WorldWideScience

Sample records for catalyzing ester bond

  1. Palladium-Catalyzed ortho-Olefination of Phenyl Acetic and Phenyl Propylacetic Esters via C-H Bond Activation.

    Science.gov (United States)

    Hu, Jundie; Guan, Mingyu; Han, Jian; Huang, Zhi-Bin; Shi, Da-Qing; Zhao, Yingsheng

    2015-08-21

    A highly regioselective palladium-catalyzed ester-directed ortho-olefination of phenyl acetic and propionic esters with olefins via C-H bond activation has been developed. A wide variety of phenyl acetic and propionic esters were tolerated in this transformation, affording the corresponding olefinated aromatic compounds. The ortho-olefination of heterocyclic acetic and propionic esters also took place smoothly giving the products in good yields, thus proving the potential utility of this protocol in synthetic chemistry.

  2. Nickel-Catalyzed C–O Bond-Cleaving Alkylation of Esters: Direct Replacement of the Ester Moiety by Functionalized Alkyl Chains

    KAUST Repository

    Liu, Xiangqian

    2017-06-07

    Two efficient protocols for the nickel-catalyzed aryl–alkyl cross-coupling reactions using esters as coupling components have been established. The methods enable the selective oxidative addition of nickel to acyl C–O and aryl C–O bonds and allow the aryl–alkyl cross-coupling via decarbonylative bond cleavage or through cleavage of a C–O bond with high efficiency and good functional group compatibility. The protocols allow the streamlined, unconventional utilization of widespread ester groups and their precursors, carboxylic acids and phenols, in synthetic organic chemistry.

  3. Catalytic Ester and Amide to Amine Interconversion: Nickel-Catalyzed Decarbonylative Amination of Esters and Amides by C−O and C−C Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-15

    An efficient nickel-catalyzed decarbonylative amination reaction of aryl and heteroaryl esters has been achieved for the first time. The new amination protocol allows the direct interconversion of esters and amides into the corresponding amines and represents a good alternative to classical rearrangements as well as cross coupling reactions.

  4. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi

    2018-01-15

    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  5. Nickel-Catalyzed C–CN Bond Formation via Decarbonylative Cyanation of Esters, Amides, and Intramolecular Recombination Fragment Coupling of Acyl Cyanides

    KAUST Repository

    Chatupheeraphat, Adisak

    2017-08-07

    An efficient nickel-catalyzed decarbonylative cyanation reaction which allows the direct functional-group interconversion of readily available esters into the corresponding nitriles was developed. This reaction successfully offers access to structurally diverse nitriles with high efficiency and excellent functional-group tolerance and provides a good alternative to classical synthetic pathways from diazonium salts or organic halide compounds.

  6. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak

    2018-02-20

    A ligand-controlled and site-selective nickel catalyzed Suzuki-Miyaura cross-coupling reaction with aromatic esters and alkyl organoboron reagents as coupling partners was developed. This methodology provides a facile route for C(sp2)-C(sp3) bond formation in a straightforward fashion by successful suppression of the undesired β-hydride elimination process. By simply switching the phosphorus ligand, the ester substrates are converted into the alkylated arenes and ketone products, respectively. The utility of this newly developed protocol was demonstrated by its wide substrate scope, broad functional group tolerance and application in the synthesis of key intermediates for the synthesis of bioactive compounds. DFT studies on the oxidative addition step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel complexes with monodentate phosphorus ligands favor activation of the C(acyl)-O bond, which later generates the ketone product.

  7. PyBidine-Cu(OTf)2 -catalyzed asymmetric [3+2] cycloaddition with imino esters: harmony of Cu-Lewis acid and imidazolidine-NH hydrogen bonding in concerto catalysis.

    Science.gov (United States)

    Arai, Takayoshi; Ogawa, Hiroki; Awata, Atsuko; Sato, Makoto; Watabe, Megumi; Yamanaka, Masahiro

    2015-01-26

    A bis(imidazolidine)pyridine (PyBidine)-Cu(OTf)2 complex catalyzing the endo-selective [3+2] cycloaddition of nitroalkenes with imino esters was applied to the reaction of methyleneindolinones with imino esters to afford spiro[pyrrolidin-3,3'-oxindole]s in up to 98 % ee. X-ray crystallographic analysis of the PyBidine-Cu(OTf)2 complex and DFT calculations suggested that an intermediate Cu enolate of the imino ester reacts with nitroalkenes or methyleneindolinones, which are activated by NH-hydrogen bonding with the PyBidine-Cu(OTf)2 catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selective Reductive Removal of Ester and Amide Groups from Arenes and Heteroarenes through Nickel-Catalyzed C−O and C−N Bond Activation

    KAUST Repository

    Yue, Huifeng

    2017-03-21

    An inexpensive nickel(II) catalyst and a hydrosilane were used for the efficient reductive defunctionalization of aryl and heteroaryl esters through a decarbonylative pathway. This versatile method could be used for the removal of ester and amide functional groups from various organic molecules. Moreover, a scale-up experiment and a synthetic application based on the use of a removable carboxylic acid directing group highlight the usefulness of this reaction.

  9. Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy.

    Science.gov (United States)

    Srimani, Dipankar; Mukherjee, Arup; Goldberg, Alexander F G; Leitus, Gregory; Diskin-Posner, Yael; Shimon, Linda J W; Ben David, Yehoshoa; Milstein, David

    2015-10-12

    The atom-efficient and environmentally benign catalytic hydrogenation of carboxylic acid esters to alcohols has been accomplished in recent years mainly with precious-metal-based catalysts, with few exceptions. Presented here is the first cobalt-catalyzed hydrogenation of esters to the corresponding alcohols. Unexpectedly, the evidence indicates the unprecedented involvement of ester enolate intermediates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC 1.103.2) are taking the centerstage of this attention, since...... these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed...... illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin...

  11. Can laccases catalyze bond cleavage in lignin?

    Science.gov (United States)

    Munk, Line; Sitarz, Anna K; Kalyani, Dayanand C; Mikkelsen, J Dalgaard; Meyer, Anne S

    2015-01-01

    Modification of lignin is recognized as an important aspect of the successful refining of lignocellulosic biomass, and enzyme-assisted processing and upcycling of lignin is receiving significant attention in the literature. Laccases (EC 1.10.3.2) are taking the centerstage of this attention, since these enzymes may help degrading lignin, using oxygen as the oxidant. Laccases can catalyze polymerization of lignin, but the question is whether and how laccases can directly catalyze modification of lignin via catalytic bond cleavage. Via a thorough review of the available literature and detailed illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin model compounds; ii) For laccases to catalyze inter-unit bond cleavage in lignin substrates, the presence of a mediator system is required. Clearly, the higher the redox potential of the laccase enzyme, the broader the range of substrates, including o- and p-diphenols, aminophenols, methoxy-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin is proposed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Palladium(II)-catalyzed ortho-C-H arylation/alkylation of N-benzoyl α-amino ester derivatives.

    Science.gov (United States)

    Misal Castro, Luis C; Chatani, Naoto

    2014-04-14

    The palladium-catalyzed arylation/alkylation of ortho-C-H bonds in N-benzoyl α-amino ester derivatives is described. In such a system both the NH-amido and the CO2R groups in the α-amino ester moieties play a role in successful C-H activation/C-C bond formation using iodoaryl coupling partners. A wide variety of functional groups and electron-rich/deficient iodoarenes are tolerated. The yields obtained range from 20 to 95%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    Science.gov (United States)

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  14. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C–H Borylation

    KAUST Repository

    Batool, Farhat

    2015-08-17

    The preparation of fluoroalkoxy arylboronic esters by iridium-catalyzed aromatic C–H borylation is described. The fluoroalkoxy groups employed include trifluoromethoxy, difluoromethoxy, 1,1,2,2-tetrafluoroethoxy, and 2,2-difluoro-1,3-benzodioxole. The borylation reactions were carried out neat without the use of a glovebox or Schlenk line. The regioselectivities available through the iridium-catalyzed C–H borylation are complementary to those obtained by the electrophilic aromatic substitution reactions of fluoroalkoxy arenes. Fluoroalkoxy arylboronic esters can serve as versatile building blocks.

  15. Saliva-catalyzed hydrolysis of a ketobemidone ester prodrug

    DEFF Research Database (Denmark)

    Hansen, L.B.; Christrup, Lona Louring; Bundgaard, H.

    1992-01-01

    Saliva enzyme-catalysed hydrolysis of ester prodrugs or drugs containing sensitive ester groups may be a limiting factor for the buccal absorption of such compounds. Using the isopropyl carbonate ester of ketobemidone as a model substance of a hydrolysis-sensitive prodrug the esterase activity...... of human saliva has been characterized as a function of various factors. The esterase activity was found to decrease rapidly upon storage of the saliva at 37°C. The activity increased with increasing pH in the range 4.5-7.4 and with increasing salivation flow rate up to a rate of 0.9 ml min. Under resting...... conditions, the flow rate was about 0.2 ml min which implied a greatly decreased esterase activity. The activity was highest after fasting and decreased after intake of a meal. The intraindividual variation in the saliva esterase activity was small whereas a larger interindividual variation was found....

  16. Iodine-Catalyzed Synthesis of Mixed Cellulose Esters

    Science.gov (United States)

    A novel method for the preparation of cellulose mixed acetate is described herein, involving the concurrent use of iodine and mixed anhydride. The method is simple, rapid, efficient, and solvent-less. With this method, cellulose mixed esters has been synthesized. ...

  17. Ruthenium(II)-catalyzed synthesis of hydroxylated arenes with ester as an effective directing group.

    Science.gov (United States)

    Yang, Yiqing; Lin, Yun; Rao, Yu

    2012-06-01

    An unprecedented Ru(II) catalyzed ortho-hydroxylation has been developed for the facile synthesis of a variety of multifunctionalized arenes from easily accessible ethyl benzoates with ester as an efficient directing group. Both the TFA/TFAA cosolvent system and oxidants serve as the critical success factors in this transformation. The reaction demonstrates excellent reactivity, good functional group tolerance, and high yields.

  18. α-Ketophosphonates as ester surrogates: isothiourea-catalyzed asymmetric diester and lactone synthesis.

    Science.gov (United States)

    Smith, Siobhan R; Leckie, Stuart M; Holmes, Reuben; Douglas, James; Fallan, Charlene; Shapland, Peter; Pryde, David; Slawin, Alexandra M Z; Smith, Andrew D

    2014-05-02

    Isothiourea HBTM-2.1 catalyzes the asymmetric Michael addition/lactonization of aryl- and alkenylacetic acids using α-keto-β,γ-unsaturated phosphonates as α,β-unsaturated ester surrogates, giving access to a diverse range of stereodefined lactones or enantioenriched functionalized diesters upon ring-opening.

  19. Aspergillus niger whole-cell catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids.

    Science.gov (United States)

    Rajapriya, Govindaraju; Morya, Vivek Kumar; Mai, Ngoc Lan; Koo, Yoon-Mo

    2018-04-01

    Synthesis of caffeic acid ester essentially requires an efficient esterification process to produce various kinds of medicinally important ester derivatives. In the present study, a comprehensive and comparative analysis of whole-cell catalyzed caffeic acid esters production in ionic liquids (ILs) media was performed. Olive oil induced mycelial mass of halotolerant Aspergillus niger (A.niger) EXF 4321 was freeze dried and used as a catalyst. To ensure maximum solubilization of caffeic acid for highest substrate loading several ILs were screened and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][Tf 2 N]) was found to have the maximum solubility and favoured for enzymatic activity of freeze dried mycelia. The whole-cell catalyzed synthesis of caffeic acid phenethyl ester (CAPE) conditions were optimized and bioconversion up to 84% was achieved at a substrate molar ratio of 1:20 (caffeic acid:2-phenyl ethanol), 30°C for 12h. Results obtained during this study were encouraging and helpful to design a bioreactor system to produce caffeic acid derived esters. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Palladium-Catalyzed Allylation/Benzylation of H-Phosphinate Esters with Alcohols

    Directory of Open Access Journals (Sweden)

    Anthony Fers-Lidou

    2016-09-01

    Full Text Available The Pd-catalyzed direct alkylation of H-phosphinic acids and hypophosphorous acid with allylic/benzylic alcohols has been described previously. Here, the extension of this methodology to H-phosphinate esters is presented. The new reaction appears general, although its scope is narrower than with the acids, and its mechanism is likely different. Various alcohols are examined in their reaction with phosphinylidene compounds R1R2P(OH.

  1. alpha-Ketophosphonates as ester surrogates : isothiourea-catalyzed asymmetric diester and lactone synthesis

    OpenAIRE

    Smith, Siobhan R.; Leckie, Stuart M.; Holmes, Reuben; Douglas, James; Fallan, Charlene; Shapland, Peter; Pryde, David; Slawin, Alexandra M. Z.; Smith, Andrew D.

    2014-01-01

    This work is in part supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC Grant Agreement No. 279850 Isothiourea HBTM-2.1 catalyzes the asymmetric Michael addition/lactonization of aryl- and alkenylacetic acids using α-keto-β,γ-unsaturated phosphonates as α,β-unsaturated ester surrogates, giving access to a diverse range of stereodefined lactones or enantioenriched functionalized diesters upon ring-opening. Postprint Pe...

  2. Transition-metal-catalyzed enantioselective heteroatom-hydrogen bond insertion reactions.

    Science.gov (United States)

    Zhu, Shou-Fei; Zhou, Qi-Lin

    2012-08-21

    Carbon-heteroatom bonds (C-X) are ubiquitous and are among the most reactive components of organic compounds. Therefore investigations of the construction of C-X bonds are fundamental and vibrant fields in organic chemistry. Transition-metal-catalyzed heteroatom-hydrogen bond (X-H) insertions via a metal carbene or carbenoid intermediate represent one of the most efficient approaches to form C-X bonds. Because of the availability of substrates, neutral and mild reaction conditions, and high reactivity of these transformations, researchers have widely applied transition-metal-catalyzed X-H insertions in organic synthesis. Researchers have developed a variety of rhodium-catalyzed asymmetric C-H insertion reactions with high to excellent enantioselectivities for a wide range of substrates. However, at the time that we launched our research, very few highly enantioselective X-H insertions had been documented primarily because of a lack of efficient chiral catalysts and indistinct insertion mechanisms. In this Account, we describe our recent studies of copper- and iron-catalyzed asymmetric X-H insertion reactions by using chiral spiro-bisoxazoline and diimine ligands. The copper complexes of chiral spiro-bisoxazoline ligands proved to be highly enantioselective catalysts for N-H insertions of α-diazoesters into anilines, O-H insertions of α-diazoesters into phenols and water, O-H insertions of α-diazophosphonates into alcohols, and S-H insertions of α-diazoesters into mercaptans. The iron complexes of chiral spiro-bisoxazoline ligands afforded the O-H insertion of α-diazoesters into alcohols and water with unprecedented enantioselectivities. The copper complexes of chiral spiro-diimine ligands exhibited excellent reactivity and enantioselectivity in the Si-H insertion of α-diazoacetates into a wide range of silanes. These transition-metal-catalyzed X-H insertions have many potential applications in organic synthesis because the insertion products, including chiral

  3. Methyl Ester Production via Heterogeneous Acid-Catalyzed Simultaneous Transesterification and Esterification Reactions

    Science.gov (United States)

    Indrayanah, S.; Erwin; Marsih, I. N.; Suprapto; Murwani, I. K.

    2017-05-01

    The heterogeneous acid catalysts (MgF2 and ZnF2) have been used to catalyze the simultaneous transesterification and esterification reactions of crude palm oil (CPO) with methanol. Catalysts were synthesized by sol-gel method (combination of fluorolysis and hydrolysis). The physicochemical, structural, textural, thermal stability of the prepared catalysts was investigated by N2 adsorption-desorption, XRD, FT-IR, SEM and TG/DTG. Both MgF2 and ZnF2 have rutile structures with a different phase. The surface area of ZnF2 is smaller than that of MgF2, but the pore size and volume of ZnF2 are larger than those of MgF2. However, these materials are thermally stable. The performance of the catalysts is determined from the yield of catalysts toward the formation of methyl ester determined based on the product of methyl ester obtained from the reaction. The catalytic activity of ZnF2 is higher than MgF2 amounted to 85.21% and 26.82% with the optimum condition. The high activity of ZnF2 could be attributed to its pore diameter and pore volume but was not correlated with its surface area. The yield of methyl ester decreased along with the increase in molar ratio of methanol/CPO from 85.21 to 80.99 for ZnF2, respectively.

  4. Carboxylic ester hydrolases from hyperthermophiles

    NARCIS (Netherlands)

    Levisson, M.; Oost, van der J.; Kengen, S.W.M.

    2009-01-01

    Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the

  5. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride...

  6. Pd-Catalyzed C-H Bond Functionalization on the Indole and Pyrrole Nucleus

    Science.gov (United States)

    Beck, Elizabeth M.; Gaunt, Matthew J.

    This review details recent developments in the Pd-catalyzed C-H bond arylation and alkenylation of indoles and pyrroles, aromatic heterocycles that are frequently displayed in natural products and medicinal agents.

  7. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 85748 Garching Germany

    2018-03-06

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  8. Synthetic Methods for Ester Bond Formation and Conformational Analysis of Ester-Containing Carbohydrates

    Science.gov (United States)

    Hackbusch, Sven

    This dissertation encompasses work related to synthetic methods for the formation of ester linkages in organic compounds, as well as the investigation of the conformational influence of the ester functional group on the flexibility of inter-saccharide linkages, specifically, and the solution phase structure of ester-containing carbohydrate derivatives, in general. Stereoselective reactions are an important part of the field of asymmetric synthesis and an understanding of their underlying mechanistic principles is essential for rational method development. Here, the exploration of a diastereoselective O-acylation reaction on a trans-2-substituted cyclohexanol scaffold is presented, along with possible reasons for the observed reversal of stereoselectivity dependent on the presence or absence of an achiral amine catalyst. In particular, this work establishes a structure-activity relationship with regard to the trans-2-substituent and its role as a chiral auxiliary in the reversal of diastereoselectivity. In the second part, the synthesis of various ester-linked carbohydrate derivatives, and their conformational analysis is presented. Using multidimensional NMR experiments and computational methods, the compounds' solution-phase structures were established and the effect of the ester functional group on the molecules' flexibility and three-dimensional (3D) structure was investigated and compared to ether or glycosidic linkages. To aid in this, a novel Karplus equation for the C(sp2)OCH angle in ester-linked carbohydrates was developed on the basis of a model ester-linked carbohydrate. This equation describes the sinusoidal relationship between the C(sp2)OCH dihedral angle and the corresponding 3JCH coupling constant that can be determined from a J-HMBC NMR experiment. The insights from this research will be useful in describing the 3D structure of naturally occurring and lab-made ester-linked derivatives of carbohydrates, as well as guiding the de novo-design of

  9. Rhodium-catalyzed direct ortho C-N bond formation of aromatic azo compounds with azides.

    Science.gov (United States)

    Wang, Hao; Yu, Yang; Hong, Xiaohu; Tan, Qitao; Xu, Bin

    2014-04-04

    An efficient rhodium-catalyzed regioselective C-N bond formation of azo compounds in good to excellent yields through C-H bond functionalization using azides as the nitrogen source was developed. Alkyl, aryl, and sulfonyl azides could be efficiently assembled in this reaction with excellent functional group tolerance.

  10. Stereoselective ZrCl4-Catalyzed Mannich-type Reaction of β-Keto Esters with Chiral Trifluoromethyl Aldimines.

    Science.gov (United States)

    Parise, Luca; Pellacani, Lucio; Sciubba, Fabio; Trulli, Laura; Fioravanti, Stefania

    2015-08-21

    A method for the synthesis of fluorinated β'-amino β-dicarbonyl compounds using a Zr-catalyzed Mannich-type reaction has been developed, starting from N-protected trifluoromethyl aldimines and cyclic or acyclic β-keto esters bearing different ester residues. The in situ generated metallic complex reacted with optically pure trifluoromethyl aldimine derived from (R)-α-methylbenzylamine, giving a highly diastereoselective asymmetric Mannich-type addition with formation of a chiral quaternary center. The absolute configuration at the new chiral centers was assigned through two-dimensional nuclear Overhauser effect spectroscopic analysis coupled with computational studies.

  11. N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones

    KAUST Repository

    Du, Guang-Fen

    2015-11-05

    © Georg Thieme Verlag Stuttgart · New York · Synthesis 2016. N-Heterocyclic carbene (NHC)-catalyzed vinylogous Mukaiyama aldol reaction of ketones was developed. Under the catalysis of 5 mol% NHC, α-keto esters and α-trifluoromethyl ketones reacted with 2-(trimethysilyloxy)furan efficiently to produce γ-substituted butenolides containing adjacent quaternary and tertiary carbon centers in high yields with good diastereoselectivities.

  12. FTIR study of hydrogen bonding between substituted benzyl alcohols and acrylic esters

    Directory of Open Access Journals (Sweden)

    P. Sivagurunathan

    2016-11-01

    Full Text Available Hydrogen bonding between substituted benzyl alcohols (benzyl alcohol, o-aminobenzyl alcohol, o-chlorobenzyl alcohol and o-nitrobenzyl alcohol and acrylic esters (methyl methacrylate, ethyl methacrylate is studied in carbon tetrachloride by using the FTIR spectroscopic method. Utilizing the Nash method, the formation constant (K of the 1:1 complexes is calculated. Using the K value, the Gibbs free energy change (ΔG0 is also calculated. The calculated formation constant and Gibbs free energy change values vary with the substituent of benzyl alcohol and ester chain length, which suggests that the proton donating ability of substituted benzyl alcohols is in the order: o-aminobenzyl alcohol < benzyl alcohol < o-chlorobenzyl alcohol < o-nitrobenzyl alcohol, and proton accepting ability of acrylic esters is in the order: methyl methacrylate < ethyl methacrylate.

  13. Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation–Pd-catalyzed cross-coupling

    Science.gov (United States)

    Wang, Guangwei; Mohan, Swathi; Negishi, Ei-ichi

    2011-01-01

    All four stereoisomers (7–10) of ethyl undeca-2,4-dienoate were prepared in ≥98% isomeric purity by Pd-catalyzed alkenylation (Negishi coupling) using ethyl (E)- and (Z)-β-bromoacrylates. Although the stereoisomeric purity of the 2Z,4E-isomer (8) prepared by Suzuki coupling using conventional alkoxide and carbonate bases was ≤ 95%, as reported earlier, the use of CsF or nBu4NF as a promoter base has now been found to give all of 7–10 in ≥98% selectivity. Other widely known methods reveal considerable limitations. Heck alkenylation was satisfactory for the syntheses of the 2E,4E and 2E,4Z isomers of ≥98% purity, but the purity of the 2Z,4E isomer was ≤ 95%. Mutually complementary Horner–Wadsworth–Emmons and Still–Gennari (SG) olefinations are also of considerably limited scopes. Neither 2E,4Z nor 2Z,4Z isomer is readily prepared in ≥90% selectivity. In addition to (2Z,4E)-dienoic esters, some (2Z,4E,6E)- and (2Z,4E,6Z)-trienoic esters have been prepared in ≥98% selectivity by a newly devised Pd-catalyzed alkenylation–SG olefination tandem process. As models for conjugated higher oligoenoic esters, all eight stereoisomers for ethyl trideca-2,4,6-trienoate (23–30) have been prepared in ≥98% overall selectivity. PMID:21709262

  14. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas

    2013-01-01

    of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...

  15. Nickel-Catalyzed Synthesis of Primary Aryl and Heteroaryl Amines via C–O Bond Cleavage

    KAUST Repository

    Yue, Huifeng

    2017-03-13

    A nickel-catalyzed protocol for the conversion of aryl and heteroaryl alcohol derivatives to primary and secondary aromatic amines via C(sp2)-O bond cleavage is described. The new amination protocol can be applied to a range of substrates bearing diverse functional groups and uses readily available benzophenone imines as an effective nitrogen source.

