WorldWideScience

Sample records for cathelicidin peptide ll-37

  1. Stability of the cathelicidin peptide LL-37 in a non-healing wound environment

    DEFF Research Database (Denmark)

    Grönberg, Alvar; Zettergren, Louise; Ågren, Sven Per Magnus

    2011-01-01

    The endogenous cathelicidin peptide LL-37 is strongly expressed at the wound edge early in the process of acute wound healing, but only weakly expressed in chronic wounds. Excessive proteolysis may limit the therapeutic usefulness of exogenous LL-37, especially in ulcers colonized with Pseudomonas...... aeruginosa that produce elastase, which degrades LL-37. This study investigated the stability of synthetic LL-37 against two types of proteinases in the presence or absence of wound fluid samples (diluted to 10-20%) from nine non-healing venous leg ulcers. Incubation of LL-37 (10 µg/ml) at 37°C for 6 h...... resulted in complete degradation by the serine proteinase trypsin (≥ 10 ng/ml), while no degradation was observed with matrix metalloproteinase-9. LL-37 susceptibility to trypsin was diminished considerably in the presence of wound fluid, and there was no apparent cleavage of exogenous LL-37 incubated in...

  2. The Role of Cathelicidin LL-37 in Cancer Development

    OpenAIRE

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wnorowska, Urszula; Wątek, Marzena; Wollny, Tomasz; Głuszek, Katarzyna; Góźdź, Stanisław; Levental, Ilya; Bucki, Robert

    2015-01-01

    LL-37 is a C-terminal peptide proteolytically released from 18 kDa human cathelicidin protein (hCAP18). Chronic infections, inflammation, tissue injury and tissue regeneration are all linked with neoplastic growth, and involve LL-37 antibacterial and immunomodulatory functions. Such a link points to the possible involvement of LL-37 peptide in carcinogenesis. An increasing amount of evidence suggests that LL-37 can have two different and contradictory effects—promotion or inhibition of tumor ...

  3. The Roles of Cathelicidin LL-37 in Inflammatory Bowel Disease.

    Science.gov (United States)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Yang, Hua

    2016-08-01

    Human cathelicidin LL-37, the only member of the cathelicidin family of host defense peptides expressed in humans, plays a crucial role in host defense against pathogen invasion, as well as in regulating the functions of anti-inflammation, antitumorigenesis, and tissue repair. It is primarily produced by phagocytic leukocytes and epithelial cells, and mediates a wide range of biological responses. Emerging evidence from several studies indicates that LL-37 plays a prominent and complex role in inflammatory bowel disease (IBD). Although overexpression of LL-37 has been implicated in the inflamed and noninflamed colon mucosa in patients with ulcerative colitis, LL-37 expression was not changed in the inflamed or noninflamed colon or ileal mucosa in patients with Crohn's disease. Furthermore, studies in animal models and human patients further characterized the protective effect of cathelicidins both in ulcerative colitis and Crohn's disease. These data suggest the intricate functions of LL-37 in IBD. They will also create many strategies and opportunities for therapeutic intervention in IBD in the future. This review aims to elucidate the structure and bioactivity of LL-37 and also discuss the recent progress in understanding the relationship between LL-37 and IBD. PMID:27135484

  4. Killing efficacy and anti-biofilm activity of synthetic human cationic antimicrobial peptide cathelicidin hCAP-18/LL37 against urinary tract pathogens

    OpenAIRE

    Safaa Toma Hanna Aka

    2015-01-01

    Objectives: Cathelicidin LL37 represents one of the chemical defence components of bladder epithelial cells that include antimicrobial peptides, which also shown to have an important role in the mucosal immunity of the urinary tract by preventing adhesion of bacteria. This study aimed to determine the killing efficacy of LL37 compared to anti-biofilm activity against Staphylococcus aureus and Escherichia coli. Methods: The 96-flat well microtiter plates were used for evaluation of killing...

  5. Low serum levels of cathelicidin LL-37 in leprosy.

    Science.gov (United States)

    Matzner, Michael; Al Samie, Abdul Rahim; Winkler, Heide-Maria; Nemeth, Johannes; Grasnek, Andreas; Indra, Alexander; Bieglmayer, Christian; Winkler, Stefan

    2011-01-01

    The antimicrobial peptide cathelicidin LL-37 possesses antituberculous activity, its association with other mycobacterial diseases, such as leprosy, is unknown. We studied serum cathelicidin and 25OH-vitamin D3 levels in 29 leprosy patients and 19 healthy individuals from Yemen. Cathelicidin levels were significantly lower in both treated (n=15) and untreated leprosy patients (n=14) when compared to controls (P<0.001). Within leprosy patients, levels were lower in those who very recently developed disease (untreated group) when compared to already treated patients (P<0.05). 25OH-vitamin D3 levels were not different between groups. The results suggest a potential association of cathelicidin LL-37 with Mycobacterium leprae infection. PMID:20887706

  6. The Role of Cathelicidin LL-37 in Cancer Development.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wnorowska, Urszula; Wątek, Marzena; Wollny, Tomasz; Głuszek, Katarzyna; Góźdź, Stanisław; Levental, Ilya; Bucki, Robert

    2016-02-01

    LL-37 is a C-terminal peptide proteolytically released from 18 kDa human cathelicidin protein (hCAP18). Chronic infections, inflammation, tissue injury and tissue regeneration are all linked with neoplastic growth, and involve LL-37 antibacterial and immunomodulatory functions. Such a link points to the possible involvement of LL-37 peptide in carcinogenesis. An increasing amount of evidence suggests that LL-37 can have two different and contradictory effects--promotion or inhibition of tumor growth. The mechanisms are tissue-specific, complex, and depend mostly on the ability of LL-37 to act as a ligand for different membrane receptors whose expression varies on different cancer cells. Overexpression of LL-37 was found to promote development and progression of ovarian, lung and breast cancers, and to suppress tumorigenesis in colon and gastric cancer. This review explores and summarizes the current views on how LL-37 contributes to immunity, pathophysiology and cell signaling involved in malignant tumor growth. PMID:26395996

  7. Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults

    DEFF Research Database (Denmark)

    Dixon, Brian M; Barker, Tyler; McKinnon, Toni;

    2012-01-01

    ABSTRACT: BACKGROUND: Transcription of the cathelicidin antimicrobial peptide (CAMP) gene is induced by binding of the bioactive form of vitamin D, 1,25-dihydroxyvitamin D, to the vitamin D receptor. Significant levels of the protein hCAP18/LL-37 are found in the blood and may protect against...... = 0.63). CONCLUSIONS: We conclude that plasma hCAP18 levels correlate with serum 25(OH)D levels in subjects with concentrations of 25(OH)D 32 ng/ml and that vitamin D status may regulate systemic levels of hCAP18/LL-37....

  8. Killing efficacy and anti-biofilm activity of synthetic human cationic antimicrobial peptide cathelicidin hCAP-18/LL37 against urinary tract pathogens

    Directory of Open Access Journals (Sweden)

    Safaa Toma Hanna Aka

    2015-03-01

    Full Text Available Objectives: Cathelicidin LL37 represents one of the chemical defence components of bladder epithelial cells that include antimicrobial peptides, which also shown to have an important role in the mucosal immunity of the urinary tract by preventing adhesion of bacteria. This study aimed to determine the killing efficacy of LL37 compared to anti-biofilm activity against Staphylococcus aureus and Escherichia coli. Methods: The 96-flat well microtiter plates were used for evaluation of killing rate by estimation of MIC-value to the clinical isolates of E. coli and S. aureus collected from patients with urinary tract infection. S. aureus ATCC 25923 and E.coli ATCC 25922 were investigated in this study. Biofilm formation on polystyrene surface was conducted by growing bacterial isolates on 96-flat well microtiter plates, stained with crystal violet. The bound bacteria were quantified by addition of ethanol 70% and measurement of the dissolved crystal violet absorbance at (OD630 nm using ELISA reader. Results: LL37 showed minimal inhibitory concentration (MIC of 32 μg/ml against S. aureus and E. coli. The sub-MIC of LL37 was also able to eliminate about 31% and 34% of both S. aureus and E. coli, respectively. Anti-biofilm activity of LL37 showed biofilm inhibition at 1 μg/ml (1/32 MIC to 16 μg/ml (1/2 MIC, which exhibited significant difference (p<0.001 against E. coli, whereas LL37 beyond 1 μg/ml showed significant inhibition (p<0.001 of biofilm against S. aureus. Conclusion: The cathelicidin LL37 can be used as a broad-spectrum anti-biofilm agent rather than killing agent. J Microbiol Infect Dis 2015;5(1: 15-20

  9. Emerging Roles of the Host Defense Peptide LL-37 in Human Cancer and its Potential Therapeutic Applications

    OpenAIRE

    WU, WILLIAM K.K.; Wang, Guangshun; Coffelt, Seth B.; Betancourt, Aline M.; Lee, Chung W.; Fan, Daiming; Wu, Kaichun; Yu, Jun; Sung, Joseph J. Y.; Cho, Chi H.

    2010-01-01

    Human cathelicidin LL-37, a host defense peptide derived from leukocytes and epithelial cells, plays a crucial role in innate and adaptive immunity. Not only does it eliminate pathogenic microbes directly, LL-37 also modulates host immune responses. Emerging evidence from tumor biology studies indicates that LL-37 plays a prominent and complex role in carcinogenesis. While overexpression of LL-37 has been implicated in the development or progression of many human malignancies, including breas...

  10. Emerging roles of the host defense peptide LL-37 in human cancer and its potential therapeutic applications.

    Science.gov (United States)

    Wu, William K K; Wang, Guangshun; Coffelt, Seth B; Betancourt, Aline M; Lee, Chung W; Fan, Daiming; Wu, Kaichun; Yu, Jun; Sung, Joseph J Y; Cho, Chi H

    2010-10-15

    Human cathelicidin LL-37, a host defense peptide derived from leukocytes and epithelial cells, plays a crucial role in innate and adaptive immunity. Not only does LL-37 eliminate pathogenic microbes directly but also modulates host immune responses. Emerging evidence from tumor biology studies indicates that LL-37 plays a prominent and complex role in carcinogenesis. Although overexpression of LL-37 has been implicated in the development or progression of many human malignancies, including breast, ovarian and lung cancers, LL-37 suppresses tumorigenesis in gastric cancer. These data are beginning to unveil the intricate and contradictory functions of LL-37. The reasons for the tissue-specific function of LL-37 in carcinogenesis remain to be elucidated. Here, we review the relationship between LL-37, its fragments and cancer progression as well as discuss the potential therapeutic implications of targeting this peptide. PMID:20521250

  11. Role of Urinary Cathelicidin LL-37 and Human β-Defensin 1 in Uncomplicated Escherichia coli Urinary Tract Infections

    OpenAIRE

    Nielsen, Karen L.; Dynesen, Pia; Larsen, Preben; Jakobsen, Lotte; Andersen, Paal S.; Frimodt-Møller, Niels

    2014-01-01

    Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-...

  12. Role of urinary cathelicidin LL-37 and human β-defensin 1 in uncomplicated Escherichia coli urinary tract infections

    DEFF Research Database (Denmark)

    Nielsen, Karen L; Dynesen, Pia; Larsen, Preben;

    2014-01-01

    Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs). This was investiga......Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs). This was...... investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 and in vivo virulence. Forty-seven UTI patients and 50 controls who had never had a UTI were...... included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecal E. coli clones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D). In vivo virulence was investigated in the murine UTI model by use of selected fecal...

  13. Blastocystis Isolate B Exhibits Multiple Modes of Resistance against Antimicrobial Peptide LL-37.

    Science.gov (United States)

    Yason, John Anthony; Ajjampur, Sitara Swarna Rao; Tan, Kevin Shyong Wei

    2016-08-01

    Blastocystis is one of the most common eukaryotic organisms found in humans and many types of animals. Several reports have identified its role in gastrointestinal disorders, although its pathogenicity is yet to be clarified. Blastocystis is transmitted via the fecal-to-oral route and colonizes the large intestines. Epithelial cells lining the intestine secrete antimicrobial peptides (AMPs), including beta-defensins and cathelicidin, as a response to infection. This study explores the effects of host colonic antimicrobial peptides, particularly LL-37, a fragment of cathelicidin, on different Blastocystis subtypes. Blastocystis is composed of several subtypes that have genetic, metabolic, and biological differences. These subtypes also have various outcomes in terms of drug treatment and immune response. In this study, Blastocystis isolates from three different subtypes were found to induce intestinal epithelial cells to secrete LL-37. We also show that among the antimicrobial peptides tested, only LL-37 has broad activity on all the subtypes. LL-37 causes membrane disruption and causes Blastocystis to change shape. Blastocystis subtype 7 (ST7), however, showed relative resistance to LL-37. An isolate, ST7 isolate B (ST7-B), from this subtype releases proteases that can degrade the peptide. It also makes the environment acidic, which causes attenuation of LL-37 activity. The Blastocystis ST7-B isolate was also observed to have a thicker surface coat, which may protect the parasite from direct killing by LL-37. This study determined the effects of LL-37 on different Blastocystis isolates and indicates that AMPs have significant roles in Blastocystis infections. PMID:27217421

  14. Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37.

    Science.gov (United States)

    Henkel, Arne; Tausch, Lars; Pillong, Max; Jauch, Johann; Karas, Michael; Schneider, Gisbert; Werz, Oliver

    2015-12-01

    The antimicrobial peptide LL-37 is the sole member of the human cathelicidin family with immune system-modulating properties and roles in autoimmune disease development. Small molecules able to interact with LL-37 and to modulate its functions have not been described yet. Boswellic acids (BAs) are pentacyclic triterpene acids that are bioactive principles of frankincense extracts used as anti-inflammatory remedies. Although various anti-inflammatory modes of action have been proposed for BAs, the pharmacological profile of these compounds is still incompletely understood. Here, we describe the identification of human LL-37 as functional target of BAs. In unbiased target fishing experiments using immobilized BAs as bait and human neutrophils as target source, LL-37 was identified as binding partner assisted by MALDI-TOF mass spectrometry. Thermal stability experiments using circular dichroism spectroscopy confirm direct interaction between BAs and LL-37. Of interest, this binding of BAs resulted in an inhibition of the functionality of LL-37. Thus, the LPS-neutralizing properties of isolated LL-37 were inhibited by 3-O-acetyl-β-BA (Aβ-BA) and 3-O-acetyl-11-keto-β-BA (AKβ-BA) in a cell-free limulus amoebocyte lysate assay with EC50=0.2 and 0.8 μM, respectively. Also, LL-37 activity was inhibited by these BAs in LL-37-enriched supernatants of stimulated neutrophils or human plasma derived from stimulated human whole blood. Together, we reveal BAs as inhibitors of LL-37, which might be a relevant mechanism underlying the anti-inflammatory properties of BAs and suggests BAs as suitable chemical tools or potential agents for intervention with LL-37 and related disorders. PMID:26361729

  15. Antimikrobielle Aktivität humaner Kolonepithelzellen gegenüber E. coli Nissle unter besonderer Berücksichtigung des Cathelicidins LL-37

    OpenAIRE

    Schwab, Julia

    2014-01-01

    Antimikrobielle Peptide und Proteine spielen eine wichtige Rolle bei der angeborenen Immunabwehr. Sie sind auf verschiedenen Schleimhautoberflächen des Körpers zu finden, zum Beispiel auch in der Schleimschicht des Gastrointestinaltraktes. Beim Menschen sind drei Familien antimikrobiell wirksamer Peptide bekannt: die Defensine, die Cathelicidine und die Histatine. LL-37 ist das einzige Cathelicidin, das bisher beim Menschen gefunden wurde. Das Ziel der vorliegenden Arbeit war, den Effekt d...

  16. Transformation of Human Cathelicidin LL-37 into Selective, Stable, and Potent Antimicrobial Compounds

    OpenAIRE

    Wang, Guangshun; Hanke, Mark L.; Mishra, Biswajit; Lushnikova, Tamara; Heim, Cortney E.; Chittezham Thomas, Vinai; Bayles, Kenneth W; Kielian, Tammy

    2014-01-01

    This Letter reports a family of novel antimicrobial compounds obtained by combining peptide library screening with structure-based design. Library screening led to the identification of a human LL-37 peptide resistant to chymotrypsin. This d-amino-acid-containing peptide template was active against Escherichia coli but not methicillin-resistant Staphylococcus aureus (MRSA). It possesses a unique nonclassic amphipathic structure with hydrophobic defects. By repairing the hydrophobic defects, t...

  17. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates.

    Directory of Open Access Journals (Sweden)

    Pei-Wen Tsai

    Full Text Available Candida albicans is the major fungal pathogen of humans. Fungal adhesion to host cells is the first step of mucosal infiltration. Antimicrobial peptides play important roles in the initial mucosal defense against C. albicans infection. LL-37 is the only member of the human cathelicidin family of antimicrobial peptides and is commonly expressed in various tissues and cells, including epithelial cells of both the oral cavity and urogenital tract. We found that, at sufficiently low concentrations that do not kill the fungus, LL-37 was still able to reduce C. albicans infectivity by inhibiting C. albicans adhesion to plastic surfaces, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. Moreover, LL-37-treated C. albicans floating cells that did not adhere to the underlying substratum aggregated as a consequence of LL-37 bound to the cell surfaces. According to the results of a competition assay, the inhibitory effects of LL-37 on cell adhesion and aggregation were mediated by its preferential binding to mannan, the main component of the C. albicans cell wall, and partially by its ability to bind chitin or glucan, which underlie the mannan layer. Therefore, targeting of cell-wall carbohydrates by LL-37 provides a new strategy to prevent C. albicans infection, and LL-37 is a useful, new tool to screen for other C. albicans components involved in adhesion.

  18. Effects of vancomycin versus nafcillin in enhancing killing of methicillin-susceptible Staphylococcus aureus causing bacteremia by human cathelicidin LL-37.

    Science.gov (United States)

    Le, J; Dam, Q; Schweizer, M; Thienphrapa, W; Nizet, V; Sakoulas, G

    2016-09-01

    Recent studies have demonstrated that anti-staphylococcal beta-lactam antibiotics, like nafcillin, render methicillin-resistant Staphylococcus aureus (MRSA) more susceptible to killing by innate host defense peptides (HDPs), such as cathelicidin LL-37. We compared the effects of growth in 1/4 minimum inhibitory concentration (MIC) of nafcillin or vancomycin on the LL-37 killing of 92 methicillin-susceptible S. aureus (MSSA) isolates. For three randomly selected strains among these, we examined the effects of nafcillin, vancomycin, daptomycin, or linezolid on LL-37 killing and autolysis. Growth in the presence of subinhibitory nafcillin significantly enhanced LL-37 killing of MSSA compared to vancomycin and antibiotic-free controls. Nafcillin also reduced MSSA production of the golden staphylococcal pigment staphyloxanthin in 39 % of pigmented strains vs. 14 % for vancomycin. Among the antibiotics tested, only nafcillin resulted in significantly increased MSSA autolysis. These studies point to additional mechanisms of anti-staphylococcal activity of nafcillin beyond direct bactericidal activity, properties that vancomycin and other antibiotic classes do not exhibit. The ability of nafcillin to enhance sensitivity to innate HDPs may contribute to its superior effectiveness against MSSA, as suggested by studies comparing clinical outcomes to vancomycin treatment. PMID:27234592

  19. Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds.

    Science.gov (United States)

    Wang, Guangshun; Hanke, Mark L; Mishra, Biswajit; Lushnikova, Tamara; Heim, Cortney E; Chittezham Thomas, Vinai; Bayles, Kenneth W; Kielian, Tammy

    2014-09-19

    This Letter reports a family of novel antimicrobial compounds obtained by combining peptide library screening with structure-based design. Library screening led to the identification of a human LL-37 peptide resistant to chymotrypsin. This d-amino-acid-containing peptide template was active against Escherichia coli but not methicillin-resistant Staphylococcus aureus (MRSA). It possesses a unique nonclassic amphipathic structure with hydrophobic defects. By repairing the hydrophobic defects, the peptide (17BIPHE2) gained activity against the ESKAPE pathogens, including Enterococcus faecium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species. In vitro, 17BIPHE2 could disrupt bacterial membranes and bind to DNA. In vivo, the peptide prevented staphylococcal biofilm formation in a mouse model of catheter-associated infection. Meanwhile, it boosted the innate immune response to further combat the infection. Because these peptides are potent, cell-selective, and stable to several proteases, they may be utilized to combat one or more ESKAPE pathogens. PMID:25061850

  20. Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Yong Hai; Lee, Bongju; Shin, Song Yub [Chosun Univ., Gwangju (Korea, Republic of)

    2012-09-15

    LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric anti-microbial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and α-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis.

  1. Activity of Cathelicidin Peptides against Simkania negevensis

    Directory of Open Access Journals (Sweden)

    Manuela Donati

    2011-01-01

    Full Text Available The in vitro activity of six cathelicidin peptides against the reference strain Z of Simkania negevensis was investigated. Five peptides—PG-1, Bac7, SMAP-29, BMAP-27, and BMAP-28—proved to be active at very low concentrations (1 to 0.1 μg/mL, while LL-37 cathelicidin was ineffective even at a concentration of 100 μg/mL. In comparison to chlamydiae, S. negevensis proved to be more susceptible to the antimicrobial peptides tested.

  2. Insights into structural features that affect the biological activities and mode of action of the human antimicrobial cathelicidin LL-37

    OpenAIRE

    Xhindoli, Daniela

    2014-01-01

    The human peptide LL-37 is an important innate immune effector that contributes to defending the organism against infection in different scenarios, ranging from direct bacterial killing to the modulation of immune responses and acting as a signal molecule for different cell types involved in defence or healing. All these functions are possible despite its relatively simple structure, due to its capacity to interact with different types of biological membranes. This cationic peptide is able to...

  3. Characterizing the role of cell-wall β-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37.

    Directory of Open Access Journals (Sweden)

    Pei-Wen Tsai

    Full Text Available Candida albicans is the major fungal pathogen of humans. Its adhesion to host-cell surfaces is the first critical step during mucosal infection. Antimicrobial peptides play important roles in the first line of mucosal immunity against C. albicans infection. LL-37 is the only member of the human cathelicidin antimicrobial peptide family and is commonly expressed in various tissues, including epithelium. We previously showed that LL-37 significantly reduced C. albicans adhesion to plastic, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. The inhibitory effect of LL-37 on cell adhesion occurred via the binding of LL-37 to cell-wall carbohydrates. Here we showed that formation of LL-37-cell-wall protein complexes potentially inhibits C. albicans adhesion to polystyrene. Using phage display and ELISA, we identified 10 peptide sequences that could bind LL-37. A BLAST search revealed that four sequences in the major C. albicans cell-wall β-1,3-exoglucanase, Xog1p, were highly similar to the consensus sequence derived from the 10 biopanned peptides. One Xog1p-derived peptide, Xog1p(90-115, and recombinant Xog1p associated with LL-37, thereby reversing the inhibitory effect of LL-37 on C. albicans adhesion. LL-37 reduced Xog1p activity and thus interrupted cell-wall remodeling. Moreover, deletion of XOG1 or another β-1,3-exoglucanase-encoding gene EXG2 showed that only when XOG1 was deleted did cellular exoglucanase activity, cell adhesion and LL-37 binding decrease. Antibodies against Xog1p also decreased cell adhesion. These data reveal that Xog1p, originally identified from LL-37 binding, has a role in C. albicans adhesion to polystyrene and, by inference, attach to host cells via direct or indirect manners. Compounds that target Xog1p might find use as drugs that prevent C. albicans infection. Additionally, LL-37 could potentially be used to screen for other cell-wall components involved in fungal cell adhesion.

  4. Skin Electroporation of a Plasmid Encoding hCAP-18/LL-37 Host Defense Peptide Promotes Wound Healing

    OpenAIRE

    Steinstraesser, Lars; Lam, Martin C; Jacobsen, Frank; Porporato, Paolo E; Chereddy, Kiran Kumar; Becerikli, Mustafa; Stricker, Ingo; Hancock, Robert EW; Lehnhardt, Marcus; Sonveaux, Pierre; Préat, Véronique; Vandermeulen, Gaëlle

    2014-01-01

    Host defense peptides, in particular LL-37, are emerging as potential therapeutics for promoting wound healing and inhibiting bacterial growth. However, effective delivery of the LL-37 peptide remains limiting. We hypothesized that skin-targeted electroporation of a plasmid encoding hCAP-18/LL-37 would promote the healing of wounds. The plasmid was efficiently delivered to full-thickness skin wounds by electroporation and it induced expression of LL-37 in the epithelium. It significantly acce...

  5. Cathelicidin LL-37在创伤修复中的研究进展

    Institute of Scientific and Technical Information of China (English)

    郁玲玲; 顾建英

    2010-01-01

    @@ 人体皮肤的表皮层和真皮层是抵御外来病原微生物侵入的重要屏障之一.外伤会破坏皮肤组织的完整性致使病原体侵入,增加人体感染的概率,甚至加大危重患者的死亡率.通常外伤皮肤邻近组织的再生、重建等可使创伤处自我修复.创伤的修复过程是由一系列细胞和分子共同参与和调节的病理生理过程,如促进上皮细胞再生和血管形成的细胞因子可促进创伤修复,但若创伤处被感染则会延迟修复.Carretero等[1] 研究发现,hCAP18/LL-37(以下简称为LL-37)在皮肤创伤的修复过程中起着重要作用.

  6. Expressions of Antimicrobial Peptides LL-37, Human Beta Defensin-2 and-3 in the Lesions of Cutaneous Tuberculosis and Tuberculids

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhao; Zhang-Lei Mu; Xi-Wan Liu; Xiao-Jing Liu; Jun Jia; Lin Cai; Jian-Zhong Zhang

    2016-01-01

    Background:Antimicrobial peptides,including cathelicidin LL-37,human beta defensin (HBD)-2,and HBD-3,are important elements of the innate immune response and involved in modulation of the adaptive immunity,and they also play an important role in cutaneous defense against Mycobacterium tuberculosis.Methods:The fresh skin tissues and paraffin-embedded biopsy samples from three cutaneous tuberculosis,two tuberculids,and ten healthy individuals were collected.The expressions of LL-37,HBD-2,and HBD-3 mRNA in the lesions of three cutaneous tuberculosis and two tuberculids were detected by quantitative real-time polymerase chain reaction;the protein expressions were detected by immunohistochemistry and Western blotting methods.Results:The expressions of LL-37 mRNA and protein in the lesions of cutaneous tuberculosis and tuberculids were similar to that of normal skin.The expression of HBD-2 mRNA had an increasing trend in the lesions of cutaneous tuberculosis and tuberculids compared with that of normal skin;however,the expression of HBD-2 protein in the lesions of cutaneous tuberculosis had a decreasing trend compared with that of normal skin,and the expression of HBD-2 protein in the lesions of tuberculids was similar to that of normal skin.The expressions of HBD-3 mRNA and protein in lesions of cutaneous tuberculosis and tuberculids were similar to that of normal skin.Conclusions:Our study indicated that the expression of HBD-2 and HBD-3 mRNA and protein in lesions of cutaneous tuberculosis may be not consistent with that oftuberculids.However,an inherent limitation of the present study was that the sample size was small,and the roles and regulation mechanisms ofLL-37,HBD-2,and HBD-3 in cutaneous tuberculosis and tuberculids need to be further investigated.

  7. LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control

    Science.gov (United States)

    Vignoni, Mariana; de Alwis Weerasekera, Hasitha; Simpson, Madeline J.; Phopase, Jaywant; Mah, Thien-Fah; Griffith, May; Alarcon, Emilio I.; Scaiano, Juan C.

    2014-05-01

    Capping silver nanoparticles with LL37 peptide eradicates the antiproliferative effect of silver on primary skin cells, but retains the bactericidal properties of silver nanoparticles with activities comparable to silver nitrate or silver sulfadiazine. In addition, LL37 capped silver nanoparticles have anti-biofilm formation activity.Capping silver nanoparticles with LL37 peptide eradicates the antiproliferative effect of silver on primary skin cells, but retains the bactericidal properties of silver nanoparticles with activities comparable to silver nitrate or silver sulfadiazine. In addition, LL37 capped silver nanoparticles have anti-biofilm formation activity. Electronic supplementary information (ESI) available: Changes on AgNP-SPB absorption; changes on AgNP-SPB as A/A0 measured in LB or DMEM media; number of survival colonies in the presence of LL37; human skin fibroblasts cell toxicity in the presence of different silver sources measured using MTS assay; effect of LL37@AgNP on the proliferation profile of human skin fibroblasts; effect of AgSD and AgNO3 on the proliferation profile of human skin fibroblasts in the presence of LL37 peptide; representative flow cytometry profiles for human skin fibroblasts stained with Alexa Fluor®488 annexin V/Dead cell apoptosis kit. See DOI: 10.1039/c4nr01284d

  8. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Coffelt, Seth B; Marini, Frank C; Watson, Keri; Zwezdaryk, Kevin J; Dembinski, Jennifer L; LaMarca, Heather L; Tomchuck, Suzanne L; Honer zu Bentrup, Kerstin; Danka, Elizabeth S; Henkle, Sarah L; Scandurro, Aline B

    2009-03-10

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells. PMID:19234121

  9. Plasma Antimicrobial Peptide LL-37 Level Is Inversely Associated with HDL Cholesterol Level in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Shu Meguro

    2014-01-01

    Full Text Available Introduction. Relation between atherosclerosis and innate immunity has attracted attention. As the antimicrobial peptide, LL-37, could have an important role in atherosclerosis, we supposed that there could be a meaningful association of plasma LL-37 level with risk factors for cardiovascular disease in subjects with type 2 diabetes mellitus. Materials and Methods. We evaluated plasma LL-37 level and other clinical markers in Japanese subjects with type 2 diabetes mellitus (n=133, 115 men and 18 women; age 64.7±11.5 years; HbA1c 8.1±1.6%. Plasma level of LL-37 was measured by ELISA. Results. Mean plasma LL-37 level was 71.2±22.3 ng/mL. Plasma LL-37 level showed significant correlations with HDL cholesterol (r=−0.450, P<0.01, triglyceride (r=0.445, P<0.01, and high sensitive C-reactive protein (r=0.316, P<0.01 but no significant correlation with age, body mass index, HbA1c, estimated glomerular filtration rate, 25-hydroxyvitamin D, or vitamin D binding protein. Multiple linear regression analysis showed significant correlations of plasma LL-37 level with HDL cholesterol (β=−0.411, P<0.01 and high sensitive C-reactive protein (β=0.193, P<0.05. Conclusion. Plasma LL-37 level was positively correlated with inflammatory markers and negatively correlated with HDL cholesterol in patients with type 2 diabetes mellitus.

  10. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis.

    Directory of Open Access Journals (Sweden)

    Ryan J Blower

    Full Text Available Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly "highly resistant" to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense peptides. In this study, a number of cationic antimicrobial peptides (CAMPs were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2 and a short beta-defensin-derived peptide (Peptide 4 of hBD-3 were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis.

  11. LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline.

    LENUS (Irish Health Repository)

    Bergsson, Gudmundur

    2009-07-01

    There is an abundance of antimicrobial peptides in cystic fibrosis (CF) lungs. Despite this, individuals with CF are susceptible to microbial colonization and infection. In this study, we investigated the antimicrobial response within the CF lung, focusing on the human cathelicidin LL-37. We demonstrate the presence of the LL-37 precursor, human cathelicidin precursor protein designated 18-kDa cationic antimicrobial protein, in the CF lung along with evidence that it is processed to active LL-37 by proteinase-3. We demonstrate that despite supranormal levels of LL-37, the lung fluid from CF patients exhibits no demonstrable antimicrobial activity. Furthermore Pseudomonas killing by physiological concentrations of exogenous LL-37 is inhibited by CF bronchoalveolar lavage (BAL) fluid due to proteolytic degradation of LL-37 by neutrophil elastase and cathepsin D. The endogenous LL-37 in CF BAL fluid is protected from this proteolysis by interactions with glycosaminoglycans, but while this protects LL-37 from proteolysis it results in inactivation of LL-37 antimicrobial activity. By digesting glycosaminoglycans in CF BAL fluid, endogenous LL-37 is liberated and the antimicrobial properties of CF BAL fluid restored. High sodium concentrations also liberate LL-37 in CF BAL fluid in vitro. This is also seen in vivo in CF sputum where LL-37 is complexed to glycosaminoglycans but is liberated following nebulized hypertonic saline resulting in increased antimicrobial effect. These data suggest glycosaminoglycan-LL-37 complexes to be potential therapeutic targets. Factors that disrupt glycosaminoglycan-LL-37 aggregates promote the antimicrobial effects of LL-37 with the caveat that concomitant administration of antiproteases may be needed to protect the now liberated LL-37 from proteolytic cleavage.

  12. Anti-Staphylococcal Biofilm Effects of Human Cathelicidin Peptides.

    Science.gov (United States)

    Mishra, Biswajit; Golla, Radha M; Lau, Kyle; Lushnikova, Tamara; Wang, Guangshun

    2016-01-14

    Staphylococcus aureus can live together in the form of biofilms to avoid elimination by the host. Thus, a useful strategy to counteract bacterial biofilms is to re-engineer human antimicrobial peptide LL-37 so that it can be used as a remedy for preventing and removing biofilms. This study reports antibiofilm effects of four human cathelicidin LL-37 peptides against community-associated and hospital isolated methicillin-resistant Staphylococcus aureus (MRSA) strains. Although the intact molecule LL-37 inhibited biofilm formation at low concentrations, it did not inhibit bacterial attachment nor disrupt preformed biofilms. However, two 17-residue peptides, GF-17 and 17BIPHE2, inhibited bacterial attachment, biofilm growth, and disrupted established biofilms. An inactive peptide RI-10 was used as a negative control. Our results obtained using the S. aureus mutants in a static biofilm model are consistent with the literature obtained in a flow cell biofilm model. Because 17BIPHE2 is the most effective biofilm disruptor with desired stability to proteases, it is a promising lead for developing new anti-MRSA biofilm agents. PMID:26819677

  13. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells

    OpenAIRE

    Coffelt, Seth B.; Marini, Frank C.; Watson, Keri; Zwezdaryk, Kevin J.; Dembinski, Jennifer L.; LaMarca, Heather L; Tomchuck, Suzanne L.; zu Bentrup, Kerstin Honer; Danka, Elizabeth S; Henkle, Sarah L.; Scandurro, Aline B.

    2009-01-01

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is over...

  14. Physiologically-Relevant Modes of Membrane Interactions by the Human Antimicrobial Peptide, LL-37, Revealed by SFG Experiments

    Science.gov (United States)

    Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2013-05-01

    Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.

  15. Expression und Regulation des antimikrobiellen Cathelicidin-Peptids LL-37 in humanen Kolonepithelzellen, Monozyten und PBMC

    OpenAIRE

    Iffland, Konrad

    2005-01-01

    Butyrat ist die wichtigste kurzkettige Fettsäure im Kolon und dient der normalen Schleimhaut als trophischer Faktor. Butyrat hat paradoxe Effekte auf Epithelzellen des Kolons: Hauptenergieträger und Wachstumsstimulator normaler Mukosa einerseits, Proliferationshemmer und Apoptoseinduktor kolorektaler Karzinomzellen in vitro andererseits. Butyrat kann zudem die Immunfunktionen der Schleimhaut modulieren. Die einzellige Schicht des Dickdarmepithels ist eine aktive Barriere gegen die intestinale...

  16. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    2014-07-01

    Full Text Available Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs, e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea.

  17. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria.

    Science.gov (United States)

    Pound, Lynley D; Patrick, Christopher; Eberhard, Chandra E; Mottawea, Walid; Wang, Gen-Sheng; Abujamel, Turki; Vandenbeek, Roxanne; Stintzi, Alain; Scott, Fraser W

    2015-12-01

    Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota. PMID:26370175

  18. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available BACKGROUND: Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules of innate immunity, which are firstly found in mammalians. Recently, several cathelicidins have also been found from chickens and fishes. No cathelicidins from other non-mammalian vertebrates have been reported. PRINCIPAL FINDINGS: In this work, a cathelicidin-like antimicrobial peptide named cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and its cDNA sequence was cloned from the cDNA library, which confirm the presence of cathelicidin in reptiles. As other cathelicidins, the precursor of cathelicidin-BF has cathelin-like domain at the N terminus and carry the mature cathelicidin-BF at the C terminus, but it has an atypical acidic fragment insertion between the cathelin-like domain and the C-terminus. The acidic fragment is similar to acidic domains of amphibian antimicrobial precursors. Phylogenetic analysis revealed that the snake cathelicidin had the nearest evolution relationship with platypus cathelicidin. The secondary structure of cathelicidin-BF investigated by CD and NMR spectroscopy in the presence of the helicogenic solvent TFE is an amphipathic alpha-helical conformation as many other cathelicidins. The antimicrobial activities of cathelicidin BF against forty strains of microorganisms were tested. Cathelicidin-BF efficiently killed bacteria and some fungal species including clinically isolated drug-resistance microorganisms. It was especially active against Gram-negative bacteria. Furthermore, it could exert antimicrobial activity against some saprophytic fungus. No hemolytic and cytotoxic activity was observed at the dose of up to 400 microg/ml. Cathelicidin-BF could exist stably in the mice plasma for at least 2.5 hours. CONCLUSION: Discovery of snake cathelicidin with atypical structural and functional characterization offers new insights on the evolution of cathelicidins. Potent, broad

  19. Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo.

    Directory of Open Access Journals (Sweden)

    Paula E Beaumont

    Full Text Available Cathelicidins are multifunctional cationic host-defence peptides (CHDP; also known as antimicrobial peptides and an important component of innate host defence against infection. In addition to microbicidal potential, these peptides have properties with the capacity to modulate inflammation and immunity. However, the extent to which such properties play a significant role during infection in vivo has remained unclear. A murine model of acute P. aeruginosa lung infection was utilised, demonstrating cathelicidin-mediated enhancement of bacterial clearance in vivo. The delivery of exogenous synthetic human cathelicidin LL-37 was found to enhance a protective pro-inflammatory response to infection, effectively promoting bacterial clearance from the lung in the absence of direct microbicidal activity, with an enhanced early neutrophil response that required both infection and peptide exposure and was independent of native cathelicidin production. Furthermore, although cathelicidin-deficient mice had an intact early cellular inflammatory response, later phase neutrophil response to infection was absent in these animals, with significantly impaired clearance of P. aeruginosa. These findings demonstrate the importance of the modulatory properties of cathelicidins in pulmonary infection in vivo and highlight a key role for cathelicidins in the induction of protective pulmonary neutrophil responses, specific to the infectious milieu. In additional to their physiological roles, CHDP have been proposed as future antimicrobial therapeutics. Elucidating and utilising the modulatory properties of cathelicidins has the potential to inform the development of synthetic peptide analogues and novel therapeutic approaches based on enhancing innate host defence against infection with or without direct microbicidal targeting of pathogens.

  20. Carbamylated LL-37 as a modulator of the immune response

    DEFF Research Database (Denmark)

    Koro, Catalin; Hellvard, Annelie; Delaleu, Nicolas;

    2016-01-01

    Carbamylation of lysine residues and protein N-termini is an ubiquitous, non-enzymatic post-translational modification. Carbamylation at sites of inflammation is due to cyanate formation during the neutrophil oxidative burst and may target lysine residues within the antimicrobial peptide LL-37. The...... bactericidal and immunomodulatory properties of LL-37 depend on its secondary structure and cationic nature, which are conferred by arginine and lysine residues. Therefore, carbamylation may affect the biological functions of LL-37. The present study examined the kinetics and pattern of LL-37 carbamylation to...... investigate how this modification affects the bactericidal, cytotoxic and immunomodulatory function of the peptide. The results indicated that LL-37 undergoes rapid modification in the presence of physiological concentrations of cyanate, yielding a spectrum of diverse carbamylated peptides. Mass spectrometry...

  1. Tissue expression and developmental regulation of chicken cathelicidin antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Achanta Mallika

    2012-05-01

    Full Text Available Abstract Cathelicidins are a major family of antimicrobial peptides present in vertebrate animals with potent microbicidal and immunomodulatory activities. Four cathelicidins, namely fowlicidins 1 to 3 and cathelicidin B1, have been identified in chickens. As a first step to understand their role in early innate host defense of chickens, we examined the tissue and developmental expression patterns of all four cathelicidins. Real-time PCR revealed an abundant expression of four cathelicidins throughout the gastrointestinal, respiratory, and urogenital tracts as well as in all primary and secondary immune organs of chickens. Fowlicidins 1 to 3 exhibited a similar tissue expression pattern with the highest expression in the bone marrow and lung, while cathelicidin B1 was synthesized most abundantly in the bursa of Fabricius. Additionally, a tissue-specific regulatory pattern was evident for all four cathelicidins during the first 28 days after hatching. The expression of fowlicidins 1 to 3 showed an age-dependent increase both in the cecal tonsil and lung, whereas all four cathelicidins were peaked in the bursa on day 4 after hatching, with a gradual decline by day 28. An abrupt augmentation in the expression of fowlicidins 1 to 3 was also observed in the cecum on day 28, while the highest expression of cathelicidin B1 was seen in both the lung and cecal tonsil on day 14. Collectively, the presence of cathelicidins in a broad range of tissues and their largely enhanced expression during development are suggestive of their potential important role in early host defense and disease resistance of chickens.

  2. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    Science.gov (United States)

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3. PMID:27356607

  3. Cathelicidins from the bullfrog Rana catesbeiana provides novel template for peptide antibiotic design.

    Directory of Open Access Journals (Sweden)

    Guiying Ling

    Full Text Available Cathelicidins, a class of gene-encoded effector molecules of vertebrate innate immunity, provide a first line of defense against microbial invasions. Although cathelicidins from mammals, birds, reptiles and fishes have been extensively studied, little is known about cathelicidins from amphibians. Here we report the identification and characterization of two cathelicidins (cathelicidin-RC1 and cathelicidin-RC2 from the bullfrog Rana catesbeiana. The cDNA sequences (677 and 700 bp, respectively encoding the two peptides were successfully cloned from the constructed lung cDNA library of R. catesbeiana. And the deduced mature peptides are composed of 28 and 33 residues, respectively. Structural analysis indicated that cathelicidin-RC1 mainly assumes an amphipathic alpha-helical conformation, while cathelicidin-RC2 could not form stable amphipathic structure. Antimicrobial and bacterial killing kinetic analysis indicated that the synthetic cathelicidin-RC1 possesses potent, broad-spectrum and rapid antimicrobial potency, while cathelicidin-RC2 exhibited very weak antimicrobial activity. Besides, the antimicrobial activity of cathelicidin-RC1 is salt-independent and highly stable. Scanning electron microscopy (SEM analysis indicated that cathelicidin-RC1 kills microorganisms through the disruption of microbial membrane. Moreover, cathelicidin-RC1 exhibited low cytotoxic activity against mammalian normal or tumor cell lines, and low hemolytic activity against human erythrocytes. The potent, broad-spectrum and rapid antimicrobial activity combined with the salt-independence, high stability, low cytotoxic and hemolytic activities make cathelicidin-RC1 an ideal template for the development of novel peptide antibiotics.

