge burning

  10. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  11. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, George J. [Univ. of Connecticut, Storrs, CT (United States); Harris, William H. [Univ. of Connecticut, Storrs, CT (United States); Lombardo, Jeffrey J. [Univ. of Connecticut, Storrs, CT (United States); Izzo, Jr., John R. [Univ. of Connecticut, Storrs, CT (United States); Chiu, W. K. S. [Univ. of Connecticut, Storrs, CT (United States); Tanasini, Pietro [Ecole Ploytechnique Federale de Lausanne (Switzerland); Cantoni, Marco [Ecole Ploytechnique Federale de Lausanne (Switzerland); Van herle, Jan [Ecole Ploytechnique Federale de Lausanne (Switzerland); Comninellis, Christos [Ecole Ploytechnique Federale de Lausanne (Switzerland); Andrews, Joy C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Liu, Yijin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pianetta, Piero [SLAC National Accelerator Lab., Menlo Park, CA (United States); Chu, Yong [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  12. Beam characterization of a lab bench cold cathode ultra-soft X-ray generator

    OpenAIRE

    Ounoughi, Nabil; Mavon, Christophe; Belafrites, Abdelfettah; Groetz, Jean-Emmanuel; Fromm, Michel

    2013-01-01

    The aim of this work is to characterize the Ultra Soft X-ray (USX, 1.5 keV, Al Kα) photon beam of a customized lab bench cold cathode generator. Within this generator, the electron beam is slowed down in a thin aluminium foil (16 μm) supported by an easily exchangeable anode. It is shown that the thickness of the foil and the anode configuration determine the spatial distribution and the fluence rate of the photon beam, whereas accelerating voltage determines both fluence rate and energy spec...

  13. Using computational modeling to compare X-ray tube Practical Peak Voltage for Dental Radiology

    Science.gov (United States)

    Holanda Cassiano, Deisemar; Arruda Correa, Samanda Cristine; de Souza, Edmilson Monteiro; da Silva, Ademir Xaxier; Pereira Peixoto, José Guilherme; Tadeu Lopes, Ricardo

    2014-02-01

    The Practical Peak Voltage-PPV has been adopted to measure the voltage applied to an X-ray tube. The PPV was recommended by the IEC document and accepted and published in the TRS no. 457 code of practice. The PPV is defined and applied to all forms of waves and is related to the spectral distribution of X-rays and to the properties of the image. The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. An X-ray tube for Dental Radiology (operated from a single phase power supply) and an X-ray tube used as a reference (supplied from a constant potential power supply) were used in simulations across the energy range of interest of 40 kV to 100 kV. Results obtained indicated a linear relationship between the tubes involved.

  14. Electron Emission And Beam Generation Using Ferroelectric Cathodes (electron Beam Generation, Lead Lanthanum Zicronate Titanate, High Power Traveling Wave Tube Amplfier)

    CERN Document Server

    Flechtner, D D

    1999-01-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...

  15. Deciphering the thermal behavior of lithium rich cathode material by in situ X-ray diffraction technique

    Science.gov (United States)

    Muhammad, Shoaib; Lee, Sangwoo; Kim, Hyunchul; Yoon, Jeongbae; Jang, Donghyuk; Yoon, Jaegu; Park, Jin-Hwan; Yoon, Won-Sub

    2015-07-01

    Thermal stability is one of the critical requirements for commercial operation of high energy lithium-ion batteries. In this study, we use in situ X-ray diffraction technique to elucidate the thermal degradation mechanism of 0.5Li2MnO3-0.5LiNi0.33Co0.33Mn0.33O2 lithium rich cathode material in the absence and presence of electrolyte to simulate the real life battery conditions and compare its thermal behavior with the commercial LiNi0.33Co0.33Mn0.33O2 cathode material. We show that the thermal induced phase transformations in delithiated lithium rich cathode material are much more intense compared to similar single phase layered cathode material in the presence of electrolyte. The structural changes in both cathode materials with the temperature rise follow different trends in the absence and presence of electrolyte between 25 and 600 °C. Phase transitions are comparatively simple in the absence of electrolyte, the fully charged lithium rich cathode material demonstrates better thermal stability by maintaining its phase till 379 °C, and afterwards spinel structure is formed. In the presence of electrolyte, however, the spinel structure appears at 207 °C, subsequently it transforms to rock salt type cubic phase at 425 °C with additional metallic, metal fluoride, and metal carbonate phases.

  16. Studies of X-ray tube aging by non-invasive methods

    International Nuclear Information System (INIS)

    The objective of the present work was the evaluation of an x ray tube aging with an anode made of tungsten, used in radio diagnostic. Workloads were applied, in accordance with Brazilian workload distribution, and periodic measurements of quantities related to the radiation quality of the beam were performed. For the purpose of this work, a single phase, full bridge clinical system was employed. For the long term x ray tube characteristics evaluation related to the applied workload, it was necessary to measure parameters that could quantitatively represent the tube aging, with special attention to the anode roughening. For the indirect measurement of tube aging, four parameters were chosen, some of them normally applied in x ray diagnostic quality control: first and second half value layers (HVL), focal spot dimensions, non invasive measurement of Practical Peak Voltage (PPV) and x ray spectroscopy. These parameters were measured before any workload and after each workload intervals. To assure confidence of the results reproducibility conditions were stated to each evaluated parameter. The uncertainties involved in all measurement processes were calculated to evaluate the real contributions of x ray tube aging effects on non invasive parameters. Within all evaluated parameters, the most sensitive to long term workload were the mean energy obtained from spectroscopy and half value layers. A model related to these parameters was applied and estimates of x ray tube aging rate for different acceleration voltages and anodic currents were calculated. (author)

  17. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    International Nuclear Information System (INIS)

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  −  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ∼160 µm. (paper)

  18. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    Science.gov (United States)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  19. Note: Development of target changeable palm-top pyroelectric x-ray tube

    Energy Technology Data Exchange (ETDEWEB)

    Imashuku, Susumu; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)

    2012-01-15

    A target changeable palm-top size x-ray tube was realized using pyroelectric crystal and detachable vacuum flanges. The target metals can be exchanged easily by attaching them on the brass stage with carbon tape. When silver and titanium palates (area: 10 mm{sup 2}) were used as targets, silver L{alpha} and titanium K lines were clearly observed by bombarding electrons on the targets for 90 s. The intensities were the same or higher than those of previously reported pyroelectric x-ray tubes. Chromium, iron, nickel, copper, and zinc K lines in the x-ray tube (stainless steel and brass) disappeared by replacing the brass stage and the stainless steel vacuum flange with a carbon stage and a glass tube, respectively.

  20. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    L Piper; A Preston; S Cho; A DeMasi; J Laverock; K Smith; L Miara; J Davis; S Basu; et al.

    2011-12-31

    The evolution of the Mn charge state, chemical composition, and electronic structure of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO) cathodes during the catalytic activation of solid oxide fuel cell (SOFC) has been studies using X-ray spectroscopy of as-processed, exposed, and activated dense thin LSMO films. Comparison of O K-edge and Mn L{sub 3,2}-edge X-ray absorption spectra from the different stages of LSMO cathodes revealed that the largest change after the activation occurred in the Mn charge state with little change in the oxygen environment. Core-level X-ray photoemission spectroscopy and Mn L{sub 3} resonant photoemission spectroscopy studies of exposed and as-processed LSMO determined that the SOFC environment (800 C ambient pressure of O{sub 2}) alone results in La deficiency (severest near the surface with Sr doping >0.55) and a stronger Mn{sup 4+} contribution, leading to the increased insulating character of the cathode prior to activation. Meanwhile, O K-edge X-ray absorption measurements support Sr/La enrichment nearer the surface, along with the formation of mixed Sr{sub x}Mn{sub y}O{sub z} and/or passive MnO{sub x} and SrO species.

  1. Beam characterization of a lab bench cold cathode ultra-soft X-ray generator

    Science.gov (United States)

    Ounoughi, N.; Mavon, C.; Belafrites, A.; Groetz, J.-E.; Fromm, M.

    2013-06-01

    The aim of this work is to characterize the Ultra Soft X-ray (USX, 1.5 keV, Al Kα) photon beam of a customized lab bench cold cathode generator. Within this generator, the electron beam is slowed down in a thin aluminium foil (16 μm) supported by an easily exchangeable anode. It is shown that the thickness of the foil and the anode configuration determine the spatial distribution and the fluence rate of the photon beam, whereas accelerating voltage determines both fluence rate and energy spectrum feature. It is shown also that under specific operation parameters (i.e. accelerating voltage), a Gaussian energy distribution of the beam can be generated which is centred on the energy of the Al Kα line (1.5 keV). Dosimetric films of GAFCHROMIC® HD-810 were used to estimate the photon fluence rate distribution of the beam. Its variation, when the generator acts as a monoenergetic source, was characterized with the two different configurations of the anode assembly. Finally, it is verified that the anode assembly consisting in a flat washer, on which the aluminium foil is set, acts as a simple point-source.

  2. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Matthias, E-mail: matthias.mueller@ptb.de [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Choudhury, Soumyadip [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Gruber, Katharina [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Cruz, Valene B. [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Fuchsbichler, Bernd [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Jacob, Timo [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Koller, Stefan [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Stamm, Manfred [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Ionov, Leonid [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2014-04-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si{sub 3}N{sub 4} windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one

  3. The origins of radiotherapy : Discovery of biological effects of X-rays by Freund in 1897, Kienbock's crucial experiments in 1900, and still it is the dose

    NARCIS (Netherlands)

    Widder, Joachim

    2014-01-01

    The discovery of X-rays by Wilhelm Conrad Rontgen (1845-1923) was triggered by pursuing an anomalous phenomenon: arousal of fluorescence at a distance from tubes in which cathode rays were elicited, a phenomenon which suggested the existence of a new kind of ray other than cathode rays. The discover

  4. Non-destructive evaluation of weld discontinuity in steel tubes by gamma ray CT

    International Nuclear Information System (INIS)

    Weld discontinuity in steel tubes was investigated and dimensioned in a data analysis sequence. The correlation matrix, cosine distance and hierarchical cluster were applied as multivariate data processing in this analysis. Welded rings of 9236 mm3 were scanned in gamma ray CT in test tubes and compared with steel base and references. The discontinuity volume detected in the welded rings was assessed based on the pixel volume in data sampling. By modeling gamma ray trajectories and rotation angles in CT scanning, a discontinuity of 0.3 mm was determined and a limit detection of 23 mm3 was obtained

  5. Non-destructive evaluation of weld discontinuity in steel tubes by gamma ray CT

    Science.gov (United States)

    Moura, A. E.; Dantas, C. C.; Nery, M. S.; Barbosa, J. M.; Rolim, T. L.; Lima, E. A. O.; Melo, S. B.; Dos Santos, V. A.

    2015-04-01

    Weld discontinuity in steel tubes was investigated and dimensioned in a data analysis sequence. The correlation matrix, cosine distance and hierarchical cluster were applied as multivariate data processing in this analysis. Welded rings of 9236 mm3 were scanned in gamma ray CT in test tubes and compared with steel base and references. The discontinuity volume detected in the welded rings was assessed based on the pixel volume in data sampling. By modeling gamma ray trajectories and rotation angles in CT scanning, a discontinuity of 0.3 mm was determined and a limit detection of 23 mm3 was obtained.

  6. Fine Synchronization of the CMS Muon Drift-Tube Local Trigger using Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS experiment uses self-triggering arrays of drift tubes in the barrel muon trigger to perform the identification of the correct bunch crossing. The identification is unique only if the trigger chain is correctly synchronized. In this paper, the synchronization performed during an extended cosmic ray run is described and the results are reported. The random arrival time of cosmic ray muons allowed several synchronization aspects to be studied and a simple method for the fine synchronization of the Drift Tube Local Trigger at LHC to be developed.

  7. Digital tomosynthesis (DTS) with a Circular X-ray tube: Its image reconstruction based on total-variation minimization and the image characteristics

    Science.gov (United States)

    Park, Y. O.; Hong, D. K.; Cho, H. S.; Je, U. K.; Oh, J. E.; Lee, M. S.; Kim, H. J.; Lee, S. H.; Jang, W. S.; Cho, H. M.; Choi, S. I.; Koo, Y. S.

    2013-09-01

    In this paper, we introduce an effective imaging system for digital tomosynthesis (DTS) with a circular X-ray tube, the so-called circular-DTS (CDTS) system, and its image reconstruction algorithm based on the total-variation (TV) minimization method for low-dose, high-accuracy X-ray imaging. Here, the X-ray tube is equipped with a series of cathodes distributed around a rotating anode, and the detector remains stationary throughout the image acquisition. We considered a TV-based reconstruction algorithm that exploited the sparsity of the image with substantially high image accuracy. We implemented the algorithm for the CDTS geometry and successfully reconstructed images of high accuracy. The image characteristics were investigated quantitatively by using some figures of merit, including the universal-quality index (UQI) and the depth resolution. For selected tomographic angles of 20, 40, and 60°, the corresponding UQI values in the tomographic view were estimated to be about 0.94, 0.97, and 0.98, and the depth resolutions were about 4.6, 3.1, and 1.2 voxels in full width at half maximum (FWHM), respectively. We expect the proposed method to be applicable to developing a next-generation dental or breast X-ray imaging system.

  8. Reconstruction of the X-ray tube spectrum from a scattering measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Jorge E., E-mail: jorge.fernandez@unibo.it [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Scot, Viviana [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Bare, Jonathan [Laboratory of Montecuccolino, Department of Energy, Nuclear and Environmental Control Engineering (DIENCA), Alma Mater Studiorum University of Bologna, via dei Colli,16, I-40136, Bologna (Italy); Laboratory of Nuclear and Radiological Physics, Institut Superieur Industriel de Bruxelles (ISIB) (Belgium); Tondeur, Francois [Laboratory of Nuclear and Radiological Physics, Institut Superieur Industriel de Bruxelles (ISIB) (Belgium); Gallardo, Sergio; Rodenas, Jose [Department of Chemical and Nuclear Engineering, Polytechnic University of Valencia (Spain); Rossi, Pier Luca [Operational Unit of Health Physics, Alma Mater Studiorum University of Bologna (Italy)

    2012-07-15

    An inverse technique has been designed to unfold the x-ray tube spectrum from the measurement of the photons scattered by a target interposed in the path of the beam. A special strategy is necessary to circumvent the ill-conditioning of the forward transport algebraic problem. The proposed method is based on the calculation of both, the forward and adjoint analytical solutions of the Boltzmann transport equation. After testing the method with numerical simulations, a simple prototype built at the Operational Unit of Health Physics of the University of Bologna was used to test the method experimentally. The reconstructed spectrum was validated by comparison with a straightforward measurement of the X-ray beam. The influence of the detector was corrected in both cases using standard unfolding techniques. The method is capable to accurately characterize the intensity distribution of an X-ray tube spectrum, even at low energies where other methods fail. - Highlights: Black-Right-Pointing-Pointer A complete inverse technique of source unfolding is presented. Black-Right-Pointing-Pointer The X-ray tube spectrum is recovered from a scattering measurement. Black-Right-Pointing-Pointer The ill conditioning of the plain forward transport algebraic problem is avoided. Black-Right-Pointing-Pointer Forward and adjoint solutions of the Boltzmann transport equation are used. Black-Right-Pointing-Pointer The technique characterizes X-ray tube spectra even at low energies.

  9. Hydrometallurgical Processing and Recovery of Nickel from Spent Cathode Ray Tubes

    OpenAIRE

    Coman V.; Robotin B.; Ilea P.

    2013-01-01

    Scientific and technological progress required for more and more advanced electrical and electronic equipment (EEE). Therefore, EEE manufacturing became one of the most important world activities, generating at the same time huge amounts of waste. In the last decades the accumulation of waste electrical and electronic equipment (WEEE) has become a global problem (Widmer et al., 2005; Babu et al., 2007; Robinson, 2009). These wastes are a threat for the environment due to their high content of...

  10. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    of the oxidizing agent greatly improved the foaming quality. The results showed that the amount of oxygen available from the glass is not sufficient to combust all of the added carbon, therefore, additional oxygen was supplied via manganese reduction. In general, a minimum in the foam glass density was observed...... parameters on the characteristics of foamed glass. CRT panel glass was crushed, milled and sieved below 63 m. Activated carbon used as a foaming agent and MnO2 as an ‘oxidizing’ agent were mixed with glass powders by means of a planetary ball mill. Foaming effect was observed in the temperature range...... between 750 and 850°C. We investigated the influence of milling time, particle size, foaming and oxidizing agent concentrations, temperature and time on the foaming process, foam density, foam porosity and homogeneity. Only moderate foaming was observed in carbon containing samples, while the addition...

  11. 81.114- University Reactor Infrastructure and Education Support / Prompt Gamma-ray Activation Analysis of Lithioum Ion Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Manthiram, Arumugam; Landsberger, S.

    2006-11-11

    This project focuses on the use of the Prompt Gamma-ray Activation Analysis (PGAA) technique available at the Nuclear Engineering Teaching Laboratory of the University of Texas at Austin to precisely determine the hydrogen (proton) contents in layered oxide cathode samples obtained by chemical lithium extraction in order to obtain a better understanding of the factors limiting the practical capacities and overall performance of lithium ion battery cathodes. The project takes careful precautionary experimental measures to avoid proton contamination both from solvents used in chemical delithiation and from ambient moisture. The results obtained from PGAA are complemented by the data obtained from other techniques such as thermogravimetric analysis, redox titration, atomic absorption spectroscopy, X-ray diffraction, and mass spectroscopic analysis of the evolved gas on heating. The research results broaden our understanding of the structure-property-performance relationships of lithium ion battery cathodes and could aid the design and development of new better performing lithium ion batteries for consumer (portable and electric vehicles), military, and space applications.

  12. Determination of dislocation density in Zr-2.5Nb pressure tubes by x-ray

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Isaenkova, Perlovich; Cheong, Y. M.; Kim, S. S.; Yim, K. S.; Kwon, Sang Chul

    2000-11-01

    For X-ray determination of the dislocation density in CANDU Zr-2.5%Nb pressure tubes, a program was developed, using the Fourier analysis of X-ray line profiles and calculation of dislocation density by values of the coherent block size and the lattice distortion. The coincidence of obtained values of c- and a-dislocations with those, determined by the X-ray method for the same tube in AECL, was assumed to be the main criterion of validity of the developed program. The final variant of the program allowed to attain a rather close coincidence of calculated dislocation densities with results of AECL. The dislocation density was determined in all the zirconium grains with different orientations based on the texture of the stree-relieved CANDU tube. The complete distribution of c-dislocation density in -Zr grains depecding on their crystallographic orientations was constructed. The distribution of a-dislocation density within the texture maximum at L-direction, containing prismatic axes of all grains, was constructed as well. The analysis of obtained distributions testifies that -Zr grains of the stree-relieved CANDU tube significantly differ in their dislocation densities. Plotted diagrams of correlation between the dislocation density and the pole density allow to estimate the actual connection between texture and dislocation distribution in the studied tube. The distributions of volume fractions of all the zirconium grains depending on their dislocation density were calculated both for c- and a-dislocations. The distributions characterizes quantitatively the inhomogeneity of substructure conditions in the stress-relieved CANDU tube. the optimal procedure for determination of Nb content in {beta}-phases of CANDU Zr-2.5%Nb pressure tubes was also established.

  13. X-ray tube output based calculation of patient entrance surface dose: validation of the method

    Energy Technology Data Exchange (ETDEWEB)

    Harju, O.; Toivonen, M.; Tapiovaara, M.; Parviainen, T. [Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2003-06-01

    X-ray departments need methods to monitor the doses delivered to the patients in order to be able to compare their dose level to established reference levels. For this purpose, patient dose per radiograph is described in terms of the entrance surface dose (ESD) or dose-area product (DAP). The actual measurement is often made by using a DAP-meter or thermoluminescent dosimeters (TLD). The third possibility, the calculation of ESD from the examination technique factors, is likely to be a common method for x-ray departments that do not have the other methods at their disposal or for examinations where the dose may be too low to be measured by the other means (e.g. chest radiography). We have developed a program for the determination of ESD by the calculation method and analysed the accuracy that can be achieved by this indirect method. The program calculates the ESD from the current time product, x-ray tube voltage, beam filtration and focus- to-skin distance (FSD). Additionally, for calibrating the dose calculation method and thereby improving the accuracy of the calculation, the x-ray tube output should be measured for at least one x-ray tube voltage value in each x-ray unit. The aim of the present work is to point out the restrictions of the method and details of its practical application. The first experiences from the use of the method will be summarised. (orig.)

  14. Evaluated Plan Stress Of Weld In Pressure Tube Using X Ray Diffraction Technique

    International Nuclear Information System (INIS)

    X ray diffraction is a fundamental technique measuring stress, this technique has determined crystal strain in materials, from that determined stress in materials. This paper presents study of evaluating plane stress of weld in pressure tube, using modern XRD apparatus: X Pert Pro. (author)

  15. Measurement of residual stress in fuel cladding tubes by x-ray method

    International Nuclear Information System (INIS)

    It is difficult to predict the residual stress distribution in FBR or LWR fuel cladding tubes using computer code or mechanical methods. In order to measure these stresses by X-ray method, the characterization of X-ray diffraction and optimum condition for stress measurement are investigated. Following conclusions are obtained: (1) The (211) CrK sub(α) and (213-3) CuK sub(α) reflections are most suitable for the stress analysis of 316 stainless steel and Zircaloy-2 fuel cladding tubes, respectively. (2) Comparison between strain measured by X-ray and strain measured by strain gage shows good agreement in elastic region for both materials. (3) In order to obtain accurate results, it needs to remove surface more than 3 μm by electropolishing or acid etching. (4) There exists compressive residual stress in typical FBR fuel cladding tubes, and TIG welding of end plug induces additional compressive stress in welded portion or heat affected zone. (5) Residual stress distributions in Zircaloy-2 cladding tube deformed locally by the out-of-pile simulation tests, are obtained by the application of X-ray method. (author)

  16. Miniature X-ray Source for Planetary Exploration Instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed work is to develop a design model for a CNT cold cathode, low power, passively cooled, and grounded-anode X-ray tube that is...

  17. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A. [Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2009-04-15

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  18. Closed-bore XMR (CBXMR) systems for aortic valve replacement: x-ray tube imaging performance.

    Science.gov (United States)

    Bracken, John A; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-04-01

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation. PMID:19472613

  19. Study of Explosive Electron Emission from a Pin Cathode Using High Resolution Point-Projection X-Ray Radiography

    Science.gov (United States)

    Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Parkevich, E. V.; Tilikin, I. N.; Mingaleev, A. R.; Agafonov, A. V.

    2015-11-01

    Most studies of Explosive Electron Emission (EEE) are based on the idea of cathode flares developing after explosion of metal whiskers (micron scale pins) on the cathode surface. The physical state of the pin material, the spatial structure of the explosion and its origin are still a matter of conjecture. In this work we used high-resolution point projection x-ray radiography to observe micron scale pin explosion in a high-current diode. Pin cathodes made from 10-25 micron Cu or Mo wires were placed in gaps in return current circuits of hybrid X-pinches on the XP and BIN pulsers. Pin lengths were varied over a range 1-4 mm and pin-anode gaps within 0.05-3 mm. The diode current and voltage were measured. In experiments with small pin-anode gap (0.1 - 1 mm) development of an expanded dense core of the pin was observed except the pin tip with length 100-200 microns indicating significant energy deposition in the wire material. In experiments with bigger gaps there was no visible wire core expansion within the spatial resolution of the experimental technique. Work at Cornell was supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement No. DE-NA0001836 and at the Lebedev Institute by the RSF grant 142200273.

  20. Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction.

    Science.gov (United States)

    Kulisch, Jörn; Sommer, Heino; Brezesinski, Torsten; Janek, Jürgen

    2014-09-21

    Rechargeable batteries have been receiving increasing attention over the past several years, particularly with regard to the accelerated development of electric vehicles, but also for their potential in grid storage applications. Among the broad range of cathode active materials, elemental sulfur has the highest theoretical specific capacity, thereby making it one of the most promising positive electrode materials these days. In the present work, we show that already a simple cathode design (cathodes with a non-optimized composite microstructure) provides good electrochemical performance both in coin and pouch cells with sulfur loadings of 2 mg cm−2. Our research data demonstrate that (1) specific capacities of 1000 mA h g−1 can be achieved over 60 cycles at room temperature while the cyclability at elevated temperatures (here, θ > 40 °C) is poor, (2) the discharge is the kinetically rate-limiting process, (3) the major fraction of active sulfur in the electrode is lost during the formation cycle at C/50 and (4) the Li–S cells suffer from drying-out due to continuous electrolyte decomposition on the lithium metal anode. In addition, in operando X-ray diffraction shows Li2S formation (grain size of <10 nm) on discharge and the appearance of single phase β-sulfur in the sub-100 nm size range – rather than the thermodynamically stable orthorhombic polymorph (α-sulfur) – by the end of the charge cycle. PMID:25077958

  1. Partial body irradiation of small laboratory animals with an industrial X-ray tube

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Thorsten; Kruell, Andreas [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie; Grohmann, Carsten; Schumacher, Udo [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie

    2014-07-01

    Dedicated precise small laboratory animal irradiation sources are needed for basic cancer research and to meet this need expensive high precision radiation devices have been developed. To avoid such expenses a cost efficient way is presented to construct a device for partial body irradiation of small laboratory animals by adding specific components to an industrial X-ray tube. A custom made radiation field tube was added to an industrial 200 kV X-ray tube. A light field display as well as a monitor ionization chamber were implemented. The field size can rapidly be changed by individual inserts of MCP96 that are used for secondary collimation of the beam. Depth dose curves and cross sectional profiles were determined with the use of a custom made water phantom. More components like positioning lasers, a custom made treatment couch, and a commercial isoflurane anesthesia unit were added to complete the system. With the accessories described secondary small field sizes down to 10 by 10 mm{sup 2} (secondary collimator size) could be achieved. The dosimetry of the beam was constructed like those for conventional stereotactical clinical linear accelerators. The water phantom created showed an accuracy of 1 mm and was well suited for all measurements. With the anesthesia unit attached to the custom made treatment couch the system is ideal for the radiation treatment of small laboratory animals like mice. It was feasible to shrink the field size of an industrial X-ray tube from whole animal irradiation to precise partial body irradiation of small laboratory animals. Even smaller secondary collimator sizes than 10 by 10 mm{sup 2} are feasible with adequate secondary collimator inserts. Our custom made water phantom was well suited for the basic dosimetry of the X-ray tube.

  2. Verification of a novel method for tube voltage constancy measurement of orthovoltage x-ray irradiators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chu; Belley, Matthew D. [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 and Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 and Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Dewhirst, Mark W. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Yoshizumi, Terry, E-mail: yoshi003@mc.duke.edu [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-08-15

    Purpose: For orthovoltage x-ray irradiators, the tube voltage is one of the most fundamental system parameters as this directly relates to the dosimetry in radiation biology studies; however, to the best of our knowledge, there is no commercial portable quality assurance (QA) tool to directly test the constancy of the tube voltage greater than 160 kV. The purpose of this study is to establish the Beam Quality Index (BQI), a quantity strongly correlated to the tube voltage, as an alternative parameter for the verification of the tube voltage as part of the QA program of orthovoltage x-ray irradiators. Methods: A multipurpose QA meter and its associated data acquisition software were used to customize the measurement parameters to measure the BQI and collect its time-plot. BQI measurements were performed at 320 kV with four filtration levels on three orthovoltage x-ray irradiators of the same model, one of which had been recently energy-calibrated at the factory. Results: For each of the four filtration levels, the measured BQI values were in good agreement (<5%) between the three irradiators. BQI showed filtration-specificity, possibly due to the difference in beam quality. Conclusions: The BQI has been verified as a feasible alternative for monitoring the constancy of the tube voltage for orthovoltage irradiators. The time-plot of BQI offers information on the behavior of beam energy at different phases of the irradiation time line. In addition, this would provide power supply performance characteristics from initial ramp-up to plateau, and finally, the sharp drop-off at the end of the exposure.

  3. Extracranial-intracranial bypass surgery utilizing homologous arterial grafts irradiated with high voltage cathode rays. Experimental study and clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yutaka (Kansai Medical School, Moriguchi, Osaka (Japan))

    1982-06-01

    Homologous and heterologous arterial segments were implanted in Fisher rats subcutaneously for the purpose of examining the antibody titer of the recipients' serum after implantation by means of the immune-adherence hemagglutination method. The antibody titer after implantation both of homologous and heterologous grafts decreased to 1/8 by 2.0 million (M) rads irradiation of high voltage cathode rays. The results suggested that high voltage cathode ray irradiation was not enough for heterologous graft to suppress its tissue reaction. Homografts taken from dogs 3 or 6 hours after sacrifice were irradiated with 2.0 M rads and transplanted in canine carotid artery using the technic of end-to-end anastomosis. Angiograms 6 months after operation revealed excellent patency rate in all the grafts of 28 dogs. furthermore, findings of the grafts from 1 week to 5 years after operation on scanning and transmission electron microscopies were evaluated. Clinical application of bypass surgery from the main trunk of the superficial temporal artery to M/sub 2/ portion of the middle cerebral artery, using 20 cm long irradiated arterial homograft, was carried out in patients with episodic cerebral ischemia. Angiogram 4 days after operation showed excellent filling of the middle cerebral circulation through the graft both in the retrograde and antegrade. This bypass procedure provided a good deal of blood flow soon after the operation, resulting in good protection of the ischemic hemisphere. Thus, bypass surgery using irradiated homograft proved to be useful enough for the ischemic cerebrovascular disease.

  4. Two-ply anode X-ray tube for computed tomography scanner

    Science.gov (United States)

    Ignatyev, D.; Taubin, M.; Chesnokov, D.; Malyshev, V.; Yaskolko, A.

    2016-04-01

    This report presents a method of the formation of tungsten layer on the graphite surface. The described method can be used to create the anode of powerful x-ray tubes for medical purposes, in particular, a computer tomograph (CT). The thermal properties of the graphite base and the deposited tungsten coating, as well as the strength of the resulting coating were studied. Thermal fields in the CT-anode with a power of 100 kW were calculated.

  5. Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper describes the calibration procedure for the drift tubes of the CMS barrel muon system and reports the main results obtained with data collected during a high statistics cosmic ray data-taking period. The main goal of the calibration is to determine, for each drift cell, the minimum time delay for signals relative to the trigger, accounting for the drift velocity within the cell. The accuracy of the calibration procedure is influenced by the random arrival time of cosmic muons. A more refined analysis of the drift velocity was performed during the offline reconstruction phase, which takes into account this feature of cosmic ray events.

  6. Performance of the CMS drift-tube chamber local trigger with cosmic rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams.

  7. Measurements of Residual Stresses in a Shape Welded Steel Tube by Neutron and X-Ray Diffraction

    OpenAIRE

    Kockelmann, H.; Bokuchava, G. D.; Schreiber, J.; Taran, Yu. V.

    1999-01-01

    Shape welding of a ferritic steel layer on an austenitic steel tube is used to build compressive stresses on its outer surface, and as a result, suppress stress corrosion. Investigations of residual stresses in such bi-layer tubes are important for developing optimal welding techniques. The neutron and X-ray diffraction methods were used to analyze the stress behavior around the welded region on the tube. To this end, strain components in the radial, axial and tangential directions were measu...