  16. Analysis in vitro of direct bonding system with cyanoacrylate ester and orthodontic wires.

    Science.gov (United States)

    Manfrin, Thais Mara; Poi, Wilson Roberto; de Mendonça, Marcos Rogério; Cardoso, Leandro Carvalho; Massa Sundefeld, Maria Lúcia Marçal; Sonoda, Celso Koogi; Panzarini, Sônia Regina

    2009-04-01

    The aim of this study was to evaluate the tensile strength of orthodontic wires bonded onto the enamel with cyanoacrylate ester. To obtain the specimens, 120 human premolars (extracted for orthodontic or periodontal reasons) were included in acrylic blocks of rapid polymerization with three teeth each. Four groups were formed with ten specimens each. In the specimens, a dental splint model was made with cyanoacrylate ester and round stainless steel wire. In groups I, II and III, cyanoacrylate ester was used with round steel wires, with variation in diameter: 0.014 inches; 0.016 inches and 0.018 inches, respectively. In group IV, round steel wire 0.018 inches was used with photo polymerizing resin composite with previous acid etching. The adhesive force of the materials was measured in two points under the action of the tensiometer (ETM-USA). The number of loose wires was counted along with those that remained fixed according to the different levels of force applied because of the direction of the tensile force (vertical or horizontal) and the diameter of the wire used. The data obtained were first submitted to a descriptive analysis and then submitted to a statistical analysis (Friedman's Test and Dunn's Test of Multiple Comparison - Epi-info 3.2). Within the limitations of the experimental conditions presented, the cyanoacrylate ester or 'Super Bonder' maintained bonded to enamel and steel wires (0.016 and 0.018 inches) during the tensile strength tests under different levels of applied forces.

  17. PLE CATALYZED HYDROLYZES OF ALPHA-SUBSTITUTED ALPHA-HYDROXY ESTERS - THE INFLUENCE OF THE SUBSTITUENTS

    NARCIS (Netherlands)

    MOORLAG, H; KELLOGG, RM

    1991-01-01

    The enzymatic hydrolyses of a variety of alpha-substituted mandelic and lactic esters using pig liver esterase (PLE) have been investigated. High to moderate enantioselectivity was found for various alpha-substituted mandelic esters, whereas PLE showed low to no enantioselectivity for

  18. Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup

    Directory of Open Access Journals (Sweden)

    Sascha Siebenhaller

    2018-02-01

    Full Text Available Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents (DES. Since it has been shown that it is possible to synthesize sugar esters in these DESs, in the current work honey or, as vegan alternative, agave syrup are used simultaneously as solvent and substrate for the enzymatic sugar ester production. For this purpose, important characteristics of the herein used honey and agave syrup were determined and compared with other available types. Subsequently, an enzymatic transesterification of four fatty acid vinyl esters was accomplished in ordinary honey and agave syrup. Notwithstanding of the high water content for transesterification reactions of the solvent, the successful sugar ester formation was proved by thin-layer chromatography (TLC and compared to a sugar ester which was synthesized in a conventional DES. For a clear verification of the sugar esters, mass determinations by ESI-Q-ToF experiments and a NMR analysis were done. These environmentally friendly produced sugar esters have the potential to be used in cosmetics or pharmaceuticals, or to enhance their effectiveness.

  19. Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup

    Science.gov (United States)

    Siebenhaller, Sascha; Gentes, Julian; Infantes, Alba; Muhle-Goll, Claudia; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Ochsenreither, Katrin; Syldatk, Christoph

    2018-01-01

    Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents (DES). Since it has been shown that it is possible to synthesize sugar esters in these DESs, in the current work honey or, as vegan alternative, agave syrup are used simultaneously as solvent and substrate for the enzymatic sugar ester production. For this purpose, important characteristics of the herein used honey and agave syrup were determined and compared with other available types. Subsequently, an enzymatic transesterification of four fatty acid vinyl esters was accomplished in ordinary honey and agave syrup. Notwithstanding of the high water content for transesterification reactions of the solvent, the successful sugar ester formation was proved by thin-layer chromatography (TLC) and compared to a sugar ester which was synthesized in a conventional DES. For a clear verification of the sugar esters, mass determinations by ESI-Q-ToF experiments and a NMR analysis were done. These environmentally friendly produced sugar esters have the potential to be used in cosmetics or pharmaceuticals, or to enhance their effectiveness. PMID:29487847

  20. Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup.

    Science.gov (United States)

    Siebenhaller, Sascha; Gentes, Julian; Infantes, Alba; Muhle-Goll, Claudia; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Ochsenreither, Katrin; Syldatk, Christoph

    2018-01-01

    Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents (DES). Since it has been shown that it is possible to synthesize sugar esters in these DESs, in the current work honey or, as vegan alternative, agave syrup are used simultaneously as solvent and substrate for the enzymatic sugar ester production. For this purpose, important characteristics of the herein used honey and agave syrup were determined and compared with other available types. Subsequently, an enzymatic transesterification of four fatty acid vinyl esters was accomplished in ordinary honey and agave syrup. Notwithstanding of the high water content for transesterification reactions of the solvent, the successful sugar ester formation was proved by thin-layer chromatography (TLC) and compared to a sugar ester which was synthesized in a conventional DES. For a clear verification of the sugar esters, mass determinations by ESI-Q-ToF experiments and a NMR analysis were done. These environmentally friendly produced sugar esters have the potential to be used in cosmetics or pharmaceuticals, or to enhance their effectiveness.

  1. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  2. Ruthenium-catalyzed C7 amidation of indoline C-H bonds with sulfonyl azides.

    Science.gov (United States)

    Pan, Changduo; Abdukader, Ablimit; Han, Jie; Cheng, Yixiang; Zhu, Chengjian

    2014-03-24

    A ruthenium-catalyzed direct C7 amidation of indoline C-H bonds with sulfonyl azides was developed. This procedure allows the synthesis of a variety of 7-amino-substituted indolines, which are useful in pharmaceutical. The good functional tolerances, as well as the mild conditions, are prominent feature of this method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selective Palladium(II)-Catalyzed Carbonylation of Methylene β-C-H Bonds in Aliphatic Amines.

    Science.gov (United States)

    Cabrera-Pardo, Jaime R; Trowbridge, Aaron; Nappi, Manuel; Ozaki, Kyohei; Gaunt, Matthew J

    2017-09-18

    Palladium(II)-catalyzed C-H carbonylation reactions of methylene C-H bonds in secondary aliphatic amines lead to the formation of trans-disubstituted β-lactams in excellent yields and selectivities. The generality of the C-H carbonylation process is aided by the action of xantphos-based ligands and is important in securing good yields for the β-lactam products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds

    Science.gov (United States)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun

    2006-06-01

    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  5. The ability of fruit and vegetable enzyme system to hydrolyse ester bonds

    Directory of Open Access Journals (Sweden)

    Agnieszka Mironowicz

    2014-01-01

    Full Text Available The pulp of potato tubers (Solanum tuberosum, topinambur (Helianthus tuberosus and apples (Malus silvestris can hydrolyse totally, or almost totally, ester bonds in phenyl, α- and β-naphthyl, benzyl and cinnamyl acetates. In methyl 4-acetoxy-3-metoxybenzoate and methyl 2,5-diacetoxybenzoate as well as testosterone propionate and 16,17-acetonide of 21-acetoxy-6-fluoro-16α,17β,21-trihydroxy-4-pregnen-3,20-dione, the hydrolysis is selective towards the substrate and the bioreagent. In contrast, ethyl benzoate and cinnamate are resistant to hydrolysis.

  6. Papain-Catalyzed Chemoenzymatic Synthesis of Telechelic Polypeptides Using Bis(Leucine Ethyl Ester) Initiator.

    Science.gov (United States)

    Tsuchiya, Kousuke; Numata, Keiji

    2016-07-01

    In order to construct unique polypeptide architectures, a novel telechelic-type initiator with two leucine ethyl ester units is designed for chemoenzymatic polymerization. Glycine or alanine ethyl ester is chemoenzymatically polymerized using papain in the presence of the initiator, and the propagation occurs at each leucine ethyl ester unit to produce the telechelic polypeptide. The formation of the telechelic polypeptides is confirmed by (1) H NMR and MALDI-TOF mass spectroscopies. It is revealed by AFM observation that long nanofibrils are formed from the telechelic polyalanine, whereas a conventional linear polyalanine with a similar degree of polymerization shows granule-like structures. The telechelic polyglycine and polyalanine show the crystalline structures of Polyglycine II and antiparallel β-sheet, respectively. It is demonstrated that this method to synthesize telechelic-type polypeptides potentially opens up a pathway to construct novel hierarchical structures by self-assembly. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach

  8. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst

    DEFF Research Database (Denmark)

    Nielsen, Inger Staunstrup; Taarning, Esben; Egeblad, Kresten

    2007-01-01

    Methyl esters can be produced in high yield by oxidising methanolic solutions of primary alcohols with dioxygen over a heterogeneous gold catalyst. The versatility of this new methodology is demonstrated by the fact that alkylic, benzylic and allylic alcohols, as well as alcohols containing...

  9. Hydrogenation of esters catalyzed by ruthenium PN3-Pincer complexes containing an aminophosphine arm

    KAUST Repository

    Chen, Tao

    2014-08-11

    Hydrogenation of esters under mild conditions was achieved using air-stable ruthenium PN3-pincer complexes containing an aminophosphine arm. High efficiency was achieved even in the presence of water. DFT studies suggest a bimolecular proton shuttle mechanism which allows H2 to be activated by the relatively stable catalyst with a reasonably low transition state barrier. © 2014 American Chemical Society.

  10. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    Science.gov (United States)

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  11. Rationalization of the selectivity between 1,3- and 1,2-migration: a DFT study on gold(i)-catalyzed propargylic ester rearrangement.

    Science.gov (United States)

    Jiang, Jingxing; Liu, Yan; Hou, Cheng; Li, Yinwu; Luan, Zihong; Zhao, Cunyuan; Ke, Zhuofeng

    2016-04-14

    Gold catalyzed rearrangement of propargylic esters can undergo 1,3-acyloxy migration to form allenes, or undergo 1,2-acyloxy migration to access gold-carbenoids. The variation in migration leads to different reactivities and diverse cascade transformations. The effect of terminal substituents is very important for the rearrangement. However, it remains ambiguous how terminal substituents govern the selectivity of the rearrangement. This study presents a theoretical model based on the resonance structure of gold activated propargylic ester complexes to rationalize the rearrangement selectivity. Substrates with a major resonance contributor A prefer 5-exo-dig cyclization (1,2-migration), while those with a major resonance contributor B prefer 6-endo-dig cyclization (1,3-migration). This concise model would be helpful in understanding and tuning the selectivity of the metal catalyzed rearrangement of propargylic esters.

  12. Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae.

    Science.gov (United States)

    Molina-Gutiérrez, María; Hakalin, Neumara L S; Rodríguez-Sanchez, Leonor; Prieto, Alicia; Martínez, María Jesús

    2017-04-15

    β-sitostanol esters, used as dietary complement for decreasing cholesterol absorption, have been synthesized at 28°C via direct esterification or transesterification catalyzed by the versatile lipase/sterol esterase from the ascomycete fungus O. piceae. Direct esterification was conducted in biphasic isooctane: water systems containing 10mM β-sitostanol and lauric or oleic acid as acyl donors, reaching 90% esterification in 3h with the recombinant enzyme. The use of molar excesses of the free fatty acids did not improve direct esterification rate, and the enzyme did not convert one of the two fatty acids preferentially when both were simultaneously available. On the other hand, solvent-free transesterification was an extremely efficient mechanism to synthesize β-sitostanyl oleate, yielding virtually full conversion of up to 80mM β-sitostanol in 2h. This process may represent a promising green alternative to the current chemical synthesis of these esters of unquestionable nutraceutical value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Highly regioselective synthesis of undecylenic acid esters of purine nucleosides catalyzed by Candida antarctica lipase B.

    Science.gov (United States)

    Gao, Wen-Li; Li, Ning; Zong, Min-Hua

    2011-11-01

    Regioselective undecylenoylation of purine nucleosides as potential dual prodrugs was achieved by Candida antarctica lipase B using adenosine as a model reactant. The optimum organic solvent, molar ratio of vinyl ester to nucleoside, enzyme dosage, reaction temperature and molecular sieve amount were anhydrous THF, 5:1, 20 U/ml, 45°C and 75 mg/ml, respectively. Under the optimum conditions, the initial reaction rate, yield and 5'-regioselectivity were 1.1 mM/h, 90% and >99%, respectively. The enzymatic acylation of various nucleosides furnished the desired 5'-ester derivatives with the yields of 60-95% and 5'-regioselectivities of >99%. In addition, the lipase displayed excellent operational stability in THF, and retained 96% of its initial activity after reused for five batches.

  14. Metal-catalyzed double migratory cascade reactions of propargylic esters and phosphates.

    Science.gov (United States)

    Kazem Shiroodi, Roohollah; Gevorgyan, Vladimir

    2013-06-21

    Propargylic esters and phosphates are easily accessible substrates, which exhibit rich and tunable reactivities in the presence of transition metal catalysts. π-Acidic metals, mostly gold and platinum salts, activate these substrates for an initial 1,2- or 1,3-acyloxy and phosphatyloxy migration process to form reactive intermediates. These intermediates are able to undergo further cascade reactions leading to a variety of diverse structures. This tutorial review systematically introduces the double migratory reactions of propargylic esters and phosphates as a novel synthetic method, in which further cascade reaction of the reactive intermediate is accompanied by a second migration of a different group, thus offering a rapid route to a wide range of functionalized products. The serendipitous observations, as well as designed approaches involving the double migratory cascade reactions, will be discussed with emphasis placed on the mechanistic aspects and the synthetic utilities of the obtained products.

  15. Gold-catalyzed alkylation of silyl enol ethers with ortho-alkynylbenzoic acid esters

    Directory of Open Access Journals (Sweden)

    Yoshinori Yamamoto

    2011-05-01

    Full Text Available Unprecedented alkylation of silyl enol ethers has been developed by the use of ortho-alkynylbenzoic acid alkyl esters as alkylating agents in the presence of a gold catalyst. The reaction probably proceeds through the gold-induced in situ construction of leaving groups and subsequent nucleophilic attack on the silyl enol ethers. The generated leaving compound abstracts a proton to regenerate the silyl enol ether structure.

  16. Lipase-Catalyzed Synthesis of Sugar Esters in Honey and Agave Syrup

    OpenAIRE

    Siebenhaller, Sascha; Gentes, Julian; Infantes, Alba; Muhle-Goll, Claudia; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Ochsenreither, Katrin; Syldatk, Christoph

    2018-01-01

    Honey and agave syrup are high quality natural products and consist of more than 80% sugars. They are used as sweeteners, and are ingredients of cosmetics or medical ointments. Furthermore, both have low water content, are often liquid at room temperature and resemble some known sugar-based deep eutectic solvents (DES). Since it has been shown that it is possible to synthesize sugar esters in these DESs, in the current work honey or, as vegan alternative, agave syrup are used simultaneously a...

  17. Effect of Alcohol Structure on the Optimum Condition for Novozym 435-Catalyzed Synthesis of Adipate Esters

    Directory of Open Access Journals (Sweden)

    Mohd Basyaruddin Abdul Rahman

    2011-01-01

    Full Text Available Immobilized Candida antarctica lipase B, Novozym 435, was used as the biocatalyst in the esterification of adipic acid with four different isomers of butanol (n-butanol, sec-butanol, iso-butanol, and tert-butanol. Optimum conditions for the synthesis of adipate esters were obtained using response surface methodology approach with a four-factor-five-level central composite design concerning important reaction parameters which include time, temperature, substrate molar ratio, and amount of enzyme. Reactions under optimized conditions has yielded a high percentage of esterification (>96% for n-butanol, iso-butanol, and sec-butanol, indicating that extent of esterification is independent of the alcohol structure for primary and secondary alcohols at the optimum conditions. Minimum reaction time (135 min for achieving maximum ester yield was obtained for iso-butanol. The required time for attaining maximum yield and also the initial rates in the synthesis of di-n-butyl and di-sec-butyl adipate were nearly the same. Immobilized Candida antarctica lipase B was also capable of esterifying tert-butanol with a maximum yield of 39.1%. The enzyme is highly efficient biocatalyst for the synthesis of adipate esters by offering a simple production process and a high esterification yield.

  18. Cleavage of C-O bonds in lignin model compounds catalyzed by methyldioxorhenium in homogeneous phase.

    Science.gov (United States)

    Harms, Reentje G; Markovits, Iulius I E; Drees, Markus; Herrmann, H C Mult Wolfgang A; Cokoja, Mirza; Kühn, Fritz E

    2014-02-01

    Methyldioxorhenium (MDO)-catalyzed C-O bond cleavage of a variety of lignin β-O-4-model compounds yields phenolic and aldehydic compounds in homogeneous phase under mild reaction conditions. MDO is in situ generated by reduction of methyltrioxorhenium (MTO) and is remarkably stable under the applied reaction conditions allowing its reuse for least five times without significant activity loss. Based on the observed and isolated intermediates, 17 O- and 2 H-isotope labeling experiments, DFT calculations, and several spectroscopic studies, a reaction mechanism is proposed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selective Palladium(II)-Catalyzed Carbonylation of Methylene β-C-H Bonds in Aliphatic Amines.

    OpenAIRE

    Cabrera-Pardo, Jaime R; Trowbridge, Aaron; Nappi, Manuel; Ozaki, Kyohei; Gaunt, Matthew James

    2017-01-01

    Pd(II)-catalyzed C–H carbonylation of methylene C–H bonds in secondary aliphatic amines leads to the formation trans-disubstituted β-lactams in excellent yields and selectivities. The generality of the C–H carbonylation process is aided by the action of xantphos-based ligands and is important in securing good yields of the β-lactam products. EPSRC (EP/100548X/1), ERC (ERC-STG-259711), Royal Society (Wolfson Award), Marie Curie Foundation and Herchel Smith Foundation.

  20. Novel dehydrogenase catalyzes oxidative hydrolysis of carbon-nitrogen double bonds for hydrazone degradation.

    Science.gov (United States)

    Itoh, Hideomi; Suzuta, Tetsuya; Hoshino, Takayuki; Takaya, Naoki

    2008-02-29

    Hydrazines and their derivatives are versatile artificial and natural compounds that are metabolized by elusive biological systems. Here we identified microorganisms that assimilate hydrazones and isolated the yeast, Candida palmioleophila MK883. When cultured with adipic acid bis(ethylidene hydrazide) as the sole source of carbon, C. palmioleophila MK883 degraded hydrazones and accumulated adipic acid dihydrazide. Cytosolic NAD+- or NADP+-dependent hydrazone dehydrogenase (Hdh) activity was detectable under these conditions. The production of Hdh was inducible by adipic acid bis(ethylidene hydrazide) and the hydrazone, varelic acid ethylidene hydrazide, under the control of carbon catabolite repression. Purified Hdh oxidized and hydrated the C=N double bond of acetaldehyde hydrazones by reducing NAD+ or NADP+ to produce relevant hydrazides and acetate, the latter of which the yeast assimilated. The deduced amino acid sequence revealed that Hdh belongs to the aldehyde dehydrogenase (Aldh) superfamily. Kinetic and mutagenesis studies showed that Hdh formed a ternary complex with the substrates and that conserved Cys is essential for the activity. The mechanism of Hdh is similar to that of Aldh, except that it catalyzed oxidative hydrolysis of hydrazones that requires adding a water molecule to the reaction catalyzed by conventional Aldh. Surprisingly, both Hdh and Aldh from baker's yeast (Ald4p) catalyzed the Hdh reaction as well as aldehyde oxidation. Our findings are unique in that we discovered a biological mechanism for hydrazone utilization and a novel function of proteins in the Aldh family that act on C=N compounds.

  1. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    Science.gov (United States)

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  2. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  3. Carbon-Oxygen Bond Cleavage by Bis(imino)pyridine Iron Compounds : Catalyst Deactivation Pathways and Observation of Acyl C-O Bond Cleavage in Esters

    NARCIS (Netherlands)

    Trovitch, Ryan J.; Lobkovsky, Emil; Bouwkamp, Marco W.; Chirik, Paul J.

    2008-01-01

    Investigations into the substrate scope of bis(imino)pyridine iron-catalyzed hydrogenation and [2 pi + 2 pi]. diene cyclization reactions identified C-O bond cleavage as a principal deactivation pathway. Addition of diallyl or allyl ethyl ether to the bis(imino)pyridine iron dinitrogen complex,

  4. Solvent-Free Lipase-Catalyzed Synthesis of Technical-Grade Sugar Esters and Evaluation of Their Physicochemical and Bioactive Properties

    Directory of Open Access Journals (Sweden)

    Ran Ye

    2016-05-01

    Full Text Available Technical-grade oleic acid esters of sucrose and fructose were prepared using solvent-free biocatalysis at 65 °C, without any downstream purification applied, and their physicochemical and bioactivity-related properties were evaluated and compared to a commercially available sucrose laurate emulsifier. To increase the conversion of sucrose and fructose oleate, prepared previously using solvent-free lipase-catalyzed esterification catalyzed by Rhizomucor miehei lipase (81% and 83% ester, respectively, the enzymatic reaction conditions was continued using CaSO4 to control the reactor’s air headspace and a lipase (from Candida antarctica B with a hydrophobic immobilization matrix to provide an ultralow water activity, and high-pressure homogenation, to form metastable suspensions of 2.0–3.3 micron sized saccharide particles in liquid-phase reaction media. These measures led to increased ester content of 89% and 96% for reactions involving sucrose and fructose, respectively. The monoester content among the esters decreased from 90% to <70% due to differences in regioselectivity between the lipases. The resultant technical-grade sucrose and fructose lowered the surface tension to <30 mN/m, and possessed excellent emulsification capability and stability over 36 h using hexadecane and dodecane as oils, comparable to that of sucrose laurate and Tween® 80. The technical-grade sugar esters, particularly fructose oleate, more effectively inhibited gram-positive foodborne pathogens (Lactobacillus plantarum, Pediococcus pentosaceus and Bacillus subtilis. Furthermore, all three sugar esters displayed antitumor activity, particularly the two sucrose esters. This study demonstrates the importance of controlling the biocatalysts’ water activity to achieve high conversion, the impact of a lipase’s regioselectivity in dictating product distribution, and the use of solvent-free biocatalysis to important biobased surfactants useful in foods, cosmetics

  5. Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase

    Directory of Open Access Journals (Sweden)

    Chen Jinnan

    2011-03-01

    Full Text Available Abstract Background Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper. Results First, soybean oil was hydrolyzed at 40°C by 100 U of lipase broth per 1 g of oil with approximately 30% to 60% (vol/vol water. The free fatty acid (FFA distilled from this hydrolysis mixture was used for the esterification of FFA to fatty acid ethyl ester by immobilized lipase. A mixture of 2.82 g of FFA and equimolar ethanol (addition in three steps were shaken at 30°C with 18 U of lipase per 1 gram of FFA. The degree of esterification reached 85% after 3 hours. The lipase membranes were taken out, dehydrated and subjected to fresh esterification so that over 82% of esterification was maintained, even though the esterification was repeated every 3 hours for 25 batches. Conclusion The two-step enzymatic process without glycerol released and solvent-free demonstrated higher efficiency and safety than enzymatic transesterification, which seems very promising for lipase-catalyzed, large-scale production of biodiesel, especially from high acid value waste oil.

  6. Optimization of lipase-catalyzed synthesis of caffeic acid phenethyl ester in ionic liquids by response surface methodology.