  4. Cathelicidin peptides as candidates for a novel class of antimicrobials.

    Science.gov (United States)

    Zanetti, Margherita; Gennaro, Renato; Skerlavaj, Barbara; Tomasinsig, Linda; Circo, Raffaella

    2002-01-01

    Cathelicidin peptides are a numerous group of mammalian cationic antimicrobial peptides. Despite a common evolutionary origin of their genes, peptides display a remarkable variety of sizes, sequences and structures. Their spectra of antimicrobial activity are varied and cover a range of organisms that includes bacteria, fungi and enveloped viruses. In addition, they bind to and neutralize the effects of endotoxin. These features make this family of peptides good candidates in view of a therapeutic use. The most promising ones are currently under evaluation as leads for the development of novel anti-infectives, and synthetic variants are in an advanced stage of development for specific clinical applications. This review focuses on recent studies on the structure and in vitro and in vivo biological activities of these peptides. PMID:11945171

  5. Critical Role of Antimicrobial Peptide Cathelicidin for Controlling Helicobacter pylori Survival and Infection.

    Science.gov (United States)

    Zhang, Lin; Wu, William K K; Gallo, Richard L; Fang, Evandro F; Hu, Wei; Ling, Thomas K W; Shen, Jing; Chan, Ruby L Y; Lu, Lan; Luo, Xiao M; Li, Ming X; Chan, Kam M; Yu, Jun; Wong, Vincent W S; Ng, Siew C; Wong, Sunny H; Chan, Francis K L; Sung, Joseph J Y; Chan, Matthew T V; Cho, Chi H

    2016-02-15

    The antimicrobial peptide cathelicidin is critical for protection against different kinds of microbial infection. This study sought to elucidate the protective action of cathelicidin against Helicobacter pylori infection and its associated gastritis. Exogenous cathelicidin was found to inhibit H. pylori growth, destroy the bacteria biofilm, and induce morphological alterations in H. pylori membrane. Additionally, knockdown of endogenous cathelicidin in human gastric epithelial HFE-145 cells markedly increased the intracellular survival of H. pylori. Consistently, cathelicidin knockout mice exhibited stronger H. pylori colonization, higher expression of proinflammatory cytokines IL-6, IL-1β, and ICAM1, and lower expression of the anti-inflammatory cytokine IL-10 in the gastric mucosa upon H. pylori infection. In wild-type mice, H. pylori infection also stimulated gastric epithelium-derived cathelicidin production. Importantly, pretreatment with bioengineered Lactococcus lactis that actively secretes cathelicidin significantly increased mucosal cathelicidin levels and reduced H. pylori infection and the associated inflammation. Moreover, cathelicidin strengthened the barrier function of gastric mucosa by stimulating mucus synthesis. Collectively, these findings indicate that cathelicidin plays a significant role as a potential natural antibiotic for H. pylori clearance and a therapeutic agent for chronic gastritis. PMID:26800870

  6. Protein and lipid interactions of mammalian antibacterial peptides

    OpenAIRE

    Wang, Yuqin

    2001-01-01

    Gene-encoded antibacterial peptides are multifunctional effector molecules and play an important role in host innate immunity. Upon stimulation, the mature active peptides are released from inactive precursors. Cathelicidins constitute a family of antibacterial peptides, which share a conserved N-terminal cathelin-like region followed by a variable C-terminal antibacterial domain. In addition to its antibacterial activity, LL-37, the only cathelicidin found in human, is ...

  7. Novel sulfated polysaccharides disrupt cathelicidins, inhibit RAGE and reduce cutaneous inflammation in a mouse model of rosacea.

    Directory of Open Access Journals (Sweden)

    Jianxing Zhang

    Full Text Available BACKGROUND: Rosacea is a common disfiguring skin disease of primarily Caucasians characterized by central erythema of the face, with telangiectatic blood vessels, papules and pustules, and can produce skin thickening, especially on the nose of men, creating rhinophyma. Rosacea can also produce dry, itchy eyes with irritation of the lids, keratitis and corneal scarring. The cause of rosacea has been proposed as over-production of the cationic cathelicidin peptide LL-37. METHODOLOGY/PRINCIPAL FINDINGS: We tested a new class of non-anticoagulant sulfated anionic polysaccharides, semi-synthetic glycosaminoglycan ethers (SAGEs on key elements of the pathogenic pathway leading to rosacea. SAGEs were anti-inflammatory at ng/ml, including inhibition of polymorphonuclear leukocyte (PMN proteases, P-selectin, and interaction of the receptor for advanced glycation end-products (RAGE with four representative ligands. SAGEs bound LL-37 and inhibited interleukin-8 production induced by LL-37 in cultured human keratinocytes. When mixed with LL-37 before injection, SAGEs prevented the erythema and PMN infiltration produced by direct intradermal injection of LL-37 into mouse skin. Topical application of a 1% (w/w SAGE emollient to overlying injected skin also reduced erythema and PMN infiltration from intradermal LL-37. CONCLUSIONS: Anionic polysaccharides, exemplified by SAGEs, offer potential as novel mechanism-based therapies for rosacea and by extension other LL-37-mediated and RAGE-ligand driven skin diseases.

  8. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides

    OpenAIRE

    Van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J A; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In additio...

  9. No evidence of pathogenic involvement of cathelicidins in patient cohorts and mouse models of lupus and arthritis.

    Science.gov (United States)

    Kienhöfer, D; Hahn, J; Schubert, I; Reinwald, C; Ipseiz, N; Lang, S C; Borràs, È Bosch; Amann, K; Sjöwall, C; Barron, A E; Hueber, A J; Agerberth, B; Schett, G; Hoffmann, M H

    2014-01-01

    Apart from their role in the immune defence against pathogens evidence of a role of antimicrobial peptides (AMPs) in autoimmune diseases has accumulated in the past years. The aim of this project was to examine the functional impact of the human cathelicidin LL-37 and the mouse cathelicidin-related AMP (CRAMP) on the pathogenesis of lupus and arthritis. Serum LL-37 and anti-LL-37 levels were measured by ELISA in healthy donors and patients with Systemic Lupus Erythematosus (SLE) and Rheumatoid arthritis (RA). Pristane-induced lupus was induced in female wild type (WT) and cathelicidin-deficient (CRAMP-/-) mice. Serum levels of anti-Sm/RNP, anti-dsDNA, and anti-histone were determined via ELISA, cytokines in sera and peritoneal lavages were measured via Multiplex. Expression of Interferon I stimulated genes (ISG) was determined by real-time PCR. Collagen-induced arthritis (CIA) was induced in male WT and CRAMP-/- mice and arthritis severity was visually scored and analysed histomorphometrically by OsteoMeasure software. Serum levels of anti-LL-37 were higher in SLE-patients compared to healthy donors or patients with RA. However, no correlation to markers of disease activity or organ involvement was observed. No significant differences of autoantibody or cytokine/chemokine levels, or of expression of ISGs were observed between WT and CRAMP-/- mice after pristane-injection. Furthermore, lung and kidney pathology did not differ in the absence of CRAMP. Incidence and severity of CIA and histological parameters (inflammation, cartilage degradation, and bone erosion) were not different in WT and CRAMP-/- mice. Although cathelicidins are upregulated in mouse models of lupus and arthritis, cathelicidin-deficiency did not persistently affect the diseases. Also in patients with SLE, autoantibodies against cathelicidins did not correlate with disease manifestation. Reactivity against cathelicidins in lupus and arthritis could thus be an epiphenomenon caused by extensive

  10. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway

    OpenAIRE

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B.; Borregaard, Niels; Gombart, Adrian F.

    2012-01-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D3. Recent in vitro studies suggested that curcumin and poly-unsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin and PUFAs would induce expression of known VDR target genes in cells. In this study, we tested whether these compounds regulated two important VDR target genes - human cathelicidin antimicrobial peptide (CA...

  11. Epithelial antimicrobial peptides in host defense against infection

    Directory of Open Access Journals (Sweden)

    Bals Robert

    2000-10-01

    Full Text Available Abstract One component of host defense at mucosal surfaces seems to be epithelium-derived antimicrobial peptides. Antimicrobial peptides are classified on the basis of their structure and amino acid motifs. Peptides of the defensin, cathelicidin, and histatin classes are found in humans. In the airways, α-defensins and the cathelicidin LL-37/hCAP-18 originate from neutrophils. β-Defensins and LL-37/hCAP-18 are produced by the respiratory epithelium and the alveolar macrophage and secreted into the airway surface fluid. Beside their direct antimicrobial function, antimicrobial peptides have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing such diverse processes as proliferation, immune induction, wound healing, cytokine release, chemotaxis, protease-antiprotease balance, and redox homeostasis. Further, antimicrobial peptides qualify as prototypes of innovative drugs that might be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation.

  12. Salivary Antimicrobial Peptide Expression and Dental Caries Experience in Children

    OpenAIRE

    Tao, Renchuan; Jurevic, Richard J.; Coulton, Kimberly K.; Tsutsui, Marjorie T.; Roberts, Marilyn C.; Kimball, Janet R.; Wells, Norma; Berndt, Jeffery; Dale, Beverly A.

    2005-01-01

    Dental caries is a major worldwide oral disease problem in children. Although caries are known to be influenced by dietary factors, the disease results from a bacterial infection; thus, caries susceptibility may be affected by host factors such as salivary antimicrobial peptides. This study aimed to determine a possible correlation between caries prevalence in children and salivary concentrations of the antimicrobial peptides human beta-defensin-3 (hBD-3), the cathelicidin LL37, and the alpha...

  13. Expression of LL-37, Human beta Defensin-2, and CCR6 mRNA in Patients with Psoriasis Vulgaris

    Institute of Scientific and Technical Information of China (English)

    李东升; 李家文; 段逸群; 周小勇

    2004-01-01

    To investigate whether LL-37 and human beta defensin-2 (hBD-2) is related to the patients with psoriasis seldom having skin infections and explore the role of the two peptides and CCR6 (the receptor of hBD-2) in the pathogenesis of psoriasis, the expression levels of mRNA of LL-37, hBD-2, and CCR6 in skin lesions of patients with psoriasis vulgaris were detected by using RT-PCR. The results showed that the mRNA expression levels of the two peptides and CCR6 in psoriatic lesions all increased compared with the normal skin (P<0. 001). It was suggested that upregulated expression of LL-37 and hBD-2 might be the main reason that result in the the skin of patients with psoriasis being seldom infected, and the two peptides and CCR6 might play crucial roles in the pathogenesis of psoriasis.

  14. Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion.

    Science.gov (United States)

    Coffelt, Seth B; Waterman, Ruth S; Florez, Luisa; Höner zu Bentrup, Kerstin; Zwezdaryk, Kevin J; Tomchuck, Suzanne L; LaMarca, Heather L; Danka, Elizabeth S; Morris, Cindy A; Scandurro, Aline B

    2008-03-01

    The role of the pro-inflammatory peptide, LL-37, and its pro-form, human cationic antimicrobial protein 18 (hCAP-18), in cancer development and progression is poorly understood. In damaged and inflamed tissue, LL-37 functions as a chemoattractant, mitogen and pro-angiogenic factor suggesting that the peptide may potentiate tumor progression. The aim of this study was to characterize the distribution of hCAP-18/LL-37 in normal and cancerous ovarian tissue and to examine the effects of LL-37 on ovarian cancer cells. Expression of hCAP-18/LL-37 was localized to immune and granulosa cells of normal ovarian tissue. By contrast, ovarian tumors displayed significantly higher levels of hCAP-18/LL-37 where expression was observed in tumor and stromal cells. Protein expression was statistically compared to the degree of immune cell infiltration and microvessel density in epithelial-derived ovarian tumors and a significant correlation was observed for both. It was demonstrated that ovarian tumor tissue lysates and ovarian cancer cell lines express hCAP-18/LL-37. Treatment of ovarian cancer cell lines with recombinant LL-37 stimulated proliferation, chemotaxis, invasion and matrix metalloproteinase expression. These data demonstrate for the first time that hCAP-18/LL-37 is significantly overexpressed in ovarian tumors and suggest LL-37 may contribute to ovarian tumorigenesis through direct stimulation of tumor cells, initiation of angiogenesis and recruitment of immune cells. These data provide further evidence of the existing relationship between pro-inflammatory molecules and ovarian cancer progression. PMID:17960624

  15. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fan R

    2015-12-01

    Full Text Available Rangrang Fan,1,* Aiping Tong,1,* Xiaoling Li,1 Xiang Gao,1 Lan Mei,1 Liangxue Zhou,1 Xiaoning Zhang,2 Chao You,1 Gang Guo1 1State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People’s Republic of China; 2Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, and Collaborative Innovation Center for Biotherapy, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA-Pluronic L35-PLA (PLA-L35-PLA was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol–gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs–hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs–hydrogel may have potential clinical applications. Keywords: intraperitoneal chemotherapy, injectable, nanoparticles, hydrogel

  16. In vitro effect on Cryptosporidium parvum of short-term exposure to cathelicidin peptides.

    Science.gov (United States)

    Giacometti, Andrea; Cirioni, Oscar; Del Prete, Maria Simona; Skerlavaj, Barbara; Circo, Raffaella; Zanetti, Margherita; Scalise, Giorgio

    2003-04-01

    Two laboratory methods, a cell culture system and double fluorogenic staining, were used to study the viability and infective ability of Cryptosporidium parvum sporozoites and oocysts after short-term exposure to four cathelicidin peptides. The compounds, SMAP-29, BMAP-28, PG-1 and Bac7(1-35), exerted a strong cytotoxic effect on sporozoites, but did not affect the viability and function of oocysts consistently. Overall, in the sporozoite series, a percentage of the viable population decreased rapidly to less than detectable levels after 15 and 60 min exposure to the peptides at concentrations of 100 and 10 micro g/mL, respectively. In the oocyst series, no compound produced complete inhibition of parasite growth: 60-85% of the oocyst population was viable after 180 min exposure at 100 micro g/mL. SMAP-29 exerted the highest activity against both sporozoites and oocysts. PMID:12654759

  17. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Cheng M

    2014-12-01

    Full Text Available Michelle Cheng,1,* Samantha Ho,1,* Jun Hwan Yoo,1,2,* Deanna Hoang-Yen Tran,1,* Kyriaki Bakirtzi,1 Bowei Su,1 Diana Hoang-Ngoc Tran,1 Yuzu Kubota,1 Ryan Ichikawa,1 Hon Wai Koon1 1Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; 2Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Republic of Korea *These authors share co-first authorship Background: Cathelicidin (LL-37 in humans and mCRAMP in mice represents a family of endogenous antimicrobial and anti-inflammatory peptides. Cancer-associated fibroblasts can promote the proliferation of colon cancer cells and growth of colon cancer tumors. Methods: We examined the role of cathelicidin in the development of colon cancer, using subcutaneous human HT-29 colon-cancer-cell-derived tumor model in nude mice and azoxymethane- and dextran sulfate-mediated colon cancer model in C57BL/6 mice. We also determined the indirect antitumoral mechanism of cathelicidin via the inhibition of epithelial–mesenchymal transition (EMT of colon cancer cells and fibroblast-supported colon cancer cell proliferation. Results: Intravenous administration of cathelicidin expressing adeno-associated virus significantly reduced the size of tumors, tumor-derived collagen expression, and tumor-derived fibroblast expression in HT-29-derived subcutaneous tumors in nude mice. Enema administration of the mouse cathelicidin peptide significantly reduced the size and number of colonic tumors in azoxymethane- and dextran sulfate-treated mice without inducing apoptosis in tumors and the adjacent normal colonic tissues. Cathelicidin inhibited the collagen expression and vimentin-positive fibroblast expression in colonic tumors. Cathelicidin did not directly affect HT-29 cell viability, but did significantly reduce tumor growth factor-ß1-induced EMT of colon cancer cells. Media conditioned by the

  18. Nanoparticles Encapsulated with LL37 and Serpin A1 Promotes Wound Healing and Synergistically Enhances Antibacterial Activity.

    Science.gov (United States)

    Fumakia, Miral; Ho, Emmanuel A

    2016-07-01

    Wound care is a serious healthcare concern, often complicated by prolonged inflammation and bacterial infection, which contributes significantly to mortality and morbidity. Agents commonly used to treat chronic wound infections are limited due to toxicity of the therapy, multifactorial etiology of chronic wounds, deep skin infections, lack of sustained controlled delivery of drugs, and development of drug resistance. LL37 is an endogenous host defense peptide possessing antimicrobial activity and is involved in the modulation of wound healing. Serpin A1 (A1) is an elastase inhibitor and has been shown to demonstrate wound-healing properties. Hence, our goal was to develop a topical combination nanomedicine for the controlled sustained delivery of LL37 and A1 at precise synergistic ratio combinations that will significantly promote wound closure, reduce bacterial contamination, and enhance anti-inflammatory activity. We have successfully developed the first solid lipid nanoparticle (SLN) formulation that can simultaneously deliver LL37 and A1 at specific ratios resulting in accelerated wound healing by promoting wound closure in BJ fibroblast cells and keratinocytes as well as synergistically enhancing antibacterial activity against S. aureus and E. coli in comparison to LL37 or A1 alone. PMID:27182713

  19. Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock.

    Science.gov (United States)

    Giacometti, Andrea; Cirioni, Oscar; Ghiselli, Roberto; Mocchegiani, Federico; D'Amato, Giuseppina; Circo, Raffaella; Orlando, Fiorenza; Skerlavaj, Barbara; Silvestri, Carmela; Saba, Vittorio; Zanetti, Margherita; Scalise, Giorgio

    2004-01-15

    The present study was designed to investigate the antiendotoxin activity and therapeutic efficacy of sheep myeloid antimicrobial peptide (SMAP)-29, a cathelicidin-derived peptide. The in vitro ability of SMAP-29 to bind LPS from Escherichia coli 0111:B4 was determined using a sensitive limulus chromogenic assay. Two rat models of septic shock were performed: (1) rats were injected intraperitoneally with 1 mg E. coli 0111:B4 LPS and (2) intraabdominal sepsis was induced via cecal ligation and single puncture. All animals were randomized to receive parenterally isotonic sodium chloride solution, 1 mg/kg SMAP-29, 1 mg/kg polymyxin B or 20 mg/kg imipenem. The main outcome measures were: abdominal exudate and plasma bacterial growth, plasma endotoxin and tumor necrosis factor-alpha concentrations, and lethality. The in vitro study showed that SMAP-29 completely inhibited the LPS procoagulant activity at approximately 10 microM peptide concentration. The in vivo experiments showed that all compounds reduced the lethality when compared with control animals. SMAP-29 achieved a substantial decrease in endotoxin and tumor necrosis factor-alpha plasma concentrations when compared with imipenem and saline treatment and exhibited a slightly lower antimicrobial activity than imipenem. No statistically significant differences were noted between SMAP-29 and polymyxin B. SMAP-29, because of its double antiendotoxin and antimicrobial activities, could be an interesting compound for septic shock treatment. PMID:14563656

  20. Vitamin D nutritional status and vitamin D regulated antimicrobial peptides in serum and pleural fluid of patients with infectious and noninfectious pleural effusions

    OpenAIRE

    Amado, Carlos A.; García-Unzueta, María T; Fariñas, M. Carmen; Santos, Francisca; Ortiz, María; Muñoz-Cacho, Pedro; Amado, José A

    2016-01-01

    Background Vitamin D and vitamin D dependent antimicrobial peptides such as Cathelicidin (LL-37) and β-defensin 2 have an important role in innate and adaptative immunity, but their role in pleural effusions has not been studied before. Methods Serum and pleural fluid samples from 152 patients with pleural effusion were collected, corresponding to 45 transudates and 107 exudates, 51 infectious effusions (14 complicated and 37 non-complicated), 44 congestive heart failure effusions and 38 mali...

  1. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides

    Directory of Open Access Journals (Sweden)

    Nongnuj Tanphaichitr

    2016-03-01

    Full Text Available The concurrent increases in global population and sexually transmitted infection (STI demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9, into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women’s body. For this reason, antimicrobial peptides (AMPs, naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI.

  2. Potential Use of Antimicrobial Peptides as Vaginal Spermicides/Microbicides.

    Science.gov (United States)

    Tanphaichitr, Nongnuj; Srakaew, Nopparat; Alonzi, Rhea; Kiattiburut, Wongsakorn; Kongmanas, Kessiri; Zhi, Ruina; Li, Weihua; Baker, Mark; Wang, Guanshun; Hickling, Duane

    2016-01-01

    The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women's body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI. PMID:26978373

  3. The Effect of Calcipotriol on the Expression of Human β Defensin-2 and LL-37 in Cultured Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Beom Joon Kim

    2009-01-01

    Full Text Available Background. Vitamin D has been reported to regulate innate immunity by controlling the expression of antimicrobial peptides (AMPs. Objective. We investigated the effect of calcipotriol on the expression of AMPs in human cultured keratinocytes. Methods. Keratinocytes were treated with lipopolysaccharide (LPS, TNF-α, Calcipotriol and irradiated with UVB, cultured, and harvested. To assess the expression of human beta defensin-2 and LL-37 in the control group, not exposed to any stimulants, the experimental group was treated with LPS, TNF-α, or UVB, and another group was treated again with calcipotriol; reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemical staining were performed. Results. In the experimental group treated with LPS, UVB irradiation, and TNF-α, the expression of β-defensin and LL-37 was increased more than in the control group and then decreased in the experimental group treated with calcipotriol. Conclusions. Calcipotriol suppressed HBD-2 and LL-37, which were stimulated by UVB, LPS, and TNF-α.

  4. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis

    Directory of Open Access Journals (Sweden)

    Ziegler Thomas R

    2009-04-01

    Full Text Available Abstract Background Vitamin D insufficiency is common in hospitalized patients. Recent evidence suggests that vitamin D may enhance the innate immune response by induction of cathelicidin (LL-37, an endogenous antimicrobial peptide produced by macrophages and neutrophils. Thus, the relationship between vitamin D status and LL-37 production may be of importance for host immunity, but little data is available on this subject, especially in the setting of human sepsis syndrome and other critical illness. Methods Plasma concentrations of 25-hydroxyvitamin D (25(OHD, vitamin D binding protein (DBP and LL-37 in critically ill adult subjects admitted to intensive care units (ICUs with sepsis and without sepsis were compared to healthy controls. Results Critically ill subjects had significantly lower plasma 25(OHD concentrations compared to healthy controls. Mean plasma LL-37 levels were significantly lower in critically ill subjects compared to healthy controls. Vitamin D binding protein levels in plasma were significantly lower in critically ill subjects with sepsis compared to critically ill subjects without sepsis. There was a significant positive association between circulating 25(OHD and LL-37 levels. Conclusion This study demonstrates an association between critical illness and lower 25(OHD and DBP levels in critically ill patients as compared to healthy controls. It also establishes a positive association between vitamin D status and plasma LL-37, which suggests that systemic LL-37 levels may be regulated by vitamin D status. Optimal vitamin D status may be important for innate immunity especially in the setting of sepsis. Further invention studies to examine this association are warranted.

  5. Localization and developmental expression of two chicken host defense peptides: cathelicidin-2 and avian β-defensin 9.

    Science.gov (United States)

    Cuperus, Tryntsje; van Dijk, Albert; Dwars, R Marius; Haagsman, Henk P

    2016-08-01

    In the first weeks of life young chickens are highly susceptible to infectious diseases due to immaturity of the immune system. Little is known about the expression of host defense peptides (HDPs) during this period. In this study we examined the expression pattern of two chicken HDPs, the cathelicidin CATH-2 and the β-defensin AvBD9 by immunohistochemistry in a set of organs from embryonic day 12 until four weeks posthatch. AvBD9 was predominantly found in enteroendocrine cells throughout the intestine, the first report of in vivo HDP expression in this cell type, and showed stable expression levels during development. CATH-2 was exclusively found in heterophils which decreased after hatch in most of the examined organs including spleen, bursa and small intestine. In the lung CATH-2 expression was biphasic and peaked at the first day posthatch. In short, CATH-2 and AvBD9 appear to be expressed in cell types strategically located to respond to infectious stimuli, suggesting these peptides play a role in embryonic and early posthatch defense. PMID:26972737

  6. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  7. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Akihiro, E-mail: a-wada@nagasaki-u.ac.jp [Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Wong, Pooi-Fong [Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Hojo, Hironobu [Department of Applied Biochemistry, Institute of Glycoscience, Tokai University, Kanagawa 2591292 (Japan); Hasegawa, Makoto [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga 5260829 (Japan); Ichinose, Akitoyo [Electron Microscopy Shop Central Laboratory, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Llanes, Rafael [Institute Pedro Kouri, Havana (Cuba); Kubo, Yoshinao [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 8528523 (Japan); Senba, Masachika [Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Ichinose, Yoshio [Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan)

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  8. Tuberculin skin test and interferon-gamma release assay values are associated with antimicrobial peptides expression in  polymorphonuclear cells during latent tuberculous infection

    Directory of Open Access Journals (Sweden)

    Julio E Castañeda-Delgado

    2014-06-01

    Full Text Available It has been reported that patients with progressive tuberculosis (TB express abundant amounts of the antimicrobial peptides (AMPs cathelicidin (LL-37 and human neutrophil peptide-1 (HNP-1 in circulating cells, whereas latent TB infected donors showed no differences when compared with purified protein derivative (PPD and QuantiFERON®-TB Gold (QFT-healthy individuals. The aim of this study was to determine whether LL-37 and HNP-1 production correlates with higher tuberculin skin test (TST and QFT values in TB household contacts. Twenty-six TB household contact individuals between 26-58 years old TST and QFT positive with at last two years of latent TB infection were recruited. AMPs production by polymorphonuclear cells was determined by flow cytometry and correlation between TST and QFT values was analysed. Our results showed that there is a positive correlation between levels of HNP-1 and LL-37 production with reactivity to TST and/or QFT levels. This preliminary study suggests the potential use of the expression levels of these peptides as biomarkers for progression in latent infected individuals.

  9. 1,25-Dihydroxyvitamin D3 Induces LL-37 and HBD-2 Production in Keratinocytes from Diabetic Foot Ulcers Promoting Wound Healing: An In Vitro Model

    Science.gov (United States)

    Gonzalez-Curiel, Irma; Trujillo, Valentin; Montoya-Rosales, Alejandra; Rincon, Kublai; Rivas-Calderon, Bruno; deHaro-Acosta, Jeny; Marin-Luevano, Paulina; Lozano-Lopez, Daniel; Enciso-Moreno, Jose A.; Rivas-Santiago, Bruno

    2014-01-01

    Diabetic foot ulcers (DFU) are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs) at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH)2 D3) and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH)2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH)2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH)2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU. PMID:25337708

  10. 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: an in vitro model.

    Directory of Open Access Journals (Sweden)

    Irma Gonzalez-Curiel

    Full Text Available Diabetic foot ulcers (DFU are one of the most common diabetes-related cause of hospitalization and often lead to severe infections and poor healing. It has been recently reported that patients with DFU have lower levels of antimicrobial peptides (AMPs at the lesion area, which contributes with the impairment of wound healing. The aim of this study was to determine whether 1,25-dihydroxyvitamin D3 (1,25 (OH2 D3 and L-isoleucine induced HBD-2 and LL-37 in primary cultures from DFU. We developed primary cell cultures from skin biopsies from 15 patients with DFU and 15 from healthy donors. Cultures were treated with 1,25 (OH2D3 or L-isoleucine for 18 h. Keratinocytes phenotype was identified by western blot and flow cytometry. Real time qPCR for DEFB4, CAMP and VDR gene expression was performed as well as an ELISA to measure HBD-2 and LL-37 in supernatant. Antimicrobial activity, in vitro, wound healing and proliferation assays were performed with conditioned supernatant. The results show that primary culture from DFU treated with 1,25(OH2D3, increased DEFB4 and CAMP gene expression and increased the production of HBD-2 and LL-37 in the culture supernatant. These supernatants had antimicrobial activity over E. coli and induced remarkable keratinocyte migration. In conclusion the 1,25(OH2D3 restored the production of AMPs in primary cell from DFU which were capable to improve the in vitro wound healing assays, suggesting their potential therapeutic use on the treatment of DFU.

  11. Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei.

    Science.gov (United States)

    Abdelbaqi, Suha; Deslouches, Berthony; Steckbeck, Jonathan; Montelaro, Ronald; Reed, Douglas S

    2016-02-01

    Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50 % killing of F. tularensis at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections. PMID:26673248

  12. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    OpenAIRE

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. Howe...

  13. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    Science.gov (United States)

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10. PMID:25038734

  14. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2013-02-01

    Full Text Available Abstract Background Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA, BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa. The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4 and interferon-γ (IFN-γ in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. Results Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. Conclusions Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.

  15. Goat cathelicidin-2 is secreted by blood leukocytes regardless of lipopolysaccharide stimulation.

    Science.gov (United States)

    Srisaikham, Supreena; Suksombat, Wisitiporn; Yoshimura, Yukinori; Isobe, Naoki

    2016-03-01

    It has been reported that goat cathelicidin-2, an antimicrobial peptide, localizes in leukocytes and is present in milk. Here, we examined whether cathelicidin-2 is secreted by leukocytes. Different concentrations (10(5) -10(8) cells/mL) of blood leukocytes were cultured for 0-48 h with or without lipopolysaccharide (LPS). After culture, the concentrations of cathelicidin-2 in the conditioned media were measured. Blood was collected from male goats 0-24 h after the intravenous injection of Escherichia coli O111:B4 LPS. The plasma cathelicidin-2 concentrations were determined and the blood leukocytes immunostained with anti-cathelicidin-2 antibody to calculate the proportion of cathelicidin-2-positive cells in the total leukocytes. When higher concentrations of leukocytes were cultured, the cathelicidin-2 concentrations in the media increased significantly, whereas the addition of LPS to the media caused no further increase. The plasma cathelicidin-2 concentrations did not increase with time after LPS infusion. The proportion of cathelicidin-2-positive cells in the total leukocytes was significantly reduced 1 h after LPS injection compared with that at 0 h, but increased again at 6 h and thereafter. These results suggest that cathlicidin-2 is secreted by leukocytes even without LPS stimulation, whereas LPS may be required for cathelicidin-2-containing leukocytes to be recruited from the blood to tissues showing inflammation. PMID:26212721

  16. Epithelial Antimicrobial Peptides: Guardian of the Oral Cavity

    Directory of Open Access Journals (Sweden)

    Mayank Hans

    2014-01-01

    Full Text Available Gingival epithelium provides first line of defence from the microorganisms present in dental plaque. It not only provides a mechanical barrier but also has an active immune function too. Gingival epithelial cells participate in innate immunity by producing a range of antimicrobial peptides to protect the host against oral pathogens. These epithelial antimicrobial peptides (EAPs include the β-defensin family, cathelicidin (LL-37, calprotectin, and adrenomedullin. While some are constitutively expressed in gingival epithelial cells, others are induced upon exposure to microbial insults. It is likely that these EAPs have a role in determining the initiation and progression of oral diseases. EAPs are broad spectrum antimicrobials with a different but overlapping range of activity. Apart from antimicrobial activity, they participate in several other crucial roles in host tissues. Some of these, for instance, β-defensins, are chemotactic to immune cells. Others, such as calprotectin are important for wound healing and cell proliferation. Adrenomedullin, a multifunctional peptide, has its biological action in a wide range of tissues. Not only is it a potent vasodilator but also it has several endocrine effects. Knowing in detail the various bioactions of these EAPs may provide us with useful information regarding their utility as therapeutic agents.

  17. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  18. A Randomized Controlled Trial on the Effect of Vitamin D3 on Inflammation and Cathelicidin Gene Expression in Ulcerative Colitis Patients

    Science.gov (United States)

    Sharifi, Amrollah; Hosseinzadeh-Attar, Mohammad Javad; Vahedi, Homayoon; Nedjat, Saharnaz

    2016-01-01

    Background: Inflammatory bowel disease (IBD) is an intestinal chronic inflammatory condition and includes Crohn's disease (CD) and ulcerative colitis (UC). It has been proposed that Vitamin D supplementation may have a beneficial role in IBD. Aim: To characterize the effects of Vitamin D on cathelicidin (hCAP/LL37) gene expression, ESR, and serum hs-CRP levels. Materials and Methods: Ninety UC patients on remission were randomized to receive 300,000 IU intramuscular Vitamin D or 1 mL normal saline as placebo, respectively. Before and 90 days after intervention, serum levels of 25 (OH)-Vitamin D3, PTH, Calcium, ESR, and hs-CRP were measured. Cathelicidin gene expression was also quantified using qRT-PCR. Results: Baseline serum 25-OH-Vitamin D3 levels were not different between the two groups and after intervention, increased only in Vitamin D group (P placebo group. (Mean ± SD: 3.13 ± 2.56 vs 1.09 ± 0.56; median ± interquartile range: 2.17 ± 3.81 vs 0.87 ± 0.53, P < 0.001). Conclusion: Decreases in ESR and hs-CRP levels and increase in LL37 gene expression support the hypothesis that Vitamin D supplementation may have a beneficial role in UC patients. PMID:27488327

  19. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins.

    Directory of Open Access Journals (Sweden)

    Biswajit Brahma

    Full Text Available Cathelicidins are an ancient class of antimicrobial peptides (AMPs with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4, which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s displayed potent antimicrobial activity against selected Gram positive (G+ and Gram negative (G- bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics.

  20. Circulating Cathelicidin Concentrations in a Cohort of Healthy Children: Influence of Age, Body Composition, Gender and Vitamin D Status.

    Directory of Open Access Journals (Sweden)

    Taylor M Stukes

    Full Text Available Cathelicidin is an antimicrobial peptide whose circulating levels are related to vitamin D status in adults. This study sought to determine if circulating cathelicidin concentrations in healthy children are related to the age of the child, body composition and vitamin D status at birth and at the time of the study visit. Blood samples were obtained during yearly visits from 133 children, ages 2-7, whose mothers had participated in a pregnancy vitamin D supplementation RCT. Radioimmunoassay and ELISA were performed to analyze 25(OHD and cathelicidin, respectively. Statistical analyses compared cathelicidin concentrations with concentrations of 25(OHD at various time points (maternal levels throughout pregnancy, at birth, and child's current level; and with race/ethnicity, age, gender, BMI, percent fat, and frequency of infections using Student's t-test, χ2, Wilcoxon ranked-sum analysis, and multivariate regression. The cohort's median cathelicidin concentration was 28.1 ng/mL (range: 5.6-3368.6 and did not correlate with 25(OHD, but was positively correlated with advancing age (ρ = 0.236 & p = 0.005, respectively. Forty patients evaluated at two visits showed an increase of 24.0 ng/mL in cathelicidin from the first visit to the next (p<0.0001. Increased age and male gender were correlated with increased cathelicidin when controlling for race/ethnicity, percent fat, and child's current 25(OHD concentration (p = 0.028 & p = 0.047, respectively. This study demonstrated that as children age, the concentration of cathelicidin increases. Furthermore, male gender was significantly associated with increased cathelicidin concentrations. The lack of association between vitamin D status and cathelicidin in this study may be due to the narrow range in observed 25(OHD values and warrants additional studies for further observation.

  1. Circulating Cathelicidin Concentrations in a Cohort of Healthy Children: Influence of Age, Body Composition, Gender and Vitamin D Status

    Science.gov (United States)

    2016-01-01

    Cathelicidin is an antimicrobial peptide whose circulating levels are related to vitamin D status in adults. This study sought to determine if circulating cathelicidin concentrations in healthy children are related to the age of the child, body composition and vitamin D status at birth and at the time of the study visit. Blood samples were obtained during yearly visits from 133 children, ages 2–7, whose mothers had participated in a pregnancy vitamin D supplementation RCT. Radioimmunoassay and ELISA were performed to analyze 25(OH)D and cathelicidin, respectively. Statistical analyses compared cathelicidin concentrations with concentrations of 25(OH)D at various time points (maternal levels throughout pregnancy, at birth, and child’s current level); and with race/ethnicity, age, gender, BMI, percent fat, and frequency of infections using Student’s t-test, χ2, Wilcoxon ranked-sum analysis, and multivariate regression. The cohort’s median cathelicidin concentration was 28.1 ng/mL (range: 5.6–3368.6) and did not correlate with 25(OH)D, but was positively correlated with advancing age (ρ = 0.236 & p = 0.005, respectively). Forty patients evaluated at two visits showed an increase of 24.0 ng/mL in cathelicidin from the first visit to the next (pvitamin D status and cathelicidin in this study may be due to the narrow range in observed 25(OH)D values and warrants additional studies for further observation. PMID:27152524

  2. IL-4 and IL-13 exposure during mucociliary differentiation of bronchial epithelial cells increases antimicrobial activity and expression of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Prins Frans A

    2011-05-01

    Full Text Available Abstract The airway epithelium forms a barrier against infection but also produces antimicrobial peptides (AMPs and other inflammatory mediators to activate the immune system. It has been shown that in allergic disorders, Th2 cytokines may hamper the antimicrobial activity of the epithelium. However, the presence of Th2 cytokines also affects the composition of the epithelial layer which may alter its function. Therefore, we investigated whether exposure of human primary bronchial epithelial cells (PBEC to Th2 cytokines during mucociliary differentiation affects expression of the human cathelicidin antimicrobial protein (hCAP18/LL-37 and human beta defensins (hBD, and antimicrobial activity. PBEC were cultured at an air-liquid interface (ALI for two weeks in the presence of various concentrations of IL-4 or IL-13. Changes in differentiation and in expression of various AMPs and the antimicrobial proteinase inhibitors secretory leukocyte protease inhibitor (SLPI and elafin were investigated as well as antimicrobial activity. IL-4 and IL-13 increased mRNA expression of hCAP18/LL-37 and hBD-2. Dot blot analysis also showed an increase in hCAP18/LL-37 protein in apical washes of IL-4-treated ALI cultures, whereas Western Blot analysis showed expression of a protein of approximately 4.5 kDa in basal medium of IL-4-treated cultures. Using sandwich ELISA we found that also hBD-2 in apical washes was increased by both IL-4 and IL-13. SLPI and elafin levels were not affected by IL-4 or IL-13 at the mRNA or protein level. Apical wash obtained from IL-4- and IL-13-treated cultures displayed increased antimicrobial activity against Pseudomonas aeruginosa compared to medium-treated cultures. In addition, differentiation in the presence of Th2 cytokines resulted in increased MUC5AC production as has been shown previously. These data suggest that prolonged exposure to Th2 cytokines during mucociliary differentiation contributes to antimicrobial defence by

  3. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  4. Tumor-produced versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and vitamin D3 signaling to promote ovarian cancer progression in vitro.

    Directory of Open Access Journals (Sweden)

    Dong Li

    Full Text Available Tumor-associated macrophages have been shown to promote tumor growth. They may have an obligatory function in angiogenesis, invasion, and metastasis through release of inflammatory mediators. Their presence in ovarian cancer has been correlated with poor prognosis in these patients. The human cationic antimicrobial protein-18 (hCAP18/LL-37 was originally identified as an effector molecule of the innate immune system. It is released by innate immune cells, such as macrophages, to combat microorganisms. Previous studies have characterized the hCAP18/LL-37 as a growth factor that has been shown to promote ovarian tumor progression. However, the role hCAP18/LL-37 has in macrophage-promoted ovarian tumor development and how its expression is controlled in this context remains poorly understood. Here, we demonstrate in co-culture experiments of macrophages and ovarian cancer cells a significant increase in the in vitro proliferation and invasiveness of the tumor cells is observed. These enhanced growth and invasion properties correlated with hCAP18/LL-37 induction. HCAP18/LL-37 expression was diminished by addition of two neutralizing antibodies, TLR2 or TLR6, as well as Cyp27B1 or VDR inhibitors. Furthermore, either the TLR2 or TLR6 antibody reduced vitamin D3 signaling and tumor cell progression in vitro. Addition of Cyp27B1 or VDR inhibitors abrogated TLR2/6 activation-induced expression of hCAP18/LL-37 in macrophages. Knockdown of tumor-produced versican V1 by RNAi in these tumor cells led to a decreased induction of hCAP18/LL-37 in macrophages. Versican V1 knockdown also inhibited TLR2 and vitamin D3 signaling, as well as growth and invasiveness of these tumor cells in the in vitro co-culture. In summary, we have found that versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and subsequent vitamin D-dependent mechanisms which promote ovarian tumor progression in vitro.

  5. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    Science.gov (United States)

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  6. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    Science.gov (United States)

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  7. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV.

    Science.gov (United States)

    Ron-Doitch, Sapir; Sawodny, Beate; Kühbacher, Andreas; David, Mirjam M Nordling; Samanta, Ayan; Phopase, Jaywant; Burger-Kentischer, Anke; Griffith, May; Golomb, Gershon; Rupp, Steffen

    2016-05-10

    Cationic antimicrobial peptides (AMPs) are part of the innate immunity, and act against a wide variety of pathogenic microorganisms by perturbation of the microorganism's plasma membrane. Although attractive for clinical applications, these agents suffer from limited stability and activity in vivo, as well as non-specific interaction with host biological membranes, leading to cytotoxic adverse effects. We hypothesized that encapsulation of AMPs within liposomes could result in reduced cytotoxicity, and with enhanced stability as well as bioactivity against herpes simplex virus 1 (HSV-1). We formulated nano-sized liposomal formulations of LL-37 and indolicidin, and their physicochemical properties, cellular uptake, in vitro cytotoxicity and antiviral efficacy have been determined. Lower cytotoxicity of LL-37 liposomes was found in comparison to indolicidin liposomes attributed to the superior physicochemical properties, and to the different degree of interaction with the liposomal membrane. The disc-like shaped LL-37 liposomes (106.8±10.1nm, shelf-life stability of >1year) were taken up more rapidly and to a significantly higher extent than the free peptide by human keratinocyte cell line (HaCaT), remained intact within the cells, followed by release of the active peptide within the cytoplasm and migration of the vesicles' lipids to the plasma membrane. LL-37 liposomes were found significantly less toxic than both the free agent and liposomal indolicidin. In the new 3D epidermis model (immortalized primary keratinocytes) liposomal LL-37 treatment (>20μM), but not free LL-37, efficiently protected the epidermis, inhibiting HSV-1 infection. This positive antiviral effect was obtained with no cytotoxicity even at very high concentrations (400μM). Thus, the antiviral activity of encapsulated LL-37 was significantly improved, expanding its therapeutic window. Liposomal LL-37 appears to be a promising delivery system for HSV therapy. PMID:27012977

  8. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnix coturnix.

    Science.gov (United States)

    Feng, Feifei; Chen, Chen; Zhu, Wenjuan; He, Weiyu; Guang, Huijuan; Li, Zheng; Wang, Duo; Liu, Jingze; Chen, Ming; Wang, Yipeng; Yu, Haining

    2011-05-01

    Cathelicidins comprise a family of antimicrobial peptides sharing a highly conserved cathelin domain, which play a central role in the early innate host defense against infection. In the present study, we report three novel avian cathelicidin orthologs cloned from a constructed spleen cDNA library of Coturnix coturnix, using a nested-PCR-based cloning strategy. Three coding sequences containing ORFs of 447, 465 and 456 bp encode three mature antimicrobial peptides (named Cc-CATH1, 2 and 3) of 26, 32 and 29 amino acid residues, respectively. Phylogenetic analysis indicated that precursors of Cc-CATHs are significantly conserved with known avian cathelicidins. Synthetic Cc-CATH2 and 3 displayed broad and potent antimicrobial activity against most of the 41 strains of bacteria and fungi tested, especially the clinically isolated drug-resistant strains, with minimum inhibitory concentration values in the range 0.3-2.5 μm for most strains with or without the presence of 100 mm NaCl. Cc-CATH2 and 3 showed considerable reduction of cytotoxic activity compared to other avian cathelicidins, with average IC(50) values of 20.18 and 17.16 μm, respectively. They also exerted a negligible hemolytic activity against human erythrocytes, lysing only 3.6% of erythrocytes at a dose up to 100 μg·mL(-1) . As expected, the recombinant Cc-CATH2 (rCc-CATH2) also showed potent bactericidal activity. All these features of Cc-CATHs encourage further studies aiming to estimate their therapeutic potential as drug leads, as well as coping with current widespread antibiotic resistance, especially the new prevalent and dangerous 'superbug' that is resistant to almost all antibiotics. PMID:21375690

  9. Antimicrobial peptides and nitric oxide production by neutrophils from periodontitis subjects

    Directory of Open Access Journals (Sweden)

    F.S. Mariano

    2012-11-01

    Full Text Available Neutrophils play an important role in periodontitis by producing nitric oxide (NO and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS, Porphyromonas gingivalis-LPS (Pg-LPS and Escherichia coli-LPS (Ec-LPS. qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens.

  10. A randomized controlled trial on the effect of vitamin D3 on inflammation and cathelicidin gene expression in ulcerative colitis patients

    Directory of Open Access Journals (Sweden)

    Amrollah Sharifi

    2016-01-01

    Full Text Available Background: Inflammatory bowel disease (IBD is an intestinal chronic inflammatory condition and includes Crohn's disease (CD and ulcerative colitis (UC. It has been proposed that Vitamin D supplementation may have a beneficial role in IBD. Aim: To characterize the effects of Vitamin D on cathelicidin (hCAP/LL37 gene expression, ESR, and serum hs-CRP levels. Materials and Methods: Ninety UC patients on remission were randomized to receive 300,000 IU intramuscular Vitamin D or 1 mL normal saline as placebo, respectively. Before and 90 days after intervention, serum levels of 25 (OH-Vitamin D3, PTH, Calcium, ESR, and hs-CRP were measured. Cathelicidin gene expression was also quantified using qRT-PCR. Results: Baseline serum 25-OH-Vitamin D3 levels were not different between the two groups and after intervention, increased only in Vitamin D group (P < 0.001. Hs-CRP levels were lower in Vitamin D group after intervention (Before: 3.43 ± 3.47 vs 3.86 ± 3.55 mg/L, P = 0.56; after: 2.31 ± 2.25 vs 3.90 ± 3.97 mg/L, P= 0.023. ESR decreased significantly in Vitamin D group (Before: 12.4 ± 6.1 vs 12.1 ± 5.3 mm/h, P= 0.77; after: 6.7 ± 4.5 vs 11.4 ± 5.5 mm/h, P< 0.001. The mean fold change in hCAP18 gene expression in Vitamin D group was significantly higher than placebo group. (Mean ± SD: 3.13 ± 2.56 vs 1.09 ± 0.56; median ± interquartile range: 2.17 ± 3.81 vs 0.87 ± 0.53, P< 0.001. Conclusion: Decreases in ESR and hs-CRP levels and increase in LL37 gene expression support the hypothesis that Vitamin D supplementation may have a beneficial role in UC patients.