  8. Electronic structure of the polymer-cathode interface of an organic electroluminescent device investigated using operando hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ikeuchi, J.; Hamamatsu, H.; Miyamoto, T. [Sumitomo Chemical Co., Ltd., Advanced Materials Research Laboratory, 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan); Tanaka, S. [Sumitomo Chemical Co., Ltd., Tsukuba Material Development Laboratory, 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan); Yamashita, Y.; Yoshikawa, H.; Ueda, S. [National Institute for Materials Science, Synchrotron X-ray Station at SPring-8, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-08-28

    The electronic structure of a polymer-cathode interface of an operating organic light-emitting diode (OLED) was directly investigated using hard X-ray photoelectron spectroscopy (HAXPES). The potential distribution profile of the light-emitting copolymer layer as a function of the depth under the Al/Ba cathode layer in the OLED depended on the bias voltage. We found that band bending occurred in the copolymer of 9,9-dioctylfluorene (50%) and N-(4-(2-butyl)-phenyl)diphenylamine (F8-PFB) layer near the cathode at 0 V bias, while a linear potential distribution formed in the F8-PFB when a bias voltage was applied to the OLED. Direct observation of the built-in potential and that band bending formed in the F8-PFB layer in the operating OLED suggested that charges moved in the F8-PFB layer before electron injection from the cathode.

  9. Electronic structure of the polymer-cathode interface of an organic electroluminescent device investigated using operando hard x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The electronic structure of a polymer-cathode interface of an operating organic light-emitting diode (OLED) was directly investigated using hard X-ray photoelectron spectroscopy (HAXPES). The potential distribution profile of the light-emitting copolymer layer as a function of the depth under the Al/Ba cathode layer in the OLED depended on the bias voltage. We found that band bending occurred in the copolymer of 9,9-dioctylfluorene (50%) and N-(4-(2-butyl)-phenyl)diphenylamine (F8-PFB) layer near the cathode at 0 V bias, while a linear potential distribution formed in the F8-PFB when a bias voltage was applied to the OLED. Direct observation of the built-in potential and that band bending formed in the F8-PFB layer in the operating OLED suggested that charges moved in the F8-PFB layer before electron injection from the cathode

  10. Electronic structure of the polymer-cathode interface of an organic electroluminescent device investigated using operando hard x-ray photoelectron spectroscopy

    Science.gov (United States)

    Ikeuchi, J.; Hamamatsu, H.; Miyamoto, T.; Tanaka, S.; Yamashita, Y.; Yoshikawa, H.; Ueda, S.

    2015-08-01

    The electronic structure of a polymer-cathode interface of an operating organic light-emitting diode (OLED) was directly investigated using hard X-ray photoelectron spectroscopy (HAXPES). The potential distribution profile of the light-emitting copolymer layer as a function of the depth under the Al/Ba cathode layer in the OLED depended on the bias voltage. We found that band bending occurred in the copolymer of 9,9-dioctylfluorene (50%) and N-(4-(2-butyl)-phenyl)diphenylamine (F8-PFB) layer near the cathode at 0 V bias, while a linear potential distribution formed in the F8-PFB when a bias voltage was applied to the OLED. Direct observation of the built-in potential and that band bending formed in the F8-PFB layer in the operating OLED suggested that charges moved in the F8-PFB layer before electron injection from the cathode.

  11. Practical consideration in the selection of X-ray fluorescence tube targets for analysis of geological materials

    International Nuclear Information System (INIS)

    Four X-ray fluorescence tubes with different targets (Cr, W, Mo and Rh) were compared for their suitability to analyze twelve of the most common major and trace elements in some geological samples. The major elements and Si, Al, Ca, K, Ti, and S. All elements having wavelengths higher than that of the iron K-absorption edge, gave significantly higher intensities of their characteristic fluorescence radiations when using a Cr-anode tube compared to W, Mo and Rh anode tubes. However, for the light elements (Si and Al) the Rh-anode tube of equal efficiency as the Cr-anode tube. The highest Ka-line intensity of Fe was obtained by the W-anode tube. The lowest detection limits (highest sensitivity) for the trace elements Rb, Sr, Zr, and Nb are obtained using both the Mo and Rh tubes. (author)

  12. Comparison between x-ray tube-based and synchrotron radiation-based μCT

    Science.gov (United States)

    Brunke, Oliver; Brockdorf, Kathleen; Drews, Susanne; Müller, Bert; Donath, Tilman; Herzen, Julia; Beckmann, Felix

    2008-08-01

    Nowadays, X-ray tube-based high-resolution CT systems are widely used in scientific research and industrial applications. But the potential, convenience and economy of these lab systems is often underestimated. The present paper shows the comparison of sophisticated conventional μCT with synchrotron radiation-based μCT (SRμCT). The different aspects and characteristics of both approaches like spatial and density resolution, penetration depth, scanning time or sample size is described in detail. The tube-based μCT measurements were performed with a granite-based nanotom®-CT system (phoenix|x-ray, Wunstorf, Germany) equipped with a 180 kV - 15 W high-power nanofocus® tube with tungsten or molybdenum targets. The tube offers a wide range of applications from scanning low absorbing samples in nanofocus® mode with voxel sizes below 500 nm and highly absorbing objects in the high power mode with focal spot and voxel sizes of a few microns. The SRμCT measurements were carried out with the absorption contrast set-up at the beamlines W 2 and BW 2 at HASYLAB/DESY, operated by the GKSS Research Center. The range of samples examined covers materials of very different absorption levels and related photon energies for the CT scans. Both quantitative and qualitative comparisons of CT scans using biomedical specimens with rather low X-ray absorption such as parts of the human spine as well as using composites from the field of materials science are shown.

  13. Determination of residual stresses in cathodic arc coatings by means of the parallel beam glancing X-ray diffraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, C.M. [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain); Sanchez, J.M., E-mail: jmsanchez@ceit.e [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain); Ardila, L.C.; Molina Aldareguia, J.M. [CEIT and TECNUN, Paseo Manuel de Lardizabal 15, 20018, San Sebastian, Gipuzkoa, Basque Country (Spain)

    2009-11-02

    A method based on the parallel beam glancing X-ray diffraction geometry has been applied to the measurement of the residual stresses present in cathodic arc plasma (Al{sub 0.66}Ti{sub 0.34})N coatings deposited on hardmetal substrates. This procedure avoids the problems associated to the strong overlapping between the diffraction peaks of the coating and the substrate. The method has been validated by comparison with the results obtained with sin{sup 2{psi}} technique on other combinations of coatings and substrates in which no important overlapping occurs (i.e. (Al{sub 0.66}Ti{sub 0.34})N on steel and TiN either on steel or on hardmetal substrates). The elastic moduli of the different coatings, required for the calculation of the residual stresses, have been obtained from nanoindentation experiments.

  14. X-ray phase imaging using a X-ray tube with a small focal spot. Improvement of image quality in mammography

    International Nuclear Information System (INIS)

    Phase contrast X-ray imaging has been studied intensively using X-rays from synchrotron radiation and micro-focus X-ray tubes. However, these studies have revealed the difficulty of this technique's application to practical medical imaging. We have created a phase contrast imaging technique using a molybdenum X-ray tube with a small focal spot size for mammography. We identified the radiographic conditions in phase contrast magnification mammography with a screen-film system, where edge effect due to phase contrast overcomes geometrical unsharpness caused by the 0.1 mm-focal spot of a molybdenum X-ray tube. The edge enhancement due to phase imaging was observed in an image of a plastic tube, and then geometrical configuration of the X-ray tube, the object and the screen-film system was determined for phase imaging of mammography. In order to investigate a potential for medical application of this method, we conducted evaluation of the images of the American Collage of Radiology (ACR) 156 mammography phantom. We obtained higher scores for phase imaging using high speed screen-film systems without any increase of X-ray dose than the score for contract imaging using a standard speed screen-film system. (author)

  15. Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Yu Ai-Min; Li Cheng-Quan

    2007-01-01

    In-line x-ray phase contrast imaging has attracted much attention due to two major advantages:its effectiveness in imaging weakly absorbing materials,and the simplicity of its facilities.In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med.Phys.31 2378-2384(2004)] is reviewed.The influence of x-ray source and detector on the image is discussed.Experiments using a microfocus x-ray source and a CCD detector are conducted,which show the role of two key factors on imaging:the tube voltage and tube current.High tube current and moderate tube voltage are suggested for imaging.

  16. Soft-tissue phase-contrast tomography with an x-ray tube source

    International Nuclear Information System (INIS)

    We report the first experimental soft-tissue phase-contrast tomography results using a conventional x-ray tube source, with a millimeter-sized focal spot. The setup is based on a Talbot-Lau grating interferometer operated at a mean energy of 28 keV. We present three-dimensional ex vivo images of a chicken heart sample, fixated in formalin. The results clearly demonstrate the advantageous contrast attainable through phase-contrast imaging over conventional attenuation-based approaches.

  17. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hodoroaba, V.-D., E-mail: Dan.Hodoroaba@bam.d [BAM Federal Institute for Materials Research and Testing, Division VI.4 Surface Technologies, D-12200 Berlin (Germany); Radtke, M. [BAM Federal Institute for Materials Research and Testing, Division I.3 Structure Analysis, Polymer Analysis, D-12200 Berlin (Germany); Vincze, L. [Ghent University, Department of Analytical Chemistry, B-9000 Ghent (Belgium); Rackwitz, V.; Reuter, D. [BAM Federal Institute for Materials Research and Testing, Division VI.4 Surface Technologies, D-12200 Berlin (Germany)

    2010-12-15

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  18. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  19. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors’ assembly were also

  20. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

    2013-02-15

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also

  1. L X-ray intensity ratios for high Z elements induced with X-ray tube

    Science.gov (United States)

    Wang, Xing; Xu, Zhongfeng; Zhang, Limin

    2015-07-01

    We have studied the intensity ratios I(Lα1,2)/I(Lβ1,2), I(Lα1,2)/I(Lγ) and I(Lβ1,2)/I(Lγ) for elements Ta, W, Au and Pb by 13.1 keV bremsstrahlung radiation. In this work, experimental values were compared with the theoretical results and other experimental results. Theoretical results of the intensity ratios were calculated with theoretical subshell photoionization cross sections, fractional X-ray emission rates, fluorescence yields, and Coster-Kronig transition probabilities. Good agreement can be observed between experimental values and theoretical results. Comparing with L1 and L2 subshells, the ionization cross section of L3 subshell shows a large increase for Ta and W with the variation of excitation energy from 59.5 keV to 13.1 keV.

  2. Measurements of residual strains in a shape welded steel tube by neutron and x-ray diffraction methods

    International Nuclear Information System (INIS)

    Shape welding of a ferritic steel layer on an austenitic steel tube is used to build compressive stresses on its outer surface as a result, suppress stress corrosion. Investigations of residual stresses in such bi-layer tubes are important for developing of optimal welding techniques. The neutron and X-ray diffraction methods were used to analyze the stress behaviour around the welded region on the tube. To this end, strain components in the radial, axial and tangential directions were measured across the weld. The results are compared to the data obtained by the destructive turning out technique and theoretical predictions by the finite element method

  3. Correction of the X-ray tube spot movement as a tool for improvement of the micro-tomography quality

    International Nuclear Information System (INIS)

    Nowadays X-ray tubes in conjunction with digital pixelated imagers are standardly utilized for high resolution radiography with several micrometre or even sub-micrometre resolution. Achievement of the same resolution in X-ray computed tomography is a more demanding task due to the time-dependent tube electron beam drift as well as thermal deformations of the tube. In our work, the beam drift caused by the long-term stabilization of the tube electron optics was measured by observation of radiographs of 75 μm big tin ball rigidly mounted onto the tube head. The tube spot movement comprising both the beam drift and the movement caused by thermal deformations of the tube and its fixture was evaluated measuring the virtual movement of the inspected object. For this purpose, radiographs were recorded periodically at the same object position. Both the beam drift as well as spot movement were evaluated with subpixel resolution using digital image correlation tools. It was proven that the quality of a tomographic reconstruction can be significantly improved by the correction of the spot movement

  4. Determination of tungsten target parameters for transmission X-ray tube: A simulation study using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, Mohammad M. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology (AEOI), Tehran (Iran, Islamic Republic of)

    2016-06-15

    Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

  5. Detection efficiency vs. cathode and anode separation in cylindrical vacuum photodiodes used for measuring x-rays from plasma focus device.

    Science.gov (United States)

    Borthakur, T K; Talukdar, N; Neog, N K; Rao, C V S; Shyam, A

    2011-10-01

    A qualitative study on the performance of cylindrical vacuum photodiodes (VPDs) for x-ray detection in plasma focus device has been carried out. Various parameters of VPD such as electrode's diameter, electrode's separation, and its sensitivity are experimentally tested in plasma focus environment. For the first time it is found experimentally that the electrode-separation in the lateral direction of the two coaxial electrodes of cylindrical VPD also plays an important role to increase the efficiency of the detector. The efficiency is found to be highest for the detector with smaller cathode-anode lateral gap (1.5 mm) with smaller photo cathode diameter (10 mm). A comparison between our VPD with PIN (BPX-65) diode as an x-ray detector has also been made. PMID:22047294

  6. X-ray detection with a scintillating YAP-window hybrid photomultiplier tube

    CERN Document Server

    D'Ambrosio, C; Leutz, H; Puertolas, D; Rosso, E

    2000-01-01

    A YAP(YAlO/sub 3/:Ce)-scintillating window, coated on its inner surface with an S20-photocathode, seals a cross-focusing hybrid photomultiplier tube (HPMT) equipped with a small p-i-n anode of 2-mm diameter. This new radiation detector separates X-ray lines down to about 2-keV peak energy from the HPMT noise. Its detection efficiency for high gamma energies depends on the YAP-window thickness and amounts to about 18% attenuation at 400-keV energy in the present version. Competitive radiation detectors like Si photodiodes and Si drift chambers are discussed and compared to our prototype, with particular attention given to their energy resolution and noise performance, which limits their active area considerably. (19 refs).

  7. Characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode

    Indian Academy of Sciences (India)

    A Moorti; A Raghuramaiah; P A Naik; P D Gupta

    2004-11-01

    Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation. Approximately 1010 photons/pulse were generated in x-ray pulses of ∼ 18 to ∼ 28 ns duration from a source of ∼ 300 m diameter, at ℎ = 4.51 keV ( emission of titanium), with a brightness of ∼ 1020 photons/cm2 /s/sr. This was sufficient to record single-shot x-ray radiographs of physical objects on a DEF-5 x-ray film kept at a distance of up to ∼ 10 cm.

  8. Effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies

    Science.gov (United States)

    Murase, Kenya; Nanjo, Takafumi; Satoshi, Ii; Miyazaki, Shohei; Hirata, Masaaki; Sugawara, Yoshifumi; Kudo, Masayuki; Sasaki, Kousuke; Mochizuki, Teruhito

    2005-11-01

    The purpose of this study was to investigate the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using multi-detector row CT (MDCT). Following the standard CT perfusion study protocol, continuous (cine) scans (1 s/rotation × 60 s) consisting of four 5 mm thick contiguous slices were performed using an MDCT scanner with a tube voltage of 80 kVp and a tube current of 200 mA. We generated the simulated images with tube currents of 50 mA, 100 mA and 150 mA by adding the corresponding noise to the raw scan data of the original image acquired above using a noise simulation tool. From the original and simulated images, we generated the functional images of cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) in seven patients with cerebrovascular disease, and compared the correlation coefficients (CCs) between the perfusion parameter values obtained from the original and simulated images. The coefficients of variation (CVs) in the white matter were also compared. The CC values deteriorated with decreasing tube current. There was a significant difference between 50 mA and 100 mA for all perfusion parameters. The CV values increased with decreasing tube current. There were significant differences between 50 mA and 100 mA and between 100 mA and 150 mA for CBF. For CBV and MTT, there was also a significant difference between 150 mA and 200 mA. This study will be useful for understanding the effect of x-ray tube current on the accuracy of cerebral perfusion parameters obtained by CT perfusion studies using MDCT, and for selecting the tube current.

  9. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    Science.gov (United States)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  10. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    Steamside oxides formed on plant exposed superheated tubes were investigated using X-ray diffraction. Phase identification and stress analysis revealed that on ferritic X20CrMoV12-1 pure Hematite and pure Magnetite formed and both phases are under tensile stress. IN contrast, on austenitic TP347H...

  11. Dynamic behavior of thermionic dispenser cathodes under ion bombardment

    Science.gov (United States)

    Cortenraad, R.; van der Gon, A. W. Denier; Brongersma, H. H.; Gärtner, G.; Raasch, D.; Manenschijn, A.

    2001-04-01

    We have investigated the surface coverage and electron emission of thermionic dispenser cathodes during 3 keV Ar+ ion bombardment, thereby simulating the bombardment of the cathodes by residual gases that takes place in cathode-ray tubes as used in television sets. During the ion bombardment at the operating temperature of 1030 °C, a dynamic equilibrium is established between the sputter removal and resupply mechanisms of the Ba and O atoms that form the dipole layer on the cathode substrate. We demonstrated that the performance of the cathodes under ion bombardment is governed by the O removal and resupply rates. It was found that the Ba resupply rate is almost an order of magnitude higher than the O resupply rate, but that the Ba can only be present on the surface bound to O atoms. Therefore, the Ba/O ratio is approximately equal to unity during the ion bombardment. Based on the investigations of the removal and resupply processes, we proposed a model that accurately describes the surface coverage and electron emission during the ion bombardment, including the dependence of the ion flux and cathode temperature.

  12. CT x-ray tube voltage optimisation and image reconstruction evaluation using visual grading analysis

    Science.gov (United States)

    Zheng, Xiaoming; Kim, Ted M.; Davidson, Rob; Lee, Seongju; Shin, Cheongil; Yang, Sook

    2014-03-01

    The purposes of this work were to find an optimal x-ray voltage for CT imaging and to determine the diagnostic effectiveness of image reconstruction techniques by using the visual grading analysis (VGA). Images of the PH-5 CT abdomen phantom (Kagaku Co, Kyoto) were acquired by the Toshiba Aquillion One 320 slices CT system with various exposures (from 10 to 580 mAs) under different tube peak voltages (80, 100 and 120 kVp). The images were reconstructed by employing the FBP and the AIDR 3D iterative reconstructions with Mild, Standard and Strong FBP blending. Image quality was assessed by measuring noise, contrast to noise ratio and human observer's VGA scores. The CT dose index CTDIv was obtained from the values displayed on the images. The best fit for the curves of the image quality VGA vs dose CTDIv is a logistic function from the SPSS estimation. A threshold dose Dt is defined as the CTDIv at the just acceptable for diagnostic image quality and a figure of merit (FOM) is defined as the slope of the standardised logistic function. The Dt and FOM were found to be 5.4, 8.1 and 9.1 mGy and 0.47, 0.51 and 0.38 under the tube voltages of 80, 100 and 120 kVp, respectively, from images reconstructed by the FBP technique. The Dt and FOM values were lower from the images reconstructed by the AIDR 3D in comparison with the FBP technique. The optimal xray peak voltage for the imaging of the PH-5 abdomen phantom by the Aquillion One CT system was found to be at 100 kVp. The images reconstructed by the FBP are more diagnostically effective than that by the AIDR 3D but with a higher dose Dt to the patients.

  13. Primordial flares, flux tubes, MHD waves in the early universe and genesis of cosmic gamma ray bursts

    CERN Document Server

    Hiremath, K M

    2009-01-01

    It is conjectured that energy sources of the gamma ray bursts are similar to energy sources which trigger solar and stellar transient activity phenomena like flares, plasma accelerated flows in the flux tubes and, dissipation of energy and acceleration of particles by the MHD waves. Phenomenologically we examine in detail the following energy sources which may trigger gamma ray bursts : (i) cosmic primordial flares which could be solar flare like phenomena in the region of inter galactic or inter galactic cluster regions, (ii) primordial magnetic flux tubes that might have been formed from the convective collapse of the primordial magnetic flux (iii) nonlinear interaction and dissipation of MHD waves that are produced from the perturbations of large-scale inter galactic or inter cluster magnetic field of primordial origin. We examine in detail each of the afore mentioned phenomena keeping in mind that whether such processes are responsible for energy sources of the gamma ray bursts. By considering the similar...

  14. Simple cathode design for Li-S batteries : cell performance and mechanistic insights by in operando X-ray diffraction

    OpenAIRE

    Kulisch, Jörn; Sommer, Heino; Brezesinski, Torsten; Janek, Jürgen

    2014-01-01

    Rechargeable batteries have been receiving increasing attention over the past several years, particularly with regard to the accelerated development of electric vehicles, but also for their potential in grid storage applications. Among the broad range of cathode active materials, elemental sulfur has the highest theoretical specific capacity, thereby making it one of the most promising positive electrode materials these days. In the present work, we show that already a simple cathode design (...

  15. Comparison of pulsed fluoroscopy by direct control using a grid-controlled x-ray tube with pulsed fluoroscopy by primary control

    International Nuclear Information System (INIS)

    Interventional radiology (IVR) procedures may involve high radiation doses that are potentially harmful to the patient. In IVR procedures, pulsed fluoroscopy can greatly decrease the radiation that the physician and patient receive. There are two types of pulsed fluoroscopy: direct control and primary (indirect) control. The purpose of this study was to compare pulsed fluoroscopy by direct control, using a grid-controlled x-ray tube, with pulsed fluoroscopy using primary control. For both types of pulsed fluoroscopy, we measured the waveforms (x-ray tube voltage, x-ray tube current, and x-ray output) and the relative radiation dose. In addition, we compared the decrease in radiation during pulsed fluoroscopy using a care filter. The studies were performed using a Siemens Bicor Plus x-ray System (direct control) and a Siemens Multistar Plus x-ray System (primary control). Using primary pulse control, a 50% decrease in the x-ray output waveform took approximately 0.5-1.0 msec, or longer with a lower x-ray tube current. Using direct pulse control, a 50% decrease in the x-ray output waveform took approximately 0.1 msec, and was independent of x-ray tube current. The rate of radiation reduction with primary pulse control using the care filter with a lower x-ray tube current had a slope exceeding 10%. Pulsed fluoroscopy by direct control using a grid-controlled x-ray tube permits an optimal radiation dose. To decrease the radiation in primary pulse control, a care filter must be used, particularly with a lower x-ray tube current. (author)

  16. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Daisuke Asakura

    2016-03-01

    Full Text Available We evaluate the utilities of fluorescence-yield (FY modes in soft X-ray absorption spectroscopy (XAS of several cathode materials for Li-ion batteries. In the case of total-FY (TFY XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  17. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    Science.gov (United States)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; Zhou, Haoshen; Okabayashi, Jun; Ban, Chunmei; Glans, Per-Anders; Guo, Jinghua; Mizokawa, Takashi; Chen, Gang; Achkar, Andrew J.; Hawthron, David G.; Regier, Thomas Z.; Wadati, Hiroki

    2016-03-01

    We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathode materials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  18. Hybrid microwave oscillators with a virtual cathode

    International Nuclear Information System (INIS)

    A review is given of the developments and theoretical investigations of a fundamentally new class of microwave devices, namely, hybrid microwave oscillators with a virtual cathode, which combine the useful properties of virtual cathodes with the advantages of those traditional microwave oscillators that operate with subcritical-current beams and have a high efficiency in generating ultrarelativistic electron beams. Among such devices are the following: a hybrid diffractional microwave oscillator with a virtual cathode, a hybrid gyro-device with a virtual cathode, a hybrid beam-plasma vircator, a hybrid gyrocon with a virtual cathode, a hybrid Cherenkov oscillator with a virtual cathode, a hybrid microwave oscillator of the 'vircator + traveling-wave tube' type, an original two-beam tube with a virtual cathode, and a klystron-like vircator

  19. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A. [Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2009-05-15

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity ({approx_equal}1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  20. Closed bore XMR (CBXMR) systems for aortic valve replacement: active magnetic shielding of x-ray tubes.

    Science.gov (United States)

    Bracken, John A; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V; Fahrig, Rebecca; Rowlands, J A

    2009-05-01

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity (approximately 1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session. PMID:19544789

  1. The impact of x-ray tube configuration on the eye lens and extremity doses received by cardiologists in electrophysiology room

    International Nuclear Information System (INIS)

    The aim of the study was to analyse the influence of the x-ray tube configuration on the radiation doses to eye lens and extremities of cardiologists performing pacemaker implantation procedures in electrophysiology laboratory. The measurements were performed on one, widely used, portable C-arm system, first with x-ray tube mounted above the patient table and image intensifier below it and then on a reinstalled (but essentially the same) system with under-table x-ray tube configuration. Thermoluminescent dosimeters, placed in various positions near the eye lens, on the hands and ankle, were used during every procedure. The comparison of doses received by cardiologists after changing the x-ray tube configuration from over- to under-table shows statistically significant dose reduction (p < 0.009) for the eye lens closest to the x-ray tube, left finger, left wrist, while for the ankle a dose increase is observed. The corresponding over- to under-table x-ray tube median dose ratios are 4.1 for the right eye, 4.8 for the left finger, 3.0 for left wrist and, finally, 0.13 for the right ankle. Systems with under-table x-ray tube are preferable from a radiation protection point of view. The observed significant increase in doses to the legs should be partially compensated by the use of a protective lead curtain. (note)

  2. A comparative experiments for tube agglutination test of pullorum antiserum with gamma ray Co60 irradiated salmonella pullorum

    International Nuclear Information System (INIS)

    An agglutinability between naturally infected positive chicken serum of pullorum disease and hyperimmunized rabbit antiserum was compared. And the following results were obtained and summarized. On the agglutinability, Salmonella pullorum antigen which irradiated gamma-ray was better than another both formalized and heated antigen. Time of judgemented as positive titer in the tube agglutination test to the naturally infected positive chicken serum was it most suitable for 12 hours at 37°C. Agglutination titer of positive immune chicken serum against gamma-ray irradiate Salmonella pullorum were as 320 approximately 640x. (author).

  3. Cathodic protection to control microbiologically influenced corrosion

    International Nuclear Information System (INIS)

    Information about the cathodic protection performance in environments with microbiologically influenced corrosion (MIC) effects is very fragmented and often contradictory. Not enough is known about the microbial effects on cathodic protection effectiveness, criteria, calcareous deposits, corrosion rates and possible hydrogen embrittlement of titanium and some stainless steel condenser tubes. This paper presents a review of cathodic protection systems, describes several examples of cathodic protection in environments with MIC effects and provides preliminary conclusions about cathodic protection design parameters, criteria and effectiveness in MIC environments. 30 refs

  4. Titanium condenser tubes

    International Nuclear Information System (INIS)

    The corrosion resistance of titanium in sea water is extremely excellent, but titanium tubes are expensive, and the copper alloy tubes resistant in polluted sea water were developed, therefore they were not used practically. In 1970, ammonia attack was found on the copper alloy tubes in the air-cooled portion of condensers, and titanium tubes have been used as the countermeasure. As the result of the use, the galvanic attack an copper alloy tube plates with titanium tubes as cathode and the hydrogen absorption at titanium tube ends owing to excess electrolytic protection were observed, but the corrosion resistance of titanium tubes was perfect. These problems can be controlled by the application of proper electrolytic protection. The condensers with all titanium tubes adopted recently in USA are intended to realize perfectly no-leak condensers as the countermeasure to the corrosion in steam generators of PWR plants. Regarding large condensers of nowadays, three problems are pointed out, namely the vibration of condenser tubes, the method of joining tubes and tube plates, and the tubes of no coolant leak. These three problems in case of titanium tubes were studied, and the problem of the fouling of tubes was also examined. The intervals of supporting plates for titanium tubes should be narrowed. The joining of titanium tubes and titanium tube plates by welding is feasible and promising. The cleaning with sponge balls is effective to control fouling. (Kako, I.)

  5. A rapid, high sensitivity technique for measuring arsenic in skin phantoms using a portable x-ray tube and detector.

    Science.gov (United States)

    Fleming, David E B; Gherase, Mihai Raul

    2007-10-01

    Using a portable x-ray tube and silicon PiN diode detector, an improved approach to the measurement of arsenic in skin phantoms was demonstrated. Skin phantoms of 8 mm thickness were made from polyester resin, with arsenic concentrations ranging from 0 to 30 microg g(-1). The excitation of characteristic arsenic x-rays was performed with the x-ray tube and K(alpha) x-rays were used as an indicator of arsenic concentration. From repeated phantom measurements, an instrumental minimum detection limit of 0.446 +/- 0.006 microg g(-1) was found, using an acquisition time of 120 s (real time). This compares with previously reported approaches having instrumental minimum detection limits of 3.5 +/- 0.2 microg g(-1) (1800 s real time), 2.3 +/- 0.1 microg g(-1) (1000 s live time) and 0.40 +/- 0.06 microg g(-1) (1000 s live time). PMID:17881796

  6. High-resolution X-ray projection radiography of a pin cathode in a high-current vacuum diode using X-pinch radiation

    Science.gov (United States)

    Parkevich, E. V.; Tilikin, I. N.; Agafonov, A. V.; Shelkovenko, T. A.; Romanova, V. M.; Mingaleev, A. R.; Savinov, S. Yu.; Mesyats, G. A.; Pikuz, S. A.

    2016-03-01

    To study processes in a high-current vacuum diode with a cathode in the form of a single pin made of a metallic wire 20-30 μm in diameter, the method of high-resolution projection X-ray radiography with an X-pinch as a source has been used. A strong inhomogeneity of the energy contribution to the wire has been revealed. The smallest energy release has been observed near the end of the pin, where the electric field strength is maximal. Hard X rays, as well as the ejection of matter from the anode, have been observed, indicating the generation of an electron beam with the parameters characteristic of explosive electron emission in the diode with this configuration. The data obtained indicate complex processes occurring in the diode. Possible scenarios of their development have been considered.

  7. Observation of X-ray intensity distribution from the anode of a fine-focus tube using Δω - Δ2θ scans

    International Nuclear Information System (INIS)

    A split intensity distribution from the anode of fine focus x-ray tubes probably due to tungsten deposited on the target is reported. Such a doubling of the target complicates the interpretation of Δ ω -Δ2θ intensity distributions and introduces systematic errors in the determination of lattice parameters. It is estimated that the increasing tungsten deposit affects, in time, the intensity of x-ray tubes. 4 refs., 4 figs

  8. On the features of bursts of neutrons, hard x-rays and alpha-particles in the pulse vacuum discharge with a virtual cathode and self-organization

    Science.gov (United States)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu; Samoylov, I. S.; Ostashev, V. E.

    2015-11-01

    In this paper, we continue the discussion of the experimental results on the yield of DD neutrons and hard x-rays in the nanosecond vacuum discharge (NVD) with a virtual cathode, which was started in the previous article of this issue, and previously (Kurilenkov Y K et al 2006 J. Phys. A: Math. Gen. 39 4375). We have considered here the regimes of very dense interelectrode aerosol ensembles, in which diffusion of even hard x-rays is found. The yield of DD neutrons in these regimes is conditioned not only by the head-on deuteron-deuteron collisions in the potential well of virtual cathode, but also by the channel of “deuteron-deuterium cluster” reaction, which exceeds overall yield of neutrons per a shot by more than an order of magnitude, bringing it up to ∼ 107/(4π). Very bright bursts of hard x-rays are also represented and discussed here. Presumably, their nature may be associated with the appearance in the NVD of some properties of random laser in the x-ray spectrum. Good preceding agreeing of the experiment on the DD fusion in the NVD with its particle-in-cell (PIC) simulations provides a basis to begin consideration of nuclear burning “proton-boron” in the NVD, which will be accompanied by the release of alpha particles only. With this objective in view, there has been started the PIC-simulation of aneutronic burning of p-B11, and its preliminary results are presented.