    Science.gov (United States)

    Ha, Sung Ho; Van Anh, Tran; Koo, Yoon-Mo

    2013-06-01

    Lipase-catalyzed caffeic acid phenethyl ester (CAPE) synthesis in ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][Tf(2)N]), was investigated in this study. The effects of several reaction conditions, including reaction time, reaction temperature, substrate molar ratio of phenethyl alcohol to caffeic acid (CA), and weight ratio of enzyme to CA, on CAPE yield were examined. In a single parameter study, the highest CAPE yield in [Emim][Tf(2)N] was obtained at 70 °C with a substrate molar ratio of 30:1 and weight ratio of enzyme to CA of 15:1. Based on these results, response surface methodology (RSM) with a 3-level-4-factor central composite rotatable design (CCRD) was adopted to evaluate enzymatic synthesis of CAPE in [Emim][Tf(2)N]. The four major factors were reaction time (36-60 h), reaction temperature (65-75 °C), substrate molar ratio of phenethyl alcohol to CA (20:1-40:1), and weight ratio of enzyme to CA (10:1-20:1). A quadratic equation model was used to analyze the experimental data at a 95 % confidence level (p ratio of phenethyl alcohol to CA (27.1:1), and weight ratio of enzyme to CA (17.8:1)] established by our statistical method, whereas the experimental conversion yield was 96.6 ± 2 %.

  7. Optimization of oligoglycerol fatty acid esters preparation catalyzed by Lipozyme 435

    Directory of Open Access Journals (Sweden)

    Wan, F. L.

    2015-09-01

    Full Text Available Oli goglycerol fatty acid esters (OGEs are an important kind of polyglycerol fatty acid esters (PGEs which have been widely used as emulsifiers in food, medicine and cosmetic industries. The aim of this study was to investigate the preparation of OGEs by the esterification of olig oglycerol with linoleic acid in a solvent- free system using Lipozyme 435 as the catalyst. The effects of substrate molar ratio, reaction time, reaction temperature, enzyme dosage, and water addition on the efficiency of esterification (EE were studied. Single factor experiments and response surface methodology (RSM were employed to optimize the reaction parameters. The optimum conditions were obtained as follows: reaction time 4.52 h, reaction temperature 90 °C, enzyme dosage 2 wt% (based on the total substrate mass, the molar ratio of oligoglycerol to linoleic acid 1.59:1 and no water addition. Under these conditions, the experimental EE (95.82±0.22% fitted well with that predicted by RSM (96.15%. Similar results were obtained when the process was scaled up to a production of 500 g in a pilot bubble column reactor (BCR. The enzyme maintained 98.2% of the relative activity after 10 batches of reaction in the BCR. Electro spray ionization mass spectrum was employed to rapidly analyze the esterification products, and most species of OGEs have been identified.Los ésteres grasos de oligoglicerol (OGEs son una clase importante de ésteres de ácidos grasos de poliglicerol (PGE que han sido ampliamente utilizados como emulsionantes en alimentación, medicina y en la industria cosmética. El objetivo de este estudio fue investigar la preparación de OGEs mediante la esterificación de oligoglicerol con ácido linoleico en un sistema libre de disolvente utilizando Lipozyme 435 como catalizador. Se estudiaron los efectos en la eficiencia de esterificación (EE de la relación molar de sustratos, de los tiempos de reacción, las temperaturas de reacción, la dosis de la

  8. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin

    2016-06-13

    A new and efficient nickel-catalyzed alkylation of CAr-O electrophiles with B-alkyl-9-BBNs is described. The transformation is characterized by its functional group tolerance and provides a practical and versatile access to various Csp2-Csp3 bonds through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  9. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  10. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  11. Selective C-H Bond Oxidation Catalyzed by the Fe-bTAML Complex: Mechanistic Implications.

    Science.gov (United States)

    Ghosh, Munmun; Pattanayak, Santanu; Dhar, Basab B; Singh, Kundan K; Panda, Chakadola; Sen Gupta, Sayam

    2017-09-18

    Nonheme iron complexes bearing tetradentate N-atom-donor ligands with cis labile sites show great promise for chemoselective aliphatic C-H hydroxylation. However, several challenges still limit their widespread application. We report a mechanism-guided development of a peroxidase mimicking iron complex based on the bTAML macrocyclic ligand framework (Fe-bTAML: biuret-modified tetraamido macrocyclic ligand) as a catalyst to perform selective oxidation of unactivated 3° bonds with unprecedented regioselectivity (3°:2° of 110:1 for adamantane oxidation), high stereoretention (99%), and turnover numbers (TONs) up to 300 using mCPBA as the oxidant. Ligand decomposition pathways involving acid-induced demetalation were identified, and this led to the development of more robust and efficient Fe-bTAML complexes that catalyzed chemoselective C-H oxidation. Mechanistic studies, which include correlation of the product formed with the Fe V (O) reactive intermediates generated during the reaction, indicate that the major pathway involves the cleavage of C-H bonds by Fe V (O). When these oxidations were performed in the presence of air, the yield of the oxidized product doubled, but the stereoretention remained unchanged. On the basis of 18 O labeling and other mechanistic studies, we propose a mechanism that involves the dual activation of mCPBA and O 2 by Fe-bTAML, leading to formation of the Fe V (O) intermediate. This high-valent iron oxo remains the active intermediate for most of the reaction, resulting in high regio- and stereoselectivity during product formation.

  12. Regiocontrolled, palladium-catalyzed bisfunctionalization of allenyl esters. Multicomponent coupling approaches to highly substituted alpha,beta-unsaturated delta-lactones.

    Science.gov (United States)

    Hopkins, Chad D; Guan, Lisa; Malinakova, Helena C

    2005-08-19

    A palladium-catalyzed regioselective bisfunctionalization of allenyl esters with boronic acids (nucleophiles) and aldehydes (electrophiles) was demonstrated. The three-component coupling afforded alpha,beta-unsaturated delta-lactones under mild conditions and with excellent chemo-, regio-, and diastereoselectivity. Aromatic, heteroaromatic and vinylic boronic acids (R1B(OH)2) reacted with ethyl 2,3-butadienoate and benzaldehyde to afford the corresponding 4-R(1),6-Ph-disubstituted alpha,beta-unsaturated delta-lactones in 62-78% yields. Lactones derived from aromatic, heteroaromatic, and vinylic aldehydes were isolated in 51-58% yields, while aliphatic aldehydes were less reactive. The regiochemistry of bisfunctionalization of allenyl ester homologues remained controlled by the ester substituent, and the reactions afforded cis-4,5,6-trisubstituted alpha,beta-unsaturated delta-lactones and esters of (Z)-syn-3,4,5-trisubstituted-5-hydroxy-2-pentenoic acids in combined 47-65% yields. The superior performance of a pi-allylpalladium(II) dimer catalyst featuring an auxiliary allyl ligand derived from beta-pinene, among diverse palladium(II) catalysts, was demonstrated. A catalytic cycle involving an unsymmetrical bis-pi-allylpalladium complex as the key intermediate was proposed, and the communication highlights the synthetic potential of such intermediates. However, the efficiency of asymmetry transfer remained low (<20%).

  13. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    Science.gov (United States)

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Extrusion of CO from aryl ketones: rhodium(I)-catalyzed C-C bond cleavage directed by a pyridine group.

    Science.gov (United States)

    Lei, Zhi-Quan; Li, Hu; Li, Yang; Zhang, Xi-Sha; Chen, Kang; Wang, Xin; Sun, Jian; Shi, Zhang-Jie

    2012-03-12

    Snipping tool: the rhodium(I)-catalyzed extrusion of carbon monoxide from biaryl ketones and alkyl/alkenyl aryl ketones was developed to produce biaryls and alkyl/alkenyl arenes, respectively, in high yields. A wide range of functionalities are tolerated. Not only does this method provide an alternative pathway to construct useful scaffolds, but also offers a new strategy for C-C bond activation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanism of copper(I)-catalyzed allylic alkylation of phosphorothioate esters: influence of the leaving group on α regioselectivity.

    Science.gov (United States)

    Sheng, Wenhao; Wang, Mian; Lein, Matthias; Jiang, Linbin; Wei, Wanxing; Wang, Jianyi

    2013-10-11

    The mechanism of Cu(I) -catalyzed allylic alkylation and the influence of the leaving groups (OPiv, SPiv, Cl, SPO(OiPr)2 ; Piv: pivavloyl) on the regioselectivity of the reaction have been explored by using density functional theory (DFT). A comprehensive comparison of many possible reaction pathways shows that [(iPr)2 Cu](-) prefers to bind first oxidatively to the double bond of the allylic substrate at the anti position with respect to the leaving group, and this is followed by dissociation of the leaving group. If the leaving group is not taken into account, the reaction then undergoes an isomerization and a reductive elimination process to give the α- or γ-selective product. If OPiv, SPiv, Cl, or SPO(OiPr)2 groups are present, the optimal route for the formation of both α- and γ-substituted products changes from the stepwise elimination to the direct process, in which the leaving group plays a stabilizing role for the reactant and destabilizes the transition state. The differences to the energy barrier for the α- and γ-substituted products are 2.75 kcal mol(-1) with SPO(OiPr)2 , 2.44 kcal mol(-1) with SPiv, 2.33 kcal mol(-1) with OPiv, and 1.98 kcal mol(-1) with Cl, respectively; these values show that α regioselectivity in the allylic alkylation follows a SPO(OiPr)2 >SPiv>OPiv>Cl trend, which is in satisfactory agreement with the experimental findings. This trend mainly originates in the differences between the attractive electrostatic forces and the repelling steric interactions of the SPO(OiPr)2 , SPiv, OPiv, and Cl groups on the Cu group. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond.

    Science.gov (United States)

    Wang, Ling-Na; Wang, Wei; Hattori, Masao; Daneshtalab, Mohsen; Ma, Chao-Mei

    2016-06-08

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylquinc acid amide potently protected HepG2 cells against oxidative stress induced by tert-butyl hydroperoxide.

  17. Synthesis, Anti-HCV, Antioxidant and Reduction of Intracellular Reactive Oxygen Species Generation of a Chlorogenic Acid Analogue with an Amide Bond Replacing the Ester Bond

    OpenAIRE

    Ling-Na Wang; Wei Wang; Masao Hattori; Mohsen Daneshtalab; Chao-Mei Ma

    2016-01-01

    Chlorogenic acid is a well known natural product with important bioactivities. It contains an ester bond formed between the COOH of caffeic acid and the 3-OH of quinic acid. We synthesized a chlorogenic acid analogue, 3α-caffeoylquinic acid amide, using caffeic and quinic acids as starting materials. The caffeoylquinc acid amide was found to be much more stable than chlorogenic acid and showed anti-Hepatitis C virus (anti-HCV) activity with a potency similar to chlorogenic acid. The caffeoylq...

  18. Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. Evidence for the partial reversal of the forward LCAT reaction

    International Nuclear Information System (INIS)

    Sorci-Thomas, M.; Babiak, J.; Rudel, L.L.

    1990-01-01

    Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of [3H]cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with [3H]cholesteryl oleate. When high density lipoprotein labeled with cholesteryl [14C]oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl [14C]oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of [3H]cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. [3H]Cholesterol production from [3H]cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of [14C]oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a [14C]oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule

  19. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gargouri Youssef

    2011-06-01

    Full Text Available Abstract Background Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil and vegetables (jojoba which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Results Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50°C, the enzyme concentration (33.34-300 IU/mL, the alcohol/palm stearin molar ratio (3-7 mol/mol and the substrate concentration (0.06-0.34 g/mL on the conversion yield of palm stearin. Under optimal conditions (temperature, 30°C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL a high conversion yield of 98.52% was reached within a reaction time of 2 h. Conclusions Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters.

  20. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: optimization by response surface methodology.

    Science.gov (United States)

    Sellami, Mohamed; Aissa, Imen; Frikha, Fakher; Gargouri, Youssef; Miled, Nabil

    2011-06-17

    Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil) and vegetables (jojoba) which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50 °C), the enzyme concentration (33.34-300 IU/mL), the alcohol/palm stearin molar ratio (3-7 mol/mol) and the substrate concentration (0.06-0.34 g/mL) on the conversion yield of palm stearin. Under optimal conditions (temperature, 30 °C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL) a high conversion yield of 98.52% was reached within a reaction time of 2 h. Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters. © 2011 Sellami et al; licensee BioMed Central Ltd.

  1. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: Optimization by Response Surface Methodology

    Science.gov (United States)

    2011-01-01

    Background Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil) and vegetables (jojoba) which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Results Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50°C), the enzyme concentration (33.34-300 IU/mL), the alcohol/palm stearin molar ratio (3-7 mol/mol) and the substrate concentration (0.06-0.34 g/mL) on the conversion yield of palm stearin. Under optimal conditions (temperature, 30°C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL) a high conversion yield of 98.52% was reached within a reaction time of 2 h. Conclusions Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters. PMID:21682865

  2. Palladium-catalyzed carbonylation of yne esters leading to gamma-alkylidene alpha,beta-unsaturated gamma-lactones.

    Science.gov (United States)

    Harada, Yasuyuki; Fukumoto, Yoshiya; Chatani, Naoto

    2005-09-29

    [reaction: see text] The reaction of yne esters with carbon monoxide (1 atm) in the presence of palladium complexes gives bicyclic unsaturated lactone derivatives in good to high yields. The 2-pyridinyloxy group is a good leaving group among leaving groups examined.

  3. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

    Directory of Open Access Journals (Sweden)

    Axel G. Griesbeck

    2014-05-01

    Full Text Available The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling.

  4. Intramolecular Fe(II)-Catalyzed N–O or N–N Bond Formation from Aryl Azides

    Science.gov (United States)

    Stokes, Benjamin J.; Vogel, Carl V.; Urnezis, Linda K.; Pan, Minjie; Driver, Tom G.

    2010-01-01

    Iron(II) bromide catalyzes the transformation of aryl- and vinyl azides with ketone- or methyl oxime substituents into 2,1-benzisoxazoles, indazoles or pyrazoles through the formation of an N–O or N–N bond. This transformation tolerates a variety of different functional groups to facilitate access to a range of benzisoxazoles or indazoles. The unreactivity of the Z-methyloxime indicates that N-heterocycle formation occurs through a nucleophilic attack of the ketone or oxime onto an activated planar iron azide complex. PMID:20507088

  5. Synthesis of Fluorine-Containing 6-Arylpurine Derivatives via Cp*Co(III)-Catalyzed C-H Bond Activation.

    Science.gov (United States)

    Murakami, Nanami; Yoshida, Misaki; Yoshino, Tatsuhiko; Matsunaga, Shigeki

    2018-01-01

    Cp*Co(III)-catalyzed (Cp*=pentamethylcyclopentadienyl) C-H bond functionalization of 6-arylpurines using gem-difluoroalkenes and allyl fluorides is described. The reaction with gem-difluoroalkenes afforded monofluoroalkenes with high (Z)-selectivity, while the reaction with allyl fluorides led to C-H allylation in moderate (Z)-selectivity. Both reactions proceeded using a user-friendly single-component catalyst [Cp*Co(CH 3 CN) 3 ](SbF 6 ) 2 in fluorinated alcohol solvents without any additives. Robustness was also demonstrated by a preparative-scale reaction under air.

  6. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  7. Long-chain ethers as solvents can amplify the enantioselectivity of the Carica papaya lipase-catalyzed transesterification of 2-(substituted phenoxy)propanoic acid esters.

    Science.gov (United States)

    Miyazawa, Toshifumi; Iguchi, Wakana

    2013-10-01

    The enantioselectivity of the transesterification of the 2,2,2-trifluoroethyl esters of 2-(substituted phenoxy)propanoic acids, as catalyzed by the lipase from Carica papaya, was greatly improved by using long-chain ethers, such as di-n-hexyl ether, as solvents instead of the conventional diisopropyl ether. Thus, for example, the E value was enhanced from 21 [in diisopropyl ether (0.8 ml)] to 57 [in di-n-hexyl ether (0.8 ml)] in the reaction of 2,2,2-trifluoroethyl(RS)-2-phenoxypropanoate (0.1 mmol) with methanol (0.4 mmol) in the presence of the plant lipase preparation (10 mg); it was also improved from 13 (in diisopropyl ether) to 44 (in di-n-hexyl ether) in the reaction of 2,2,2-trifluoroethyl(RS)-2-(2-chlorophenoxy)propanoate with methanol under the same reaction conditions.

  8. The unexpected mechanism of carbonyl hydrosilylation catalyzed by (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)).

    Science.gov (United States)

    Shirobokov, Oleg G; Gorelsky, Serge I; Simionescu, Razvan; Kuzmina, Lyudmila G; Nikonov, Georgii I

    2010-11-07

    Complex (Cp)(ArN[double bond, length as m-dash])Mo(H)(PMe(3)) (2, Ar = 2,6-diisopropylphenyl) catalyzes the hydrosilylation of carbonyls by an unexpected associative mechanism. Complex 2 also reacts with PhSiH(3) by a σ-bond metathesis mechanism to give the silyl derivative (Cp)(ArN[double bond, length as m-dash])Mo(SiH(2)Ph)(PMe(3)).

  9. An Iron-Catalyzed Bond-Making/Bond-Breaking Cascade Merges Cycloisomerization and Cross-Coupling Chemistry.

    Science.gov (United States)

    Echeverria, Pierre-Georges; Fürstner, Alois

    2016-09-05

    Treatment of readily available enynes with alkyl-Grignard reagents in the presence of catalytic amounts of Fe(acac)3 engenders a remarkably facile and efficient reaction cascade that results in the net formation of two new C-C bonds while a C-Z bond in the substrate backbone is broken. Not only does this new manifold lend itself to the extrusion of heteroelements (Z=O, NR), but it can even be used for the cleavage of activated C-C bonds. The reaction likely proceeds via metallacyclic intermediates, the iron center of which gains ate character before reductive elimination occurs. The overall transformation represents a previously unknown merger of cycloisomerization and cross-coupling chemistry. It provides ready access to highly functionalized 1,3-dienes comprising a stereodefined tetrasubstituted alkene unit, which are difficult to make by conventional means. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystal Structure of the N-Benzyloxycarbonyl-alanyl-phenylalanyl-methyl Ester: The Importance of the H-Bonding Pattern

    Directory of Open Access Journals (Sweden)

    Ignacio Alfonso

    2011-08-01

    Full Text Available Large crystals of the methyl ester of the N-a-benzyloxycarbonyl protected Ala-Phe dipeptide (Z-AF-OMe were obtained after the very slow evaporation of a solution of the corresponding carboxylic acid (Z-AF-OH in methanol containing an excess of HCl. The structure was confirmed by single crystal X-ray diffraction data. It crystallizes in the orthorhombic space group P212121 with unit cell dimensions a = 5.0655(6 Å, b = 8.4614(8 Å, c = 46.856(5 Å, V = 2008.3(4 Å3, Z = 4. In the crystal, the molecules form hydrogen bonded chains running along the a axis of the unit cell. Other secondary interactions are also discussed.

  11. Localization of double bonds in wax esters by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry utilizing the fragmentation of acetonitrile-related adducts.

    Science.gov (United States)

    Vrkoslav, Vladimír; Háková, Martina; Pecková, Karolina; Urbanová, Klára; Cvačka, Josef

    2011-04-15

    Unsaturated wax esters (WEs) provided molecular adducts with C(3)H(5)N ([M + 55](+•)) in APCI sources in the presence of acetonitrile. CID MS/MS of [M + 55](+•) yielded fragments allowing the localization of double bond(s) in the hydrocarbon chains of the WEs. These fragments were formed by a cleavage on each side of the double bond. In methylene-interrupted polyunsaturated WEs, diagnostic fragments related to each double bond were detected; the most abundant were those corresponding to the cleavage of the C-C bond next to the first and the last double bond. To differentiate between those fragments differing in their structure or origin, a simple nomenclature based on α and ω ions has been introduced. Fragmentation of the α-type ions (fragments containing an ester bond) provided information on the occurrence of a double bond in the acid or alcohol part of the WEs. While no significant differences between the spectra of the WEs differing by cis/trans isomerism were found, the isomers were separated chromatographically. A data-dependent HPLC/APCI-MS(2) method for the comprehensive characterization of WEs in their complex mixtures has been developed and applied to natural mixtures of WEs isolated from jojoba oil and beeswax. More than 50 WE molecular species were completely identified, including the information on the acid and alcohol chain length and the position of the double bonds. © 2011 American Chemical Society

  12. Iron-Catalyzed C-O Bond Activation: Opportunity for Sustainable Catalysis.

    Science.gov (United States)

    Bisz, Elwira; Szostak, Michal

    2017-10-23

    Oxygen-based electrophiles have emerged as some of the most valuable cross-coupling partners in organic synthesis due to several major strategic and environmental benefits, such as abundance and potential to avoid toxic halide waste. In this context, iron-catalyzed C-O activation/cross-coupling holds particular promise to achieve sustainable catalytic protocols due to its natural abundance, inherent low toxicity, and excellent economic and ecological profile. Recently, tremendous progress has been achieved in the development of new methods for functional-group-tolerant iron-catalyzed cross-coupling reactions by selective C-O cleavage. These methods establish highly attractive alternatives to traditional cross-coupling reactions by using halides as electrophilic partners. In particular, new easily accessible oxygen-based electrophiles have emerged as substrates in iron-catalyzed cross-coupling reactions, which significantly broaden the scope of this catalysis platform. New mechanistic manifolds involving iron catalysis have been established; thus opening up vistas for the development of a wide range of unprecedented reactions. The synthetic potential of this sustainable mode of reactivity has been highlighted by the development of new strategies in the construction of complex motifs, including in target synthesis. The most recent advances in sustainable iron-catalyzed cross-coupling of C-O-based electrophiles are reviewed, with a focus on both mechanistic aspects and synthetic utility. It should be noted that this catalytic manifold provides access to motifs that are often not easily available by other methods, such as the assembly of stereodefined dienes or C(sp 2 )-C(sp 3 ) cross-couplings, thus emphasizing the synthetic importance of this mode of reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pd(II)-Catalyzed Olefination of sp3 C–H Bonds

    Science.gov (United States)

    Wasa, Masayuki; Engle, Keary M.; Yu, Jin-Quan

    2010-01-01

    The first Pd(II)-catalyzed sp3 C–H olefination reaction has been developed using N-arylamide directing groups. Following olefination, the resulting intermediates were found to undergo rapid 1,4-addition to give the corresponding γ lactams. Notably, this method was effective with substrates containing α-hydrogen atoms and could be applied to effect methylene C–H olefination of cyclopropane substrates. PMID:20187642

  14. Efficient synthesis of π-conjugated molecules incorporating fluorinated phenylene units through palladium-catalyzed iterative C(sp2–H bond arylations

    Directory of Open Access Journals (Sweden)

    Fatiha Abdelmalek

    2015-10-01

    Full Text Available We report herein a two or three step synthesis of fluorinated π-conjugated oligomers through iterative C–H bond arylations. Palladium-catalyzed desulfitative arylation of heteroarenes allowed in a first step the synthesis of fluoroaryl-heteroarene units in high yields. Then, the next steps involve direct arylation with aryl bromides catalyzed by PdCl(C3H5(dppb to afford triad or tetrad heteroaromatic compounds via regioselective activation of C(sp2–H bonds.