  11. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2015-10-01

    Full Text Available Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection.

  12. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Makarova, Olga; Müller, Uta; Rolff, Jens

    2015-10-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the product of a joint action of LL-37 and free iron. By estimating mutation rate, mutant frequencies and assessing mutational spectra in P. aeruginosa treated either with LL-37, iron or a combination of both we demonstrate that mutation rate and mutant frequency were increased only when free iron and LL-37 were present simultaneously. Colistin had the same effect. The addition of an iron chelator completely abolished this mutagenic effect, suggesting that LL-37 enables iron to enter the cells resulting in DNA damage by Fenton reactions. This was also supported by the observation that the mutational spectrum of the bacteria under LL-37-iron regime showed one of the characteristic Fenton reaction fingerprints: C to T transitions. Free iron concentration in nature and within hosts is kept at a very low level, but the situation in infected lungs of cystic fibrosis patients is different. Intermittent bleeding and damage to the epithelial cells in lungs may contribute to the release of free iron that in turn leads to generation of reactive oxygen species and deterioration of the respiratory tract, making it more susceptible to the infection. PMID:26430769

  13. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.

    Science.gov (United States)

    Braun, Katharina; Pochert, Alexander; Lindén, Mika; Davoudi, Mina; Schmidtchen, Artur; Nordström, Randi; Malmsten, Martin

    2016-08-01

    Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles. Due to preferential pore localization, anionic mesoporous particles, but not the other particles, protect LL-37 from degradation by infection-related proteases. For anionic mesoporous nanoparticles, membrane disruption is mediated almost exclusively by peptide release. In contrast, non-porous silica particles build up a resilient LL-37 surface coating due to their higher negative surface charge, and display largely particle-mediated membrane interactions and antimicrobial effects. For positively charged mesoporous silica nanoparticles, LL-37 incorporation promotes the membrane binding and disruption displayed by the particles in the absence of peptide, but also causes toxicity against human erythrocytes. Thus, the use of mesoporous silica nanoparticles as AMP delivery systems requires consideration of membrane interactions and selectivity of both free peptide and the peptide-loaded nanoparticles, the latter critically dependent on nanoparticle properties. PMID:27174622

  14. Evaluation of milk cathelicidin for detection of dairy sheep mastitis.

    Science.gov (United States)

    Addis, M F; Tedde, V; Dore, S; Pisanu, S; Puggioni, G M G; Roggio, A M; Pagnozzi, D; Lollai, S; Cannas, E A; Uzzau, S

    2016-08-01

    Mastitis due to intramammary infections is one of the most detrimental diseases in dairy sheep farming, representing a major cause of reduced milk productions and quality losses. In particular, subclinical mastitis presents significant detection and control problems, and the availability of tools enabling its timely, sensitive, and specific detection is therefore crucial. We have previously demonstrated that cathelicidins, small proteins implicated in the innate immune defense of the host, are specifically released in milk of mastitic animals by both epithelial cells and neutrophils. Here, we describe the development of an ELISA for milk cathelicidin and assess its value against somatic cell counts (SCC) and bacteriological culture for detection of ewe mastitis. Evaluation of the cathelicidin ELISA was carried out on 705 half-udder milk samples from 3 sheep flocks enrolled in a project for improvement of mammary health. Cathelicidin was detected in 35.3% of milk samples (249/705), and its amount increased with rising SCC values. The cathelicidin-negative (n=456) and cathelicidin-positive (n=249) sample groups showed a clear separation in relation to SCC, with median values of 149,500 and 3,300,000 cells/mL, respectively. Upon bacteriological culture, 20.6% (145/705) of the milk samples showed microbial growth, with coagulase-negative staphylococci being by far the most frequent finding. A significant proportion of all bacteriologically positive milk samples were positive for cathelicidin (110/145, 75.9%). Given the lack of a reliable gold standard for defining the true disease status, sensitivity (Se) and specificity (Sp) of the cathelicidin ELISA were assessed by latent class analysis against 2 SCC thresholds and against bacteriological culture results. At an SCC threshold of 500,000 cells/mL, Se and Sp were 92.3 and 92.3% for cathelicidin ELISA, 89.0 and 94.9% for SCC, and 39.4 and 93.6% for bacteriological culture, respectively. At an SCC threshold of 1

  15. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism.

    Science.gov (United States)

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-07-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  16. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers.

    Science.gov (United States)

    Gontsarik, Mark; Buhmann, Matthias T; Yaghmur, Anan; Ren, Qun; Maniura-Weber, Katharina; Salentinig, Stefan

    2016-09-01

    Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating the amphiphilic peptide LL-37 at different concentrations on the self-assembled structure and evaluate its bactericidal ability against Escherichia coli. Small-angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy show that LL-37 integrates into the bicontinuous cubic structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can guide the design of new nanocarriers for antimicrobial peptides and may provide essential knowledge on the mechanisms underlying the bacterial membrane disruption with peptide-loaded nanostructures. PMID:27541048

  17. Cationic Peptides Facilitate Iron-induced Mutagenesis in Bacteria.

    OpenAIRE

    Alexandro Rodríguez-Rojas; Olga Makarova; Uta Müller; Jens Rolff

    2015-01-01

    Pseudomonas aeruginosa is the causative agent of chronic respiratory infections and is an important pathogen of cystic fibrosis patients. Adaptive mutations play an essential role for antimicrobial resistance and persistence. The factors that contribute to bacterial mutagenesis in this environment are not clear. Recently it has been proposed that cationic antimicrobial peptides such as LL-37 could act as mutagens in P. aeruginosa. Here we provide experimental evidence that mutagenesis is the ...

  18. Prophylactic administration of chicken cathelicidin-2 boosts zebrafish embryonic innate immunity.

    Science.gov (United States)

    Schneider, Viktoria A F; van Dijk, Albert; van der Sar, Astrid M; Kraaij, Marina D; Veldhuizen, Edwin J A; Haagsman, Henk P

    2016-07-01

    Chicken cathelicidin-2 (CATH-2) is a host defense peptide that exhibits immunomodulatory and antibacterial properties. Here we examined effects of CATH-2 in zebrafish embryos in the absence and presence of infection. Yolk-injection of 0.2-1.5 h post-fertilized (hpf) zebrafish embryos with 2.6 ng/kg CATH-2 increased proliferation of phagocytic cells at 48 hpf by 30%. A lethal infection model was developed to test the prophylactic protective effect of CATH-2 peptide. Embryos (0.2-1.5 hpf) were injected with 2.6 ng/kg CATH-2, challenged with a lethal dose of fluorescently labeled Salmonella enteritidis pGMDs3 at 28 hpf and monitored for survival. Prophylactic treatment with CATH-2 was found to delay infection starting at 22 h post-infection (hpi). At 18-20 hpi, significantly lower (2-fold) fluorescence intensity and decreased bacterial loads were detected in peptide-treated embryos. Thus prophylactic administration of low CATH-2 concentrations confer partial protection in zebrafish embryos by boosting the innate immune system. PMID:26920462

  19. Destabilization of α-Helical Structure in Solution Improves Bactericidal Activity of Antimicrobial Peptides: Opposite Effects on Bacterial and Viral Targets

    OpenAIRE

    Ulaeto, David O.; Morris, Christopher J.; Fox, Marc A.; Gumbleton, Mark; Beck, Konrad

    2016-01-01

    We have previously examined the mechanism of antimicrobial peptides on the outer membrane of vaccinia virus. We show here that the formulation of peptides LL37 and magainin-2B amide in polysorbate 20 (Tween 20) results in greater reductions in virus titer than formulation without detergent, and the effect is replicated by substitution of polysorbate 20 with high-ionic-strength buffer. In contrast, formulation with polysorbate 20 or high-ionic-strength buffer has the opposite effect on bacteri...

  20. Hepcidin, Cathelicidin-1 and IL-8 as immunological markers of responsiveness in early developmental stages of rainbow trout.

    Science.gov (United States)

    Santana, Paula A; Guzmán, Fanny; Forero, Juan C; Luna, Omar F; Mercado, Luis

    2016-09-01

    During the early developmental stage of salmonids, high mortality occurs largely as a result of pathogens. These cause low immune competence in fry, producing disease, decreasing production and finally leading to economic losses. Therefore, the aim of this study was to characterise the developmental stages in which rainbow trout acquires immune response capability when challenged with LPS from Pseudomona aeruginosa for 8 h, studying the hepcidin, cathelicidin-1 and IL-8. Total RNA was extracted from fry at 34, 42, 56 and 66 days post hatching (dph). Hepcidin and cathelicidin-1 transcripts were detected only at days 34 and 42, whereas the IL-8 transcript was detected from day 34 to day 66. To analyse the protein expression in the fry, polyclonal anti-peptide antibodies were generated in rabbit. These three immune sera demonstrated the ability to recognise the whole molecule in biological samples. Immunofluorescence showed that skin, gills and intestine mainly responded to the LPS challenge, indicating that these portals of pathogen entry are capturing LPS. This study constitutes a valuable approach, since it has the potential to identify molecules with biological activity that can be used to evaluate the status of fry in culture. PMID:27106706

  1. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection

    DEFF Research Database (Denmark)

    Steinstraesser, Lars; Hirsch, Tobias; Schulte, Matthias;

    2012-01-01

    -1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL......-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no...... significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds...

  2. Swiftly Decreasing Cerebrospinal Fluid Cathelicidin Concentration Predicts Improved Outcome in Childhood Bacterial Meningitis.

    Science.gov (United States)

    Savonius, Okko; Helve, Otto; Roine, Irmeli; Andersson, Sture; Fernández, Josefina; Peltola, Heikki; Pelkonen, Tuula

    2016-06-01

    We investigated cerebrospinal fluid (CSF) cathelicidin concentrations in childhood bacterial meningitis on admission and during antimicrobial treatment. CSF cathelicidin concentrations on admission correlated with CSF white cell counts and protein levels but not with bacterial etiology. A greater decrease in the concentration in response to treatment was associated with a better outcome. Since the CSF cathelicidin concentration reflects the degree of central nervous system (CNS) inflammation, it may be used as a novel biomarker in childhood bacterial meningitis. An early decrease during treatment likely signals more rapid mitigation of the disease process and thus a better outcome. PMID:27008883

  3. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  4. Protective effect of in ovo treatment with the chicken cathelicidin analog D-CATH-2 against avian pathogenic E. coli

    Science.gov (United States)

    Cuperus, Tryntsje; van Dijk, Albert; Matthijs, Mieke G. R.; Veldhuizen, Edwin J. A.; Haagsman, Henk P.

    2016-01-01

    Increasing antibiotic resistance and ever stricter control on antibiotic use are a driving force to develop alternatives to antibiotics. One such strategy is the use of multifunctional Host Defense Peptides. Here we examined the protective effect of prophylactic treatment with the D analog of chicken cathelicidin-2 (D-CATH-2) against a respiratory E. coli infection. Chickens were treated with D-CATH-2 in ovo at day 18 of embryonic development or intramuscularly at days 1 and 4 after hatch. At 7 days of age, birds were challenged intratracheally with avian pathogenic E. coli. Protection was evaluated by recording mortality, morbidity (Mean Lesion Score) and bacterial swabs of air sacs at 7 days post-infection. In ovo D-CATH-2 treatment significantly reduced morbidity (63%) and respiratory bacterial load (>90%), while intramuscular treatment was less effective. D-CATH-2 increased the percentage of peripheral blood lymphocytes and heterophils by both administration routes. E. coli specific IgM levels were lower in in ovo treated animals compared to intramuscular D-CATH-2 treatment. In short, in ovo treatment with the Host Defense Peptide derived D-CATH-2 can partially protect chickens from E. coli infection, making this peptide an interesting starting point to develop alternatives to antibiotics for use in the poultry sector. PMID:27229866

  5. Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide

    International Nuclear Information System (INIS)

    Using the monomer of acrylic acid and the novel technique of using a dielectric barrier discharge glow plasma fluidized bed (GPFB), a nanolayer biofilm of polyacrylic acid (PAA) was uniformly coated on the surface of magnetic nickel nanoparticles (NPs). Transmission electron microscopy, Fourier transform infrared spectroscopy, and x-ray photoelectron spectroscopy, etc, were used to characterize the modified NPs. The thickness of the biofilm was about 2 nm when the NPs were treated using the GPFB once, and the discharging conditions affected the density of the carboxyl group obviously. The PAA acting as an adhesion layer was used to immobilize the antimicrobial peptide LL-37, to kill the bacteria of Escherichia coli (E. coli), and the results indicated that the modified nickel NPs immobilizing a certain concentration of LL-37 could kill the bacteria effectively.

  6. Antimicrobial peptides and proteins in host-microbe interaction and immediate defense

    OpenAIRE

    Kai-Larsen, Ylva

    2009-01-01

    Antimicrobial peptides and proteins (AMPs) are effector molecules of innate immunity and are capable to kill a broad spectrum of microbes, i.e. bacteria, fungi and viruses. They are widespread in nature and have been found in almost all species of the animal kingdom, as well as in plants. The mammalian repertoire of antimicrobial peptides includes the defensins and the cathelicidins. Furthermore, several of the antimicrobial proteins are members of the S100 family. AMPs are ...

  7. Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Guolong Zhang

    2014-02-01

    Full Text Available Host defense peptides (HDPs are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.

  8. Avian antimicrobial host defense peptides: from biology to therapeutic applications.

    Science.gov (United States)

    Zhang, Guolong; Sunkara, Lakshmi T

    2014-01-01

    Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933

  9. Doxycycline Indirectly Inhibits Proteolytic Activation of Tryptic Kallikrein-Related Peptidases and Activation of Cathelicidin

    OpenAIRE

    Kanada, Kimberly N.; Nakatsuji, Teruaki; Richard L Gallo

    2012-01-01

    The increased abundance and activity of cathelicidin and kallikrein 5 (KLK5), a predominant trypsin-like serine protease (TLSP) in the stratum corneum, have been implicated in the pathogenesis of rosacea, a disorder treated by the use of low-dose doxycycline. Here we hypothesized that doxycycline can inhibit activation of tryptic KLKs through an indirect mechanism by inhibition of matrix metalloproteinases (MMPs) in keratinocytes. The capacity of doxycycline to directly inhibit enzyme activit...

  10. Modulation of proinflammatory activity by the engineered cationic antimicrobial peptide WLBU-2 [v1; ref status: indexed, http://f1000r.es/xq

    Directory of Open Access Journals (Sweden)

    Shruti M Paranjape

    2013-02-01

    Full Text Available Background: Host-derived (LL-37 and synthetic (WLBU-2 cationic antimicrobial peptides (CAPs are known for their membrane-active bactericidal properties. LL-37 is an important mediator for immunomodulation, while the mechanism of action of WLBU-2 remains unclear. Objective: To determine if WLBU-2 induces an early proinflammatory response that facilitates bacterial clearance in cystic fibrosis (CF. Methods: C57BL6 mice were given intranasal or intraperitoneal 1×106 cfu/mL Pseudomonas aeruginosa (PA and observed for 2h, followed by instillation of LL-37 or WLBU-2 (2-4mg/kg with subsequent tissue collection at 24h for determination of bacterial colony counts and quantitative RT-PCR measurement of cytokine transcripts. CF airway epithelial cells (IB3-1, ΔF508/W1282X were cultured in appropriate media with supplements. WLBU-2 (25μM was added to the media with RT-PCR measurement of TNF-α and IL-1β transcripts after 20, 30, and 60min. Flow cytometry was used to determine if WLBU-2 assists in cellular uptake of Alexa 488-labeled LPS. Results: In murine lung exposed to intranasal or intraperitoneal WLBU-2, there was a reduction in the number of surviving PA colonies compared to controls. Murine lung exposed to intraperitoneal WLBU-2 showed fewer PA colonies compared to LL-37. After 24h WLBU-2 exposure, PA-induced IL-1β transcripts from lungs showed a twofold decrease (p<0.05, while TNF-α levels were unchanged. LL-37 did not significantly change transcript levels. In IB3-1 cells, WLBU-2 exposure resulted in increased TNF-α and IL-1β transcripts that decreased by 60min. WLBU-2 treatment of IB3-1 cells displayed increased LPS uptake, suggesting a potential role for CAPs in inducing protective proinflammatory responses. Taken together, the cytokine response, LPS uptake, and established antimicrobial activity of WLBU-2 demonstrate its ability to modulate proinflammatory signaling as a protective mechanism to clear infection. Conclusions: The

  11. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway

    DEFF Research Database (Denmark)

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B;

    2013-01-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D(3). Recent in vitro studies suggested that curcumin and polyunsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin and...... cancer cell line HT-29 and keratinocyte cell line HaCaT. We demonstrated that PUFAs failed to induce CAMP or CYP24A1 mRNA expression in all three cell lines, but curcumin up-regulated CAMP mRNA and protein levels in U937 cells. Curcumin treatment induced CAMP promoter activity from a luciferase reporter...... construct lacking the VDR binding site and did not increase binding of the VDR to the CAMP promoter as determined by chromatin immunoprecipitation assays. These findings indicate that induction of CAMP by curcumin occurs through a vitamin D receptor-independent manner. We conclude that PUFAs and curcumin do...

  12. Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions.

    Science.gov (United States)

    Kreling, Paula Fernanda; Aida, Kelly Limi; Massunari, Loiane; Caiaffa, Karina Sampaio; Percinoto, Célio; Bedran, Telma Blanca Lombardo; Spolidorio, Denise Madalena Palomari; Abuna, Gabriel Flores; Cilli, Eduardo Maffud; Duque, Cristiane

    2016-10-01

    This study evaluated the cytotoxicity and effect of fragments derived from three oral cationic peptides (CP): LL-37, D6-17 and D1-23 against cariogenic bacteria under planktonic and biofilm conditions. For cytotoxicity analysis, two epithelial cell lines were used. The minimum inhibitory concentration and the minimal bactericidal concentration were determined for the CP fragments and the control (chlorhexidine-CHX) against cariogenic bacteria. The fractional inhibitory concentration was obtained for the combinations of CP fragments on Streptococcus mutans. Biofilm assays were conducted with the best antimicrobial CP fragment against S. mutans. The results indicated that D6-17 was not cytotoxic. D1-23, LL-37 and CHX were not cytotoxic in low concentrations. D1-23 presented the best bactericidal activity against S. mutans, S. mitis and S. salivarius. Combinations of CP fragments did not show a synergic effect. D1-23 presented a higher activity against S. mutans biofilm than CHX. It was concluded that D1-23 showed a substantial effect against cariogenic bacteria and low cytotoxicity. PMID:27538256

  13. Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth

    DEFF Research Database (Denmark)

    Lynn, Miriam A.; Kindrachuk, Jason; Marr, Alexandra K.;

    2011-01-01

    Background: Protozoan parasites, such as Leishmania, still pose an enormous public health problem in many countries throughout the world. Current measures are outdated and have some associated drug resistance, prompting the search into novel therapies. Several innovative approaches are under...... of the cathelicidin family of HDPs have demonstrated significant antimicrobial activities against various parasites including Leishmania. The cathelicidin bovine myeloid antimicrobial peptide 28 (BMAP-28) has broad antimicrobial activities and confers protection in animal models of bacterial infection or sepsis. We...... tested the effectiveness of the use of BMAP-28 and two of its isomers the D-amino acid form (D-BMAP-28) and the retro-inverso form (RI-BMAP-28), as anti-leishmanial agents against the promastigote and amastigote intracellular Leishmania major lifecycle stages. Methodology/Principal Findings: An MTS...

  14. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Directory of Open Access Journals (Sweden)

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  15. Aliphatic acid-conjugated antimicrobial peptides--potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Wang, Xuekun; Huang, Wenlong; Qian, Hai

    2015-07-28

    Compared with traditional therapeutics, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. In a previous study, we found that B1, an antimicrobial peptide derived from Cathelicidin-BF15, presented specific anti-tumor activity against several tumor cells. Since aliphatic chain-conjugated peptides have shown ameliorative activity and stability, we conjugated aliphatic acids with different lengths to the amino terminal of B1. All the conjugated peptides exhibited improved anti-tumor activity over B1. Further investigations revealed that the peptides were capable of disrupting the cell membrane, stimulating cytochrome c release into the cytosol, which results in apoptosis. The peptides also acted against multidrug resistant cells and had multidrug resistance-reversing effects. Additionally, conjugation of aliphatic acid enhanced the peptide stability in plasma. In summary, aliphatic acid-modified peptides might be promising anti-tumor agents in the future. PMID:26083110

  16. Natural antimicrobial peptides as promising anti-HIV candidates

    Science.gov (United States)

    Wang, Guangshun

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection remains to be one of the major global health problems. It is thus necessary to identify novel therapeutic molecules to combat HIV-1. Natural antimicrobial peptides (AMPs) have been recognized as promising templates for developing topical microbicides. This review systematically discusses over 80 anti-HIV peptides annotated in the antimicrobial peptide database (http://aps.unmc.edu/AP). Such peptides have been discovered from bacteria, plants, and animals. Examples include gramicidin and bacteriocins from bacteria, cyclotides from plants, melittins and cecropins from insects, piscidins from fish, ascaphins, caerins, dermaseptins, esculentins, and maximins from amphibians, and cathelicidins and defensins from vertebrates. These peptides appear to work by different mechanisms and could block viral entry in multiple ways. As additional advantages, such anti-HIV peptides may possess other desired features such as antibacterial, antiparasital, spermicidal, and anticancer activity. With continued optimization of peptide stability, production, formulation and delivery methods, it is anticipated that some of these compounds may eventually become new anti-HIV drugs. PMID:26834391

  17. Low plasma level of cathelicidin antimicrobial peptide (hCAP18) predicts increased infectious disease mortality in patients undergoing hemodialysis

    DEFF Research Database (Denmark)

    Gombart, Adrian F; Bhan, Ishir; Borregaard, Niels;

    2009-01-01

    hemodialysis. Case patients (n = 81) were those who died of an infectious disease within 1 year; control patients (n = 198) were those who survived at least 1 year while undergoing dialysis. RESULTS: Mean (+/-SD) baseline levels of hCAP18 in case patients and control patients were 539 +/- 278 ng/mL and 650...

  18. Phosphoethanolamine Transferase LptA in Haemophilus ducreyi Modifies Lipid A and Contributes to Human Defensin Resistance In Vitro.

    Directory of Open Access Journals (Sweden)

    Michael P Trombley

    Full Text Available Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides (APs, including α-defensins, β-defensins, and the cathelicidin LL-37. Resistance to LL-37, mediated by the sensitive to antimicrobial peptide (Sap transporter, is required for H. ducreyi virulence in humans. Cationic APs are attracted to the negatively charged bacterial cell surface. In other gram-negative bacteria, modification of lipopolysaccharide or lipooligosaccharide (LOS by the addition of positively charged moieties, such as phosphoethanolamine (PEA, confers AP resistance by means of electrostatic repulsion. H. ducreyi LOS has PEA modifications at two sites, and we identified three genes (lptA, ptdA, and ptdB in H. ducreyi with homology to a family of bacterial PEA transferases. We generated non-polar, unmarked mutants with deletions in one, two, or all three putative PEA transferase genes. The triple mutant was significantly more susceptible to both α- and β-defensins; complementation of all three genes restored parental levels of AP resistance. Deletion of all three PEA transferase genes also resulted in a significant increase in the negativity of the mutant cell surface. Mass spectrometric analysis revealed that LptA was required for PEA modification of lipid A; PtdA and PtdB did not affect PEA modification of LOS. In human inoculation experiments, the triple mutant was as virulent as its parent strain. While this is the first identified mechanism of resistance to α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin LL-37 may be more important than defensin resistance to H. ducreyi pathogenesis.

  19. Multiple Functions of the New Cytokine-Based Antimicrobial Peptide Thymic Stromal Lymphopoietin (TSLP

    Directory of Open Access Journals (Sweden)

    Louise Bjerkan

    2016-07-01

    Full Text Available Thymic stromal lymphopoietin (TSLP is a pleiotropic cytokine, hitherto mostly known to be involved in inflammatory responses and immunoregulation. The human tslp gene gives rise to two transcription and translation variants: a long form (lfTSLP that is induced by inflammation, and a short, constitutively-expressed form (sfTSLP, that appears to be downregulated by inflammation. The TSLP forms can be produced by a number of cell types, including epithelial and dendritic cells (DCs. lfTSLP can activate mast cells, DCs, and T cells through binding to the lfTSLP receptor (TSLPR and has a pro-inflammatory function. In contrast, sfTSLP inhibits cytokine secretion of DCs, but the receptor mediating this effect is unknown. Our recent studies have demonstrated that both forms of TSLP display potent antimicrobial activity, exceeding that of many other known antimicrobial peptides (AMPs, with sfTSLP having the strongest effect. The AMP activity is primarily mediated by the C-terminal region of the protein and is localized within a 34-mer peptide (MKK34 that spans the C-terminal α-helical region in TSLP. Fluorescent studies of peptide-treated bacteria, electron microscopy, and liposome leakage models showed that MKK34 exerted membrane-disrupting effects comparable to those of LL-37. Expression of TSLP in skin, oral mucosa, salivary glands, and intestine is part of the defense barrier that aids in the control of both commensal and pathogenic microbes.

  20. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species

    Directory of Open Access Journals (Sweden)

    Katrín Halldórsdóttir

    2015-05-01

    Full Text Available Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host’s apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that

  1. Gallinacin and Fowlicidin: Two Promising Antimicrobial Peptides in ChickensAND#8212;A Review

    Directory of Open Access Journals (Sweden)

    C. S. Mukhopadhyaya

    2010-12-01

    Full Text Available Antimicrobial peptides (AMP which have been identified in almost all groups of organisms, are the small cationic molecules that recognize the pathogen associated molecular patterns of the microbes. In chicken two main AMPs that play significant roles in bolstering the innate immunity are gallinacins and fowlicidins, which are the functional analogues of the mammalian beta-defensins and cathelicidins. Gallinacin identifies the Gram negative bacteria while fowlicidin exerts broad spectral activity. The basic mechanism of action is by far similar in both groups of AMPs. The ‘docking sites’ of these antimicrobial peptides includes the “lipid A” moiety of lipo polysaccharides, lipo-teichoic acids, anionic membrane phospholipids on bacterial surfaces. These AMPs block the DNA replication and protein synthesis in bacteria causing death of the microbe. Researchers have identified reproducible molecular markers of those peptides for selection of disease resistant stock of chickens. [Vet. World 2010; 3(6.000: 297-300

  2. Destabilization of α-Helical Structure in Solution Improves Bactericidal Activity of Antimicrobial Peptides: Opposite Effects on Bacterial and Viral Targets.

    Science.gov (United States)

    Ulaeto, David O; Morris, Christopher J; Fox, Marc A; Gumbleton, Mark; Beck, Konrad

    2016-04-01

    We have previously examined the mechanism of antimicrobial peptides on the outer membrane of vaccinia virus. We show here that the formulation of peptides LL37 and magainin-2B amide in polysorbate 20 (Tween 20) results in greater reductions in virus titer than formulation without detergent, and the effect is replicated by substitution of polysorbate 20 with high-ionic-strength buffer. In contrast, formulation with polysorbate 20 or high-ionic-strength buffer has the opposite effect on bactericidal activity of both peptides, resulting in lesser reductions in titer for both Gram-positive and Gram-negative bacteria. Circular dichroism spectroscopy shows that the differential action of polysorbate 20 and salt on the virucidal and bactericidal activities correlates with the α-helical content of peptide secondary structure in solution, suggesting that the virucidal and bactericidal activities are mediated through distinct mechanisms. The correlation of a defined structural feature with differential activity against a host-derived viral membrane and the membranes of both Gram-positive and Gram-negative bacteria suggests that the overall helical content in solution under physiological conditions is an important feature for consideration in the design and development of candidate peptide-based antimicrobial compounds. PMID:26824944

  3. The host and the flora.

    Science.gov (United States)

    Nuding, S; Antoni, L; Stange, E F

    2013-01-01

    To prevent bacterial overgrowth, colonization of the epithelium and subsequent translocation, the gastrointestinal tract maintains an effective mucosal barrier. Besides mucus the most important components of this protective system are epithelial antimicrobial peptides such as defensins, the cathelicidin LL-37, lysozyme, phospholipase A, and proteins with additional antimicrobial properties such as ubiquicidin, ribosomal proteins or histones. Commensal species may tolerate intestinal antimicrobial peptides, for example Bacteroides ssp. or Parabacteroides ssp. as major species in the human colon were highly resistant to the constitutive defensin HBD-1 and only susceptible to the inducible defensin HBD-3. Reduction of disulfide bonds is an important mechanism activating HBD-1. As several studies show, alterations in the expression of antimicrobial peptides directly influence the composition of the intestinal flora. Correspondingly, an increased production of defensins or inhibition of the processing of mouse defensins to their active form led to a quantitative shift of luminal and mucosal bacterial species. On the other hand, microorganisms also modulate the synthesis of host defensins by induction or inhibition of specific peptides. Lactobacilli, the probiotic strain Escherichia coli Nissle and Salmonella enteritica stimulate HBD-2 expression, whereas Shigella flexneri downregulates the synthesis of HBD-1, HBD-3 and LL-37. Thus, the proper balance between the luminal flora and the mucosa is a permanently dynamic, sensitive and host-specific relationship. PMID:24246976

  4. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788. ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  5. Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.

    Directory of Open Access Journals (Sweden)

    Jianghui Wang

    Full Text Available BACKGROUND: To overcome the increasing resistance of pathogens to existing antibiotics the 10×'20 Initiative declared the urgent need for a global commitment to develop 10 new antimicrobial drugs by the year 2020. Naturally occurring animal antibiotics are an obvious place to start. The recently sequenced genomes of mammals that are divergent from human and mouse, including the tammar wallaby and the platypus, provide an opportunity to discover novel antimicrobials. Marsupials and monotremes are ideal potential sources of new antimicrobials because they give birth to underdeveloped immunologically naïve young that develop outside the sterile confines of a uterus in harsh pathogen-laden environments. While their adaptive immune system develops innate immune factors produced either by the mother or by the young must play a key role in protecting the immune-compromised young. In this study we focus on the cathelicidins, a key family of antimicrobial peptide genes. PRINCIPAL FINDING: We identified 14 cathelicidin genes in the tammar wallaby genome and 8 in the platypus genome. The tammar genes were expressed in the mammary gland during early lactation before the adaptive immune system of the young develops, as well as in the skin of the pouch young. Both platypus and tammar peptides were effective in killing a broad range of bacterial pathogens. One potent peptide, expressed in the early stages of tammar lactation, effectively killed multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. CONCLUSIONS AND SIGNIFICANCE: Marsupial and monotreme young are protected by antimicrobial peptides that are potent, broad spectrum and salt resistant. The genomes of our distant relatives may hold the key for the development of novel drugs to combat multidrug-resistant pathogens.

  6. High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine

    Science.gov (United States)

    Yi, Hongbo; Zhang, Lin; Gan, Zhenshun; Xiong, Haitao; Yu, Caihua; Du, Huahua; Wang, Yizhen

    2016-01-01

    Diarrhea is a leading cause of death among young mammals, especially during weaning. Here, we investigated the effects of Cathelicidin-WA (CWA) on diarrhea, intestinal morphology, inflammatory responses, epithelial barrier and microbiota in the intestine of young mammals during weaning. Piglets with clinical diarrhea were selected and treated with saline (control), CWA or enrofloxacin (Enro) for 4 days. Both CWA and Enro effectively attenuated diarrhea. Compared with the control, CWA decreased IL-6, IL-8 and IL-22 levels and reduced neutrophil infiltration into the jejunum. CWA inhibited inflammation by down-regulating the TLR4-, MyD88- and NF-κB-dependent pathways. Additionally, CWA improved intestinal morphology by increasing villus and microvillus heights and enhancing intestinal barrier function by increasing tight junction (TJ) protein expression and augmenting wound-healing ability in intestinal epithelial cells. CWA also improved microbiota composition and increased short-chain fatty acid (SCFA) levels in feces. By contrast, Enro not only disrupted the intestinal barrier but also negatively affected microbiota composition and SCFA levels in the intestine. In conclusion, CWA effectively attenuated inflammation, enhanced intestinal barrier function, and improved microbiota composition in the intestines of weaned piglets. These results suggest that CWA could be an effective and safe therapy for diarrhea or other intestinal diseases in young mammals. PMID:27181680

  7. Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection

    Science.gov (United States)

    Kulkarni, Manjusha M.; Barbi, Joseph; McMaster, W. Robert; Gallo, Richard L.; Satoskar, Abhay R.; McGwire, Bradford S.

    2011-01-01

    Summary Cathelicidin-type antimicrobial peptides (CAMP) are important mediators of innate immunity against microbial pathogens acting through direct interaction with and disruption of microbial membranes and indirectly through modulation of host cell migration and activation. Using a mouse knock-out model in CAMP we studied the role of this host peptide in control of dissemination of cutaneous infection by the parasitic protozoan Leishmania. The presence of pronounced host inflammatory infiltration in lesions and lymph nodes of infected animals was CAMP-dependent. Lack of CAMP expression was associated with higher levels of IL-10 receptor expression in bone marrow, splenic and lymph node macrophages as well as higher anti-inflammatory IL-10 production by bone marrow macrophages and spleen cells but reduced production of the pro-inflammatory cytokines IL-12 and IFN-γ by lymph nodes. Unlike wild-type mice, local lesions were exacerbated and parasites were found largely disseminated in CAMP knockouts. Infection of CAMP knockouts with parasite mutants lacking the surface metalloprotease virulence determinant resulted in more robust disseminated infection than in control animals suggesting that CAMP activity is negatively regulated by parasite surface proteolytic activity. This correlated with the ability of the pro-tease to degrade CAMP in vitro and co-localization of CAMP with parasites within macrophages. Our results highlight the interplay of antimicrobial peptides and Leishmania that influence the host immune response and the outcome of infection. PMID:21501359

  8. Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota.

    Science.gov (United States)

    Sun, Jia; Furio, Laetitia; Mecheri, Ramine; van der Does, Anne M; Lundeberg, Erik; Saveanu, Loredana; Chen, Yongquan; van Endert, Peter; Agerberth, Birgitta; Diana, Julien

    2015-08-18

    Antimicrobial peptides (AMPs) expressed by epithelial and immune cells are largely described for the defense against invading microorganisms. Recently, their immunomodulatory functions have been highlighted in various contexts. However how AMPs expressed by non-immune cells might influence autoimmune responses in peripheral tissues, such as the pancreas, is unknown. Here, we found that insulin-secreting β-cells produced the cathelicidin related antimicrobial peptide (CRAMP) and that this production was defective in non-obese diabetic (NOD) mice. CRAMP administrated to prediabetic NOD mice induced regulatory immune cells in the pancreatic islets, dampening the incidence of autoimmune diabetes. Additional investigation revealed that the production of CRAMP by β-cells was controlled by short-chain fatty acids produced by the gut microbiota. Accordingly, gut microbiota manipulations in NOD mice modulated CRAMP production and inflammation in the pancreatic islets, revealing that the gut microbiota directly shape the pancreatic immune environment and autoimmune diabetes development. PMID:26253786

  9. The structure and behavior of the NA-CATH antimicrobial peptide with liposomes.

    Science.gov (United States)

    Du, Haijuan; Samuel, Robin L; Massiah, Michael A; Gillmor, Susan D

    2015-10-01

    Naja atra cathelicidin (NA-CATH) is a 34-amino acid highly cationic peptide identified in Chinese cobras to possess potent toxicity against gram-negative and gram-positive bacteria and low toxicity against host cells. Here, we report the NMR solution structure of the full-length NA-CATH peptide and its interaction with liposomes. The structure shows a well-defined α-helix between residues Phe3 to Lys23, on which one surface is lined by the side-chains of one arginine and 11 lysine residues, while the other side is populated by hydrophobic residues. The last eleven amino acids, which are predominately aromatic and hydrophobic in nature, have no defined structure. NMR data reveal that these residues do not interact with the hydrophobic residues of the helix, indicating that the C-terminal residues have random conformations. Fluorescence requenching experiments, in which liposomes serve as a mimic of the bacterial membranes, result in fluorophore leakage that is consistent with a membrane thinning or transient pore formation mechanism. NMR titration studies of the peptide-liposome interaction reveal that the peptide is in fast exchange with the liposome, consistent with the fluorescent studies. These data indicate that full length NA-CATH possesses a helical segment and unstructured C-terminal tail that disrupts the bilayer to induce leakage and lysing. PMID:26205847

  10. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36.

    Directory of Open Access Journals (Sweden)

    Yinfeng Lv

    Full Text Available Antimicrobial peptides (AMPs, which present in the non-specific immune system of organism, are amongst the most promising candidates for the development of novel antimicrobials. The modification of naturally occurring AMPs based on their residue composition and distribution is a simple and effective strategy for optimization of known AMPs. In this study, a series of truncated and residue-substituted derivatives of antimicrobial peptide PMAP-36 were designed and synthesized. The 24-residue truncated peptide, GI24, displayed antimicrobial activity comparable to the mother peptide PMAP-36 with MICs ranging from 1 to 4 µM, which is lower than the MICs of bee venom melittin. Although GI24 displayed high antimicrobial activity, its hemolytic activity was much lower than melittin, suggesting that GI24 have optimal cell selectivity. In addition, the crucial site of GI24 was identified through single site-mutation. An amino acid with high hydrophobicity at position 23 played an important role in guaranteeing the high antimicrobial activity of GI24. Then, lipid vesicles and whole bacteria were employed to investigate the membrane-active mechanisms. Membrane-simulating experiments showed that GI24 interacted strongly with negatively charged phospholipids and weakly with zwitterionic phospholipids, which corresponded well with the data of its biological activities. Membrane permeabilization and flow cytometry provide the evidence that GI24 killed microbial cells by permeabilizing the cell membrane and damaging membrane integrity. GI24 resulted in greater cell morphological changes and visible pores on cell membrane as determined using scanning electron microscopy (SEM and transmission electron microscope (TEM. Taken together, the peptide GI24 may provide a promising antimicrobial agent for therapeutic applications against the frequently-encountered bacteria.

  11. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  12. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined.......To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  13. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  14. Peptider holder krabben rask

    DEFF Research Database (Denmark)

    Buchmann, Kurt

    Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar......Antimikrobielle Peptider har hos mere primitive dyr en vigtig funktion i organismernes immunforsvar Udgivelsesdato: 1. februar...

  15. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  18. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  19. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  20. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation. PMID:26281357

  1. Intrathecal application of the antimicrobial peptide CRAMP reduced mortality and neuroinflammation in an experimental model of pneumococcal meningitis.

    Science.gov (United States)

    Dörr, Arndt; Kress, Eugenia; Podschun, Rainer; Pufe, Thomas; Tauber, Simone C; Brandenburg, Lars-Ove

    2015-08-01

    Antimicrobial peptides (AP) are important components of the innate immune system. Our previous work revealed a higher mortality rate and up-regulation of proinflammatory gene expression as well as glial cell activation in cathelicidin-related antimicrobial peptide (CRAMP)-deficient mice after bacterial meningitis. However, the influence of CRAMP application on the progression of inflammation and its impact on mortality after bacterial meningitis remains unknown. To assess the effects of continuous CRAMP exposure in the brain, C57BL/6 wildtype mice were given intracerebroventricular infusion of CRAMP to investigate the effects on mortality, glial cell activation and inflammation in a mouse model of pneumococcal meningitis using immunohistochemistry and realtime RT-PCR. Our results revealed a decrease of mortality after CRAMP infusion. The intrathecal CRAMP infusion after pneumococcal meningitis resulted in a decreased mRNA expression of pro-inflammatory cytokines, whereas the immune responses including the expression of pattern recognition receptors and chemokines were increased in bacterial meningitis. Taken together, the results support the important role of CRAMP as part of the innate immune response against pathogens in bacterial CNS infections. The APs may be a promising approach for the development of an adjuvant therapy for bacterial meningitis. PMID:25896094

  2. Plant signalling peptides

    OpenAIRE

    Wiśniewska, Justyna; Trejgell, Alina; Tretyn, Andrzej

    2003-01-01

    Biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. The first two signalling peptides to be described in plants were tomato systemin and phytosulfokine (PSK). There is also biochemical evidence that natriuretic peptide-like molecules, immunologically-relatedt o those found ...

  3. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces.

    Science.gov (United States)

    Haisma, Elisabeth M; Göblyös, Anikó; Ravensbergen, Bep; Adriaans, Alwin E; Cordfunke, Robert A; Schrumpf, Jasmijn; Limpens, Ronald W A L; Schimmel, Kirsten J M; den Hartigh, Jan; Hiemstra, Pieter S; Drijfhout, Jan Wouter; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2016-07-01

    We previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces. We prepared P60.4Ac in three formulations, i.e., a water-in-oil cream with lanolin (Softisan 649), an oil-in-water cream with polyethylene glycol hexadecyl ether (Cetomacrogol), and a hydroxypropyl methylcellulose (hypromellose) 4000 gel. We tested the antimicrobial efficacy of the peptide in these formulations against mupirocin-resistant and -sensitive MRSA strains on EMs and bronchial epithelial models (BEMs). The cytotoxic effects of formulated P60.4Ac on these models were determined using histology and WST-1 and lactate dehydrogenase assays. Moreover, we assessed the stability of the peptide in these formulations with storage for up to 3 months. Killing of MRSA by P60.4Ac in the two creams was less effective than that by P60.4Ac in the hypromellose gel. In agreement with those findings, P60.4Ac in the hypromellose gel was highly effective in eradicating the two MRSA strains from EMs. We found that even 0.1% (wt/wt) P60.4Ac in the hypromellose gel killed >99% of the viable planktonic bacteria and >85% of the biofilm-associated bacteria on EMs. Hypromellose gels containing 0.1% and 0.5% (wt/wt) P60.4Ac effectively reduced the numbers of viable MRSA cells from BEMs by >90%. No cytotoxic effects of P60.4Ac in the hypromellose gel with up to 2% (wt/wt) P60.4Ac on keratinocytes in EMs and in the hypromellose gel with up to 0.5% (wt/wt) P60.4Ac on epithelial cells in BEMs were observed. High-performance liquid chromatography analysis showed that P60.4Ac was stable in the Softisan cream and the hypromellose gel but not in the Cetomacrogol cream. We conclude that P60.4Ac formulated in hypromellose gel is both stable and highly effective in eradicating MRSA from colonized EMs and

  4. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  5. Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-kappaB-independent and EGFR-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Nan Gao

    Full Text Available BACKGROUND: The bacterial protein flagellin plays a major role in stimulating mucosal surface innate immune response to bacterial infection and uniquely induces profound cytoprotection against pathogens, chemicals, and radiation. This study sought to determine signaling pathways responsible for the flagellin-induced inflammatory and cytoprotective effects on human corneal epithelial cells (HCECs. METHODOLOGY/PRINCIPAL FINDINGS: Flagellin purified from Pseudomonas aeruginosa (strain PAK or live bacteria were used to challenge cultured HCECs. The activation of signaling pathways was assessed with Western blot, and the secretion of cytokine/chemokine and production of antimicrobial peptides (AMPs were measured with ELISA and dot blot, respectively. Effects of flagellin on wound healing were assessed in cultured porcine corneas. L94A (a site mutation in TLR5 binding region flagellin and PAK expressing L94A flagellin were unable to stimulate NF-kappaB activation, but were potent in eliciting EGFR signaling in a TGF-alpha-related pathway in HCECs. Concomitant with the lack of NF-kappaB activation, L94A flagellin was ineffective in inducing IL-6 and IL-8 production in HCECs. Surprisingly, the secretion of two inducible AMPs, LL-37 and hBD2, was not affected by L94A mutation. Similar to wild-type flagellin, L94A induced epithelial wound closure in cultured porcine cornea through maintaining EGFR-mediated signaling. CONCLUSIONS/SIGNIFICANCE: Our data suggest that inflammatory response mediated by NF-kappaB can be uncoupled from epithelial innate defense machinery (i.e., AMP expression and major epithelial proliferation/repair pathways mediated by EGFR, and that flagellin and its derivatives may have broad therapeutic applications in cytoprotection and in controlling infection in the cornea and other mucosal tissues.

  6. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin produced by the body and insulin injected ...

  7. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a...

  8. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.; Jørgensen, M.; Larsson, C.; Buchardt, O.; Stanly, C.J.; Norden, B.; Nielsen, P.E.; Ørum, H.