  9. A Low Cost Traveling Wave Tube for Wireless Communications

    Science.gov (United States)

    Vancil, Bernard Kenneth; Wintucky, Edwin G.; Williams, W. D. (Technical Monitor)

    2002-01-01

    Demand for high data rate wireless communications is pushing up amplifier power, bandwidth and frequency requirements. Some systems are using vacuum electron devices again because solid-state power amplifiers are not able to efficiently meet the new requirements. The traveling wave tube is the VED of choice because of its excellent broadband capability as well as high power efficiency and frequency. But TWTs are very expensive on a per watt basis below about 200 watts of output power. We propose a new traveling wave tube that utilizes cathode ray tube construction technology and electrostatic focusing. We believe the tube can be built in quantity for under $1,000 each. We discuss several traveling wave tube slow wave circuits that lend themselves to the new construction. We will present modeling results and data on prototype devices.

  10. Virtual cathode microwave devices -- Basics

    Energy Technology Data Exchange (ETDEWEB)

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  11. Virtual cathode microwave devices: Basics

    Science.gov (United States)

    Thode, L. E.; Snell, C. M.

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating virtual-cathode frequency exceeds the reflexing-electron frequency while in other designs the reflexing-electron frequency exceeds the oscillating virtual-cathode frequency. For the flex diode, a periodic disruption in magnetic insulation can modulate the high-frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement.

  12. Development of small-diameter lead-glass-tube matrices for gamma-ray conversion in positron emission tomography

    International Nuclear Information System (INIS)

    A gamma-ray converter for a multiwire proportional chamber (MWPC) positron emission tomograph is described. The converter is made of small-diameter (0.48 mm inner diameter, 0.06 mm wall thickness) lead-oxide-glass tubes fused to form a honeycomb matrix. The surfaces of the tubes are reduced in a hydrogen atmosphere to provide the drift electric field for detection of the conversion electrons. The detection efficiency for a 10 mm thick converter is 6.65%, with a time resolution of 160 ns (FWHM). A scheme which will improve the spatial resolution of the tomograph by use of the self quenching streamer mode of chamber operation is described. Details of construction of the converters and the MWPC are presented, as well as the design performance of a high spatial resolution positron emission tomograph (HISPET). 40 refs., 22 figs

  13. Determination of the diagnostic x-ray tube practical peak voltage (PPV) from average or average peak voltage measurements

    International Nuclear Information System (INIS)

    The practical peak voltage (PPV) has been adopted as the reference measuring quantity for the x-ray tube voltage. However, the majority of commercial kV-meter models measure the average peak, U-barP, the average, U-bar, the effective, Ueff or the maximum peak, UP tube voltage. This work proposed a method for determination of the PPV from measurements with a kV-meter that measures the average U-bar or the average peak, U-barp voltage. The kV-meter reading can be converted to the PPV by applying appropriate calibration coefficients and conversion factors. The average peak kPPV,kVp and the average kPPV,Uav conversion factors were calculated from virtual voltage waveforms for conventional diagnostic radiology (50-150 kV) and mammography (22-35 kV) tube voltages and for voltage ripples from 0% to 100%. Regression equation and coefficients provide the appropriate conversion factors at any given tube voltage and ripple. The influence of voltage waveform irregularities, like 'spikes' and pulse amplitude variations, on the conversion factors was investigated and discussed. The proposed method and the conversion factors were tested using six commercial kV-meters at several x-ray units. The deviations between the reference and the calculated - according to the proposed method - PPV values were less than 2%. Practical aspects on the voltage ripple measurement were addressed and discussed. The proposed method provides a rigorous base to determine the PPV with kV-meters from U-barp and U-bar measurement. Users can benefit, since all kV-meters, irrespective of their measuring quantity, can be used to determine the PPV, complying with the IEC standard requirements.

  14. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  15. Mitigated phase transition during first cycle of a Li-rich layered cathode studied by in operando synchrotron X-ray powder diffraction.

    Science.gov (United States)

    Song, Bohang; Day, Sarah J; Sui, Tan; Lu, Li; Tang, Chiu C; Korsunsky, Alexander M

    2016-02-14

    In operando synchrotron X-ray powder diffraction (SXPD) studies were conducted to investigate the phase transition of Li-rich Li(Li0.2Ni0.13Mn0.54Co0.13)O2 and Cr-doped Li(Li0.2Ni0.13Mn0.54Co0.03Cr0.10)O2 cathodes during the first charge/discharge cycle. Crystallographic (lattice parameters) and mechanical (domain size and microstrain) information was collected from SXPD full pattern refinement. It was found that Cr substitution at Co-site benefits in suppressing the activation of Li2MnO3 domains upon 1st charge, and thus mitigates the phase transition. As a consequence, Cr-doped layered cathode holds a better reversibility in terms of a full recovery of both lattice parameters and nano-domain size after a whole charge/discharge cycle. The effects of different cycling rates on the structural change were also discussed. PMID:26799191

  16. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk, E-mail: radiosugar@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Ye-Seul, E-mail: radiohesugar@gmail.com [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Choi, Young-Wook, E-mail: ywchoi@keri.re.kr [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Choi, JaeGu, E-mail: jgchoi88@paran.com [Korea Electrotechnology Research Institute (KERI), Ansan, Geongki 426-170 (Korea, Republic of); Rhee, Yong-Chun, E-mail: ycrhee@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science and Research Institute of Health Science, Yonsei University, Wonju, Gangwon 220-710 (Korea, Republic of)

    2014-11-01

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging.

  17. Experimental investigation for determination of optimal X-ray beam tube voltages in a newly developed digital breast tomosynthesis system

    International Nuclear Information System (INIS)

    Our purpose was to investigate optimal tube voltages (kVp) for a newly developed digital breast tomosynthesis (DBT) process and to determine tube current–exposure time products (mA s) for the average glandular dose (AGD), which is similar to that of the two views in conventional mammography (CM). In addition, the optimal acquisition parameters for this system were compared with those of CM. The analysis was based on the contrast-to-noise ratio (CNR) from the simulated micro-calcifications on homogeneous phantoms, and the figure of merit (FOM) was retrieved from the CNR and AGD at X-ray tube voltages ranging from 24 to 40 kVp at intervals of 2 kV. The optimal kVp increased more than 2 kV with increasing glandularity for thicker (≥50 mm) breast phantoms. The optimal kVp for DBT was found to be 4–7 kV higher than that calculated for CM with breast phantoms thicker than 50 mm. This is likely due to the greater effect of noise and dose reduction by kVp increment when using the lower dose per projection in DBT. It is important to determine optimum acquisition conditions for a maximally effective DBT system. The results of our study provide useful information to further improve DBT for high quality imaging

  18. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Magnus; Schlifke, Annalena [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falk, Mareike; Janek, Jürgen [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Fröba, Michael, E-mail: froeba@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2013-07-01

    The cathode material LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn{sup 3+} to Mn{sup 4+} only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others.

  19. Determination voltage applied to an X-ray tube using the spectrum; Determinacao da tensao aplicada em um tubo de raios-X usando o espectro

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, M.A.G.; David, M.G.; Almeida, Carlos Eduardo de; Magalhaes, Luis Alexandre Goncalves, E-mail: malbuqueque@hotmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Peixoto, Guilherme [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This work shows the methodology used to determine the voltage applied in an X-ray tube using their spectra. The measurements were made using a detector Cadmium telluride . Before the measurements are carried out detector was calibrated with a source of {sup 241}Am. After obtaining the spectra , the mean energies were calculated , the electron accelerating potential (k Vp ) of each spectrum is constructed a calibration straight for the kVp this tube. (author)

  20. Finite element calculation and direct x-ray diffraction measurement of residual stresses induced by an hydraulic expansion in steam generator tubes during the sleeving process

    International Nuclear Information System (INIS)

    When installing an internal sleeve to repair a steam generator tube, it is usual to expand the sleeve locally by means of an internal pressure, in order to put it into contact with the tube before welding. This process induces residual stresses in the parent tube, near the end of the contact zone, even if the residual bulging is very small. This study is aimed at assessing the residual stresses as a function of that bulging and of the respective mechanical properties of the materials. An analytical approach based on finite element calculations and an experimental one by x-ray diffraction have been used to evaluate the residual stresses

  1. Measuring device for fast determination of the tube peak voltage and the switch-on time of X-ray units

    Energy Technology Data Exchange (ETDEWEB)

    Bronder, T.; Eickelkamp, U.; Jakschik, J.

    1982-11-01

    A prototype of a measuring device is described, which reads the tube peak voltage and the switch-on time of X-ray units by means of two radiation detectors with different energy dependences due to detector materials. (Caesium iodine and silicon). With a storage oscilloscope the curves of the tube voltage and the relative absorbed dose rate of intensifying screens can be displayed. The measuring range of the tube peak voltage is 60 kV to 150 kV. It is possible to measure exposure times of radiography equipment above 2 ms with sufficiently low uncertainty. The tube peak voltage has been read with a relative uncertainty below 5% for almost all dose rates, which arise in practical application of medical X-ray units, and its calibration is made by means of X-ray apparatus with tube voltage reading, which has been compared to a Ge(Li) spectrometer. The stability of tube voltage reading of the measuring device is only effected by radiation damage of the detectors after a long time of utilization. The small diameter of the probe permits the accomodation of other probes, ionization chambers, phantoms, etc. in the radiation field at the same time.

  2. GEIGER-MULLER TYPE COUNTER TUBE

    Science.gov (United States)

    Fowler, I.L.; Watt, L.A.K.

    1959-12-15

    A single counter tube capable of responding to a wide range of intensities is described. The counter tube comprises a tubular cathode and an anode extending centrally of the cathode. The spacing between the outer surface of the anode and the inner surface of the cathode is varied along the length of the tube to provide different counting volumes in adjacent portions of the tube. A large counting volume in one portion adjacent to a low-energy absorption window gives adequate sensitivity for measuring lowintensity radiation, while a smaller volume with close electrode spacing is provided in the counter to make possible measurement of intense garnma radiation fields.

  3. Phase identification and internal stress analysis of steamside oxides on superheater tubes by means of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Pantleon, Karen; Montgomery, Melanie [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Manufacturing Engineering and Management

    2005-05-01

    For superheater tubes, the adherence of the inner steamside oxide is especially important as spallation of this oxide results in a) blockage of loops which cause insufficient steam flow through the superheaters and subsequently overheating and tube failure and b) spalled oxide can cause erosion of turbine blades. Oxide spallation is a serious problem for austenitic steels where the significant differences of the thermal expansion coefficients of steel and oxide cause relatively high thermal stresses. Usually, various oxides layered within the scale are suggested from microscopical observations of the morphology and/or topography of the oxide scale accompanied by the analysis of chemical elements present. Reports about the application of X-ray diffraction on the study of steamside oxide formation are very scarce in literature. If applied at all, XRD-studies are restricted to ideally flat samples oxidized under laboratory conditions, but relation to real operating conditions and the effect of the real sample geometry is missing. Within the frame of the project, steamside oxides on plant exposed components of ferritic/ martensitic X20CrMoV12-1 as well as fine- and coarse-grained austenitic TP347H were studied by means of X-ray diffraction. Depth dependent phase analysis on sample segments cut from the tubes was carried out by means of grazing incidence diffraction and, in order to obtain information from a larger depth, conventional XRD was combination with stepwise mechanical removal of the steamside oxides. After each removal step phase analysis was performed both on the segments and on the removed powders. Phase specific stress analysis was carried out on rings cut from the tube. Results show that steamside oxides on X20CrMoV12-1 consist of pure Hematite at the surface followed by a relatively thick layer of pure Magnetite. Both phases are under relatively high tensile stresses. While the phase composition of the Hematite layer appears to be the same for all

  4. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    Science.gov (United States)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  5. Tumour bed irradiation of human tumour xenografts in a nude rat model using a common X-ray tube

    Indian Academy of Sciences (India)

    S V Tokalov; W Enghardt; N Abolmaali

    2010-06-01

    Studies that investigate the radiation of human tumour xenografts require an appropriate radiation source and highly standardized conditions during radiation. This work reports on the design of a standardized irradiation device using a commercially available X-ray tube with a custom constructed lead collimator with two circular apertures and an animal bed plate, permitting synchronous irradiation of two animals. Dosimetry and the corresponding methodology for radiotherapy of human non-small cell lung cancer xenograft tumours transplanted to and growing subcutaneously on the right lower limb in a nude rat model were investigated. Procedures and results described herein prove the feasibility of use of the device, which is applicable for any investigation involving irradiation of non-tumorous and tumorous lesions in small animals.

  6. A high-precision X-ray tomograph for quality control of the ATLAS Muon Monitored Drift Tube Chambers

    CERN Document Server

    Schuh, S; Banhidi, Z; Fabjan, Christian Wolfgang; Lampl, W; Marchesotti, M; Rangod, Stephane; Sbrissa, E; Smirnov, Y; Voss, Rüdiger; Woudstra, M; Zhuravlov, V

    2004-01-01

    A dedicated X-ray tomograph has been developed at CERN to control the required wire placement accuracy of better than 20mum of the 1200 Monitored Drift Tube Chambers which make up most of the precision chamber part of the ATLAS Muon Spectrometer. The tomograph allows the chamber wire positions to be measured with a 2mum statistical and 2mum systematic uncertainty over the full chamber cross-section of 2.2 multiplied by 0.6m**2. Consistent chamber production quality over the 4-year construction phase is ensured with a similar to 15% sampling rate. Measurements of about 70 of the 650 MDT chambers so far produced have been essential in assessing the validity and consistency of the various construction procedures.

  7. Comparison of simulated and measured spectra from an X-ray tube for the energies between 20 and 35 keV

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C.S.; Yücel, E. Barlas, E-mail: barlase@itu.edu.tr

    2015-11-01

    Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.

  8. Spectral reconstruction of dental X-ray tubes using laplace inverse transform of the attenuation curve

    Science.gov (United States)

    Malezan, A.; Tomal, A.; Antoniassi, M.; Watanabe, P. C. A.; Albino, L. D.; Poletti, M. E.

    2015-11-01

    In this work, a spectral reconstruction methodology for diagnostic X-ray, using Laplace inverse transform of the attenuation, was successfully applied to dental X-ray equipments. The attenuation curves of 8 commercially available dental X-ray equipment, from 3 different manufactures (Siemens, Gnatus and Dabi Atlante), were obtained by using an ionization chamber and high purity aluminium filters, while the kVp was obtained with a specific meter. A computational routine was implemented in order to adjust a model function, whose inverse Laplace transform is analytically known, to the attenuation curve. This methodology was validated by comparing the reconstructed and the measured (using semiconductor detector of cadmium telluride) spectra of a given dental X-ray unit. The spectral reconstruction showed the Dabi Atlante equipments generating similar shape spectra. This is a desirable feature from clinic standpoint because it produces similar levels of image quality and dose. We observed that equipments from Siemens and Gnatus generate significantly different spectra, suggesting that, for a given operating protocol, these units will present different levels of image quality and dose. This fact claims for the necessity of individualized operating protocols that maximize image quality and dose. The proposed methodology is suitable to perform a spectral reconstruction of dental X-ray equipments from the simple measurements of attenuation curve and kVp. The simplified experimental apparatus and the low level of technical difficulty make this methodology accessible to a broad range of users. The knowledge of the spectral distribution can help in the development of operating protocols that maximize image quality and dose.

  9. Small-angle scattering computed tomography (SAS-CT) using a Talbot-Lau interferometerand a rotating anode x-ray tube:theory and experiments.

    Science.gov (United States)

    Chen, Guang-Hong; Bevins, Nicholas; Zambelli, Joseph; Qi, Zhihua

    2010-06-01

    X-ray differential phase contrast imaging methods, including projection imaging and the corresponding computed tomography (CT), have been implemented using a Talbot interferometer and either a synchrotron beam line or a low brilliance x-ray source generated by a stationary-anode x-ray tube. From small-angle scattering events which occur as an x-ray propagates through a medium, a signal intensity loss can be recorded and analyzed for an understanding of the micro-structures in an image object. This has been demonstrated using a Talbot-Lau interferometer and a stationary-anode x-ray tube. In this paper, theoretical principles and an experimental implementation of the corresponding CT imaging method are presented. First, a line integral is derived from analyzing the cross section of the small-angle scattering events. This method is referred to as small-angle scattering computed tomography (SAS-CT). Next, a Talbot-Lau interferometer and a rotating-anode x-ray tube were used to implement SAS-CT. A physical phantom and human breast tissue sample were used to demonstrate the reconstructed SAS-CT image volumes.

  10. Simultaneous assessment of arsenic and selenium in human nail phantoms using a portable x-ray tube and a detector.

    Science.gov (United States)

    Roy, Christopher W; Gherase, Mihai Raul; Fleming, David E B

    2010-03-21

    A novel approach to the measurement of arsenic and selenium in nail phantoms is demonstrated. Two-component nail phantoms of 0.7 mm and 1.5 mm thickness were made from a polyester resin-salt mixture and dosed with equal arsenic and selenium concentrations ranging from 0 to 30 microg g(-1). A backing was made to simulate the soft tissue and bone of the great toe. Characteristic x-rays for arsenic and selenium were recorded using a portable x-ray tube and a silicon PiN diode detector. The minimum instrumental detection limits for arsenic and selenium in 0.7 mm solitary nail samples were as follows: 0.510 +/- 0.018 microg g(-1) and 0.519 +/- 0.026 microg g(-1) respectively; for 1.5 mm solitary nail: 0.465 +/- 0.035 microg g(-1) and 0.561 +/- 0.062 microg g(-1); for 0.7 mm nail with backing: 1.522 +/- 0.038 microg g(-1) and 1.401 +/- 0.049 microg g(-1); for 1.5 mm nail with backing: 1.354 +/- 0.054 microg g(-1) and 1.367 +/- 0.068 microg g(-1). PMID:20182007

  11. Spectral sampling of a soft X-ray tube emission by a lamellar multilayer grating in standard and conical mountings

    International Nuclear Information System (INIS)

    A Lamellar Multilayer Amplitude Grating (LMAG) etched in a multilayer mirror was designed for an efficient use in the 1 keV region, through a multistep process involving sputtering coating, electron lithography and reactive ion etching. The multilayer structure has 115 W/B4C bilayers of 3.1 nm thickness, and the grating of period 1.33 μm has a small line-to-period ratio Γ equal to about 0.10. The properties of a LMAG illuminated in standard and conical mountings by a polychromatic radiation are given, and the concept of a ''polychromator'' based on a LMAG is presented. Taking benefit from the specific properties of a LMAG, the emission of a soft X-ray tube equipped with a copper target is spectrally analyzed with our LMAG in the Cu-L (930 eV) region in standard and conical mountings. This experiment shows that a LMAG could be an interesting spectral analyzer for short-duration X-ray sources. (orig.)

  12. User certification of hand-held x-ray tube based analytical fluorescent devices in a canadian context

    International Nuclear Information System (INIS)

    Safety education aims to reduce personal injury and improve well being. This health promotion principle is applied in the case of hand-held open beam x-ray tube based analytical x-ray devices. Such devices not only are light weight and portable, but also present high radiation exposure levels at the beam exit port and potentially can be used in a variety of industrial applications for determination of material composition. There is much potential for radiation risks to occur with resultant adverse effects if such devices are not used by trained individuals within controlled environments. A level of radiation safety knowledge and understanding of the device design, construction and performance characteristics appear warranted. To reduce radiation risks, user certification at a federal level was introduced in 2004 based on International Standards Organization 20807, since that standard comprises elements commensurate with risk reduction strategies. Within these contexts, a federally certified user is deemed to have acquired a level of safety knowledge and skills to facilitate safe use of the device. Certification, however, does not absolve the holder from obligations of compliance with applicable provincial, territorial or federal laws respecting device operation. The union of federal certification and applicable legislative mandated operational criteria reduces radiation risks overall. (author)

  13. High Energy X-Ray Detection OF G359.89-0.08 (Sgr A-E): Magnetic Flux Tube Emission Powered By Cosmic Rays?

    CERN Document Server

    Zhang, Shuo; Baganoff, Frederick K; Bauer, Franz E; Boggs, Steven E; Craig, William W; Christensen, Finn E; Gotthelf, Eric V; Harrison, Fiona A; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, William W

    2014-01-01

    We report the first detection of high-energy X-ray (E>10 keV) emission from the Galactic Center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ~50 keV during a NuSTAR Galactic Center monitoring campaign. The featureless power-law spectrum with a photon index of ~2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is ~ 2.0e-12 erg/cm^2/s, corresponding to an unabsorbed X-ray luminosity of ~2.6e34 erg/s assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ~100 kyr) with low surface brightness and radii up to ~30 pc or molecular clouds (MC...

  14. Numerical evaluation of welded tube wall profiles from scanned X-ray line source data

    Science.gov (United States)

    Lunin, V.; Podobedov, D.; Ewert, U.; Redmer, B.

    2001-04-01

    This investigation presents an iterative algorithm for inversion of X-ray line scanning data of a multi-angle inspection. The main focus is the development of a robust algorithm that may successfully evaluate the influence of local surface geometry in welding regions. An idea here is to repetitively solve the forward problem with iterated profile parameters until the solution agrees with measurement. For accurate parameterization of a particular inner crack, this procedure can be combined with an analysis of the residual image obtained by subtracting the projection image caused by reconstructed surface wall profiles, from the original data.

  15. Characterization of electron bunches from field emitter array cathodes for use in next-generation x-ray free electron lasers

    International Nuclear Information System (INIS)

    PSI is interested in developing an x-ray free electron laser (X-FEL) as a companion radiation source to the existing Swiss Light Source. In order to achieve radiation wavelengths as low as 1 Α, the X-FEL requires excellent electron beam quality and high beam energy. The energy requirements and thus the size and cost of the project can be reduced considerably if an ultra-low emittance electron source is developed. Therefore PSI has started the Low Emittance Gun Project with the aim to design a novel type of electron source that will deliver an electron beam with unprecedented emittance at high peak currents to the linear accelerator of the proposed X-FEL. A source candidate for such a gun is field emission from cold cathodes. In order to gain first experience with field emission guns, investigate the dynamics of space charge dominated electron beams and to develop diagnostics capable of resolving ultra-low emittances, it was decided to build a 100 keV DC gun test stand. In the scope of this thesis, the test stand has been designed, assembled and commissioned. For the first time, transverse phase space measurements of bunches emitted by field emitter arrays in pulsed DC accelerating fields have been performed. (author)

  16. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure

    Science.gov (United States)

    Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong

    2016-01-01

    Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.

  17. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile 306, Santiago 22 (Chile); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: shuo@astro.columbia.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ∼100 kyr) with low surface brightness and radii up to ∼30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  18. X-ray photoelectron spectroscopy of nano-multilayered Zr-O/Al-O coatings deposited by cathodic vacuum arc plasma

    International Nuclear Information System (INIS)

    Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO2 and Al2O3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar+ ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15o, 45o and 75o relative to the sample surface. It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO2 samples, producing ZrO and free Zr along with ZrO2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al2O3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering. Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.

  19. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    OpenAIRE

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N. Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-01-01

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail wit...

  20. Behaviour of reconstructed attenuation values with X-ray tube voltage in an experimental third-generation industrial CT system using Xscan linear detector array

    CERN Document Server

    Kumar, U; Pendharkar, A S; Singh, G

    2002-01-01

    The present paper discusses the adaptation of a digital radiographic scintillator-based linear detector array (LDA) in a third-generation continuous-rotate X-ray industrial tomographic imaging system. The LDA has been used in a collinear configuration. Behaviour of the reconstructed parameter, i.e., approximate linear absorption coefficient at the 'effective energy' with varying anode voltage of the constant potential X-ray tube is studied. Experiments have been carried out with a solid cylindrical Perspex block (50 mm dia.) in 50-150 kV tube voltage range. The experimentally reconstructed attenuation values were used to predict the effective energy of the X-ray beam. The present study also includes a discussion on the statistical behaviour of the reconstructed linear attenuation values.

  1. Instrumental aspects of tube-excited energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Energy-dispersive X-ray fluorescence spectrometry is an attractive and widely used method for sensitive multi-element analysis. The method suffers from the extreme density of spectral components in a rather limited energy range which implies the need for computer based spectrum analysis. The method of iterative least squares analysis is the most powerful tool for this. It requires a systematic and accurate description of the spectral features. Other important necessities for accurate analysis are the calibration of the spectrometer and the correction for matrix absorption effects in the sample; they can be calculated from available physical constants. Ours and similar procedures prove that semi-automatic analyses are possible with an accuracy of the order of 5%. (author)

  2. Hollow-Cathode Source Generates Plasma

    Science.gov (United States)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  3. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  4. Application of an expectation maximization method to the reconstruction of X-ray-tube spectra from transmission data

    Energy Technology Data Exchange (ETDEWEB)

    Endrizzi, M., E-mail: m.endrizzi@ucl.ac.uk [Dipartimento di Fisica, Università di Siena, Via Roma 56, 53100 Siena (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Delogu, P. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Oliva, P. [Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna 2, 07100 Sassari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, s.p. per Monserrato-Sestu Km 0.700, 09042 Monserrato (Italy)

    2014-12-01

    An expectation maximization method is applied to the reconstruction of X-ray tube spectra from transmission measurements in the energy range 7–40 keV. A semiconductor single-photon counting detector, ionization chambers and a scintillator-based detector are used for the experimental measurement of the transmission. The number of iterations required to reach an approximate solution is estimated on the basis of the measurement error, according to the discrepancy principle. The effectiveness of the stopping rule is studied on simulated data and validated with experiments. The quality of the reconstruction depends on the information available on the source itself and the possibility to add this knowledge to the solution process is investigated. The method can produce good approximations provided that the amount of noise in the data can be estimated. - Highlights: • An expectation maximization method was used together with the discrepancy principle. • The discrepancy principle is a suitable criterion for stopping the iteration. • The method can be applied to a variety of detectors/experimental conditions. • The minimum information required is the amount of noise that affects the data. • Improved results are achieved by inserting more information when available.

  5. Application of an expectation maximization method to the reconstruction of X-ray-tube spectra from transmission data

    International Nuclear Information System (INIS)

    An expectation maximization method is applied to the reconstruction of X-ray tube spectra from transmission measurements in the energy range 7–40 keV. A semiconductor single-photon counting detector, ionization chambers and a scintillator-based detector are used for the experimental measurement of the transmission. The number of iterations required to reach an approximate solution is estimated on the basis of the measurement error, according to the discrepancy principle. The effectiveness of the stopping rule is studied on simulated data and validated with experiments. The quality of the reconstruction depends on the information available on the source itself and the possibility to add this knowledge to the solution process is investigated. The method can produce good approximations provided that the amount of noise in the data can be estimated. - Highlights: • An expectation maximization method was used together with the discrepancy principle. • The discrepancy principle is a suitable criterion for stopping the iteration. • The method can be applied to a variety of detectors/experimental conditions. • The minimum information required is the amount of noise that affects the data. • Improved results are achieved by inserting more information when available

  6. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  7. Operando and in situ X-ray spectroscopies of degradation in La0.6Sr0.4Co0.2Fe0.8O(3-δ) thin film cathodes in fuel cells.

    Science.gov (United States)

    Lai, Samson Y; Ding, Dong; Liu, Mingfei; Liu, Meilin; Alamgir, Faisal M

    2014-11-01

    Information from ex situ characterization can fall short in describing complex materials systems simultaneously exposed to multiple external stimuli. Operando X-ray absorption spectroscopy (XAS) was used to probe the local atomistic and electronic structure of specific elements in a La0.6Sr0.4Co0.2Fe0.8O(3-δ) (LSCF) thin film cathode exposed to air contaminated with H2O and CO2 under operating conditions. While impedance spectroscopy showed that the polarization resistance of the LSCF cathode increased upon exposure to both contaminants at 750 °C, XAS near-edge and extended fine structure showed that the degree of oxidation for Fe and Co decreases with increasing temperature. Synchrotron-based X-ray photoelectron spectroscopy tracked the formation and removal of a carbonate species, a Co phase, and different oxygen moieties as functions of temperature and gas. The combined information provides insight into the fundamental mechanism by which H2O and CO2 cause degradation in the cathode of solid oxide fuel cells. PMID:25205041

  8. Structural integrity--Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yahong; Hu, Enyuan; Yang, Feifei; Corbett, Jeff; Sun, Zhihong; Lyu, Yingchun; Yu, Xiqian; Liu, Yijin; Yang, Xiao-Qing; Li, Hong (BNL); (SLAC); (UCSF); (Donghua); (Chinese Aca. Sci.)

    2016-10-24

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. Here, our study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. We performed combined X-ray spectroscopy, diffraction and microscopy experiments to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.