  15. Borane-catalyzed cracking of C-C bonds in coal; Boran-katalysierte C-C-Bindungungsspaltung in Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Narangerel, J.; Haenel, M.W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-09-01

    Coal, especially coking coal, was reacted with hydrogen at comparatively mild reaction conditions (150-280 degrees centigrade, 20 MPa hydrogen pressure) in the presence of catalysts consisting of borange reagents and certain transition metal halides to obtaine more than 80 percent of pyridine-soluble products. The influence of the degree of coalification, catalyst and temperature on the borane-catalyzed hydrogenolysis of C-C bonds in coal was investigated. (orig.) [Deutsch] Steinkohlen, insbesondere im Inkohlungsbereich der Fettkohlen (Kokskohlen), werden in Gegenwart von Katalysatoren aus Boran-Reagentien und bestimmten Uebergangsmetallhalogeniden mit Wasserstoff bei vergleichsweise milden Reaktionsbedingungen (250-280 C, 20 MPa Wasserstoffdruck) in zu ueber 80% pyridinloesliche Produkte umgewandelt. Der Einfluss von Inkohlungsgrad, Katalysator und Temperatur auf die Boran-katalysierte C-C-Bindungshydrogenolyse in Kohle wurde untersucht. (orig.)

  16. Selective C-O Bond Cleavage of Sugars with Hydrosilanes Catalyzed by Piers' Borane Generated In Situ.

    Science.gov (United States)

    Zhang, Jianbo; Park, Sehoon; Chang, Sukbok

    2017-10-23

    Described herein is the selective reduction of sugars with hydrosilanes catalyzed by using Piers' borane [(C 6 F 5 ) 2 BH] generated in situ. The hydrosilylative C-O bond cleavage of silyl-protected mono- and disaccharides in the presence of a (C 6 F 5 ) 2 BH catalyst, generated in situ from (C 6 F 5 ) 2 BOH, takes place with excellent chemo- and regioselectivities to provide a range of polyols. A study of the substituent effects of sugars on the catalytic activity and selectivity revealed that the steric environment around the anomeric carbon (C1) is crucial. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    Science.gov (United States)

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established.

  18. Rhodium-catalyzed C-C Bond Cleavage Reactions - An Update

    Czech Academy of Sciences Publication Activity Database

    Korotvička, A.; Nečas, D.; Kotora, Martin

    2012-01-01

    Roč. 16, č. 10 (2012), s. 1170-1214 ISSN 1385-2728 Grant - others:GA MŠk(CZ) LC06070 Program:LC Institutional research plan: CEZ:AV0Z40550506 Keywords : rhodium * C-C bond cleavage * catalysis * synthesis Subject RIV: CC - Organic Chemistry Impact factor: 3.039, year: 2012

  19. Pd-Catalyzed Acetoxylation of γ-C(sp3)-H Bonds of Amines Directed by a Removable Bts-Protecting Group.

    Science.gov (United States)

    Zheng, Yong; Song, Weibin; Zhu, Yefu; Wei, Bole; Xuan, Lijiang

    2018-02-16

    Pd-catalyzed acetoxylation of γ-C(sp 3 )-H bonds directed by Bts-protected amines using inexpensive PhI(OAc) 2 as oxidant is reported. The Bts-protecting group is easily introduced and removed under mild conditions. This protocol provides an important strategy for the construction of γ-hydroxyl amine derivatives.

  20. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  1. Synthesis of α-methylene-δ-oxo-γ-amino esters via Rh(ii)-catalyzed coupling of 1-sulfonyl-1,2,3-triazoles with Morita-Baylis-Hillman adducts.

    Science.gov (United States)

    Jeon, Hyun Ji; Kwak, Mi Soo; Jung, Da Jung; Bouffard, Jean; Lee, Sang-Gi

    2016-11-29

    A rhodium(ii)-catalyzed coupling of 1-sulfonyl-1,2,3-triazoles, prepared from 1-alkynes and sulfonyl azides, with Morita-Baylis-Hillman (MBH) adducts afforded highly functionalized α-methylene-δ-oxo-γ-amino esters in excellent yields with broad functional group tolerance. This transformation can also be successfully accomplished as a multicomponent all-in-one-pot reaction of 1-alkynes, sulfonyl azides and MBH adducts in the presence of Cu(i) and Rh(ii) catalysts.

  2. Ampicillin-Ester Bonded Branched Polymers: Characterization, Cyto-, Genotoxicity and Controlled Drug-Release Behaviour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2014-06-01

    Full Text Available The development and characterization of novel macromolecular conjugates of ampicillin using branched biodegradable polymers has been described in this study. The conjugates have been prepared coupling the β-lactam antibiotic with branched polymer matrices based on the natural oligopeptide core. The cyto- and genotoxicity of the synthesized polymers were evaluated with a bacterial luminescence test, two protozoan assays and Salmonella typhimurium TA1535. The presence of a newly formed covalent bond between the drug and the polymer matrices was confirmed by 1H-NMR and FTIR studies. A drug content (15.6 and 10.2 mole % in the macromolecular conjugates has been determined. The obtained macromolecular products have been subjected to further in vitro release studies. The total percentage of ampicillin released after 21 days of incubation was nearly 60% and 14% and this resulted from the different physicochemical properties of the polymeric matrices. This is the first report on the application of branched biodegradable polymeric matrices for the covalent conjugation of ampicillin. The obtained results showed that the synthesized macromolecular drug-conjugates might slowly release the active drug molecule and improve the pharmacokinetics of ampicillin.

  3. Co-Catalyzed Direct Addition of Allylic C(sp3)-H Bonds to Ketones.

    Science.gov (United States)

    Mita, Tsuyoshi; Hanagata, Satoshi; Michigami, Kenichi; Sato, Yoshihiro

    2017-11-03

    By using Co(acac) 2 /Xantphos with AlMe 3 , the C(sp 3 )-H bonds of allylarene derivatives were cleaved for reaction with various ketones, affording the homoallylic alcohols in moderate to good yields. The branch/linear selectivity depended on the steric and electronic factors of the ketone electrophiles. The intermediate in this reaction is thought to be a low-valent allylcobalt(I) species, which exhibits high nucleophilicity toward ketones.

  4. Nickel-Catalyzed Alkoxy-Alkyl Interconversion with Alkylborane Reagents through C−O Bond Activation of Aryl and Enol Ethers

    KAUST Repository

    Guo, Lin

    2016-11-07

    A nickel-catalyzed alkylation of polycyclic aromatic methyl ethers as well as methyl enol ethers with B-alkyl 9-BBN and trialkylborane reagents that involves the cleavage of stable C(sp2)−OMe bonds is described. The transformation has a wide substrate scope and good chemoselectivity profile while proceeding under mild reaction conditions; it provides a versatile way to form C(sp2)−C(sp3) bonds that does not suffer from β-hydride elimination. Furthermore, a selective and sequential alkylation process by cleavage of inert C−O bonds is presented to demonstrate the advantage of this method.

  5. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian

    2014-01-01

    in the aromatic thioester amidation reaction. Under similar conditions, cysteine-free ligation was achieved by coupling a fully side-chain protected 15 amino acid phosphopeptide thioester to the free N-terminal of a side-chain protected 9 amino acid peptide producing the corresponding 24 amino acid phosphopeptide.......The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities...

  6. Iron-catalyzed oxidative sp3carbon-hydrogen bond functionalization of 3,4-dihydro-1,4-benzoxazin-2-ones.

    Science.gov (United States)

    Huo, Congde; Dong, Jie; Su, Yingpeng; Tang, Jing; Chen, Fengjuan

    2016-11-08

    A novel and efficient iron-catalyzed sp 3 carbon-hydrogen bond functionalization of benzoxazinone derivatives has been developed. For the first time, benzoxazin-2-ones were used as substrates in an oxidative dehydrogenative coupling reaction. The experiments were performed under mild reaction conditions to construct alkyl-aryl C(sp 3 )-C(sp 2 ) bonds. The application of this method to the gram-scale synthesis of natural product cephalandole A has been accomplished in a 3-step sequence. A plausible one electron oxidation involved mechanism is proposed.

  7. Rh2(II)-catalyzed intramolecular aliphatic C-H bond amination reactions using aryl azides as the N-atom source.

    Science.gov (United States)

    Nguyen, Quyen; Sun, Ke; Driver, Tom G

    2012-05-02

    Rhodium(II) dicarboxylate complexes were discovered to catalyze the intramolecular amination of unactivated primary, secondary, or tertiary aliphatic C-H bonds using aryl azides as the N-atom precursor. While a strong electron-withdrawing group on the nitrogen atom is typically required to achieve this reaction, we found that both electron-rich and electron-poor aryl azides are efficient sources for the metal nitrene reactive intermediate. © 2012 American Chemical Society

  8. Rh2(II)-Catalyzed Intramolecular Aliphatic C–H Bond Amination Reactions Using Aryl Azides as the N-Atom Source

    Science.gov (United States)

    Nguyen, Quyen; Sun, Ke; Driver, Tom G.

    2012-01-01

    Rhodium(II) dicarboxylate complexes were discovered to catalyze the intramolecular amination of unactivated primary-, secondary-, or tertiary aliphatic C–H bonds using aryl azides as the N-atom precursor. While a strong electron-withdrawing group on the nitrogen atom is typically required to achieve this reaction, we found that both electron-rich- and electron-poor aryl azides are efficient sources for the metal nitrene reactive intermediate. PMID:22519742

  9. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe

    2011-02-17

    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt

  10. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  11. Rhodium(III)-Catalyzed Ortho-Alkenylation of Anilines Directed by a Removable Boc-Protecting Group.

    Science.gov (United States)

    Morita, Tomohiro; Satoh, Tetsuya; Miura, Masahiro

    2017-04-07

    The rhodium(III)-catalyzed ortho-alkenylation of N-Boc-anilines with alkenes such as acrylate ester and styrene proceeds smoothly through C-H bond cleavage. Obtained o-alkenylanilines can be readily transformed to nitrogen-containing fused heteroaromatic compounds including indoles and quinolines.

  12. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones.

    Science.gov (United States)

    Wu, Weirong; Liu, Yuxia; Bi, Siwei

    2015-08-14

    Density functional theory (DFT) calculations have been performed to investigate the detailed mechanism of Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones with PhC≡CPh. It is found that (1) the methylene C-H activation is prior to the phenyl C-H activation, (2) the N-N bond cleavage is realized via Rh(III) → Rh(I) → Rh(III) rather than via Rh(III) → Rh(V) → Rh(III). The zwitterionic Rh(I) complex is identified to be a key intermediate in promoting the N-N bond cleavage. (3) Different from the Rh(III)-catalyzed hydrazine-directed C-H activation for indole synthesis, the rate-determining step of the reaction studied in this work is the Rh(III) → Rh(I) → Rh(III) process resulting in the N-N bond cleavage rather than the alkyne insertion step. The present theoretical study provides new insight into the mechanism of the conjugated N-N bond cleavage.

  13. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.

    Science.gov (United States)

    Shin, Kwangmin; Kim, Hyunwoo; Chang, Sukbok

    2015-04-21

    Owing to the prevalence of nitrogen-containing compounds in functional materials, natural products and important pharmaceutical agents, chemists have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon-nitrogen bonds. While metal-catalyzed C-N cross-coupling reactions have been established as one of the most general protocols for C-N bond formation, these methods require starting materials equipped with functional groups such as (hetero)aryl halides or their equivalents, thus generating stoichiometric amounts of halide salts as byproducts. To address this aspect, a transition-metal-catalyzed direct C-H amination approach has emerged as a step- and atom-economical alternative to the conventional C-N cross-coupling reactions. However, despite the significant recent advances in metal-mediated direct C-H amination reactions, most available procedures need harsh conditions requiring stoichiometric external oxidants. In this context, we were curious to see whether a transition-metal-catalyzed mild C-H amination protocol could be achieved using organic azides as the amino source. We envisaged that a dual role of organic azides as an environmentally benign amino source and also as an internal oxidant via N-N2 bond cleavage would be key to develop efficient C-H amination reactions employing azides. An additional advantage of this approach was anticipated: that a sole byproduct is molecular nitrogen (N2) under the perspective catalytic conditions. This Account mainly describes our research efforts on the development of rhodium- and iridium-catalyzed direct C-H amination reactions with organic azides. Under our initially optimized Rh(III)-catalyzed amination conditions, not only sulfonyl azides but also aryl- and alkyl azides could be utilized as facile amino sources in reaction with various types of C(sp(2))-H bonds bearing such directing groups as pyridine, amide, or ketoxime. More recently, a new

  14. Production of oleic acid ethyl ester catalyzed by crude rice bran (Oryza sativa lipase in a modified fed-batch system: problem and its solution

    Directory of Open Access Journals (Sweden)

    Indro Prastowo

    2015-01-01

    Full Text Available A fed-batch system was modified for the enzymatic production of Oleic Acid Ethyl Ester (OAEE using rice bran (Oryza sativa lipase by retaining the substrate molar ratio (ethanol/oleic acid at 2.05: 1 during the reaction. It resulted in an increase in the ester conversion up to 76.8% in the first 6 h of the reaction, and then followed by a decrease from 76.8% to 22.9% in 6 h later. Meanwhile, the production of water in the reaction system also showed a similar trend to the trend of ester production. The water was hypothesized to lead lipase to reverse the reaction which resulted in a decrease in both (water and esters in the last 6 h of the reaction. In order to overcome the problem, zeolite powders (25 and 50 mg/ml were added into the reaction system at 5 h of the reaction. As the result, final ester conversions increased drastically up to 90 - 95.7% (1.17 – 1.24 times. The addition also proved a hypothesis that the water was involved in reducing the ester conversion in the last 6 h of the reaction. Thus, the combination was effective to produce the high final ester conversion.

  15. Rhodium-catalyzed C-H bond activation for the synthesis of quinonoid compounds: Significant Anti-Trypanosoma cruzi activities and electrochemical studies of functionalized quinones.

    Science.gov (United States)

    Jardim, Guilherme A M; Silva, Thaissa L; Goulart, Marilia O F; de Simone, Carlos A; Barbosa, Juliana M C; Salomão, Kelly; de Castro, Solange L; Bower, John F; da Silva Júnior, Eufrânio N

    2017-08-18

    Thirty four halogen and selenium-containing quinones, synthesized by rhodium-catalyzed C-H bond activation and palladium-catalyzed cross-coupling reactions, were evaluated against bloodstream trypomastigotes of T. cruzi. We have identified fifteen compounds with IC 50 /24 h values of less than 2 μM. Electrochemical studies on A-ring functionalized naphthoquinones were also performed aiming to correlate redox properties with trypanocidal activity. For instance, (E)-5-styryl-1,4-naphthoquinone 59 and 5,8-diiodo-1,4-naphthoquinone 3, which are around fifty fold more active than the standard drug benznidazole, are potential derivatives for further investigation. These compounds represent powerful new agents useful in Chagas disease therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Lipase catalyzed synthesis of flavor esters in non-aqueous media: Optimization of the yield of pentyl 2-methylpropanoate by statistical analysis

    Directory of Open Access Journals (Sweden)

    ZORICA KNEZEVIC-JUGOVIC

    2008-12-01

    Full Text Available In this study, the synthesis of pentyl 2-methylpropanoate employing a commercial lipase from Candida rugosa was investigated, the emphasis being placed on analyzing the effects of various process conditions on the yield of ester. The response surface methodology (RSM and five-level-five-factor central composite rotatable design (CCRD were used to evaluate the effects of variables, namely the initial water content, 0.0–2.0 % (w/v, the reaction temperature, 35–75 °C, the enzyme concentration, 1.0–5.0 g dm-3, the acid/alcohol mole ratio, 1:2–5:2, and the reaction time, 4–48 h, on the yield (% of ester. The production of pentyl 2-methylpropanoate was optimized and an ester yield response equation was obtained, enabling the prediction of ester yields from known values of the five main factors. It seems that the enzyme concentration, reaction time and acid/alcohol mole ratio predominantly determine the conversion process, while the amount of added water amount had no significant influence on the ester yield. Conversion of around 92 % of the substrate to ester could be realized using a concentration of lipase as low as 4.0 g dm-3 and in a relatively short time (26 h at 35 °C, when a high substrate mole ratio of 2.5 was used.

  17. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  18. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian

    2016-04-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.

  19. Combined enzyme and substrate design: grafting of a cooperative two-histidine catalytic motif into a protein targeted at the scissile bond in a designed ester substrate.

    Science.gov (United States)

    Höst, Gunnar E; Razkin, Jesus; Baltzer, Lars; Jonsson, Bengt-Harald

    2007-09-03

    A histidine-based, two-residue reactive site for the catalysis of hydrolysis of designed sulfonamide-containing para-nitrophenyl esters has been engineered into a scaffold protein. A matching substrate was designed to exploit the natural active site of human carbonic anhydrase II (HCAII) for well-defined binding. In this we took advantage of the high affinity between the active site zinc atom and sulfonamides. The ester substrate was designed to position the scissile bond in close proximity to the His64 residue in the scaffold protein. Three potential sites for grafting the catalytic His-His pair were identified, and the corresponding N62H/H64, F131H/V135H and L198H/P202H mutants were constructed. The most efficient variant, F131H/V135H, has a maximum k(cat)/K(M) value of approximately 14 000 M(-1) s(-1), with a k(cat) value that is increased by a factor of 3 relative to that of the wild-type HCAII, and by a factor of over 13 relative to the H64A mutant. The results show that an esterase can be designed in a stepwise way by a combination of substrate design and grafting of a designed catalytic motif into a well-defined substrate binding site.

  20. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. II. A poly(ester-urethane) binder

    International Nuclear Information System (INIS)

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The molecular weight distribution and dynamic mechanical properties of an experimental polymer-bonded explosive, X-0282, maintained at 23, 60, and 74 0 C for 3.75 y were examined, X-0282 is 95.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane explosive and 4.5% Estane 5703, a segmented poly(ester-urethane). Two mechanical relaxations at about -24 and 42 0 C were found in the X-0282 aged at room temperature for 3.75 years. A third relaxation at about 85 0 C was found in X-0282 aged at 60 and 74 0 C. The relaxation at -24 0 C is associated with the soft segment glass transition of the binder. The relaxation at 42 0 C is associated with the soft segment melting and may also contain a component due to the hard segment glass transition. The relaxation at 85 0 C is probably associated with improved soft segment crystallite perfection. The molecular weight of the poly(ester-urethane) binder decreased significantly with increasing accelerated aging temperature. A simple random chain scission model of the urethane degradation kinetics in the presence of explosive yields an activation energy of 11.6 kcal/mole. This model predicts a use life of about 17.5 years under the worst military operating conditions

  1. Dynamic mechanical and molecular weight measurements on polymer bonded explosives from thermally accelerated aging tests. II. A poly(ester-urethane) binder

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M.; Caley, L.E.

    1981-01-01

    The molecular weight distribution and dynamic mechanical properties of an experimental polymer-bonded explosive, X-0282, maintained at 23, 60, and 74/sup 0/C for 3.75 y were examined, X-0282 is 95.5% 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclo-octane explosive and 4.5% Estane 5703, a segmented poly(ester-urethane). Two mechanical relaxations at about -24 and 42/sup 0/C were found in the X-0282 aged at room temperature for 3.75 years. A third relaxation at about 85/sup 0/C was found in X-0282 aged at 60 and 74/sup 0/C. The relaxation at -24/sup 0/C is associated with the soft segment glass transition of the binder. The relaxation at 42/sup 0/C is associated with the soft segment melting and may also contain a component due to the hard segment glass transition. The relaxation at 85/sup 0/C is probably associated with improved soft segment crystallite perfection. The molecular weight of the poly(ester-urethane) binder decreased significantly with increasing accelerated aging temperature. A simple random chain scission model of the urethane degradation kinetics in the presence of explosive yields an activation energy of 11.6 kcal/mole. This model predicts a use life of about 17.5 years under the worst military operating conditions (continuous operation at 74/sup 0/C).

  2. Ruthenium-catalyzed hydrogen isotope exchange of C(sp3)-H bonds directed by a sulfur atom.

    Science.gov (United States)

    Gao, Longhui; Perato, Serge; Garcia-Argote, Sébastien; Taglang, Céline; Martínez-Prieto, Luis Miguel; Chollet, Céline; Buisson, David-Alexandre; Dauvois, Vincent; Lesot, Philippe; Chaudret, Bruno; Rousseau, Bernard; Feuillastre, Sophie; Pieters, Grégory

    2018-03-25

    We present here the first example of C(sp 3 )-H activation directed by a sulfur atom. Based on this transformation catalyzed by Ru/C, we have developed a hydrogen isotope exchange reaction for the deuterium and tritium labelling of thioether substructures in complex molecules.

  3. Initial Stages in the Rhodium(III)-Catalyzed C-H Bond Activation of Primary Alcohols in Aqueous Solution

    DEFF Research Database (Denmark)

    Eriksen, J.; Monsted, L.; Monsted, O.

    2010-01-01

    ,4,8,11-tetraazacyclotetradecane) cation. The hydride complex is stable for extended periods of time in acidic solution in the absence of oxidants. In basic solutions a series of base-catalyzed reactions take place to yield ultimately the same mixture of [Rh(cycb)(OH)(2)](+) isomers as produced by base hydrolysis of the trans...

  4. High-yield preparation of wax esters via lipase-catalyzed esterification using fatty acids and alcohols from crambe and camelina oils.

    Science.gov (United States)

    Steinke, G; Weitkamp, P; Klein, E; Mukherjee, K D

    2001-02-01

    Fatty acids obtained from seed oils of crambe (Crambe abyssinica) and camelina (Camelina sativa) via alkaline saponification or steam splitting were esterified using lipases as biocatalysts with oleyl alcohol and the alcohols derived from crambe and camelina oils via hydrogenolysis of their methyl esters. Long-chain wax esters were thus obtained in high yields when Novozym 435 (immobilized lipase B from Candida antarctica) and papaya (Carica papaya) latex lipase were used as biocatalysts and vacuum was applied to remove the water formed. The highest conversions to wax esters were obtained with Novozym 435 (> or =95%) after 4-6 h of reaction, whereas with papaya latex lipase such a high degree of conversion was attained after 24 h. Products obtained from stoichiometric amounts of substrates were almost exclusively (>95%) composed of wax esters having compositions approaching that of jojoba (Simmondsia chinensis) oil, especially when crambe fatty acids in combination with camelina alcohols or camelina fatty acids in combination with crambe alcohols were used as substrates.

  5. Regioselective C2 Oxidative Olefination of Indoles and Pyrroles through Cationic Rhodium(III)-Catalyzed C-H Bond Activation.

    Science.gov (United States)

    Li, Bin; Ma, Jianfeng; Xie, Weijia; Song, Haibin; Xu, Shansheng; Wang, Baiquan

    2013-09-02

    Be economic with your atoms! An efficient Rh-catalyzed oxidative olefination of indoles and pyrroles with broad substrate scope and tolerance is reported. The catalytic reaction proceeds with excellent regio- and stereoselectivity. The directing group N,N-dimethylcarbamoyl was crucial for the reaction and could be removed easily. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Scope and Limitations of Auxiliary-Assisted, Palladium-Catalyzed Arylation and Alkylation of sp2 and sp3 C-H Bonds

    Science.gov (United States)

    Nadres, Enrico T.; Santos, Gerson Ivan Franco; Shabashov, Dmitry; Daugulis, Olafs

    2013-01-01

    The scope of palladium-catalyzed, auxiliary-assisted direct arylation and alkylation of sp2 and sp3 C-H bonds of amine and carboxylic acid derivatives has been investigated. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in t-amyl alcohol or water solvent at 100-140 °C. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation. Picolinic acid auxiliary is used for amine γ-functionalization and 8-aminoquinoline auxiliary is used for carboxylic acid β-functionalization. Some optimization of base, additives, and solvent is required for achieving best results. PMID:24090404

  7. Scope and limitations of auxiliary-assisted, palladium-catalyzed arylation and alkylation of sp2 and sp3 C-H bonds.

    Science.gov (United States)

    Nadres, Enrico T; Santos, Gerson Ivan Franco; Shabashov, Dmitry; Daugulis, Olafs

    2013-10-04

    The scope of palladium-catalyzed, auxiliary-assisted direct arylation and alkylation of sp(2) and sp(3) C-H bonds of amine and carboxylic acid derivatives has been investigated. The method employs a palladium acetate catalyst, substrate, aryl, alkyl, benzyl, or allyl halide, and inorganic base in tert-amyl alcohol or water solvent at 100-140 °C. Aryl and alkyl iodides as well as benzyl and allyl bromides are competent reagents in this transformation. The picolinic acid auxiliary is used for amine γ-functionalization, and the 8-aminoquinoline auxiliary is used for carboxylic acid β-functionalization. Some optimization of base, additives, and solvent is required for achieving best results.