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  9. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    Introduction: A frightening increase in the number of isolated multidrug resistant bacterial strains linked to the decline in novel antimicrobial drugs entering the market is a great cause for concern. Cationic antimicrobial peptides (AMPs) have lately been introduced as a potential new class of...... antimicrobial drugs, and computational methods utilizing molecular descriptors can significantly accelerate the development of new peptide drug candidates. Areas covered: This paper gives a broad overview of peptide and amino-acid scale descriptors available for AMP modeling and highlights which of these are...

  10. 18F-Labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells

    International Nuclear Information System (INIS)

    Introduction: Phosphopeptides represent interesting compounds to study and elucidate cellular protein phosphorylation/dephosphorylation processes underlying various signal transduction pathways. However, studies of phosphopeptide action in cells are severely constrained by the negatively charged phosphate moiety of the phosphopeptide resulting in poor transport through the cell membrane. The following study describes the synthesis and radiopharmacological evaluation of two 18F-labeled phosphopeptide-cell-penetrating peptide dimers. The polo-like kinase-1-binding hexaphosphopeptide H-Met-Gln-Ser-pThr-Pro-Leu-OH was coupled to cell-penetrating peptides (CPPs), either sC18, a cathelicidin-derived peptide, or the human calcitonin derivative hCT(18-32)-k7. Methods: Radiolabeling was accomplished with the prosthetic group N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) using both, conventional and microfluidic-based bioconjugation of [18F]SFB to N-terminal end of phosphopeptide part of the peptide dimers. Cellular uptake studies in human cancer cell lines HT-29 and FaDu cells at 4 °C and 37 °C and small animal PET in BALB/c mice were utilized for radiopharmacological characterization. Results: Isolated radiochemical yields ranged from 2% to 4% for conventional bioconjugation with [18F]SFB. Significantly improved isolated radiochemical yields of up to 26% were achieved using microfluidic technology. Cellular uptake studies of radiolabeled phosphopeptide and phosphopeptide-CPP dimers indicate enhanced internalization of 50% ID/mg protein after 2 h for both phosphopeptide dimers compared to the phosphopeptide alone (18F-labeled peptide dimers was determined with small animal PET revealing a superior biodistribution pattern of sC18-containing peptide dimer MQSpTPL-sC18 [18F]4. Conclusion: [18F]SFB labeling of the phosphopeptide-CPP dimers using a microfluidic system leads to an improved chemoselectivity towards the N-terminal NH2 group compared to the conventional labeling

  11. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  12. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    ErkkiRuoslahti

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular “zip code” of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  13. Introduction to Peptide Synthesis

    OpenAIRE

    Stawikowski, Maciej; Fields, Gregg B.

    2002-01-01

    A number of synthetic peptides are significant commercial or pharmaceutical products, ranging from the dipeptide sugar-substitute aspartame to clinically used hormones, such as oxytocin, adrenocorticotropic hormone, and calcitonin. This unit provides an overview of the field of synthetic peptides and proteins. It discusses selecting the solid support and common coupling reagents. Additional information is provided regarding common side reactions and synthesizing modified residues.

  14. The Expanding Family of Bone Marrow Homing Factors for Hematopoietic Stem Cells: Stromal Derived Factor 1 Is Not the Only Player in the Game

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak

    2012-01-01

    Full Text Available The α-chemokine stromal derived factor 1 (SDF-1, which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs to bone marrow (BM and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P and ceramide-1-phosphate (C1P, and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP and adenosine triphosphate (ATP. Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 or β2-defensin as well as prostaglandin E2 (PGE2. Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.

  15. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis.

    Science.gov (United States)

    Hirschberg, Andor; Kiss, Maria; Kadocsa, Edit; Polyanka, Hilda; Szabo, Kornelia; Razga, Zsolt; Bella, Zsolt; Tiszlavicz, Laszlo; Kemeny, Lajos

    2016-07-01

    Both up- and down-regulation of the Toll-like receptors (TLRs) and antimicrobial peptides (AMPs) of the sinonasal mucosa have already been associated with the pathogenesis of chronic rhinosinusitis with (CRSwNP) or without (CRSsNP) nasal polyps. The objective of this study was to determine the expression of all known TLR and several AMP genes and some selected proteins in association with allergy, asthma and aspirin intolerance (ASA) in CRS subgroups. RT-PCR was applied to measure the mRNA expressions of 10 TLRs, four defensins, lysozyme, cathelicidin and lactoferrin (LTF) in sinonasal samples from patients with CRSsNP (n = 19), CRSwNP [ASA(-): 17; ASA(+): 7] and in control subjects (n = 12). Protein expressions were detected with immunohistochemistry (n = 10). Statistical analysis was done with the Kruskal-Wallis ANOVA, Mann-Whitney U, and Student t test. TLR2, TLR5, TLR6, TLR7, TLR8, TLR9, β-defensins 1 and 4, cathelicidin and LTF mRNA expressions were significantly (p < 0.05) increased in CRSwNP, whereas only TLR2 and LTF were up-regulated in CRSsNP compared to controls. There was no statistical difference in respect of allergy, aspirin intolerance and smoking between CRSsNP, ASA(-) and ASA(+) CRSwNP patients. TLR2, TLR3, TLR4, LTF, β defensin 2 and lysozyme protein expressions were found to be elevated in macrophages of CRSwNP samples (p < 0.05). Gene expression analysis showed markedly different expressions in CRSwNP (6 out of 10 TLR and 4 out of 7 AMP genes were up-regulated) compared to CRSsNP (1/10, 1/7). The distinct activation of the innate immunity may support the concept that CRSsNP and CRSwNP are different subtypes of CRS. These findings were found to be independent from allergy, asthma, smoking, aspirin intolerance and systemic steroid application. PMID:26518209

  16. Antimicrobial Peptides from Plants

    Science.gov (United States)

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  17. Antimicrobial Peptides from Plants

    Directory of Open Access Journals (Sweden)

    James P. Tam

    2015-11-01

    Full Text Available Plant antimicrobial peptides (AMPs have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic, lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.

  18. Electromembrane extraction of peptides.

    Science.gov (United States)

    Balchen, Marte; Reubsaet, Léon; Pedersen-Bjergaard, Stig

    2008-06-20

    Rapid extraction of eight different peptides using electromembrane extraction (EME) was demonstrated for the first time. During an extraction time of 5 min, the model peptides migrated from a 500 microL aqueous acidic sample solution, through a thin supported liquid membrane (SLM) of an organic liquid sustained in the pores in the wall of a porous hollow fiber, and into a 25 microL aqueous acidic acceptor solution present inside the lumen of the hollow fiber. The driving force of the extraction was a 50 V potential sustained across the SLM, with the positive electrode in the sample and the negative electrode in the acceptor solution. The nature and the composition of the SLM were highly important for the EME process, and a mixture of 1-octanol and 15% di(2-ethylhexyl) phosphate was found to work properly. Using 1mM HCl as background electrolyte in the sample and 100 mM HCl in the acceptor solution, and agitation at 1050 rpm, enrichment up to 11 times was achieved. Recoveries were found to be dependent on the structure of the peptide, indicating that the polarity and the number of ionized groups were important parameters affecting the extraction efficiency. The experimental findings suggested that electromembrane extraction of peptides is possible and may be a valuable tool for future extraction of peptides. PMID:18479691

  19. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26724202

  20. Biomimetic peptide nanosensors.

    Science.gov (United States)

    Cui, Yue; Kim, Sang N; Naik, Rajesh R; McAlpine, Michael C

    2012-05-15

    The development of a miniaturized sensing platform tailored for sensitive and selective detection of a variety of biochemical analytes could offer transformative fundamental and technological opportunities. Due to their high surface-to-volume ratios, nanoscale materials are extremely sensitive sensors. Likewise, peptides represent robust substrates for selective recognition due to the potential for broad chemical diversity within their relatively compact size. Here we explore the possibilities of linking peptides to nanosensors for the selective detection of biochemical targets. Such systems raise a number of interesting fundamental challenges: What are the peptide sequences, and how can rational design be used to derive selective binders? What nanomaterials should be used, and what are some strategies for assembling hybrid nanosensors? What role does molecular modeling play in elucidating response mechanisms? What is the resulting performance of these sensors, in terms of sensitivity, selectivity, and response time? What are some potential applications? This Account will highlight our early attempts to address these research challenges. Specifically, we use natural peptide sequences or sequences identified from phage display as capture elements. The sensors are based on a variety of nanomaterials including nanowires, graphene, and carbon nanotubes. We couple peptides to the nanomaterial surfaces via traditional surface functionalization methods or self-assembly. Molecular modeling provides detailed insights into the hybrid nanostructure, as well as the sensor detection mechanisms. The peptide nanosensors can distinguish chemically camouflaged mixtures of vapors and detect chemical warfare agents with sensitivities as low as parts-per-billion levels. Finally, we anticipate future uses of this technology in biomedicine: for example, devices based on these sensors could detect disease from the molecular components in human breath. Overall, these results provide a

  1. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  2. Cationic Antimicrobial Peptide Cytotoxicity

    OpenAIRE

    Laverty, Garry; Gilmore, Brendan

    2014-01-01

    Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofil...

  3. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac p...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....... characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  4. Biosynthesis of cardiac natriuretic peptides

    DEFF Research Database (Denmark)

    Goetze, Jens Peter

    2010-01-01

    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....

  5. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    Science.gov (United States)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  6. Peptide iodination on phenylalanine residues

    International Nuclear Information System (INIS)

    Peptide labelling with radioactive isotopes is always a compromise between peptide chemistry, labelling chemistry, and biological receptor tolerance. Therefore new ways for isotope introduction are always useful. The present contribution describes the introduction of iodine isotopes onto synthetic polypeptides by means of the Gattermann/ Sandmeyer reactions. Peptides containing the nitrophenylalanyl residue are reduced to the corresponding aminophenylalanyl, diazolized to the diazonium phenylalanyl peptide and converted to the iodophenylalanyl peptide in the presence of copper. Two examples are presented: angiotensin II and enkephalin. In both cases, the iodophenylalanyl residue is well accepted by the biological target. (author). 13 refs.; 4 figs

  7. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  8. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  9. Antimicrobial peptides in crustaceans

    OpenAIRE

    RD Rosa; MA Barracco

    2010-01-01

    Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP fam...

  10. [Brain natriuretic peptide].

    Science.gov (United States)

    La Villa, G; Lazzeri, C; Fronzaroli, C; Franchi, F; Gentilini, P

    1995-01-01

    Brain natriuretic peptide (BNP) is a cardiac hormone with a spectrum of activities quite similar to those of atrial natriuretic peptide (ANP), including diuretic, natriuretic, hypotensive and smooth muscle relaxant activities. These effects are due to the stimulation of guanylate cyclase-linked natriuretic peptide receptors, leading to an increase in cyclic GMP concentration in target cells. BNP has a lower affinity than ANP for C (clearance) receptors, and is less susceptible to degradation by neutral endopeptidase-24.11, resulting in a longer half-life. In the kidney, BNP increases the glomerular filtration rate and inhibits sodium reabsorption in the distal tubule. It also inhibits the release of renin and aldosterone. Unlike ANP, produced by the atria, BNP is mainly synthesized and released into circulation by the left ventricle and is therefore influenced by stimuli involving this cardiac chamber, such as an increase in arterial pressure, left ventricular hypertrophy and dilation. Plasma BNP levels are very low in healthy subjects, and respond modestly, although significantly to physiological stimuli such as changes in posture or sodium intake. In contrast, plasma BNP concentrations increase in disease states such as cirrhosis with ascites, hypertension, chronic renal failure, acute myocardial infarction and congestive heart failure. In the latter condition, plasma BNP concentration is a reliable prognostic index. Evidence obtained by administering BNP to healthy subjects and hypertensive patients suggests that BNP, at physiological and pathophysiological plasma concentrations, markedly influences cardiovascular homeostasis, mainly due to its effects on sodium excretion and the renin-aldosterone axis. PMID:8718658

  11. Accurate Peptide Fragment Mass Analysis: Multiplexed Peptide Identification and Quantification

    OpenAIRE

    Weisbrod, Chad R.; Eng, Jimmy K.; Hoopmann, Michael R.; Baker, Tahmina; Bruce, James E.

    2012-01-01

    FT All Reaction Monitoring (FT-ARM) is a novel approach for the identification and quantification of peptides that relies upon the selectivity of high mass accuracy data and the specificity of peptide fragmentation patterns. An FT-ARM experiment involves continuous, data-independent, high mass accuracy MS/MS acquisition spanning a defined m/z range. Custom software was developed to search peptides against the multiplexed fragmentation spectra by comparing theoretical or empirical fragment ion...

  12. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    pharmacological tools interfering with NCAM functions. Recent progress in our understanding of the structural basis of NCAM-mediated cell adhesion and signaling has allowed a structure-based design of NCAM mimetic peptides. Using this approach a number of peptides termed P2, P1-B, P-3-DE and P-3-G, whose...... sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor and...... heparan sulfate proteoglycans (HSPG) have been identified. The FGL, dekaCAM, FRM/EncaminA, BCL, EncaminC and EncaminE peptides all target the FGF receptor whereas the heparin binding peptide HBP targets HSPG. Moreover, a number of NCAM binding peptides have been identified employing screening of...

  13. The PeptideAtlas Project

    OpenAIRE

    Deutsch, Eric W.

    2010-01-01

    PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. Raw mass spectrometer output files are collected from the community and reprocessed through a uniform analysis and validation pipeline that continues to advance. The results are loaded into a database and the information derived from the raw data is returned to the community via several web-based data exploration tools. The PeptideAtlas resource is useful for experiment planning, improving g...

  14. Human Antimicrobial Peptides and Proteins

    OpenAIRE

    Guangshun Wang

    2014-01-01

    As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified ...

  15. Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18.

    Directory of Open Access Journals (Sweden)

    Lee R Haines

    Full Text Available BACKGROUND: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27, a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS

  16. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology. PMID:26279082

  17. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  18. Polyclonal Peptide Antisera.

    Science.gov (United States)

    Pihl, Tina H; Illigen, Kristin E; Houen, Gunnar

    2015-01-01

    Polyclonal antibodies are relatively easy to produce and may supplement monoclonal antibodies for some applications or even have some advantages. The choice of species for production of (peptide) antisera is based on practical considerations, including availability of immunogen (vaccine) and animals. Two major factors govern the production of antisera: the nature of adaptive immune responses, which take place over days/weeks and ethical guidelines for animal welfare. Here, simple procedures for immunization of mice, rabbits, sheep, goats, pigs, horses, and chickens are presented. PMID:26424267

  19. Phytosulfokine peptide signalling.

    Science.gov (United States)

    Sauter, Margret

    2015-08-01

    Phytosulfokine (PSK) belongs to the group of plant peptide growth factors. It is a disulfated pentapeptide encoded by precursor genes that are ubiquitously present in higher plants, suggestive of universal functions. Processing of the preproprotein involves sulfonylation by a tyrosylprotein sulfotransferase in the trans-golgi and proteolytic cleavage in the apoplast. The secreted peptide is perceived at the cell surface by a membrane-bound receptor kinase of the leucine-rich repeat family. The PSK receptor PSKR1 from Arabidopsis thaliana is an active kinase and has guanylate cyclase activity resulting in dual-signal outputs. Receptor activity is regulated by calmodulin. While PSK may be an autocrine growth factor, it also acts non-cell autonomously by promoting growth of cells that are receptor-deficient. In planta, PSK has multiple functions. It promotes cell growth, acts in the quiescent centre cells of the root apical meristem, contributes to funicular pollen tube guidance, and differentially alters immune responses depending on the pathogen. It has been suggested that PSK integrates growth and defence signals to balance the competing metabolic costs of these responses. This review summarizes our current understanding of PSK synthesis, signalling, and activity. PMID:25754406

  20. Urinary Peptides in Rett Syndrome.

    Science.gov (United States)

    Solaas, K. M.; Skjeldal, O.; Gardner, M. L. G.; Kase, B. F.; Reichelt, K. L.

    2002-01-01

    A study found a significantly higher level of peptides in the urine of 53 girls with Rett syndrome compared with controls. The elevation was similar to that in 35 girls with infantile autism. Levels of peptides were lower in girls with classic Rett syndrome than those with congenital Rett syndrome. (Contains references.) (Author/CR)

  1. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte; Wengel, Jesper

    2013-01-01

    Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical...

  2. Solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Jensen, Knud Jørgen

    This chapter provides an introduction to and overview of peptide chemistry with a focus on solid-phase peptide synthesis. The background, the most common reagents, and some mechanisms are presented. This chapter also points to the different chapters and puts them into perspective....

  3. Radiolabelled peptides for oncological diagnosis.

    NARCIS (Netherlands)

    Laverman, P.; Sosabowski, J.K.; Boerman, O.C.; Oyen, W.J.G.

    2012-01-01

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of resea

  4. Conus venom peptide pharmacology.

    Science.gov (United States)

    Lewis, Richard J; Dutertre, Sébastien; Vetter, Irina; Christie, MacDonald J

    2012-04-01

    Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies. PMID:22407615

  5. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  6. Peptide primary messengers in plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The peptide primary messengers regulate embryonic development,cell growth and many other activities in animal cells. But recent evidence verified that peptide primary messengers are also involved in plant defense responses, the recognition between pollen and stigma and keep the balance between cell proliferation and differentiations in shoot apical meristems. Those results suggest that plants may actually make wide use of peptide primary messengers, both in embryonic development and late life when they rally their cells to defend against pathogens and insect pests. The recent advance in those aspects is reviewed.

  7. Screening of TACE Peptide Inhibitors from Phage Display Peptide Library

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To obtain the recombinant tumor necrosis factor-α converting enzyme (TACE) ectodomain and use it as a selective molecule for the screening of TACE peptide inhibitors, the cDNA coding catalytic domain (T800) and full-length ectodomain (T1300) of TACE were amplified by RTPCR, and the expression plasmids were constructed by inserting T800 and T1300 into plasmid pET28a and pET-28c respectively. The recombinant T800 and T1300 were induced by IPTG, and SDSPAGE and Western blotting analysis results revealed that T800 and T1300 were highly expressed in the form of inclusion body. After Ni2+-NTA resin affinity chromatography, the recombinant proteins were used in the screening of TACE-binding peptides from phage display peptide library respectively. After 4 rounds of biopanning, the positive phage clones were analyzed by ELISA, competitive inhibition assay and DNA sequencing. A common amino acid sequence (TRWLVYFSRPYLVAT) was found and synthesized. The synthetic peptide could inhibit the TNF-α release from LPS-stimulated human peripheral blood mononuclear cells (PBMC) up to 60.3 %. FACS analysis revealed that the peptide mediated the accumulation of TNF-α on the cell surface. These results demonstrate that the TACE-binding peptide is an effective antagonist of TACE.

  8. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    the well-known, highly cationic CPPs, such as TAT and Arg9, which do not translocate across phospholipid bilayers, and enter cells mostly by active endocytosis. Alternatively, researchers have found that an effective cellular delivery vector can be improved developed by conjugating a CPP with a fatty acid chain. Amphiphilic peptides have also become a subject of major interest as potent antibacterial agents. Antimicrobial peptides (AMPs) are produced naturally by bacteria and are considered as the first line of host defense protecting living organisms from microorganisms. Various types of AMPs has been discovered, such as defensins, cecropins, magainins and cathelicidins, with significant different structures and bioactivity profiles. The mechanism of actions for these peptides were reported as effectors and regulators of the innate immune system by increasing production and release of chemokine, and enhancing wound healing and angiogenesis. They were able to suppress biofilm formation and induce the dissolution of existing biofilms. Thus, design of new AMPs and more cost effective sequences with highly activity are urgently needed. Although a number of cyclic peptides were discovered and reported as efficient cellular delivery agents or antimicrobial agent, a more systematic investigation is required to identify design rules for optimal entrapment, drug loading, and stability. The balance of many small forces determines the overall morphology, size, and functionality of the structures. A deeper understanding of these factors is required for guiding future research, and for customizing cyclic peptides for drug loading and cellular delivery applications. Thus, additional amphiphilic cyclic and linear peptides were designed with variable electrostatic and hydrophobic residues to optimize drug encapsulation. The diversity in ring size, amino acid number, position and sequences, number of rings, net charge, and hydrophobicity of side chains in cyclic peptides will allow

  9. The Equine PeptideAtlas

    DEFF Research Database (Denmark)

    Bundgaard, Louise; Jacobsen, Stine; Sorensen, Mette A.;

    2014-01-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first...... current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic...... data mining resource. The advantages of the Equine PeptideAtlas are demonstrated by examples of mining the contents for information on potential and well-known equine acute phase proteins, which have extensive general interest in the veterinary clinic. The extracted information will support further...

  10. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  11. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies are...... powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors such as......, including solid-phase peptide-carrier conjugation and peptide-carrier conjugation in solution. Upon immunization, adjuvants such as Al(OH)(3) are added together with the immunogenic peptide-carrier conjugate, which usually leads to high-titred antisera. Following immunization and peptide antibody...

  12. Targeting cancer with peptide aptamers

    OpenAIRE

    Seigneuric, Renaud; Gobbo, Jessica; Colas, Pierre; Garrido, Carmen

    2011-01-01

    A major endeavour in cancer chemotherapy is to develop agents that specifically target a biomolecule of interest. There are two main classes of targeting agents: small molecules and biologics. Among biologics (e.g.: antibodies), DNA, RNA but also peptide aptamers are relatively recent agents. Peptide aptamers are seldom described but represent attractive agents that can inhibit a growing panel of oncotargets including Heat Shock Proteins. Potential pitfalls and coming challenges towards succe...

  13. Manufacturing of peptides exhibiting biological activity

    OpenAIRE

    Zambrowicz, Aleksandra; Timmer, Monika; Polanowski, Antoni; Lubec, Gert; Trziszka, Tadeusz

    2012-01-01

    Numerous studies have shown that food proteins may be a source of bioactive peptides. Those peptides are encrypted in the protein sequence. They stay inactive within the parental protein until release by proteolytic enzymes (Mine and Kovacs-Nolan in Worlds Poult Sci J 62(1):87–95, 2006; Hartman and Miesel in Curr Opin Biotechnol 18:163–169, 2007). Once released the bioactive peptides exhibit several biofunctionalities and may serve therapeutic roles in body systems. Opioid peptides, peptides ...

  14. Peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  15. Antimicrobial peptides in annelids

    Directory of Open Access Journals (Sweden)

    A Tasiemski

    2008-06-01

    Full Text Available Gene encoded antimicrobial peptides (AMPs are widely distributed among living organisms including plants, invertebrates and vertebrates. They constitute important effectors of the innate immune response by exerting multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis and immune induction. In invertebrates, most of the data describe the characterization and/or the function of AMPs in the numerically and economically most representative group which are arthropods. Annelids are among the first coelomates and are therefore of special phylogenetic interest. Compared to other invertebrate groups, data on annelid’s immunity reveal heavier emphasis on the cellular than on the humoral response suggesting that immune defense of annelids seems to be principally developed as cellular immunity.This paper gives an overview of the variety of AMPs identified in the three classes of annelids, i.e. polychaetes, oligochaetes and achaetes. Their functions, when they have been studied, in the humoral or cellular response of annelids are also mentioned.

  16. Kinins and peptide receptors.

    Science.gov (United States)

    Regoli, Domenico; Gobeil, Fernand

    2016-04-01

    This paper is divided into two sections: the first contains the essential elements of the opening lecture presented by Pr. Regoli to the 2015 International Kinin Symposium in S. Paulo, Brazil on June 28th and the second is the celebration of Dr. Regoli's 60 years of research on vasoactive peptides. The cardiovascular homeostasis derives from a balance of two systems, the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS). The biologically active effector entity of RAS is angiotensin receptor-1 (AT-1R), and that of KKS is bradykinin B2 receptor (B2R). The first mediates vasoconstriction, the second is the most potent and efficient vasodilator. Thanks to its complex and multi-functional mechanism of action, involving nitric oxide (NO), prostacyclin and endothelial hyperpolarizing factor (EDHF). B2R is instrumental for the supply of blood, oxygen and nutrition to tissues. KKS is present on the vascular endothelium and functions as an autacoid playing major roles in cardiovascular diseases (CVDs) and diabetes. KKS exerts a paramount role in the prevention of thrombosis and atherosclerosis. Such knowledge emphasizes the already prominent value of the ACE-inhibitors (ACEIs) for the treatment of CVDs and diabetes. Indeed, the ACEIs, thanks to their double action (block of the RAS and potentiation of the KKS) are the ideal agents for a rational treatment of these diseases. PMID:26408609

  17. Antimicrobial peptides in crustaceans

    Directory of Open Access Journals (Sweden)

    RD Rosa

    2010-11-01

    Full Text Available Crustaceans are a large and diverse invertebrate animal group that mounts a complex and efficient innate immune response against a variety of microorganisms. The crustacean immune system is primarily related to cellular responses and the production and release of important immune effectors into the hemolymph. Antimicrobial proteins and/or peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, 15 distinct AMP families are currently recognized, although the great majority (14 families comes from members of the order Decapoda. Crustacean AMPs are generally cationic, gene-encoded molecules that are mainly produced by circulating immune-competent cells (hemocytes or are derived from unrelated proteins primarily involved in other biological functions. In this review, we tentatively classified the crustacean AMPs into four main groups based on their amino acid composition, structural features and multi-functionality. We also attempted to summarize the current knowledge on their implication both in an efficient response to microbial infections and in crustacean survival.

  18. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  19. Collagen-like antimicrobial peptides.

    Science.gov (United States)

    Masuda, Ryo; Kudo, Masakazu; Dazai, Yui; Mima, Takehiko; Koide, Takaki

    2016-11-01

    Combinatorial library composed of rigid rod-like peptides with a triple-helical scaffold was constructed. The component peptides were designed to have various combinations of basic and neutral (or hydrophobic) amino acid residues based on collagen-like (Gly-Pro-Yaa)-repeating sequences, inspired from the basic and amphiphilic nature of naturally occurring antimicrobial peptides. Screening of the peptide pools resulted in identification of antimicrobial peptides. A structure-activity relationship study revealed that the position of Arg-cluster at N-terminus and cystine knots at C-terminus in the triple helix significantly contributed to the antimicrobial activity. The most potent peptide RO-A showed activity against Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. In addition, Escherichia coli exposed to RO-A resulted in abnormal elongation of the cells. RO-A was also shown to have remarkable stability in human serum and low cytotoxicity to mammalian cells. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 453-459, 2016. PMID:27271210

  20. What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses?

    OpenAIRE

    Elsbach, Peter

    2003-01-01

    Antimicrobial peptides are effector molecules of innate immunity with microbicidal and pro- or anti-inflammatory activities. Their role is now widening following evidence that one such multifunctional peptide, LL-37, induces angiogenesis, a process essential for host defense, wound healing, and tissue repair.

  1. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  2. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  3. Exploration of the Medicinal Peptide Space.

    Science.gov (United States)

    Gevaert, Bert; Stalmans, Sofie; Wynendaele, Evelien; Taevernier, Lien; Bracke, Nathalie; D'Hondt, Matthias; De Spiegeleer, Bart

    2016-01-01

    The chemical properties of peptide medicines, known as the 'medicinal peptide space' is considered a multi-dimensional subset of the global peptide space, where each dimension represents a chemical descriptor. These descriptors can be linked to biofunctional, medicinal properties to varying degrees. Knowledge of this space can increase the efficiency of the peptide-drug discovery and development process, as well as advance our understanding and classification of peptide medicines. For 245 peptide drugs, already available on the market or in clinical development, multivariate dataexploration was performed using peptide relevant physicochemical descriptors, their specific peptidedrug target and their clinical use. Our retrospective analysis indicates that clusters in the medicinal peptide space are located in a relatively narrow range of the physicochemical space: dense and empty regions were found, which can be explored for the discovery of novel peptide drugs. PMID:26876881

  4. Peptide-enhanced oral delivery of therapeutic peptides and proteins

    DEFF Research Database (Denmark)

    Kristensen, Mie; Foged, Camilla; Berthelsen, Jens;

    2013-01-01

    such as the cell penetrating peptides (CPPs) and the tight junction modulating peptides (TJMPs), which are able to translocate across the cellular membranes in a non-disruptive way or reversibly modulate the integrity of intercellular tight junctions (TJs), respectively. However, because of the harsh...... believed that CPP-mediated translocation involves transcytosis and/or direct translocation through the epithelial cells; whereas TJMP-mediated translocation is dependent on interaction with transmembrane or peripheral TJ proteins. This review focuses on the CPPs and the TJMPs currently employed as...

  5. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  7. Antiviral active peptide from oyster

    Science.gov (United States)

    Zeng, Mingyong; Cui, Wenxuan; Zhao, Yuanhui; Liu, Zunying; Dong, Shiyuan; Guo, Yao

    2008-08-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster ( Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10 5 kDa, 5 1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10 5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  8. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  9. Antiviral active peptide from oyster

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An active peptide against herpes virus was isolated from the enzymic hydrolysate of oyster (Crassostrea gigas) and purified with the definite direction hydrolysis technique in the order of alcalase and bromelin. The hydrolysate was fractioned into four ranges of molecular weight (>10 kDa, 10-5 kDa, 5-1 kDa and <1 kDa) using ultrafiltration membranes and dialysis. The fraction of 10?5 kDa was purified using consecutive chromatographic methods including DEAE Sephadex A-25 column, Sephadex G-25 column, and high performance liquid chromatogram (HPLC) by activity-guided isolation. The antiviral effect of the obtained peptide on herpetic virus was investigated in Vero cells by observing cytopathic effect (CPE). The result shows that the peptide has high inhibitory activity on herpetic virus.

  10. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    developed from a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of...... colistin resistant A. baumannii, also known as persisters. Using D. melanogaster as an in vivo efficacy model it was demonstrated that the Lantibiotic NAI- 107, currently undergoing pre-clinical studies, rescues D. melanogaster from MRSA infection with similar efficacy to last resort antimicrobial...

  11. Novel Formulations for Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2014-10-01

    Full Text Available Peptides in general hold much promise as a major ingredient in novel supramolecular assemblies. They may become essential in vaccine design, antimicrobial chemotherapy, cancer immunotherapy, food preservation, organs transplants, design of novel materials for dentistry, formulations against diabetes and other important strategical applications. This review discusses how novel formulations may improve the therapeutic index of antimicrobial peptides by protecting their activity and improving their bioavailability. The diversity of novel formulations using lipids, liposomes, nanoparticles, polymers, micelles, etc., within the limits of nanotechnology may also provide novel applications going beyond antimicrobial chemotherapy.

  12. Peptides and the new endocrinology

    Science.gov (United States)

    Schwyzer, Robert

    1982-01-01

    The discovery of regulatory peptides common to the nervous and the endocrine systems (brain, gut, and skin) has brought about a revolution in our concepts of endocrinology and neurology. We are beginning to understand some of the complex interrelationships between soma and psyche that might, someday, be important for an integrated treatment of diseases. Examples of the actions of certain peptides in the periphery and in the central nervous system are given, and their biosynthesis and molecular anatomy as carriers for information are discussed.

  13. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth;

    2014-01-01

    decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response on...... cerebral vessels....

  14. Neuroprotective peptides related to Alzheimer's disease

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Borovičková, Lenka; Krejčová, G.; Patočka, J.

    2004-01-01

    Roč. 10, S (2004), s. H33. ISSN 1075-2617. [Hellenic Forum on Bioactive Peptides /4./. 22.04.2004-24.04.2004, Patras-Hellas] Keywords : neuroprotective peptides * Alzheimer's disease Subject RIV: CE - Biochemistry

  15. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  16. Lipoxygenase inhibitor peptides and their use

    OpenAIRE

    Schurink, M.; Boeriu, C.G.; Berkel, van, A.M.; Wichers, H.J.

    2006-01-01

    The present invention is in the field of enzyme inhibition. In particular it relates to peptide inhibitors for lipoxygenases. The lipoxygenase peptide inhibitors of have the potential to be used as therapeutic drugs as well as food preservatives.

  17. Strategic approaches to optimizing peptide ADME properties.

    Science.gov (United States)

    Di, Li

    2015-01-01

    Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889

  18. Purification, structure and function of bioactive peptides

    OpenAIRE

    Eriste, Elo

    2004-01-01

    Peptides are vitally important molecules and many evoke cellular responses. The completion of several genome sequencing projects has revealed a number of new genes. However, as functional peptides often contain posttranslational modifications and/or occur at various lengths, it is of great importance to detect, purify and characterize novel bioactive peptides. To achieve these goals, new methods for peptide detection, isolation and functional characterization have to be d...

  19. Natriuretic Peptide Metabolism, Clearance and Degradation

    OpenAIRE

    Potter, Lincoln R.

    2011-01-01

    Atrial natriuretic peptide, B-type natriuretic peptide and C-type natriuretic peptide compose a family of three structurally related, but genetically distinct, signaling molecules that regulate the cardiovascular, skeletal, nervous, reproductive and other systems by activating transmembrane guanylyl cyclases and elevating intracellular cGMP concentrations. This review broadly discusses the general characteristics of natriuretic peptides and their cognate signaling receptors, then specifically...

  20. Milk proteins as precursors of bioactive peptides

    OpenAIRE

    Marta Dziuba; Bartłomiej Dziuba; Anna Iwaniak

    2009-01-01

    Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and M...

  1. Vitamin D receptor agonists inhibit pro-inflammatory cytokine production from the respiratory epithelium in cystic fibrosis.

    LENUS (Irish Health Repository)

    McNally, P

    2011-07-22

    BACKGROUND: 1,25-Dihydroxycholecalciferol (1,25(OH)(2)D(3)) has been shown to mitigate epithelial inflammatory responses after antigen exposure. Patients with cystic fibrosis (CF) are at particular risk for vitamin D deficiency. This may contribute to the exaggerated inflammatory response to pulmonary infection in CF. METHODS: CF respiratory epithelial cell lines were exposed to Pseudomonas aeruginosa lipopolysaccharide (LPS) and Pseudomonas conditioned medium (PCM) in the presence or absence of 1,25(OH)(2)D(3) or a range of vitamin D receptor (VDR) agonists. Levels of IL-6 and IL-8 were measured in cell supernatants, and cellular total and phosphorylated IκBα were determined. Levels of human cathelicidin antimicrobial peptide (hCAP18) mRNA and protein were measured in cells after treatment with 1,25(OH)(2)D(3). RESULTS: Pretreatment with 1,25(OH)(2)D(3) was associated with significant reductions in IL-6 and IL-8 protein secretion after antigen exposure, a finding reproduced with a range of low calcaemic VDR agonists. 1,25(OH)(2)D(3) treatment led to a decrease in IκBα phosphorylation and increased total cellular IκBα. Treatment with 1,25(OH)(2)D(3) was associated with an increase in hCAP18\\/LL-37 mRNA and protein levels. CONCLUSIONS: Both 1,25(OH)(2)D(3) and other VDR agonists significantly reduce the pro-inflammatory response to antigen challenge in CF airway epithelial cells. VDR agonists have significant therapeutic potential in CF.

  2. Diversity of wheat anti-microbial peptides.

    Science.gov (United States)

    Egorov, Tsezi A; Odintsova, Tatyana I; Pukhalsky, Vitaliy A; Grishin, Eugene V

    2005-11-01

    From seeds of Triticum kiharae Dorof. et Migusch., 24 novel anti-microbial peptides were isolated and characterized by a combination of three-step HPLC (affinity, size-exclusion and reversed-phase) with matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and Edman degradation. Based on sequence similarity and cysteine motifs, partially sequenced peptides were assigned to 7 families: defensins, thionins, lipid-transfer proteins, hevein-like peptides, knottin-like peptides, glycine-rich peptides, and MBP-1 homologs. A novel subfamily of defensins consisting of 6 peptides and a new family of glycine-rich (8 peptides with different repeat motifs) were identified. Three 6-cysteine knottin-like peptides represented by N- and C-terminally truncated variants revealed no sequence homology to any known plant anti-microbial peptides. A new 8-cysteine hevein-like peptide and three 4-cysteine peptides homologous to MBP-1 from maize were isolated. This is the first communication on the occurrence of nearly all families of plant anti-microbial peptides in a single species. PMID:16269343

  3. Characterization of Synthetic Peptides by Mass Spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter;

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS and...

  4. Unsupervised Identification of Isotope-Labeled Peptides.

    Science.gov (United States)

    Goldford, Joshua E; Libourel, Igor G L

    2016-06-01

    In vivo isotopic labeling coupled with high-resolution proteomics is used to investigate primary metabolism in techniques such as stable isotope probing (protein-SIP) and peptide-based metabolic flux analysis (PMFA). Isotopic enrichment of carbon substrates and intracellular metabolism determine the distribution of isotopes within amino acids. The resulting amino acid mass distributions (AMDs) are convoluted into peptide mass distributions (PMDs) during protein synthesis. With no a priori knowledge on metabolic fluxes, the PMDs are therefore unknown. This complicates labeled peptide identification because prior knowledge on PMDs is used in all available peptide identification software. An automated framework for the identification and quantification of PMDs for nonuniformly labeled samples is therefore lacking. To unlock the potential of peptide labeling experiments for high-throughput flux analysis and other complex labeling experiments, an unsupervised peptide identification and quantification method was developed that uses discrete deconvolution of mass distributions of identified peptides to inform on the mass distributions of otherwise unidentifiable peptides. Uniformly (13)C-labeled Escherichia coli protein was used to test the developed feature reconstruction and deconvolution algorithms. The peptide identification was validated by comparing MS(2)-identified peptides to peptides identified from PMDs using unlabeled E. coli protein. Nonuniformly labeled Glycine max protein was used to demonstrate the technology on a representative sample suitable for flux analysis. Overall, automatic peptide identification and quantification were comparable or superior to manual extraction, enabling proteomics-based technology for high-throughput flux analysis studies. PMID:27145348

  5. Bioactive peptides in dairy products

    Directory of Open Access Journals (Sweden)

    Donata Marletta

    2010-01-01

    Full Text Available Bioactive peptides are specific protein fragments that have a positive impact on body functions and conditions and may ultimately influence health. Most of the biological activities are encrypted within the primary sequence of the native protein and can be released by enzymatic hydrolysis and proteolysis or by food processing. Milk is a rich source of bioactive peptides which may contribute to regulate the nervous, gastrointestinal and cardiovascular systems as well as the immune system, confirming the added value of dairy products that, in certain cases, can be considered functional foods. The main biological activities of these peptides and their bioavailability in dairy products are reviewed. The natural concentration of these biomolecules is quite low and, to date one of the main goals has been to realize products enriched with bioactive peptides that have beneficial effects on human health and proven safety. Even though several health-enhancing products have already been launched and their integration in the diet could help in the prevention of chronic diseases such as hypertension, cancer and osteoporosis, more clinical trials are required in order to develop a deeper understanding of the activity of biopeptides on the human physiological mechanisms and also to assess the efficacy of their effects in a long term view. New scientific data are also needed to support their commercialisation in compliance with current regulations.

  6. Study of antimicrobial peptides by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Tůmová, Tereza; Monincová, Lenka; Čeřovský, Václav; Kašička, Václav

    Sofia: Bulgarian Peptide Society, 2015 - (Naydenova, E.; Pajpanova, T.; Danalev, D.), s. 304-305 ISBN 978-619-90427-2-4. [Peptides 2014. European Peptide Symposium /33./. Sofia (BG), 31.08.2014-05.09.2014] R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : peptides * antimicrobial activity * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation http://bulpepsoc.info/wp-content/uploads/2015/06/PEPTIDES-2014-electronic-version.pdf

  7. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

  8. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    Science.gov (United States)

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes. PMID:27451165

  9. New vasoactive peptides in cirrhosis

    DEFF Research Database (Denmark)

    Kimer, Nina; Goetze, Jens Peter; Bendtsen, Flemming;

    2014-01-01

    to haemodynamic changes in the pro-peptides copeptin, proadrenomedullin and pro-atrial natriuretic peptide (proANP) in patients with cirrhosis. MATERIALS AND METHODS: Fifty-four cirrhotic patients and 15 controls were characterized haemodynamically during a liver vein catheterization. Copeptin......, proadrenomedullin and proANP were measured in hepatic and renal veins and the femoral artery. RESULTS: We found no differences in concentrations of copeptin and proadrenomedullin between patients and controls. ProANPs were higher in cirrhotic patients, median 138 pm (25/75 percentiles 101-194) compared with....... We found no extraction of copeptin, proadrenomedullin or proANP over the liver. Copeptin correlated with portal pressure (R=0·50, P<0·001). Proadrenomedullin correlated with portal pressure (R=0·48, P<0·001) and heart rate (R=0·36, P<0·01). ProANP correlated with cardiac output (R=0·46, P<0·002) and...

  10. Structural transition in peptide nanotubes.

    Science.gov (United States)

    Amdursky, Nadav; Beker, Peter; Koren, Itai; Bank-Srour, Becky; Mishina, Elena; Semin, Sergey; Rasing, Theo; Rosenberg, Yuri; Barkay, Zahava; Gazit, Ehud; Rosenman, Gil

    2011-04-11

    Phase transitions in organic and inorganic materials are well-studied classical phenomena, where a change in the crystal space group symmetry induces a wide variation of physical properties, permitted by the crystalline symmetry in each phase. Here we observe a conformational induced transition in bioinspired peptide nanotubes (PNTs). We found that the PNTs change their original molecular assembly from a linear peptide conformation to a cyclic one, followed by a change of the nanocrystalline structure from a noncentrosymmetric hexagonal space group to a centrosymmetric orthorhombic space group. The observed transition is irreversible and induces a profound variation in the PNTs properties, from the microscopic to the macroscopic level. In this context, we follow the unique changes in the molecular, morphological, piezoelectric, second harmonic generation, and wettability properties of the PNTs. PMID:21388228

  11. *600781 PEPTIDE YY; PYY [OMIM

    Lifescience Database Archive (English)

    Full Text Available FIELD NO 600781 FIELD TI 600781 PEPTIDE YY; PYY FIELD TX CLONING PYY is secreted from endocrine ... acologically active PYY(3-36)) were measured in 66 lean , 18 anorectic, 63 obese, and 16 morbidly obese hum ... +/- 12.9 pg/ml, P = less than 0.05) compared with lean ... (52.4 +/- 4.6 pg/ml), obese (43.9 +/- 3.8 pg/ml), ...

  12. Antibody Peptide Based Antifungal Immunotherapy

    OpenAIRE

    Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

    2012-01-01

    Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

  13. Antimicrobial Peptides: Versatile Biological Properties

    Directory of Open Access Journals (Sweden)

    Muthuirulan Pushpanathan

    2013-01-01

    Full Text Available Antimicrobial peptides are diverse group of biologically active molecules with multidimensional properties. In recent past, a wide variety of AMPs with diverse structures have been reported from different sources such as plants, animals, mammals, and microorganisms. The presence of unusual amino acids and structural motifs in AMPs confers unique structural properties to the peptide that attribute for their specific mode of action. The ability of these active AMPs to act as multifunctional effector molecules such as signalling molecule, immune modulators, mitogen, antitumor, and contraceptive agent makes it an interesting candidate to study every aspect of their structural and biological properties for prophylactic and therapeutic applications. In addition, easy cloning and recombinant expression of AMPs in heterologous plant host systems provided a pipeline for production of disease resistant transgenic plants. Besides these properties, AMPs were also used as drug delivery vectors to deliver cell impermeable drugs to cell interior. The present review focuses on the diversity and broad spectrum antimicrobial activity of AMPs along with its multidimensional properties that could be exploited for the application of these bioactive peptides as a potential and promising drug candidate in pharmaceutical industries.

  14. Antihypertensive Peptides from Milk Proteins

    Directory of Open Access Journals (Sweden)

    Heikki Vapaatalo

    2010-01-01

    Full Text Available Dietary proteins possess a wide range of nutritional and functional properties. They are used as a source of energy and amino acids, which are needed for growth and development. Many dietary proteins, especially milk proteins, contain physiologically active peptides encrypted in the protein sequence. These peptides may be released during gastrointestinal digestion or food processing and once liberated, cause different physiological functions. Milk-derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. During the fermentation of milk with certain lactobacilli, two interesting tripeptides Ile-Pro-Pro and Val-Pro-Pro are released from casein to the final product. These lactotripeptides have attenuated the development of hypertension in several animal models and lowered blood pressure in clinical studies. They inhibit ACE in vitro at micromolar concentrations, protect endothelial function in vitro and reduce arterial stiffness in humans. Thus, milk as a traditional food product can after certain processing serve as a functional food and carry specific health-promoting effects, providing an option to control blood pressure.

  15. Identification of novel human immunodeficiency virus type 1-inhibitory peptides based on the antimicrobial peptide database.