  9. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Elke

    2010-09-10

    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent tissue and animal studies, the whole multi-stage process is completed by clinical trials that translate the results of fundamental research into clinical application. In this context, the present dissertation focuses on the establishment of radiobiological in vitro cell experiments at unconventional, but clinical relevant radiation qualities. In the first part of the present work the energy dependent biological effectiveness of photons was studied examining low-energy X-rays (≤ 50 keV), as used for mammography, and high-energy photons (≥ 20 MeV) as proposed for future radiotherapy. Cell irradiation experiments have been performed at conventional X-ray tubes providing low-energy photons and 200 kV reference radiation as well. In parallel, unconventional quasi-monochromatic channeling X-rays and high-energy bremsstrahlung available at the radiation source ELBE of the Forschungszentrum Dresden-Rossendorf were considered for radiobiological experimentation. For their precise dosimetric characterization dosimeters based on the thermally stimulated emission of exoelectrons and on radiochromic films were evaluated, whereas just the latter was found to be suitable for the determination of absolute doses and spatial dose distributions at cell position. Standard ionization chambers were deployed for the online control of cell irradiation experiments. Radiobiological effects were analyzed in human mammary epithelial cells on different subcellular levels revealing an increasing amount

  10. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    International Nuclear Information System (INIS)

    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent tissue and animal studies, the whole multi-stage process is completed by clinical trials that translate the results of fundamental research into clinical application. In this context, the present dissertation focuses on the establishment of radiobiological in vitro cell experiments at unconventional, but clinical relevant radiation qualities. In the first part of the present work the energy dependent biological effectiveness of photons was studied examining low-energy X-rays (≤ 50 keV), as used for mammography, and high-energy photons (≥ 20 MeV) as proposed for future radiotherapy. Cell irradiation experiments have been performed at conventional X-ray tubes providing low-energy photons and 200 kV reference radiation as well. In parallel, unconventional quasi-monochromatic channeling X-rays and high-energy bremsstrahlung available at the radiation source ELBE of the Forschungszentrum Dresden-Rossendorf were considered for radiobiological experimentation. For their precise dosimetric characterization dosimeters based on the thermally stimulated emission of exoelectrons and on radiochromic films were evaluated, whereas just the latter was found to be suitable for the determination of absolute doses and spatial dose distributions at cell position. Standard ionization chambers were deployed for the online control of cell irradiation experiments. Radiobiological effects were analyzed in human mammary epithelial cells on different subcellular levels revealing an increasing amount

  11. High-voltage virtual-cathode microwave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Thode, L.; Snell, C.M.

    1991-01-01

    In contrast to a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential is sufficiently large to cause electron reflection. The region associated with electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and by reflexing electrons trapped in the potential well formed between the real and virtual cathodes. A virtual-cathode device based on the first mechanism is a vircator while one based on latter mechanism is a reflex diode. A large number of low-voltage virtual-cathode microwave configurations have been investigated. Initial simulations of a high-voltage virtual-cathode device using a self-consistent particle-in-cell code indicated reasonable conversion efficiency with no frequency chirping. The nonchirping character of the high-voltage virtual-cathode device lead to the interesting possibility of locking four very-high-power microwave devices together using the four transmission lines available at Aurora. Subsequently, in support of two high-voltage experiments, simulations were used to investigate the effect of field-emission threshold and velvet position on the cathode; anode and cathode shape; anode-cathode gap spacing; output waveguide radius; diode voltage; a cathode-coaxial-cavity resonator; a high-frequency ac-voltage drive; anode foil scattering and energy loss; and ion emission on the microwave frequency and power. Microwave

  12. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  13. Hollow cathode ion source without magnetic field

    International Nuclear Information System (INIS)

    On the base of the IBM-4 ion source a hollow cathode source operating in the continuous regime is developed. The gas discharge chamber diameter equals 100 mm, chamber height - 50 mm. A hollow cathode represents a molybdenum tube with an internal diameter 13 mm and wall thickness 0,7-0,8 mm. An emitter is manufactured from zirconium carbide and lanthanum hexaboride. The investigations of the source operation have shown both cathodes operated efficiency. Electron emission density consitutes 25 A/cm2. At the 50 A discharge current ion current density in a center of plasma emitter constitutes 120 mA/cm2. As a result of the investigations carried out the compatibility of the hollow cathode and the IBM-type source is shown

  14. Optimization of protocols and increase the life of the tube of X rays in computer tomography;Otimizacao de protocolos e aumento dsa vida util do tubo de raios X em tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Viero, A.P. [Centro Universitario Franciscano, Santa Maria, RS (Brazil); Botelho, Marcel Z.; Torunsky, Caroline G. [STAFF - Solucoes em Fisica Medica e Radioprotecao, Santa Maria, RS (Brazil); Paula, V. [Clinica Radiologica Caridade (DIX), Santa Maria, RS (Brazil)

    2009-07-01

    The objective of this study was to evaluate the reduction of the radiation dose and X-ray tube heating in computed tomography exams. Exams of the skull, abdomen and thorax were evaluated. It was verified that the technique used could be changed, suggesting new protocols and comparing image quality, radiation dose and X-ray tube heating. A mAs reduction could be done without compromising the diagnostic quality bringing a decrease up to 21,92% in the dose of skull exams, 20,25% for the examinations, abdomen and 22,06% for the examinations of thorax. The reduction on the X-ray tube heating for skull, abdomen and thorax exams was approximately 22,2%, 20,0% and 22,2% respectively. It is concluded that a change on the described protocols will cause a significant reduction dose delivered to patients and on X-ray tube heating without compromising the diagnosis. (author)

  15. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  16. Focused cathode design to reduce anode heating during vircator operation

    Science.gov (United States)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-01

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  17. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  18. Focused cathode design to reduce anode heating during vircator operation

    International Nuclear Information System (INIS)

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages

  19. X线机管头支持装置的结构设计%Mechanism design of X-ray tube head support device

    Institute of Scientific and Technical Information of China (English)

    王士清; 钱炜

    2013-01-01

    Objective X-ray tube target supporting device is an important component of the radiography X-ray equipment,with the problems of low automatization and low displacement precision. Methods We design an X-ray tube target supporting device which can freely switch between manual and automatic according to the demand. The synchronous belt drive and open synchronous belt feedback mechanism are applied in the moving mechanism. And the composition and function of this device are discussed. Results This device solved the problem of the motor-driven block in the long rail and the displacement feedback. Conclusions This device freely switches between manual and automatic, and meets the positioning requirements of X-ray tube head in photography.%目的 X线机管头支持装置是摄影X线机中的重要部件,目前存在自动化程度及移动精度低的问题.方法 设计了一种根据需求可在手动和电动之间自由切换的X线管头支持装置,在移动机构中采用同步带传动机构和开口同步带反馈机构,并对装置的组成和功能进行了讨论.结果 解决了滑车在长导轨上的电动和滑车在导轨上位置的反馈.结论本装置可实现电动和手动之间的切换,并满足X线机在摄影时所需的X线管头位置要求.

  20. X-ray fluorescence study of the variation in the layer composition of a copper-nickel alloy tube corroded by sea water

    International Nuclear Information System (INIS)

    Variation in the layerwise composition of a cupro-nickel tube corroded by sea-water has been studied using a chemico-X-ray fluorescence technique. The corroded tube had been in use in a nuclear reactor, using sea-water as coolant. A plot of composition (% Cu or Ni) against the depth of the layer from the surface, clearly demonstrated that the sea-water had leached away copper in preference to nickel. The composition of the top layers dropped to 38% Cu from the nominal composition of 90% Cu in the uncorroded surface. The percentage of copper increased gradually with the depth of the layers from the surface and at about 1 um depth the composition reached the nominal value. A thin top-most layer showed somewhat higher copper content than the subsequent layer which has been attributed to reabsorption or redeposition of copper during the non-flow period. (author)

  1. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    International Nuclear Information System (INIS)

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy

  2. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M [Kyoto University Hospital, Kyoto, Kyoto (Japan)

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  3. 阴极射线管色度转换的神经网络模型%Cathode ray tube color conversion model by use of neural networks

    Institute of Scientific and Technical Information of China (English)

    楼文高; 王晓红; 匡罗平

    2006-01-01

    利用神经网络技术实现了从阴极射线管(CRT)的R、G和B空间到CIE的标准色度空间的转换.用拟牛顿法训练网络模型,建立了从CRT的R、G和B到CIE的X、Y和Z色度空间变换的3-10-10-3神经网络模型.采用7点LOG空间分布方案的343个训练样本建模的试验表明,收敛性与训练时间及模型精度均优于前人采用3~4个隐层的方案,343个训练样本、216个检验样本和64组测试样本的平均转换精度分别为0.6个CIELUV色差单位,说明该模型的泛化能力很好.

  4. Surface Characterization of the LCLS RF Gun Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Brachmann, Axel; /SLAC; Decker, Franz-Josef; /SLAC; Ding, Yuantao; /SLAC; Dowell, David; /SLAC; Emma, Paul; /SLAC; Frisch, Josef; /SLAC; Gilevich, Sasha; /SLAC; Hays, Gregory; /SLAC; Hering, Philippe; /SLAC; Huang, Zhirong; /SLAC; Iverson, Richard; /SLAC; Loos, Henrik; /SLAC; Miahnahri, Alan; /SLAC; Nordlund, Dennis; /SLAC; Nuhn, Heinz-Dieter; /SLAC; Pianetta, Piero; /SLAC; Turner, James; /SLAC; Welch, James; /SLAC; White, William; /SLAC; Wu, Juhao; /SLAC; Xiang, Dao; /SLAC

    2012-06-25

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  5. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes, through x-ray diffraction method

    International Nuclear Information System (INIS)

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  6. Study of the experimental parameters associated to the determination of residual macro stresses in stainless steel tubes through x-rays diffraction method

    International Nuclear Information System (INIS)

    The basic principles related to the determination of residual macro stresses by X-rays diffractometry are present, whereas different techniques associated with the respective experimental errors are discussed. The residual stresses in two 304 L stainless steel tubes were measured using three models of diffractometers, Rigaku SG-8, Jeol JDX-11PA and Rigaku Strainflex. The measured values of stresses as well as the reproducibilities are examined. The suitability of peak location method, by fitting three data points to the parabolic function, is discussed through values of position and intensity obtained by two of the above diffractometers. (author)

  7. γ-射线透射技术在炉管测焦方面的应用%APPLICATION OF MEASURING COKING IN CRACKING FURNACE TUBE WITH γ-RAY TRANSMISSION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    封瑞江; 时维振

    2001-01-01

    In this paper,the basic principle of γ-ray transmission technique is introduced. Through the study of single tube coking experiments,the possibility of the application of γ-ray transmission technique in furnace tubes is also discussed. The effects of cracking temperature,retention period and steam dilution ratio on coking rate are investigated .Comparing to the results by means of coupon weighing weight,γ-ray transmission technique is feasible for coking measurement. The results are consistent with other reported data in literature.

  8. X-ray diffraction residual stress measurement in the rolled-joint zone of Zr - 2.5 % Nb pressure tube

    International Nuclear Information System (INIS)

    The in-service experience of Zr - 2.5 % Nb pressure tubes in CANDU-type nuclear reactors has demonstrated very good performance over a long period of time. However, analyses done by AECL specialists on most failure cases, showed that a big percentage of defects are manufacturing defects, which appear mostly at the beginning of the rolled-joint zone. It has been observed that a correct rolling ensures an acceptable distribution of residual stress, but an incorrect one leads to an accumulation of big values of residual stress. This determines a preferential radial orientation of hydrides, which during operation in the reactor can produce DHC. To ensure a suitable performance of the Zr - 2.5 % Nb pressure tubes in the CANDU reactor, it is very important to have a correct rolling as mentioned in the procedure. This work presents a methodology for the measurement of the stressing state in the surfaces layers of the rolled-joint zone. The X-ray diffraction method can also be used for establishing the residual stress distribution across the tub wall, in order to ensure a good performance at Cernavoda nuclear plant. The results obtained for the investigated tube have led to the conclusion that the rolling process was correctly applied in this case, the values obtained for the residual stress being in good agreement with those accepted in literature. (Author) 2 Figs., 2 Tabs

  9. Erosion behaviour of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    CERN Document Server

    Franz, Robert; Hawranek, Gerhard; Polcik, Peter

    2015-01-01

    Al$_{x}$Cr$_{1-x}$ composite cathodes with Al contents of x = 0.75, 0.5 and 0.25 were exposed to cathodic arc plasmas in Ar, N$_2$ and O$_2$ atmospheres and their erosion behaviour was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by X-ray diffraction analysis. Cathode poisoning effects in the reactive N$_2$ and O$_2$ atmospheres were non-uniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded centre region of the cathodes.

  10. Possible use of CdTe detectors in kVp monitoring of diagnostic x-ray tubes

    OpenAIRE

    Krmar, M.; Bucalović, N.; Baucal, M.; Jovančević, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of x-ray photon spectra) should be monitored routinely; however a standardized noninvasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent x-ray lines registered after irradiation of some material by an x-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to dist...

  11. A position-sensitive gamma-ray detector for positron annihilation 2D-ACAR based on metal package photomultiplier tubes

    CERN Document Server

    Inoue, K; Nagashima, Y; Hyodo, T; Nagai, Y; Muramatsu, S; Nagai, S; Masuda, K

    2002-01-01

    A new position-sensitive gamma-ray detector to be used in a two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) apparatus has been developed. It consists of 36 compact position-sensitive photomultiplier tubes (PS-PMT: HAMAMATSU R5900-00-C8), a light guide, and 2676 Bi sub 4 Ge sub 3 O sub 1 sub 2 (BGO) scintillator pieces of size 2.6 mmx2.6 mmx18 mm. A high detection efficiency for 511 keV gamma-ray is achieved with the length of BGO scintillators used. The detection area is about 160 mmx160 mm. The 288 anode outputs of the PS-PMTs are wired and connected to resistor chains from which 16 outputs (8 outputs each along the X and Y directions) are taken to identify the incident position of the gamma-ray. The spatial resolution is about 3 mm (FWHM). The timing signal taken from the last dynodes of the PS-PMTs gives a timing resolution of 7.7 ns (FWHM) for 511 keV positron annihilation gamma-rays.

  12. A position-sensitive γ-ray detector for positron annihilation 2D-ACAR based on metal package photomultiplier tubes

    Science.gov (United States)

    Inoue, Koji; Saito, Haruo; Nagashima, Yasuyuki; Hyodo, Toshio; Nagai, Yasuyoshi; Muramatsu, Shinichi; Nagai, Shota; Masuda, Keisuke

    2002-07-01

    A new position-sensitive γ-ray detector to be used in a two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) apparatus has been developed. It consists of 36 compact position-sensitive photomultiplier tubes (PS-PMT: HAMAMATSU R5900-00-C8), a light guide, and 2676 Bi 4Ge 3O 12 (BGO) scintillator pieces of size 2.6 mm×2.6 mm×18 mm. A high detection efficiency for 511 keV γ-ray is achieved with the length of BGO scintillators used. The detection area is about 160 mm×160 mm. The 288 anode outputs of the PS-PMTs are wired and connected to resistor chains from which 16 outputs (8 outputs each along the X and Y directions) are taken to identify the incident position of the γ-ray. The spatial resolution is about 3 mm (FWHM). The timing signal taken from the last dynodes of the PS-PMTs gives a timing resolution of 7.7 ns (FWHM) for 511 keV positron annihilation γ-rays.

  13. A position-sensitive γ-ray detector for positron annihilation 2D-ACAR based on metal package photomultiplier tubes

    International Nuclear Information System (INIS)

    A new position-sensitive γ-ray detector to be used in a two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) apparatus has been developed. It consists of 36 compact position-sensitive photomultiplier tubes (PS-PMT: HAMAMATSU R5900-00-C8), a light guide, and 2676 Bi4Ge3O12 (BGO) scintillator pieces of size 2.6 mmx2.6 mmx18 mm. A high detection efficiency for 511 keV γ-ray is achieved with the length of BGO scintillators used. The detection area is about 160 mmx160 mm. The 288 anode outputs of the PS-PMTs are wired and connected to resistor chains from which 16 outputs (8 outputs each along the X and Y directions) are taken to identify the incident position of the γ-ray. The spatial resolution is about 3 mm (FWHM). The timing signal taken from the last dynodes of the PS-PMTs gives a timing resolution of 7.7 ns (FWHM) for 511 keV positron annihilation γ-rays

  14. Determination of the efficiency of high purity germanium and silicon diode detectors for improved assessment of emission spectra delivered by medical X-ray tubes

    International Nuclear Information System (INIS)

    X-ray sources are widely used in medicine: brachytherapy, radiodiagnosis, mammography and contact radiotherapy. Kerma in air is the primary quantity measured to determine the dose to the patient. Accurate air kerma assessment is obtained using correction factors calculated using the emission spectrum. The Laboratoire National Henri Becquerel launched an in-depth study of the spectral emission of its reference X-ray beams used in dosimetry. Two semiconductor detectors are discussed here: a High-Purity germanium and a silicon PiN, both cooled and operated with dedicated electronics and software. In the low energy range (E≤50 keV), those spectrometers are complementary but require a careful calibration to deduce the emitted spectrum from the detected one. Indeed, both detectors were characterized in terms of spectral response and intrinsic efficiency using a tuneable monochromatic X-ray source (SOLEX at CEA Saclay) in the 5- to 20-keV energy range and various radionuclides. The characterization methods and results, including the first measured spectra of medical X-ray tubes (high voltage≤50 kV), are presented in this work. This paper presents the first step of a broader project, aiming at assessing the emission spectrum independently of the detector choice. (authors)

  15. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  16. Lanthanum hexaboride hollow cathode for dense plasma production

    International Nuclear Information System (INIS)

    A hollow tube cathode using lanthanum hexaboride as the electron emitter has been designed and constructed. Tests in both argon and hydrogen indicate that this cathode is capable of producing over 800 A of electron current continuously, corresponding to over 25 A/cm2 from the LaB6. The cathode has been operated for over 300 h and exposed to air more than 100 times with no deterioration in emission. Projected lifetime is in excess of 3500 h for the sintered LaB6 piece tested in this configuration. Construction details, performance characteristics, and discussions of space charge limits on emission are described

  17. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  18. Realization of radiobiological in vitro cell experiments at conventional X-ray tubes and unconventional radiation sources

    OpenAIRE

    Beyreuther, Elke

    2010-01-01

    More than hundred years after the discovery of X-rays different kinds of ionizing radiation are ubiquitous in medicine, applied to clinical diagnostics and cancer treatment as well. Irrespective of their nature, the widespread application of radiation implies its precise dosimetric characterization and detailed knowledge of the radiobiological effects induced in cancerous and normal tissue. Starting with in vitro cell irradiation experiments, which define basic parameters for the subsequent t...

  19. 输卵管Sonovue超声造影与碘海醇X线造影的对比分析%Comparison of Sonovue contrast-enhanced ultrasound and Iohexol X-ray hysterosalpingogram for fallopian tube assessment

    Institute of Scientific and Technical Information of China (English)

    王士琴; 袁伟

    2013-01-01

      目的比较输卵管Sonovue超声造影与碘海醇X线造影的结果,以期提高超声造影的准确率。方法对45例不孕不育患者,分别在B超下行Sonovue输卵管造影,在X线下行碘剂造影。结果B超:输卵管通畅者35例(66条),通而不畅7例(13条),不通者7例(10条);X线:输卵管通畅者38例(73条),通而不畅4例(7条),不通者6例(9条)。结论输卵管Sonovue超声造影诊断准确率略低于碘海醇X线造影。%  Objective To compare Sonovue contrast-enhanced hysterosonography(CEUS)and Iohexol X-ray hysterosalpingography(HSG).Methods Forty-five patients with infertility underwent CEUS of fallopian tubes using Sonovue followed by Iohexol X-ray HSG.Results Sixty-six fallopian tubes in 35 patients were clearly demonstrated on CEUS. Contrast flow was impeded in 13 tubes of 7 patients. Ten tubes were obstructed in 7 patients.On Iohexol HSG,73 tubes were clearly demonstrated in 38 patients.Contrast flow was impeded in 7 tubes of 4 patients. Nine tubes were obstructed in 6 patients.Conclusions Sonovue CEUS is slightly less accurate than Iohexol X-ray HSG.

  20. High-energy x-ray detection of G359.89–0.08 (SGR A–E): magnetic flux tube emission powered by cosmic rays?

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.;

    2014-01-01

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center...

  1. HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE

    Science.gov (United States)

    Glass, N.W.

    1960-01-19

    A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.

  2. SU-E-J-06: Additional Imaging Guidance Dose to Patient Organs Resulting From X-Ray Tubes Used in CyberKnife Image Guidance System

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A; Ding, G [Vanderbilt University, Nashville, TN (United States)

    2015-06-15

    Purpose: The use of image-guided radiation therapy (IGRT) has become increasingly common, but the additional radiation exposure resulting from repeated image guidance procedures raises concerns. Although there are many studies reporting imaging dose from different image guidance devices, imaging dose for the CyberKnife Robotic Radiosurgery System is not available. This study provides estimated organ doses resulting from image guidance procedures on the CyberKnife system. Methods: Commercially available Monte Carlo software, PCXMC, was used to calculate average organ doses resulting from x-ray tubes used in the CyberKnife system. There are seven imaging protocols with kVp ranging from 60 – 120 kV and 15 mAs for treatment sites in the Cranium, Head and Neck, Thorax, and Abdomen. The output of each image protocol was measured at treatment isocenter. For each site and protocol, Adult body sizes ranging from anorexic to extremely obese were simulated since organ dose depends on patient size. Doses for all organs within the imaging field-of-view of each site were calculated for a single image acquisition from both of the orthogonal x-ray tubes. Results: Average organ doses were <1.0 mGy for every treatment site and imaging protocol. For a given organ, dose increases as kV increases or body size decreases. Higher doses are typically reported for skeletal components, such as the skull, ribs, or clavicles, than for softtissue organs. Typical organ doses due to a single exposure are estimated as 0.23 mGy to the brain, 0.29 mGy to the heart, 0.08 mGy to the kidneys, etc., depending on the imaging protocol and site. Conclusion: The organ doses vary with treatment site, imaging protocol and patient size. Although the organ dose from a single image acquisition resulting from two orthogonal beams is generally insignificant, the sum of repeated image acquisitions (>100) could reach 10–20 cGy for a typical treatment fraction.

  3. 12Cao-7Al2o3 Electride Hollow Cathode

    Science.gov (United States)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  4. Temperature variation of a thermionic cathode during electron emission

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is necessary to know the actual temperature of a thermionic cathode that works as the electron source in a microwave tube. It has been found that the temperature of the cathode drops markedly during the thermionic emission. For example, the temperature could fall by about 30oC under a current density of 2.92 A/cm2. Using the molecular thermodynamics, the dependence of the cathode temperature on the emission current density has been obtained. It has been theoretically pointed out that several factors, such as heating model and temperature coefficient of resis-tance of heater, can influence the cathode temperature. These theoretical conclu-sions were supported by the experimental results.

  5. Cathodes - Technological review

    Energy Technology Data Exchange (ETDEWEB)

    Cherkouk, Charaf; Nestler, Tina [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

    2014-06-16

    Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  6. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  7. Cathodes - Technological review

    International Nuclear Information System (INIS)

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented

  8. The Evaluation of Conventional X-ray Exposure Parameters Including Tube Voltage and Exposure Time in Private and Governmental Hospitals of Lorestan Province, Iran

    Directory of Open Access Journals (Sweden)

    Mehrdad Gholami

    2015-07-01

    Full Text Available Introduction In radiography, dose and image quality are dependent on radiographic parameters. The problem is caused from incorrect use of radiography equipment and from the radiation exposure to patients much more than required. Therefore, the aim of this study was to implement a quality-control program to detect changes in exposure parameters, which may affect diagnosis or patient radiation dose. Materials and Methods This cross-sectional study was performed on seven stationary X-ray units in sixhospitals of Lorestan province. The measurements were performed, using a factory-calibrated Barracuda dosimeter (model: SE-43137. Results According to the results, the highest output was obtained in A Hospital (M1 device, ranging from 107×10-3 to 147×10-3 mGy/mAs. The evaluation of tube voltage accuracy showed a deviation from the standard value, which ranged between 0.81% (M1 device and 17.94% (M2 device at A Hospital. The deviation ranges at other hospitals were as follows: 0.30-27.52% in B Hospital (the highest in this study, 8.11-20.34% in C Hospital, 1.68-2.58% in D Hospital, 0.90-2.42% in E Hospital and 0.10-1.63% in F Hospital. The evaluation of exposure time accuracy showed that E, C, D and A (M2 device hospitals complied with the requirements (allowing a deviation of ±5%, whereas A (M1 device, F and B hospitals exceeded the permitted limit. Conclusion The results of this study showed that old X-ray equipments with poor or no maintenance are probably the main sources of reducing radiographic image quality and increasing patient radiation dose.

  9. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    Science.gov (United States)

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  10. Calculation of size specific dose estimates (SSDE) value at cylindrical phantom from CBCT Varian OBI v1.4 X-ray tube EGSnrc Monte Carlo simulation based

    Science.gov (United States)

    Nasir, M.; Pratama, D.; Anam, C.; Haryanto, F.

    2016-03-01

    The aim of this research was to calculate Size Specific Dose Estimates (SSDE) generated by the varian OBI CBCT v1.4 X-ray tube working at 100 kV using EGSnrc Monte Carlo simulations. The EGSnrc Monte Carlo code used in this simulation was divided into two parts. Phase space file data resulted by the first part simulation became an input to the second part. This research was performed with varying phantom diameters of 5 to 35 cm and varying phantom lengths of 10 to 25 cm. Dose distribution data were used to calculate SSDE values using trapezoidal rule (trapz) function in a Matlab program. SSDE obtained from this calculation was compared to that in AAPM report and experimental data. It was obtained that the normalization of SSDE value for each phantom diameter was between 1.00 and 3.19. The normalization of SSDE value for each phantom length was between 0.96 and 1.07. The statistical error in this simulation was 4.98% for varying phantom diameters and 5.20% for varying phantom lengths. This study demonstrated the accuracy of the Monte Carlo technique in simulating the dose calculation. In the future, the influence of cylindrical phantom material to SSDE would be studied.

  11. Following ORR intermediates adsorbed on a Pt cathode catalyst during break-in of a PEM fuel cell by in operando X-ray absorption spectroscopy.

    Science.gov (United States)

    Ramaker, D E; Korovina, A; Croze, V; Melke, J; Roth, C

    2014-07-21

    In operando X-ray absorption spectroscopy data using the Δμ X-ray Absorption Near Edge Spectroscopy (XANES) analysis procedure is used to follow the ORR intermediate adsorbate coverage on a working catalyst in a PEMFC during initial activation and break-in. The adsorbate coverage and log i (Tafel) curves reveal a strong correlation, i.e., an increase in adsorbate intermediate coverage poisons Pt sites thereby decreasing the current. A decrease in Pt-O bond strength commensurate with decrease in potential causes a sequence of different dominant adsorbate volcano curves to exist, namely first O, then OH, and then OOH exactly as predicted by the different ORR kinetics mechanisms. During break-in, the incipient O coverage coming from exposure to air during storage and MEA preparation is rather quickly removed, compared to the slower and more subtle nanoparticle morphological changes, such as the rounding of the Pt nanoparticle edges/corners and smoothing of the planar surfaces, driven by the nanoparticle's tendency to lower its surface energy. These morphological changes increase the Pt-Pt average coordination number, decrease the average Pt-O bond strength, and thereby decrease the coverage of ORR intermediates, allowing increase in the current. PMID:24664398

  12. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Science.gov (United States)

    Napolitano, F.; Baqué, L.; Troiani, H.; Granada, M.; Serquis, A.

    2009-05-01

    La1-xSrxCo1-yFeyO3-δ oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La0.4Sr0.6Co0.8Fe0.2O3-δ (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  13. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  14. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  15. Cathode materials review

    International Nuclear Information System (INIS)

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  16. Streak tube photocathode development program. Phase 2, Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-20

    This report details the progress made toward developing a streak tube with greater than 1% quantum efficiency at a wavelength of 1300 nm. The achieved performance is the result of approximately three years of effort. The goal of Phase 2 of this contract was to seal a working 1.3 {mu}m streak tube. This effort was focused in two areas. First there was a continuing effort to further develop and demonstrate the cathodes ability to meet the stated requirements. The second effort was aimed at solving the mechanical and process related problems related to sealing this cathode onto a EG&G streak tube.

  17. 非介入技术在X光机管电流测量中的应用研究%Application of non-invasive technology in X-ray tube current measurement

    Institute of Scientific and Technical Information of China (English)

    黄平; 龚岚; 刘志宏

    2012-01-01

    X-ray machine is widely used in diagnostic radiology, radiotherapy, industrial testing and other related fields. It plays an important role in protecting the health of citizens and promoting social -economic ? Progress. As an important parameter of the intensity of X-ray, the current of X-ray tube has a major impact on the X-ray output quality, the clarity of pictures and other aspects. In order to ensure the accuracy of testing data and simplify the certification process, a testing method was designed on the basis of the non-invasive to measure the current of X-ray tube. Experimental results show that the method can accurately measure the X-ray tube's current.%X光机广泛应用于放射诊断、放射治疗、工业探伤等相关领域,在保障公民身体健康和促进社会经济进步方面发挥着重要作用.X光机管电流作为控制X射线强度的重要参数,对射线输出质量、拍片清晰度等方面产生重要影响.在保证检测数据准确、检定过程简易的情况下,设计采用了基于非介入式的X光机管电流测量方法,测试结果表明该方法能准确测量X光机管电流.

  18. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  19. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  20. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  1. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  2. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of maintenan

  3. Development and performance of resistive seamless straw-tube gas chambers

    Science.gov (United States)

    Takubo, Y.; Aoki, M.; Ishihara, A.; Ishii, J.; Kuno, Y.; Maeda, F.; Nakahara, K.; Nosaka, N.; Sakamoto, H.; Sato, A.; Terai, K.; Igarashi, Y.; Yokoi, T.

    2005-10-01

    A new straw-tube gas chamber which is made of seamless straw-tubes, instead of ordinary wound-type straw-tubes is developed. Seamless straw-tubes have various advantages over ordinary wound-type ones, in particular, in terms of mechanical strength and lesser wall thickness. Our seamless straw-tubes are fabricated to be resistive so that the hit positions along the straw axis can be read by cathode planes placed outside the straw-tube chambers, where the cathode strips run transverse to the straw axis. A beam test was carried out at KEK to study their performance. As a result of the beam test, the position resolution of the cathode strips of 220 μm is achieved, and an anode position resolution of 112 μm is also obtained.

  4. Pipeline integrity through cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. [Gas Authority India Ltd., New Delhi (India); Khanna, A.S. [Indian Inst. of Technology, Bombay (India)

    2008-07-01

    Pipeline integrity management is defined as a process for assessing and mitigating pipeline risks in an effort to reduce both the likelihood and consequences of incidents. Defects on pipelines result in production losses, environmental losses, as well as loss of goodwill and subsequent financial losses. This presentation addressed pipeline integrity through cathodic protection. It noted that pipeline integrity can be strengthened by successfully controlling, monitoring and mitigating corrosion strategies. It can also be achieved by avoiding external and internal corrosion failures. A good coating offers the advantages of low current density; lower power consumption; low wear of anodes; larger spacing between cathodic protection stations; and minimization of interference problems. The presentation reviewed cathodic protection of cross-country pipelines; a sacrificial cathodic protection system; and an impressed current cathodic protection system. The efficiency of a cathodic system was shown to depend on the use of reliable power sources; proper protection criterion; efficient and effective monitoring of cathodic protection; proper maintenance of the cathodic protection system; and effective remedial measures. Selection criteria, power sources, and a comparison of cathodic protection sources were also presented. Last, the presentation addressed protection criteria; current interruption circuits; monitoring of the cathodic protection system; use of corrosion coupons; advantages of weightless coupons; checking the insulating flanges for shorted bolts; insulated/short casings; anodic and cathodic interference; common corridor problems; and intelligent pigging. tabs., figs.

  5. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard [Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Polcik, Peter [Plansee Composite Materials GmbH, Siebenbürgerstrasse 23, 86983 Lechbruck am See (Germany)

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.

  6. Thermionically electron emitting matrix cathodes for magnetohydrodynamic generators: Analytical model

    International Nuclear Information System (INIS)

    Current and voltage drop calculations have been made for matrix cathodes having a number of sharp pins projecting out from its surface in open-cycle magnetohydrodynamic plasmas. It is assumed that from the cathode surface to the cathode sheath edge, the current flows in current tubes formed around the projected pins. The effect of high electric field on the work function of the tip has been taken into account and calculations are made for a variable number of tips and tip area. Work functions of the tip and the slant surface are taken to be different. The current and voltage characteristics have been obtained by solving the current continuity and Poisson's equations in spherical coordinate geometry. It is observed that the current increases with an increase in the number of pins per unit area and tip area. The theoretical results have been compared with the experimental observations

  7. Verification of high efficient broad beam cold cathode ion source.

    Science.gov (United States)

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  8. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... endoscope (a thin, flexible tube with a tiny camera and light at the tip) inserted through the ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  9. Ear tube insertion

    Science.gov (United States)

    Myringotomy; Tympanostomy; Ear tube surgery; Pressure equalization tubes; Ventilating tubes; Ear infection - tubes; Otitis - tubes ... trapped fluid can flow out of the middle ear. This prevents hearing loss and reduces the risk ...

  10. Tube wall thickness guage for hot stretch reducer

    International Nuclear Information System (INIS)

    A new system of tube wall thickness gauge for seamless tube on hot stretch reducing-mill is reported. The system adapts two methods using gamma rays. One is a new method measuring double wall thickness of tube another is a known method measuring mean value of cross section of tube. (author)

  11. Observations of soft x-ray emission and wall ablation in a fast low-energy pulsed capillary discharge

    Science.gov (United States)

    Valdivia, M. P.; Wyndham, E. S.; Ramos-Moore, E.; Ferrari, P.; Favre, M.