  8. Synthesis of Bioactive 2-(Arylaminothiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation

    Directory of Open Access Journals (Sweden)

    Damien Hédou

    2016-06-01

    Full Text Available A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H-one derivatives (series 8, 10, 14 and 17 was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H-one (3 has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer’s disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.

  9. Rhenium-catalyzed dehydrogenative olefination of C(sp(3))-H bonds with hypervalent iodine(III) reagents.

    Science.gov (United States)

    Gu, Haidong; Wang, Congyang

    2015-06-07

    A dehydrogenative olefination of C(sp(3))-H bonds is disclosed here, by merging rhenium catalysis with an alanine-derived hypervalent iodine(III) reagent. Thus, cyclic and acyclic ethers, toluene derivatives, cycloalkanes, and nitriles are all successfully alkenylated in a regio- and stereoselective manner.

  10. The hydrolysis of epoxides catalyzed by inorganic ammonium salts in water: kinetic evidence for hydrogen bond catalysis.

    Science.gov (United States)

    Nozière, B; Fache, F; Maxut, A; Fenet, B; Baudouin, A; Fine, L; Ferronato, C

    2018-01-17

    Naturally-occurring inorganic ammonium ions have been recently reported as efficient catalysts for some organic reactions in water, which contributes to the understanding of the chemistry in some natural environments (soils, seawater, atmospheric aerosols, …) and biological systems, and is also potentially interesting for green chemistry as many of their salts are cheap and non-toxic. In this work, the effect of NH 4 + ions on the hydrolysis of small epoxides in water was studied kinetically. The presence of NH 4 + increased the hydrolysis rate by a factor of 6 to 25 compared to pure water and these catalytic effects were shown not to result from other ions, counter-ions or from acid or base catalysis, general or specific. The small amounts of amino alcohols produced in the reactions were identified as the actual catalysts by obtaining a strong acceleration of the reactions when adding these compounds directly to the epoxides in water. Replacing the amino alcohols by other strong hydrogen-bond donors, such as trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP) gave the same results, demonstrating that the kinetics of these reactions was driven by hydrogen-bond catalysis. Because of the presence of many hydrogen-bond donors in natural environments (for instance amines and hydroxy-containing compounds), hydrogen-bond catalysis is likely to contribute to many reaction rates in these environments.

  11. Thiol-functionalized copolymeric polyesters by lipase-catalyzed esterification and transesterification of 1,12-dodecanedioic acid and its diethyl ester, respectively, with 1-thioglycerol.

    Science.gov (United States)

    Fehling, Eberhard; Bergander, Klaus; Klein, Erika; Weber, Nikolaus; Vosmann, Klaus

    2010-10-01

    Copolymeric polyoxoesters containing branched-chain methylenethiol functions, i.e., poly(1,12-dodecanedioic acid-co-1-thioglycerol) and poly(diethyl 1,12-dodecanedioate-co-1-thioglycerol), were formed by lipase-catalyzed polyesterification and polytransesterification of 1,12-dodecanedioic acid and diethyl 1,12-dodecanedioate, respectively, with 1-thioglycerol (3-mercaptopropane-1,2-diol) using immobilized lipase B from Candida antarctica (Novozym 435) in vacuo without drying agent in the reaction mixture. After 360-480 h, both polyoxoesters were purified by extraction from the reaction mixtures followed by solvent fractionation. The precipitate of poly(1,12-dodecanedioic acid-co-1-thioglycerol) demonstrated a M(W) of ~170,000 Da, whereas a M(W) of ~7,100 Da only was found for poly(diethyl 1,12-dodecanedioate-co-1-thioglycerol). Both polycondensates were analyzed by GPC/SEC, alkali-catalyzed transmethylation, NMR- and FTIR-spectrometry.

  12. Direct Carboxylation of C(sp3-H and C(sp2-H Bonds with CO2 by Transition-Metal-Catalyzed and Base-Mediated Reactions

    Directory of Open Access Journals (Sweden)

    Immacolata Tommasi

    2017-12-01

    Full Text Available This review focuses on recent advances in the field of direct carboxylation reactions of C(sp3-H and C(sp2-H bonds using CO2 encompassing both transition-metal-catalysis and base-mediated approach. The review is not intended to be comprehensive, but aims to analyze representative examples from the literature, including transition-metal catalyzed carboxylation of benzylic and allylic C(sp3-H functionalities using CO2 which is at a “nascent stage”. Examples of light-driven carboxylation reactions of unactivated C(sp3-H bonds are also considered. Concerning C(sp3-H and C(sp2-H deprotonation reactions mediated by bases with subsequent carboxylation of the carbon nucleophile, few examples of catalytic processes are reported in the literature. In spite of this, several examples of base-promoted reactions integrating “base recycling” or “base regeneration (through electrosynthesis” steps have been reported. Representative examples of synthetically efficient, base-promoted processes are included in the review.

  13. Metal-catalyzed activation of ethers via C-O bond cleavage: a new strategy for molecular diversity.

    Science.gov (United States)

    Cornella, Josep; Zarate, Cayetana; Martin, Ruben

    2014-12-07

    In 1979, the seminal work of Wenkert set the standards for the utilization of aryl and vinyl ethers as coupling partners via C-O bond-cleavage. Although the topic remained dormant for almost three decades, the last few years have witnessed a renaissance in this area of expertise, experiencing an exponential growth and becoming a significant discipline within the cross-coupling arena. The means to utilize readily accessible aryl or vinyl ethers as counterparts does not only represent a practical, powerful and straightforward alternative to organic halides, but also constitutes an excellent opportunity to improve our chemical knowledge about a relatively unexplored area of expertise. This review summarizes the most significant developments in the area of C-O bond-cleavage when employing aryl or vinyl ethers, providing a detailed overview of the current state of the art and including future aspects, when applicable.

  14. Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Berciu, Cristina; Del Signore, Steven J; Chen, Xiaoyi; Yamagata, Natsuko; Rodal, Avital A; Nicastro, Daniela; Xu, Bing

    2018-02-07

    Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  15. Cinchona Alkaloid Derivative-Catalyzed Enantioselective Synthesis via a Mannich-Type Reaction and Antifungal Activity of β-Amino Esters Bearing Benzoheterocycle Moieties

    Directory of Open Access Journals (Sweden)

    Han Xiao

    2014-04-01

    Full Text Available An efficient synthesis of highly functionalized chiral β-amino ester derivatives containing benzothiophene and benzothiazole moieties is developed by a Mannich-type reaction using a cinchona alkaloid-derived thiourea catalyst. The desired products were obtained in good yields and high enantioselectivities (~86% yield, >99% ee using to the optimized reaction conditions. The synthesized compounds were characterized by 1H-NMR, 13C-NMR, IR, and HREI-MS analyses. The bioassays identified that compound 5dr has excellent antifungal activity, with a 60.53% inhibition rate against F. oxysporum, higher than that of the commercial agricultural fungicide hymexazol, whose inhibition rate was 56.12%.

  16. Degradation Mechanisms of Poly(ester urethane) Elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, Alexander S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    This report describes literature regarding the degradation mechanisms associated with a poly(ester urethane) block copolymer, Estane® 5703 (Estane), used in conjunction with Nitroplasticizer (NP), and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, also known as high molecular weight explosive (HMX) to produce polymer bonded explosive PBX 9501. Two principal degradation mechanisms are reported: NO2 oxidative reaction with the urethane linkage resulting in crosslinking and chain scission events, and acid catalyzed hydrolysis of the ester linkage. This report details future work regarding this PBX support system, to be conducted in late 2017 and 2018 at Engineered Materials Group (MST-7), Materials Science and Technology Division, Los Alamos National Laboratory. This is the first of a series of three reports on the degradation processes and trends of the support materials of PBX 9501.

  17. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan

    2007-07-18

    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  18. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and

  19. Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation

    Directory of Open Access Journals (Sweden)

    Perumberkandgai A. Vivekanand

    2013-02-01

    Full Text Available Currently, ingenious new analytical and process experimental techniques which are environmentally benign techniques, viz., ultrasound irradiation, have become immensely popular in promoting various reactions. In this work, a novel soluble multi-site phase transfer catalyst (PTC viz., 1,4-bis-(propylmethyleneammounium chloridebenzene (BPMACB was synthesized and its catalytic efficiency was assessed by observing the kinetics of sonolytic polymerization of methacrylic acid butyl ester (MABE using potassium persulphate (PPS as an initiator. The ultrasound–multi-site phase transfer catalysis (US-MPTC-assisted polymerization reaction was compared with the silent (non-ultrasonic polymerization reaction. The effects of the catalyst and various reaction parameters on the catalytic performance were in detail investigated by following the kinetics of polymerization of MABE in an ethyl acetate-water biphasic system. From the detailed kinetic investigation we propose a plausible mechanism. Further the kinetic results demonstrate clearly that ultrasound-assisted phase-transfer catalysis significantly increased the reaction rate when compared to silent reactions. Notably, this environmentally benign and cost-effective process has great potential to be applied in various polymer industries.

  20. Construction of C(sp2)-X (X = Br, Cl) Bonds through a Copper-Catalyzed Atom-Transfer Radical Process: Application for the 1,4-Difunctionalization of Isoquinolinium Salts.

    Science.gov (United States)

    Sun, Qiu; Zhang, Yuan-Yuan; Sun, Jing; Han, Ying; Jia, Xiaodong; Yan, Chao-Guo

    2018-02-16

    A highly efficient Cu-catalyzed 1,4-difunctionalization of isoquinolinium salts was developed with ether and X - (X = Br, Cl) as the halogen source under mild conditions. This transformation involves the combination of oxidative coupling and copper-catalyzed halogen atom-transfer radical processes. This method not only provides an efficient way to prepare various substituted azaarenes but also achieves the selective construction of C(sp 2 )-X (X = Br, Cl) bonds from a halogen anion and nucleophilic carbon atom via a free-radical process.

  1. A pinoresinol-lariciresinol reductase homologue from the creosote bush (Larrea tridentata) catalyzes the efficient in vitro conversion of p-coumaryl/coniferyl alcohol esters into the allylphenols chavicol/eugenol, but not the propenylphenols p-anol/isoeugenol.

    Science.gov (United States)

    Vassão, Daniel G; Kim, Sung-Jin; Milhollan, Jessica K; Eichinger, Dietmar; Davin, Laurence B; Lewis, Norman G

    2007-09-01

    The creosote bush (Larrea tridentata) accumulates a complex mixture of 8-8' regiospecifically linked lignans, of which the potent antioxidant nordihydroguaiaretic acid (NDGA) is the most abundant. Its tetra-O-methyl derivative (M4N) is showing considerable promise in the treatment of refractory (hard-to-treat) brain and central nervous system tumors. NDGA and related 9,9'-deoxygenated lignans are thought to be formed by dimerization of allyl/propenyl phenols, phenylpropanoid compounds that lack C-9 oxygenation, thus differentiating them from the more common monolignol-derived lignans. In our ongoing studies dedicated towards elucidating the biochemical pathway to NDGA and its congeners, a pinoresinol-lariciresinol reductase homologue was isolated from L. tridentata, with the protein obtained in functional recombinant form. This protein efficiently catalyzes the conversion of p-coumaryl and coniferyl alcohol esters into the corresponding allylphenols, chavicol and eugenol; neither of their propenylphenol regioisomers, p-anol and isoeugenol, are formed during this enzyme reaction.

  2. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Deuterium exchange at terminal boron--hydrogen bonds catalyzed by certain transition metal complexes. A qualitative study of selectivity and mechanism

    International Nuclear Information System (INIS)

    Hoel, E.L.; Talebinasab-Savari, M.; Hawthorne, M.F.

    1977-01-01

    A wide variety of substrates, including carboranes, metallocarboranes, and boron hydrides, were found to undergo catalytic isotopic exchange of terminal hydrogen with deuterium gas in the presence of various transition metal complexes. With (PPh 3 ) 3 RuHCl as catalyst, exchange was found to proceed with stereoselectivity indicative of nucleophilic attack at boron; e.g., the order of rates for deuterium incorporation at chemically nonequivalent sites in 1,2-C 2 B 10 H 12 was B(3,6) greater than B(4,5,7,11) greater than B(8,10) greater than B(9,12). Other catalysts, most notably the series of hydridometallocarboranes, (PPh 3 ) 2 HMC 2 B 9 H 11 (M = Rh, Ir), showed little or no stereoselectivity during deuterium exchange. Intermediate stereoselectivity was found with (PPh 3 ) 2 (CO)IrCl and (PPh 3 ) 2 IrCl species as catalysts, while exchange catalyzed by (AsPh 3 ) 2 IrCl exhibited the stereoselectivity found with (PPh 3 ) 3 RuHCl. A mechanism is postulated which rationalizes the varied results and which involves oxidative addition of boron--hydrogen bonds to catalytic species

  4. Biocatalytic synthesis and antioxidant capacities of ascorbyl esters ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... available on the comparison of antioxidant activities of ascorbyl esters biosynthesized using alkyl ester, fatty acid and triglyceride as acyl donors. Therefore, this study focused on the enzymatic synthesis of L-ascorbyl acid fatty acid esters catalyzed by immobilized lipase from C. antarctica (Novozym 435) in.

  5. Iodine-Catalyzed Polysaccharide Esterification

    Science.gov (United States)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  6. Valyl benzyl ester chloride

    Directory of Open Access Journals (Sweden)

    Grzegorz Dutkiewicz

    2010-02-01

    Full Text Available In the title compound (systematic name: 1-benzyloxy-3-methyl-1-oxobutan-2-aminium chloride, C12H18NO2+·Cl−, the ester group is approximately planar, with a maximum deviation of 0.040 (2 Å from the least-squares plane, and makes a dihedral angle of 28.92 (16° with the phenyl ring. The crystal structure is organized by N—H...Cl hydrogen bonds which join the two components into a chain along the b axis. Pairs of chains arranged antiparallel are interconnected by further N—H...Cl hydrogen bonds, forming eight-membered rings. Similar packing modes have been observed in a number of amino acid ester halides with a short unit-cell parameter of ca 5.5 Å along the direction in which the chains run.

  7. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin

    2018-04-13

    -mediated decarbonylation process of esters and proposed a reaction mechanism involving a C(acyl)-O bond cleavage and a CO extrusion. Key nickel intermediates were isolated and characterized by Shi and co-workers, supporting the assumption of a nickel/ N-heterocyclic carbene-promoted C(acyl)-O bond activation and functionalization. Our combined experimental and computational study of a ligand-controlled chemoselective nickel-catalyzed cross-coupling of aromatic esters with alkylboron reagents provided further insight into the reaction mechanism. We demonstrated that nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step, resulting in decarbonylative alkylations, while nickel complexes with monodentate phosphorus ligands promote the activation of the C(acyl)-O bond, leading to the production of ketone products. Although more detailed mechanistic investigations need to be undertaken, the successful development of decarbonylative cross-coupling reactions can serve as a solid foundation for future studies. We believe that this type of decarbonylative cross-coupling reactions will be of significant value, in particularly in combination with the retrosynthetic analysis and synthesis of natural products and biologically active molecules. Thus, the presented ester substitution methods will pave the way for successful applications in the construction of complex frameworks by late-stage modification and functionalization of carboxylic acid derivatives.

  8. Biocatalytic synthesis and antioxidant capacities of ascorbyl esters ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    , 2009). Lipases, especially that from Candida antarctica, have been successfully used to catalyze the synthesis of ascorbyl esters in tertiary alcohols, acetone and even in ionic liquids, employing saturated and unsaturated ...

  9. Decarbonylative Silylation of Esters by Combined Nickel and Copper Catalysis for the Synthesis of Arylsilanes and Heteroarylsilanes

    KAUST Repository

    Guo, Lin

    2016-08-25

    An efficient nickel/copper-catalyzed decarbonylative silylation reaction of carboxylic acid esters with silylboranes is described. This reaction provides access to structurally diverse silanes with high efficiency and excellent functional-group tolerance starting from readily available esters.

  10. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vrkoslav, Vladimír; Cvačka, Josef

    2012-01-01

    Roč. 1259, 12 Oct (2012), s. 244-250 ISSN 0021-9673 R&D Projects: GA ČR GA203/09/0139 Institutional research plan: CEZ:AV0Z40550506 Keywords : APCI * double-bond localisation * fatty acids Subject RIV: CC - Organic Chemistry Impact factor: 4.612, year: 2012

  11. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  12. Biodiesel production by enzyme-catalyzed transesterification

    OpenAIRE

    Stamenković Olivera S.; Lazić Miodrag L.; Veljković Vlada B.; Skala Dejan U.

    2005-01-01

    The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial appli...

  13. Mechanistic Exploration of the Competition Relationship between a Ketone and C═C, C═N, or C═S Bond in the Rh(III)-Catalyzed Carbocyclization Reactions.

    Science.gov (United States)

    Xing, Yang-Yang; Liu, Jian-Biao; Sun, Chuan-Zhi; Huang, Fang; Chen, De-Zhan

    2018-04-02

    The introduction of a C═O, C═C, C═S, or C═N bond has emerged as an effective strategy for carbocycle synthesis. A computational mechanistic study of Rh(III)-catalyzed coupling of alkynes with enaminones, sulfoxonium ylides, or α-carbonyl-nitrones was carried out. Our results uncover the roles of dual directing groups in the three substrates and confirm that the ketone acts as the role of the directing group while the C═C, C═N, or C═S bond serves as the cyclization site. By comparing the coordination of the ketone versus the C═C, C═N, or C═S bond, as well as the chemoselectivity concerning the six- versus five-membered formation, a competition relationship is revealed within the dual directing groups. Furthermore, after the alkyne insertion, instead of the originally proposed direct reductive elimination mechanism, the ketone enolization is found to be essential prior to the reductive elimination. The following C(sp 2 )-C(sp 2 ) reductive elimination is more favorable than the C(sp 3 )-C(sp 2 ) formation, which can be explained by the aromaticity difference in the corresponding transition states. The substituent effect on controlling the selectivity was also discussed.

  14. Rhodium(iii)-catalyzed ortho-olefination of aryl phosphonates.

    Science.gov (United States)

    Chary, Bathoju Chandra; Kim, Sunggak

    2013-09-25

    Rhodium(iii)-catalyzed C-H olefination of aryl phosphonic esters is reported for the first time. In this mild and efficient process, the phosphonic ester group is utilized successfully as a new directing group. In addition, mono-olefination for aryl phosphonates is observed using a phosphonic diamide directing group.

  15. Chemical and quantum mechanical studies of the free radical C-C bond formation in the lipoxygenase-catalyzed dimerisation of octadeca-9,12-diynoic acid

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Nieuwenhuizen, W.F.; Lenthe, J.H. van; Blomsma, E.J.; Kerk-van Hoof, A.C. van der; Veldink, G.A.

    1997-01-01

    Triple bond analogues of poly-unsaturated fatty acids are well-known inactivators of lipoxygenases. In an earlier study we proposed that, since 11-oxo-octadeca-9,12-diynoic acid (11-oxo-ODYA) is the only oxygenated product formed during the irreversible inactivation of soybean lipoxygenase-1, the

  16. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei [Cathy

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  17. O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling.

    Science.gov (United States)

    Shaffer, David W; Xie, Yan; Concepcion, Javier J

    2017-10-16

    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O-O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O-O bond formation step as the key step in water oxidation catalysis. The two main pathways to accomplish this step, single-site water nucleophilic attack and O-O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.

  18. Palladium-Catalyzed Selective Mono-/Tetraacetoxylation of o-Carboranes with Acetic Acid via Cross Dehydrogenative Coupling of Cage B-H/O-H Bonds.

    Science.gov (United States)

    Xu, Tao-Tao; Cao, Ke; Wu, Ji; Zhang, Cai-Yan; Yang, Junxiao

    2018-03-05

    A selective mono-/tetraacetoxylation of o-carboranes with acetic acid via cross dehydrogenative coupling of cage B-H/O-H bonds has been developed, and a series of mono- and tetraacetoxylated o-carboranes have been synthesized with moderate to good yields as well as good selectivity. Mechanistic studies indicate that the acetoxyl originates from acetic acid directly, and a nucleophilic addition of Pd IV -oxo species and dehydration process is proposed.

  19. Cu(II)-catalyzed allylic silylation of Morita-Baylis-Hillman alcohols via dual activation of Si-B bond and hydroxyl group.

    Science.gov (United States)

    Xuan, Qing-Qing; Zhong, Neng-Jun; Ren, Chuan-Li; Liu, Li; Wang, Dong; Chen, Yong-Jun; Li, Chao-Jun

    2013-11-01

    The reaction of Morita-Baylis-Hillman (MBH) alcohols with Me2PhSiBpin under the catalysis of Cu(OTf)2/pyridine in methanol has been developed. The direct silylation of allylic alcohols via dual activation of the Si-B bond and the hydroxyl group of the MBH alcohol provides an efficient and convenient method for the synthesis of functionalized allylsilanes.

  20. Iodine-catalyzed sp³ C-H bond activation by selenium dioxide: synthesis of diindolylmethanes and di(3-indolyl)selanides.

    Science.gov (United States)

    Naidu, P Seetham; Majumder, Swarup; Bhuyan, Pulak J

    2015-11-01

    An efficient reaction protocol was developed for the synthesis of several diindolylmethane derivatives via the [Formula: see text] C-H bond activation of aryl methyl ketones by [Formula: see text] and indoles in the presence of catalytic amounts of [Formula: see text] at 80 [Formula: see text] using dioxane as solvent. Unexpectedly, an interesting class of di(3-indolyl)selenide compounds was isolated when the reaction was carried out at room temperature.

  1. Folylpolyglutamate synthetase: direct evidence for an acyl phosphate intermediate in the enzyme-catalyzed reaction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, R.; McGuire, J.J.; Shane, B.; Coward, J.K.

    1986-05-01

    The nature of the intermediate in the reaction catalyzed by folylpoly-..gamma..-glutamate synthetase (FPGS) has been investigated. Incubation of ..cap alpha..,..gamma..-(/sup 18/O)methotrexate with ATP, glutamate, and FPGS resulted in the formation of (/sup 18/O)phosphate, thus providing strong evidence for the formation of a ..gamma..-glutamyl phosphate during catalysis. The inorganic phosphate formed in the enzyme-catalyzed reaction was separated from other products and substrates by chromatography on DEAE-cellulose, then converted to the trimethyl ester, and analyzed by mass spectroscopy. Stoichiometric formation of (/sup 18/O)phosphate was observed in the case of the E. coli enzyme, isolated from a transformant containing the cloned FPGS-dihydrofolate synthetase (folC) gene. In addition, /sup 31/P-NMR analysis of the phosphate isolated from the reaction using E. coli FPGS showed the expected /sup 18/O-isotopic perturbations due to both singly bonded and doubly bonded P-/sup 18/O species. Similar experiments were carried out with FPGS isolated from hog liver. In this case, the small amounts of pure enzyme available precluded use of the NMR technique. However, mass spectral analysis of the derivatized phosphate product revealed the presence of (/sup 18/O)-trimethyl phosphate, thus indicating that the reaction catalyzed by the mammalian enzyme also proceeds via an acyl phosphate intermediate.