    Science.gov (United States)

    Wang, Guangshun; Watson, Karen M; Peterkofsky, Alan; Buckheit, Robert W

    2010-03-01

    To identify novel anti-HIV-1 peptides based on the antimicrobial peptide database (APD; http://aps.unmc.edu/AP/main.php), we have screened 30 candidates and found 11 peptides with 50% effective concentrations (EC(50)) of 1, increases in the Arg contents of amphibian maximin H5 and dermaseptin S9 peptides and the database-derived GLK-19 peptide improved the TIs. These examples demonstrate that the APD is a rich resource and a useful tool for developing novel HIV-1-inhibitory peptides. PMID:20086159

  16. Chemical Methods for Peptide and Protein Production

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-04-01

    Full Text Available Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported a-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  17. Predicting protein-peptide interactions from scratch

    Science.gov (United States)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  18. Construction of Lasso Peptide Fusion Proteins.

    Science.gov (United States)

    Zong, Chuhan; Maksimov, Mikhail O; Link, A James

    2016-01-15

    Lasso peptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) typified by an isopeptide-bonded macrocycle between the peptide N-terminus and an aspartate or glutamate side chain. The C-terminal portion of the peptide threads through the N-terminal macrocycle to give the characteristic lasso fold. Because of the inherent stability, both proteolytic and often thermal, of lasso peptides, we became interested in whether proteins could be fused to the free C-terminus of lasso peptides. Here, we demonstrate fusion of two model proteins, the artificial leucine zipper A1 and the superfolder variant of GFP, to the C-terminus of the lasso peptide astexin-1. Successful lasso cyclization of the N-terminus of these fusion proteins requires a flexible linker in between the C-terminus of the lasso peptide and the N-terminus of the protein of interest. The ability to fuse lasso peptides to a protein of interest is an important step toward phage and bacterial display systems for the high-throughput screening of lasso peptide libraries for new functions. PMID:26492187

  19. Signal Transduction through CsrRS Confers an Invasive Phenotype in Group A Streptococcus

    OpenAIRE

    Tran-Winkler, Hien J.; Love, John F.; Gryllos, Ioannis; Wessels, Michael R.

    2011-01-01

    The CsrRS (or CovRS) two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS). While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg2+ as specific signals. We now report that Mg2+ and LL-37 have opposite effects on expression of multiple genes that are activated or rep...

  20. Signal Transduction through CsrRS Confers an Invasive Phenotype in Group A Streptococcus

    OpenAIRE

    Tran-Winkler, Hien J.; Love, John F.; Ioannis Gryllos; Wessels, Michael R.

    2011-01-01

    The CsrRS (or CovRS) two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS). While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg(2+) as specific signals. We now report that Mg(2+) and LL-37 have opposite effects on expression of multiple genes that are activated or...

  1. Synthesis of peptide .alpha.-thioesters

    Science.gov (United States)

    Camarero, Julio A.; Mitchell, Alexander R.; De Yoreo, James J.

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  2. Prediction of twin-arginine signal peptides

    DEFF Research Database (Denmark)

    Bendtsen, Jannick Dyrløv; Nielsen, Henrik; Widdick, D.; Palmer, T.; Brunak, Søren

    2005-01-01

    publicly available method, TatP, for prediction of bacterial Tat signal peptides. Results: We have retrieved sequence data for Tat substrates in order to train a computational method for discrimination of Sec and Tat signal peptides. The TatP method is able to positively classify 91% of 35 known Tat signal...... complementary rule based prediction method. Conclusion: The method developed here is able to discriminate Tat signal peptides from cytoplasmic proteins carrying a similar motif, as well as from Sec signal peptides, with high accuracy. The method allows filtering of input sequences based on Perl syntax regular...... expressions, whereas hydrophobicity discrimination of Tat- and Sec- signal peptides is carried out by an artificial neural network. A potential cleavage site of the predicted Tat signal peptide is also reported. The TatP prediction server is available as a public web server at http://www.cbs.dtu.dk/services/TatP/....

  3. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2016-03-01

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  4. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Thingholm, Tine E; Jensen, Ole N;

    2005-01-01

    not. Other substituted aromatic carboxylic acids were also capable of specifically reducing binding of nonphosphorylated peptides, whereas phosphoric acid reduced binding of both phosphorylated and nonphosphorylated peptides. A putative mechanism for this intriguing effect is presented....

  5. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    OpenAIRE

    Mihajlovic, Maja; Lazaridis, Themis

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or ...

  6. Interaction of small peptides with lipid bilayers.

    OpenAIRE

    Damodaran, K. V.; Merz, K M; Gaber, B P

    1995-01-01

    Molecular dynamics simulations of the tripeptide Ala-Phe-Ala-O-tert-butyl interacting with dimyristoylphosphatidylcholine lipid bilayers have been carried out. The lipid and aqueous environments of the peptide, the alkyl chain order, and the lipid and peptide dynamics have been investigated with use of density profiles, radial distribution functions, alkyl chain order parameter profiles, and time correlation functions. It appears that the alkyl chain region accommodates the peptides in the bi...

  7. Self-assembly of tetraphenylalanine peptides

    OpenAIRE

    Mayans Tayadella, Enric; Ballano Ballano, María Gema; Casanovas Salas, Jordi; Díaz Andrade, Angélica María; Pérez Madrigal, Maria del Mar; Estrany Coda, Francesc; Puiggalí Bellalta, Jordi; Cativiela Marín, Carlos A.; Alemán Llansó, Carlos

    2015-01-01

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists o...

  8. Salt-resistant short antimicrobial peptides.

    Science.gov (United States)

    Mohanram, Harini; Bhattacharjya, Surajit

    2016-05-01

    Antimicrobial peptides (AMPs) are promising leads for the development of antibiotics against drug resistant bacterial pathogens. However, in vivo applications of AMPs remain obscure due to salt and serum mediated inactivation. The high cost of chemical synthesis of AMPs also impedes potential clinical application. Consequently, short AMPs resistant toward salt and serum inactivation are desirable for the development of peptide antibiotics. In this work, we designed a 12-residue amphipathic helical peptide RR12 (R-R-L-I-R-L-I-L-R-L-L-R-amide) and two Trp containing analogs of RR12 namely RR12Wpolar (R-R-L-I-W-L-I-L-R-L-L-R-amide), and RR12Whydro (R-R-L-I-R-L-W-L-R-L-L-R-amide). Designed peptides demonstrated potent antibacterial activity; MIC ranging from 2 to 8 μM, in the presence of sodium chloride (150 mM and 300 mM). Antibacterial activity of these peptides was also detected in the presence of human serum. Designed peptides, in particular RR12 and RR12Whydro, were only poorly hemolytic. As a mode of action; these peptides demonstrated efficient permeabilization of bacterial cell membrane and lysis of cell structure. We further investigated interactions of the designed peptides with lipopolysaccharide (LPS), the major component of the outer membrane permeability barrier of Gram-negative bacteria. Designed peptides adopted helical conformations in complex with LPS. Binding of peptides with LPS has yielded dissociation the aggregated structures of LPS. Collectively, these designed peptides hold ability to be developed for salt-resistant antimicrobial compounds. Most importantly, current work provides insights for designing salt-resistant antimicrobial peptides. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 345-356, 2016. PMID:26849911

  9. Pulmonary clearance of vasoactive intestinal peptide.

    OpenAIRE

    Barrowcliffe, M P; Morice, A; Jones, J G; Sever, P S

    1986-01-01

    Vasoactive intestinal peptide causes bronchodilatation when given intravenously but is less effective in both animals and man when given by inhalation. This difference may be due to poor transit of the peptide across the bronchial epithelium. To test this hypothesis pulmonary clearance of radiolabelled vasoactive intestinal peptide was measured in Sprague Dawley rats and compared with that of pertechnetate (TcO4-) and diethylene triamine pentaacetate (DTPA). Despite a molecular weight (MW) of...

  10. Genome-based peptide fingerprint scanning

    OpenAIRE

    Giddings, Michael C.; Shah, Atul A.; Gesteland, Ray; Moore, Barry

    2002-01-01

    We have implemented a method that identifies the genomic origins of sample proteins by scanning their peptide-mass fingerprint against the theoretical translation and proteolytic digest of an entire genome. Unlike previously reported techniques, this method requires no predefined ORF or protein annotations. Fixed-size windows along the genome sequence are scored by an equation accounting for the number of matching peptides, the number of missed enzymatic cleavages in each peptide, the number ...

  11. Membrane Perturbation Induced by Interfacially Adsorbed Peptides

    OpenAIRE

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2004-01-01

    The structural and energetic characteristics of the interaction between interfacially adsorbed (partially inserted) α-helical, amphipathic peptides and the lipid bilayer substrate are studied using a molecular level theory of lipid chain packing in membranes. The peptides are modeled as “amphipathic cylinders” characterized by a well-defined polar angle. Assuming two-dimensional nematic order of the adsorbed peptides, the membrane perturbation free energy is evaluated using a cell-like model;...

  12. The Function and Development of Soybean Peptides

    Institute of Scientific and Technical Information of China (English)

    Yang Caiyan; Song Junmei

    2009-01-01

    Soybean peptides are small molecules hydrolyzed soy protein,from three to six amino acid composition of the peptide mixture,in 1000Da molecular weight below.Because it has a lot of good physical and chemical properties and physiological functions,in many areas has been widely used.This paper reviews the soybean peptide physical and chemical characteristics,physiological functions,technology and applications in the food industry.

  13. Antimicrobial peptides in human skin disease

    OpenAIRE

    Kenshi, Yamasaki; Richard, L. Gallo

    2007-01-01

    The skin continuously encounters microbial pathogens. To defend against this, cells of the epidermis and dermis have evolved several innate strategies to prevent infection. Antimicrobial peptides are one of the primary mechanisms used by the skin in the early stages of immune defense. In general, antimicrobial peptides have broad antibacterial activity against gram-positive and negative bacteria and also show antifungal and antiviral activity. The antimicrobial activity of most peptides occur...

  14. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Clemmensen, Stine N; Dahl, Sara L;

    2014-01-01

    CAP-18 into the antibacterial peptide LL-37 in response to ionomycin. In immature myeloid cells from patient bone marrow, biosynthesis of CTSC and neutrophil serine proteases appeared normal along with initial processing and sorting to cellular storage. In contrast, these proteins were completely absent...

  15. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans;

    1990-01-01

    Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did n...

  16. Peptide Nucleic Acids Complexes of Two Peptide Nucleic Acid Strands and One

    DEFF Research Database (Denmark)

    1999-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  17. Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides

    OpenAIRE

    Ulmschneider, Martin B.; Doux, Jacques P F; Killian, J. Antoinette; Smith, Jeremy C.; Ulmschneider, Jakob P.

    2010-01-01

    Partitioning properties of transmembrane (TM) polypeptide segments directly determine membrane protein folding, stability, and function, and their understanding is vital for rational design of membrane active peptides. However, direct determination of water-to-bilayer transfer of TM peptides has proved difficult. Experimentally, sufficiently hydrophobic peptides tend to aggregate, while atomistic computer simulations at physiological temperatures cannot yet reach the long time scales required...

  18. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.;

    1997-01-01

    amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  19. Atrial natriuretic peptides in plasma

    DEFF Research Database (Denmark)

    Goetze, Jens P; Holst Hansen, Lasse; Terzic, Dijana;

    2015-01-01

    Measurement of cardiac natriuretic peptides in plasma has gained a diagnostic role in the assessment of heart failure. Plasma measurement is though hampered by the marked instability of the hormones, which has led to the development of analyses that target N-terminal fragments from the prohormone....... These fragments are stable in plasma and represent surrogate markers of the actual natriuretic hormone. Post-translational processing of the precursors, however, is revealing itself to be a complex event with new information still being reported on proteolysis, covalent modifications, and amino acid...

  20. Glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Deacon, C F; Holst, Jens Juul; Carr, R D

    1999-01-01

    Type 2 diabetes mellitus is a metabolic disease resulting in raised blood sugar which, if not satisfactorily controlled, can cause severe and often debilitating complications. Unfortunately, for many patients, the existing therapies do not give adequate control. Glucagon-like peptide-1 (GLP-1) is...... an incretin hormone which has a spectrum of activities which oppose the symptoms of diabetes. Of particular significance is the fact that these actions are glucose-dependent, meaning that the risk of severe hypoglycemia is practically eliminated. The recent elucidation of the key role of dipeptidyl...

  1. PGx: Putting Peptides to BED.

    Science.gov (United States)

    Askenazi, Manor; Ruggles, Kelly V; Fenyö, David

    2016-03-01

    Every molecular player in the cast of biology's central dogma is being sequenced and quantified with increasing ease and coverage. To bring the resulting genomic, transcriptomic, and proteomic data sets into coherence, tools must be developed that do not constrain data acquisition and analytics in any way but rather provide simple links across previously acquired data sets with minimal preprocessing and hassle. Here we present such a tool: PGx, which supports proteogenomic integration of mass spectrometry proteomics data with next-generation sequencing by mapping identified peptides onto their putative genomic coordinates. PMID:26638927

  2. Natriuretic peptides and their therapeutic potential.

    Science.gov (United States)

    Cho, Y; Somer, B G; Amatya, A

    1999-01-01

    Natriuretic peptides are a group of naturally occurring substances that act in the body to oppose the activity of the renin-angiotensin system. There are three major natriuretic peptides: atrial natriuretic peptide (ANP), which is synthesized in the atria; brain natriuretic peptide (BNP), which is synthesized in the ventricles; and C-type natriuretic peptide (CNP), which is synthesized in the brain. Both ANP and BNP are released in response to atrial and ventricular stretch, respectively, and will cause vasorelaxation, inhibition of aldosterone secretion in the adrenal cortex, and inhibition of renin secretion in the kidney. Both ANP and BNP will cause natriuresis and a reduction in intravascular volume, effects amplified by antagonism of antidiuretic hormone (ADH). The physiologic effects of CNP are different from those of ANP and BNP. CNP has a hypotensive effect, but no significant diuretic or natriuretic actions. Three natriuretic peptide receptors (NPRs) have been described that have different binding capacities for ANP, BNP, and CNP. Removal of the natriuretic peptides from the circulation is affected mainly by binding to clearance receptors and enzymatic degradation in the circulation. Increased blood levels of natriuretic peptides have been found in certain disease states, suggesting a role in the pathophysiology of those diseases, including congestive heart failure (CHF), systemic hypertension, and acute myocardial infarction. The natriuretic peptides also serve as disease markers and indicators of prognosis in various cardiovascular conditions. The natriuretic peptides have been used in the treatment of disease, with the most experience with intravenous BNP in the treatment of CHF. Another pharmacologic approach being used is the inhibition of natriuretic peptide metabolism by neutral endopeptidase (NEP) inhibitor drugs. The NEP inhibitors are currently being investigated as treatments for CHF and systemic hypertension. PMID:11720638

  3. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non...... peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...... classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential....

  4. Determination of peptide content of DOTA-peptides by metal titration and UPLC

    International Nuclear Information System (INIS)

    Radiolabelled DOTA-peptides are in use for Peptide Receptor Radionuclide Scintigraphy (PRS) and Therapy (PRRT), e.g with 177Lu-DOTA-TATE or 90Y-DOTATOC. Labelling conditions are frequently critical. Therefore, the ingredients of the reaction, e.g. radiometal (90Y and 177Lu) and DOTA-peptide should be pure and the content known. Quality control of DOTA-peptide, can be performed with various methods, most commonly by UV. There are numerous conditions in which this is hampered, e.g. impurities may also have UV-absorption. The aim of the study was to quantify content and purity of DOTA-peptide

  5. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall; Otte, Jeanette; Jacobsen, Charlotte

    2010-01-01

    The aim of the present study was to elucidate previous findings showing that peptide fractions isolated from yoghurt had antioxidant effects. Therefore, peptides and free amino acids released during fermentation of milk were characterised. Yoghurt samples were stripped from sugars and lactic acid...... all the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt...

  6. Trandermal Peptides for Large Molecule Delivery

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ A research team, led by Prof. WEN Longping from the University of Science and Technology of China under CAS,has successfully screened out a trandermal peptide, using biotechnology. The new peptide is able to deliver insulin into human body through skin, rendering an immediate therapeutic effect. The finding was published in the March 27 issue of the journal Natural Biotechnology.

  7. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the...

  8. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  9. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    Science.gov (United States)

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions. PMID:26440047

  10. Milk proteins as precursors of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Marta Dziuba

    2009-03-01

    Full Text Available Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and Mazury in Olsztyn (www.uwm.edu.pl/biochemia, the profiles of potential activity of milk proteins were determined and the function of those proteins as bioactive peptide precursors was evaluated based on a quantitative criterion, i.e. the occurrence frequency of bioactive fragments (A. The study revealed that milk proteins are mainly a source of peptides with the following types of activity: antihypertensive (Amax = 0.225, immunomodulating (0.024, smooth muscle contracting (0.011, antioxidative (0.029, dipeptidyl peptidase IV inhibitors (0.148, opioid (0.073, opioid antagonistic (0.053, bonding and transporting metals and metal ions (0.024, antibacterial and antiviral (0.024, and antithrombotic (0.029. The enzymes capable of releasing bioactive peptides from precursor proteins were determined for every type of activity. The results of the experiment indicate that milk proteins such as lactoferrin, α-lactalbumin, β-casein and κ-casein hydrolysed by trypsin can be a relatively abundant source of biologically active peptides.

  11. Peptide nanospheres self-assembled from a modified β-annulus peptide of Sesbania mosaic virus.

    Science.gov (United States)

    Matsuura, Kazunori; Mizuguchi, Yusaku; Kimizuka, Nobuo

    2016-11-01

    A novel β-annulus peptide of Sesbania mosaic virus bearing an FKFE sequence at the C terminus was synthesized, and its self-assembling behavior in water was investigated. Dynamic light scattering and transmission electron microscopy showed that the β-annulus peptide bearing an FKFE sequence self-assembled into approximately 30 nm nanospheres in water at pH 3.8, whereas the β-annulus peptide without the FKFE sequence afforded only irregular aggregates. The peptide nanospheres possessed a definite critical aggregation concentration (CAC = 26 μM), above which the size of nanospheres were nearly unaffected by the peptide concentration. The formation of peptide nanospheres was significantly affected by pH; the peptide did not form any assemblies at pH 2.2, whereas larger aggregates were formed at pH 6.4-11.6. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 470-475, 2016. PMID:26573103

  12. Interpreting peptide mass spectra by VEMS

    DEFF Research Database (Denmark)

    Mathiesen, Rune; Lundsgaard, M.; Welinder, Karen G.;

    2003-01-01

    Most existing Mass Spectra (MS) analysis programs are automatic and provide limited opportunity for editing during the interpretation. Furthermore, they rely entirely on publicly available databases for interpretation. VEMS (Virtual Expert Mass Spectrometrist) is a program for interactive analysis...... of peptide MS/MS spectra imported in text file format. Peaks are annotated, the monoisotopic peaks retained, and the b-and y-ion series identified in an interactive manner. The called peptide sequence is searched against a local protein database for sequence identity and peptide mass. The report...... compares the calculated and the experimental mass spectrum of the called peptide. The program package includes four accessory programs. VEMStrans creates protein databases in FASTA format from EST or cDNA sequence files. VEMSdata creates a virtual peptide database from FASTA files. VEMSdist displays the...

  13. Intracellular signalling by C-peptide.

    Science.gov (United States)

    Hills, Claire E; Brunskill, Nigel J

    2008-01-01

    C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na(+)/K(+) ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes. PMID:18382618

  14. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  15. Insights into How Cyclic Peptides Switch Conformations.

    Science.gov (United States)

    McHugh, Sean M; Rogers, Julia R; Yu, Hongtao; Lin, Yu-Shan

    2016-05-10

    Cyclic peptides have recently emerged as promising modulators of protein-protein interactions. However, it is currently highly difficult to predict the structures of cyclic peptides owing to their rugged conformational free energy landscape, which prevents sampling of all thermodynamically relevant conformations. In this article, we first investigate how a relatively flexible cyclic hexapeptide switches conformations. It is found that, although the circular geometry of small cyclic peptides of size 6-8 may require rare, coherent dihedral changes to sample a new conformation, the changes are rather local, involving simultaneous changes of ϕi and ψi or ψi and ϕi+1. The understanding of how these cyclic peptides switch conformations enables the use of metadynamics simulations with reaction coordinates specifically targeting such coupled two-dihedral changes to effectively sample cyclic peptide conformational space. PMID:27031286

  16. Radiolabeled peptides: experimental and clinical applications

    International Nuclear Information System (INIS)

    Radiolabeled receptor specific biomolecules hold unlimited potential in nuclear medicine. During the past few years much attention has been drawn to the development radiolabeled peptides for a variety of diagnostic applications, as well as for therapy of malignant tumors. Although only one peptide, In-111-DTPA-(D)-Phe1-octreotide, is available commercially for oncologic imaging, many more have been examined in humans with hematological disorders, and the early results appear to be promising. Impetus generated by these results have prompted investigators to label peptides with such radionuclides as Tc-99m, I-123, F-18, Cu-64, and Y-90. This review is intended to highlight the qualities of peptides, summarize the clinical results, and address some important issues associated with radiolabeling of highly potent peptides. While doing so, various methods of radiolabeling have been described, and their strengths and weaknesses have also been discussed. (author)

  17. Peptide-Lipid Interactions: Experiments and Applications

    Directory of Open Access Journals (Sweden)

    Massimiliano Galdiero

    2013-09-01

    Full Text Available The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated cellular processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Moreover, a major goal of modern biotechnology is obtaining new potent pharmaceutical agents whose biological action is dependent on the binding of peptides to lipid-bilayers. Several issues need to be addressed such as secondary structure, orientation, oligomerization and localization inside the membrane. At the same time, the structural effects which the peptides cause on the lipid bilayer are important for the interactions and need to be elucidated. The structural characterization of membrane active peptides in membranes is a harsh experimental challenge. It is in fact accepted that no single experimental technique can give a complete structural picture of the interaction, but rather a combination of different techniques is necessary.

  18. Novel Bifunctional Natriuretic Peptides as Potential Therapeutics*

    Science.gov (United States)

    Dickey, Deborah M.; Burnett, John C.; Potter, Lincoln R.

    2008-01-01

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  19. Novel bifunctional natriuretic peptides as potential therapeutics.

    Science.gov (United States)

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics. PMID:18940797

  20. Modelling water molecules inside cyclic peptide nanotubes

    Science.gov (United States)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  1. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Yi Yang; Mingyue Jia; Chi Ma; Mingyu Wang; Lihe Che; Yu Yang; Jiang Wu

    2013-01-01

    Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.

  2. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  3. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine (444), PO Box 9101, Nijmegen (Netherlands); Jong, Marion de [Erasmus Medical Centre, Department of Nuclear Medicine, Rotterdam (Netherlands)

    2010-02-15

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of {sup 111}In-albumin, {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of {sup 111}In-albumin, {sup 111}In-exendin and {sup 111}In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of {sup 111}In-minigastrin, by 88%. Uptake of {sup 111}In-exendin and {sup 111}In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of {sup 111}In-minigastrin, {sup 111}In-exendin and {sup 111}In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  4. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111In-albumin, 111In-minigastrin, 111In-exendin and 111In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111In-minigastrin, 111In-exendin and 111In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111In-albumin, 111In-exendin and 111In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111In-minigastrin, by 88%. Uptake of 111In-exendin and 111In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111In-minigastrin, 111In-exendin and 111In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  5. rapmad: Robust analysis of peptide microarray data

    Directory of Open Access Journals (Sweden)

    Rothermel Andrée

    2011-08-01

    Full Text Available Abstract Background Peptide microarrays offer an enormous potential as a screening tool for peptidomics experiments and have recently seen an increased field of application ranging from immunological studies to systems biology. By allowing the parallel analysis of thousands of peptides in a single run they are suitable for high-throughput settings. Since data characteristics of peptide microarrays differ from DNA oligonucleotide microarrays, computational methods need to be tailored to these specifications to allow a robust and automated data analysis. While follow-up experiments can ensure the specificity of results, sensitivity cannot be recovered in later steps. Providing sensitivity is thus a primary goal of data analysis procedures. To this end we created rapmad (Robust Alignment of Peptide MicroArray Data, a novel computational tool implemented in R. Results We evaluated rapmad in antibody reactivity experiments for several thousand peptide spots and compared it to two existing algorithms for the analysis of peptide microarrays. rapmad displays competitive and superior behavior to existing software solutions. Particularly, it shows substantially improved sensitivity for low intensity settings without sacrificing specificity. It thereby contributes to increasing the effectiveness of high throughput screening experiments. Conclusions rapmad allows the robust and sensitive, automated analysis of high-throughput peptide array data. The rapmad R-package as well as the data sets are available from http://www.tron-mz.de/compmed.

  6. Conus Peptides A Rich Pharmaceutical Treasure

    Institute of Scientific and Technical Information of China (English)

    Cheng-Zhong WANG; Cheng-Wu CHI

    2004-01-01

    Marine predatory cone snails (genus Conus) with over 500 species represent what is arguably the largest single genus of marine animals alive today. All Conus are venomous and utilize a complex mixture of Conus peptides to capture their preys and for other biological purposes. Each component of Conus peptides selectively targets a specific subtype of ion channels, neurotransmitter receptors or transporters.Owing to their diversity, more than 50,000 distinct active peptides are theoretically estimated in Conus venoms. These diversified toxins are generally categorized into several superfamilies and/or families based on their characteristic arrangements of cysteine residues and pharmacological actions. Some mechanisms underlying the remarkable diversity of Conus peptides have been postulated: the distinctive gene structure, gene duplication and/or allelic selection, genus speciation, and sophisticated expression pattern and posttranslational modification of these peptides. Due to their highly pharmacological potency and target selectivity, Conus peptides have attracted extensive attention with their potentials to be developed as new research tools in neuroscience field and as novel medications in clinic for pain, epilepsy and other neuropathic disorders. Several instructive lessons for our drug development could be also learnt from these neuropharmacological "expertises". Conus peptides comprise a rich resource for neuropharmacologists, and most of them await to be explored.

  7. C-Peptide and its intracellular signaling.

    Science.gov (United States)

    Hills, Claire E; Brunskill, Nigel J

    2009-01-01

    Although long believed to be inert, C-peptide has now been shown to have definite biological effects both in vitro and in vivo in diabetic animals and in patients with type 1 diabetes. These effects point to a protective action of C-peptide against the development of diabetic microvascular complications. Underpinning these observations is undisputed evidence of C-peptide binding to a variety of cell types at physiologically relevant concentrations, and the downstream stimulation of multiple cell signaling pathways and gene transcription via the activation of numerous transcription factors. These pathways affect such fundamental cellular processes as re-absorptive and/or secretory phenotype, migration, growth, and survival. Whilst the receptor remains to be identified, experimental data points strongly to the existence of a specific G-protein-coupled receptor for C-peptide. Of the cell types studied so far, kidney tubular cells express the highest number of C-peptide binding sites. Accordingly, C-peptide exerts major effects on the function of these cells, and in the context of diabetic nephropathy appears to antagonise the pathophysiological effects of major disease mediators such as TGFbeta1 and TNFalpha. Therefore, based on its cellular activity profile C-peptide appears well positioned for development as a therapeutic tool to treat microvascular complications in type 1 diabetes. PMID:20039003

  8. Novel pH-Sensitive Cyclic Peptides.

    Science.gov (United States)

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  9. Natriuretic peptides in cardiometabolic regulation and disease

    DEFF Research Database (Denmark)

    Zois, Nora E; Bartels, Emil D; Hunter, Ingrid; Kousholt, Birgitte S; Olsen, Lars Henning; Goetze, Jens P

    2014-01-01

    decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All......In the 30 years since the identification of the natriuretic peptides, their involvement in regulating fluid and blood pressure has become firmly established. Data indicating a role for these hormones in lifestyle-related metabolic and cardiovascular disorders have also accumulated over the past...... role in lifestyle-related metabolic and cardiovascular disorders....

  10. Imaging tumors with peptide-based radioligands

    Energy Technology Data Exchange (ETDEWEB)

    Behr, T. M.; Gotthardt, M.; Barth, A.; Behe, M. [Philipps-University of Marburg, Dept. of Nuclear Medicine, Marburg (Germany)

    2001-06-01

    Regulatory peptides are small, readily diffusable and potent natural substances with a wide spectrum of receptor-mediated actions in humans. High affinity receptors for these peptides are (over)-expressed in many neoplasms, and these receptors may represent, therefore, new molecular targets for cancer diagnosis and therapy. This review aims to give an overview of the peptide-based radiopharmaceuticals which are presently already commercially available or which are in advanced stages of their clinical testing so that their broader availability is anticipated soon. Physiologically, these peptides bind to and act through G protein-coupled receptors in the cell membrane. Historically, somatostatin analogs are the first class of receptor binding peptides having gained clinical application. In {sup 111}In-DTPA-(D-Phe{sup 1})-octreotide is the first and only radio peptide which has obtained regulatory approval in Europe and the United States to date. Extensive clinical studies involving several thousands of patients have shown that the major clinical application of somatostatin receptor scintigraphy is the detection and the staging of gastroenteropancreatic neuroendocrine tumors (carcinoids). In these tumors, octreotide scintigraphy is superior to any other staging method. However, its sensitivity and accuracy in other, more frequent neoplasms is limited. Radiolabeled vasoactive intestinal peptide (VIP) has been shown to visualize the majority of gastrointestinal adenocarcinomas, as well as some neuroendocrine tumors, including insulinomas (the latter being often missed by somatostatin receptor scintigraphy). Due to the outstanding diagnostic accuracy of the pentagastrin test in detecting the presence, persistence, or recurrence of medullary thyroid cancer (MTC), it was postulated the expression of the corresponding (i.e. cholecystokinin (CCK-)-B) receptor type in human MTC. This receptor is also widely expressed on human small-cell lung. Indeed, {sup 111}In-labeled DTPA

  11. Peptides from milk proteins and their properties.

    Science.gov (United States)

    Kilara, Arun; Panyam, Dinakar

    2003-01-01

    This review has attempted to study the literature pertaining to peptides derived from milk proteins. Hydrolysis of milk proteins to generate peptides has been practiced for a long time and it was recognized early on in this process that the taste of hydrolyzates might hinder use of these products in food formulations. Modification of protein is necessary to form a more acceptable or utilizable product, to form a product that is less susceptible to deteriorative reactions and to form a product that is of higher nutritionall quality. Modifications may be achieved by a number of chemical and enzymatic means. This review has considered only enzymatic modification of dairy proteins. Modified proteins contain peptides and some of these peptides have been purified and their functionalities have been compared with unmodified proteins. This paper has examined the literature pertaining to improvement in functionality of enzyme-modified proteins. Improvements in solubility, emulsification, foaming and gelation were examined. There is limited information available on the sequence of the peptides necessary to improve the functional characteristics of proteins. Knowing the sequences of desirable functional peptides can lead to genetic alteration of proteins to improve functionality. Addition of synthetic peptides to intact proteins may be another way in which the functionality of proteins can be augmented. Some of the peptides in milk proteins are capable of affecting biological functions of an organism. These effects can be antimicrobial and probiotic, i.e., prevent the growth and proliferation of undesirable and pathogenic organisms, or they may promote the growth of desirable bacteria in the digestive tract of humans and animals. Peptides derived from milk protein have been shown to exert digestive and metabolic effects as well. They may also influence the immune system. These biological effects may play an important role in the development of medical foods that treat or

  12. Exploiting Protected Maleimides to Modify Oligonucleotides, Peptides and Peptide Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Clément Paris

    2015-04-01

    Full Text Available This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  13. Combined Statistical Analyses of Peptide Intensities and Peptide Occurrences Improves Identification of Significant Peptides from MS-based Proteomics Data

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; McCue, Lee Ann; Waters, Katrina M.; Matzke, Melissa M.; Jacobs, Jon M.; Metz, Thomas O.; Varnum, Susan M.; Pounds, Joel G.

    2010-11-01

    Liquid chromatography-mass spectrometry-based (LC-MS) proteomics uses peak intensities of proteolytic peptides to infer the differential abundance of peptides/proteins. However, substantial run-to-run variability in peptide intensities and observations (presence/absence) of peptides makes data analysis quite challenging. The missing abundance values in LC-MS proteomics data are difficult to address with traditional imputation-based approaches because the mechanisms by which data are missing are unknown a priori. Data can be missing due to random mechanisms such as experimental error, or non-random mechanisms such as a true biological effect. We present a statistical approach that uses a test of independence known as a G-test to test the null hypothesis of independence between the number of missing values and the experimental groups. We pair the G-test results evaluating independence of missing data (IMD) with a standard analysis of variance (ANOVA) that uses only means and variances computed from the observed data. Each peptide is therefore represented by two statistical confidence metrics, one for qualitative differential observation and one for quantitative differential intensity. We use two simulated and two real LC-MS datasets to demonstrate the robustness and sensitivity of the ANOVA-IMD approach for assigning confidence to peptides with significant differential abundance among experimental groups.

  14. Peptide Internalization Enabled by Folding: Triple Helical Cell-Penetrating Peptides

    OpenAIRE

    Shinde, Aparna; Feher, Katie M.; Hu, Chloe; Slowinska, Katarzyna

    2014-01-01

    Cell-Penetrating Peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degrada...

  15. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    OpenAIRE

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and functi...

  16. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

    OpenAIRE

    Luo, Tianzhi; Kiick, Kristi L.

    2013-01-01

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress...

  17. Effect of peptide secondary structure on peptide amphiphile supramolecular structure and interactions

    OpenAIRE

    Missirlis, Dimitris; Chworos, Arkadiusz; Fu, Caroline J; Khant, Htet A.; Krogstad, Daniel V.; Tirrell, Matthew

    2011-01-01

    Bottom-up fabrication of self-assembled nanomaterials requires control over forces and interactions between building blocks. We here report on the formation and architecture of supramolecular structures constructed from two different peptide amphiphiles. Inclusion of four alanines between a 16-mer peptide and a 16-carbon long aliphatic tail resulted in a secondary structure shift of the peptide headgroups from alpha helices to beta sheets. A concomitant shift in self-assembled morphology from...

  18. A statistical approach to determining responses to individual peptides from pooled-peptide ELISpot data.

    Science.gov (United States)

    Ström, Peter; Støer, Nathalie; Borthwick, Nicola; Dong, Tao; Hanke, Tomáš; Reilly, Marie

    2016-08-01

    To investigate in detail the effect of infection or vaccination on the human immune system, ELISpot assays are used to simultaneously test the immune response to a large number of peptides of interest. Scientists commonly use "peptide pools", where, instead of an individual peptide, a test well contains a group of peptides. Since the response from a well may be due to any or many of the peptides in the pool, pooled assays usually need to be followed by confirmatory assays of a number of individual peptides. We present a statistical method that enables estimation of individual peptide responses from pool responses using the Expectation Maximization (EM) algorithm for "incomplete data". We demonstrate the accuracy and precision of these estimates in simulation studies of ELISpot plates with 90 pools of 6 or 7 peptides arranged in three dimensions and three Mock wells for the estimation of background. In analysis of real pooled data from 6 subjects in a HIV-1 vaccine trial, where 199 peptides were arranged in 80 pools if size 9 or 10, our estimates were in very good agreement with the results from individual-peptide confirmatory assays. Compared to the classical approach, we could identify almost all the same peptides with high or moderate response, with less than half the number of confirmatory tests. Our method facilitates efficient use of the information available in pooled ELISpot data to avoid or reduce the need for confirmatory testing. We provide an easy-to-use free online application for implementing the method, where on uploading two spreadsheets with the pool design and pool responses, the user obtains the estimates of the individual peptide responses. PMID:27196788

  19. Determination of peptide content and purity of DOTA-peptides by metal ion titration and UPLC. An alternative method to monitor quality of DOTA-peptides

    International Nuclear Information System (INIS)

    PRRT requires high specific activities, thus at low molar ratio between DOTA-peptide and radioactivity. Therefore, the ingredients of the reaction, including (radio)metals and DOTA-peptide must be pure and the content known. Our aim was to quantify content and purity of DOTA-peptide by a base-to-base separation of DOTA-peptide and metal-DOTA-peptide by UPLC and UV-detection. Quantification of these peaks reveals an accurate and sensitive method to quantify purity and content of DOTA-peptides. Moreover, this technique enables monitoring of the (radio)labeling process and co-introduction of impurities, including metal ions. (author)

  20. Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications.

    Science.gov (United States)

    McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2014-01-01

    Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a "bottom-up" approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection. PMID:25436505

  1. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation.

    Science.gov (United States)

    Zhou, Xi-Rui; Zhang, Qiang; Tian, Xi-Bo; Cao, Yi-Meng; Liu, Zhu-Qing; Fan, Ruru; Ding, Xiu-Fang; Zhu, Zhentai; Chen, Long; Luo, Shi-Zhong

    2016-08-01

    Further discovery and design of new anticancer peptides are important for the development of anticancer therapeutics, and study on the detailed acting mechanism and structure-function relationship of peptides is critical for anticancer peptide design and application. In this study, a novel anticancer peptide ZXR-1 (FKIGGFIKKLWRSKLA) derived from a known anticancer peptide mauriporin was developed, and a mutant ZXR-2 (FKIGGFIKKLWRSLLA) with only one residue difference at the 14th position (Lys→Leu) was also engineered. Replacement of the lysine with leucine made ZXR-2 more potent than ZXR-1 in general. Even with only one residue mutation, the two peptides displayed distinct anticancer modes of action. ZXR-1 could translocate into cells, target on the mitochondria and induce cell apoptosis, while ZXR-2 directly targeted on the cell membranes and caused membrane lysis. The variance in their acting mechanisms might be due to the different amphipathicity and positive charge distribution. In addition, the two Ile-Leu pairs (3-10 and 7-14) in ZXR-2 might also play a role in improving its cytotoxicity. Further study on the structure-function relationship of the two peptides may be beneficial for the design of novel anticancer peptides and peptide based therapeutics. PMID:27207743

  2. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.;

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit...

  3. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  4. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  5. Gene Transfer with Poly-Melittin Peptides

    OpenAIRE

    Chen, Chang-Po; Kim, Ji-Seon; Steenblock, Erin; Liu, Dijie; Rice, Kevin G.

    2006-01-01

    The 26 amino acid hemolytic melittin peptide was converted into a gene transfer peptide that binds to DNA and polymerized through disulfide bond formation. Melittin analogues were synthesized by addition of one to four Lys repeats at either the C or N-subterminal end along with terminal Cys residues. Melittin analogues were able to bind and polymerize on plasmids resulting in the formation of DNA condensates. In the absence of DNA, melittin analogues retained their red blood cell hemolytic po...

  6. Neuroprotective peptides related to Alzheimer's disease

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Borovičková, Lenka; Bláha, I.; Hlaváček, Jan; Krejčová, G.; Patočka, J.

    Patras : Typorama, 2005 - (Cordopatis, P.; Manessi-Zoupa, E.; Pairas, G.), 147-154 ISBN 960-7620-31-3. [Hellenic Forum on Bioactive Peptides /4./. Patras (GR), 22.04.2004-24.04.2004] R&D Projects: GA ČR(CZ) GA305/03/1100 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptides * Alzheimer's disease * humanin Subject RIV: CE - Biochemistry

  7. Bioactive peptides and proteins in disease

    OpenAIRE

    Refai, Essam

    2004-01-01

    Regulatory peptides and marker proteins are important to study in order to understand disease mechanisms. This applies of course also to our common diseases where all relationships are not yet known. Cancer and diabetes are two such complex diseases that affect hundreds of millions of people worldwide. This thesis addresses particular aspects of these two diseases, regarding one regulatory peptide (VIP, vasoactive intestinal polypeptide) that may be useful for tumor tracing ...

  8. Lucifensin, a peptide behind the maggot therapy

    Czech Academy of Sciences Publication Activity Database

    Čeřovský, Václav

    Praha : Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2011 - (Slaninová, J.), s. 22-26 ISBN 978-80-86241-44-9. - (Collection Symposium Series. 13). [Biologically Active Peptides /12./. Praha (CZ), 27.04.2011-29.04.2011] R&D Projects: GA ČR GA203/08/0536 Institutional research plan: CEZ:AV0Z40550506 Keywords : lucifensin * maggot therapy * antimicrobial activity * peptide synthesis * disulfide bridge Subject RIV: CC - Organic Chemistry

  9. Dietary fiber, gut peptides, and adipocytokines

    OpenAIRE

    Sánchez, David; Miguel, Marta; Aleixandre, Amaya

    2012-01-01

    The consumption of dietary fiber (DF) has increased since it was related to the prevention of a range of illnesses and pathological conditions. DF can modify some gut hormones that regulate satiety and energy intake, thus also affecting lipid metabolism and energy expenditure. Among these gut hormones are ghrelin, glucagon-like peptide 1, peptide YY, and cholecystokinin. Adipose tissue is known to express and secrete a variety of products known as >adipocytokines,> which are also affected by ...

  10. From antimicrobial to anticancer peptides. A review.

    OpenAIRE

    Diana eGaspar; A. Salomé eVeiga; Miguel A.R.B. eCastanho

    2013-01-01

    Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms. Although AMPs have been essentially studied and developed as potential alternatives for fighting infectious diseases, their use as anticancer peptides (ACPs) in cancer therapy either alone or in combination with other conventional drugs has been regarded as a therapeutic strategy to explore. As human cancer remains a cause of high morbidity and mortality worldwide, an urgent need of new, selective...

  11. Chemical Pyrophosphorylation of Functionally Diverse Peptides

    OpenAIRE

    Marmelstein, Alan M.; Yates, Lisa M.; Conway, John H.; Fiedler, Dorothea

    2013-01-01

    A highly selective and convenient method for the synthesis of pyrophosphopeptides in solution is reported. The remarkable compatibility with functional groups (alcohol, thiol, amine, carboxylic acid) in the peptide substrates suggests that the intrinsic nucleophilicity of the phosphoserine residue is much higher than previously appreciated. Because the methodology operates in polar solvents, including water, a broad range of pyrophosphopeptides can be accessed. We envision these peptides will...

  12. Tryptophan rotamer distributions in amphipathic peptides at a lipid surface.

    OpenAIRE

    Clayton, A H; Sawyer, W. H.

    1999-01-01

    The fluorescence decay of tryptophan is a sensitive indicator of its local environment within a peptide or protein. We describe the use of frequency domain fluorescence spectroscopy to determine the conformational and environmental changes associated with the interaction of single tryptophan amphipathic peptides with a phospholipid surface. The five 18-residue peptides studied are based on a class A amphipathic peptide known to associate with lipid bilayers. The peptides contain a single tryp...

  13. Stereo-separations of Peptides by Capillary Electrophoresis and Chromatography

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Afzal Hussain, Iqbal Hussain, Mohamed F. Al-Ajmi & Imran Ali ### Abstract Small peptides (di-, tri-, tetra- penta- hexa etc. and peptides) control many chemical and biological processes. The biological importance of stereomers of peptides is of great value. The stereo-separations of peptides are gaining importance in biological and medicinal sciences and pharmaceutical industries. There is a great need of experimental protocols of stereo-separations of peptides. The vario...

  14. Constructing bioactive peptides with pH-dependent activities

    OpenAIRE

    Tu, Zhigang; Volk, Melanie; Shah, Khushali; Clerkin, Kevin; Liang, Jun F.

    2009-01-01

    Many bioactive peptides are featured by their arginine and lysine rich contents. In this study, lysine and arginine residues in lytic peptides were selectively replaced by histidines. Although resulted histidine-containing lytic peptides had decreased activity, they did show pH-dependent cytotoxicity. The activity of the constructed histidine-containing lytic peptides increased 2 ~ 8 times as the solution pH changed from of 7.4 to 5.5. More importantly, these histidine-containing peptides mai...

  15. Design, synthesis and analysis of novel SMAC-based peptides

    Czech Academy of Sciences Publication Activity Database

    Georgieva, M.; Dzimbova, T.; Sázelová, Petra; Detcheva, R.; Kašička, Václav; Pajpanova, T.

    Sofia: Bulgarian Peptide Society, 2015 - (Naydenova, E.; Pajpanova, T.; Danalev, D.), s. 178-179 ISBN 978-619-90427-2-4. [Peptides 2014. European Peptide Symposium /33./. Sofia (BG), 31.08.2014-05.09.2014] Institutional support: RVO:61388963 Keywords : peptides * analysis * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation http://bulpepsoc.info/wp-content/uploads/2015/06/PEPTIDES-2014-electronic-version.pdf

  16. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, DooLi

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  17. Relaxin family peptides and their receptors.

    Science.gov (United States)

    Bathgate, R A D; Halls, M L; van der Westhuizen, E T; Callander, G E; Kocan, M; Summers, R J

    2013-01-01

    There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit. PMID:23303914

  18. Confinement-dependent friction in peptide bundles.

    Science.gov (United States)

    Erbaş, Aykut; Netz, Roland R

    2013-03-19

    Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088

  19. Biomathematical description of synthetic peptide libraries.

    Directory of Open Access Journals (Sweden)

    Timo Sieber

    Full Text Available Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org, allowing scientists to plan and analyse their peptide libraries.