    2013-08-01

    We report on experimental observations of pulsed capillary discharges aimed at soft x-ray production within the water-window range. Through systematical studies of capillary tube characteristics and discharge conditions, radiation emission was analysed. Plasma properties were studied by means of spectrometry, wide-band PIN diode signals and plasma micro-channel plate imaging. Surface and bulk material analyses were performed using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and Auger electron spectroscopy (AES) in order to characterize the capillary inner surface after discharges. We report on hollow cathode effect enhancement by modification of cathode electrode aperture, as well as pressure conditions along the capillary, which were found to have an important effect over plasma and x-ray yields due to the modification of local electrical field and gas density. Capillary tube material and inner diameter also modified the interaction of the plasma channel with the capillary surface, thus modifying the plasma source characteristics. It was found that emission of the NVI line at 28.8 Å can be enhanced within the conditions studied, from no significant emission to sources delivering an average brightness of over 70.0 mW mm-2 per 2π sr. This demonstrates that hollow cathode electrons and plasma-wall interaction and ablation have a direct impact on emission quality.

  12. Thermionic properties of Mo-La2O3 cathode wires

    Institute of Scientific and Technical Information of China (English)

    张久兴; 周美玲; 周文元; 王金淑; 聂祚仁; 左铁镛

    2002-01-01

    The recent advances in Mo-La2O3 thermionic cathode materials were presented. It is shown that Mo-La2O3 cathode has better ductility, radioactive pollution-free, excellent thermionic electron-emission properties and lower operating temperature compared with W-ThO2 cathode. At operating temperature 1350~1400℃, the average saturation current of the Mo-La2O3 cathode is 118mA, the corresponding average current density is 367mA/cm2, and the average emission efficiency is 11.8mA/W. The lifetime of diode is more than 2000h when the stable emission current is 80mA. Moreover, the lifetime of practical 6T51-type triode is more than 1000h. These advances show that the Mo-La2O3 cathode electron tube is closer to industry application.

  13. 高频X线机管电压调整电路的工作原理及故障分析%Working Principle and Fault Analysis of Tube Voltage Adjustment Circuit for High-frequency X-ray Machine

    Institute of Scientific and Technical Information of China (English)

    赵祥坤; 于广浩; 李永生

    2013-01-01

    High frequency X-ray machine and power frequency X-ray machine differ from voltage adjusting circuit. SCM TL594 is the core device in voltage adjusting circuit of high -frequency X -ray machine. Its application has a strong representation in high frequency X -ray machine's tube voltage adjustment. The tube voltage and frequency of high frequency X-ray machine are controlled by the output pulse width and frequency of TL594 .The understanding of the operating principle of TL594 not only has certain theory significance for high frequency machine teaching but also practical significance for the high frequency machine troubleshooting.%高频X线机区别于工频X线机的主要电路是管电压调整电路,而单片机TL594又是管电压调整电路中的核心器件,它的应用在高频机管电压调节中具有较强的代表性.TL594是通过改变输出脉宽和频率,直接控制高频X线机X线管电压的高低和频率的大小通过对TL594每一个管脚功能的深入探讨,研究TL594在高频X线管电压调节中的工作原理,将不仅对高频机教学具有一定的理论意义,而且在高频机故障排除中具有较强的实践意义.

  14. The cathode plasma simulation

    Science.gov (United States)

    Suksila, Thada

    Since its invention at the University of Stuttgart, Germany in the mid-1960, scientists have been trying to understand and explain the mechanism of the plasma interaction inside the magnetoplasmadynamics (MPD) thruster. Because this thruster creates a larger level of efficiency than combustion thrusters, this MPD thruster is the primary cadidate thruster for a long duration (planetary) spacecraft. However, the complexity of this thruster make it difficult to fully understand the plasma interaction in an MPD thruster while operating the device. That is, there is a great deal of physics involved: the fluid dynamics, the electromagnetics, the plasma dynamics, and the thermodynamics. All of these physics must be included when an MPD thruster operates. In recent years, a computer simulation helped scientists to simulate the experiments by programing the physics theories and comparing the simulation results with the experimental data. Many MPD thruster simulations have been conducted: E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol et al.[7]. All of these MPD computer simulations helped the scientists to see how quickly the system responds to the new design parameters. For this work, a 1D MPD thruster simulation was developed to find the voltage drop between the cathode and the plasma regions. Also, the properties such as thermal conductivity, electrical conductivity and heat capacity are temperature and pressure dependent. These two conductivity and heat capacity are usually definded as constant values in many other models. However, this 1D and 2D cylindrical symmetry MPD thruster simulations include both temperature and pressure effects to the electrical, thermal conductivities and heat capacity values interpolated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant; however, in this study the pressure at 66 Pa was set as a baseline. The 1D MPD thruster simulation includes the sheath region, which is the

  15. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  16. Photomultiplier tubes for Low Level Cerenkov Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O.

    1965-03-15

    Tube backgrounds of several 2-inch photomultiplier types having S11, 'S' , S13 and S20 cathodes are compared by measuring signal and background pulse height distributions at pulse heights corresponding to a few photo-electrons. The reference signal is generated by means of a {beta}-source and a plexiglass radiator. It is found that comparatively good results are obtained with selected tubes of the EMI types 6097B and 9514B having equivalent dark current dc values down to 10{sup -12} input lumens. Special interest is devoted to the correlation between the measured tube backgrounds and the dark current dc values of the tubes, as a good correlation between these parameters simplifies the selection of photomultiplier tubes. The equivalent dark currents of the tested tubes extend over the range 10{sup -12} to 10{sup -9} input lumens. Although the investigation deals with photomultiplier tubes intended for use in low level Cerenkov detectors it is believed that the results could be valuable in other fields where photomultiplier tubes are utilized for the detection of weak light pulses.

  17. Effect of Cathode Designs on Radiation Emission of Compact Diode (CD) Device

    Science.gov (United States)

    Khan, Muhammad Zubair; Yap, Seong Ling; Khan, Muhammad Afzal; Attiq-ur-Rehman; Zakaullah, Muhammad

    2013-02-01

    A comparative study on the radiation emission such as X-ray yield and efficiency has been carried out in compact diode device. Two different designs of cathode having sharp-edged razor blade (of 0.5 mm thickness with width 2 mm) and a sewing machine needle (of 0.5 mm diameter at tip with length of 39 mm) have been tested for this study. The radiation emission (X-ray yield) was determined by employing two set of PIN diodes at fixed positions. The maximum X-ray yield depends on cathode designs and electrodes separation in few mm. The yield of X-ray is small in the case of sharp-edged razor blade cathode than the sewing machine needle cathode. The X-ray yield, measured by 4π-geometry, shows its dependence on the cathode designs. The maximum X-ray yield is found to be 939.2 ± 65.7 mJ with efficiency of 0.4142 ± 0.0289%. This study indicates that the compact diode device could be optimized to a great extent for optimal X-ray yield by using an appropriate cathode design.

  18. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...

  19. Destructive physical analysis of hollow cathodes from the Deep Space 1 Flight spare ion engine 30,000 hr life test

    Science.gov (United States)

    Sengupta, Anita

    2005-01-01

    Destructive physical analysis of the discharge and neutralizer hollow cathode assemblies from the Deep Space 1 Flight Spare 30,000 Hr life test was performed to characterize physical and chemical evidence of operationally induced effects after 30,372 hours of operation with beam extraction. Post-test inspection of the discharge-cathode assembly was subdivided into detailed analyses at the subcomponent level. Detailed materials analysis and optical inspection of the insert, orifice plate, cathode tube, heater, keeper assembly, insulator, and low-voltage propellant isolator were performed. Energy dispersive X-ray (EDX) and scanning electron microscopy (SEW analyses were used to determine the extent and composition of regions of net deposition and erosion of both the discharge and neutralizer inserts. A comparative approach with an un-operated 4:1:1 insert was used to determine the extent of impregnate material depletion as a function of depth from the ID surface and axial position from the orifice plate. Analysis results are compared and contrasted with those obtained from similar analyses on components from shorter term tests, and provide insight regarding the prospect for successful longer-term operation consistent with SOA ion engine program life objectives at NASA.

  20. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Directory of Open Access Journals (Sweden)

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  1. Interaction between Cathodic Protection and Microbially Influenced Corrosion.

    OpenAIRE

    Bujang Masli, Azlan Bin

    2011-01-01

    The present work studied the interaction between cathodic protection and microbiallyinfluenced corrosion (MIC) on the surface of mild steel. Potential trending wasobserved when the currents were held constant, and current trending was observedwhen potentials were held constant. Scanning electron microscopy and energydispersive x-ray spectroscopy were used to study surface deposits on the samples andfurther understand the result of the interaction. Sul...

  2. The origins of radiotherapy: discovery of biological effects of X-rays by Freund in 1897, Kienböck's crucial experiments in 1900, and still it is the dose.

    Science.gov (United States)

    Widder, Joachim

    2014-07-01

    The discovery of X-rays by Wilhelm Conrad Röntgen (1845-1923) was triggered by pursuing an anomalous phenomenon: arousal of fluorescence at a distance from tubes in which cathode rays were elicited, a phenomenon which suggested the existence of a new kind of ray other than cathode rays. The discovery of biological effects of these X-rays by Leopold Freund (1868-1943) was triggered by pursuit of the purportedly useless phenomenon of epilation and dermatitis ensuing from X-ray-diagnostic experiments that others had reported. The crucial experiments performed by Robert Kienböck (1871-1953) entailed the proof that X-ray-dose, not electric phenomena, was the active agent of biological effects ensuing when illuminating the skin using Röntgen tubes. For both the discovery of X-rays and the discovery of their biological effectiveness, priority did not matter, but understanding the physical and medico-biological significance of phenomena that others had ignored as a nuisance. Present discussions about the clinical relevance of improving the dose distribution including protons and other charged particles resemble those around 1900 to a certain degree.

  3. Blacking FTO by strongly cathodic polarization with enhanced photocurrent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yun; Lu, Xiaoqing; Huang, Wei, E-mail: hjhw9513@163.com; Li, Zelin, E-mail: lizelin@hunnu.edu.cn

    2015-08-30

    Graphical abstract: - Highlights: • Transparent FTO became blackish under strongly cathodic polarization. • Part of SnO{sub 2} coating on the FTO can be reduced into Sn nanoparticles. • The black FTO increased solar absorption and enhanced photocurrent responses. • Take care in photoelectrochemistry test while FTO is strongly cathodically polarized. - Abstract: Transparent fluorine-doped tin oxide (TFTO) coating on quartz glass is widely used as substrate in photoelectrochemistry for solar energy transformation, sensing and so on. We observed that the TFTO could become blackish by strongly cathodic polarization. Characterization of the black FTO (BFTO) by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that part of SnO{sub 2} on the TFTO was reduced into metal Sn nanoparticles during the cathodic polarization. The BFTO greatly increased solar absorption and enhanced photocurrent responses in comparison with TFTO. It might be necessary to take caution in photoelectrochemical measurements while the FTO is strongly cathodically polarized.

  4. Reduction of levels of radiation exposure over patients and medical staff by using additional filters of copper and aluminum on the outputs of X-ray tubes in hemodynamic equipment

    International Nuclear Information System (INIS)

    Radioprotection in hemodynamic services is extremely important. Decrease of total exposition time, better positioning of medical staff in the room, use of individual and collective protection equipment and shorter distance between the patient and the image intensifier tube are, among others, some ways to reduce the levels of radiation. It is noted that these possible forms of reducing the radiation exposition varies depending on the medical staff. Hence, the purpose of the present paper is to reduce such levels of radiation exposition in a way apart from medical staffs. It is proposed, therefore, the use of additional filters on the output of the X-ray tube in three hemodynamic equipment from different generations: detector with a flat panel of amorphous selenium, image intensifier tube with charge coupled device, and image intensifier tube with video camera. In order to quantify the quality of the images generated, a simulator made of aluminum plates and other devices was set up, so it was possible to measure and compare the acquired images. Methods of images analysis (threshold, histogram, 3D surface) were used to measure the signal/noise ratio, the spatial resolution, the contrast and the definition of the signal area, thus doubts regarding the analysis of the images among observers (inter-observers) and even for a single observer (intra-observer) can be avoided. Ionization chambers were also used in order to quantify the doses of radiation that penetrated the skin of the patients with and without the use of the filters. In all cases was found an arrangement of filters that combines quality of the images with a significant reduction of the levels of exposure to ionizing radiation, concerning both the patient and the medical staff. (author)

  5. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus;

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  6. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  7. Straightening tubes

    International Nuclear Information System (INIS)

    Hexagonal wrapper tubes, especially for nuclear reactor core sub-assemblies, may suffer from unacceptable bow as a result of welding wear pads to the wrapper and heat treatment. Straightening of the bow is effected by a method wherein at each of a series of axially spaced locations the faces or vertices of the tube are measured relative to a reference to determine the direction of bow at the locations. From these measurements, the appropriate axial locations for the application of corrective loading can be determined, whereby by application of the loading at a selected face or vertex for such measurements the bow is reduced. Such loading, by an actuator, can be repeated at the locations until the bow is reduced to within tolerances. (author)

  8. An arrangement for irradiating cultured mammalian cells with aluminium characteristic ultrasoft x-rays

    International Nuclear Information System (INIS)

    Ultrasoft X-rays are useful for testing the validity of mechanistic models of biological damage caused by radiation. Described here is the construction and operation of a cold-cathode transmission-target discharge tube for irradiating mammalian cells in vitro with aluminium characteristic X-rays (1.487 keV). Particular attention is given to the problems of sample preparation and dosimetry for this shallowly penetrating radiation. The proportion of contaminating bremsstrahlung radiation is measured to establish the optimum operating conditions. Preliminary data from experiments using V79 Chinese hamster cells show that aluminium characteristic X-rays are about twice as effective at inactivating the cells as 250 kVsub(P) X-rays. (author)

  9. Application of ZnO nanopillars and nanoflowers to field-emission luminescent tubes

    Science.gov (United States)

    Yun, Ye; Tailiang, Guo; Yadong, Jiang

    2012-04-01

    Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires. The morphologies and crystal orientation of the ZnO nanostructures were investigated by a scanning electron microscopy and an X-ray diffraction pattern, respectively. Detailed study on the field-emission properties of ZnO nanostructures indicates that nanopillars with a high aspect ratio show good performance with a low turn-on field of 0.16 V/μm and a high field enhancement factor of 2.86 × 104. A luminescent tube with ZnO nanopillars on a linear wire cathode and a transparent anode could reach a luminance of about 1.5 × 104 cd/m2 under an applied voltage of 4 kV.

  10. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  11. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  12. Tube furnace

    Science.gov (United States)

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  13. Effect of reconstruction methods and x-ray tube current–time product on nodule detection in an anthropomorphic thorax phantom: A crossed-modality JAFROC observer study

    OpenAIRE

    Thompson, J D; Chakraborty, D. P.; Szczepura, K; Tootell, A K; Vamvakas, I.; Manning, D J; Hogg, P

    2016-01-01

    Purpose: To evaluate nodule detection in an anthropomorphic chest phantom in computed tomography (CT) images reconstructed with adaptive iterative dose reduction 3D (AIDR3D) and filtered back projection (FBP) over a range of tube current–time product (mAs). Methods: Two phantoms were used in this study: (i) an anthropomorphic chest phantom was loaded with spherical simulated nodules of 5, 8, 10, and 12 mm in diameter and +100, −630, and −800 Hounsfield units electron density; this would gener...

  14. Cadmium zinc telluride based infrared interferometry for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lohstroh, A., E-mail: A.Lohstroh@surrey.ac.uk; Della Rocca, I. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Parsons, S. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); AWE Aldermaston, Reading RG7 4PR (United Kingdom); Langley, A.; Shenton-Taylor, C.; Blackie, D. [AWE Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-02-09

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm{sup 3} CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes.

  15. Cadmium zinc telluride based infrared interferometry for X-ray detection

    International Nuclear Information System (INIS)

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm3 CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes

  16. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, J.C.E., E-mail: james.mertens@asu.edu; Williams, J.J., E-mail: jason.williams@asu.edu; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution

  17. Interest in MM waves spurs tube growth

    Science.gov (United States)

    Acker, A. E.

    1982-07-01

    Military demand is growing for new components which can be used in advanced radar, electronic counter-measures, and communications equipment. Unfortunately, the techniques used in building microwave tubes for lower frequencies cannot be translated easily to millimeter-wave-length components. Thus, designers must come up with new techniques, new materials, and most importantly, new circuit forms which will provide the required performance while allowing the components to be manufactured at reasonable cost and production rates. Attention is given to requirements for permanent magnets, periodic permanent magnets, traveling-wave tubes, millimeter-wave klystrons, extended interaction amplifiers, the use of space-harmonic and non-space-harmonic traveling-wave tubes for applications requiring bandwidths in excess of several hundred MHz, Gyrotron size advantages, cathode loading problems, and future requirements.

  18. Modeling of LaB6 hollow cathode performance and lifetime

    Science.gov (United States)

    Pedrini, Daniela; Albertoni, Riccardo; Paganucci, Fabrizio; Andrenucci, Mariano

    2015-01-01

    Thermionic hollow cathodes are currently used as sources of electrons in a variety of space applications, in particular as cathodes/neutralizers of electric thrusters (Hall effect and ion thrusters). Numerical tools are needed to guide the design of new devices before their manufacturing and testing, since multiple geometrical parameters influence the cathode performance. A reduced-order, numerical model was developed to assess the performance of orificed hollow cathodes, with a focus on the operational lifetime. The importance of the lifetime prediction is tied to its impact on the operational lifetime of the thruster to which the cathode is coupled. The cathode architecture consists of a refractory metal tube with an internal electron emitter made of lanthanum hexaboride (LaB6). The choice of LaB6 accounts for the reduced evaporation rate, the low sensitivity to poisoning and the absence of an activation procedure with respect to oxide cathodes. A LaB6 emitter is thus a valuable option for long-lasting cathodes, despite its relatively high work-function and reactivity with many refractory metals at high temperatures. The suggested reduced-order model self-consistently predicts the key parameters of the cathode operation, shedding light on the power deposition processes as well as on the main erosion mechanisms. Preliminary results showed good agreement with both the experimental data collected by Alta and data available from the literature for different operating conditions and power levels. Next developments will include further comparisons between theoretical and experimental data, considering cathodes of various size and operating conditions.

  19. Hollow Cathode With Multiple Radial Orifices

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  20. A tube-in-tube thermophotovoltaic generator

    Energy Technology Data Exchange (ETDEWEB)

    Ashcroft, J.; Campbell, B.; Depoy, D.

    1996-12-31

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  1. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    Science.gov (United States)

    Coleman, J. E.; Welch, D. R.; Miller, C. L.

    2015-11-01

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V4 and detected photon counts of nearly 106 at a radial distance of 1 m which corresponds to dose ˜40 μrad at 1 m.

  2. A computational analysis of intrinsic detection efficiencies of Geiger-Mueller tubes for photons

    CERN Document Server

    Watanabe, T

    1999-01-01

    A new calculation of the intrinsic detection efficiency of the Geiger-Mueller tube (GM tube) for photons is presented. It is found by the calculation that the relation between the efficiency and incident photon energy depends on the cathode materials and thicknesses. For a bare GM tube with the lead cathode of 20 mm in inner diameter, the 0.1 mm thick cathode wall is sensitive in lower photon energies, while 1 mm thick one works sensitively in the higher energy region. On the other hand, the 0.2 mm tube has flat sensitivity over a wide energy region between 0.3 and 3 MeV. For the GM tubes with lead, tin, and copper cathodes whose wall thicknesses are selected as having flat sensitivity, while the efficiency decreases with decreasing atomic number of the wall metal, flat regions extend to lower photon energies. The detection efficiencies of GM tubes with a sheath or a probe (sheathed GM tube) are discussed.

  3. Image converter tube and delete process of interference gleams in this tube

    International Nuclear Information System (INIS)

    The patent consists in an improvement of image converter tubes, which change the X-ray image delivered on their input screen into a visible image. Interference gleams extend on insulators inside these tubes, and the invention allows to delete these gleams while depositing on the insulators a product thin layer such as amorphous diamond like carbon, which has a weak electron secondary emission rate. The metal oxides are also suiting. The method may apply to image intensifier tubes. 4 refs., 4 figs

  4. Thermal analysis and structural Optimization of electron gun for traveling wave tube

    International Nuclear Information System (INIS)

    Steady-state and transient thermal analysis of electron gun for a Ka-band traveling wave tube are theoretically performed with a newly-developed 2 mm cathode model by ANSYS software. The heat flux vector chart and temperature distribution chart as well as warm-up time are also derived. The discrepancy of 2% between simulation results and test results, proves that the finite element method is feasible. The ultimate temperature reached by cathode, at given heater power, remarkably depends on the thermal conduction mechanism through cathode module. Based on the heat flux vector chart, the structure of cathode support sleeve with the highest flux is optimized. After optimization, the temperature of cathode increases 28 ℃ the highest temperature of electron gun increases 27 ℃ and the warm-up time of cathode reduces 40 s under the same given heater power. The optimized structure can effectively shorten the warm-up time of cathode by 33% and thus improve fast warm-up the performance of cathode, enhancing the rapid response capability of traveling wave tube. (authors)

  5. Analyzis of Computed Tomography Dose Index (CTDI) Value towards X-ray Tube Current and Voltage Variations of Computed Tomography Scanner (CT Scan) by using PPMA Phantom

    OpenAIRE

    DEWANG, SYAMSIR

    2014-01-01

    Medical physics gave the contribution in the field of health, especially for developing of radio diagnostics and radiotherapy. The applying of radiography machine is intended to diagnoses of disease, which is needed by patient for detecting their sickness. There were measured the X-ray radiations using a simulator computed tomography Scanner (CT scan). The CT scan is the radiology checkup to describe internal body structure by multislice CT scan (MSCT scan). It was observed the influence of e...

  6. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  7. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Institute of Scientific and Technical Information of China (English)

    Ruixian Wu; Yuming Dong n; Pingping Jiang; Guangli Wang; Yanmei Chen; Xiuming Wu

    2016-01-01

    One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  8. 油气管道小径管 X 射线检测工艺技术及要点%Technology and Key Points of X-ray Detection for Small Diameter Tubes in Oil and Gas Field

    Institute of Scientific and Technical Information of China (English)

    刘保平

    2016-01-01

    针对油气管道小径管 X 射线检测工艺,重点介绍了野外施工现场射线检测的技术要点,指出了小径管道焊缝定位、移动式射线机架的平移距离、布片和检测方法的主要特点,对各工序进行了分析。最后对油气管道小径管 X 射线底片评定和焊缝返修通知单中缺陷位置的表示方法进行了详细说明。%For the small diameter tube X-ray inspection in oil and gas fields,the technical key points of the field site radiographic inspection was introduced emphatically.The main technical characteristics of pipeline weld positioning,mobile X-ray machine translation distance,and film layout and testing operation were described.An analysis of the main points of each process was given.Finally the negative film assessment and weld repair notice representation method of defect location in the oil and gas pipe was presented in detail.

  9. A novel electron gun with an independently addressable cathode array

    Energy Technology Data Exchange (ETDEWEB)

    Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Schneider, Larry X.

    2006-08-01

    The design of a novel electron gun with an array of independently addressable cathode elements is presented. Issues relating to operation in a 6.5 Tesla axial magnetic field are discussed. Simulations with the TriComp electromagnetic field code that were used to determine the space charge limited tube characteristic and to model focusing of the electron beam in the magnetic field are reviewed. Foil heating and stress calculations are discussed. The results of CYLTRAN simulations yielding the energy spectrum of the electron beam and the current transmitted through the foil window are presented.

  10. An investigation on SA 213-Tube to SA 387-Tube plate using friction welding process

    International Nuclear Information System (INIS)

    Friction welding of tube to tube plate using an external tool (FWTPET) is a relatively newer solid state welding process used for joining tube to tube plate of either similar or dissimilar materials with enhanced mechanical and metallurgical properties. In the present study, FWTPET has been used to weld SA 213 (Grade T12) tube with SA 387 (Grade 22) tube plate. The welded samples are found to have satisfactory joint strength and the Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) study showed that inter metallic compound is absent in the weld zone. The different weld joints have been identified and the phase composition is found using EDX and XRD. Microstructures have been analyzed using optical and Scanning electron microscopy (SEM). The mechanical properties such as hardness, compressive shear strength and peel test for different weld conditions are studied and the hardness survey revealed that there is increase in hardness at the weld interface due to grain refinement. The corrosion behavior for different weld conditions have been analyzed and the weld zone is found to have better corrosion resistance due to the influence of the grain refinement after FWTPET welding process. Hence, the present investigation is carried out to study the behavior of friction welded dissimilar joints of SA 213 tube and SA 387 tube plate joints and the results are presented. The present study confirms that a high quality tube to tube plate joint can be achieved using FWTPET process at 1120 rpm

  11. An investigation on SA 213-Tube to SA 387-Tube plate using friction welding process

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. Pandia; Kumaraswamidhas, L. A. [Indian Institute of Technology, Jharkhand (India); Kumaran, S. Senthil [RVS School of Engineering and Technology, Tamil Nadu (India); Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Friction welding of tube to tube plate using an external tool (FWTPET) is a relatively newer solid state welding process used for joining tube to tube plate of either similar or dissimilar materials with enhanced mechanical and metallurgical properties. In the present study, FWTPET has been used to weld SA 213 (Grade T12) tube with SA 387 (Grade 22) tube plate. The welded samples are found to have satisfactory joint strength and the Energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) study showed that inter metallic compound is absent in the weld zone. The different weld joints have been identified and the phase composition is found using EDX and XRD. Microstructures have been analyzed using optical and Scanning electron microscopy (SEM). The mechanical properties such as hardness, compressive shear strength and peel test for different weld conditions are studied and the hardness survey revealed that there is increase in hardness at the weld interface due to grain refinement. The corrosion behavior for different weld conditions have been analyzed and the weld zone is found to have better corrosion resistance due to the influence of the grain refinement after FWTPET welding process. Hence, the present investigation is carried out to study the behavior of friction welded dissimilar joints of SA 213 tube and SA 387 tube plate joints and the results are presented. The present study confirms that a high quality tube to tube plate joint can be achieved using FWTPET process at 1120 rpm.

  12. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode

    OpenAIRE

    Kaya, Sarp; Casalongue, Hernan Sanchez; Viswanathan, Venkatasubramanian ; Miller, Daniel J. ; Friebel, Daniel ; Hansen, Heine A. ; Nørskov, Jens K. ; Nilsson, Anders ; Ogasawara, Hirohito

    2013-01-01

    The performance of polymer electrolyte membrane fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. Here we use ambient pressure X-ray photoelectron spectroscopy, and directly probe the correlation between the adsorbed species on the surface and the electrochemical potential. We demonstrate that, during the oxygen reduction reaction, hydroxyl intermediates on the cathode surface occur in sever...

  13. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  14. Indirect measure of X-rays spectra using TLDs

    International Nuclear Information System (INIS)

    A methodology of indirect measure of X-rays spectra, emitted by conventional tubes, was developed recently and its feasibility verified in the first place by Monte Carlo simulations. For that case is intended to measure, by means of plastic scintillators, attenuation curves of dispersed beams previously. In this work were carried out measurements of attenuation curves with thermoluminescent dosimeters (TLD) to verify the kindness of the indirect measure method. The attenuation curve was also measured using an ionization chamber brand Capintec (model 192) with the purpose of making a comparison. The results of the attenuation curve measured with both dosimeters present a good resolution inside the statistical fluctuations and the spectral reconstruction using diverse parametric functions is carried out in a quick and simple way with excellent resolutions in the functional form. For this reconstruction method are of fundamental importance the following properties of the used dosimeter: in the first place the repetition of the measures, property that could check; in second place the precision of the measured data and lastly the dosimeter response, this is, the increase of the thermoluminescent signal before an increase of the photons flow of X-rays. This parameter is the gradient of the curve thermoluminescent signal versus the dose imparted to the dosimeter. The measures were realized with a generator of X-rays brand Kevex provided of a conventional tube with tungsten anti cathode that polarizes with high tension to a maximum value of 50 kV and current of 0.5 ma. (Author)

  15. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  16. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  17. Hollow cathode arc: effect of the cathode material on the internal plasma

    International Nuclear Information System (INIS)

    In discharges with hollow cathodes functioning in the arc regime, the cathode emits thermionic electrons which ionize the gas. To reduce the electrical power consumed by these discharges, cathodes made of thoriated tungsten and lathanum hexaboride have been used. The parameters of the plasma generated into the cathode have been measured with electrostatic probes. (Auth.)

  18. Electron accelerating unit for streak image tubes

    Indian Academy of Sciences (India)

    Fangke Zong; Qinlao Yang; Houzhi Cai; Li Gu; Xiang Li; Jingjin Zhang

    2015-12-01

    An electron accelerating unit is proposed for use in streak image tubes (SITs). An SIT with this new accelerating unit was simulated using the Monte Carlo method. The simulation results show that the accelerating unit improves both the spatial and temporal resolution. Compared to a traditional SIT, the transit time spread for electrons in the cathode-to-mesh region is reduced from 247 to 162 fs, the line width of the electron beam on the image surface is reduced from 42.7 to 26.1 m, and the temporal resolution is improved from 515 to 395 fs.

  19. Characteristics of specifications of transportable inverter-type X-ray equipment

    CERN Document Server

    Yamamoto, K; Asano, H

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendenc...

  20. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  1. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.

  2. Cathodic protection criteria for controlling microbially influenced corrosion in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nekoksa, G. (Corrosion Failure Analysis and Control, San Ramon, CA (USA)); Gutherman, B. (Florida Power Corp., St. Petersburg, FL (USA))

    1991-05-01

    The main objective of this project was to evaluate galvanic corrosion on coupled samples and to determine cathodic protection criteria and effectiveness on four materials in an untreated seawater cooling system with microbially influenced corrosion. Hydrogen embrittlement of two cathodically protected high performance condenser tube materials was also evaluated. The long-term field testing was conducted at the intake structure of Florida Power Corporation's Crystal River Unit 3 Nuclear Power Plant. The test results indicate that Type 304L stainless steel can be galvanically corroded when coupled to Cu/Ni and fully cathodically protected when coupled to a carbon steel anode. Cathodic protection did protect carbon steel, but less than expected from the literature. The cathodic protection effectiveness on carbon steel was approximately 82% at {minus}1.01 V (SCE). To prevent hydrogen embrittlement, the tested titanium or ferritic stainless steel should not be polarized to more negative potentials than {minus}0.75 V (SCE). This report consists of a literature search, preliminary laboratory polarization testing, laboratory testing to determine microbial effects caused by an interruption of cathodic current, development of exposure racks for long-term electrochemical testing and analyses of corrosion, metallurgical, microbial and chemical data. 44 refs., 26 figs., 9 tabs.

  3. Novel Cathodes Prepared by Impregnation Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  4. Cathodes for molten-salt batteries

    Science.gov (United States)

    Argade, Shyam D.

    1993-02-01

    Viewgraphs of the discussion on cathodes for molten-salt batteries are presented. For the cathode reactions in molten-salt cells, chlorine-based and sulfur-based cathodes reactants have relatively high exchange current densities. Sulfur-based cathodes, metal sulfides, and disulfides have been extensively investigated. Primary thermal batteries of the Li-alloy/FeS2 variety have been available for a number of years. Chlorine based rechargable cathodes were investigated for the pulse power application. A brief introduction is followed by the experimental aspects of research, and the results obtained. Performance projections to the battery system level are discussed and the presentation is summarized with conclusions.