  2. Density functional study of electronic, charge density, and chemical bonding properties of 9-methyl-3-Thiophen-2-YI-Thieno [3,2-e] [1, 2, 4] Thriazolo [4,3-c] pyrimidine-8-Carboxylic acid ethyl ester crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H., E-mail: maalidph@yahoo.co.uk [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Auluck, S. [CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi 110012 (India); Chyský, Jan [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-06-01

    A comprehensive theoretical density functional investigation of the electronic crystal structure, chemical bonding, and the electron charge densities of 9-Methyl-3-Thiophen-2-YI-Thieno [3, 2-e] [1, 2, 4] Thriazolo [4,3-c] Pyrimidine-8-Carboxylic Acid Ethyl Ester (C{sub 15}H{sub 12}N{sub 4}O{sub 2}S{sub 2}) is performed. The density of states at Fermi level equal to 5.50 (3.45) states/Ry cell, and the calculated bare electronic specific heat coefficient is found to be 0.95 (0.59) mJ/mole-K{sup 2} for the local density approximation (Engel–Vosko generalized gradient approximation). The electronic charge density space distribution contours in (1 0 0) and (1 1 0) planes were calculated. We find that there are two independent molecules (A and B) in the asymmetric unit exhibit intramolecular C–H…O, C–H…N interactions. This intramolecular interaction is different in molecules A and B, where A molecule show C–H…O interaction while B molecule exhibit C–H…N interaction. We should emphasis that there is π–π interaction between the pyrimidine rings of the two neighbors B molecules gives extra strengths and stabilizations to the superamolecular structure. The calculated distance between the two neighbors pyrimidine rings found to be 3.345 Å, in good agreement with the measured one (3.424(1) Å). - Highlights: • Electronic structure, chemical bonding, and electron charge density were studied. • Density of states at Fermi level is 5.50 (3.45) states/Ry cell, for LDA (EVGGA). • Bare electronic specific heat coefficient is 0.95 (0.59) mJ/mole-K{sup 2} for LDA(EVGGA). • There are two independent molecules (A and B) in the asymmetric unit.

  3. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  4. FINAL TECHNICAL REPORT for grant DE-FG02-93ER14353 "Carbon-Hydrogen Bond Functionalization Catalyzed by Transition Metal Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Alan S

    2012-05-21

    Alkanes are our most abundant organic resource but are highly resistant to selective chemical transformations. Alkenes (olefins) by contrast are the single most versatile class of molecules for selective transformations, and are intermediates in virtually every petrochemical process as well as a vast range of commodity and fine chemical processes. Over the course of this project we have developed the most efficient catalysts to date for the selective conversion of alkanes to give olefins, and have applied these catalysts to other dehydrogenation reactions. We have also developed some of the first efficient catalysts for carbonylation of alkanes and arenes to give aldehydes. The development of these catalysts has been accompanied by elucidation of the mechanism of their operation and the factors controlling the kinetics and thermodynamics of C-H bond activation and other individual steps of the catalytic cycles. This fundamental understanding will allow the further improvement of these catalysts, as well as the development of the next generation of catalysts for the functionalization of alkanes and other molecules containing C-H bonds.

  5. Characterization of the Interunit Bonds of Lignin Oligomers Released by Acid-Catalyzed Selective Solvolysis of Cryptomeria japonica and Eucalyptus globulus Woods via Thioacidolysis and 2D-NMR.

    Science.gov (United States)

    Saito, Kaori; Kaiho, Atsushi; Sakai, Ryo; Nishimura, Hiroshi; Okada, Hitomi; Watanabe, Takashi

    2016-12-07

    Acid-catalyzed degradation of lignin in toluene containing methanol selectively yields C6-C2 lignin monomers and releases lignin oligomers, a potential raw feedstock for epoxy resins. We herein characterize the structures of the lignin oligomers by focusing on the changes in the interunit linkage types during solvolysis. The oligomeric lignin products were analyzed via thioacidolysis and 2D-HSQC-NMR. The results show that lignin oligomers ranging from monomers to tetramers are released through considerable cleavage of the β-O-4 linkages. The lignin oligomers from Cryptomeria japonica (softwood) mainly comprise β-5, β-1, and tetrahydrofuran β-β linkages, whereas Eucalyptus globulus (hardwood) yields oligomers rich in β-1 and syringaresinol β-β linkages. Both wood samples exhibit selective release of β-β dimers and a relative decrease in 5-5 and 4-O-5 bonds during solvolysis. The method presented for the separation of lignin oligomers without β-O-4 linkages and with linkages unique to each wood species will be useful for the production of lignin-based materials.

  6. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    Science.gov (United States)

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biotransformation--XXXIV. Metabolism of testosterone esters in fungi cultures.

    Science.gov (United States)

    Brzezowska, E; Dmochowska-Gładysz, J; Kołek, T; Nobilec, E

    1993-08-01

    Seven esters of testosterone: acetate, propionate, enanthate, caprate, undecanoate, isobutyrate and isocaproate (some of them are used as drugs) were transformed by microorganisms: Absidia coerulea, Acremonium roseum, Aphanocladium album and Rhodotorula mucilaginosa to obtain some information about their metabolism. It was observed that the presence and structure of the acyl group mainly influenced the degree of transformation. The first step of the reaction was probably hydrolysis of ester, followed by testosterone transformation. Only the branched chain esters were transformed by R. mucilaginosa without hydrolysis of the ester bond.

  8. Catalytic enantioselective vinylogous Mukaiyama-Michael addition of 2-silyloxyfurans to cyclic unsaturated oxo esters.

    Science.gov (United States)

    Jusseau, Xavier; Retailleau, Pascal; Chabaud, Laurent; Guillou, Catherine

    2013-03-15

    The copper-catalyzed asymmetric addition of 2-silyloxyfurans to cyclic unsaturated oxo esters is reported. The reaction proceeds with excellent diastereocontrol (usually dr 99:1) and modest to high enantioselectivity, depending on the nature of the ester group and the substitution of the cyclic oxo ester. We have shown that these substrates can be transformed into a variety of building blocks bearing a γ-butenolide or γ-lactone connected to a cycloalkane or cycoalkene moiety.

  9. Synthesis and physical properties of petroselinic based estolide esters

    Science.gov (United States)

    A new series of petroselinic (Coriandrum sativum L.)-based estolide 2-ethylhexyl (2-EH) esters were synthesized, as the capping material varied in length and in degrees of unsaturation, in a perchloric acid catalyzed one-pot process with the esterification process incorporated into an in situ second...

  10. Biocatalytic synthesis and antioxidant capacities of ascorbyl esters ...

    African Journals Online (AJOL)

    Novozym 435 was used to catalyze the synthesis of fatty acid (FA) ascorbyl esters in tert-butanol using methyl palmitate, oleic and linoleic acids, and soybean oil as acyl donors. Response surface methodology (RSM) and three-level-four-factor central composite rotatable design (CCRD) were employed to optimize the ...

  11. Physical proprieties of low viscosity estolide 2-ethylhexyl esters

    Science.gov (United States)

    Acetic- and butyric-capped oleic estolide 2-ethylhexyl (2-EH) esters were synthesized in a perchloric acid catalyzed (0.05 equiv) one-pot process from industrial 90% oleic acid and either acetic or butyric fatty acids at two different ratios. This was directly followed by the esterification process ...

  12. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    Science.gov (United States)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  13. The application of monodentate secondary phosphine oxide ligands in rhodium- and iridium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Jiang, Xiao-bin; van den Berg, Michel; Minnaard, Adriaan J.; Vries, Johannes G. de; Feringa, Bernard

    2004-01-01

    Enantiopure secondary phosphine oxides have been tested as ligands in the rhodium- and iridium-catalyzed asymmetric hydrogenation of functionalized olefins. tert-Butylphosphinoyl benzene turned out to be a versatile ligand in the iridium-catalyzed hydrogenation of β-branched dehydroamino esters and

  14. Insight into solid-liquid phase transfer catalyzed synthesis of ...

    Indian Academy of Sciences (India)

    Ganapati D Yadav

    2017-11-16

    Nov 16, 2017 ... https://doi.org/10.1007/s12039-017-1368-1. REGULAR ARTICLE. Special Issue on Recent Trends in the Design and Development of Catalysts and their Applications. Insight into solid-liquid phase transfer catalyzed synthesis of. Mecoprop ester using K2CO3 as base and development of new kinetic model ...

  15. EFFICIENT SODIUM SELENATE-CATALYZED SYNTHESIS OF 3,4 ...

    African Journals Online (AJOL)

    Sodium selenate efficiently catalyzes the three-component Biginelli reaction of an aldehyde, a,β-keto ester and urea or thiourea under solvent-free conditions to afford the corresponding 3,4-dihydropyrimidin-2(1H)-ones or –thiones in excellent yields. KEY WORDS: Dihydropyrimidinones, Sodium selenate, Biginelli reaction, ...

  16. Insight into solid-liquid phase transfer catalyzed synthesis of ...

    Indian Academy of Sciences (India)

    Insight into solid-liquid phase transfer catalyzed synthesis of Mecoprop ester using K₂CO₃ as base and development of new kinetic model involving liquid product and two solid co-products. GANAPATI D YADAV GUNJAN P DESHMUKH. REGULAR ARTICLE Volume 129 Issue 11 November 2017 pp 1677-1685 ...

  17. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  18. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethanes

    Directory of Open Access Journals (Sweden)

    Hiroto Hayashi

    2011-08-01

    Full Text Available Novel poly(ester-urethanes were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and a,w-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethanes. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethanes synthesized in this study showed higher Tm, Young’s modulus and tensile strength values.

  19. Facile palladium-mediated conversion of ethanethiol esters to aldehydes and ketones

    International Nuclear Information System (INIS)

    Tokuyama, Hidetoshi; Yokoshima, Satoshi; Yamashita, Tohru; Shao-Cheng, Lin; Leping, Li; Fukuyama, Tohru

    1998-01-01

    Treatment of ethanethiol esters with triethylsilane and palladium on carbon at ambient temperature furnished aldehydes. In addition, a variety of ketones have been prepared by a palladium-catalyzed reaction of ethanethiol esters with organo zinc reagents. Various functional groups, including esters, ketones, aromatic halides and aldehydes, tolerate both transformation reactions. These novel reactions can also be applied to the synthesis of α-amino aldehyde and α-amino ketone derivatives using the corresponding L-α-amino thiol esters without causing racemization. (author)

  20. Tandem ligation of unprotected peptides through thiaprolyl and cysteinyl bonds in water.

    Science.gov (United States)

    Tam, J P; Yu, Q; Yang, J L

    2001-03-21

    Tandem ligation for the synthesis and modification of proteins entails forming two or more regiospecific amide bonds of multiple free peptide segments without a protecting-group scheme. We here describe a semi-orthogonal strategy for ligating three unprotected peptide segments, two of which contain N-terminal (NT) cysteine, to form in tandem two amide bonds, an Xaa-SPro (thiaproline), and then an Xaa-Cys. This strategy exploits the strong preference of an NT-cysteinyl peptide under acidic conditions to undergo selectively an SPro-imine ligation rather than a Cys-thioester ligation. Operationally, it was performed in the N --> C direction, first by an imine ligation at pH glycoaldehyde ester and a second peptide containing both an NT-Cys and a CT-thioester. The newly created O-ester-linked segment with a CT-thioester was then ligated to another NT-cysteinyl peptide through thioester ligation at pH > 7 to form an Xaa-Cys bond. Concurrently, this basic condition also catalyzed the O,N-acyl migration of an Xaa-thiazolidine ester to the Xaa-SPro bond at the first ligation site to complete the tandem three-segment ligation. Both ligation reactions were performed in aqueous buffered solvents. The effectiveness of this three-segment ligation strategy was tested in six peptides ranging from 19 to 70 amino acids, including thiaproline --> proline analogues of somatostatins and two CC-chemokines. The thiaproline replacements in these peptides and proteins did not result in altered biological activity. By eliminating the protecting-group scheme and coupling reagents, tandem ligation of multiple free peptide segments in aqueous solutions enhances the scope of protein synthesis and may provide a useful approach for combinatorial segment synthesis.

  1. Polyhydroxyester films obtained by non-catalyzed melt-polycondensation of natural occurring fatty polyhydroxyacids.

    Directory of Open Access Journals (Sweden)

    Jose Jesus Benitez

    2015-08-01

    Full Text Available Free-standing polyesters films from mono and polyhydroxylated fatty acids (C16 and C18 have been obtained by non-catalyzed melt-condensation polymerization in air at 150°C. Chemical characterization by Fourier Transform Infrared Spectroscopy (FTIR and 13C Magic Angle Spinning Nuclear Magnetic Resonance (13C MAS-NMR has confirmed the formation of the corresponding esters and the occurrence of hydroxyl partial oxidation which extent depends on the type of hydroxylation of the monomer (primary or secondary. Generally, polyester films obtained are hydrophobic, insoluble in common solvents, amorphous and infusible as revealed by X-ray Diffraction (XRD and Differential Scanning Calorimetry (DSC. In -polyhydroxy acids, esterification reaction with primary hydroxyls is preferential and, therefore, the structure can be defined as linear with variable branching depending on the amount of esterified secondary hydroxyls. The occurrence side oxidative reactions like the diol cleavage are responsible for chain cross-linking. Films are thermally stable up to 200-250°C though this limit can be extended up to 300°C in the absence of ester bonds involving secondary hydroxyls. By analogy with natural occurring fatty polyesters (i.e. cutin in higher plants these polymers are proposed as biodegradable and non-toxic barrier films or coatings to be used, for instance, in food packing

  2. Ester Tuiksoo / Ester Tuiksoo ; interv. Piret Tali

    Index Scriptorium Estoniae

    Tuiksoo, Ester, 1965-

    2007-01-01

    Juhan Partsi valitsuse (05.04.2004-13.04.2005) ja Andrus Ansipi valitsuse (13.04.2005-) põllumajandusminister Ester Tuiksoo oma lapsepõlvest ja elukutsevalikust, poliitilise karjääri algusest ja erakonna valikust, ministritöö kogemustest, naistest poliitikas

  3. Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters

    OpenAIRE

    Engelen, Marcel Chr. van; Teunissen, Herman T.; Vries, Johannes G. de; Elsevier, Cornelis J.

    2003-01-01

    Effective hydrogenolysis of dimethyl oxalate to ethylene glycol has been obtained using a catalyst prepared in situ from Ru(acac)3 with the facially coordinating tridentate phosphine ligand CH3C(CH2PPh2)3. This catalyst enabled full and selective conversion in 16 h at [S]/[Ru] = 500 at 80–100 bar hydrogen pressure at 120 °C. This catalyst is far more active than any known homogeneous catalyst able to hydrogenate dimethyl oxalate to ethylene glycol. Several mono-, di- and tridentate P- and N-l...

  4. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  5. Biodiesel production by enzyme-catalyzed transesterification

    Directory of Open Access Journals (Sweden)

    Stamenković Olivera S.

    2005-01-01

    Full Text Available The principles and kinetics of biodiesel production from vegetable oils using lipase-catalyzed transesterification are reviewed. The most important operating factors affecting the reaction and the yield of alkyl esters, such as: the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol are discussed. In order to estimate the prospects of lipase-catalyzed transesterification for industrial application, the factors which influence the kinetics of chemically-catalysed transesterification are also considered. The advantages of lipase-catalyzed transesterification compared to the chemically-catalysed reaction, are pointed out. The cost of down-processing and ecological problems are significantly reduced by applying lipases. It was also emphasized that lipase-catalysed transesterification should be greatly improved in order to make it commercially applicable. The further optimization of lipase-catalyzed transesterification should include studies on the development of new reactor systems with immobilized biocatalysts and the addition of alcohol in several portions, and the use of extra cellular lipases tolerant to organic solvents, intracellular lipases (i.e. whole microbial cells and genetically-modified microorganisms ("intelligent" yeasts.

  6. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    Science.gov (United States)

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

    Directory of Open Access Journals (Sweden)

    Yuxin Tian

    2016-10-01

    Full Text Available Cinnamic acid sugar ester derivatives (CASEDs are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM, presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  8. Silver-Catalyzed Aldehyde Olefination Using Siloxy Alkynes.

    Science.gov (United States)

    Sun, Jianwei; Keller, Valerie A; Meyer, S Todd; Kozmin, Sergey A

    2010-03-20

    We describe the development of a silver-catalyzed carbonyl olefination employing electron rich siloxy alkynes. This process constitutes an efficient synthesis of trisubstituted unsaturated esters, and represents an alternative to the widely utilized Horner-Wadsworth-Emmons reaction. Excellent diastereoselectivities are observed for a range of aldehydes using either 1-siloxy-1-propyne or 1-siloxy-1-hexyne. This mild catalytic process also enables chemoselective olefination of aldehydes in the presence of either ester or ketone functionality. Furthermore, since no by-products are generated, this catalytic process is perfectly suited for development of sequential reactions that can be carried out in a single flask.

  9. Multicomponent Mannich Reactions Using Boron Enolates Derived from Diazo Esters and 9-BBN

    OpenAIRE

    Luan, Yi; Schaus, Scott E.

    2011-01-01

    Diazo esters, arylboranes and carbamoyl imines undergo a 3-component Mannich condensation reaction. Catalyzed by Cu(II) salts, the reaction affords the corresponding isocyanate Mannich product; one that can be easily trapped in situ by other nucleophiles. The Mannich condensation corresponds to an α,α-disubstituted enolate addition to imines. The reaction was rendered asymmetric using the (-)-phenylmenthol ester in good yield and selectivities.

  10. Functional Group Interconversion: Decarbonylative Borylation of Esters for the Synthesis of Organoboronates

    KAUST Repository

    Guo, Lin

    2016-09-26

    A new and efficient nickel-catalyzed decarbonylative borylation reaction of carboxylic acid esters with bis(pinacolato)-diboron has been developed. This transformation allows access to structurally diverse aryl as well as alkenyl and alkyl boronate esters with high reactivity, broad substrate scope, and excellent functional-group tolerance. Further experiments show that this protocol can be carried out on a gram scale and applied to orthogonal synthetic strategies.

  11. Carbonate esters turn camptothecin-unsaturated fatty acid prodrugs into nanomedicines for cancer therapy.

    Science.gov (United States)

    Li, Yang; Kang, Tianyi; Wu, Yujiao; Chen, Yuwen; Zhu, Jiao; Gou, Maling

    2018-02-20

    We report that carbonate esters could turn hydrophobic camptothecin (CPT)-unsaturated fatty acid prodrugs into nanoaggregates in aqueous solution. The active CPT could be rapidly released once triggered by a reductive stimulus when a carbonate ester was combined with a disulfide bond, resulting in a potent in vivo antitumor activity.

  12. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  13. Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on melanin synthesis.

    Science.gov (United States)

    Tokiwa, Yutaka; Kitagawa, Masaru; Raku, Takao; Yanagitani, Shusaku; Yoshino, Kenji

    2007-06-01

    Transesterification of arbutin and undecylenic acid vinyl ester was catalyzed by alkaline protease, Bioprase, in dimethylformamide to get arbutin derivative having undecylenic acid at 6-position of glucose moiety, 6-O-undecylenoyl p-hydroxyphenyl beta-D-glucopyranoside. The reaction rate increased with increase of arbutin concentration, and when its concentration was 0.9 M, the conversion rate was more than 90% under addition of 2 M undecylenic acid vinyl ester. The obtained arbutin ester significantly suppressed melanin production in murine B16 melanoma cells.

  14. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    Science.gov (United States)

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  15. Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification.

    Science.gov (United States)

    Takwa, Mohamad; Xiao, Yan; Simpson, Neil; Malmström, Eva; Hult, Karl; Koning, Cor E; Heise, Andreas; Martinelle, Mats

    2008-02-01

    2-Hydroxyethyl methacrylate (HEMA) was used as initiator for the enzymatic ring-opening polymerization (ROP) of omega-pentadecalactone (PDL) and epsilon-caprolactone (CL). The lipase B from Candida antarctica was found to catalyze the cleavage of the ester bond in the HEMA end group of the formed polyesters, resulting in two major transesterification processes, methacrylate transfer and polyester transfer. This resulted in a number of different polyester methacrylate structures, such as polymers without, with one, and with two methacrylate end groups. Furthermore, the 1,2-ethanediol moiety (from HEMA) was found in the polyester products as an integral part of HEMA, as an end group (with one hydroxyl group) and incorporated within the polyester (polyester chains acylated on both hydroxyl groups). After 72 h, as a result of the methacrylate transfer, 79% (48%) of the initial amount of the methacrylate moiety (from HEMA) was situated (acylated) on the end hydroxyl group of the PPDL (PCL) polyester. In order to prepare materials for polymer networks, fully dimethacrylated polymers were synthesized in a one-pot procedure by combining HEMA-initiated ROP with end-capping using vinyl methacrylate. The novel PPDL dimethacrylate (>95% incorporated methacrylate end groups) is currently in use for polymer network formation. Our results show that initiators with cleavable ester groups are of limited use to obtain well-defined monomethacrylated macromonomers due to the enzyme-based transesterification processes. On the other hand, when combined with end-capping, well-defined dimethacrylated polymers (PPDL, PCL) were prepared.

  16. The sequence and crystal structure of the alpha-amino acid ester hydrolase from Xanthomonas citri define a new family of beta-lactam antibiotic acylases

    NARCIS (Netherlands)

    Barends, Thomas; Polderman - Tijmes, Jolanda; Jekel, PA; Hensgens, CMH; de Vries, Erik; Janssen, DB; Dijkstra, Bauke W.

    2003-01-01

    alpha-Amino acid ester hydrolases (AEHs) catalyze the hydrolysis and synthesis of esters and amides with an alpha-amino group. As such, they can synthesize beta-lactam antibiotics from acyl compounds and beta-lactam nuclei obtained from the hydrolysis of natural antibiotics. This article describes

  17. The effect of ethanol on the kinetics of lipase-mediated enantioselective esterification of 4-methyloctanoic acid and the hydrolysis of its ethyl ester

    NARCIS (Netherlands)

    Heinsman, N.W.J.T.; Valente, A.M.; Schmienk, H.G.F.; Padt, van der A.; Franssen, M.C.R.; Groot, de Æ.; Riet, van 't K.

    2001-01-01

    The Novozym 435? catalyzed esterification and hydrolysis reactions of 4-methyloctanoic acid (ethyl ester) were investigated. In both the hydrolysis and esterification reactions, the increase of ethanol concentration led to an increase in enantiomeric ratio (E). For hydrolysis of the ethyl ester, the

  18. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  19. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  20. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  1. Intermolecular Dehydrative Coupling Reaction of Arylketones with Cyclic Alkenes Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: A Novel Ketone Olefination Method via Vinyl C–H Bond Activation

    Science.gov (United States)

    Yi, Chae S.; Lee, Do W.

    2010-01-01

    Summary The cationic ruthenium-hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly effective catalyst for the intermolecular olefination reaction of arylketones with cycloalkenes. The preliminary mechanistic analysis revealed that electrophilic ruthenium-vinyl complex is the key species for mediating both vinyl C–H bond activation and the dehydrative olefination steps of the coupling reaction. PMID:20567607

  2. Lewis Base Activation of Silyl Acetals: Iridium-Catalyzed Reductive Horner-Wadsworth-Emmons Olefination.

    Science.gov (United States)

    Dakarapu, Udaya Sree; Bokka, Apparao; Asgari, Parham; Trog, Gabriela; Hua, Yuanda; Nguyen, Hiep H; Rahman, Nawal; Jeon, Junha

    2015-12-04

    A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates. This operationally convenient, mechanistically unique protocol converts the traditionally challenging aryl, alkenyl, and alkynyl esters to homologated enoates at room temperature within a single vessel.