  20. Human C-peptide. Pt. 1

    International Nuclear Information System (INIS)

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with 125iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum. (orig.)

  1. Self-Assembly of Tetraphenylalanine Peptides.

    Science.gov (United States)

    Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2015-11-16

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic. PMID:26419936

  2. Biomathematical Description of Synthetic Peptide Libraries

    Science.gov (United States)

    Trepel, Martin

    2015-01-01

    Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries. PMID:26042419

  3. Neutron diffraction studies of viral fusion peptides

    Science.gov (United States)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  4. Peptide conversations in Gram-positive bacteria.

    Science.gov (United States)

    Monnet, Véronique; Juillard, Vincent; Gardan, Rozenn

    2016-05-01

    Within Gram-positive bacteria, the expression of target genes is controlled at the population level via signaling peptides, also known as pheromones. Pheromones control a wide range of functions, including competence, virulence, and others that remain unknown. Until now, their role in bacterial gene regulation has probably been underestimated; indeed, bacteria are able to produce, by ribosomal synthesis or surface protein degradation, an extraordinary variety of peptides which are released outside bacteria and among which, some are pheromones that mediate cell-to-cell communication. The review aims at giving an updated overview of these peptide-dependant communication pathways. More specifically, it follows the whole peptide circuit from the peptide production and secretion in the extracellular medium to its interaction with sensors at bacterial surface or re-import into the bacteria where it plays its regulation role. In recent years, as we have accumulated more knowledge about these systems, it has become apparent that they are more complex than they first appeared. For this reason, more research on peptide-dependant pathways is needed to develop new strategies for controlling functions of interest in Gram-positive bacteria. In particular, such research could lead to alternatives to the use of antibiotics against pathogenic bacteria. In perspective, the review identifies new research questions that emerge in this field and that have to be addressed. PMID:25198780

  5. III. Organometallic and Bioorganometallic Chemistry - Ferrocene Peptides

    Directory of Open Access Journals (Sweden)

    Kovačević, M.

    2012-02-01

    Full Text Available This paper is devoted to the bioconjugates of ferrocene with naturally occuring amino acids/peptides - mostly dealing with authors' results accompanied, to a lesser degree, by the relevant literature data. Chapter 2 deals with natural peptides and peptidomimetics, mainly focusing on α-helix and β pleated sheet (as the most important elements of peptide secondary and tertiary structure, and artificial β-sheets nucleated by non-amino acid turn inducers. Chapter 3 describes peptides generated from ferrocenecarboxylic acid and ferroceneamine, as well as with the bioconjugates of heteroannulary substituted ferrocene-1,1'-dicarboxylic acid (Fcd and ferrocene-1,1'-diamine (Fcda. Chapter 4 elaborates authors' papers about peptides based on 1'-aminoferrocene-1-carboxylic acid (Fca. Chapter 5 is devoted to the new monosubstituted Fcd and Fcda conjugates with amino acids, while Chapter 6 describes our publications in the field of very topical peptidomimetics - ferrocene ureidopeptides and β peptides. Conformational analysis of the newly prepared ferrocene bioconjugates in solution and solid state was performed by means of spectroscopic methods (CD, IR, 1D- NMR, 2D-NMR, v. r. NMR, and temperature and concentration dependent NMR and DFT calculations.

  6. Interaction of antimicrobial peptides with lipid membranes

    International Nuclear Information System (INIS)

    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  7. Interaction of antimicrobial peptides with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanulova, Maria

    2008-12-15

    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  8. Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring.

    KAUST Repository

    Rydberg, Hanna A

    2014-04-18

    Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.

  9. Urodilatin. A renal natriuretic peptide

    International Nuclear Information System (INIS)

    Development and validation of a radioimmunoassay for endogenous URO in urine and synthetic URO in plasma is described. The first obstacle to overcome was to produce an antibody specific for URO. A polyclonal URO antibody with a cross-reactivity with the structural highly homologous atrial natriuretic peptide (ANP) was developed by immunization of rabbits with the whole URO(95-126). Purification of the polyclonal URO antiserum with CNBr-activated Sepharose affinity chromatography was a simple way of producing a URO-specific antibody without cross-reactivity with ANP analogues. A reliable 125I-labelled URO tracer was made with the Iodo-Gen method. Prior to the assay, the urine samples were prepared by ethanol with a recovery of unlabelled URO between 80 - 100% and the plasma samples were Sep-Pak C18 extracted with a recovery of about 50%. The radioimmunoassay is performed in 3 days, using polyethylene glycol for separation. The sensitivity of the assay was improved by sample preparation and concentration, reducing the amount of tracer and late addition, reducing the amount of antibody and increasing the incubation time and lowering the temperature of incubation. The infusion rate of 20 ng URO kg-1 min-1 was most potential and well tolerated in healthy subjects. The short-term natriuretic and diuretic effects were closely associated with a significant diminished sodium reabsorption in the distal nephron. Further studies are needed to exploit the therapeutical potential of URO, for example in patients with sodium-water retaining disorders. The therapeutical dose range will probably be narrow due to the blood pressure lowering effect of URO with infusion rates higher than 20-30 ng kg-1 min-1. (EHS)

  10. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen; Christensen, J.B.; Meijer, E.W.

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...

  11. Peptide segment ligation:A new method for synthesis of peptide and protein

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ The protein structure-function relationships are always highlighted in the field of life science. Protein synthesis from genomic sequence data is gaining significance in the "post-genomic era" of biomedical research by providing direct access to functional proteins. The manually or automatically stepwise solid phase peptide synthesis (SPPS) allows peptide of up to 60 residues to be routinely constructed in good yield and high purity[1,2]. The assembly of longer proteins via the gene engineering technology (e.g. recombinant DNA-based molecular biology or site- directed mutagenesis) and convergent peptide synthesis are necessary. Although the current biosynthetic method allows unnatural amino acids to be incorporated into proteins or peptides[3], only ?-peptide in the protein backbone can be obtained. A lot of problems associated with the classic convergent peptide synthesis approach, such as the poor solubility, inadequate purification techniques, and limited characterization methods with the fully protected segment[6]. However, totally chemical synthetic method can easily obtain ?- or ?-peptide[4] and even branch peptide[5].

  12. Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity

    DEFF Research Database (Denmark)

    Harndahl, Mikkel Nors; Rasmussen, Michael; Nielsen, Morten;

    2012-01-01

    Peptide-MHC class I stability is a stronger predictor of CTL immunogenicity than peptide affinity Mikkel Harndahla, Michael Rasmussena, Morten Nielsenb, Soren Buusa,∗ a Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Denmark b Center for Biological Seq...... al., 2007. J. Immunol. 178, 7890–7901. doi:10.1016/j.molimm.2012.02.025...

  13. Peptide biomarkers as evidence of perchlorate biodegradation.

    Science.gov (United States)

    Bansal, Reema; Crawford, Ronald L; Paszczynski, Andrzej J

    2011-02-01

    Perchlorate is a known health hazard for humans, fish, and other species. Therefore, it is important to assess the response of an ecosystem exposed to perchlorate contamination. The data reported here show that a liquid chromatography-mass spectrometry-based proteomics approach for the detection of perchlorate-reducing enzymes can be used to measure the ability of microorganisms to degrade perchlorate, including determining the current perchlorate degradation status. Signature peptides derived from chlorite dismutase (CD) and perchlorate reductase can be used as biomarkers of perchlorate presence and biodegradation. Four peptides each derived from CD and perchlorate reductase subunit A (PcrA) and seven peptides derived from perchlorate reductase subunit B (PcrB) were identified as signature biomarkers for perchlorate degradation, as these sequences are conserved in the majority of the pure and mixed perchlorate-degrading microbial cultures examined. However, chlorite dismutase signature biomarker peptides from Dechloromonas agitata CKB were found to be different from those in other cultures used and should also be included with selected CD biomarkers. The combination of these peptides derived from the two enzymes represents a promising perchlorate presence/biodegradation biomarker system. The biomarker peptides were detected at perchlorate concentrations as low as 0.1 mM and at different time points both in pure cultures and within perchlorate-reducing environmental enrichment consortia. The peptide biomarkers were also detected in the simultaneous presence of perchlorate and an alternate electron acceptor, nitrate. We believe that this technique can be useful for monitoring bioremediation processes for other anthropogenic environmental contaminants with known metabolic pathways. PMID:21115710

  14. Clinical relevance of intestinal peptide uptake

    Institute of Scientific and Technical Information of China (English)

    Hugh; James; Freeman

    2015-01-01

    AIM: To determine available information on an independent peptide transporter 1(Pep T1) and its potential relevance to treatment, this evaluation was completed.METHODS: Fully published English language literature articles sourced through Pub Med related to protein digestion and absorption, specifically human peptide and amino acid transport, were accessed and reviewed.Papers from 1970 to the present, with particular emphasis on the past decade, were examined. In addition,abstracted information translated to English in Pub Med was also included. Finally, studies and reviews relevant to nutrient or drug uptake, particularly in human intestine were included for evaluation. This work represents a summary of all of these studies with particular reference to peptide transporter mediated assimilation of nutrients and pharmacologically active medications.RESULTS: Assimilation of dietary protein in humans involves gastric and pancreatic enzyme hydrolysis to luminal oligopeptides and free amino acids. During the ensuing intestinal phase, these hydrolytic products are transported into the epithelial cell and, eventually, the portal vein. A critical component of this process is the uptake of intact di-peptides and tri-peptides by an independent Pep T1. A number of "peptide-mimetic" pharmaceutical agents may also be transported through this carrier, important for uptake of different antibiotics, antiviral agents and angiotensin-converting enzyme inhibitors. In addition, specific peptide products of intestinal bacteria may also be transported by Pep T1, with initiation and persistence of an immune response including increased cytokine production and associated intestinal inflammatory changes. Interestingly, these inflammatory changes may also be attenuated with orallyadministered anti-inflammatory tripeptides administered as site-specific nanoparticles and taken up by this Pep T1 transport protein. CONCLUSION: Further evaluation of the role of this transporter in treatment of

  15. A peptide & peptide nucleic acid synthesis technology for transporter molecules and theranostics--the SPPS.

    Science.gov (United States)

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  16. A Peptide & Peptide Nucleic Acid Synthesis Technology for Transporter Molecules and Theranostics - The SPPS

    Science.gov (United States)

    Pipkorn, Ruediger; Braun, Klaus; Wiessler, Manfred; Waldeck, Waldemar; Schrenk, Hans-Hermann; Koch, Mario; Semmler, Wolfhard; Komljenovic, Dorde

    2014-01-01

    Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods. Nowadays the solid phase synthesis (SPPS) chemistry emerges as a key technology and is considered as a promising methodology to design peptides for the investigation of molecular pharmacological processes at the transcriptional level. SPPS syntheses could be carried out in core facilities producing peptides for large-scale scientific implementations as presented here. PMID:24843319

  17. Urinary Peptide Levels in Patients with Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    Mungli Prakash

    2010-10-01

    Full Text Available Introduction: Peptide levels in urine are found to be decreased in renal failure. In the current study urinary peptide levels were determined in chronic renal failure (CRF patients. Method: 86 CRF patients and 80 healthy controls were selected for the study. Urinary proteins and peptide levels were determined by spectrophotometer based Lowry and Bradford methods. Urinary creatinine levels were determined by clinical chemistry analyzer. Results: There was significant decrease in urinary peptide levels in CRF patients and Urinary % peptides were significantly decreased in CRF patients as compared to healthy controls. Urinary % peptides correlated negatively with proteinuria. Conclusion: we have found decrease in urinary peptides and % urinary peptides in CRF patients and possibly measurement of % urinary peptides may possibly serve as better indicator in early detection of impairment in renal function.

  18. Selection of Genetic engineering peptide ligands for TNF receptor imaging

    International Nuclear Information System (INIS)

    Objective: To screen the peptide ligands of TNF receptor from phage 6-mer peptide library with the purpose of developing new peptides radiopharmaceuticals for TNF receptor imaging. Methods: The soluble protein of TNF receptor I (sTNFR I) was used to screen the TNF-specific epitopes from phage 6-mer peptide library. After four rounds of affinity screening, the peptides displayed on the selected phage were directly subjected to ELISA to determine their immunological activity to sTNFR. The amino acid sequences of the peptides with highest immunological activity were deduced through DNA sequencing. And their conserved sequences were further determined. Results: Peptides sequences mimicking TNF-specific epitopes were obtained. Conclusion: The short peptides sequences mimicking TNF -specific epitopes were successfully acquired. The method which was established in the present study may provide a feasible way in peptides radiopharmaceuticals development for TNF receptor imaging. (authors)

  19. Peptide pool immunization and CD8+ T cell reactivity

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Harndahl, Mikkel N; Buus, Anette Stryhn;

    2013-01-01

    peptide in the Elispot culture. Immunization with a mixture of the VSV-peptide and a "normal" peptide also resulted in IFNγ spot formation without addition of peptide to the assay culture. Peptide-tetramer staining of CD8(+) T cells from mice immunized with a mixture of VSV-peptide and "normal" peptide......Mice were immunized twice with a pool of five peptides selected among twenty 8-9-mer peptides for their ability to form stable complexes at 37°C with recombinant H-2K(b) (half-lives 10-15h). Vaccine-induced immunity of splenic CD8(+) T cells was studied in a 24h IFNγ Elispot assay. Surprisingly...... peptides induced normal peptide immunity i.e. the specific T cell reactivity in the Elispot culture was strictly dependent on exposure to the immunizing peptide ex vivo. However, immunization with two of the peptides, a VSV- and a Mycobacterium-derived peptide, resulted in IFNγ spot formation without...

  20. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  1. The Equilibrium Thermodynamics of Various Peptide Sequences

    Science.gov (United States)

    Yaşar, Fatih

    The equilibrium thermodynamic properties of two peptide sequences of β-casein in the α-helix regions were studied by three-dimensional molecular modeling in vacuum. All the three-dimensional conformations of each peptide sequences were obtained by multicanonical simulations using ECEPP/2 force field and each simulation was started from completely random initial conformation. No a-priori information about ground-state is used in the simulations. In the present study, we calculated the average values of total energy, specific heat, fourth-order cumulant for two peptide sequences of β-casein as a function of temperature. We observed that the specific heat shows two peaks as a function of temperature for both peptides. Because our sequences have highly helical structure and two peaks in the specific heat, we have also studied the helix-coil transitions to determine these peaks. Our data indeed show these peptides have highly helical structure and better agreement with the results of spectroscopic techniques and other prediction methods.

  2. Biosynthetic engineering of nonribosomal peptide synthetases.

    Science.gov (United States)

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  3. Glucagon-Like Peptide-1 Gene Therapy

    Directory of Open Access Journals (Sweden)

    Anne M. Rowzee

    2011-01-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.

  4. Peptide friction in water nanofilm on mica surface

    Institute of Scientific and Technical Information of China (English)

    Zhou Bo; Xiu Peng; Wang Chun-Lei; Fang Hai-Ping

    2012-01-01

    Peptide frictions in water nanofilms of various thicknesses on a mica surface are studied via molecular dynamics simulations.We find that the forced lateral motion of the peptide exhibits stick-slip behaviour at low water coverage;in contrast,the smooth gliding motion is observed at higher water coverage.The adsorbed peptide can form direct peptide-surface hydrogen bonds as well as indirect peptide-water-surface hydrogen bonds with the substrate. We propose that the stick-slip phenomenon is attributed to the overall effects of direct and indirect hydrogen bonds formed between the surface and the peptide.

  5. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  6. Glucagonlike Peptide 2 Analogue Teduglutide

    Science.gov (United States)

    Chaturvedi, Lakshmi S.; Basson, Marc D.

    2015-01-01

    IMPORTANCE Short bowel syndrome occurs when a shortened intestine cannot absorb sufficient nutrients or fluids. Teduglutide is a recombinant analogue of human glucagonlike peptide 2 that reduces dependence on parenteral nutrition in patients with short bowel syndrome by promoting enterocytic proliferation, increasing the absorptive surface area. However, enterocyte function depends not only on the number of cells that are present but also on differentiated features that facilitate nutrient absorption and digestion. OBJECTIVE To test the hypothesis that teduglutide impairs human intestinal epithelial differentiation. DESIGN AND SETTING We investigated the effects of teduglutide in the modulation of proliferation and differentiation in human Caco-2 intestinal epithelial cells at a basic science laboratory. This was an in vitro study using Caco-2 cells, a human-derived intestinal epithelial cell line commonly used to model enterocytic biology. EXPOSURE Cells were exposed to teduglutide or vehicle control. MAINOUTCOMESAND MEASURES We analyzed the cell cycle by bromodeoxyuridine incorporation or propidium iodide staining and flow cytometry and measured cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. We used quantitative reverse transcription–polymerase chain reaction to assay the expression of the enterocytic differentiation markers villin, sucrase-isomaltase, glucose transporter 2 (GLUT2), and dipeptidyl peptidase 4 (DPP-4), as well as that of the putative differentiation signals schlafen 12 (SLFN12) and caudal-related homeobox intestine-specific transcription factor (Cdx2). Villin promoter activity was measured by a luciferase-based assay. RESULTS The MTS assay demonstrated that teduglutide increased cell numbers by a mean (SD) of 10% (2%) over untreated controls at a maximal 500nM (n = 6, P < .05). Teduglutide increased bromodeoxyuridine-positive cells vs untreated controls by a mean (SD

  7. Anisotropic membrane curvature sensing by antibacterial peptides

    CERN Document Server

    Gómez-Llobregat, Jordi; Lindén, Martin

    2014-01-01

    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe a new approach to study curvature sensing, by simulating the direction-dependent interactions of single molecules with a buckled lipid bilayer. We analyze three antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. These findings provide new insights into the microscopic mechanisms of antimicrobial peptides, which might aid the development of new antibiotics. Our approach is generally applicable to a wide range of curvature sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane p...

  8. Anisotropic Membrane Curvature Sensing by Amphipathic Peptides.

    Science.gov (United States)

    Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin

    2016-01-01

    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins. PMID:26745422

  9. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain......Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development Udgivelsesdato: 2008...

  10. Peptide Based Radiopharmaceuticals: Specific Construct Approach

    Energy Technology Data Exchange (ETDEWEB)

    Som, P; Rhodes, B A; Sharma, S S

    1997-10-21

    The objective of this project was to develop receptor based peptides for diagnostic imaging and therapy. A series of peptides related to cell adhesion molecules (CAM) and immune regulation were designed for radiolabeling with 99mTc and evaluated in animal models as potential diagnostic imaging agents for various disease conditions such as thrombus (clot), acute kidney failure, and inflection/inflammation imaging. The peptides for this project were designed by the industrial partner, Palatin Technologies, (formerly Rhomed, Inc.) using various peptide design approaches including a newly developed rational computer assisted drug design (CADD) approach termed MIDAS (Metal ion Induced Distinctive Array of Structures). In this approach, the biological function domain and the 99mTc complexing domain are fused together so that structurally these domains are indistinguishable. This approach allows construction of conformationally rigid metallo-peptide molecules (similar to cyclic peptides) that are metabolically stable in-vivo. All the newly designed peptides were screened in various in vitro receptor binding and functional assays to identify a lead compound. The lead compounds were formulated in a one-step 99mTc labeling kit form which were studied by BNL for detailed in-vivo imaging using various animals models of human disease. Two main peptides usingMIDAS approach evolved and were investigated: RGD peptide for acute renal failure and an immunomodulatory peptide derived from tuftsin (RMT-1) for infection/inflammation imaging. Various RGD based metallopeptides were designed, synthesized and assayed for their efficacy in inhibiting ADP-induced human platelet aggregation. Most of these peptides displayed biological activity in the 1-100 µM range. Based on previous work by others, RGD-I and RGD-II were evaluated in animal models of acute renal failure. These earlier studies showed that after acute ischemic injury the renal cortex displays

  11. Metal Ion Controlled Polymorphism of a Peptide

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Jancso, Attila; Szunyogh, Daniel; Larsen, Flemming Hofmann; Thulstrup, Peter Waaben; Christensen, Niels Johan; Gyurcsik, Bela

    2011-01-01

    In this work a metal ion binding model dodecapeptide was investigated in terms of its capacity to adopt different structures depending on the metal ion to peptide stoichiometry. The dodecapeptide is much simpler than real proteins, yet displays sufficient complexity to model the effect of metal...... ions on fully or partially unstructured proteins, or the effect of metal ions on protein aggregation. Metal ions may be employed to fold (or misfold) individual peptides in a controlled manner depending on the potential metal ion coordinating amino acid side chains (Cys, His, Asp, Glu, …) in the...... peptide, and the ligand and structural preferences of the metal ion (in our studies Zn2+, Cd2+, Hg2+, Cu+/2+). Simultaneously, new species such as metal ion bridged ternary complexes or even oligomers may be formed. In recent previous studies we have observed similar polymorphism of zinc finger model...

  12. Peptides as catalysts in the RNA world

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Luisi, Pier Luigi;

    the RNA world concept. Contrary to RNA building blocks, amino acids form quite easily in simulated prebiotic reactions. Also, many prebiotic scenarios for condensation of amino acids into peptides have been proposed and successfully demonstrated experimentally (Rode 1999). We also have growing body of...... experimental evidence showing various catalytic activities associated with short chain peptides, some of them as small as dipeptides. One such peptide, composed of only two amino acid residues; serine and histidine, was reported to exhibit broad hydrolytic activities. The dipeptide SerHis can catalyze the...... hydrolysis of esters, proteins and nucleic acids (Li et al. 2000). The direction of the catalysis either toward hydrolysis or condensation is determined by thermodynamic constraints. In an aqueous medium (a general requirement for prebiotically compatible reactions), hydrolysis is thermodynamically favored...

  13. Design and Application of Antimicrobial Peptide Conjugates.

    Science.gov (United States)

    Reinhardt, Andre; Neundorf, Ines

    2016-01-01

    Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry. PMID:27187357

  14. Silica precipitation with synthetic silaffin peptides.

    Science.gov (United States)

    Wieneke, Ralph; Bernecker, Anja; Riedel, Radostan; Sumper, Manfred; Steinem, Claudia; Geyer, Armin

    2011-08-01

    Silaffins are highly charged proteins which are one of the major contributing compounds that are thought to be responsible for the formation of the hierarchically structured silica-based cell walls of diatoms. Here we describe the synthesis of an oligo-propyleneamine substituted lysine derivative and its incorporation into the KXXK peptide motif occurring repeatedly in silaffins. N(ε)-alkylation of lysine was achieved by a Mitsunobu reaction to obtain a protected lysine derivative which is convenient for solid phase peptide synthesis. Quantitative silica precipitation experiments together with structural information about the precipitated silica structures gained by scanning electron microscopy revealed a dependence of the amount and form of the silica precipitates on the peptide structure. PMID:21674108

  15. Design and Application of Antimicrobial Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Andre Reinhardt

    2016-05-01

    Full Text Available Antimicrobial peptides (AMPs are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.

  16. Diagnostic and immunoprophylactic applications of synthetic peptides in veterinary microbiology

    Directory of Open Access Journals (Sweden)

    Saravanan Paramasivam

    2009-10-01

    Full Text Available Chemically synthesized peptides are considered as potential reagents for various applications in biological sciences. They mimic naturally occurring peptides or segments of proteins and have emerged as diagnostic reagents and safe immunogens in animal science. Carefully selected peptides resembling authentic epitopes serve as synthetic antigens in diagnostic tests. Synthetic peptide-based vaccines can elicit antibodies against animal pathogens. The early use of synthetic peptides as a vaccine for foot-and-mouth disease stimulated interest in the development of peptide-based diagnostics and immunoprophylactics. The development of a peptide vaccine for canine parvovirus confirmed the usefulness of peptides as immunoprophylactics. Recently, the advent of the technology for the development of multiple antigenic peptides (MAPs has provided a well-defined method for the production of highly immunogenic peptides and anti-peptide antibodies. Antibodies raised against major epitopes can be used in the detection of the native antigen (virus in the enzyme-linked immunosorbent assay (ELISA and other tests, vindicating the usefulness of peptides for safe, chemically defined, non-infectious diagnostics and immunoprophylactics. This article focuses on the methods for selecting and preparing peptides for the predicted epitopes, their characterization and use, and the application of MAPs.

  17. Interactions at the Peptide/Silicon Surfaces: Evidence of Peptide Multilayer Assembly.

    Science.gov (United States)

    Pápa, Zsuzsanna; Ramakrishnan, Sathish Kumar; Martin, Marta; Cloitre, Thierry; Zimányi, László; Márquez, Jessica; Budai, Judit; Tóth, Zsolt; Gergely, Csilla

    2016-07-19

    Selective deposition of peptides from liquid solutions to n- and p-doped silicon has been demonstrated. The selectivity is governed by peptide/silicon adhesion differences. A noninvasive, fast characterization of the obtained peptide layers is required to promote their application for interfacing silicon-based devices with biological material. In this study we show that spectroscopic ellipsometry-a method increasingly used for the investigation of biointerfaces-can provide essential information about the amount of adsorbed peptide material and the degree of coverage on silicon surfaces. We observed the formation of peptide multilayers for a strongly binding adhesion peptide on p-doped silicon. Application of the patterned layer ellipsometric evaluation method combined with Sellmeier dispersion led to physically consistent results, which describe well the optical properties of peptide layers in the visible spectral range. This evaluation allowed the estimation of surface coverage, which is an important indicator of adsorption quality. The ellipsometric findings were well supported by atomic force microscopy results. PMID:27315212

  18. Aerosolized Medications for Gene and Peptide Therapy.

    Science.gov (United States)

    Laube, Beth L

    2015-06-01

    Inhalation therapy has matured to include drugs that: (1) deliver nucleic acids that either lead to the restoration of a gene construct or protein coding sequence in a population of cells or suppress or disrupt production of an abnormal gene product (gene therapy); (2) deliver peptides that target lung diseases such as asthma, sarcoidosis, pulmonary hypertension, and cystic fibrosis; and (3) deliver peptides to treat diseases outside the lung whose target is the systemic circulation (systemic drug delivery). These newer applications for aerosol therapy are the focus of this paper, and I discuss the status of each and the challenges that remain to their successful development. Drugs that are highlighted include: small interfering ribonucleic acid to treat lung cancer and Mycobacterium tuberculosis; vectors carrying the normal alpha-1 antitrypsin gene to treat alpha-1 antitrypsin deficiency; vectors carrying the normal cystic fibrosis transmembrane conductance regulator gene to treat cystic fibrosis; vasoactive intestinal peptide to treat asthma, pulmonary hypertension, and sarcoidosis; glutathione to treat cystic fibrosis; granulocyte-macrophage colony-stimulating factor to treat pulmonary alveolar proteinosis; calcitonin for postmenopausal osteoporosis; and insulin to treat diabetes. The success of these new aerosol applications will depend on many factors, such as: (1) developing gene therapy formulations that are safe for acute and chronic administrations to the lung, (2) improving the delivery of the genetic material beyond the airway mucus barrier and cell membrane and transferring the material to the cell cytoplasm or the cell nucleus, (3) developing aerosol devices that efficiently deliver genetic material and peptides to their lung targets over a short period of time, (4) developing devices that increase aerosol delivery to the lungs of infants, (5) optimizing the bioavailability of systemically delivered peptides, and (6) developing peptide formulations for

  19. Selection of trkB-binding peptides from a phage-displayed random peptide library

    Institute of Scientific and Technical Information of China (English)

    马仲才; 吴晓兰; 曹明媚; 潘卫; 朱分禄; 陈景山; 戚中田

    2003-01-01

    Brain-derived neurotrophic factor (BDNF) shows potential in the treatment of neurodegenerative diseases, but the therapeutic application of BDNF has been greatly limited because it is too large in molecular size to permeate blood-brain barrier. To develop low-molecular-weight BDNF-like peptides, we selected a phage-displayed random peptide library using trkB expressed on NIH 3T3 cells as target in the study. With the strategy of peptide library incubation with NIH 3T3 cells and competitive elution with 1 υg/mL of BDNF in the last round of selection, the specific phages able to bind to the natural conformation of trkB and antagonize BDNF binding to trkB were enriched effectively. Five trkB-binding peptides were obtained, in which a core sequence of CRA/TXφXXφXXC (X represents the random amino acids, φ represents T, L or I) was identified. The BDNF-like activity of these five peptides displayed on phages was not observed, though all of them antagonized the activity of BDNF in a dose-dependent manner. Similar results were obtained with the synthetic peptide of C1 clone, indicating that the 5 phage-derived peptides were trkB antagonists. These low-molecular-weight antagonists of trkB may be of potential application in the treatment of neuroblastoma and chronic pain. Meanwhile, the obtained core sequence also could be used as the base to construct the secondary phage-displayed peptide library for further development of small peptides mimicking BDNF activity.

  20. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang;

    2014-01-01

    pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and...

  1. Radioimmunoassay for C-peptide and proinsulin

    International Nuclear Information System (INIS)

    Proinsulin, the biosynthetic precursor of insulin, was discovered by Steiner et al. (1967) and shown to be converted to insulin and C-peptide in the β-cell. The first part of this paper deals with aspects of the radioimmunoassay for C-peptide with special emphasis on the development and the sources of errors encountered in our laboratory (Heding, 1975; Naithani et al., 1975). The second part deals with the many problems involved in the determination of human proinsulin and describes a direct and specific radioimmunoassay developed for measuring proinsulin in serum with a detection limit of less than 0.01 pmol/ml. (Auth.)

  2. Minimizing acylation of peptides in PLGA microspheres

    OpenAIRE

    Zhang, Ying; Schwendeman, Steven P.

    2012-01-01

    The main objective of this study was to characterize and find mechanisms to prevent acylation of therapeutic peptides encapsulated in glucose-star poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. The effect of addition of divalent cation salts CaCl2, MnCl2 as well as carboxymethyl chitosan (CMCS) on inhibition of acylation of octreotide (Oct), salmon calcitonin (sCT), and human parathyroid hormone (hPTH) was evaluated. Peptide content and integrity inside the degrading microspheres was ...

  3. Novel endogenous peptide agonists of cannabinoid receptors

    OpenAIRE

    Gomes, Ivone; Grushko, Julia S.; Golebiewska, Urszula; Hoogendoorn, Sascha; Gupta, Achla; Heimann, Andrea S.; Ferro, Emer S.; Scarlata, Suzanne; Fricker, Lloyd D.; Devi, Lakshmi A.

    2009-01-01

    Hemopressin (Hp), a 9-residue α-hemoglobin-derived peptide, was previously reported to function as a CB1 cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N-terminally extended forms of Hp containing either three (RVD-Hpα) or two (VD-Hpα) additional amino acids, as well as a β-hemoglobin-derived peptide with sequence similarity to that of hemopressin (VD-Hpβ). Characterization of the α-he...

  4. Analysis of antimicrobial peptides by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Ehala, Sille; Niederhafner, Petr; Čeřovský, Václav; Řezanka, P.; Sýkora, D.; Král, V.; Kašička, Václav

    Praha : Institute of Organic Chemistry and Biochemistry AS CR, v. v. i, 2011 - (Slaninová, J.), s. 37-40 ISBN 978-80-86241-44-9. - (Collection Symposium Series. 13). [Biologically Active Peptides /12./. Praha (CZ), 27.04.2011-29.04.2011] R&D Projects: GA ČR(CZ) GA203/09/0675; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z40550506 Keywords : capillary electrophoresis * antimicrobial peptides * gold nanoparticles Subject RIV: CC - Organic Chemistry

  5. [Antimicrobial peptide in dentisty. Literature review].

    Science.gov (United States)

    Sato, F Simain; Rompen, E; Heinen, E

    2009-12-01

    The use of antimicrobial substances has contributed to the development of multiple antimicrobial resistances (1), challenging the pharmaceutical industry to develop with new, innovative, and effective molecules. Discovered around 1980, molecules called natural antimicrobial peptides (AMPs) appear to hold great potential for the treatment of infections. These cationic peptides are able to stop the bacterial development and to control infections. The purpose of this review is to help improve the understanding of the way AMPs operate in the context of the development of new cures against viruses, bacteria, and mushrooms found in the human body in general and in the oral cavity in particular. PMID:20143750

  6. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  7. A Candida albicans PeptideAtlas

    OpenAIRE

    Vialas, Vital; Sun, Zhi; Loureiro y Penha, Carla Verónica; Carrascal, Montserrat; Abián, Joaquín; Monteoliva, Lucía; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Gil, Concha

    2014-01-01

    Candida albicans public proteomic datasets, though growing steadily in the last few years, still have a very limited presence in online repositories. We report here the creation of a C. albicans PeptideAtlas comprising near 22,000 distinct peptides at a 0.24% False Discovery Rate (FDR) that account for over 2500 canonical proteins at a 1.2% FDR. Based on data from 16 experiments, we attained coverage of 41% of the C. albicans open reading frame sequences (ORFs) in the database used for the se...

  8. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta......-amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area...

  9. Stable Peptides Instead of Stapled Peptides: Highly Potent αvβ6-Selective Integrin Ligands.

    Science.gov (United States)

    Maltsev, Oleg V; Marelli, Udaya Kiran; Kapp, Tobias G; Di Leva, Francesco Saverio; Di Maro, Salvatore; Nieberler, Markus; Reuning, Ute; Schwaiger, Markus; Novellino, Ettore; Marinelli, Luciana; Kessler, Horst

    2016-01-22

    The αvβ6 integrin binds the RGD-containing peptide of the foot and mouth disease virus with high selectivity. In this study, the long binding helix of this ligand was downsized to an enzymatically stable cyclic peptide endowed with sub-nanomolar binding affinity toward the αvβ6 receptor and remarkable selectivity against other integrins. Computational studies were performed to disclose the molecular bases underlying the high binding affinity and receptor subtype selectivity of this peptide. Finally, the utility of the ligand for use in biomedical studies was also demonstrated here. PMID:26663660

  10. Calcitonin gene-related peptide (CGRP), peptide YY (PYY) gastrin releasing peptide (GRP) and others in hamster lung and plasma

    International Nuclear Information System (INIS)

    Rabbit antisera to CGRP, PYY, neuropeptide Y (NPY) and GRP were used for immunocytochemical localization of these peptides in lungs of neonate hamsters at birth and 6 d of age and young (70 gm) and adult (107 gm) hamsters. The peroxidase-antiperoxidase method was applied to paraffin sections of tissue fixed in Bouin's or Zamboni's solution. Furthermore, radioimmunoassay (RIA) was used to quantify these peptides in lung tissue and plasma from the young hamsters (n=13). Distinct CGRP-like immunoreactivity (IR) was noted in grouped (NEB) and individual (NEC) neuroendocrine cells at all ages including all airways from trachea (NECs only) to alveoli. In some NEBs this IR coexisted with 5-HT-like IR. PYY- and NPY-like Ir was mainly noted in NEBs and NECs at the level of bronchioles and alveoli, and weak GRP-like IR was present in neuroendocrine-like cells of small airways. Measurable quantities of all peptides were recorded by RIA. Females had higher lung and plasma levels of CGRP and plasma levels of PYY than males and tended to have higher lung levels of GRP. The neuropeptides CGRP, PYY and the analog NPY are putative regulators of local pulmonary blood flow by vasodilation (CGRP) and constriction (PYY, NPY), and GRP is known to regulate peptide release

  11. Helical synthetic peptides that stimulate cellular cholesterol efflux

    Science.gov (United States)

    Bielicki, John K.; Natarajan, Pradeep

    2010-04-06

    The present invention provides peptides comprising at least one amphipathic alpha helix and having an cholesterol mediating activity and a ABCA stabilization activity. The invention further provides methods of using such peptides.

  12. B-type natriuretic peptide secretion following scuba diving

    DEFF Research Database (Denmark)

    Passino, Claudio; Franzino, Enrico; Giannoni, Alberto;

    2011-01-01

    To examine the neurohormonal effects of a scuba dive, focusing on the acute changes in the plasma concentrations of the different peptide fragments from the B-type natriuretic peptide (BNP) precursor.......To examine the neurohormonal effects of a scuba dive, focusing on the acute changes in the plasma concentrations of the different peptide fragments from the B-type natriuretic peptide (BNP) precursor....

  13. Highly flexible protein-peptide docking using CABS-dock

    OpenAIRE

    Ciemny, Maciej Pawel; Kurcinski, Mateusz; Kozak, Konrad Jakub; Kolinski, Andrzej; Kmiecik, Sebastian

    2016-01-01

    Protein-peptide molecular docking is a difficult modeling problem. It is even more challenging when significant conformational changes that may occur during the binding process need to be predicted. In this chapter, we demonstrate the capabilities and features of the CABS-dock server for flexible protein-peptide docking. CABS-dock allows highly efficient modeling of full peptide flexibility and significant flexibility of a protein receptor. During CABS-dock docking, the peptide folding and bi...

  14. Cancer Treatment Using Peptides: Current Therapies and Future Prospects

    OpenAIRE

    Jyothi Thundimadathil

    2012-01-01

    This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to convent...

  15. Porcine parvovirus removal using trimer and biased hexamer peptides

    OpenAIRE

    Heldt, Caryn L.; Gurgel, Patrick V.; Jaykus, Lee-Ann; Carbonell, Ruben G.

    2011-01-01

    Assuring the microbiological safety of biological therapeutics remains an important concern. Our group has recently reported small trimeric peptides that have the ability to bind and remove a model non-enveloped virus, porcine parvovirus (PPV), from complex solutions containing human blood plasma. In an effort to improve the removal efficiency of these small peptides, we created a biased library of hexamer peptides that contain two previously reported trimeric peptides designated WRW and KYY....

  16. Post-Translational Modifications in Secreted Peptide Hormones in Plants

    OpenAIRE

    Matsubayashi, Yoshikatsu

    2010-01-01

    More than a dozen secreted peptides are now recognized as important hormones that coordinate and specify cellular functions in plants. Recent evidence has shown that secreted peptide hormones often undergo post-translational modification and proteolytic processing, which are critical for their function. Such ‘small post-translationally modified peptide hormones’ constitute one of the largest groups of peptide hormones in plants. This short review highlights recent progress in research on post...

  17. A common landscape for membrane-active peptides

    OpenAIRE

    Last, Nicholas B.; Schlamadinger, Diana E.; Miranker, Andrew D.

    2013-01-01

    Three families of membrane-active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes. Preamyloid states of these peptides can act as toxins by binding to and permeabilizing cellular membranes...

  18. Peptide Profile of Low-Fat Edam Cheese

    OpenAIRE

    Erdoğan KÜÇÜKÖNER

    1998-01-01

    Low-fat Edam cheese was manufactured using conventional cheese-making procedures using low-fat milk (1.5% fat). The cheese samples were aged for six months at 5 to 6°C. The cheese was analyzed for biochemical characteristics and peptide content. The peptide contents were determined with reverse phase chromatography. The association property of proteins and peptides in the soluble fraction of the cheese was determined using hydrophobic interaction chromatography. The overall peptide quantit...

  19. Microwave heating in solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg; Shelton, Anne Pernille Tofteng; Malik, Leila; Jensen, Knud Jørgen

    2012-01-01

    not a panacea for all difficulties in peptide syntheses and the conditions may need to be adjusted for the incorporation of Cys, His and Asp in peptides, and for the synthesis of, for example, phosphopeptides, glycopeptides, and N-methylated peptides. Here we provide a comprehensive overview of the...

  20. Targeting and Therapeutic Peptides in Nanomedicine for Atherosclerosis

    OpenAIRE

    Chung, Eun Ji

    2016-01-01

    Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality, and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo. In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis are provided, including peptides designed for cellular targets such as ...

  1. Nanostructure formation enhances the activity of LPS-neutralizing peptides.

    NARCIS (Netherlands)

    Mas-Moruno, C.; Cascales, L.; Cruz, L.J.; Mora, P.; Perez-Paya, E.; Albericio, F.

    2008-01-01

    Peptides that interact with lipopolysaccharide (LPS) can provide the basis for the development of new antisepsis agents. In this work, several LPS-neutralizing acyl peptides derived from LALF, BPI, and SAP were prepared, structurally characterized, and biologically evaluated. In all cases, peptides

  2. Cleaving Double-Stranded DNA with Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1997-01-01

    Peptide nucleic acids and analogues of peptide nucleic acids are used to form duplex, triplex, and other structures with nucleic acids and to modify nucleic acids. The peptide nucleic acids and analogues thereof also are used to modulate protein activity through, for example, transcription arrest...

  3. Facilitating protein solubility by use of peptide extensions

    Science.gov (United States)

    Freimuth, Paul I; Zhang, Yian-Biao; Howitt, Jason

    2013-09-17

    Expression vectors for expression of a protein or polypeptide of interest as a fusion product composed of the protein or polypeptide of interest fused at one terminus to a solubility enhancing peptide extension are provided. Sequences encoding the peptide extensions are provided. The invention further comprises antibodies which bind specifically to one or more of the solubility enhancing peptide extensions.

  4. Practical application of natriuretic peptides in paediatric cardiology

    DEFF Research Database (Denmark)

    Smith, Julie; Goetze, Jens P; Andersen, Claus B;

    2010-01-01

    diagnostic tools. Natriuretic peptide measurements could be that extra tool. We discuss and suggest N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide reference intervals for children without cardiovascular disease and cut-off points for the four specific paediatric heart conditions. We...

  5. Novel Zn2+-chelating peptides selected from a fimbria-displayed random peptide library

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Schembri, Mark; Klemm, Per

    2001-01-01

    H adhesin. FimH is a component of the fimbrial organelle that can accommodate and display a diverse range of peptide sequences on the E. coli cell surface. In this study we have constructed a random peptide library in FimH. The library, consisting of similar to 40 million individual clones, was screened for...... completely novel Zn2+-binding peptide sequences had been isolated. By changing the protein scaffold system, we demonstrated that the Zn2+-binding seems to be uniquely mediated by the peptide insert and to be independent of the sequence of the carrier protein. These findings might be applied in the design of...... biomatrices for bioremediation purposes or in the development of sensors for detection of heavy metals....

  6. Peptide specific expansion of CD8(+) T cells by recombinant plate bound MHC/peptide complexes

    DEFF Research Database (Denmark)

    Schmidt, Esben G W; Buus, Soren; Thorn, Mette;

    2009-01-01

    in vitro T cell stimulation was investigated. By use of an antigenic peptide derived from the cytomegalovirus (CMVp) we tested the stimulatory efficacy of recombinant plate bound MHC molecules (PB-MHC), being immobilized in culture plates. A single stimulation of non-adherent peripheral blood...... effect of new stimulatory cocktails, e.g. cytokines and co-stimulatory molecules, by use of the present rapid and easy-to-use method of expanding peptide specific T cells.......Development of methods for efficient in vitro stimulation and expansion of peptide specific CD8(+) T cells is compelling not only with respect to adoptive T cell therapy but also regarding analysis of T cell responses and search for new immunogenic peptides. In the present study, a new approach to...

  7. Metabolism and pharmacokinetic of cyclo-peptides and peptides. Use of radioelement and stable isotopes

    International Nuclear Information System (INIS)

    More and more peptides and proteins are used in therapeutic. Three mainly techniques are used for pharmacokinetic and metabolism studies: immunoassay, radioactively labeled molecules and mass spectrometry. In the first part of this work, we have used uniformly labelled peptides (C-peptide and insulin) with stables (13C, 15N, and 13C/15N) or radioactive (14C) isotopes to investigated these kind of studies. These works are based on isotope dilution mass spectrometry assay. In a second time we have investigated the metabolism of a particular cyclo-peptides families composed of two amino acids: the diketo-piperazine. These compounds are found in mammals and in microorganisms. There are not recognized by proteolytic enzymes. We have estimated if the main enzymes implicated in the metabolism of xenobiotics, the P450 cytochrome mono-oxygenases, were able to recognized them

  8. Peptide Amphiphiles in Corneal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Martina Miotto

    2015-08-01

    Full Text Available The increasing interest in effort towards creating alternative therapies have led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues. This has been particularly evident in the development of new approaches applied to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a response to the shortage of donor tissue and the lack of suitable alternative biological scaffolds preventing the treatment of millions of blind people worldwide. This review is focused on recent developments in corneal tissue engineering, specifically on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide amphiphiles have generated great interest as therapeutic molecules, both in vitro and in vivo. Here we introduce this rapidly developing field, and examine innovative applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue in vitro. The advantages of peptide amphiphiles over other biomaterials, namely their wide range of functions and applications, versatility, and transferability are also discussed to better understand how these fascinating molecules can help solve current challenges in corneal regeneration.