  5. Electrochemical impedance spectroscopy investigation on indium tin oxide films under cathodic polarization in NaOH solution

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenjiao; Cao, Si; Yang, Yanze; Wang, Hao; Li, Jin; Jiang, Yiming, E-mail: corrosion@fudan.edu.cn

    2012-09-30

    The electrochemical corrosion behaviors of indium tin oxide (ITO) films under the cathodic polarization in 0.1 M NaOH solution were investigated by electrochemical impedance spectroscopy. The as-received and the cathodically polarized ITO films were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction for morphological, compositional and structural studies. The results showed that ITO films underwent a corrosion process during the cathodic polarization and the main component of the corrosion products was body-centered cubic indium. The electrochemical impedance parameters were related to the effect of the cathodic polarization on the ITO specimens. The capacitance of ITO specimens increased, while the charge transfer resistance and the inductance decreased with the increase of the polarization time. The proposed mechanism indicated that the corrosion products (metallic indium) were firstly formed during the cathodic polarization and then absorbed on the surface of the ITO film. As the surface was gradually covered by indium particles, the corrosion process was suppressed. - Highlights: Black-Right-Pointing-Pointer Cathodic polarization of indium tin oxide (ITO) in 0.1 M NaOH. Black-Right-Pointing-Pointer Cathodic polarization studied with electrochemical impedance spectroscopy. Black-Right-Pointing-Pointer ITO underwent a corrosion attack during cathodic polarization, indium was observed. Black-Right-Pointing-Pointer Electrochemical parameters of ITO were obtained using equivalent electrical circuit. Black-Right-Pointing-Pointer A corrosion mechanism is proposed.

  6. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  7. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    International Nuclear Information System (INIS)

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging

  8. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Science.gov (United States)

    Dyartanti, Endah Retno; Jumari, Arif; Nur, Adrian; Purwanto, Agus

    2016-02-01

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  9. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    Science.gov (United States)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  10. Synopsis of Cathode No.4 Activation

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature

  11. On possibility of high frequency electron beam scanning with application of focusing system for x-ray generation

    International Nuclear Information System (INIS)

    The article describes the electron beam scanning system in combination with electromagnetic focusing system. These systems find their application in different vacuum tube devices that provide the generation of X-ray radiation. Similar systems can be utilized in such fields as medicine, industry and defectoscopy. Electron tube system can be based on thermal or field emission cathodes. Scanning system is built up on two pair of electrical deflecting dipoles. The scanning can also be based on magnetic deflecting system. Beam focusing is achieved by the geometrical fea-tures of electrodes structure and electron lenses. Magnetic focusing can also be used for transversal focusing of the beam. The article describes the schemes of the unit with electron beam scanning and different methods of realization. Beam dynamics investigation in electromagnetic fields of the unit is considered

  12. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  13. Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Daniel [NIU, DeKalb; Faillace, Luigi [RadiaBeam Tech.; Panuganti, Harsha [NIU, DeKalb; Thangaraj, Jayakar C.T. [Fermilab; Piot, Philippe [NIU, DeKalb

    2015-06-01

    Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with the time-dependent Particle In Cell (PIC) code WARP.

  14. Preparation and Characterization of Cathode Materials for Lithium-Oxygen Batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller

    A possible future battery type is the Li-air battery which theoretically has the potential of reaching gravimetric energy densities close to those of gasoline. The Li-airbattery is discharged by the reaction of Li-ions and oxygen, drawn from the air, reacting at the battery cathode to form Li2O2....... The type of cathode material affects the battery discharge capacity and charging potential and with a carbon based cathode many questions are still unanswered. The focus of this Ph.D. project has been the synthesis of reduced graphene oxide as well as the investigation of the effect of reduced graphene...... the discharge capacity of the battery as well as the charging potential. In situ X-ray diffraction studies on carbon black cathodes in a capillary battery showed the formation of crystalline Li2O2 on the first discharge cycle, the intensity of Li2O2 on the second discharge cycle was however diminished...

  15. Development of an accelerator for X-ray inspection apparatus with high clairvoyance

    CERN Document Server

    Onishi, T

    2002-01-01

    At present, there is no portable X-ray generator usable for non-destructive inspection of thick concretes used for bridges, and so on. To enable on non-destructive inspection of such thick concrete materials with more than 300 mm in thickness, authors developed a new small size accelerator with same acceleration principle as that of betatron. And, the authors also developed two types of new induction accelerators such as 'spiral orbit type' and 'cylindrical type'. Furthermore, development of a detector with excellent sensitivity to X-ray with wavelength suitable for inspection and software for image processing are planned. Here was described acceleration principles of new accelerators, test results on prototypes of the accelerators, and development states on field emission array considering new electron gun alternating thermal one and cold cathode type electron gun using carbon nano-tubes. (G.K.)

  16. Early experience with a picture archiving and communication system for X-ray CT

    International Nuclear Information System (INIS)

    A network using fiberoptic ring architecture has been implemented to connect an x-ray CT unit with an image work station and optical disk storage unit. The work station has three noninterlaced cathode-ray tube (CRT) monitors of 1,024 X 1,024 pixels. The optical disk system stores 32 optical disk cartridges (2.6 Gbytes per cartridge). A general-purpose interface bus is used for communication between the CT unit and the network interface unit. Transfer time from CT to interface unit is 40 kbyte/second, 5 seconds per image. On-line data acquisition, long-term archiving, and CT interpretation using CRTs have been tested and the system has been working for 3 months in a clinical environment

  17. Tracheostomy tube - speaking

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000465.htm Tracheostomy tube - speaking To use the sharing features on ... are even speaking devices that can help you. Tracheostomy Tubes and Speaking Air passing through vocal cords ( ...

  18. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  19. Effect of Ti-Al cathode composition on plasma generation and plasma transport in direct current vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Zhirkov, I., E-mail: igozh@ifm.liu.se; Petruhins, A.; Dahlqvist, M.; Ingason, A. S.; Rosen, J. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Eriksson, A. O. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Oerlikon Balzers Coating AG, Iramali 18, 9496 Balzers (Liechtenstein)

    2014-03-28

    DC arc plasma from Ti, Al, and Ti{sub 1-x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10{sup −6} Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti{sub 0.5}Al{sub 0.5}, going from ∼150 and ∼175 eV to ∼100 and ∼75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ∼50 and ∼61 eV, and ∼30 and ∼50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results

  20. X-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    A falling load type X-ray diagnostic apparatus comprises a low voltage power source, AC-DC converting means connected to the low voltage power source so as to apply a rectified low DC voltage, chopping means connected to the AC-DC converting means and chopping said DC voltage into a low AC voltage, high voltage applying means for transforming said low AC voltage into a high AC voltage, said high AC voltage being applied as a tube voltage to an X-ray tube from which X-rays are irradiated toward an object to be examined, means for controlling a filament heating power of the X-ray tube, programming means for supplying a control signal to said filament heating control means so as to reduce the emission current of said X-ray tube during the irradiation, and chopper control means for controlling the chopping ratio of said chopping means by evaluating said rectified DC voltage with a preset tube voltage generated in said programming means, said programming means compensating said tube voltage by receiving said control signal in such a manner that said tube voltage is maintained substantially constant during the irradiation by varying said preset tube voltage so as to control the chopping ratio based upon the reduction of the filament heating power for the X-ray tube

  1. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Welch, D. R.; Miller, C. L. [Voss Scientific, Albuquerque, New Mexico 87108 (United States)

    2015-11-14

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 10{sup 11}. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and γ-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V{sup 4} and detected photon counts of nearly 10{sup 6} at a radial distance of 1 m which corresponds to dose ∼40 μrad at 1 m.

  2. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    International Nuclear Information System (INIS)

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 1011. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and γ-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V4 and detected photon counts of nearly 106 at a radial distance of 1 m which corresponds to dose ∼40 μrad at 1 m

  3. Repetitive operation of an L-band magnetically insulated transmission line oscillator with metal array cathode

    Science.gov (United States)

    Qin, Fen; Wang, Dong; Xu, Sha; Zhang, Yong; Fan, Zhi-kai

    2016-04-01

    We present the repetitive operation research results of an L-band magnetically insulated transmission line oscillator with metal array cathode (MAC-MILO) in this paper. To ensure a more uniform emission of electrons emitted from the cathode, metal plates with different outer radii and thicknesses are periodically arranged in longitudinal direction on the cathode substrate to act as emitters. The higher order mode depressed MILO (HDMILO) structure is applied to ensure stability of the tube. Comparison experiments are carried out between velvet cathode and MAC MILO driven by a 20 GW/40 Ω/40 ns/20 Hz pulse power system. Experimental results reveal that the MAC has much lower outgassing rate, much longer life time, and higher repetitive stability. The MAC-MILO could work stably with a rep-rate up to 20 Hz at a power level of 550 MW when employing a 350 kV/35 kA electric pulse. The TE11 mode radiation pattern in the farfield region reveals the tube works steadily on the dominant mode. More than 2000 shots have been tested in repetitive mode without any obvious degradation of the detected microwave parameters.

  4. Scintillation counter: photomultiplier tube alignment

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into the sample receiving zone. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (auth)

  5. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  6. A pulsed cathodic arc spacecraft propulsion system

    Science.gov (United States)

    Neumann, P. R. C.; Bilek, M. M. M.; Tarrant, R. N.; McKenzie, D. R.

    2009-11-01

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>104 m s-1), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  7. Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow-cathode discharge

    International Nuclear Information System (INIS)

    The voltage-current curves and the optogalvanic signals of hollow-cathode discharge tubes were measured. Attention was focused on the existence of negative dynamic resistance properties for argon and neon discharges. Three hollow-cathodes, each was made of gadolinium, uranium, and copper, were used with both the noble gases. The negative dynamic resistance regions were observed only in Ar/U, Ar/Gd, and Ne/Cu discharges. These results suggest that resonant Penning ionization is one of the main reactions producing the negative dynamic resistance characteristics in hollow cathode discharges

  8. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube NEI ...

  9. NEI You Tube Videos: Amblyopia

    Science.gov (United States)

    ... NEI YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube ...

  10. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... NEI YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia NEI on Twitter NEI on YouTube ...

  11. Deadly pressure pneumothorax after withdrawal of misplaced feeding tube

    DEFF Research Database (Denmark)

    Andresen, Erik Nygaard; Frydland, Martin; Usinger, Lotte

    2016-01-01

    BACKGROUND: Many patients have a nasogastric feeding tube inserted during admission; however, misplacement is not uncommon. In this case report we present, to the best of our knowledge, the first documented fatality from pressure pneumothorax following nasogastric tube withdrawal. CASE PRESENTATION......: An 84-year-old Caucasian woman with dysphagia and at risk of aspiration underwent routine insertion of a nasogastric feeding tube; however, shortly after insertion she developed respiratory distress. A chest X-ray showed the tube had been misplaced into our patient's right lung. The tube was removed......, but our patient died less than an hour after withdrawal. The autopsy report stated that cause of death was tension pneumothorax, which developed following withdrawal of the misplaced feeding tube. CONCLUSIONS: The indications for insertion of nasogastric feeding tubes are many and the procedure...

  12. Cathode materials: A personal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, ETC 9.102, 1 University Station, Austin, TX 78712-1063 (United States)

    2007-12-06

    A thermodynamically stable rechargeable battery has a voltage limited by the window of the electrolyte. An aqueous electrolyte has a window of 1.2 eV, which prevents achieving the high energy density desired for many applications. A non-aqueous electrolyte with a window of 5 eV requires Li{sup +} rather than H{sup +} as the working ion. Early experiments with Li{sub x}TiS{sub 2} cathodes showed competitive capacity and rate capability, but problems with a lithium anode made the voltage of a safe cell based on a sulfide cathode too low to be competitive with a nickel/metal-hydride battery. Transition-metal oxides can give voltages of 4.5 V versus Li{sup +}/Li{sup 0}. However, the challenge with oxides has been to obtain a competitive capacity and rate capability while retaining a high voltage with low-cost, environmentally friendly cathode materials. Comparisons will be made between layered Li{sub 1-x}MO{sub 2}, spinels Li{sub 1-x}[M{sub 2}]O{sub 4}, and olivines Li{sub 1-x}MPO{sub 4} having 0 < x < 1. Although higher capacities can be obtained with layered Li{sub 1-x}MO{sub 2} compounds, which have enabled the wireless revolution, their metastability makes them unlikely to be used in power applications. The spinel and olivine framework structures have been shown to be capable of charge/discharge rates of over 10C with a suitable temperature range for plug-in hybrid vehicles. (author)

  13. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    Science.gov (United States)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  14. Radiographic testing of tube-to-tubesheet of heatexchanger

    International Nuclear Information System (INIS)

    Most of the heat exchangers used for thermal and nuclear power plants are of shell and tube type, and when tubes and tube plates are welded, high reliability is required for the welded parts. As the intermediate heat exchangers for high temperature liquid sodium of FBRs, the similar construction is considered, therefore, the inspection of high accuracy is indispensable. There are various welded joint types for tubes and tube plates. Toshiba Corp. has developed and put in practical use the inspection techniques for the welded joints of tubes and tube plates using the small focus x-ray apparatuses of rod anode type, and very high reliability was able to be obtained. By applying these techniques, the skill of welders can be tested and certified, and the quality of welded parts can be heightened. With the small focus x-ray apparatuses, the energy can be changed by the tube voltage, high sharpness and contrast can be obtained, and inspection can be carried out in a short time. The principle, specification, targets and test results of these apparatuses are described. The radiography of the butt-welded joints, inserted type joints and other types of tubes and tube plates is explained. The procedure of radiography is shown. (Kako, I.)

  15. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  16. Performance of field emission cathodes prepared from diamond nanoparticles

    International Nuclear Information System (INIS)

    Nano-diamond field emission cathodes were fabricated using a two-step technique. A mixture of nano-diamond and nano-Ti powders was coated onto a Ti substrate using a spin-coating process, followed by the application of an annealing treatment to form a TiC phase. The effects of the annealing temperature and the number of coating layers on the electron field emission properties of the as-fabricated field emission cathodes were investigated. The samples fabricated under different conditions were analyzed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. The differences in terms of the electron field emission properties were explained by a TiC network model. A higher temperature is necessary to form a continuous TiC network when a thicker coating is used on the field emission cathode. In contrast, for the thinner coating, a relatively low temperature is sufficient to form such a TiC network. Only a continuous TiC network coating can facilitate the passage of electrons through the coating and lead to emission. - Highlights: • The field emission properties of nano-diamond powder were investigated. • Nano-diamond powder was deposited by spin coating on titanium substrate. • Nano-titanium powder was mixed into the coating. • A titanium carbide network model was proposed to explain the samples' properties

  17. Results from an iron-proportional tube calorimeter prototype

    International Nuclear Information System (INIS)

    We have studied the energy resolution of a prototype gas tracking calorimeter in a test beam at Fermilab as part of the detector development program for the MINOS long baseline neutrino oscillation experiment. The calorimeter consisted of 25 layers of 1.5 inch thick steel plates interleaved with planes of aluminum proportional tubes. The tube cells are square, with 0.9 cm edges and open tops. Cathode strips were used for read out transverse to the wire cells. The tubes operated with a nonflammable gas mixture of 88% CO2, 9.5% isobutane and 2.5% argon which gave an operating range of >500 V (limited by the electronics). We read out the wire signals on the tubes and in some configurations the cathode stripe as well. We studied positrons, pions and muons over a momentum range of 2.5-30 GeV/c and achieved energy resolutions of about 40%/√E for EM and 71%/√E for hadronic showers

  18. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Science.gov (United States)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The

  19. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  20. IBIS: A hollow-cathode multipole boundary ion source

    International Nuclear Information System (INIS)

    The plasma production and containment system for a high-power continuously operating magnetic multipole ion source has been designed and constructed. Preliminary tests on this system prior to high voltage extraction of large beams indicate advantageous performance for neutral-beam injection applications. The source has produced 80 A to the extractor region at 0.33 A/cm2 with a discharge of 330 A at 80 V. Density uniformity is better than 1% over a 16-cm diameter, dropping to -4% at 18 cm, with plasma noise of less than 3%. Gas utilizaion efficiency and atomic (H+) species output are anticipated to be high due to a source length of 40 cm. This quiet efficient performance is attributed to the use of a hollow-tube LaB6 cathode and an improved magnetic multipole confinement system

  1. Tubing weld cracking test

    International Nuclear Information System (INIS)

    A tubing weld cracking (TWC) test was developed for applications involving advanced austenitic alloys (such as modified 800H and 310HCbN). Compared to the Finger hot cracking test, the TWC test shows an enhanced ability to evaluate the crack sensitivity of tubing materials. The TWC test can evaluate the cracking tendency of base as well as filter materials. Thus, it is a useful tool for tubing suppliers, filler metal producers and fabricators

  2. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  3. Hollow cathode lamp-construction aspects

    International Nuclear Information System (INIS)

    The hollow cathode discharge is a source used for absorption and fluorescence atomic spectrophotometry. In this paper various aspect like construction, cleanliness and operation have been described. The life time of the hollow cathode discharge for specific current is about 500 hs. The range of current for the non significant self-absorption of the recommended wavelenght has been determinated. (Author)

  4. Klystron Amplifier Utilizing Scandate Cathode and Electrostatic Focusing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build an electrostatically focused klystron that exploits recent breakthroughs in scandate cathode technology. We have built cathodes with greater...

  5. Li-rich Thin Film Cathode Prepared by Pulsed Laser Deposition

    OpenAIRE

    Binggong Yan; Jichang Liu; Bohang Song; Pengfei Xiao; Li Lu

    2013-01-01

    Li-rich layer-structured cathode thin films are prepared by pulsed laser deposition. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS) and electrochemical testing in half battery cells are used to characterize crystal structure, surface morphology, chemical valence states and electrochemical performance of these thin films, respectively. It is observed that partial layer to spinel transformation takes place during post anneali...

  6. Categorising YouTube

    OpenAIRE

    Thomas Mosebo Simonsen

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a...

  7. Steam generator tube performance

    International Nuclear Information System (INIS)

    A survey of steam generator operating experience for 1986 has been carried out for 184 pressurized water and pressurized heavy-water reactors, and 1 water-cooled, graphite-moderated reactor. Tubes were plugged at 75 of the reactors (40.5%). In 1986, 3737 tubes were plugged (0.14% of those in service) and 3148 tubes were repaired by sleeving. A small number of reactors accounted for the bulk of the plugged tubes, a phenomenon consistent with previous years. For 1986, the available tubesheet sludge data for 38 reactors has been compiled into tabular form, and sludge/deposit data will be incorporated into all future surveys

  8. Measurements of Plasma Jets and Collimated Flux Tubes that are the Precursors of Spheromak Self-organization

    OpenAIRE

    Bellan, P. M.; You, S.; Yun, G. S.

    2007-01-01

    A magnetized planar coaxial plasma gun is used to study the physics of spheromak formation. Eight magnetic flux tubes spanning from the cathode to the anode electrode are first filled with plasma by a rapid MHD pumping mechanism which ingests plasma from nozzles at the wall. The ingested plasma convects toroidal flux and the pile-up of this flux in the flux tube causes the flux tube to become collimated. The eight collimated flux tubes first have the shape of spider legs, but then merge to fo...

  9. Steam generator tube failures

    International Nuclear Information System (INIS)

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  10. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  11. Copper cobalt spinel as a high performance cathode for intermediate temperature solid oxide fuel cells.

    Science.gov (United States)

    Shao, Lin; Wang, Qi; Fan, Lishuang; Wang, Pengxiang; Zhang, Naiqing; Sun, Kening

    2016-06-30

    CuCo2O4 spinel prepared via an EDTA-citric acid process was studied as a candidate solid oxide fuel cell (SOFC) cathode material at intermediate temperatures (IT). CuCo2O4 cathodes were measured using thermal gravimetric analysis, X-ray diffraction and scanning electron microscopy. AC impedance spectroscopy and DC polarization measurements were used to study the electrode performance. The obtained value of the polarization resistances at 800 °C was 0.12 Ω cm(2) with a maximum power density of 972 mW cm(-2). PMID:27326915

  12. Investigation of the degradation of LSM-YSZ SOFC cathode by electrochemical impedance spectroscopy

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura

    conductivity would not be a problem during degradation experiments of the cells. The experiments carried out for this purpose include x-ray diffraction, conductivity and dilatometry. LSM-YSZ/YSZ/LSM-YSZ symmetrical cells were prepared and investigated by means ofelectrochemical impedance spectroscopy...... that at the applied operating conditions the impedance data could not be deconvoluted as anode and cathode processes were overlapping. Nonetheless it appeared that at OCV the degradation of the cathode is similar for symmetrical and single cells. Under current degradation was significantly lower, so real performance...

  13. Digital Radiography Qualification of Tube Welding

    Science.gov (United States)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  14. Hologram recording tubes

    Science.gov (United States)

    Rajchman, J. H.

    1973-01-01

    Optical memories allow extremely large numbers of bits to be stored and recalled in a matter of microseconds. Two recording tubes, similar to conventional image-converting tubes, but having a soft-glass surface on which hologram is recorded, do not degrade under repeated hologram read/write cycles.

  15. Welding Tubes In Place

    Science.gov (United States)

    Meredith, R.

    1984-01-01

    Special welding equipment joins metal tubes that carry pressurized cyrogenic fluids. Equipment small enough to be used in confined spaces in which such tubes often mounted. Welded joints lighter in weight and more leak-proof than joints made with mechanical fittings.

  16. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm-1, the electron current density was in the range 210-280 A cm-2, and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm-2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  17. Formation of single pinched plasma point in the cathode plasma jet of a multipicosecond laser-triggered vacuum discharge.

    Science.gov (United States)

    Moorti, A; Naik, P A; Gupta, P D; Bhat, R K

    2008-09-01

    Characteristics of cathode plasma jet pinching and x-ray emission from a multipicosecond laser-triggered vacuum discharge are presented. Discharge was created in between a planar Al cathode and a conical point-tip Ti anode (separation: 2-15 mm, circuit inductance of approximately 0.53 microH, peak discharge current of approximately 3 kA, and rise time of approximately 400 ns). For anode-cathode separation of approximately 13.5 mm, only a single pinched plasma point was formed in the cathode plasma jet at a distance of approximately 9.5 mm from the cathode. Quantitative analysis of the x-ray signals recorded using a pin diode with different filters and viewing different regions of the discharge, shows soft ( approximately keV photon energy) x-ray emission from the plasma point with a flux of approximately (3-5)x10(10) photons/sr, and multi-keV x-ray emission from the Ti anode with Kalpha ( approximately 4.51 keV) photon flux of approximately 10(10) photons/sr. PMID:19044407

  18. Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology

    Science.gov (United States)

    Sommerville, Jason D.

    2009-12-01

    Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field

  19. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s...... technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  20. Stabilized x-ray generator power supply

    International Nuclear Information System (INIS)

    X-ray diffraction and X-ray fluorescence analysis are very much adopted in laboratories to determine the type and structure of the constituent compounds in solid materials, chemical composition of materials, stress developed on metals etc. These experiments need X-ray beam of fixed intensity and wave length. This can only be achieved by X-ray generator having highly stabilized tube voltage and tube current. This paper describes how X-ray tube high voltage and electron beam current are stabilized. This paper also highlights generation of X-rays, diffractometry and X-ray fluorescence analysis and their wide applications. Principle of operation for stabilizing the X-ray tube voltage and current, different protection circuits adopted, special features of the mains H.V. transformer and H.T. tank are described in this report. (author)

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  2. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  3. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  4. Effect of Heat Treatment on the Microstructure of Porous Ag2O3-Bi2O3 Cathode on Stainless Steel Substrates Prepared by the Slurry Painting Method

    International Nuclear Information System (INIS)

    The influence of thermal treatment on the microstructure of Ag2O3-Bi2O3 porous cathode on stainless steel substrates has been investigated. The composite cathode material has been successfully deposited on the substrates by the slurry painting method. The cathode was later thermally treated at different temperatures of 400, 500, 600, 700, 800 and 830 degree Celsius for 1 h in the atmosphere. Thermal analysis of the dried slurry was conducted in order to determine the heating schedule for eliminating the organic components using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). The TGA and DSC analyses confirmed that the organic component was fully decomposed below 418 degree Celsius, whereas the formation of the composite cathode oxide phases took place at temperatures beyond 600 degree Celsius. The microstructure of the thermally treated cathode was determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM results showed that the grain size of the cathode increased with increase in temperature during thermal treatment. The X-ray diffraction (XRD) analyses confirmed the presence of δ-Bi2O3 phase on the cathode. The Ag2O3-Bi2O3 cathode deposited on the stainless steel substrates was found to have a porosity of 53 %, 51 %, 39 % and 28 % after 1, 2, 3, and 4 coatings, respectively, and upon thermal treatment at 800 degree Celsius for 1 h. (author)

  5. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, A., E-mail: hershcovitch@bnl.gov; Blaskiewicz, M.; Brennan, J. M.; Fischer, W.; Liaw, C.-J.; Meng, W.; Todd, R. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Custer, A.; Dingus, A.; Erickson, M.; Jamshidi, N.; Laping, R.; Poole, H. J. [PVI, Oxnard, California 93031 (United States)

    2015-05-15

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  6. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    Science.gov (United States)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  7. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  8. Robotic Tube-Gap Inspector

    Science.gov (United States)

    Gilbert, Jeffrey L.; Gutow, David A.; Maslakowski, John E.

    1993-01-01

    Robotic vision system measures small gaps between nearly parallel tubes. Robot-held video camera examines closely spaced tubes while computer determines gaps between tubes. Video monitor simultaneously displays data on gaps.

  9. A new high-definition microfocal X-ray unit.

    Science.gov (United States)

    Buckland-Wright, J C

    1989-03-01

    A new microfocal unit is described with an operating range up to 170 kVp (limited to 125 kVp for medical use), 0-1 mA and a maximum output of 75-80 W. The unit comprises a lanthanum hexaboride (LaB6) cathode, a single electromagnetic lens and a stationary oil-cooled multifaced tungsten target. The estimated source size ranges from 6 to 20 microns between 14 and 77 W. The tube's output is x 3 to x 3.5 greater than that of a conventional X-ray unit. The use of fast rare-earth film-screen systems permits exposures of most views of the patient within 1 s. The spatial resolution within these film-screen systems is 40-30 microns diameter at magnifications of x 5-10. The tube is fixed so as to project a horizontal beam and the patient table is designed to position the patient close to the source (20-30 cm) with the film placed at a focus-film distance of 1-3 m. Stereopair macroradiographs permit greater accuracy in the identification and location of radiographic features. The large magnification and resolution of macroradiographs allow direct and accurate measurement of radiographic features.

  10. Chemical compatibility study of melilite-type gallate solid electrolyte with different cathode materials

    Science.gov (United States)

    Mancini, Alessandro; Felice, Valeria; Natali Sora, Isabella; Malavasi, Lorenzo; Tealdi, Cristina

    2014-05-01

    Chemical reactivity between cathodes and electrolytes is a crucial issue for long term SOFCs stability and performances. In this study, chemical reactivity between selected cathodic materials and the ionic conducting melilite La1.50Sr0.50Ga3O7.25 has been extensively investigated by X-ray powder diffraction in a wide temperature range (up to 1573 K). Perovskite-type La0.8Sr0.2MnO3-d and La0.8Sr0.2Fe0.8Cu0.2O3-d and K2NiF4-type La2NiO4+d were selected as cathode materials. The results of this study allow identifying the most suitable electrode material to be used in combination with the melilite-type gallate electrolyte and set the basis for future work on this novel system.

  11. Surface effects induced by cathodic hydrogenation in type AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Cathodic hydrogen charging of type AISI 304 stainless steel modified its austenitic structure, giving rise to the formation of two new martensitic phases and the appearance of cracks, in most cases delayed. As electrolyte a 1 N H2 S O4 solution containing As2 O3 was employed. The cathodic hydrogenation was carries out at room temperature. The transformed phases were identified with black and white and coloured metallographic techniques, as well as by X-ray diffraction. The effect of cathodic hydrogenation in samples uniaxially tensile tested with constant nominal strain rate was investigated. It was concluded that the number of cracks per unit surface area changes with hydrogenation conditions and that hydrogen should be present for the embrittlement to occur. (author)

  12. Electrochemical performance of LiFePO4 cathode material for Li-ion battery

    Institute of Scientific and Technical Information of China (English)

    LI Shuzhong; LI Chao; FAN Yanliang; XU Jiaqiang; WANG Tao; YANG Shuting

    2006-01-01

    In the search for improved materials for rechargeable lithium batteries, LiFePO4 offers interesting possibilities because of its low raw materials cost, environmental friendliness and safety. The main drawback with using the material is its poor electronic conductivity and this limitation has to be overcome. Here Al-doped LiFePO4/C composite cathode materials were prepared by a polymer-network synthesis technique. Testing of X-ray diffraction, charge-discharge, and cyclic voltammetry were carried out for its performance. Results show that Al-doped LiFePO4/C composite cathode materials have a high initial capacity, good cycle stability and excellent low temperature performance. The electrical conductivity of LiFePO4 material can be obviously improved by doping Al. The better electrochemical performances of Al-doped LiFePO4/C composite cathode materials have a connection with its conductivity.

  13. Novel Nanosized Adsorbing Composite Cathode Materials for the Next Generational Lithium Battery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; ZHENG Wei; ZHANG Ping; WANG Lizhen; XIA Tongchi; HU Xinguo; YU Zhenxing

    2007-01-01

    A novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) under certain conditions. The physical and chemical performances of the novel carbon-sulfur nano-composite were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and X-ray diffraction (XRD). The electrochemical performances of nano-composite were characterized by charge-discharge characteristic, cyclic voltammetry and electrochemical impendence spectroscopy (EIS). The experimental results indicate that the electrochemical capability of nanocomposite material was superior to that of traditional S-containing composite material. The cathode made by carbon-sulfur nano-composite material shows a good cycle ability and a high specific charge-discharge capacity. The HSAAC shows a vital role in adsorbing sublimed sulfur and the polysulfides within the cathode and is an excellent electric conductor for a sulfur cathode and prevents the shuttle behavior of the lithium-sulfur battery.

  14. High power microwave generation from coaxial virtual cathode oscillator using graphite and velvet cathodes

    Science.gov (United States)

    Menon, Rakhee; Roy, Amitava; Singh, S. K.; Mitra, S.; Sharma, Vishnu; Kumar, Senthil; Sharma, Archana; Nagesh, K. V.; Mittal, K. C.; Chakravarthy, D. P.

    2010-05-01

    High power microwave (HPM) generation studies were carried out in KALI-5000 pulse power system. The intense relativistic electron beam was utilized to generate HPMs using a coaxial virtual cathode oscillator. The typical electron beam parameters were 350 kV, 25 kA, and 100 ns, with a few hundreds of ampere per centimeter square current density. Microwaves were generated with graphite and polymer velvet cathode at various diode voltage, current, and accelerating gaps. A horn antenna setup with diode detector and attenuators was used to measure the microwave power. It was observed that the microwave power increases with the diode voltage and current and reduces with the accelerating gap. It was found that both the peak power and width of the microwave pulse is larger for the velvet cathode compared to the graphite cathode. In a coaxial vircator, velvet cathode is superior to the graphite cathode due to its shorter turn on time and better electron beam uniformity.