  3. Synthesis of the Fatty Esters of Solketal and Glycerol-Formal: Biobased Specialty Chemicals

    Directory of Open Access Journals (Sweden)

    Alvise Perosa

    2016-01-01

    Full Text Available The caprylic, lauric, palmitic and stearic esters of solketal and glycerol formal were synthesized with high selectivity and in good yields by a solvent-free acid catalyzed procedure. No acetal hydrolysis was observed, notwithstanding the acidic reaction conditions.

  4. Synthesis of Chiral Tertiary Boronic Esters: Phosphonate-Directed Catalytic Asymmetric Hydroboration of Trisubstituted Alkenes.

    Science.gov (United States)

    Chakrabarty, Suman; Takacs, James M

    2017-05-03

    Highly enantioselective rhodium-catalyzed hydroboration of allylic phosphonates by pinacolborane affords chiral tertiary boronic esters. The β-borylated phosphonates are readily converted to chiral β- and γ-hydroxyphosphonates and aminophosphonates and to phosphonates bearing a quaternary carbon stereocenter. The utility of the latter is illustrated by the synthesis of (S)-(+)-bakuchiol methyl ether.

  5. A Conformational Model for MTPA Esters of Chiral N-(2-Hydroxyalkylacrylamides

    Directory of Open Access Journals (Sweden)

    Eduardo M. Rustoy

    2014-01-01

    Full Text Available The absolute stereochemistry of novel chiral N-(2-hydroxylalkylacrylamides prepared by a lipase-catalyzed resolution was successfully determined by 1H NMR of their MTPA esters. The method was validated for this particular case by computational experiments.

  6. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip.

    Science.gov (United States)

    Nomura, Taiji

    2017-01-01

    Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.

  7. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    Science.gov (United States)

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  8. Tf2NH-Catalyzed Amide Synthesis from Vinyl Azides and Alcohols.

    Science.gov (United States)

    Zhang, Feng-Lian; Zhu, Xu; Chiba, Shunsuke

    2015-06-19

    Triflimide (Tf2NH) specifically catalyzed reactions of alcohols and vinyl azides, enabling efficient construction of amides with C-C bond formation through nucleophilic attack of vinyl azides onto the putative carbocation intermediates derived from alcohols are described.

  9. Method of making alkyl esters

    Science.gov (United States)

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  10. Preparation of fluorinated biaryls through direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates

    KAUST Repository

    Fang, Xin

    2013-07-01

    The direct palladium-catalyzed coupling of polyfluoroarenes with aryltrifluoroborates gave the desired products of fluorinated biaryls in good to excellent yields. A diverse set of important functional groups including methoxy, aldehyde, ester, nitro and halide can be well tolerated in the protocol. © 2013 Elsevier B.V. All rights reserved.

  11. Kinetics of Alcalase-catalyzed dipeptide synthesis in near-anhydrous organic media

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2013-01-01

    The coupling kinetics of phenylalanine amide and the carbamoylmethyl ester of N-protected phenylalanine in near-anhydrous tetrahydrofuran were investigated. This coupling was catalyzed by Alcalase covalently immobilized onto macroporous acrylic beads; these immobilized enzymes were hydrated prior to

  12. Effect of enzyme dehydration on alcalase-catalyzed dipeptide synthesis in near-anhydrous organic media.

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2013-01-01

    The effect of enzyme dehydration by molecular sieves on the coupling of phenylalanine amide and the carbamoylmethyl ester of N-protected phenylalanine in near-anhydrous tetrahydrofuran was investigated. This coupling was catalyzed by Alcalase covalently immobilized onto macroporous acrylic beads

  13. Iridium‐Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols with the Liberation of Syngas

    DEFF Research Database (Denmark)

    Olsen, Esben Paul Krogh; Madsen, Robert

    2012-01-01

    to excellent yields. Ethers, esters, imides, and aryl halides are stable under the reaction conditions, whereas olefins are partially saturated. The reaction is believed to proceed by two consecutive organometallic transformations that are catalyzed by the same iridium(I)–BINAP species. First, dehydrogenation...

  14. Rationalizing Ring-Size Selectivity in Intramolecular Pd-Catalyzed Allylations of Resonance-Stabilized Carbanions

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Mader, Mary M.; Vitale, Maxime

    2003-01-01

    Computational methods were applied to the Pd-catalyzed intramolecular allylations of resonance-stabilized carbanions obtained from amide and ketone substrates, with the aim of rationalizing the endo- vs. exo-selectivity in the cyclizations. In addition, ester substrates were prepared and subjecte...

  15. Zinc catalyzed Guanylation reaction of Amines with Carbodiimides ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-016-1096-y. Zinc catalyzed Guanylation reaction of Amines with Carbodiimides/ ... A possible mechanism involving penta-coordinated zinc transition state for the catalytic reaction is presented. Keywords. Carbodiimide ... or receptors through hydrogen bonds and electrostatic interactions. They are ...

  16. Apomorphine and its esters

    DEFF Research Database (Denmark)

    Borkar, Nrupa; Chen, Zhizhong; Saaby, Lasse

    2016-01-01

    Oral delivery of apomorphine via prodrug principle may be a potential treatment for Parkinson's disease. The purpose of this study was to investigate the transport and stability of apomorphine and its esters across Caco-2 cell monolayer and their affinity towards chylomicrons. Apomorphine......, monolauroyl apomorphine (MLA) and dilauroyl apomorphine (DLA) were subjected to apical to basolateral (A-B) and basolateral to apical (B-A) transport across Caco-2 cell monolayer. The stability of these compounds was also assessed by incubation at intestinal pH and physiological pH with and without Caco-2...

  17. Esters with water esters 2-c to 6-c

    CERN Document Server

    Getzen, F W; Hefter, G T; Maczynski, Andrzej

    1992-01-01

    This volume is the first of two devoted to esters and water. It includes solubility data for binary systems containing an ester and water up to the end of 1988. The critical evaluations were all prepared by one author and an introductory section has been included to elaborate the philosophy and methodology followed in the evaluations.

  18. Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria.

    Science.gov (United States)

    Xu, Yan; Sheng, Sheng; Liu, Xi; Wang, Chao; Xiao, Wei; Wang, Jun; Wu, Fu-An

    2017-01-02

    It is widely believed that lipases in ionic liquids (ILs) possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using trialkylphosphine oxide (TOPO) as a complexing agent, a novel biphase of reactive solvent and IL was firstly reported for caffeic acid phenethyl ester (CAPE) production from methyl caffeate (MC) and 2-phenylethanol (PE) catalyzed by lipase via transesterification. The effects of the reaction parameters and their action mechanism were investigated, and the inhibition of CAPE against bacterial wilt pathogen Ralstonia solanacearum was firstly measured. The MC conversion of 98.83% ± 0.76% and CAPE yield of 96.29% ± 0.07% were obtained by response surface methodology in the 25 g/L TOPO-cyclohexane/[Bmim][Tf₂N] (1:1, v / v ); the complex stoichiometry calculation and FTIR spectrum confirmed that the reversible hydrogen-bond complexation between TOPO and caffeates significantly enhances the cooperative effect of two phases on the lipase-catalyzed reaction. The temperature was reduced by 14 °C; the MC concentration increased by 3.33-fold; the ratio of catalyst to donor decreased by 4.5-fold; and K m decreased 1.08-fold. The EC 50 of CAPE against R. solanacearum was 0.17-0.75 mg/mL, suggesting that CAPE is a potential in vitro inhibitor of plant pathogenic bacteria.

  19. Pd(II)-catalyzed ortho-hydroxylation and intramolecular oxidative C-C coupling of N- benzylbenzene sulfonamides

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eun Joo; Jo, Yoon Hyung; Jang, Min Jung; Youn, So Won [Dept. of Chemistry and Research Institute for Natural Sciences, Center for New Directions in Organic Synthesis, Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    We reported highly effective Pd-catalyzed C-C and/or C-N bond formations via C-H activation of aniline derivatives. Considering the lack of regioselective C(sp{sup 2}) H hydroxylation of benzylamines, our continued interest in Pd-catalyzed C-H bond functionalization prompted us to investigate the possibility of a Pd-catalyzed ortho-hydroxylation of NH-containing benzylamines. We have developed the Pd-catalyzed ortho-hydroxylation and/or intramolecular oxidative C-C coupling of N-benzyl sulfonamides, which operate through two different postulated mechanistic routes, as depicted in Scheme 2, depending on the reaction conditions.

  20. Rhodium Catalyzed Decarbonylation

    DEFF Research Database (Denmark)

    Garcia Suárez, Eduardo José; Kahr, Klara; Riisager, Anders

    2017-01-01

    Rhodium catalyzed decarbonylation has developed significantly over the last 50 years and resulted in a wide range of reported catalyst systems and reaction protocols. Besides experimental data, literature also includes mechanistic studies incorporating Hammett methods, analysis of kinetic isotope...

  1. Aluminum Hydride Catalyzed Hydroboration of Alkynes.

    Science.gov (United States)

    Bismuto, Alessandro; Thomas, Stephen P; Cowley, Michael J

    2016-12-05

    An aluminum-catalyzed hydroboration of alkynes using either the commercially available aluminum hydride DIBAL-H or bench-stable Et 3 Al⋅DABCO as the catalyst and H-Bpin as both the boron reagent and stoichiometric hydride source has been developed. Mechanistic studies revealed a unique mode of reactivity in which the reaction is proposed to proceed through hydroalumination and σ-bond metathesis between the resultant alkenyl aluminum species and HBpin, which acts to drive turnover of the catalytic cycle. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Iven, Tim; Herrfurth, Cornelia; Hornung, Ellen; Heilmann, Mareike; Hofvander, Per; Stymne, Sten; Zhu, Li-Hua; Feussner, Ivo

    2013-07-06

    gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester.

  3. Lipoate ester multifunctional lubricant additives

    Science.gov (United States)

    Seven lipoate esters were synthesized by esterification of lipoic acid with different structures of alcohols in the presence of a solid acid catalyst and without solvent. The esters were obtained in good yield, characterized using 1H NMR and GPC; and their physical properties investigated. Four of t...

  4. Hydrolytic Stability of Boronate Ester-Linked Covalent Organic Frameworks

    KAUST Repository

    Li, Huifang

    2018-01-30

    The stability of covalent organic frameworks (COFs) is essential to their applications. However, the common boronate ester-linked COFs are susceptible to attack by nucleophiles (such as water molecules) at the electron-deficient boron sites. To provide an understanding of the hydrolytic stability of the representative boronate ester-linked COF-5 and of the associated hydrolysis mechanisms, density functional theory (DFT) calculations were performed to characterize the hydrolysis reactions of the molecule formed by the condensation of 1,4-phenylenebis(boronic acid) (PBBA) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) monomers; two cases were considered, one dealing with the freestanding molecule and the other with the molecule interacting with COF layers. It was found that the boronate ester (B–O) bond dissociation, which requires one H2O molecule, has a relatively high energy barrier of 22.3 kcal mol−1. However, the presence of an additional H2O molecule significantly accelerates hydrolysis by reducing the energy barrier by a factor of 3. Importantly, the hydrolysis of boronate ester bonds situated in a COF environment follows reaction pathways that are different and have increased energy barriers. These results point to an enhanced hydrolytic stability of COF-5 crystals.

  5. Access to Alkyl-Substituted Lactone via Photoredox-Catalyzed Alkylation/Lactonization of Unsaturated Carboxylic Acids.

    Science.gov (United States)

    Sha, Wanxing; Ni, Shengyang; Han, Jianlin; Pan, Yi

    2017-11-03

    An efficient photoredox-catalyzed alkylation/lactonization reaction of unsaturated carboxylic acids by using alkyl N-hydroxyphthalimide esters as alkylation reagents has been developed. Varieties of redox-active esters derived from aliphatic carboxylic acids were proved viable in this method, affording alkyl substituted lactones in moderate to good yields. This redox-neutral procedure features mild conditions and operational simplicity, which provides a new strategy for the synthesis of alkyl substituted lactones.

  6. An Evaluation of Peptide-Bond Isosteres

    OpenAIRE

    Choudhary, Amit; Raines, Ronald T.

    2011-01-01

    Peptide-bond isosteres can enable a deep interrogation of the structure and function of a peptide or protein by amplifying or attenuating particular chemical properties. In this minireview, the electronic, structural, and conformational attributes of four such isosteres—thioamides, esters, alkenes, and fluoroalkenes—are examined in detail. In particular, the ability of these isosteres to partake in noncovalent interactions is compared with that of the peptide bond. The consequential perturbat...

  7. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat

    2016-11-18

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  8. Effect of buffer general acid-base catalysis on the stereoselectivity of ester and thioester H/D exchange in D2O.

    Science.gov (United States)

    Mohrig, Jerry R; Reiter, Nicholas J; Kirk, Randy; Zawadski, Michelle R; Lamarre-Vincent, Nathan

    2011-04-06

    As part of a comprehensive investigation on the stereochemistry of base-catalyzed 1,2-elimination and H/D exchange reactions of carbonyl compounds, we have found that the stereoselectivity of H/D exchange of 3-hydroxybutyryl N-acetylcysteamine (3) in D(2)O is strongly influenced by the presence of buffers. This buffer effect is also operative with a simple acyclic ester, ethyl 3-methoxybutanoate (7). Buffers whose general-acid components are cyclic tertiary ammonium ions are particularly effective in changing the stereoselectivity. (2)H NMR analysis showed that without buffer, H/D exchange of 3 produces 81-82% of the 2R*, 3R* diastereomer of 2-deuterio 3 (the anti product). In the presence of 0.33 M 3-quinuclidinone buffer, only 44% of the 2R*, 3R* diastereomer was formed. With ester 7, the stereoselectivity went from 93-94% in DO(-)/D(2)O to 60% in the presence of buffer. Phosphate buffer, as well as others, also showed substantial effects. The results are put into the context of what is known about the mechanism of H/D exchange of esters and thioesters, and the relevance of the buffer effect on the mechanism of the enoyl-CoA hydratase reaction is discussed. It is likely that hydrogen bonding in the enolate-buffer acid encounter complex is an important stereochemical determinant in producing a greater amount of the 2R*, 3S* diastereomer (the syn product). Studies that involve the protonation of enolate anions in D(2)O need to include the buffer general acid in any understanding of the stereoselectivity. © 2011 American Chemical Society

  9. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  10. Adipocyte protein modification by Krebs cycle intermediates and fumarate ester-derived succination.

    Science.gov (United States)

    Manuel, Allison M; Frizzell, Norma

    2013-11-01

    Protein succination, the non-enzymatic modification of cysteine residues by fumarate, is distinguishable from succinylation, an enzymatic reaction forming an amide bond between lysine residues and succinyl-CoA. Treatment of adipocytes with 30 mM glucose significantly increases protein succination with only a small change in succinylation. Protein succination may be significantly increased intracellularly after treatment with fumaric acid esters, however, the ester must be removed by saponification to permit 2SC-antibody detection of the fumarate adduct.

  11. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qinhua [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I2, ICl, PhSeCl, PhSCl and p-O2NC6H4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement

  12. Palladium-Catalyzed Arylation of Fluoroalkylamines

    Science.gov (United States)

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  13. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  14. Synthesis of 2-Iodoazulenes by the Iododeboronation of Azulen-2-ylboronic Acid Pinacol Esters with Copper(I) Iodide.

    Science.gov (United States)

    Narita, Masahiro; Murafuji, Toshihiro; Yamashita, Saki; Fujinaga, Masayuki; Hiyama, Kumiko; Oka, Yurie; Tani, Fumito; Kamijo, Shin; Ishiguro, Katsuya

    2018-02-02

    Azulen-2-ylboronic acid pinacol ester, prepared by iridium-catalyzed C-H borylation of azulene, efficiently underwent iododeboronation with a stoichiometric amount of copper(I) iodide. This reaction allowed the synthesis of 2-iodoazulene in only two steps starting from azulene. This methodology was successfully applied to analogous azulenes.

  15. Optimization of reaction parameters for enzymatic glyceride synthesis from fish oil: Ethyl esters versus free fatty acids

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Damstrup, Marianne L.; Meyer, Anne S.

    2012-01-01

    Enzymatic conversion of fish oil free fatty acids (FFA) or fatty acid ethyl esters (FAE) into glycerides via esterification or transesterification was examined. The reactions catalyzed by Lipozyme™ 435, a Candida antarctica lipase, were optimized. Influence on conversion yields of fatty acid chai...

  16. Acetobacter turbidans α-Amino Acid Ester Hydrolase. How a Single Mutation Improves an Antibiotic-Producing Enzyme

    NARCIS (Netherlands)

    Barends, Thomas R.M.; Polderman-Tijmes, Jolanda J.; Jekel, Peter A.; Williams, Christopher; Wybenga, Gjalt; Janssen, Dick B.; Dijkstra, Bauke W.

    2006-01-01

    The α-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of β-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as

  17. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    Science.gov (United States)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  18. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  19. Conformational states of N-acylalanine dithio esters: correlation of resonance Raman spectra with structures

    International Nuclear Information System (INIS)

    Lee, H.; Angus, R.H.; Storer, A.C.; Varughese, K.I.; Carey, P.R.

    1988-01-01

    The conformational states of N-acylalanine dithio esters, involving rotational isomers about the RC(=O)NH-CH(CH 3 ) and NHCH(CH 3 )-C(=S) bonds, are defined and compared to those of N-acylglycine dithio esters. The structure of N-(p-nitrobenzoyl)-DL-alanine ethyl dithio ester has been determined by X-ray crystallographic analysis; it is a B-type conformer with the amide N atom cis to the thiol sulfur. Raman and resonance Raman (RR) measurements on this compound and for the B conformers of solid N-benzoyl-DL-alanine ethyl dithio ester and N-(β-phenylpropionyl)-DL-alanine ethyl dithio ester and its NHCH(CD 3 )C(=S) and NHCH(CH 3 ) 13 C(=S) analogues are used to set up a library of RR data for alanine-based dithio esters in a B-conformer state. RR data for this solid material in its isotopically unsubstituted and CH(C-D 3 )C(=S) and CH(CH 3 ) 13 C(=S) forms provide information on the RR signatures of alanine dithio esters in A-like conformations. RR spectra are compared for the solid compounds, for N-(p-nitrobenzoyl)-DL-alanine, N-(β-phenylpropionyl)-DL-alanine, and (methyloxycarbonyl)-L-phenylalanyl-DL-alanine ethyl dithio ester, and for several 13 C=S- and CD 3 -substituted analogues in CCl 4 or aqueous solutions. The RR data demonstrate that the alanine-based dithio esters take up A, B, and C 5 conformations in solution. The RR spectra of these conformers are clearly distinguishable from those for the same conformers of N-acylglycine dithio esters. However, the crystallographic and spectroscopic results show that the results show that the conformational properties of N-acylglycine and N-acylalanine dithio esters are very similar

  20. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  1. Thiourea-Catalyzed Aminolysis of N-acyl Homoserine Lactones

    Science.gov (United States)

    2013-01-01

    of thiourea organocatalysts appeared fitting as they have proven effective in the supramolecular activation of esters (Scheme 2).8 This H-bond...amines, and bifunctional catalysts 2c–2f from alkylated diamines and histamine . The scope of bifunctional catalysts ranged from catalysts hypo- thesized...decrease in relative rate may also be attributed to the extra carbonyl moiety’s competitive affinity for the thiourea. The effect of solvent on

  2. OPTIMASI PRODUKSI METIL ESTER SULFONAT DARI METIL ESTER MINYAK JELANTAH

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2012-11-01

    Full Text Available OPTIMATION OF METHYL ESTER SULFONATES PRODUCTION FROM WASTE COOKING METHYL ESTER. An experiment of sulfonation process of methyl ester to produce methyl ester sulfonates (MES was caried out using waste palm methyl ester and sulfuric acid as sulfonating agent with variation of H2SO4 concentration (60% (K1, 70% (K2, dan 80% (K3 and sulfonation time (60 minute (L1, 75 minute (L2 and 90 minute (L3 using factorial on Randomized Complete Design Block. The experiment result showed the best sulfonation condition present in 80% H2SO4 concentration and sulfonation time of 90 minutes.  The best characteristic of MES is produced showed surface tension of 27.35 dyne/cm, emulsion stability of 89.44%, acid value of 17.72 mg KOH/g and interfacial tension of 0.0361 dyne/cm at MES concentration of 2% in 10,000 ppm salinity water. Sebuah penelitian tentang proses produksi metil ester sulfonat menggunakan minyak bekas kelapa sawit dilakukan dengan menggunakan H2SO4 sebagai agen pensulfonasi dengan variasi konsentrasi H2SO4 (60% (K1, 70% (K2, dan 80% (K3 dan lama sulfonasi (60 menit (L1, 75 menit (L2 and 90 menit (L3 dengan menggunakan faktorial dalam Rancangan Kelompok Teracak Lengkap. Hasil penelitian menunjukkan bahwa kondisi proses sulfonasi terbaik terdapat pada konsentrasi H2SO4 80% dan lama reaksi 90 menit. Karakteristik Metil Ester Sulfonat (MES terbaik yang dihasilkan memperlihatkan nilai tegangan permukaan 27,35 dyne/cm, stabilitas emulsi 89,44%, nilai bilangan asam antara 17,72 mg KOH/g dan nilai tegangan antar muka pada konsentrasi MES 2% di dalam air dengan salinitas 10.000 ppm yaitu 0,0361 dyne/cm.

  3. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  4. Ru(II)-catalyzed amidation reactions of 8-methylquinolines with azides via C(sp(3))-H activation.

    Science.gov (United States)

    Liu, Bingxian; Li, Bin; Wang, Baiquan

    2015-11-25

    Ru(II)-catalyzed amidation reactions of 8-methylquinolines with azides have been developed. They are the first examples of [(p-cymene)RuCl2]2-catalyzed C(sp(3))-H bond intermolecular amidation reactions which give quinolin-8-ylmethanamines under mild reaction conditions in good yields.

  5. Structural and mechanistic studies on carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily catalyzing the first step in carbapenem biosynthesis.

    Science.gov (United States)

    Sleeman, Mark C; Sorensen, John L; Batchelar, Edward T; McDonough, Michael A; Schofield, Christopher J

    2005-10-14

    The first step in the biosynthesis of the medicinally important carbapenem family of beta-lactam antibiotics is catalyzed by carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily. CarB catalyzes formation of (2S,5S)-carboxymethylproline [(2S,5S)-t-CMP] from malonyl-CoA and l-glutamate semialdehyde. In addition to using a cosubstrate, CarB catalyzes C-C and C-N bond formation processes as well as an acyl-coenzyme A hydrolysis reaction. We describe the crystal structure of CarB in the presence and absence of acetyl-CoA at 2.24 A and 3.15 A resolution, respectively. The structures reveal that CarB contains a conserved oxy-anion hole probably required for decarboxylation of malonyl-CoA and stabilization of the resultant enolate. Comparison of the structures reveals that conformational changes (involving His(229)) in the cavity predicted to bind l-glutamate semialdehyde occur on (co)substrate binding. Mechanisms for the formation of the carboxymethylproline ring are discussed in the light of the structures and the accompanying studies using isotopically labeled substrates; cyclization via 1,4-addition is consistent with the observed labeling results (providing that hydrogen exchange at the C-6 position of carboxymethylproline does not occur). The side chain of Glu(131) appears to be positioned to be involved in hydrolysis of the carboxymethylproline-CoA ester intermediate. Labeling experiments ruled out the possibility that hydrolysis proceeds via an anhydride in which water attacks a carbonyl derived from Glu(131), as proposed for 3-hydroxyisobutyryl-CoA hydrolase. The structural work will aid in mutagenesis studies directed at altering the selectivity of CarB to provide intermediates for the production of clinically useful carbapenems.