  9. Immunodiagnosis of parasitic diseases with synthetic peptides.

    Science.gov (United States)

    Noya, O; Patarroyo, M E; Guzmán, F; Alarcón de Noya, B

    2003-08-01

    Parasitic diseases remain as a major public health problem worldwide, not only based on their historically high morbidity and mortality rates, but also because risk factors associated with their transmission are increasing. Laboratory diagnosis and particularly immunodiagnosis is a basic tool for the demonstration, clinical management and control of these infections. Classically, the serological tests for the detection of antibodies or antigens are based on the use of crude and purified antigens. Synthetic peptides have opened a new field and perspectives, as the source of pure epitopes and molecules for diagnosis of malaria, Chagas' disease, leishmaniasis, schistosomiasis, hidatidosis, cysticercosis and fasciolosis based on the detection of antibodies and circulating antigens. Herein, are critically reviewed the relevant advances and applications of the synthetic peptides on immunodiagnosis of parasitic diseases. A variety of sequences, constructs (monomers, polymers, MAPs), immunological methods and samples have been used, demonstrating their diagnostic potential. However, in most parasitic infections it is necessary to use more than a single peptide in order to avoid the genetic restriction against certain epitopes, as well as to test them in well characteized groups of patients, in order to confirm their sensitivity and specificity. The concept of multidiagnosis with synthetic peptides, using a novel multi-dot blot assay is introduced. Finally, the chemical imitation of antigens, offers a tremendous posibilities in the diagnosis of parasitic infections in developing countries since this strategy is cheaper, simpler, reproducible, useful for large scale testing and in most cases, specific and sensitive. PMID:14529537

  10. Beyond Cell Penetrating Peptides: Designed Molecular Transporters

    OpenAIRE

    Wender, Paul A.; Cooley, Christina B.; Geihe, Erika I.

    2012-01-01

    Inspired originally by peptides that traverse biological barriers, research on molecular transporters has since identified the key structural requirements that govern cellular entry, leading to new, significantly more effective and more readily available agents. These new drug delivery systems enable or enhance cellular and tissue uptake, can be targeted, and provide numerous additional advantages of significance in imaging, diagnostics and therapy.

  11. Chemical labeling of electrochemically cleaved peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer P. H.

    2013-01-01

    RATIONALE Cleavage of peptide bonds C-terminal to tyrosine and tryptophan after electrochemical oxidation may become a complementary approach to chemical and enzymatic cleavage. A chemical labeling approach specifically targeting reactive cleavage products is presented here and constitutes a promisi

  12. Computer-Aided Design of Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Hancock, Robert E.W.; Jenssen, Håvard

    2010-01-01

    An increasing number of reported cases of drug resistant Staphylococcus aureus and Pseudomonas aeruginosa, demonstrate the urgent need for new therapeutics that are effective against such and other multi-drug resistant bacteria. Antimicrobial peptides have for two decades now been looked upon as...

  13. Stereocontrolled Synthesis of Methyl Silanediol Peptide Mimics

    DEFF Research Database (Denmark)

    Nielsen, Lone; Lindsay, Karl; Faber, Jesper;

    2007-01-01

    methanolic HCl and the resulting amine extended into peptide chains accordingly. The diphenylsilyl moiety is a resilient protecting group for the corresponding silanediol, which can be unmasked via treatment with TfOH, followed by aqueous hydrolysis. The crude silanediol may be isolated and purified as its...

  14. Apelin is a novel islet peptide

    DEFF Research Database (Denmark)

    Ringström, Camilla; Nitert, Marloes Dekker; Bennet, Hedvig;

    2010-01-01

    Apelin, a recently discovered peptide with wide tissue distribution, regulates feeding behavior, improves glucose utilization, and inhibits insulin secretion. We examined whether apelin is expressed in human islets, as well as in normal and type 2 diabetic (T2D) animal islets. Further, we studied...

  15. Kardiologiske aspekter af glukagonlignende peptid 1

    DEFF Research Database (Denmark)

    Elvekjaer, Mikkel; Engstrøm, Thomas; Jensen, Jan Skov; Treiman, Marek

    2010-01-01

    Increasing experimental evidence points to direct effects of glucagon-like peptide-1 (GLP-1) and its analogs on the heart and circulatory system, in addition to the well-established, antidiabetic actions of these agents on glucose and on the energy metabolism. These effects are primarily...

  16. Classification of antimicrobial peptides with imbalanced datasets

    Science.gov (United States)

    Camacho, Francy L.; Torres, Rodrigo; Ramos Pollán, Raúl

    2015-12-01

    In the last years, pattern recognition has been applied to several fields for solving multiple problems in science and technology as for example in protein prediction. This methodology can be useful for prediction of activity of biological molecules, e.g. for determination of antimicrobial activity of synthetic and natural peptides. In this work, we evaluate the performance of different physico-chemical properties of peptides (descriptors groups) in the presence of imbalanced data sets, when facing the task of detecting whether a peptide has antimicrobial activity. We evaluate undersampling and class weighting techniques to deal with the class imbalance with different classification methods and descriptor groups. Our classification model showed an estimated precision of 96% showing that descriptors used to codify the amino acid sequences contain enough information to correlate the peptides sequences with their antimicrobial activity by means of learning machines. Moreover, we show how certain descriptor groups (pseudoaminoacid composition type I) work better with imbalanced datasets while others (dipeptide composition) work better with balanced ones.

  17. Biofilm Induced Tolerance Towards Antimicrobial Peptides

    DEFF Research Database (Denmark)

    Folkesson, Anders; Haagensen, Janus Anders Juul; Zampaloni, Claudia;

    2008-01-01

    presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of...

  18. Ultrafast Hemithioindigo-based peptide-switches

    NARCIS (Netherlands)

    Cordes, Thorben; Elsner, Cord; Herzog, Teja T.; Hoppmann, Christian; Schadendorf, Torsten; Summerer, Wolfram; Rück-Braun, Karola; Zinth, Wolfgang

    2009-01-01

    Four newly synthesized Hemithioindigo-based peptide-switches with changing meta/para-substitution-pattern within the stilbene-part of the molecule are characterized with time-resolved absorption spectroscopy. The different substances undergo a light-induced Z/E-isomerization: the reaction proceeds o

  19. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local in

  20. Exhaustively sampling peptide adsorption with metadynamics.

    Science.gov (United States)

    Deighan, Michael; Pfaendtner, Jim

    2013-06-25

    Simulating the adsorption of a peptide or protein and obtaining quantitative estimates of thermodynamic observables remains challenging for many reasons. One reason is the dearth of molecular scale experimental data available for validating such computational models. We also lack simulation methodologies that effectively address the dual challenges of simulating protein adsorption: overcoming strong surface binding and sampling conformational changes. Unbiased classical simulations do not address either of these challenges. Previous attempts that apply enhanced sampling generally focus on only one of the two issues, leaving the other to chance or brute force computing. To improve our ability to accurately resolve adsorbed protein orientation and conformational states, we have applied the Parallel Tempering Metadynamics in the Well-Tempered Ensemble (PTMetaD-WTE) method to several explicitly solvated protein/surface systems. We simulated the adsorption behavior of two peptides, LKα14 and LKβ15, onto two self-assembled monolayer (SAM) surfaces with carboxyl and methyl terminal functionalities. PTMetaD-WTE proved effective at achieving rapid convergence of the simulations, whose results elucidated different aspects of peptide adsorption including: binding free energies, side chain orientations, and preferred conformations. We investigated how specific molecular features of the surface/protein interface change the shape of the multidimensional peptide binding free energy landscape. Additionally, we compared our enhanced sampling technique with umbrella sampling and also evaluated three commonly used molecular dynamics force fields. PMID:23706011

  1. Application of Fungal Cyclic Peptides and Metabolites

    Czech Academy of Sciences Publication Activity Database

    Nedvěd, Jan; Šulc, Miroslav; Jegorov, A.; Giannakopulos, A.; Havlíček, Vladimír

    Weinheim : Wiley, 2008 - (Van Eyk, J.; Dunn, M.), s. 483-509 ISBN 978-3-527-31637-3 R&D Projects: GA MŠk LC07017; GA ČR GA203/04/0799 Institutional research plan: CEZ:AV0Z50200510 Keywords : cyclic peptides * mass spectromety * fungal Subject RIV: EE - Microbiology, Virology

  2. Method of producing a peptide mixture

    DEFF Research Database (Denmark)

    2000-01-01

    The present invention relates to a method for industrial production of a peptide preparation having specific specifications by hydrolysis of a protein material, preferably based on whey. The method comprises several steps, which makes it easy to control the method so as to obtain a product which, e...

  3. Release of opioid peptides in anaesthetized cats?

    OpenAIRE

    Dashwood, M. R.; Feldberg, W.

    1980-01-01

    1 The effect on arterial blood pressure of intravenous injections of naloxone (200 μg) was examined in cats anaesthetized with chloralose. Usually these injections have no effect on blood pressure unless morphine or opioid peptides have been injected, when they produce a pressor response with tachycardia.

  4. Peptide Hormones in the Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Rehfeld, Jens F.

    2015-01-01

    Gastrointestinal hormones are peptides released from endocrine cells and neurons in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gastrointestinal tract, which makes the gut the largest hormone-producing organ in the body. Modern biology makes it feasi...

  5. Structural pattern matching of nonribosomal peptides

    Directory of Open Access Journals (Sweden)

    Leclère Valérie

    2009-03-01

    Full Text Available Abstract Background Nonribosomal peptides (NRPs, bioactive secondary metabolites produced by many microorganisms, show a broad range of important biological activities (e.g. antibiotics, immunosuppressants, antitumor agents. NRPs are mainly composed of amino acids but their primary structure is not always linear and can contain cycles or branchings. Furthermore, there are several hundred different monomers that can be incorporated into NRPs. The NORINE database, the first resource entirely dedicated to NRPs, currently stores more than 700 NRPs annotated with their monomeric peptide structure encoded by undirected labeled graphs. This opens a way to a systematic analysis of structural patterns occurring in NRPs. Such studies can investigate the functional role of some monomeric chains, or analyse NRPs that have been computationally predicted from the synthetase protein sequence. A basic operation in such analyses is the search for a given structural pattern in the database. Results We developed an efficient method that allows for a quick search for a structural pattern in the NORINE database. The method identifies all peptides containing a pattern substructure of a given size. This amounts to solving a variant of the maximum common subgraph problem on pattern and peptide graphs, which is done by computing cliques in an appropriate compatibility graph. Conclusion The method has been incorporated into the NORINE database, available at http://bioinfo.lifl.fr/norine. Less than one second is needed to search for a pattern in the entire database.

  6. Radiopharmaceuticals based on antibodies and peptides

    International Nuclear Information System (INIS)

    The past two decades have seen a great stride in the development of new diagnostic and therapeutic radiopharmaceuticals due to the discovery and availability of a number of specific carrier molecules and the application of synthetic organic chemistry to modify these carrier molecules to accommodate the radionuclide of interest. Radiopharmaceuticals based on antibodies and peptides are discussed

  7. Novel properties of antimicrobial peptide anoplin

    Czech Academy of Sciences Publication Activity Database

    Jindřichová, Barbora; Burketová, Lenka; Novotná, Z.

    2014-01-01

    Roč. 444, č. 4 (2014), s. 520-524. ISSN 0006-291X R&D Projects: GA ČR GA522/09/1693 Institutional support: RVO:61389030 Keywords : Anoplin * Antimicrobial peptide * Antifungal Subject RIV: EE - Microbiology, Virology Impact factor: 2.297, year: 2014

  8. Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology

    Institute of Scientific and Technical Information of China (English)

    Ying Gu; Jun Zhang; Ying-Bing Wang; Shao-Wei Li; Hai-Jie Yang; Wen-Xin Luo; Ning-Shao Xia

    2004-01-01

    AIM: To select the peptide mimicking the neutralization epitope of hepatitis E virus which bound to non-type-specific and conformational monoclonal antibodies (mAbs) 8C11 and 8H3 fromed 7-peptide phage display library, and expressed the peptide recombinant with HBcAg in E.coli, and to observe whether the recombinant HBcAg could still form virus like particle (VLP) and to test the activation of the recombinant polyprotein and chemo-synthesized peptide that was selected by mAb 8H3.METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4rounds of panning, monoclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E. coli. Activity of the recombinant proteins was detected by Western blotting, VLPs of the recombinant polyproteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor.RESULTS: Twenty-one positive monoclonal phages (10for 8CL1, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N′-His-Pro-Thr-LeuLeu-Arg-Ile-C′, named 8C11A) and 8H3 (N′-Ser-Ile-LeuPro- Tyr-Pro-Tyr-C′, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E. coli.The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polyprotein could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemosynthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor.CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short

  9. A Cocoa Peptide Protects Caenorhabditis elegans from Oxidative Stress and β-Amyloid Peptide Toxicity

    OpenAIRE

    Martorell, Patricia; Bataller, Esther; Llopis, Silvia; Gonzalez, Núria; Álvarez, Beatriz; Montón, Fernando; Ortiz, Pepa; Ramón, Daniel; Genovés, Salvador

    2013-01-01

    Background Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. Methodology/Principal Findings A bioactive peptide, 13L (DNYDNSAGKWWVT), was obtained from a hydrolyzed cocoa by-product by chromatog...

  10. Natriuretic peptide receptors in the fetal rat.

    Science.gov (United States)

    Brown, J; Zuo, Z

    1995-08-01

    In vitro autoradiography of rat fetuses from embryonic days 12-19 (E12-E19) showed widespread high-affinity specific binding sites for natriuretic peptides. The sites on E16 somites avidly bound C-type natriuretic peptide [CNP-(1-22)] as well as C-ANP, a synthetic ligand that selects the C-type natriuretic peptide receptor (NPR-C). Most somitic binding sites had high affinity for atrial natriuretic peptide [ANP-(1-28)], confirming their resemblance to NPR-C. A few had a lower apparent affinity for ANP-(1-28), suggesting that they might be NPR-B. CNP-(1-22) was more powerful than ANP-(1-28) as an agonist of guanosine 3',5'-cyclic monophosphate production in somites, and ATP augmented the action of CNP-(1-22). These observations further suggest the presence of NPR-B. However, with cross-linking of 3-[125I]iodo-0-tyrosyl rat CNP-(1-22) to somitic membranes followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, only a single 64-kDa binding protein was detected under reducing conditions. This is not consistent with intact approximately 120-kDa NPR-B. In vitro autoradiography of the binding of natriuretic peptides to E16 liver implied the presence of NPR-A and NPR-C-like receptors. Hepatic guanosine 3',5'-cyclic monophosphate production was most powerfully stimulated by ANP-(1-28), as expected for NPR-A. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis also identified NPR-A and NPR-C-like proteins in E16 hepatic membranes. Thus different NPRs are expressed by specific fetal tissues. This may be developmentally significant. PMID:7653543

  11. Synthesis of peptide thioacids at neutral pH using bis(2-sulfanylethyl)amido peptide precursors.

    Science.gov (United States)

    Pira, Silvain L; Boll, Emmanuelle; Melnyk, Oleg

    2013-10-18

    Reaction of bis(2-sulfanylethyl)amido (SEA) peptides with triisopropylsilylthiol in water at neutral pH yields peptide thiocarboxylates. An alkylthioester derived from β-alanine was used to trap the released bis(2-sulfanylethyl)amine and displace the equilibrium toward the peptide thiocarboxylate. PMID:24073852

  12. A cardioactive peptide from the southern armyworm, Spodoptera eridania.

    Science.gov (United States)

    Furuya, K; Hackett, M; Cirelli, M A; Schegg, K M; Wang, H; Shabanowitz, J; Hunt, D F; Schooley, D A

    1999-01-01

    A cardioactive peptide was isolated from extracts of whole heads of the southern armyworm, Spodoptera eridania. This peptide has the sequence ENFAVGCTPGYQRTADGRCKPTF (Mr = 2516.8), determined from both Edman sequencing and tandem mass spectrometry in combination with off-line micropreparative capillary liquid chromatography. This peptide, termed Spoer-CAP23, has excitatory effects on a semi-isolated heart from larval Manduca sexta, causing an inotropic effect at low concentrations of peptide and chronotropic and inotropic effects at high doses. The threshold concentration for stimulatory effects of the synthetic peptide on the semi-isolated heart was about 1 nM, suggesting a physiological role as a neuropeptide. PMID:10098624

  13. Molecular imaging of cancer with radiolabeled peptides and PET.

    Science.gov (United States)

    Vāvere, Amy L; Rossin, Raffaella

    2012-06-01

    Radiolabeled peptides hold promise for diagnosis and therapy of cancer as well as for early monitoring of therapy outcomes, patient stratification, etc. This manuscript focuses on the development of peptides labeled with 18F, 64Cu, 68Ga and other positron-emitting radionuclides for PET imaging. The major techniques for radionuclide incorporation are briefly discussed. Then, examples of positron-emitting peptides targeting somatostatin receptors, integrins, gastrin-releasing peptide receptors, vasointestinal peptide receptors, melanocortin 1 receptors and others are reviewed. PMID:22292762

  14. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  15. Cell-penetrating peptides transport therapeutics into cells.

    Science.gov (United States)

    Ramsey, Joshua D; Flynn, Nicholas H

    2015-10-01

    Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo. PMID:26210404

  16. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.

    Science.gov (United States)

    Barbosa-Santillán, Liliana I; Sánchez-Escobar, Juan J; Calixto-Romo, M Angeles; Barbosa-Santillán, Luis F

    2016-01-01

    We present an Identify Selective Antibacterial Peptides (ISAP) approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides). Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2). ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2. PMID:27366202

  17. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication.

    Directory of Open Access Journals (Sweden)

    Mónica González-Magaldi

    Full Text Available Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2 that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7 sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target.

  18. De-novo design of antimicrobial peptides for plant protection.

    Directory of Open Access Journals (Sweden)

    Benjamin Zeitler

    Full Text Available This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.

  19. Tityus serrulatus venom peptidomics: assessing venom peptide diversity.

    Science.gov (United States)

    Rates, Breno; Ferraz, Karla K F; Borges, Márcia H; Richardson, Michael; De Lima, Maria Elena; Pimenta, Adriano M C

    2008-10-01

    MALDI-TOF-TOF and de novo sequencing were employed to assess the Tityus serrulatus venom peptide diversity. Previous works has shown the cornucopia of molecular masses, ranging from 800 to 3000Da, present in the venom from this and other scorpions species. This work reports the identification/sequencing of several of these peptides. The majority of the peptides found were fragments of larger venom toxins. For instance, 28 peptides could be identified as fragments from Pape proteins, 10 peptides corresponded to N-terminal fragments of the TsK beta (scorpine-like) toxin and fragments of potassium channel toxins (other than the k-beta) were sequenced as well. N-terminal fragments from the T. serrulatus hypotensins-I and II and a novel hypotensin-like peptide could also be found. This work also reports the sequencing of novel peptides without sequence similarities to other known molecules. PMID:18718845

  20. Bicyclic Peptide Inhibitor of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Roodbeen, Renée; Paaske, Berit; Jiang, Longguang;

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptidebased inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... monocyclic peptide, upain-2. It was successfully converted to a bicyclic peptide, without loss of inhibitory properties. The aim was to produce a peptide cyclised by an amide bond with an additional stabilising across-the-ring covalent bond. We expected this bicyclic peptide to exhibit a lower entropic...... burden upon binding. Two bicyclic peptides were synthesised with affinities similar to that of upain-2, and their binding energetics were evaluated by isothermal titration calorimetry. Indeed, compared to upain-2, the bicyclic peptides showed reduced loss of entropy upon binding to uPA. We also...

  1. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    International Nuclear Information System (INIS)

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  2. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.

    Science.gov (United States)

    Viet, Man Hoang; Ngo, Son Tung; Lam, Nguyen Sy; Li, Mai Suan

    2011-06-01

    The effects of beta-sheet breaker peptides KLVFF and LPFFD on the oligomerization of amyloid peptides were studied by all-atom simulations. It was found that LPFFD interferes the aggregation of Aβ(16-22) peptides to a greater extent than does KLVFF. Using the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method, we found that the former binds more strongly to Aβ(16-22). Therefore, by simulations, we have clarified the relationship between aggregation rates and binding affinity: the stronger the ligand binding, the slower the oligomerization process. The binding affinity of pentapeptides to full-length peptide Aβ(1-40) and its mature fibrils has been considered using the Autodock and MM-PBSA methods. The hydrophobic interaction between ligands and receptors plays a more important role for association than does hydrogen bonding. The influence of beta-sheet breaker peptides on the secondary structures of monomer Aβ(1-40) was studied in detail, and it turns out that, in their presence, the total beta-sheet content can be enhanced. However, the aggregation can be slowed because the beta-content is reduced in fibril-prone regions. Both pentapeptides strongly bind to monomer Aβ(1-40), as well as to mature fibrils, but KLVFF displays a lower binding affinity than LPFFD. Our findings are in accord with earlier experiments that both of these peptides can serve as prominent inhibitors. In addition, we predict that LPFFD inhibits/degrades the fibrillogenesis of full-length amyloid peptides better than KLVFF. This is probably related to a difference in their total hydrophobicities in that the higher the hydrophobicity, the lower the inhibitory capacity. The GROMOS96 43a1 force field with explicit water and the force field proposed by Morris et al. (Morris et al. J. Comput. Chem. 1998, 19, 1639 ) were employed for all-atom molecular dynamics simulations and Autodock experiments, respectively. PMID:21563780

  3. Drosophila suzukii contains a peptide homologous to the Drosophila melanogaster sex-peptide and functional in both species.

    Science.gov (United States)

    Schmidt, T; Choffat, Y; Schneider, M; Hunziker, P; Fuyama, Y; Kubli, E

    1993-07-01

    A peptide homologous to the Drosophila melanogaster sex-peptide (SP) was isolated from Drosophila suzukii accessory glands and its amino acid sequence determined. The D. suzukii peptide contains 41 amino acids and has a calculated molecular weight of 5100 Da. Comparison of the sequences reveals strong homologies in the N-terminal and C-terminal parts of the peptides. In the D. suzukii sex-peptide, however, five additional amino acids are inserted after amino acid 7. Based on the sequence of the peptide, a cDNA coding for the D. suzukii peptide was isolated by PCR. Sequence analysis of the cDNA confirmed the SP amino acid sequence determined by peptide sequencing. Furthermore, based on the cDNA sequence, we isolated the D. suzukii sex-peptide gene by inverse PCR. The D. suzukii sex-peptide gene contains an intron and codes for a 60 amino acid precursor. The D. melanogaster and the D. suzuki sex-peptides elicit rejection behaviour in the presence of males and an increased egg laying in virgin females of both species. PMID:8353518

  4. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids

    Directory of Open Access Journals (Sweden)

    Anne Linhardt

    2016-04-01

    Full Text Available A novel series of peptide based hybrid polymers designed to undergo enzymatic degradation is presented, via macrosubstitution of a polyphosphazene backbone with the tetrapeptide Gly-Phe-Leu-Gly. Further co-substitution of the hybrid polymers with hydrophilic polyalkylene oxide Jeffamine M-1000 leads to water soluble and biodegradable hybrid polymers. Detailed degradation studies, via 31P NMR spectroscopy, dynamic light scattering and field flow fractionation show the polymers degrade via a combination of enzymatic, as well as hydrolytic pathways. The peptide sequence was chosen due to its known property to undergo lysosomal degradation; hence, these degradable, water soluble polymers could be of significant interest for the use as polymer therapeutics. In this context, we investigated conjugation of the immune response modifier imiquimod to the polymers via the tetrapeptide and report the self-assembly behavior of the conjugate, as well as its enzymatically triggered drug release behavior.

  5. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    This thesis describes the design and synthesis of peptide-based serine protease inhibitors. The targeted protease, urokinase-type plasminogen activator (uPA) activates plasminogen, which plays a major role in cancer metastasis. The peptide upain-2 (S 1 ,S 12-cyclo-AcCSWRGLENHAAC-NH2) is a highly...... specific inhibitor of uPA. With the aim of creating better inhibitors based on the upain-2 scaffold, the following three strategies were explored: First, it was attempted to predefine the structure of upain-2 in solution by incorporating turn-inducing sequences and peptidomimetics. Additionally...... bond across the ring. The second bridge was made by a disulfide bridge, amide bond formation or via ring-closing metathesis. A, with upain-2 equipotent, bicyclic inhibitor was obtained and its binding to uPA was studied by ITC, NMR and X-ray. The knowledge of how selective inhibitors bind uPA has been...

  6. Peptides for radiotherapy of neuroendocrine cancers

    International Nuclear Information System (INIS)

    During the last decade there has been a resurgence of interest in therapeutic nuclear medicine, due to the limitation of conventional or external beam radiotherapy in the treatment of secondary or metastatic cancer sites outside of the primary treatment area. Some of the human tumours that produce metastases express high levels of somatostatin receptors. In order to make possible the diagnostic and radiotherapeutic treatment of these kind of tumours, various somatostatin analogue peptides have been developed in recent years. Peptides have become an important class of radiopharmaceuticals,due to its unique ability to detect specific sites as receptors or enzymes. This paper describes the work with 99m Tc to establish the labelling and analytical conditions for a somatostatin analogue as a precursor, to undertake a therapeutic radiopharmaceutical labelled with 188 Re for treatment of somatostatin receptor positive tumours. (Author)

  7. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. PMID:27160595

  8. Peptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain

    A short peptide composed of only two amino acid residues, serine and histidine, is here reported to enable oligomerization of RNA monomers. SerHis dipeptide was previously reported to catalyse formation of peptide bonds (Gorlero et al. 2009) as well as possessing broad hydrolytic activities...... oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water/ice eutectic phase environment (Monnard and Ziock 2008). To obtain such an environment, a reaction solution is cooled below its freezing point, but above the eutectic point. Under....... (2000) Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester. Bioorg. Med. Chem. 8(12): 2675-80. Monnard PA, Ziock H. (2008) Eutectic phase in water-ice: a self-assembled environment conducive to metal-catalyzed non-enzymatic RNA polymerization. Chem Biodivers. 5...

  9. Secondary structure of fluorescence labelled synthetic peptides

    CERN Document Server

    Martin, A S

    2000-01-01

    A series of eight synthetic oligopeptides has been prepared and their secondary structures investigated using various techniques. The project represents a continuation of an investigation into thermally induced changes in secondary structure. Following the previously reported results, the change in structure was initially thought to represent a change from an alpha-helix at low temperature to 3 sub 1 sub 0 -helix at high temperature. However, the results reported herein suggest the peptides retain an alpha-helical configuration at all temperatures studied, but that this helix can adopt at least two related forms. The difference in the structures relates to the nature of the H-bonds which may or may not involve an additional interaction from water molecules or side-chains. The peptides were encouraged to adopt a helical configuration by the inclusion of alpha- aminoisobutyric acid (Aib) residues. Also, modified forms of glutamic acid were included in the sequences. These had pendant donor (4-methoxy naphthalen...

  10. Ion Mobility Separation of Peptide Isotopomers

    Science.gov (United States)

    Kaszycki, Julia L.; Bowman, Andrew P.; Shvartsburg, Alexandre A.

    2016-05-01

    Differential or field asymmetric waveform ion mobility spectrometry (FAIMS) operating at high electric fields fully resolves isotopic isomers for a peptide with labeled residues. The naturally present isotopes, alone and together with targeted labels, also cause spectral shifts that approximately add for multiple heavy atoms. Separation qualitatively depends on the gas composition. These findings may enable novel strategies in proteomic and metabolomic analyses using stable isotope labeling.

  11. Spider-Venom Peptides as Therapeutics

    OpenAIRE

    Glenn F King; Volker Herzig; Rash, Lachlan D; Jensen, Jonas E.; Sing Yan Er; Sebastian Senff; Saez, Natalie J.

    2010-01-01

    Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more ...

  12. Amyloid beta peptide immunotherapy in Alzheimer disease.

    Science.gov (United States)

    Delrieu, J; Ousset, P J; Voisin, T; Vellas, B

    2014-12-01

    Recent advances in the understanding of Alzheimer's disease pathogenesis have led to the development of numerous compounds that might modify the disease process. Amyloid β peptide represents an important molecular target for intervention in Alzheimer's disease. The main purpose of this work is to review immunotherapy studies in relation to the Alzheimer's disease. Several types of amyloid β peptide immunotherapy for Alzheimer's disease are under investigation, active immunization and passive administration with monoclonal antibodies directed against amyloid β peptide. Although immunotherapy approaches resulted in clearance of amyloid plaques in patients with Alzheimer's disease, this clearance did not show significant cognitive effect for the moment. Currently, several amyloid β peptide immunotherapy approaches are under investigation but also against tau pathology. Results from amyloid-based immunotherapy studies in clinical trials indicate that intervention appears to be more effective in early stages of amyloid accumulation in particular solanezumab with a potential impact at mild Alzheimer's disease, highlighting the importance of diagnosing Alzheimer's disease as early as possible and undertaking clinical trials at this stage. In both phase III solanezumab and bapineuzumab trials, PET imaging revealed that about a quarter of patients lacked fibrillar amyloid pathology at baseline, suggesting that they did not have Alzheimer's disease in the first place. So a new third phase 3 clinical trial for solanezumab, called Expedition 3, in patients with mild Alzheimer's disease and evidence of amyloid burden has been started. Thus, currently, amyloid intervention is realized at early stage of the Alzheimer's disease in clinical trials, at prodromal Alzheimer's disease, or at asymptomatic subjects or at risk to develop Alzheimer's disease and or at asymptomatic subjects with autosomal dominant mutation. PMID:25459121

  13. Physics and engineering of peptide supramolecular nanostructures.

    Science.gov (United States)

    Handelman, Amir; Beker, Peter; Amdursky, Nadav; Rosenman, Gil

    2012-05-14

    The emerging "bottom-up" nanotechnology reveals a new field of bioinspired nanomaterials composed of chemically synthesized biomolecules. They are formed from elementary constituents in supramolecular structures by the use of a developed nature self-assembly mechanism. The focus of this perspective paper is on intrinsic fundamental physical properties of bioinspired peptide nanostructures and their small building units linked by weak noncovalent bonds. The observed exceptional optical properties indicate a phenomenon of quantum confinement in these supramolecular structures, which originates from nanoscale size of their elementary building blocks. The dimensionality of the confinement gives insight into intrinsic packing of peptide supramolecular nanomaterials. QC regions, revealed in bioinspired nanostructures, were found by us in amyloid fibrils formed from insulin protein. We describe ferroelectric and related properties found at the nanoscale based on original crystalline asymmetry of the nanoscale building blocks, packing these structures. In this context, we reveal a classic solid state physics phenomenon such as reconstructive phase transition observed in bioorganic peptide nanotubes. This irreversible phase transformation leads to drastic reshaping of their quantum structure from quantum dots to quantum wells, which is followed by variation of their space group symmetry from asymmetric to symmetric. We show that the supramolecular origin of these bioinspired nanomaterials provides them a unique chance to be disassembled into elementary building block peptide nanodots of 1-2 nm size possessing unique electronic, optical and ferroelectric properties. These multifunctional nanounits could lead to a new future step in nanotechnology and nanoscale advanced devices in the fields of nanophotonics, nanobiomedicine, nanobiopiezotronics, etc. PMID:22460950

  14. Immunological responses to fungal epitope peptides

    OpenAIRE

    Sheth-Ughade, Parita

    2012-01-01

    Introduction: Fungi are common aeroallergens responsible for at least 3% – 10% of allergic diseases worldwide, with the proportion hugely variable in different populations. Treatment is complicated by viable nature and disease causing ability of the allergen and is often only palliative. Thus, this study aimed to serve as a pilot investigation to design novel anti-allergy therapeutics to cure allergy at the molecular level. It investigates the effect of wild type fungal peptides and correspon...

  15. Antimicrobial peptides from plants and insects

    Czech Academy of Sciences Publication Activity Database

    Macková, Martina; Doležílková, Ivana; Neubauerová, Tereza; Ciencialová, Alice; Macek, Tomáš; Koutek, Bohumír; Jiráček, Jiří

    2007-01-01

    Roč. 7, č. 2 (2007), s. 26-27. ISSN 1213-6670. [Konference experimentální biologie rostlin, dny fyziologie rostlin /11./. 09.07.2007-12.07.2007, Olomouc] R&D Projects: GA ČR GA203/05/0832 Institutional research plan: CEZ:AV0Z40550506 Keywords : antimicrobial peptides * RP-HPLC * screening * fleshfly Subject RIV: CC - Organic Chemistry

  16. Application of Fungal Cyclic Peptides and Metabolites

    Czech Academy of Sciences Publication Activity Database

    Nedvěd, Jan; Šulc, Miroslav; Jegorov, A.; Giannakopulos, A.; Havlíček, Vladimír

    Weinheim : Wiley, 2007 - (Van Eyk, J.; Dunn, M.), s. 483-498 ISBN 978-3-527-31637-3 R&D Projects: GA MŠk LC07017; GA ČR GA203/04/0799 Grant ostatní: XE(XE) EK MTKD-CT-2004-014407 Institutional research plan: CEZ:AV0Z50200510 Source of funding: R - rámcový projekt EK Keywords : cyclic * fungal * peptides Subject RIV: EE - Microbiology, Virology

  17. Separation of Peptides by Pressurized Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel gradient pressurized capillary electrochromatography (pCEC) instrument wasdeveloped to separate peptides. Two gradient elution modes, hydrophobic and hydrophilicinteraction mode in pCEC, were performed on this instrument. Baseline separation of sixpeptides was obtained on two gradient modes with C18 column and strong cationic exchangecolumn respectively. The effects of mixer volume and total flow rate of pumps on resolutionwere also discussed.

  18. Characterizing Intercellular Signaling Peptides in Drug Addiction

    OpenAIRE

    Romanova, Elena V.; Hatcher, Nathan G.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2008-01-01

    Intercellular signaling peptides (SPs) coordinate the activity of cells and influence organism behavior. SPs, a chemically and structurally diverse group of compounds responsible for transferring information between neurons, are broadly involved in neural plasticity, learning and memory, as well as in drug addiction phenomena. Historically, SP discovery and characterization has tracked advances in measurement capabilities. Today, a suite of analytical technologies is available to investigate ...

  19. Silica precipitation with synthetic silaffin peptides

    OpenAIRE

    Wieneke, Ralph; Bernecker, Anja; Riedel, Radostan; Sumper, Manfred; Steinem, Claudia; Geyer, Armin

    2011-01-01

    Silaffins are highly charged proteins which are one of the major contributing compounds that are thought to be responsible for the formation of the hierarchically structured silica-based cell walls of diatoms. Here we describe the synthesis of an oligo-propyleneamine substituted lysine derivative and its incorporation into the KXXK peptide motif occurring repeatedly in silaffins. Ne-alkylation of lysine was achieved by a Mitsunobu reaction to obtain a protected lysine derivative w...

  20. Glucagon-like peptides 1 and 2

    DEFF Research Database (Denmark)

    Kissow, Hannelouise

    2015-01-01

    healing. The antidiabetic hormone GLP-1, cosecreted with GLP-2, diminished mucositis in an animal model of the condition. Therefore, both peptides could be involved in the pathophysiology of mucositis. SUMMARY: The intestinal GLPs have shown beneficial effects in experimental trials and have potential for...... therapeutic use. In type 2 diabetic and obese patients, GLP secretion is impaired. Elucidating the role of these endogenous hormones could lead to the identification of mucositis risk factors and an alternative preventive therapy for these patients....

  1. PLASMINOGEN ACTIVATOR OF YERSINIA PESTIS

    Directory of Open Access Journals (Sweden)

    V. V. Evseeva

    2015-01-01

    fibrin clots preventing bacteria dissemination after bites of infected fleas or subcutaneous challenge is believed to be the main Y. pestis factor responsible for generalization of infectious process. Pla-mediated ability of Y. pestis for selective binding with extracellular matrix and basal membranes may promote further hydrolysis of these structures by the host’s plasmin and overcoming tissue barriers by the pathogen. Y. pestis plasminogen activator also hydrolyses C3 complement component, human antimicrobial peptidecathelicidin LL-37 and such cytokines as tumor necrosis factor α, interferon γ, interleukin 8 and protein 1 of monocyte chemotaxis. The main endogenic TFPI tissue factor pathway inhibitor also highly susceptible to proteolytic action of Pla, and efficiency of TFPI inactivation is much higher than efficacy of plasminogen activation. The review also debates the possibility of using Pla as a molecular target for prophylaxis and treatment of plague. 

  2. SH3 domain-peptide binding energy calculations based on structural ensemble and multiple peptide templates.

    Directory of Open Access Journals (Sweden)

    Seungpyo Hong

    Full Text Available SH3 domains mediate signal transduction by recognizing short peptides. Understanding of the driving forces in peptide recognitions will help us to predict the binding specificity of the domain-peptide recognition and to understand the molecular interaction networks of cells. However, accurate calculation of the binding energy is a tough challenge. In this study, we propose three ideas for improving our ability to predict the binding energy between SH3 domains and peptides: (1 utilizing the structural ensembles sampled from a molecular dynamics simulation trajectory, (2 utilizing multiple peptide templates, and (3 optimizing the sequence-structure mapping. We tested these three ideas on ten previously studied SH3 domains for which SPOT analysis data were available. The results indicate that calculating binding energy using the structural ensemble was most effective, clearly increasing the prediction accuracy, while the second and third ideas tended to give better binding energy predictions. We applied our method to the five SH3 targets in DREAM4 Challenge and selected the best performing method.

  3. Mass spectrometric survey of peptides in cephalopods with an emphasis on the FMRFamide-related peptides.

    Science.gov (United States)

    Sweedler, J V; Li, L; Floyd, P; Gilly, W

    2000-12-01

    A matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) survey of the major peptides in the stellar, fin and pallial nerves and the posterior chromatophore lobe of the cephalopods Sepia officinalis, Loligo opalescens and Dosidicus gigas has been performed. Although a large number of putative peptides are distinct among the three species, several molecular masses are conserved. In addition to peptides, characterization of the lipid content of the nerves is reported, and these lipid peaks account for many of the lower molecular masses observed. One conserved set of peaks corresponds to the FMRFamide-related peptides (FRPs). The Loligo opalescens FMRFa gene has been sequenced. It encodes a 331 amino acid residue prohormone that is processed into 14 FRPs, which are both predicted by the nucleotide sequence and confirmed by MALDI MS. The FRPs predicted by this gene (FMRFa, FLRFa/FIRFa and ALSGDAFLRFa) are observed in all three species, indicating that members of this peptide family are highly conserved across cephalopods. PMID:11060217

  4. Screening Peptide Inhibitors Using Phage Peptide Library with Isocitrate Lyase in Mycobacterium tuberculosis as Target

    Institute of Scientific and Technical Information of China (English)

    YIN Yu-he; NIU Xue; SUN Bo; TENG Guo-sheng; ZHAO Yun-hui; WU Cong-mei

    2011-01-01

    When devoured by macrophages,Mycobacterium tuberculosis remains persistent in macrophages and gains energy through the glyoxylate bypass to maintain its long-term existence in host cells.Therefore it is possible to stop persistent infections by interdicting the glyoxylate bypass in which the isocitrate lyase(ICL) is the key rate-limiting enzyme and a persistence factor.ICL is the target of anti-TB(TB:tubercular) drugs,which could screen ICL out and effectively inhibit the activity of ICL in Mycobacterium tuberculosis,and because of this,anti-TB drugs can be used to kill persistent Mycobacterium tuberculosis.In this study,the ICL gene of the Mycobacterium tuberculosis H37Rv was cloned successfully and recombinant protein with bioactivity was obtained through the enzyme characteristic appraisal.The specific activity of the recombined ICL is 24 μmol·mg-1 -min-1.The recombined ICL protein was used as the target,and phages which can specifically combine to ICL were screened in the phage 7 peptide library.According to the results of the ELISA and DNA sequence detection,eventually three 7-peptide chains were synthesized.Then the peptide chains were reacted with ICL,respectively,to detect their inhibitory effects on ICL.The results show that all the three 7-peptide chains possessed varying inhibitory effects on the activity of ICL.This study provided lead compounds for the research and development of new peptide anti-TB drugs.

  5. C-peptide and Diabetic Encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Xiao-jun Cai; Hui-qin Xu; Yi Lu

    2011-01-01

    With the changes of life style, diabetes and its complications have become a major cause of morbidity and mortality. It is reasonable to anticipate a continued rise in the incidence of diabetes and its complications along with the aging of the population, increase in adult obesity rate, and other risk factors. Diabetic encephalopathy is one of the severe microvascular complications of diabetes, characterized by impaired cognitive functions, and electrophysiological, neurochemical, and structural abnormalities. It may involve direct neuronal damage caused by intracellular glucose. However, the pathogenesis of this disease is complex and its diagnosis is not very clear. Previous researches have suggested that chronic metabolic alterations, vascular changes, and neuronal apoptosis may play important roles in neuronal loss and damaged cognitive fimctions.Multiple factors are responsible for neuronal apoptosis, such as disturbed insulin growth factor (IGF) system,hyperglycemia, and the aging process. Recent data suggest that insulin/C-peptide defidency may exert a primary and key effect in diabetic encephalopathy. Administration of C-peptide partially improves the condition of the IGF system in the brain and prevents neuronal apoptosis in the hippocampus of diabetic patients.Those Findings provide a basis for application of C-peptide as a potentially effective therapy for diabetes and diabetic encephalopathy.

  6. Potential Anticarcinogenic Peptides from Bovine Milk

    Directory of Open Access Journals (Sweden)

    Giacomo Pepe

    2013-01-01

    Full Text Available Bovine milk possesses a protein system constituted by two major families of proteins: caseins (insoluble and whey proteins (soluble. Caseins (αS1, αS2, β, and κ are the predominant phosphoproteins in the milk of ruminants, accounting for about 80% of total protein, while the whey proteins, representing approximately 20% of milk protein fraction, include β-lactoglobulin, α-lactalbumin, immunoglobulins, bovine serum albumin, bovine lactoferrin, and lactoperoxidase, together with other minor components. Different bioactivities have been associated with these proteins. In many cases, caseins and whey proteins act as precursors of bioactive peptides that are released, in the body, by enzymatic proteolysis during gastrointestinal digestion or during food processing. The biologically active peptides are of particular interest in food science and nutrition because they have been shown to play physiological roles, including opioid-like features, as well as immunomodulant, antihypertensive, antimicrobial, antiviral, and antioxidant activities. In recent years, research has focused its attention on the ability of these molecules to provide a prevention against the development of cancer. This paper presents an overview of antitumor activity of caseins and whey proteins and derived peptides.

  7. Antimicrobial peptides in echinoderm host defense.

    Science.gov (United States)

    Li, Chun; Blencke, Hans-Matti; Haug, Tor; Stensvåg, Klara

    2015-03-01

    Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial activity. Echinoderms live in a microbe-rich marine environment and are known to express a wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide families have conserved preprosequences, are present in both adults and pluteus stage larvae, have potent antimicrobial properties, and therefore appear to be important innate immune effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 contain brominated tryptophan residues in their native form. This review also includes AMPs isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding of echinoderm immunity, and their potent antimicrobial activity makes them potential precursors of novel drug leads. PMID:25445901

  8. Hierarchical organization of ferrocene-peptides.

    Science.gov (United States)

    Beheshti, Samaneh; Martić, Sanela; Kraatz, Heinz-Bernhard

    2012-07-16

    Hierarchical self-assembly of disubstituted ferrocene (Fc)-peptide conjugates that possess Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents leads to the formation of nano- and micro-sized assemblies. Hydrogen-bonding and hydrophobic interactions provide directionality to the assembly patterns. The self-assembling behavior of these compounds was studied in solution by using (1)H NMR and circular dichroism (CD) spectroscopies. In the solid state, attenuated total reflectance (ATR) FTIR spectroscopy, single-crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) methods were used. Spontaneous self-assembly of Fc-peptides through intra- and intermolecular hydrogen-bonding interactions induces supramolecular assemblies, which further associate and give rise to fibers, large fibrous crystals, and twisted ropes. In the case of Fc[CO-Gly-Val-Phe-OMe](2) (1), molecules initially interact to form pleated sheets that undergo association into long fibers that form bundles and rectangular crystalline cuboids. Molecular offsets and defects, such as screw dislocations and solvent effects that occur during crystal growth, induce the formation of helical arrangements, ultimately leading to large twisted ropes. By contrast, the Fc-tetrapeptide conjugate Fc[CO-Gly-Val-Phe-Phe-OMe](2) (2) forms a network of nanofibers at the supramolecular level, presumably due to the additional hydrogen-bonding and hydrophobic interactions that stem from the additional Phe residues. PMID:22707407

  9. Potential anticarcinogenic peptides from bovine milk.

    Science.gov (United States)

    Pepe, Giacomo; Tenore, Gian Carlo; Mastrocinque, Raffaella; Stusio, Paola; Campiglia, Pietro

    2013-01-01

    BOVINE MILK POSSESSES A PROTEIN SYSTEM CONSTITUTED BY TWO MAJOR FAMILIES OF PROTEINS: caseins (insoluble) and whey proteins (soluble). Caseins ( α S1, α S2, β , and κ ) are the predominant phosphoproteins in the milk of ruminants, accounting for about 80% of total protein, while the whey proteins, representing approximately 20% of milk protein fraction, include β -lactoglobulin, α -lactalbumin, immunoglobulins, bovine serum albumin, bovine lactoferrin, and lactoperoxidase, together with other minor components. Different bioactivities have been associated with these proteins. In many cases, caseins and whey proteins act as precursors of bioactive peptides that are released, in the body, by enzymatic proteolysis during gastrointestinal digestion or during food processing. The biologically active peptides are of particular interest in food science and nutrition because they have been shown to play physiological roles, including opioid-like features, as well as immunomodulant, antihypertensive, antimicrobial, antiviral, and antioxidant activities. In recent years, research has focused its attention on the ability of these molecules to provide a prevention against the development of cancer. This paper presents an overview of antitumor activity of caseins and whey proteins and derived peptides. PMID:23533710

  10. Fingerprinting Desmosine-Containing Elastin Peptides

    Science.gov (United States)

    Schräder, Christoph U.; Heinz, Andrea; Majovsky, Petra; Schmelzer, Christian E. H.