  15. Poisoning and reactivation processes in oxide-type cathodes: Part I. Polycrystalline mixed oxides

    Science.gov (United States)

    Shih, A.; Haas, G. A.

    A study has been made of the poisoning and reactivation characteristics of alkaline earth oxide-type cathodes after extended periods of shelf storage. Both emitted and incident electrons were used to measure changes in the electronics properties, i.e. work function. The variations in work function over the surface were obtained in both distribution form as well as topographic presentation using a scanning low energy electron probe (SLEEP). These measurements were correlated with simultaneously occurring compositional changes using Auger, gas desorption and ion scattering techniques. Measurements were made on realistic cathodes in actual vacuum tube ambients. The results showed that oxide-type cathodes poison within a few hours after shut-down by the adsorption of residual gases contained in the vacuum ambient. (The effects of CO 2 were specifically demonstrated.) These adsorbates are, however, desorbed upon heating and in combination with other reactivation processes (such as formation of surface Ba layers when using reducing substrates), the cathode can reach full activation again by the time the temperature reaches the normal operating temperature. The poisoning and reactivation phenomena are a combination of a number of simultaneous processes, and studies to separate and identify these is the objective of part II of this paper.

  16. Reduction of gas flow into a hollow cathode ion source for a neutral beam injector

    International Nuclear Information System (INIS)

    Experimental studies have been made on the reduction of the gas flow rate into ion sources which utilize a hollow cathode. The electron emitter of the hollow cathode was a barium oxide impregnated porous tungsten tube. The hollow cathode was mounted to a circular or a rectangular bucket source and the following results were obtained. There was a tendency for the minimum gas flow rate for the stable source operation to decrease with increasing orifice diameter of the hollow cathode up to 10 mm. A molybdenum button with an appropriate diameter set in front of the orifice reduced the minimum gas flow rate to one half of that without button. An external magnetic field applied antiparallel to the field generated by the heater current stabilized the discharges and reduced the minimum gas flow rate to one half of that without field. Combination of the button and the antiparallel field reduced the minimum gas flow rate from the initial value (9.5 Torr 1/s) to 2.4 Torr 1/s. The reason for these effects was discussed on the basis of the theory for arc starvation

  17. Pressure tube type reactor

    International Nuclear Information System (INIS)

    Heretofore, a pressure tube type reactor has a problem in that the evaluation for the reactor core performance is complicate and no sufficient consideration is made for the economical property, to increase the size of a calandria tank and make the cost expensive. Then, in the present invention, the inner diameter of a pressure tube is set to greater than 50% of the lattice gap in a square lattice like arrangement, and the difference between the inner and the outer diameters of the calandria tube is set smaller than 20% of the lattice gap. Further, the inner diameter of the pressure tube is set to greater than 40% and the difference between the inner and the outer diameters of the calandria tube is set smaller than 30% of the lattice gap in a triangle lattice arrangement. Then, heavy water-to-fuel volume ratio can be determined appropriately and the value for the coolant void coefficient is made more negative side, to improve the self controllability inherent to the reactor. In particular, when 72 to 90 fuel rods are arranged per one pressure tube, the power density per one fuel rod is can be increased by about twice. Accordingly, the number of the pressure tubes can be reduced about to one-half, thereby enabling to remarkably decrease the diameter of the reactor core and to reduce the size of the calandria, which is economical. (N.H.)

  18. Characterization of LiFePO4 cathode by addition of graphene for lithium ion batteries

    International Nuclear Information System (INIS)

    The improvement of LiFePO4 (LFP) cathode performance has been performed by addition of Graphene (LFP+Graphene). The cathode was prepared from the active material with 5 wt % graphene and 10 wt % polyvinylidene fluoride in an n-methyl pyrrolidone solvent. Another cathode material used only 5% artificial graphite for comparison (LFP+Graphite). The crystal structure, microstructure, electronic conductivity, electrochemical impedance spectroscopy (EIS) of the cathodes were characterized by X-ray diffraction, SEM, and Impedance spectroscopy, respectively. Two half cell coin batteries were assembled using a lithium metal as an anode and LiPf6 as an electrolyte, and two cathodes (LFP+Graphene) and (LFP+Graphite). Charge discharge performance of battery was characterized by Battery analyser (BTS 8). The electronic conductivity of cathode with grapheme increased of about one order magnitude compared with the only cathode with graphite, namely from 1.97E-7S/cm (LFP+Graphite) to 1.92E-6S/cm (LFP+Graphene). The charge-discharge capacity after 10th cycles of LiFePO4 with graphene decreased of about 0.68% from 114.3 mAh/g to113.1 mAh/g, while LFP with graphite decreased of about 2.84% from 110.2 mAh/g to 107.1 mAh, at 0.1C-rates. It could be concluded that the addition of graphene has increased the ionic conductivity, and improved performance of the LFP lithium ion battery, such as higher capacity and better efficiency

  19. Characterization of LiFePO4 cathode by addition of graphene for lithium ion batteries

    Science.gov (United States)

    Honggowiranto, Wagiyo; Kartini, Evvy

    2016-02-01

    The improvement of LiFePO4 (LFP) cathode performance has been performed by addition of Graphene (LFP+Graphene). The cathode was prepared from the active material with 5 wt % graphene and 10 wt % polyvinylidene fluoride in an n-methyl pyrrolidone solvent. Another cathode material used only 5% artificial graphite for comparison (LFP+Graphite). The crystal structure, microstructure, electronic conductivity, electrochemical impedance spectroscopy (EIS) of the cathodes were characterized by X-ray diffraction, SEM, and Impedance spectroscopy, respectively. Two half cell coin batteries were assembled using a lithium metal as an anode and LiPf6 as an electrolyte, and two cathodes (LFP+Graphene) and (LFP+Graphite). Charge discharge performance of battery was characterized by Battery analyser (BTS 8). The electronic conductivity of cathode with grapheme increased of about one order magnitude compared with the only cathode with graphite, namely from 1.97E-7S/cm (LFP+Graphite) to 1.92E-6S/cm (LFP+Graphene). The charge-discharge capacity after 10th cycles of LiFePO4 with graphene decreased of about 0.68% from 114.3 mAh/g to113.1 mAh/g, while LFP with graphite decreased of about 2.84% from 110.2 mAh/g to 107.1 mAh, at 0.1C-rates. It could be concluded that the addition of graphene has increased the ionic conductivity, and improved performance of the LFP lithium ion battery, such as higher capacity and better efficiency.

  20. Preparation and Characterization of Ultralong Spinel Lithium Manganese Oxide Nanofiber Cathode via Electrospinning Method

    International Nuclear Information System (INIS)

    Highlights: • Ultralong LiMn2O4 nanofibercathode for lithium ion batteries is synthesized by electrospinning. • Nanofiber cathode shows good cycle stability, high-rate capacity. • LiMn2O4 nanofiber cathode forms porous “network-like” structure. - Abstract: Aim: ng at improving the high rate capability of spinel lithium manganese oxide (LiMn2O4) cathode, ultralong LiMn2O4 nanofibers are prepared by combination of electrospinning and sol-gel techniques. The effect of processing parameters, including the weight ratio of polyvinylpyrrolidone (PVP) to Li and Mn precursor, calcination temperature and time, on the morphology and the resultant cathode performance of spinel LiMn2O4 nanofiber cathodes have been systematically investigated. Thermal behavior of LiMn2O4 precursor nanofibers is performed on a differential scanning calorimetry-differential thermal analysis (DSC-DTA), indicating the spinel LiMn2O4 began forming at 513 °C. The cathode materials appear porous “network-like” morphology with nanosize in diameter (∼170 nm), microsize in length (∼20 μm) and pure spinel structure, confirmed by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The ultralong LiMn2O4 nanofiber cathode calcined at 700 °C for 8 h shows highest capacity and best rate capability. Its discharge capacity is 146 mAh g−1 at 0.1 C; more importantly, the discharge capacities are 112 mAh g−1, 103 mAh g−1 and 92 mAh g−1 at high discharge rates of 10 C, 20 C and 30 C, respectively

  1. Non-uniform tube representation of proteins

    DEFF Research Database (Denmark)

    Hansen, Mikael Sonne

    Treating the full protein structure is often neither computationally nor physically possible. Instead one is forced to consider various reduced models capturing the properties of interest. Previous work have used tubular neighborhoods of the C-alpha backbone. However, assigning a unique radius...... might not correctly capture volume exclusion - of crucial importance when trying to understand a proteins $3$d-structure. We propose a new reduced model treating the protein as a non-uniform tube with a radius reflecting the positions of atoms. The tube representation is well suited considering X......-ray crystallographic resolution ~ 3Å while a varying radius accounts for the different sizes of side chains. Such a non-uniform tube better capture the protein geometry and has numerous applications in structural/computational biology from the classification of protein structures to sequence-structure prediction....

  2. Non-Uniform Tube Representation of Proteins

    DEFF Research Database (Denmark)

    Hansen, Mikael Sonne

    Treating the full protein structure is often neither computationally nor physically possible. Instead one is forced to consider various reduced models capturing the properties of interest. Previous work have used tubular neighborhoods of the C-alpha backbone. However, assigning a unique radius...... might not correctly capture volume exclusion - of crucial importance when trying to understand a protein's 3d-structure. We propose a new reduced model treating the protein as a non-uniform tube with a radius reflecting the positions of atoms. The tube representation is well suited considering X......-ray crystallographic resolution ~ 3Å while a varying radius accounts for the different sizes of side chains. Such a non-uniform tube better captures the protein geometry and has numerous applications in structural/computational biology from the classification of protein structures to sequence-structure prediction....

  3. Isolated Fallopian Tube Torsion

    Directory of Open Access Journals (Sweden)

    S. Kardakis

    2013-01-01

    Full Text Available Isolated torsion of the Fallopian tube is a rare gynecological cause of acute lower abdominal pain, and diagnosis is difficult. There are no pathognomonic symptoms; clinical, imaging, or laboratory findings. A preoperative ultrasound showing tubular adnexal masses of heterogeneous echogenicity with cystic component is often present. Diagnosis can rarely be made before operation, and laparoscopy is necessary to establish the diagnosis. Unfortunately, surgery often is performed too late for tube conservation. Isolated Fallopian tube torsion should be suspected in case of acute pelvic pain, and prompt intervention is necessary.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the patient in a hospital bed or the emergency room. The x-ray tube is connected to ... equipment is relatively inexpensive and widely available in emergency rooms, physician offices, ambulatory care centers, nursing homes ...

  5. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    Directory of Open Access Journals (Sweden)

    Renate Hiesgen

    2013-10-01

    Full Text Available In this work, material-sensitive atomic force microscopy (AFM techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM. The cathodes that contained polyvinylidene fluoride (PVDF and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur−1 after 43 cycles.

  6. On the suppression of cathodic hypochlorite reduction by electrolyte additions of molybdate and chromate ions

    Directory of Open Access Journals (Sweden)

    JOHN GUSTAVSSON

    2012-11-01

    Full Text Available The goal of this study was to gain a better understanding of the feasibility of replacing Cr(VI in the chlorate process by Mo(VI, focusing on the cathode reaction selectivity for hydrogen evolution on steel and titanium in a hypochlorite containing electrolyte. To evaluate the ability of Cr(VI and Mo(VI additions to hinder hypochlorite reduction, potential sweep experiments on rotating disc electrodes and cathodic current efficiency (CE measurements on stationary electrodes were performed. Formed electrode films were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cathodic hypochlorite reduction is hindered by the Mo-containing films formed on the cathode surface after Mo(VI addition to the electrolyte, but much less efficient compared to Cr(VI addition. Very low levels of Cr(VI, in the mM range, can efficiently suppress hypochlorite reduction on polished titanium and steel. Phosphate does not negatively influence the CE in the presence of Cr(VI or Mo(VI but the Mo-containing cathode films become thinner if the electrolyte during the film build-up also contains phosphate. For a RuO2-TiO2 anode polarized in electrolyte with 40 mM Mo(VI, the anode potential increased and increased molybdenum levels were detected on the electrode surface

  7. Carbon nanotube based field emission X-ray sources

    Science.gov (United States)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  8. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  9. Reservoir Scandate Cathode for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  10. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  11. Salt taste inhibition by cathodal current

    OpenAIRE

    Hettinger, Thomas P.; Frank, Marion E.

    2009-01-01

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of −40 to −80 µA were applied to human subjects’ tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium su...

  12. Co-Flow Hollow Cathode Technology

    Science.gov (United States)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  13. Kinking of medical tubes.

    Science.gov (United States)

    Ingles, David

    2004-05-01

    The phenomenon of kinking in medical tubing remains a problem for some applications, particularly critical ones such as transporting gasses or fluids. Design features are described to prevent its occurrence.

  14. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  15. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  16. Aeronautical tubes and pipes

    Science.gov (United States)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  17. Clearing obstructed feeding tubes.

    Science.gov (United States)

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length. PMID:2494372

  18. A gas laser tube

    Energy Technology Data Exchange (ETDEWEB)

    Tetsuo, F.; Tokhikhide, N.

    1984-04-19

    A gas laser tube is described in which contamination of the laser gas mixture by the coolant is avoided, resulting in a longer service life of the mirrors. The holder contains two tubes, one inside the other. The laser gas mixture flows through the internal tube. An electrode is fastened to the holder. The coolant is pumped through the slot between the two tubes, for which a hole is cut into the holder. The external tube has a ring which serves to seal the cavity containing the coolant from the atmosphere. The internal tube has two rings, one to seal the laser gas mixture and the other to seal the coolant. A slot is located between these two rings, which leads to the atmosphere (the atmosphere layer). With this configuration, the degradation of the sealing properties of the internal ring caused by interaction with the atmospheric layer is not reflected in the purity of the laser gas mixture. Moreover, pollution of the mirrors caused by the penetration of the coolant into the cavity is eliminated.

  19. Determination of Nd, Ho, Er, Tm and Y in solutions by hollow cathode discharge with copper cathodes

    International Nuclear Information System (INIS)

    A hollow cathode discharge has been applied to the determination of Nd, Ho, Er, Tm and Y in solutions using copper cathodes and argon as a carrier gas. The solutions were evaporated to dryness in the cathodes without a pretreatment. Absolute detection limit for the elements studied here were found to be lower in the copper cathode by about one order than those obtained in previous studies in graphite hollow cathodes

  20. Dynamic tube/support interaction in heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.S.

    1991-01-01

    The supports for heat exchanger tubes are usually plates with drilled holes; other types of supports also have been used. To facilitate manufacture and to allow for thermal expansion of the tubes, small clearances are used between tubes and tube supports. The dynamics of tube/support interaction in heat exchangers is fairly complicated. Understanding tube dynamics and its effects is important for heat exchangers. This paper summarizes the current state of the art on this subject and to identify future research needs. Specifically, the following topics are discussed: dynamics of loosely supported tubes, tube/support gap dynamics, tube response in flow, tube damage and wear, design considerations, and future research needs. 55 refs., 1 fig.

  1. Indirect measure of X-rays spectra using TLDs; Medicion indirecta de espectros de rayos X utilizando TLDs

    Energy Technology Data Exchange (ETDEWEB)

    Bonzi, E. V.; Mainardi, R. T. [Universidad Nacional de Cordoba, Facultad de Matematica, Astronomia y Fisica, Av. Haya de la Torre y Av. Medina Allende s/n, Ciudad Universitaria, X5016LEA Cordoba (Argentina)

    2011-10-15

    A methodology of indirect measure of X-rays spectra, emitted by conventional tubes, was developed recently and its feasibility verified in the first place by Monte Carlo simulations. For that case is intended to measure, by means of plastic scintillators, attenuation curves of dispersed beams previously. In this work were carried out measurements of attenuation curves with thermoluminescent dosimeters (TLD) to verify the kindness of the indirect measure method. The attenuation curve was also measured using an ionization chamber brand Capintec (model 192) with the purpose of making a comparison. The results of the attenuation curve measured with both dosimeters present a good resolution inside the statistical fluctuations and the spectral reconstruction using diverse parametric functions is carried out in a quick and simple way with excellent resolutions in the functional form. For this reconstruction method are of fundamental importance the following properties of the used dosimeter: in the first place the repetition of the measures, property that could check; in second place the precision of the measured data and lastly the dosimeter response, this is, the increase of the thermoluminescent signal before an increase of the photons flow of X-rays. This parameter is the gradient of the curve thermoluminescent signal versus the dose imparted to the dosimeter. The measures were realized with a generator of X-rays brand Kevex provided of a conventional tube with tungsten anti cathode that polarizes with high tension to a maximum value of 50 kV and current of 0.5 ma. (Author)

  2. Reduction of levels of radiation exposure over patients and medical staff by using additional filters of copper and aluminum on the outputs of X-ray tubes in hemodynamic equipment; Reducao da dose de radiacao em pacientes e equipes medicas pelo uso de filtros adicionais de cobre e aluminio nas saidas de tubos de raios X em equipamentos de hemodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Guilherme L.; Müller, Felipe M.; Schuch, Luiz A., E-mail: glweis@gmail.com [Universidade Federal de Santa Maria (UFSM), Santa Maria, RS (Brazil)

    2013-12-15

    Radioprotection in hemodynamic services is extremely important. Decrease of total exposition time, better positioning of medical staff in the room, use of individual and collective protection equipment and shorter distance between the patient and the image intensifier tube are, among others, some ways to reduce the levels of radiation. It is noted that these possible forms of reducing the radiation exposition varies depending on the medical staff. Hence, the purpose of the present paper is to reduce such levels of radiation exposition in a way apart from medical staffs. It is proposed, therefore, the use of additional filters on the output of the X-ray tube in three hemodynamic equipment from different generations: detector with a flat panel of amorphous selenium, image intensifier tube with charge coupled device, and image intensifier tube with video camera. In order to quantify the quality of the images generated, a simulator made of aluminum plates and other devices was set up, so it was possible to measure and compare the acquired images. Methods of images analysis (threshold, histogram, 3D surface) were used to measure the signal/noise ratio, the spatial resolution, the contrast and the definition of the signal area, thus doubts regarding the analysis of the images among observers (inter-observers) and even for a single observer (intra-observer) can be avoided. Ionization chambers were also used in order to quantify the doses of radiation that penetrated the skin of the patients with and without the use of the filters. In all cases was found an arrangement of filters that combines quality of the images with a significant reduction of the levels of exposure to ionizing radiation, concerning both the patient and the medical staff. (author)

  3. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  4. Testing and analysis of tube voltage and tube current in the radiation generator for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hong Ryang; Hong, Dong Hee [Dept. of Health Care, Hanseo University, Seosan (Korea, Republic of); Han, Beom Hui [Dept. of Radiological Science, Seonam University, Namwon (Korea, Republic of)

    2014-03-15

    Breast shooting performance management and quality control of the generator is applied to the amount of current IEC(International Electrotechnical Commission) 60601-2-45 tube voltage and tube current are based on standards that were proposed in the analysis of the test results were as follows. Tube voltage according to the value of the standard deviation by year of manufacture from 2001 to 2010 as a 42-3.15 showed the most significant, according to the year of manufacture by tube amperage value of the standard deviation to 6.38 in the pre-2000 showed the most significant , manufactured after 2011 the standard deviation of the devices, the PAE(Percent Average Error) was relatively low. This latest generation device was manufactured in the breast of the tube voltage and tube diagnosed shooting the correct amount of current to maintain the performance that can be seen. The results of this study as the basis for radiography diagnosed breast caused by using the device's performance and maintain quality control, so the current Food and Drug Administration 'about the safety of diagnostic radiation generator rule' specified in the test cycle during three years of self-inspection radiation on a radiation generating device ensure safety and performance of the device using a coherent X-ray(constancy) by two ultimately able to keep the radiation dose to the public to reduce the expected effect is expected.

  5. 2013 Estorm - Invited Paper - Cathode Materials Review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  6. Investigation of the flickering of La{sub 2}O{sub 3} and ThO{sub 2} doped tungsten cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hoebing, T.; Hermanns, P.; Bergner, A.; Ruhrmann, C.; Mentel, J.; Awakowicz, P. [Ruhr University Bochum, Electrical Engineering and Plasma Technology, 44780 Bochum (Germany); Traxler, H.; Wesemann, I.; Knabl, W. [Plansee SE, Metallwerk-Plansee-Str. 71, 6600 Reutte (Austria)

    2015-07-14

    Short-arc lamps are equipped with tungsten electrodes due to their ability to withstand a high thermal load during operation. Nominal currents of more than one hundred amperes lead to a cathode tip temperature near the melting point of tungsten. To reduce the electrode temperature and, thereby, to increase the maintenance of such lamps, ThO{sub 2} or tentatively La{sub 2}O{sub 3} are added to the electrode material. They generate a reduced work function by establishing a monolayer of emitter atoms on the tungsten surface. Emitter enrichments on the lateral surface of doped cathodes are formed. They are traced back to transport mechanisms of emitter oxides in the interior of the electrode and on the electrode surface in dependence of the electrode temperature and to the redeposition of vaporized and ionized emitter atoms onto the cathode tip by the electric field in front. The investigation is undertaken by means of glow discharge mass spectrometry, scanning electron microscope images, energy dispersive x-ray spectroscopy, and through measurements of the optical surface emissivity. The effect of emitter enrichments on the stability of the arc attachment is presented by means of temporally resolved electrode temperature measurements and by measurements of the luminous flux from the cathode-near plasma. They show that the emitter enrichments on the lateral surface of the cathode are attractive for the arc attachment if the emitter at the cathode tip is depleted. In this case, it moves along the lateral surface from the cathode tip to sections of the cathode with a reduced work function. It induces a temporary variation of the cathode tip temperature and of the light intensity from the cathode-near plasma, a so-called flickering. In particular, in case of lanthanated cathodes, strong flickering is observed.

  7. Effective emissivity of a blackbody cavity formed by two coaxial tubes.

    Science.gov (United States)

    Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi

    2014-04-10

    A blackbody cavity is developed for continuously measuring the temperature of molten steel, which consists of a cylindrical outer tube with a flat bottom, a coaxial inner tube, and an aperture diaphragm. The ray-tracing approach based on the Monte Carlo method was applied to calculate the effective emissivity for the isothermal cavity with the diffuse walls. And the dependences of the effective emissivity on the inner tube relative length were calculated for various inner tube radii, outer tube lengths, and wall emissivities. Results indicate that the effective emissivity usually has a maximum corresponding to the inner tube relative length, which can be explained by the impact of the inner tube relative length on the probability of the rays absorbed after two reflections. Thus, these results are helpful to the optimal design of the blackbody cavity.

  8. Effective emissivity of a blackbody cavity formed by two coaxial tubes.

    Science.gov (United States)

    Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi

    2014-04-10

    A blackbody cavity is developed for continuously measuring the temperature of molten steel, which consists of a cylindrical outer tube with a flat bottom, a coaxial inner tube, and an aperture diaphragm. The ray-tracing approach based on the Monte Carlo method was applied to calculate the effective emissivity for the isothermal cavity with the diffuse walls. And the dependences of the effective emissivity on the inner tube relative length were calculated for various inner tube radii, outer tube lengths, and wall emissivities. Results indicate that the effective emissivity usually has a maximum corresponding to the inner tube relative length, which can be explained by the impact of the inner tube relative length on the probability of the rays absorbed after two reflections. Thus, these results are helpful to the optimal design of the blackbody cavity. PMID:24787424

  9. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  10. Effect of tube size on electromagnetic tube bulging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The commercial finite code ANSYS was employed for the simulation of the electromagnetic tube bulging process. The finite element model and boundary conditions were thoroughly discussed. ANSYS/EMAG was used to model the time varying electromagnetic field in order to obtain the radial and axial magnetic pressure acting on the tube. The magnetic pressure was then used as boundary conditions to model the high velocity deformation of various length tube with ANSYS/LSDYNA. The time space distribution of magnetic pressure on various length tubes was presented. Effect of tube size on the distribution of radial magnetic pressure and axial magnetic pressure and high velocity deformation were discussed. According to the radial magnetic pressure ratio of tube end to tube center and corresponding dimensionless length ratio of tube to coil, the free electromagnetic tube bulging was studied in classification. The calculated results show good agreements with practice.

  11. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  12. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    Science.gov (United States)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  13. Kajian Efektifitas Sistem Struktur Tube Dengan Sistem Struktur Tube In Tube Di Bawah Beban Gempa

    OpenAIRE

    Sihotang, Dian Frisca

    2010-01-01

    Berkembangnya teknologi telah melahirkan berbagai sistem struktur bangunan tahan gempa, seperti penggunaan sistem tube.Tube adalah merupakan frame penahan gaya yang menahan gaya gaya lateral dengan struktur kantilever kotak yang memiliki jarak kolom yang berdekatan yang dipasang pada sekeliling gedung, sehingga penampilan wajah depan gedung seperti lubang jendela jendela yang terbuka. Rancangan tube ini kemudian dimodifikasi lagi dengan menambah pengaku pada bagian dalam ( konsep tube in tube...

  14. Cathode Formed by Thermal Evaporation of Ba:Al Alloy and Estimations of Barrier Height in an Organic LED

    Institute of Scientific and Technical Information of China (English)

    DING Lei; ZHANG Fang-Hui

    2011-01-01

    @@ It is demonstrated that barium and aluminum alloy synthesized by melting in a glass tube under low vac- uum is applicable for organic laser emitting diodes (LEDs) as a thin film cathode.The alloy film obtained by the thermal evaporation of pre-synthesized alloy is used in a single-boat organic LED device with the struc- ture: indium tin oxide (ITO)/4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl(NPB)/tris-(8-hydroxyquinoline) aluminum(Alq) /barium:aluminum alloy.The experimental results show that devices with this alloy film cathode exhibit better current densityovoltage-luminance characteristics than those with a conventional pure AI cathode, and more weight of barium in aluminum leads to better performance of the devices.Characteristics of cur- rent density versus voltage for the electron-only devices are fitted by the Richardson-Schottky emission model, indicating that the electron injection barrier has a decrease of about 0.3 eV by this alloy cathode.%It is demonstrated that barium and aluminum alloy synthesized by melting in a glass tube under low vacuum is applicable for organic laser emitting diodes (LEDs) as a thin Rim cathode. The alloy Him obtained by the thermal evaporation of pre-synthesized alloy is used in a single-boat organic LED device with the structure: indium tin oxide (ITO)/4,4'-bis[N-(l-naphthyl)-N-phenylamino]biphenyl(NPB)/tris-(8-hydroxyquinoline) aluminum(Alq3)/barium:aluminum alloy. The experimental results show that devices with this alloy film cathode exhibit better current density-voltage-luminance characteristics than those with a conventional pure Al cathode, and more weight of barium in aluminum leads to better performance of the devices. Characteristics of current density versus voltage for the electron-only devices are fitted by the Richardson-Schottky emission model, indicating that the electron injection barrier has a decrease of about 0.3 eV by this alloy cathode.

  15. Application study on thin wall ferritic stainless steel tubing for sea water cooled condensers in thermal power plant

    International Nuclear Information System (INIS)

    Aluminum brass tubing which is highly cost-effective and has a high heat transfer property has been widely used for seawater cooled condenser in Japan. However, the tubing suffers from erosion and corrosion on the inner surface in spite of ferric-ion injection and cathodic protection. Ammonia also attacks the outer surface after long years of service. Periodic replacement with new tubing has been performed. Titanium tubing which has high corrosion resistance, has been used in new condensers and for the air removal zone of the condenser. however, its service has been restricted due to higher cost and lower elastic modulus. As a countermeasure, we have developed a high performance ferritic stainless steel tubing called 'Super Stainless: FS10' which has excellent corrosion resistance and is highly cost-effective. First, the tubings were used experimentally in our Buzen thermal power station, Unit 2 condenser in 1993, and various investigations have been performed on the extracted tubing and tube sheet every year. Ammonia attack on the outer surface, corrosion and erosion on the inner surface, crevice corrosion between the tube and tube-sheet, H2 absorption and degradation of properties was not observed. Based on these results, 1,006 pieces of FS10 were installed in Buzen thermal power station, Unit 1 condenser in 1996. The tubing has been used in seawater without any corrosion problems

  16. Calibration of cathode strip gains in multiwire drift chambers of the GlueX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Berdnikov, V. V.; Somov, S. V.; Pentchev, L.; Somov, A.

    2016-07-01

    A technique for calibrating cathode strip gains in multiwire drift chambers of the GlueX experiment is described. The accuracy of the technique is estimated based on Monte Carlo generated data with known gain coefficients in the strip signal channels. One of the four detector sections has been calibrated using cosmic rays. Results of drift chamber calibration on the accelerator beam upon inclusion in the GlueX experimental setup are presented.

  17. Lead oxides as cathode materials for voltage-compatible lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Peraldo Bicelli, L.; Rivolta, B.; Bonino, F.; Maffi, S.; Malitesta, C.

    1986-06-01

    Yellow ..beta..-PbO (massicot) and ..beta..-PbO/sub 2/ (plattnerite) have been investigated as cathode materials in organic electrolyte lithium cells. The main characteristics and performance of these cells have been examined and the discharge mechanism discussed on the basis of X-ray data. The two oxides are particularly interesting as candidates for voltage-compatible lithium cells. They exhibit long voltage plateaux of appropriate values and appreciable specific capacities and energies.

  18. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    OpenAIRE

    Rômulo Ribeiro Magalhães de Sousa; Francisco Odolberto de Araújo; José Alzamir Pereira da Costa; Antonio Maia de Oliveira; Mineia Sampaio Melo; Clodomiro Alves Junior

    2012-01-01

    AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN), with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  19. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  20. Cathodic electrodeposition of cobalt oxide films using polyelectrolytes

    International Nuclear Information System (INIS)

    Composite films consisting of cobalt hydroxide and polyelectrolytes, such as poly(diallyldimethylammonium chloride) (PDDA) and polyethylenimine (PEI), were obtained by electrodeposition. In the proposed method, electrophoretic deposition of PDDA macromolecules or PEI-Co2+ complexes has been combined with cathodic electrosynthesis of cobalt hydroxide. By varying the concentration of the polyelectrolytes in solutions, the deposition time and the current density, the amount of deposited material and its composition can be varied. The composite deposits have been studied by scanning, transmission and atomic force microscopy, X-ray diffraction and thermogravimetric analysis. The obtained results have been compared with the results of investigation of pure cobalt hydroxide films. Heat treatment of the deposits resulted in decomposition of the hydroxide precursor and burning out of polymer to form cobalt oxide films. This method enables the formation of thick nanostructured oxide films

  1. The effect of oxygen transfer mechanism on the cathode performance based on proton-conducting solid oxide fuel cells

    KAUST Repository

    Hou, Jie

    2015-01-01

    Two types of proton-blocking composites, La2NiO4+δ-LaNi0.6Fe0.4O3-δ (LNO-LNF) and Sm0.2Ce0.8O2-δ-LaNi0.6Fe0.4O3-δ (SDC-LNF), were evaluated as cathode materials for proton-conducting solid oxide fuel cells (H-SOFCs) based on the BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte, in order to compare and investigate the influence of two different oxygen transfer mechanism on the performance of the cathode for H-SOFCs. The X-ray diffraction (XRD) results showed that the chemical compatibility of the components in both compounds was excellent up to 1000°C. Electrochemical studies revealed that LNO-LNF showed lower area specific polarization resistances in symmetrical cells and better electrochemical performance in single cell tests. The single cell with LNO-LNF cathode generated remarkable higher maximum power densities (MPDs) and lower interfacial polarization resistances (Rp) than that with SDC-LNF cathode. Correspondingly, the MPDs of the single cell with the LNO-LNF cathode were 490, 364, 266, 180 mW cm-2 and the Rp were 0.103, 0.279, 0.587, 1.367 Ω cm2 at 700, 650, 600 and 550°C, respectively. Moreover, after the single cell with LNO-LNF cathode optimized with an anode functional layer (AFL) between the anode and electrolyte, the power outputs reached 708 mW cm-2 at 700°C. These results demonstrate that the LNO-LNF composite cathode with the interstitial oxygen transfer mechanism is a more preferable alternative for H-SOFCs than SDC-LNF composite cathode with the oxygen vacancy transfer mechanism.