    2015-05-01

    Elastin is a vital protein of the extracellular matrix of jawed vertebrates and provides elasticity to numerous tissues. It is secreted in the form of its soluble precursor tropoelastin, which is subsequently cross-linked in the course of the elastic fiber assembly. The process involves the formation of the two tetrafunctional amino acids desmosine (DES) and isodesmosine (IDES), which are unique to elastin. The resulting high degree of cross-linking confers remarkable properties, including mechanical integrity, insolubility, and long-term stability to the protein. These characteristics hinder the structural elucidation of mature elastin. However, MS2 data of linear and cross-linked peptides released by proteolysis can provide indirect insights into the structure of elastin. In this study, we performed energy-resolved collision-induced dissociation experiments of DES, IDES, their derivatives, and DES-/IDES-containing peptides to determine characteristic product ions. It was found that all investigated compounds yielded the same product ion clusters at elevated collision energies. Elemental composition determination using the exact masses of these ions revealed molecular formulas of the type CxHyN, suggesting that the pyridinium core of DES/IDES remains intact even at relatively high collision energies. The finding of these specific product ions enabled the development of a similarity-based scoring algorithm that was successfully applied on LC-MS/MS data of bovine elastin digests for the identification of DES-/IDES-cross-linked peptides. This approach facilitates the straightforward investigation of native cross-links in elastin.

  11. Peptides: Basic determinants of reproductive functions.

    Science.gov (United States)

    Celik, Onder; Aydin, Suleyman; Celik, Nilufer; Yilmaz, Musa

    2015-10-01

    Mammalian reproduction is a costly process in terms of energy consumption. The critical information regarding metabolic status is signaled to the hypothalamus mainly through peripheral peptides from the adipose tissue and gastrointestinal tract. Changes in energy stores produce fluctuations in leptin, insulin, ghrelin and glucose signals that feedback mainly to the hypothalamus to regulate metabolism and fertility. In near future, possible effects of the nutritional status on GnRH regulation can be evaluated by measuring serum or tissue levels of leptin and ghrelin in patiens suffering from infertility. The fact that leptin and ghrelin are antagonistic in their effects on GnRH neurons, their respective agonistic and antagonistic roles make them ideal candidates to use instead of GnRH agonist and antagonist. Similarly, kisspeptin expressing neurons are likely to mediate the well-established link between energy balance and reproductive functions. Exogenous kisspeptin can be used for physiological ovarian hyperstimulation for in-vitro fertilization. Moreover, kisspeptin antagonist therapy can be used for the treatment of postmenapousal women, precocious puberty, PCOS, endometriosis and uterine fibroids. In this review, we will analyze the central mechanisms involved in the integration of metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of leptin, kisspeptin, ghrelin, NPY, orexin, urocortin, VIP, insulin, galanin, galanin like peptide, oxytocin, agouti gene-related peptide, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction. PMID:26074346

  12. Multifunctional matrices for oral peptide delivery.

    Science.gov (United States)

    Bernkop-Schnürch, A; Walker, G

    2001-01-01

    The oral administration of peptide drugs represents one of the greatest challenges in pharmaceutical technology. To gain a sufficient bioavailability of these therapeutic agents, various barriers including the mucus-layer barrier, the enzymatic barrier, and the membrane barrier have to be overcome. A promising strategy for achieving this goal is the use of multifunctional matrices. These matrices are based on polymers that display mucoadhesive properties, a permeation-enhancing effect, enzyme-inhibiting properties, and/or a high buffer capacity. Moreover, a sustained or delayed drug release can be provided by delivery systems that contain such polymers. Among them, polyacrylates, cellulose derivatives, and chitosan are promising excipients that can also be customized by chemical modification to improve certain properties. For example, the covalent attachment of thiol moieties on these polymers leads to improved mucoadhesive and permeation-enhancing properties, and the conjugation of enzyme inhibitors enables the matrices to provide protection for peptide drugs against enzymatic degradation. The efficacy of multifunctional matrices in oral peptide delivery has been verified by various in vivo studies that could pave the way for the development of commercially viable formulations. PMID:11763498

  13. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    Koji Tamura

    2011-12-01

    Proteins, the main players in current biological systems, are produced on ribosomes by sequential amide bond (peptide bond) formations between amino-acid-bearing tRNAs. The ribosome is an exquisite super-complex of RNA-proteins, containing more than 50 proteins and at least 3 kinds of RNAs. The combination of a variety of side chains of amino acids (typically 20 kinds with some exceptions) confers proteins with extraordinary structure and functions. The origin of peptide bond formation and the ribosome is crucial to the understanding of life itself. In this article, a possible evolutionary pathway to peptide bond formation machinery (proto-ribosome) will be discussed, with a special focus on the RNA minihelix (primordial form of modern tRNA) as a starting molecule. Combining the present data with recent experimental data, we can infer that the peptidyl transferase center (PTC) evolved from a primitive system in the RNA world comprising tRNA-like molecules formed by duplication of minihelix-like small RNA.

  14. Implicit biology in peptide spectral libraries.

    Science.gov (United States)

    Askenazi, Manor; Linial, Michal

    2012-09-18

    Mass spectral libraries are collections of mass spectra curated specifically to facilitate the identification of small molecules, metabolites, and short peptides. One of the most comprehensive peptide spectral libraries is curated by NIST and contains upward of half a million annotated spectra dominated by human and model organisms including budding yeast and mouse. While motivated primarily by the technological goal of increasing sensitivity and specificity in spectral identification, we have found that the NIST spectral library constitutes a surprisingly rich source of biological knowledge. In this Article, we show that data-mining of these published libraries while applying strict empirical thresholds yields many characteristics of protein biology. In particular, we demonstrate that the size and increasingly comprehensive nature of these libraries, generated from whole-proteome digests, enables inference from the presence but crucially also from the absence of spectra for individual peptides. We illustrate implicit biological trends that lead to significant absence of spectra accounted for by complex post-translational modifications and overlooked proteolytic sites. We conclude that many subtle biological signatures such as genetic variants, regulated proteolysis, and post-translational modifications are exposed through the systematic mining of spectral collections originally compiled as general-purpose, technology-oriented resources. PMID:22909014

  15. An extensive library of surrogate peptides for all human proteins.

    Science.gov (United States)

    Mohammed, Yassene; Borchers, Christoph H

    2015-11-01

    Selecting the most appropriate surrogate peptides to represent a target protein is a major component of experimental design in Multiple Reaction Monitoring (MRM). Our software PeptidePicker with its v-score remains distinctive in its approach of integrating information about the proteins, their tryptic peptides, and the suitability of these peptides for MRM that is available online in UniProtKB, NCBI's dbSNP, ExPASy, PeptideAtlas, PRIDE, and GPMDB. The scoring algorithm reflects our "best knowledge" for selecting candidate peptides for MRM, based on the uniqueness of the peptide in the targeted proteome, its physiochemical properties, and whether it has previously been observed. Here we present an updated approach where we have already compiled a list of all possible surrogate peptides of the human proteome. Using our stringent selection criteria, the list includes 165k suitable MRM peptides covering 17k proteins of the human reviewed proteins in UniProtKB. Compared to average of 2-4min per protein for retrieving and integrating the information, the precompiled list includes all peptides available instantly. This allows a more cohesive and faster design of a multiplexed MRM experiment and provides insights into evidence for a protein's existence. We will keep this list up-to-date as proteomics data repositories continue to grow. This article is part of a Special Issue entitled: Computational Proteomics. PMID:26232110

  16. ANTIMICROBIAL PEPTIDES: AN EFFECTIVE ALTERNATIVE FOR ANTIBIOTIC THERAPY

    Directory of Open Access Journals (Sweden)

    KK PULICHERLA

    2013-01-01

    Full Text Available Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence has suggested that cationic antimicrobial peptides (AMP’s are of greatest potential to represent a new class of antibiotics. These peptides have a good scope in current antibiotic research. During the past two decades several AMPs have been isolated from a wide variety of animals (both vertebrates and invertebrates, and plants as well as from bacteria and fungi. These are relatively small (<10kDa, cationic and amphipathic peptides of variable length, sequence and structure. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, protozoa, yeast, fungi and viruses. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. Antimicrobial peptides encompass a wide variety of structural motifs such as α -helical peptides, β -sheet peptides, looped peptides and extended peptides. Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs in recombinant bacterial expression systems which were produced by cloning. This article aims to review in brief the sources of antimicrobial peptides, diversity in structural features, mode of action, production strategies and insight into the current data on their antimicrobial activity followed by a brief comment on the peptides that have entered clinical trials.

  17. Stability of diphenylalanine peptide nanotubes in solution

    Science.gov (United States)

    Andersen, Karsten Brandt; Castillo-Leon, Jaime; Hedström, Martin; Svendsen, Winnie Edith

    2011-03-01

    Over the last couple of years, self-organizing nanotubes based on the dipeptide diphenylalanine have received much attention, mainly as possible building blocks for the next generation of biosensors and as drug delivery systems. One of the main reasons for this large interest is that these peptide nanotubes are believed to be very stable both thermally and chemically. Previously, the chemical and thermal stability of self-organizing structures has been investigated after the evaporation of the solvent. However, it was recently discovered that the stability of the structures differed significantly when the tubes were in solution. It has been shown that, in solution, the peptide nanotubes can easily be dissolved in several solvents including water. It is therefore of critical importance that the stability of the nanotubes in solution and not after solvent evaporation be investigated prior to applications in which the nanotube will be submerged in liquid. The present article reports results demonstrating the instability and suggests a possible approach to a stabilization procedure, which drastically improves the stability of the formed structures. The results presented herein provide new information regarding the stability of self-organizing diphenylalanine nanotubes in solution.Over the last couple of years, self-organizing nanotubes based on the dipeptide diphenylalanine have received much attention, mainly as possible building blocks for the next generation of biosensors and as drug delivery systems. One of the main reasons for this large interest is that these peptide nanotubes are believed to be very stable both thermally and chemically. Previously, the chemical and thermal stability of self-organizing structures has been investigated after the evaporation of the solvent. However, it was recently discovered that the stability of the structures differed significantly when the tubes were in solution. It has been shown that, in solution, the peptide nanotubes can

  18. Light-Switchable Peptides with a Hemithioindigo Unit: Peptide Design, Photochromism, and Optical Spectroscopy.

    Science.gov (United States)

    Kitzig, S; Thilemann, M; Cordes, T; Rück-Braun, Karola

    2016-05-01

    This Minireview focuses on the hemithioindigo photoswitch and its use for the reversible control of three-dimensional peptide structure and related biological functions. Both the general design aspects and biophysical properties of various hemithioindigo-based chromopeptides are summarized. Hemithioindigo undergoes reversible Z→E photoisomerization after absorption of visible light. The unique ultrafast switching mechanism of hemithioindigo combines picosecond isomerization kinetics with strong double-bond torsion after light absorption, making it the ideal tool for instantaneous modulation of biological structure. Various inhibitors and model peptides based on hemithioindigo are described that can directly regulate biological signaling or allow the fastest events in peptide folding to be studied. Finally, a diverse range of chromopeptides with photoswitchable β-hairpin structures based on azobenzenes, stilbenes, and hemithioindigo are compared to emphasize the unique properties of hemithioindigo. PMID:26789782

  19. Peptide and non-peptide opioid-induced hyperthermia in rabbits

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl-normetazocine was found to induce hyperthermia in rabbits. The similar administration of peptide opioids like beta-endorphin (BE), methionine-enkephalin (ME), and its synthetic analogue D-ala2-methionine-enkephalinamide (DAME) was also found to cause hyperthermia. Results indicate that only the liver-like transport system is important to the ventricular inactivation of BE and DAME. Prostaglandins and norepinephrine were determined not to be involved in peptide and nonpeptide opioid-induced hyperthermia. In addition, cAMP was not required since a phosphodiesterase inhibitor, theophylline, did not accentuate the hyperthermia due to peptide and nonpeptide opioids. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine, BE, ME, and DAME since naloxone attenuated them. However, the hyperthermic response to ketocyclazocine and N-allyl-normetazocine was not antagonized by naloxone.

  20. Correlations between fasting plasma C-peptide, glucagon-stimulated plasma C-peptide, and urinary C-peptide in insulin-treated diabetics

    DEFF Research Database (Denmark)

    Gjessing, H J; Matzen, L E; Frøland, A;

    1987-01-01

    This study correlated fasting plasma C-peptide (CP), plasma CP 6 min after stimulation with 1 mg glucagon i.v., and the mean of three 24-h urinary excretions of C-peptide (UCP)/creatinine in 132 insulin-treated diabetics. Patients were divided into three groups: group 1, stimulated CP less than 0...

  1. Fasting plasma C-peptide, glucagon stimulated plasma C-peptide, and urinary C-peptide in relation to clinical type of diabetes

    DEFF Research Database (Denmark)

    Gjessing, H J; Matzen, L E; Faber, O K;

    1989-01-01

    Many patients with Type 2 (non-insulin-dependent) diabetes mellitus are treated with insulin in order to control hyperglycaemia. We studied fasting plasma C-peptide, glucagon stimulated plasma C-peptide, and 24 h urinary C-peptide in relation to clinical type of diabetes in 132 insulin treated...... fasting plasma C-peptide value less than 0.20 nmol/l, a glucagon stimulated plasma C-peptide value less than 0.32 nmol/l, and a urinary C-peptide value less than 3.1 nmol/l, or less than 0.54 nmol/mmol creatinine/24 h, or less than 5.4 nmol/24 h mainly were Type 1 diabetic patients; while patients with C-peptide......) weight below 110% of ideal weight of the same age and sex. Eighty patients were classified as Type 1 and 52 as Type 2 diabetic subjects. A second classification of patients into 6 C-peptide classes was then performed. Class I consisted of patients without islet B-cell function. Class II-VI had preserved...

  2. Review: Formation of Peptide Radical Ions Through Dissociative Electron Transfer in Ternary Metal-Ligand-Peptide Complexes

    International Nuclear Information System (INIS)

    The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal-ligand-peptide complexes enables the formation of a variety of peptide radicals including the canonical radical cations, M+#smbullet#, radical dications, (M+H)2+#smbullet#, radical anions, (M-2H)-#smbullet#. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side chain losses from the radical ions. Subsequent fragmentation of these species provides information on the role of charge and the location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal-ligand-peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT), and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities, and the energetics and dynamics of fragmentation of such complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

  3. Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability.

    Science.gov (United States)

    Mangelschots, Jeroen; Bibian, Mathieu; Gardiner, James; Waddington, Lynne; Van Wanseele, Yannick; Van Eeckhaut, Ann; Acevedo, Maria M Diaz; Van Mele, Bruno; Madder, Annemieke; Hoogenboom, Richard; Ballet, Steven

    2016-02-01

    Peptide hydrogels are a highly promising class of materials for biomedical application, albeit facing many challenges with regard to stability and tunability. Here, we report a new class of amphipathic peptide hydrogelators, namely mixed α/β-peptide hydrogelators. These mixed α/β-gelators possess good rheological properties (high storage moduli) and form transparent self-supporting gels with shear-thinning behavior. Infrared spectroscopy indicates the presence of β-sheets as the underlying secondary structure. Interestingly, self-assembled nanofibers of the mixed α/β-peptides display unique structural morphologies with alteration of the C-terminus (acid vs amide) playing a key role in the fiber formation and gelation properties of the resulting hydrogels. The incorporation of β3-homoamino acid residues within the mixed α/β-peptide gelators led to an increase in proteolytic stability of the peptides under nongelating conditions (in solution) as well as gelating conditions (as hydrogel). Under diluted conditions, degradation of mixed α/β-peptides in the presence of elastase was slowed down 120-fold compared to that of an α-peptide, thereby demonstrating beneficial enzymatic resistance for hydrogel applications in vivo. In addition, increased half-life values were obtained for the mixed α/β-peptides in human blood plasma, as compared to corresponding α-peptides. It was also found that the mixed α/β-peptides were amenable to injection via needles used for subcutaneous administrations. The preformed peptide gels could be sheared upon injection and were found to quickly reform to a state close to that of the original hydrogel. The shown properties of enhanced proteolytic stability and injectability hold great promise for the use of these novel mixed α/β-peptide hydrogels for applications in the areas of tissue engineering and drug delivery. PMID:26741458

  4. Novel Zn2+-chelating peptides selected from a fimbria-displayed random peptide library

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Schembri, Mark; Klemm, Per

    2001-01-01

    The display of peptide sequences on the surface of bacteria is a technology that offers exciting applications in biotechnology and medical research. Type 1 fimbriae are surface organelles of Escherichia coli which mediate D-mannose-sensitive binding to different host surfaces by virtue of the Fim...... peptide sequences that conferred on recombinant cells the ability to bind Zn2+. By serial selection, sequences that exhibited various degrees of binding affinity and specificity toward Zn2+ were enriched. None of the isolated sequences showed similarity to known Zn2+-binding proteins, indicating that...

  5. Advances in Fmoc solid-phase peptide synthesis.

    Science.gov (United States)

    Behrendt, Raymond; White, Peter; Offer, John

    2016-01-01

    Today, Fmoc SPPS is the method of choice for peptide synthesis. Very-high-quality Fmoc building blocks are available at low cost because of the economies of scale arising from current multiton production of therapeutic peptides by Fmoc SPPS. Many modified derivatives are commercially available as Fmoc building blocks, making synthetic access to a broad range of peptide derivatives straightforward. The number of synthetic peptides entering clinical trials has grown continuously over the last decade, and recent advances in the Fmoc SPPS technology are a response to the growing demand from medicinal chemistry and pharmacology. Improvements are being continually reported for peptide quality, synthesis time and novel synthetic targets. Topical peptide research has contributed to a continuous improvement and expansion of Fmoc SPPS applications. PMID:26785684

  6. Characterization of Selective Antibacterial Peptides by Polarity Index

    Directory of Open Access Journals (Sweden)

    C. Polanco

    2012-01-01

    Full Text Available In the recent decades, antibacterial peptides have occupied a strategic position for pharmaceutical drug applications and became subject of intense research activities since they are used to strengthen the immune system of all living organisms by protecting them from pathogenic bacteria. This work proposes a simple and easy statistical/computational method through a peptide polarity index measure by which an antibacterial peptide subgroup can be efficiently identified, that is, characterized by a high toxicity to bacterial membranes but presents a low toxicity to mammal cells. These peptides also have the feature not to adopt to an alpha-helicoidal structure in aqueous solution. The double-blind test carried out to the whole Antimicrobial Peptide Database (November 2011 showed an accuracy of 90% applying the polarity index method for the identification of such antibacterial peptide groups.

  7. Optimization of reversed-phase chromatography methods for peptide analytics.

    Science.gov (United States)

    Khalaf, Rushd; Baur, Daniel; Pfister, David

    2015-12-18

    The analytical description and quantification of peptide solutions is an essential part in the quality control of peptide production processes and in peptide mapping techniques. Traditionally, an important tool is analytical reversed phase liquid chromatography. In this work, we develop a model-based tool to find optimal analytical conditions in a clear, efficient and robust manner. The model, based on the Van't Hoff equation, the linear solvent strength correlation, and an analytical solution of the mass balance on a chromatographic column describing peptide retention in gradient conditions is used to optimize the analytical scale separation between components in a peptide mixture. The proposed tool is then applied in the design of analytical reversed phase liquid chromatography methods of five different peptide mixtures. PMID:26620597

  8. Proinflammatory Effects of C-Peptide in Different Tissues

    Directory of Open Access Journals (Sweden)

    Dusica Vasic

    2012-01-01

    Full Text Available Atherosclerosis is well known as an inflammatory disease that can lead to clinical complications such as heart attack or stroke. C-peptide as a cleavage product of proinsulin is in the last few decades known as an active peptide with a number of different effects on microvascular and macrovascular complications in type 2 diabetic patients. Patients with insulin resistance and early type 2 diabetes show elevated levels of C-peptide in blood. Several last findings demonstrated deposition of C-peptide in the vessel wall in ApoE-deficient mice and induction of local inflammation. Besides that, C-peptide has proliferative effects on human mesangial cells. This review discusses recently published proinflammatory effects of C-peptide in different tissues.

  9. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit; Almanzar, Giovanni; Parson, Walther; Buus, Søren; Lindner, Herbert; Grubeck-Loebenstein, Beatrix

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... proteins and peptides. Little information is available presently about the consequences of such modifications on the immune response. To model oxidative modification of an immunodominant antigenic peptide, we oxidized the methionine residue of the human CMV pp65(495-503) (NLVPMVATV) peptide. Such...... modifications of an antigenic peptide can affect MHC binding or TCR recognition. Using binding and dissociation assays, we demonstrate that oxidative modification of the CMVpp65(495-503) peptide leads to a decreased binding of the pMHC complex to the TCR, whereas binding of the peptide to the MHC class I...

  10. Survey of small antifungal peptides with chemotherapeutic potential.

    Science.gov (United States)

    Desbois, Andrew P; Tschörner, David; Coote, Peter J

    2011-08-01

    Many cationic peptides with antimicrobial properties have been isolated from bacteria, fungi, plants, and animals. These peptides vary in molecular size, potency and spectra of activities. This report surveyed the literature to highlight the peptides that have antifungal activity and greatest potential for development as new therapeutic agents. Thus, to be included in the evaluation, each peptide had to fulfil the following criteria: (i) potent antifungal activity, (ii) no, or minimal, mammalian cell toxicity, (iii) of ≤25 amino acids in length, which minimises the costs of synthesis, reduces immunogenicity and enhances bioavailability and stability in vivo, (iv) minimal post-translational modifications (also reduces the production costs). The ~80 peptides that satisfied these criteria are discussed with respect to their structures, mechanisms of antimicrobial action and in vitro and in vivo toxicities. Certainly, some of these small peptides warrant further study and have potential for future exploitation as new antifungal agents. PMID:21470150

  11. The possible roles of vitamin D and curcumin in treating gonorrhea.

    Science.gov (United States)

    Youssef, Dima A; Peiris, Alan N; Kelley, Jim L; Grant, William B

    2013-07-01

    Drug-resistant gonorrhea, Neisseria gonorrhoeae (N. gonorrhoeae), is an emerging concern, especially because the risk of bladder cancer is associated with this infection. N. gonorrhoeae suppresses T-helper 1(Th1) and Th2 responses and enhances Th17 responses via a mechanism involving transforming growth factor-beta (TGF-β) and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with concomitant boosting of immune memory and protective immunity. Gonorrhea activates nuclear factor kappaB (NF-kappaB), which plays a critical role in signal-transduction pathways involved in inflammation. The innate immune system can eventually clear gonorrhea. Vitamin D is emerging as a potential, powerful, anti-microbial agent with these effects: it supports the innate immune system in combating bacterial infections; it decreases levels of TGF-β and NF-kappaB activation; and it induces production of LL-37 (cathelicidin), which has antimicrobial and antiendotoxin properties. In addition, via an independent vitamin D receptor pathway, curcumin also induces LL-37 production, inhibiting N. gonorrhoeae-induced NF-kappaB signaling and inducing autophagy. Therefore, vitamin D and curcumin taken together may be useful in combating both normal and drug-resistant gonorrhea. Moreover, the possible synergy between these two agents in improving outcomes is worthy of additional investigation. PMID:23642399

  12. C-type natriuretic-derived peptides as biomarkers in human disease

    DEFF Research Database (Denmark)

    Lippert, Solvej Kølvraa; Goetze, Jens Peter

    2010-01-01

    and extracellular fluid volume. Atrial natriuretic peptide and B-type natriuretic peptide have gained considerable diagnostic interest as biomarkers in cardiovascular disease. By contrast, C-type natriuretic peptide has not yet been ascribed a role in human diagnostics. This perspective aims at......The natriuretic peptide system comprises three structurally related peptides: atrial natriuretic peptide, B-type natriuretic peptide and C-type natriuretic peptide. In circulation, they play an important endocrine role in the regulation of cardiovascular homeostasis by maintaining blood pressure...... recapitulating the present biochemical and clinical issues concerning C-type natriuretic peptide measurement in plasma as a potential biomarker....

  13. Development of New Tools for the Synthesis of "Difficult Peptides"

    OpenAIRE

    Paradís Bas, Marta

    2015-01-01

    Tesi realitzada a l'Institut de Recerca Biomèdica de Barcelona (IRBB) The known as "difficult peptides", as well as those sequences that aggregate in solution, are some of those molecules with high applicability as nanomaterials or even in medicine field. This thesis has addressed to overcome the synthetic, as well as, the peptide manipulation in solution drawbacks associated to this kind of peptides. The strategies proposed and evaluated in the present work have been divided in three chap...

  14. Targeting cyclin-dependent kinases in Drosophila with peptide aptamers

    OpenAIRE

    Kolonin, Mikhail G.; Finley, Russell L.

    1998-01-01

    Two-hybrid technology provides a simple way to isolate small peptide aptamers that specifically recognize and strongly bind to a protein of interest. These aptamers have the potential to dominantly interfere with specific activities of their target proteins and, therefore, could be used as in vivo inhibitors. Here we explore the ability to use peptide aptamers as in vivo inhibitors by expressing aptamers directed against cell cycle regulators in Drosophila. We expressed two peptide aptamers, ...

  15. Lasso peptide, a highly stable structure and designable multifunctional backbone.

    Science.gov (United States)

    Zhao, Ning; Pan, Yongxu; Cheng, Zhen; Liu, Hongguang

    2016-06-01

    Lasso peptide belongs to a new class of natural product with highly compact and stable structure. It has varieties of biological activities, among which the most important one is its antibacterial efficacy. Novel lasso peptides have been constantly discovered and analyzed by advanced techniques, and the biosynthesis or even chemical synthesis of lasso peptide has been studied after learning its constituent amino acids and maturation process. Structural identification of lasso peptide provides information for elucidating the mechanisms of its antibacterial activity and basis for further modifications. Ring of lasso peptide is the key to both its highly compact and stable structure and its intrinsic antibacterial property. The loop has been considered as suitable modification region of lasso peptide, such as V11-S18 of MccJ25 being modifiable without disrupting the lasso structure in biosynthesis. The tail is the immunity protein that can export lasso peptide out of its produced strain and serve as a self-protection mechanism at the same time. Most of currently known lasso peptides are non-pathogenic, which implies that the modified lasso peptides are promising candidates for medical applications. Arginine, glycine, and aspartic acid as a ligands of cancer-specific receptor have been grafted to the loop of lasso peptide without losing its bioactivity, and many other targets are expected to be used for lasso peptide modification. Multi-molecular modification and large-scale production need to be studied and solved in future for designing and using multifunctional lasso peptide based on its extraordinary stable structure. PMID:27074719

  16. Photodissociation of Non-Covalent Peptide-Crown Ether Complexes

    OpenAIRE

    Wilson, Jeffrey J.; Kirkovits, Gregory J.; Sessler, Jonathan L.; Brodbelt, Jennifer S.

    2007-01-01

    Highly chromogenic 18-crown-6-dipyrrolylquinoxaline coordinates primary amines of peptides, forming non-covalent complexes that can be transferred to the gas phase by electrospray ionization. The appended chromogenic crown ether facilitates efficient energy transfer to the peptide upon ultraviolet irradiation in the gas phase, resulting in diagnostic peptide fragmentation. Collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of these non-covalent complexes re...

  17. CLE Peptide Signaling and Crosstalk with Phytohormones and Environmental Stimuli

    OpenAIRE

    Wang, Guodong; Zhang, Guohua; Wu, Mengyao

    2016-01-01

    The CLE (CLAVATA3/Endosperm surrounding region-related) peptide family is one of the best-studied secreted peptide families in plants. Accumulated data have revealed that CLE genes play vital roles on stem cell homeostasis in different types of meristems. Additionally, CLE genes have been found to perform various biological roles in plant growth and development, and in response to environmental stimuli. With recent advances on our understanding of CLE peptide function, it is showing that the ...

  18. Urinary Peptide Levels in Patients with Chronic Renal Failure

    OpenAIRE

    Mungli Prakash; Phani, Nagaraj M; Kavya R; Supriya M

    2010-01-01

    Introduction: Peptide levels in urine are found to be decreased in renal failure. In the current study urinary peptide levels were determined in chronic renal failure (CRF) patients. Method: 86 CRF patients and 80 healthy controls were selected for the study. Urinary proteins and peptide levels were determined by spectrophotometer based Lowry and Bradford methods. Urinary creatinine levels were determined by clinical chemistry analyzer. Results: There was significant decrease in urinary pepti...

  19. An Interplay between Electrostatic and Polar Interactions in Peptide Hydrogels

    OpenAIRE

    Joyner, Katherine; Taraban, Marc B; Feng, Yue; Yu, Y. Bruce

    2013-01-01

    Inherent chemical programmability available in peptide-based hydrogels has allowed diversity in the development of these materials for use in biomedical applications. Within the 20 natural amino acids, a range of chemical moieties are present. Here we used a mixing-induced self-assembly of two oppositely charged peptide modules to form a peptide-based hydrogel. To investigate electrostatic and polar interactions on the hydrogel, we replace amino acids from the negatively charged acidic glutam...

  20. Analysis of illegal peptide biopharmaceuticals frequently encountered by controlling agencies.

    Science.gov (United States)

    Vanhee, Celine; Janvier, Steven; Desmedt, Bart; Moens, Goedele; Deconinck, Eric; De Beer, Jacques O; Courselle, Patricia

    2015-09-01

    Recent advances in genomics, recombinant expression technologies and peptide synthesis have led to an increased development of protein and peptide therapeutics. Unfortunately this goes hand in hand with a growing market of counterfeit and illegal biopharmaceuticals, including substances that are still under pre-clinical and clinical development. These counterfeit and illegal protein and peptide substances could imply severe health threats as has been demonstrated by numerous case reports. The Belgian Federal Agency for Medicines and Health Products (FAMHP) and customs are striving, together with their global counterparts, to curtail the trafficking and distributions of these substances. At their request, suspected protein and peptide preparations are analysed in our Official Medicines Control Laboratory (OMCL). It stands to reason that a general screening method would be beneficiary in the battle against counterfeit and illegal peptide drugs. In this paper we present such general screening method employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the identification of counterfeit and illegal injectable peptide preparations, extended with a subsequent quantification method using ultra-high performance liquid chromatography with diode array detection (UHPLC-DAD). The screening method, taking only 30 min, is able to selectively detect 25 different peptides and incorporates the proposed minimum of five identification points (IP) as has been recommended for sports drug testing applications. The group of peptides represent substances which have already been detected in illegal and counterfeit products seized by different European countries as well as some biopharmaceutical peptides which have not been confiscated yet by the controlling agencies, but are already being used according to the many internet users forums. Additionally, we also show that when applying the same LC gradient, it is also possible to quantify these peptides without the need for

  1. Chemo-enzymatic peptide synthesis : bioprocess engineering aspects

    OpenAIRE

    Vossenberg, P.

    2012-01-01

      Peptides, in particular oligopeptides, play an important role in the fields of health care, nutrition and cosmetics. Chemical synthesis is currently the most mature technique for the synthesis of peptides that range in length from 5 to 80 amino acids. Chemical synthesis is, however, expected to be more and more combined with enzyme-catalyzed synthesis, resulting in chemo-enzymatic approaches towards peptide synthesis. The racemization that hampers chemical synthesis can be prevented by...

  2. Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides

    OpenAIRE

    Mannige, Ranjan V.

    2014-01-01

    While the repertoire of protein folds that exists today underlies most of life’s capabilities, our mechanistic picture of protein fold origination is incomplete. This paper discusses a hypothetical mechanism for the emergence of the protein fold repertoire from highly dynamic and collapsed peptides, exemplified by peptides with high oil content or hydrophobicity. These peptides are called pluripotent to emphasize their capacity to evolve into numerous folds transiently available to them. As e...

  3. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine

    OpenAIRE

    Cui, Chengji; Stevens, Vernon C.; Schwendeman, Steven P.

    2006-01-01

    Advanced contraceptive peptide vaccines suffer from the unavailability of adjuvants capable of enhancing the antibody response with acceptable safety. We sought to overcome this limitation by employing two novel poly(lactic-co-glycolic acid) (PLGA) microsphere formulations to deliver a synthetic human chorionic gonadotropin (hCG) peptide antigen co-synthesized with a T-cell epitope from tetanus toxoid, C-TT2-CTP35: surface-conjugated immunogen to induce phagocytosis; and encapsulated peptide ...

  4. Proinsulin C-peptide interferes with insulin fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Landreh, Michael [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden); Stukenborg, Jan-Bernd [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Willander, Hanna [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Soeder, Olle [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Johansson, Jan [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala (Sweden); Joernvall, Hans, E-mail: Hans.Jornvall@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  5. Immunological half-life of porcine proinsulin C-peptide

    International Nuclear Information System (INIS)

    Immunological half-lifes of injected porcine C-peptide and insulin with RIA were studied and calculated as 9.8 and 8.0 minutes. Higher circulating levels of C-peptide as compared to insulin in normal young swines lead to speculation about a longer half-life of C-peptide. This hypothesis was verified in this study. Immunological half-lifes of porcine proinsulin and insulin in the pig were 20 and 6 minutes, respectively. (GSE)

  6. Proinsulin C-peptide interferes with insulin fibril formation

    International Nuclear Information System (INIS)

    Highlights: ► Insulin and C-peptide can interact under insulin fibril forming conditions. ► C-peptide is incorporated into insulin aggregates and alters aggregation lag time. ► C-peptide changes insulin fibril morphology and affects backbone accessibility. ► C-peptide may be a regulator of fibril formation by β-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic β-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  7. Nonlinear Optical Properties of Triphenylalanine-based Peptide Nanostructures

    Science.gov (United States)

    Kudryavtsev, A. V.; Mishina, E. D.; Sigov, A. S.

    2016-05-01

    Nonlinear optical properties of peptide nanobelts and peptide nanospheres, the two types of self-assembled triphenylalanine-based peptide nanostructures, are studied. Nanobelts nonlinear susceptibility tensor components are evaluated, and nanobelts crystal structure and crystallographic orientation are defined on the basis of nonlinear optical mapping and polarization dependences of the second harmonic signal. The results obtained suggest that it is possible to use these materials as biologically compatible nonlinear optical converters.

  8. Carrier peptide-mediated transepithelial permeation of biopharmaceuticals

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2015-01-01

    -penetrating peptides (CPPs). Two approaches for the carrier peptide-mediated transepithelial permeation of biopharmaceuticals are generally explored: Co-administration1 or covalent conjugation2. Co-administration is often the method of choice due to e.g. ease in sample preparation and flexibility in adjustment of the......-34)) and the widely studied CPP penetratin were employed as therapeutic cargo and carrier peptide, respectively....

  9. Incorporation of peptides in phospholipid aggregates using ultrasound

    OpenAIRE

    Silva, Raquel; Little, Collin; Ferreira, Helena; Paulo, Artur Cavaco

    2008-01-01

    This study presents the highlights of ultrasonic effects on peptides incorporated on phospholipid aggregates (liposomes). These liposomes or vesicles are known as transport agents in skin drug delivery and for hair treatment. They might be a good model to deliver larger peptides into hair to restore fibre strength after hair coloration, modelling, permanent wave and/or straightening. The preparation of liposomes 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) with peptides (LLLLK LLLLK LL...

  10. IPG strip-based peptide fractionation for shotgun proteomics

    OpenAIRE

    Eravci, M.; Sommer, C; Selbach, M

    2014-01-01

    Efficient fractionation of peptides is an essential prerequisite for comprehensive analysis of complex protein mixtures by shotgun mass spectrometry. The separation of peptides by isoelectric focusing is particularly attractive due to its orthogonality to reverse-phase HPLC. Here, we present a protocol for in-gel peptide isoelectric focusing using immobilized pH gradient strips. The method shows high resolving power for up to 1 mg of sample and is highly reproducible.

  11. TOPICAL REVIEW: Nonlinear two-dimensional vibrational spectroscopy of peptides

    Science.gov (United States)

    Woutersen, Sander; Hamm, Peter

    2002-10-01

    In this overview, we discuss theoretical and experimental aspects of nonlinear two-dimensional infrared (2D-IR) spectroscopy. With this technique both peptide conformation and conformational flexibility can be probed. The quantitative relation between the experimental 2D-IR spectrum and the peptide conformation is discussed, and examples of how the conformation of a peptide and the timescale of its fluctuations are derived from its (time-resolved) 2D spectrum are presented.

  12. Interpretation of tandem mass spectra obtained from cyclic nonribosomal peptides.

    Science.gov (United States)

    Liu, Wei-Ting; Ng, Julio; Meluzzi, Dario; Bandeira, Nuno; Gutierrez, Marcelino; Simmons, Thomas L; Schultz, Andrew W; Linington, Roger G; Moore, Bradley S; Gerwick, William H; Pevzner, Pavel A; Dorrestein, Pieter C

    2009-06-01

    Natural and non-natural cyclic peptides are a crucial component in drug discovery programs because of their considerable pharmaceutical properties. Cyclosporin, microcystins, and nodularins are all notable pharmacologically important cyclic peptides. Because these biologically active peptides are often biosynthesized nonribosomally, they often contain nonstandard amino acids, thus increasing the complexity of the resulting tandem mass spectrometry data. In addition, because of the cyclic nature, the fragmentation patterns of many of these peptides showed much higher complexity when compared to related counterparts. Therefore, at the present time it is still difficult to annotate cyclic peptides MS/MS spectra. In this current work, an annotation program was developed for the annotation and characterization of tandem mass spectra obtained from cyclic peptides. This program, which we call MS-CPA is available as a web tool (http://lol.ucsd.edu/ms-cpa_v1/Input.py). Using this program, we have successfully annotated the sequence of representative cyclic peptides, such as seglitide, tyrothricin, desmethoxymajusculamide C, dudawalamide A, and cyclomarins, in a rapid manner and also were able to provide the first-pass structure evidence of a newly discovered natural product based on predicted sequence. This compound is not available in sufficient quantities for structural elucidation by other means such as NMR. In addition to the development of this cyclic annotation program, it was observed that some cyclic peptides fragmented in unexpected ways resulting in the scrambling of sequences. In summary, MS-CPA not only provides a platform for rapid confirmation and annotation of tandem mass spectrometry data obtained with cyclic peptides but also enables quantitative analysis of the ion intensities. This program facilitates cyclic peptide analysis, sequencing, and also acts as a useful tool to investigate the uncommon fragmentation phenomena of cyclic peptides and aids the

  13. Paramagnetic relaxation enhancements in NMR peptide-membrane interaction studies

    International Nuclear Information System (INIS)

    Small membrane-bound proteins or peptides are involved in numerous essential biological processes, like cellular recognition, signaling, channel formation, and cytolysis. The secondary structure, orientation, mode of interaction and dynamics of these peptides can be as varied as their functions. Their localization in the membrane, the immersion depth, and their binding mode are factors critical to the function of these peptides. The atomic 3D solution structure of peptides bound to micelles can be determined by NMR spectroscopy. However, by employing paramagnetic relaxation enhancements (PREs) information on the complete topology of peptide bound to a micelle can be obtained. The antimicrobial peptide maximin H6, fst, a bacterial toxin, and the human peptide hormone ghrelin served as membrane-bound model peptides of similar sizes but strongly differing amino acid sequences. Their structures and binding behavior were determined and compared.The measured PREs provided suitable data for determining and distinguishing the different topologies of the investigated peptides bound to micelles. Maximin H6 and fst fold into α-helices upon insertion into a membrane, whereas the unstructured ghrelin is freely mobile in solution and interacts only via a covalently bound octanoyl group with the lipids. Maximin H6 is oriented parallel to the membrane surface, enabling the peptide to aggregate at the membrane water interface. Fst binds in transmembrane orientation with a protruding intrinsically disordered region near the C-terminus. Aside from determining the orientation of the bound peptides from the PREs, the moieties critical for membrane binding could be mapped in ghrelin. If suitable relaxation-edited spectra are acquired, the complete orientation and immersion depth of a peptide bound to a micelle can readily be obtained. (author)

  14. Role of Host-Defence Peptides in Eye Diseases

    OpenAIRE

    Kolar, Satya S.; McDermott, Alison M.

    2011-01-01

    The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarized. The role of these peptides in eye disease ...

  15. Isolation and characterization of regulatory peptides and bioactive compounds

    OpenAIRE

    Norberg, Åke

    2004-01-01

    Isolation of peptides and other bioactive compounds is an important and often necessary step to get the total information about their structures. This is demonstrated by a number of different characterizations in this thesis. Bioactive peptides and small organic molecules can act as signaling substances and messengers in multicellular organisms and are fundamental to higher forms of life. The following bioactive peptides and compounds were studied. 1) Different assays ca...

  16. Discriminating self from nonself with short peptides from large proteomes

    DEFF Research Database (Denmark)

    Burrouhgs, N.J.; Boer, R.J.; Kesmir, Can

    2004-01-01

    information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation...... tend to carry sufficient information to detect nonself peptides amongst self peptides....

  17. Competitive binding of antagonistic peptides fine-tunes stomatal patterning

    OpenAIRE

    Lee, Jin Suk; Hnilova, Marketa; Maes, Michal; Lin, Ya-Chen Lisa; Putarjunan, Aarthi; Han, Soon-Ki; Avila, Julian; U.Torii, Keiko

    2015-01-01

    During development, cells interpret complex, often conflicting signals to make optimal decisions. Plant stomata, the cellular interface between a plant and the atmosphere, develop according to positional cues including a family of secreted peptides, EPIDERMAL PATTERNING FACTORS (EPFs). How these signaling peptides orchestrate pattern formation at a molecular level remains unclear. Here we report that Stomagen/EPF-LIKE9 peptide, which promotes stomatal development, requires ERECTA (ER)-family ...

  18. In Silico Approach for Predicting Toxicity of Peptides and Proteins

    OpenAIRE

    Gupta, Sudheer; Kapoor, Pallavi; Chaudhary, Kumardeep; Gautam, Ankur; Kumar, Rahul; . .; Gajendra P. S. Raghava

    2013-01-01

    Background Over the past few decades, scientific research has been focused on developing peptide/protein-based therapies to treat various diseases. With the several advantages over small molecules, including high specificity, high penetration, ease of manufacturing, peptides have emerged as promising therapeutic molecules against many diseases. However, one of the bottlenecks in peptide/protein-based therapy is their toxicity. Therefore, in the present study, we developed in silico models for...

  19. Peptide immobilized on gold particles enhances cell growth

    OpenAIRE

    Gong, Jiansheng; Ito, Yoshihiro

    2008-01-01

    A multivalent ligand of thrombopoietin (TPO) was prepared by immobilization of mimetic peptides on gold particles. An effective peptide ligand containing cysteine was designed to enhance the growth of TPO-sensitive cells. The peptide was then immobilized on gold particles by self assembly. The multivalent ligand enhanced the growth of TPO-dependent cells and its activity was more than that of the monovalent ligand.

  20. Bioactive Peptides from Muscle Sources: Meat and Fish

    Directory of Open Access Journals (Sweden)

    Catherine Stanton

    2011-08-01

    Full Text Available Bioactive peptides have been identified in a range of foods, including plant, milk and muscle, e.g., beef, chicken, pork and fish muscle proteins. Bioactive peptides from food proteins offer major potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an outline of the bioactive peptides identified in the muscle protein of meat to date, with a focus on muscle protein from domestic animals and fish. The majority of research on bioactives from meat sources has focused on angiotensin-1-converting enzyme (ACE inhibitory and antioxidant peptides.