  2. Wire- and cathode pulses in a counter of square cross section with a thin wire as central conductor operating in limited streamer mode

    International Nuclear Information System (INIS)

    Streamer tubes are becoming increasingly important in high-energy physics experiments. They are used as drift tubes for the localisation of charged-particle tracks, and also a sampling devices in sandwich calorimeters with cathode readout only. The streamer pulses carry charges which are several orders of magnitude larger than pulses from proportional chambers; this provides a good signal-to-noise ratio and makes them appropriate for a wide field of applications in highly compact detectors. The signals induced on the cathodes are also important for measuring - in addition to the anode wire - a second coordinate, and for resolving ambiguities in track recognition. When connecting the signals from two opposite cathodes to the two inputs of a differential amplifier, a left/right bit could be added after suitable buffering via the same signal line as used for time digitalisation. Another essential feature is the association of time information from the anode wire and the cathode. For the streamer tube used in this experiment the pulses induced on the cathode on either side of the particle, and on the anode, are measured by a fast analog-to-digital converter. A simple two-dimensional model ρ(r,θ) at t=0, without any time-dependent effects other than a constant electron drift velocity of 50 μm/ns, is used to compare the charge distribution in a streamer with the measurements of the pulse lengths at the two opposite cathode strips. First the field generated by a static voltage is calculated. Then the effect of a 'space charge' is evaluated. The Green's function of the square domain is a prerequisite for determining the field and the surface charge distribution on the electrodes. It is obtained from that of a concentric circular counter by a conformal mapping. Representations of Green's functions are calculated by series expansions. (orig.)

  3. Sheet Plasma Produced by Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙

    2003-01-01

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.

  4. Sheet plasma produced by hollow cathode discharge

    International Nuclear Information System (INIS)

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field. The plasma is about 40 cm in length, 4 cm in width and 1 cm in thickness. The electron density is about 108 cm-3. The hollow cathode is made to be shallow with a large opening, which is different from the ordinary deep hollow cathode. A Langmuir probe is used to detect the plasma. The electron density and the spatial distribution of the plasma change when voltage, pressure and the magnetic field vary. A peak and a data fluctuation at about 200 G - 300 G are observed in the variation of electron density (or thickness of the sheet plasma) with the magnetic field. Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable

  5. The occurrence of axial latex tubes in the secondary xylem of some species of Artocarpus J. R. & G. Forster (Moraceae)

    NARCIS (Netherlands)

    Topper, S.M.C.; Koek-Noorman, J.

    1980-01-01

    In a number of species of Artocarpus J.R. & G. Forster (Moraceae) laticifers were not only observed as radial tubes, enclosed in the ray tissue, but also as axial tubes, enclosed in the fibre tissue. Both types of latex tubes are connected and considered as one branched laticiferous system. A detail

  6. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  7. DARHT 2 kA Cathode Development

    International Nuclear Information System (INIS)

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm2 of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm2. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10-8 Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We reexamined all

  8. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  9. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  10. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  11. Nano-Particle Scandate Cathode for Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten impregnate cathodes. Recent results have...

  12. Downhole pulse tube refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Swift, G.; Gardner, D. [Los Alamos National Lab., NM (United States). Condensed Matter and Thermal Physics Group

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  13. Prawns in Bamboo Tube

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Ingredients: 400 grams Jiwei prawns, 25 grams pork shreds, 5 grams sliced garlic. Condiments: 5 grams cooking oil, minced ginger root and scallions, cooking wine, salt, pepper and MSG (optional) Method: 1. Place the Shelled prawns into a bowl and mix with all the condiments. 2. Stuff the prawns into a fresh bamboo tube,

  14. X-ray diagnostic equipment

    International Nuclear Information System (INIS)

    An X-ray tube is connected to several different image processing devices in X-ray diagnostic equipment. Only a single organ selector is allocated to it, for which the picture parameters for each image processing device are selected. The choice of the correct combination of picture parameters is made by means of a selector switch. (DG)

  15. WE-G-BRE-01: A High Power Nanotube X-Ray Microbeam Irradiator for Preclinical Brain Tumor Treatment

    International Nuclear Information System (INIS)

    Purpose: Microbeam radiation therapy (MRT) is a new type of cancer treatment undergoing studies at various synchrotron facilities. The principle of MRT is using arrays of microscopically small, low-energy X-radiation for the treatment of various radio-resistant, deep-seated tumors. Our motivation is to develop a compact and inexpensive image guided MRT irradiator to use in the research lab setting. After a successful initial demonstration, here we report a second generation carbon nanotube (CNT) cathode based MRT tube, capable of producing multiple microbeam lines with an anticipated dose rate of 11 Gy/min per line. Methods: The system uses multiple line CNT source arrays to generate multiple focal lines on the anode. The increase in dose-rate, compared to our first generation system, is achieved by increasing the operating voltage from 160 kVp to 225kVp, adding multiple simultaneous focal lines on the anode, and a more efficient cooling mechanism using a 6kW oil-cooled anode. Results: This work will present the design and development process, challenges and solutions to meeting operating specifications, and the final design of the tube and collimator, along with optimization and stabilization of its use. A detailed characterization of its capabilities will be included with a comprehensive measurement of its X-ray focal line dimensions, an evaluation of its collimator alignment and microbeam dimensions, and phantom-based quantification of its dosimetric output. Conclusion: The development of a second generation, compact, multiple line MRT device using carbon nanotube (CNT) cathode based X-ray technology and a novel oil cooled anode design is presented here. With this new source, we are capable of delivering a total microbeam radiation dose comparable to the low end of the synchrotron based MRT systems for small animal brain tumor models

  16. Metallurgical Analysis of Cracks Formed on Coal Fired Boiler Tube

    Science.gov (United States)

    Kishor, Rajat; Kyada, Tushal; Goyal, Rajesh K.; Kathayat, T. S.

    2015-02-01

    Metallurgical failure analysis was carried out for cracks observed on the outer surface of a boiler tube made of ASME SA 210 GR A1 grade steel. The cracks on the surface of the tube were observed after 6 months from the installation in service. A careful visual inspection, chemical analysis, hardness measurement, detailed microstructural analysis using optical and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy were carried out to ascertain the cause for failure. Visual inspection of the failed tube revealed the presence of oxide scales and ash deposits on the surface of the tube exposed to fire. Many cracks extending longitudinally were observed on the surface of the tube. Bulging of the tube was also observed. The results of chemical analysis, hardness values and optical micrographs did not exhibit any abnormality at the region of failure. However, detailed SEM with EDS analysis confirmed the presence of various oxide scales. These scales initiated corrosion at both the inner and outer surfaces of the tube. In addition, excessive hoop stress also developed at the region of failure. It is concluded that the failure of the boiler tube took place owing to the combined effect of the corrosion caused by the oxide scales as well as the excessive hoop stress.

  17. Optimized high-temperature cathode-heating unit

    International Nuclear Information System (INIS)

    Description of structure and test results of cathode-heating unit for electron accelerators are presented. In the given cathode unit LaB6 cathode area is enlarged, efficient heat isolations are used, heating element stiffness and strength are increased. Compact shild packets are used in a cathode unit. The heating element is made in the form of concentric rings. The unit heat efficiency is >80%, nonisothermality ΔT2 emitter area at T=2050 K constituted 700 h

  18. Uniform large-area thermionic cathode for SCALPEL

    Science.gov (United States)

    Katsap, Victor; Sewell, Peter B.; Waskiewicz, Warren K.; Zhu, Wei

    1999-11-01

    An electron beam lithography tool, which employs the SCALPEL technique, requires an extremely uniform beam to illuminate the scattering Mask, with the cathode operating in the temperature limited mode. It has been previously shown that LaB6 cathodes are not stable in this mode of operation. We have explored the possibility of implementing refined Tantalum-based emitters in the SCALPEL source cathode, and have developed large-area flat cathodes featuring suitably high emission uniformity under temperature limited operation.

  19. Feature of "Cold" Fusion Reaction in a Deuterated Complex Cathode

    OpenAIRE

    ARATA, Yoshiaki; ZHANG, Yue-Chang

    1992-01-01

    [Abstract] In order to corroborate the evidence of "cold" fusion reaction, a new-type, complex cathode was developed, consisting of a Ni rod with a Pd layer applied by plasma spraying. High reproducibility of a "cold" fusion reaction was confirmed, using a deuterated complex cathode. The Pd layer showed to have activated the surface functions of the deuterated cathode, and a reliable evidence was obtained that a new type of heat generation occurred in the complex cathode.

  20. Eustachian tube function in children after insertion of ventilation tubes.

    NARCIS (Netherlands)

    Heerbeek, N. van; Ingels, K.J.A.O.; Snik, A.F.M.; Zielhuis, G.A.

    2001-01-01

    This study was performed to assess the effect of the insertion of ventilation tubes and the subsequent aeration of the middle ear on eustachian tube (ET) function in children. Manometric ET function tests were performed repeatedly for 3 months after the placement of ventilation tubes in 83 children

  1. Restore condition of Incore thimble tubes in guide tubes

    Energy Technology Data Exchange (ETDEWEB)

    Solanas, A.; Izquierdo, J.

    2014-07-01

    Aging of Nuclear Power Plant and succession of outages lead to wear and twist of the thimbles tubes but also to the fooling of Incore guide tubes. These can create friction and a high strength must be used for thimble tubes withdrawal. (Author)

  2. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  3. Radial profiles of electron density and current components at cathode surface in LaB6 hollow cathode arc

    International Nuclear Information System (INIS)

    Experimental studies on a hydrogen-fed LaB6 hollow cathode arc have been pursued. The plasma parameter in the cathode has been measured by a Langmuir probe. The radial variation in the electron density inside the cathode was calculated using the continuity and momentum equations, showing good agreement with the experimental results. The electron density at the cathode surface was estimated to be 15 % - 20 % of that at the cathode axis. It was also found from the current balance that the arc current components at the cathode surface consist of a thermionic current which takes into account the Schottky effect, the ion current and the secondary electron current induced by ion bombardment. The ion current and the cathode surface is larger than the electron current emitted from the cathode. (author)

  4. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  5. Laser welding of a tube

    International Nuclear Information System (INIS)

    For sleeving PWR steam generator tubes, the welding laser work is made under protection of a primary gas going out by the crossing window of the laser and under a secondary gas flowing axially through the head and the tube

  6. Quarter-wave pulse tube

    Science.gov (United States)

    Swift, G. W.; Gardner, D. L.; Backhaus, S. N.

    2011-10-01

    In high-power pulse-tube refrigerators, the pulse tube itself can be very long without too much dissipation of acoustic power on its walls. The pressure amplitude, the volume-flow-rate amplitude, and the time phase between them evolve significantly along a pulse tube that is about a quarter-wavelength long. Proper choice of length and area makes the oscillations at the ambient end of the long pulse tube optimal for driving a second, smaller pulse-tube refrigerator, thereby utilizing the acoustic power that would typically have been dissipated in the first pulse-tube refrigerator's orifice. Experiments show that little heat is carried from the ambient heat exchanger to the cold heat exchanger in such a long pulse tube, even though the oscillations are turbulent and even when the tube is compactly coiled.

  7. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  8. Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes

    Science.gov (United States)

    Lacey, Steven; Lin, Yi; Hu, Liangbing

    Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.

  9. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    Directory of Open Access Journals (Sweden)

    Hyo-Joong Kim

    2015-10-01

    Full Text Available The characteristics of transparent ITO/Ag-Pd-Cu (APC/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs. The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  10. Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen

    Science.gov (United States)

    Ghorui, S.; Meher, K. C.; Kar, R.; Tiwari, N.; Sahasrabudhe, S. N.

    2016-07-01

    Experimental investigation of cathode erosion in atmospheric pressure hafnium-electrode plasma torches is reported under different plasma environments along with the results of numerical simulation. Air, nitrogen and oxygen are the plasma gases considered. Distinct differences in the erosion features in different plasmas are brought out. Cathode images exhibiting a degree of erosion and measured erosion rates are presented in detail as a function of time of arc operation and arc current. Physical erosion rates are determined using high precision balance. The changes in the surface microstructures are investigated through scanning electron microscopy (SEM). Evolution of cathode chemistry is determined using energy dispersive x-ray spectroscopy (EDX). Numerical simulation with proper consideration of the plasma effects is performed for all the plasma gases. The important role of electromagnetic body forces in shaping the flow field and the distribution of pressure in the region is explored. It is shown that the mutual interaction between fluid dynamic and electromagnetic body forces may self-consistently evolve a situation of an extremely low cathode erosion rate.

  11. Transparent ITO/Ag-Pd-Cu/ITO multilayer cathode use in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Joong; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr [Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Lee, Hyun Hwi [Pohang Accelerator Laboratory, POSTECH, Jigokro-127beon-gil, Nam-gu, Pohang 790-784 (Korea, Republic of); Kal, Jinha; Hahn, Jungseok [Future Technology Research Group, Kolon Central Research Park, 154 Mabukro, Giheung-ku, Yongin-si, Kyunggi-do, 16910 (Korea, Republic of)

    2015-10-15

    The characteristics of transparent ITO/Ag-Pd-Cu (APC)/ITO multilayer cathodes were investigated for use in inverted organic solar cells (IOSCs). The insertion of an APC interlayer into the ITO film effectively led to crystallization of the top ITO layer, unlike that in the Ag interlayer, and resulted in a low sheet resistance of 6.55 Ohm/square and a high optical transmittance of 84.14% without post annealing. In addition, the alloying of the Pd and Cu elements into Ag prevented agglomeration and oxidization of the metal interlayer and led to more stable ITO/APC/ITO films under ambient conditions. The microstructure and interfacial structure of the transparent ITO/APC/ITO cathode in the IOSCs were examined in detail by synchrotron X-ray scattering and high resolution transmission electron microscopy. Furthermore, we suggested a possible mechanism to explain the lower PCE of the IOSCs with an ITO/APC/ITO cathode than that of a reference IOSC with a crystalline ITO cathode using the external quantum efficiency of the IOSCs.

  12. The double sheath on cathodes of discharges burning in cathode vapour

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Benilova, L G [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2010-09-01

    The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5, in agreement with values extracted from the experiment.

  13. Ultrasonic nondestructive tubing inspection system

    International Nuclear Information System (INIS)

    A system for measuring the extent of tube wall erosion in an inspection region of a heat exchanger tube of a nuclear steam generator, uses an ultrasonic means driven helically inside the eroded tube which may be filled with a fluid (e.g., water) to minimize ultrasonic wave attenuation. A control means cooperates with the ultrasonic means to produce a map of the tube wall thickness in an inspection region

  14. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  15. Renovation of the cathodic protection system

    NARCIS (Netherlands)

    Schuten, G.; Leggedoor, J.; Polder, R.B.; Peelen, W.H.A.

    2003-01-01

    The first system for Cathodic Protection of concrete in the Netherlands was applied to a one bicycle lane of a bridge suffering corrosion due to de-icing salt penetration in 1986. This CP system was based on the Ferex 100S conducting polymer cable anode in a cementitious overlay. Its functioning was

  16. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al2O3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  17. Improved cathodes for a dense plasma focus

    International Nuclear Information System (INIS)

    A series of modified cathodes have been tested in our ultra-high vacuum dense plasma focus (DPF) device in an effort to improve both neutron output and shot-to-shot reproducibility. Inspiration for these modifications originated from time resolved photographs of the initial current sheet as it approaches the cathode. In particular, the current sheet develops a slight annular protrusion, or ''bump'', that contacts the inside wall of the cathode at a distance from the breach approximately coincident with the end of the insulator. In an attempt to take advantage of this protrusion, a series of modified cathodes was provided with a decreased waist diameter in the vicinity of the end of the insulator. As previously discussed, this DPF device is constructed from high vacuum components using metal-to-metal and ceramic (Al2O3)-to-metal seals; the entire assembly is given a vacuum bake at 2500C resulting in a pre-fill vacuum of approx. =5 x 10-9 Torr. The DPF is powered by a 7 μf capacitor bank. The short circuit ringing frequency is 412 kHz corresponding to a free circuit inductance of 21 nH. With the DPF in operation at 20 kV, a current peak of 200 kA occurs at 0.8 μs. Neutron output was measured side on with a silver activation counter, and end on with an arsenic activation counter

  18. Sleeve puller salvages welded tubes

    Science.gov (United States)

    Weaver, J. F.

    1980-01-01

    Tool removes sleeve remnants without distorting or damaging tubes, unlike pliers and other conventional handtools. Tubes can be reused, saving time, labor, and material in many applications. Sleeve-removal fixture consists of pressure screw, swing arm, locking screws, and base. It removes sleeve remnant from tubing after welded joint has been sawed through.

  19. Enteral Tube Feeding and Pneumonia

    Science.gov (United States)

    Gray, David Sheridan; Kimmel, David

    2006-01-01

    To determine the effects of enteral tube feeding on the incidence of pneumonia, we performed a retrospective review of all clients at our institution who had gastrostomy or jejunostomy tubes placed over a 10-year period. Ninety-three subjects had a history of pneumonia before feeding tube insertion. Eighty had gastrostomy and 13, jejunostomy…

  20. The occurrence of axial latex tubes in the secondary xylem of some species of Artocarpus J. R. & G. Forster (Moraceae)

    OpenAIRE

    Topper, S.M.C.; Koek-Noorman, J.

    1980-01-01

    In a number of species of Artocarpus J.R. & G. Forster (Moraceae) laticifers were not only observed as radial tubes, enclosed in the ray tissue, but also as axial tubes, enclosed in the fibre tissue. Both types of latex tubes are connected and considered as one branched laticiferous system. A detailed description of the individual latex tubes and the whole system, based on light microscopic and scanning electron microscopic observation, is presented.

  1. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  2. Fabrication of seamless calandria tubes

    International Nuclear Information System (INIS)

    Full text: Calandria tube is a large diameter, thin walled zircaloy-4 tube and is an important structural component of PHWR type of reactors. These tubes are lifetime components and remain during the full life of the reactor. Calandria tubes are classified as extremely thin walled tubes with a diameter to wall thickness ratio of around 96. Such thin walled tubes are conventionally produced by seam welded route comprising of extrusion of slabs followed by a series of hot and rolling passes, shaping into O-shape and eventual welding. An alternative and superior method of fabricating the calandria tubes, the seamless route, has been developed, which involves hot extrusion of mother blanks followed by three successive cold pilger reductions. Eccentricity correction of the extruded blanks is carried out on a special purpose grinding equipment to bring the wall thickness variation within permissible limits. Predominant wall thickness reductions are given during cold pilgering to ensure high Q-factor values. The texture in the finished tubes could be closely, controlled with an average fr value of 0.65. Pilgering parameters and tube guiding system have been specially designed to facilities rolling of thin walled tubes. Seamless calandria tubes have distinct advantages over welded tubes. In addition to the absence of weld, they are dimensionally more stable, lighter in weight and possess uniform grains with superior grain size. The cycle time from billet to finished product is substantially reduced and the product is amenable to high level of quality assurance. The most significant feature of the seamless route is its material recovery over welded route. Residual stresses measured in the tubes indicate that these are negligible and uniform along the length of the tube. In view of their superior quality, the first charge of seamless calandria tubes will be rolled into the first 500 MWe Pressurised Heavy Water Reactor at Tarapur

  3. Primary fallopian tube carcinoma

    Directory of Open Access Journals (Sweden)

    Mladenović-Segedi Ljiljana

    2009-01-01

    Full Text Available Introduction. Primary fallopian tube carcinoma is extremely rare, making 0.3-1.6% of all female genital tract malignancies. Although the etymology of this tumor is unknown, it is suggested to be associated with chronic tubal inflammation, infertility, tuberculous salpingitis and tubal endometriosis. High parity is considered to be protective. Cytogenetic studies show the disease to be associated with over expression of p53, HER2/neu and c-myb. There is also some evidence that BRCA1 and BRCA2 mutations have a role in umorogeneis. Clinical features. The most prevailing symptoms with fallopian tube carcinoma are abdominal pain, abnormal vaginal discharge/bleeding and the most common finding is an adnexal mass. In many patients, fallopian tube carcinoma is asymptomatic. Diagnosis. Due to its rarity, preoperative diagnosis of primary fallopian tube carcinoma is rarely made. It is usually misdiagnosed as ovarian carcinoma, tuboovarian abscess or ectopic pregnancy. Sonographic features of the tumor are non-specific and include the presence of a fluid-filled adnexal structure with a significant solid component, a sausage-shaped mass, a cystic mass with papillary projections within, a cystic mass with cog wheel appearance and an ovoid-shaped structure containing an incomplete separation and a highly vascular solid nodule. More than 80% of patients have elevated pretreatment serum CA-125 levels, which is useful in follow-up after the definite treatment. Treatment. The treatment approach is similar to that of ovarian carcinoma, and includes total abdominal hysterectomy and bilateral salpingo-oophorectomy. Staging is followed with chemotherapy.

  4. Clogging of feeding tubes.

    Science.gov (United States)

    Marcuard, S P; Perkins, A M

    1988-01-01

    This is a report of an in vitro study evaluating clotting ability of some formulas with intact protein and hydrolyzed protein sources in a series of buffers ranging from a pH of 1 thru 10. The following 10 products were tested: Ensure Plus, Ensure, Enrich, Osmolite, Pulmocare, Citrotein, Resource, Vivonex TEN, Vital, and Hepatic Acid II. Protein (10 and 20 g/liter) was added to Citrotein and Ensure Plus. All formulas were tested at full and some at half strength. Clotting occurred only in premixed intact protein formulas (Pulmocare, Ensure Plus, Osmolite, Enrich, Ensure) and in Resource. No clotting was observed for Citrotein (intact protein formula in powder form), Vital, Vivonex TEN, and Hepatic Aid II. Adding protein did not cause or increase clotting. In summary, clotting of some liquid formula diet appears to be an important factor causing possible gastric feeding tube occlusion. The following measures may help in preventing this problem: flushing before and after aspirating for gastric residuals to eliminate acid precipitation of formula in the feeding tube, advance the nasogastric feeding tube into the duodenum if possible, and avoid mixing these products with liquid medications having a pH value of 5.0 or less. PMID:3138452

  5. Traveling-Wave Tubes

    Science.gov (United States)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  6. Roentgen's strange order. A contribution to the history of the discovery of Roentgen rays

    International Nuclear Information System (INIS)

    Due to the fact that Roentgen never reported the details of the discovery of his 'new rays', he left the door open for speculative interpretations. As a contribution to a serious analysis of the history of Roentgen's discovery, this paper presents a previously unnoticed letter relating to an order of a number of very thin crystalline absorbers. The addressee is unfortunately unknown. The letter is dated November 15, 1895. Therefore, this letter must be considered to be the first well documented remark made by Roentgen after seeing the earliest indications of the new rays only one week earlier. The order seems to emphasize the role of a particular type of cathode ray tube developed by Philipp Lenard, Nobel Prize winner of 1905, and manufactured by the glassblower Louis Mueller-Unkel in the discovery of the new radiation. It partly contradicts an analysis based on Roentgen's order book from Wuerzburg made by the author et al. some years ago. Completed by the document presented here, Roentgen's order correspondence allows some insight into Roentgen's intentions during this productive period. The autograph was found at Staatsbibliothek Berlin, Sammlung Darmstaedter, by the author. (orig.)

  7. Fuel cells cathode with multiple catalysis and electrocapillary convection; Catodo de celula a combustivel com catalise multipla e conveccao eletrocapilar

    Energy Technology Data Exchange (ETDEWEB)

    Bambace, Luis Antonio Waack; Nishimori, Miriam; Ramos, Fernando Manuel [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)], e-mail: bambace@dem.inpe.br; Bastos Netto, Demetrio [Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP (Brazil)

    2004-07-01

    This paper discusses a mathematical model for the chemical reactions and liquid phase flow processes occurring in a fuel cell cathode through non homogeneous catalysis carried by gold and Prussian Blue. The gold is applied inside the porous walls of micro-tubes, which may be obtained through several methods. The wall porosity ranging from 7 to 30% ensures gas exchange between the interior of a micro-tube and its exterior where gas flow takes place. The Prussian Blue consists of a thin porous layer located between the selective membrane and the micro-tube system, with void fraction in the 70 to 80% range. A porous electricity conducting carbide flux collector is placed between the tube system and the bipolar plates. The system return tubes possess a diameter much larger than one of the micro-tubes. The electric potential differences generated by the ionic currents in the system and its asymmetrical shape are used to generate electrocapillary flows, which are related with the surface tension changes with local potential. The hydrogen peroxide concentration and its transport to the Prussian Blue layer, and the oxygen transport inside the reactive tubular system are analyzed in this work. (author)

  8. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  9. Emission current control system for multiple hollow cathode devices

    Science.gov (United States)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  10. Multiple reflections in elliptic neutron guide tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D., E-mail: ldc_0@yahoo.com.au [Helmholtz-Zentrum Berlin fur Materialen und Energie GmbH, ESS Design Update Programme Germany, Hahn Meitner Platz 1, 14109 Berlin (Germany); Nekrassov, D.; Zendler, C.; Lieutenant, K. [Helmholtz-Zentrum Berlin fur Materialen und Energie GmbH, ESS Design Update Programme Germany, Hahn Meitner Platz 1, 14109 Berlin (Germany)

    2013-03-21

    Neutron guide tubes are widely used to transport neutron beams over long distances. The neutron mirrors used to line the guide tubes have imperfect reflectivity and, in long conventional guides, the average number of reflections for neutron rays becomes large thus reducing the transmission. This issue is extremely important for modern spallation sources, especially for the proposed long pulse European Spallation Source to be constructed in Lund, Sweden, where technical constraints require many instruments to be far from the source. Several solutions to the problem of transporting neutrons over long distances have been proposed and currently the most favored model is that of guides with elliptic shapes. It is widely believed that elliptic guides transport neutron rays from source to sample with a single bounce, a near perfect solution for long neutron guides, and a view which is true in ideal circumstances. This article uses computed Monte Carlo ray tracing simulations (VITESS) and other techniques to demonstrate that transport of neutrons by realistic elliptic guides usually involves many reflections, contrary to the usual expectations. These multiple reflections explain the irregular divergence distributions observed in computer simulations of transmission by some elliptic guides.

  11. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10-3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  12. Design of ANSYS-based Cathode with Complex Groove

    Institute of Scientific and Technical Information of China (English)

    范植坚; 赵刚刚; 张丽娟

    2012-01-01

    The profile of cathode with complex groove needs to be modified time after time during design of electrochemical machining (ECM) cathode.A design scheme using finite element method (FEM) for cathode with complex profile is put forward to shorten the period of cathode design.Based on Laplace equation,the potential distribution on parameter-transformation model was calculated by using ANSYS,which is compared to the potential distribution calculated by substituting conductivity and current efficiency into Laplace equation.According to the difference between the results calculated and simulated by ANSYS,the cathode profile was modified by adjusting the cathode boundary.The experiments show that the dimensions and shape of workpiece machined by numerically simulated cathode conform well with the blueprint.

  13. Growth Temperature Effect on Carbon Nano tubes Formation by Spray Pyrolysis Method

    International Nuclear Information System (INIS)

    Carbon nano tubes has been produced by using spray pyrolysis method with no carrier gas. Carbon nano tubes were formulated from a mixture a ferrocene and benzene with certain ratio and then the mixture were injected by the sprayer into the furnace. Growth temperature was optimized in the range of 650 until 850 oC to get the high quality of carbon nano tubes. These were characterized by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX). (author)

  14. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  15. Microdischarges in DC accelerator tubes

    International Nuclear Information System (INIS)

    Voltage tests on the Daresbury ceramic/titanium accelerator tube have shown that microdischarges play an important role in the conditioning process. It has been found that the voltage onset for microdischarges in a tube is dependent on the surface contamination of the electrodes and the tube geometry (in particular the tube length). This geometrical effect can be related to the trajectories of secondary ions emitted from the electrode surfaces. Sensitive diagnostic techniques have been developed to study the mass and energy distribution of ions emitted along the axis of the tube during these predischarges. The energy distribution of protons (and H- ions) can be related to the origins of the discharges in the tube. Detailed results are presented for a particular tube geometry. (author)

  16. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes

    Science.gov (United States)

    MacNeil, D. D.; Lu, Zhonghua; Chen, Zhaohui; Dahn, J. R.

    Differential scanning calorimetry (DSC) was used to compare the thermal stability of charged cathodes in 1 M LiPF 6 EC/DEC electrolyte. Seven possible cathode materials for lithium-ion batteries (LiCoO 2, LiNiO 2, LiNi 0.8Co 0.2O 2, Li 1+ xMn 2- xO 4, LiNi 0.7Co 0.2Ti 0.05Mg 0.05O 2, Li[Ni 3/8Co 1/4Mn 3/8]O 2, and LiFePO 4) were tested under the same conditions. Welded stainless steel DSC sample tubes, that ensured no weight loss during analysis, were used for these measurements, making them reliable. A consideration of these DSC results and the known electrochemical properties of the cathodes may assist the selection of the most suitable lithium-ion cathode material for use in a particular application.

  17. Ultrasonic inspection of tube to tube plate welds

    International Nuclear Information System (INIS)

    To monitor the deterioration of a weld between a tube and tube plate which has been repaired by a repair sleeve inside the tube and brazed at one end to the tube, ultrasound from a crystal at the end of a rod is launched, in the form of Lamb-type waves, into the tube through the braze and allowed to travel along the tube to the weld and be reflected back along the tube. The technique may also be used for the type of heat exchanger in which, during construction, the tubes are welded to the tube plate via external sleeves in which case the ultrasound is used in a similar manner to inspect the sleeve/tube plate weld. an electromagnetic transducer may be used to generate the ultrasound. The ultrasonic head comprising the crystal and an acoustic baffle is mounted on a Perspex (RTM) rod which may be rotated by a stepping motor. Echo signals from the region of deterioration may be isolated by use of a time gate in the receiver. The device primarily detects circumferentially orientated cracks, and may be used in heat exchangers in nuclear power plants. (author)

  18. Mechanized welding of austenitic precision stainless steel tubes

    International Nuclear Information System (INIS)

    Austenitic stainless steel tubes of material no. 1,4541 and 1,4550 are used for the tube systems to transport active and inactive gases in reactor experiments. A fully mechanical method was developed for the joining of these tubes by welding which makes use of an electrode holder with surrounding W electrode. This method, whose application is described here, enables the joining of the tubes in all welding positions. A pulsating direct current is used as welding current. Breaking tests on the welded samples gave values corresponding to the strength of the materials mentioned. The welded seams are subjected to the helium leak test and to the X-ray test. (GSCH/LH)

  19. Characterization of LiFePO{sub 4} cathode