  6. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis.

    Science.gov (United States)

    Hui, Chunngai; Pu, Fan; Xu, Jing

    2017-03-23

    Asymmetric catalysis for chiral compound synthesis is a rapidly growing field in modern organic chemistry. Asymmetric catalytic processes have been indispensable for the synthesis of enantioselective materials to meet demands from various fields. Michael addition has been used extensively for the construction of C-C bonds under mild conditions. With the discovery and development of organo- and metal-catalyzed asymmetric Michael additions, the synthesis of enantioselective and/or diastereoselective Michael adducts has become possible and increasingly prevalent in the literature. In particular, metal-catalyzed asymmetric Michael addition has been employed as a key reaction in natural product synthesis for the construction of contiguous quaternary stereogenic center(s), which is still a difficult task in organic synthesis. Previously reported applications of metal-catalyzed asymmetric Michael additions in natural product synthesis are presented here and discussed in depth. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fatty acid methyl ester profiles of bat wing surface lipids.

    Science.gov (United States)

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  8. Cloning and characterization of an Armillaria gallica cDNA encoding protoilludene synthase, which catalyzes the first committed step in the synthesis of antimicrobial melleolides.

    Science.gov (United States)

    Engels, Benedikt; Heinig, Uwe; Grothe, Torsten; Stadler, Marc; Jennewein, Stefan

    2011-03-04

    Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6-7 double bond into the 7-8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns.

  9. Cloning and Characterization of an Armillaria gallica cDNA Encoding Protoilludene Synthase, Which Catalyzes the First Committed Step in the Synthesis of Antimicrobial Melleolides*

    Science.gov (United States)

    Engels, Benedikt; Heinig, Uwe; Grothe, Torsten; Stadler, Marc; Jennewein, Stefan

    2011-01-01

    Melleolides and related fungal sesquiterpenoid aryl esters are antimicrobial and cytotoxic natural products derived from cultures of the Homobasidiomycetes genus Armillaria. The initial step in the biosynthesis of all melleolides involves cyclization of the universal sesquiterpene precursor farnesyl diphosphate to produce protoilludene, a reaction catalyzed by protoilludene synthase. We achieved the partial purification of protoilludene synthase from a mycelial culture of Armillaria gallica and found that 6-protoilludene was its exclusive reaction product. Therefore, a further isomerization reaction is necessary to convert the 6–7 double bond into the 7–8 double bond found in melleolides. We expressed an A. gallica protoilludene synthase cDNA in Escherichia coli, and this also led to the exclusive production of 6-protoilludene. Sequence comparison of the isolated sesquiterpene synthase revealed a distant relationship to other fungal terpene synthases. The isolation of the genomic sequence identified the 6-protoilludene synthase to be present as a single copy gene in the genome of A. gallica, possessing an open reading frame interrupted with eight introns. PMID:21148562

  10. Esterase SeE of Streptococcus equi ssp. equi is a novel nonspecific carboxylic ester hydrolase.

    Science.gov (United States)

    Xie, Gang; Liu, Mengyao; Zhu, Hui; Lei, Benfang

    2008-12-01

    Extracellular carboxylic ester hydrolases are produced by many bacterial pathogens and have been shown recently to be important for virulence of some pathogens. However, these hydrolases are poorly characterized in enzymatic activity. This study prepared and characterized the secreted ester hydrolase of Streptococcus equi ssp. equi (designated SeE for S. equi esterase). SeE hydrolyzes ethyl acetate, acetylsalicylic acid, and tributyrin but not ethyl butyrate. This substrate specificity pattern does not match those of the three conventional types of nonspecific carboxylic ester hydrolases (carboxylesterases, arylesterases, and acetylesterases). To determine whether SeE has lipase activity, a number of triglycerides and vinyl esters were tested in SeE-catalyzed hydrolysis. SeE does not hydrolyze triglycerides and vinyl esters of long-chain carboxylic acids nor display interfacial activation, indicating that SeE is not a lipase. Like the conventional carboxylesterases, SeE is inhibited by di-isopropylfluorophosphate. These findings indicate that SeE is a novel carboxylesterase with optimal activity for acetyl esters.

  11. Polycyclization Enabled by Relay Catalysis: One-Pot Manganese-Catalyzed C-H Allylation and Silver-Catalyzed Povarov Reaction.

    Science.gov (United States)

    Chen, Shi-Yong; Li, Qingjiang; Liu, Xu-Ge; Wu, Jia-Qiang; Zhang, Shang-Shi; Wang, Honggen

    2017-06-09

    In this study, a Mn I /Ag I -based relay catalysis process is described for the one-pot synthesis of polycyclic products by a formal [3+2] and [4+2] cycloaddition reaction cascade. A manganese(I) complex catalyzed the first example of directed C-H allylation with allenes, setting the stage for an in situ Povarov cyclization catalyzed by silver(I). The reaction proceeds with high bond-forming efficiency (three C-C bonds), broad substrate scope, high regio- and stereoselectivity, and 100 % atom economy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver......A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...

  13. Tandem Three-Component Reactions of Aldehyde, Alkyl Acrylate, and Dialkylmalonate Catalyzed by Ethyl Diphenylphosphine

    Directory of Open Access Journals (Sweden)

    Utpal Das

    2012-03-01

    Full Text Available A new highly efficient three-component reaction of alkyl acrylate, aldehyde and dialkyl malonate using ethyl diphenylphosphine as organocatalyst has been described. Various highly functional compounds bearing hydroxyl groups and the ester functions can be easily prepared in moderate to good yields according to our one-step procedure. The reactions are believed to proceed via Morita-Baylis-Hillman reactions of alkyl acrylate and aldehydes, followed by the Michael addition reactions of dialkyl malonates. Our reactions indicated that the intermediate species formed in the phosphine-catalyzed MBH reaction are an effective organic base to catalyze the Michael addition reactions of dialkyl malonates to the preformed MBH adducts.

  14. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    time and in combination with other social processes establish more aligned and standardized environmental performance between countries. However, examples of the introduction of environmental management suggests that EMS’ only plays a minor role in developing the actual environmental objectives......This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved....... They are here used to describe the context in which environmental management is implemented. Based on findings from contributions to a research program studying the implementation and impact of EMS in different settings, we highlight the diverse roles that these systems play in the Thai context. EMS may over...

  15. Environmental effect of rapeseed oil ethyl ester

    International Nuclear Information System (INIS)

    Makareviciene, V.; Janulis, P.

    2003-01-01

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NO x ), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NO x showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NO x emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO 2 ) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  16. Mechanical and Thermal Properties of Unsaturated Polyester/Vinyl Ester Blends Cured at Room Temperature

    Science.gov (United States)

    Ardhyananta, H.; Puspadewa, F. D.; Wicaksono, S. T.; Widyastuti; Wibisono, A. T.; Kurniawan, B. A.; Ismail, H.; Salsac, A. V.

    2017-05-01

    Unsaturated polyester (UP) resin containing aromatic ring was blended with vinyl ester (VE) at wide range composition (10, 20, 30, 40,and 80 wt.%) using mechanical blending method. The blends were cured at room temperature using methyl ethyl ketone peroxide (MEKP) (4 wt.%) as catalyst initiator without the presence of catalystaccelerator. The effect of vinyl ester composition on theenhancement of mechanical and thermal properties of unsaturated polyester/vinyl ester blends was investigated. The polymer blends were characterized by Fourier Transform Infra Red (FTIR)spectroscopy, tensile testing, hardness testing, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). IR spectra showed UP and VE peaks. The curing copolymerization reactionoccurred at vinyl (C=C) bonds. The addition of vinyl esters enhanced mechanical and thermal properties. The UP/VE blends showed homogeneous morphology, transparent and copolymer thermoset blend.

  17. The influence of the substrate structure in the telluro-cyclo-functionalization reaction of {gamma}, {delta}-unsaturated carboxylic acids and their corresponding benzyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Denilson N.; Santos, Rute A.; Comasseto, Joao V. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1998-07-01

    {gamma},{delta}-Unsaturated carboxylic acids containing mono substituted double bonds react with aryl tellurium trichlorides to give the expected telluro lactone. Reaction of the corresponding benzyl esters gives the addition product of the aryl tellurium trichlorides to the double bond {gamma}, {delta}-Unsaturated carboxylic acids containing 1,1-disubstituted double bonds lead to a mixture of the expected telluro lactone and the product of hydrochloric acid addition to the double bond; the corresponding benzyl ester gives the telluro lactone as the only product. The stereoselectivity of the reaction is low; mixtures of the two possible diastereomeric lactones are formed in approximately 1:1 ratios. (author)

  18. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  20. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  1. Synthesis of substituted 2-cyanoarylboronic esters

    DEFF Research Database (Denmark)

    Lysén, Morten; Hansen, Henriette M; Begtrup, Mikael

    2006-01-01

    The synthesis of substituted 2-cyanoarylboronic esters is described via lithiation/in situ trapping of the corresponding methoxy-, trifluoromethyl-, fluoro-, chloro-, and bromobenzonitriles. The crude arylboronic esters were obtained in high yields and purities and with good regioselectivities....

  2. Mechanical properties and chemical stability of pivalolactone-based poly(ether ester)s

    NARCIS (Netherlands)

    Tijsma, E.J.; Tijsma, E.J.; van der Does, L.; Bantjes, A.; Bantjes, A.; Vulic, I.

    1994-01-01

    The processing, mechanical and chemical properties of poly(ether ester)s, prepared from pivalolactone (PVL), 1,4-butanediol (4G) and dimethyl terephthalate (DMT), were studied. The poly(ether ester)s could easily be processed by injection moulding, owing to their favourable rheological and thermal

  3. Regioselective Synthesis of Cellulose Ester Homopolymers

    Science.gov (United States)

    Daiqiang Xu; Kristen Voiges; Thomas Elder; Petra Mischnick; Kevin J. Edgar

    2012-01-01

    Regioselective synthesis of cellulose esters is extremely difficult due to the small reactivity differences between cellulose hydroxyl groups, small differences in steric demand between acyl moieties of interest, and the difficulty of attaching and detaching many protecting groups in the presence of cellulose ester moieties without removing the ester groups. Yet the...

  4. Oxidative Esterification of Aldehydes with Urea Hydrogen Peroxide Catalyzed by Aluminum Chloride Hexahydrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sin-Ae; Kim, Yoon Mi; Lee, Jong Chan [Chung-Ang University, Seoul (Korea, Republic of)

    2016-08-15

    We have developed a new, environmentally benign and highly efficient oxidative preparation of methyl esters by the reaction of various aldehydes with UHP in methanol catalyzed by readily accessible aluminum(III) chloride hexahydrate. This new greener and cost effective direct esterification method can serve as a useful alternative to existing protocols. Esters are some of the most important functional groups in organic chemistry and have been found in the sub-structure of a variety of natural products, industrial chemicals, and pharmaceuticals. Numerous methods have been reported for the preparation of various esters. In particular, this method gives low yields for both aldehydes containing electron donating substituents in aromatic rings and heterocyclic aldehydes. Therefore, development of a more general, efficient, and greener protocol for the esterification of aldehydes with readily available catalyst is still desirable.

  5. Recent advances in transition metal-catalyzed N -atom transfer reactions of azides

    Science.gov (United States)

    Driver, Tom G.

    2011-01-01

    Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243

  6. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    Science.gov (United States)

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  7. Catalytic Ester to Stannane Functional Group Interconversion via Decarbonylative Cross-Coupling of Methyl Esters

    KAUST Repository

    Yue, Huifeng

    2018-01-03

    An unprecedented conversion of methyl esters to stannanes was realized, providing access to a series of arylstannanes via nickel catalysis. Various common esters including ethyl, cyclohexyl, benzyl, and phenyl esters can undergo the newly developed decarbonylative stannylation reaction. The reaction shows broad substrate scope, can differentiate between different types of esters, and if applied in consecutive fashion, allows the transformation of methyl esters into aryl fluorides or biaryls via fluororination or arylation.

  8. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  9. Studies on the experimental variables effects on rhodium catalyzed hydroformylation of unsaturated fatty esters and comparison of [RhH(CO)(PPh{sub 3}){sub 3}] and [RhCl{sub 3}.3H{sub 2}O] as starting catalytic precursors

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana N.F.; Gregorio, Jose R.; Rosa, Ricardo G. da [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Quimica]. E-mail: rgomes@iq.ufrgs.br

    2005-11-15

    Hydroformylation experiments were performed with technical-grade methyl oleate (MO) and soybean oil (SO) using [RhH(CO)(PPh{sub 3}){sub 3}] and [RhCl{sub 3}.3H{sub 2}O] (double bond/Rh = 745) as catalyst precursors modified or not by triphenylphosphine. [RhH(CO)(PPh{sub 3}){sub 3}] shows 100% conversion and 80-91% selectivity to aldehydes in only 4h for both substrates under mild conditions (100 deg C, 40 bar, CO/H{sub 2} = 2:1, ligand/Rh = 10:1). Despite the rapid isomerization of the soybean oil, producing trans isomers and conjugated dienes, no effects were observed on its further conversion to aldehydes. The reaction of soybean oil conducted with pure [RhCl{sub 3}.3H{sub 2}O] produced only conjugated dienes, and when this precursor was modified with triphenylphosphine (ligand/Rh = 10:1) no reaction was observed at all. Curiously, yellow crystals corresponding to the complex [Rh(Cl)(CO)(PPh{sub 3}){sub 2}] were quantitatively isolated at the end of the reaction. (author)

  10. Production of Oleic Acid Based Wax Ester Using Acidic Homogeneous Catalysts

    Directory of Open Access Journals (Sweden)

    Naowara Al-Arafi

    2012-01-01

    Full Text Available Four homogeneous acidic catalysts were tested for their ability to catalyze the esterification reaction of oleic acid and oleyl alcohol to produce oleyl oleate, a wax ester. Sulfuric acid showed relatively higher specific activity. Various reaction parameters were optimised to obtain high percentage yield of oleyl oleate. The optimum condition to produce oeyl oleate was reaction time; 5 h, temperture; 90°C, amount of sulforic acid 0.15 g and molar ratio of oleyl alcohol to oleic acid; 1:1. Percentage yield of wax ester obtained at these optimum reaction conditions was 93.88. Disappearance of carboxylic acid (C=O peak has confirmed by FTIR with appearance of ester (C=O peak at 1739 cm−1. 1H NMR spectra analyses confirmed the result of oleyl oleate with appearance of ester (-CH2OCOR at 4.02 ppm and also the 13C-NMR confirmed the result with appearance of ester (C=O peak at 173.2 ppm. The low-temperture behavior of compound synthesized was determined through its pour point (PP, viscosity index (VI and flash point (FP values. The results showed that oleyl oleate exhibited the most favorable low-temperture performance of PP, VI and FP with −31°C, 197.5 and 320°C respectively. This is due to increase of the molacular weight thus improve the low temperture property significantly.

  11. Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate esters

    Directory of Open Access Journals (Sweden)

    A. Fainleib

    2016-09-01

    Full Text Available The polycyclotrimerization reaction of dicyanate ester of bisphenol E (DCBE in the presence of varying amounts (from 0.5 to 5 wt% of 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIm][BF4] ionic liquid has been investigated using differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR techniques, after a curing stage at 150 °C for 6 h. It is noteworthy that an amount of [OMIm][BF4] as low as 0.5 wt% accelerates dramatically the thermal curing process leading to the formation of a polycyanurate network. The conversion of DCBE increased with increasing [OMIm][BF4] content in the temperature range studied. A reaction mechanism associated with the ionic liquid-catalyzed DCBE polycyclotrimerization is newly proposed via the involvement of a [CN]δ+–[OMIm]δ– complex as a key intermediate.

  12. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    International Nuclear Information System (INIS)

    Su, Erzheng; Wei, Dongzhi

    2014-01-01

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application

  13. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of “hunger hormone” ghrelin

    Science.gov (United States)

    Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo

    2016-02-01

    Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.

  14. Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2017-01-01

    Full Text Available It is widely believed that lipases in ionic liquids (ILs possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using trialkylphosphine oxide (TOPO as a complexing agent, a novel biphase of reactive solvent and IL was firstly reported for caffeic acid phenethyl ester (CAPE production from methyl caffeate (MC and 2-phenylethanol (PE catalyzed by lipase via transesterification. The effects of the reaction parameters and their action mechanism were investigated, and the inhibition of CAPE against bacterial wilt pathogen Ralstonia solanacearum was firstly measured. The MC conversion of 98.83% ± 0.76% and CAPE yield of 96.29% ± 0.07% were obtained by response surface methodology in the 25 g/L TOPO-cyclohexane/[Bmim][Tf2N] (1:1, v/v; the complex stoichiometry calculation and FTIR spectrum confirmed that the reversible hydrogen-bond complexation between TOPO and caffeates significantly enhances the cooperative effect of two phases on the lipase-catalyzed reaction. The temperature was reduced by 14 °C; the MC concentration increased by 3.33-fold; the ratio of catalyst to donor decreased by 4.5-fold; and Km decreased 1.08-fold. The EC50 of CAPE against R. solanacearum was 0.17–0.75 mg/mL, suggesting that CAPE is a potential in vitro inhibitor of plant pathogenic bacteria.

  15. Synthesis of sulfur-containing lubricant additives on the basis of fatty acid ethyl esters

    Directory of Open Access Journals (Sweden)

    Iurii S. Bodachivskyi

    2016-12-01

    Full Text Available The study reveals an energy-, resource- and eco-friendly method for preparation of sulfur-containing lubricant additives via interaction of fatty acid ethyl esters of rapeseed oil with elemental sulfur. The structure of synthesized compounds under various reactants ratio (5–50 wt.% of sulfur, duration (30–240 min and temperature of the process (160–215°С was investigated using various analytical techniques. According to the established data, aside from addition to double bonds, the side reaction of hydrogen substitution at α-methylene groups near these bonds occurs and induces the formation of conjugated systems and chromophoric sulfur-rich derivatives. Also, we found that increase of process duration evokes growth of polysulfane chains, in contrast to the raise of temperature, which leads to the formation of sulfur-containing heterocycles and hydrogen sulfide, as a result of elimination. Influence of accelerators on sulfurization of fatty acid ethyl esters was also examined. The most effective among them are mixtures of zinc dibutyldithiocarbamate with zinc oxide or stearic acid, which soften synthesis conditions and doubly decrease duration of the high-temperature stage. In addition, sulfur-containing compositions of ethyl esters and α-olefins, vulcanized esters by benzoyl peroxide, nonylphenols and zinc dinonylphenyldithiophosphate were designed. The study identified that lithium lubricant with sulfurized vulcanized esters provides improved tribological properties, in comparison with base lubricant or lubricant with the non-modified product.

  16. Gold-catalyzed formation of pyrrolo- and indolo-oxazin-1-one derivatives: The key structure of some marine natural products

    Directory of Open Access Journals (Sweden)

    Sultan Taskaya

    2015-05-01

    Full Text Available Various N-propargylpyrrole and indolecarboxylic acids were efficiently converted into 3,4-dihydropyrrolo- and indolo-oxazin-1-one derivatives by a gold(III-catalyzed cyclization reaction. Some of the products underwent TFA-catalyzed double bond isomerization and some did not. Cyclization reactions in the presence of alcohol catalyzed by Au(I resulted in the formation of hemiacetals after cascade reactions.

  17. Diastereo- and enantioselective anti-selective hydrogenation of α-amino-β-keto ester hydrochlorides and related compounds using transition-metal-chiral-bisphosphine catalysts.

    Science.gov (United States)

    Hamada, Yasumasa

    2014-04-01

    This review describes our recent works on the diastereo- and enantioselective synthesis of anti-β-hydroxy-α-amino acid esters using transition-metal-chiral-bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh), iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti-selective asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides, yielding anti-β-hydroxy-α-amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo- and enantioselectivities. The Ru-catalyzed asymmetric hydrogenation of α-amino-β-ketoesters via DKR is the first example of generating anti-β-hydroxy-α-amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni-chiral-bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides in an anti-selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α-aminoketones using a Ni catalyst via DKR is also described. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical Modification of Cellulose Esters for Oral Drug Delivery

    Science.gov (United States)

    Meng, Xiangtao

    with carboxylic acid/carbonyl during a typical esterification reaction or ring opening of lactones, producing cellulose-g-polyester and homopolyester. We demonstrated the viability of chemoselective olefin hydroboration-oxidation in the synthesis of cellulose o-hydroxyesters in the presence of ester groups. Cellulose esters with terminally olefinic side chains were transformed to the target products by two-step, one-pot hydroborationoxidation reactions, using 9-borabicyclo[3.3.1]nonane (9-BBN) as hydroboration agent, followed by oxidizing the organoborane intermediate to a primary alcohol using mildly alkaline H2O2. The use of 9-BBN as hydroboration agent and sodium acetate as base catalyst in oxidation successfully avoided cleavage of ester linkages by borane reduction and base catalyzed hydrolysis. With the impetus of modular and efficient synthesis, we introduced olefin crossmetathesis (CM) in polysaccharide functionalization. Using Grubbs type catalyst, cellulose esters with terminally olefinic side chains were reacted with various CM partners including acrylic acid, acrylates and acrylamides to afford families of functionalized cellulose esters. Molar excesses of CM partners were used in order to suppress potential crosslinking caused by self-metathesis between terminally olefinic side chains. Amide CM partners can chelate with the ruthenium catalyst and cause low conversions in conventional solvents such as THF. While the inherent reactivity toward CM and tendency of acrylamides to chelate Ru is influenced by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides. We observed that the CM products are prone to crosslinking during storage, and found that the crosslinking is likely caused by free radical abstraction of gamma-hydrogen of the alpha,beta-unsaturation and subsequent recombination. We further demonstrated successful hydrogenation of these alpha,beta-unsaturated acids, esters, and

  19. Thermal studies of poly(esters) containing silicon or germanium in the main chain

    International Nuclear Information System (INIS)

    Tagle, L.H.; Terraza, C.; Valenzuela, P.; Leiva, A.; Urzua, M.

    2005-01-01

    The thermal properties of poly(esters) containing Si and/or Ge in the main chain derived from the acid dichlorides bis(4-chloroformyl-phenyl)-dimethyl-silane, bis(4-chloroformyl-phenyl)-dimethyl-germane, bis(4-chloroformyl-phenyl)-diphenyl-silane and bis(4-chloroformyl-phenyl)-diphenyl-silane, and the diphenols bis(4-hydroxyphenyl)-dimethyl-silane, bis(4-hydroxyphenyl)-dimethyl-germane, bis(4-hydroxyphenyl)-diphenyl-silane and bis(4-hydroxyphenyl)-diphenyl-germane were studied by differential scanning calorimetry and dynamic thermogravimetry. Poly(esters) with two Si atoms in the main chain showed higher values of T g than those with two Ge atoms, and the same was observed for poly(esters) with phenyl groups bonded to the heteroatoms, instead of those with methyl groups. Thermal decomposition temperatures were also higher for those poly(esters) with two Si atoms in the main chain and those in which the heteroatom is bonded to phenyl groups, due to the higher polarity of the Si-C bond in front of the Ge-C

  20. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  1. A tandem Mannich addition–palladium catalyzed ring-closing route toward 4-substituted-3(2H-furanones

    Directory of Open Access Journals (Sweden)

    Jubi John

    2014-06-01

    Full Text Available A facile route towards highly functionalized 3(2H-furanones via a sequential Mannich addition–palladium catalyzed ring closing has been elaborated. The reaction of 4-chloroacetoacetate esters with imines derived from aliphatic and aromatic aldehydes under palladium catalysis afforded 4-substituted furanones in good to excellent yields. 4-Hydrazino-3(2H-furanones could also be synthesized from diazo esters in excellent yields by utilising the developed strategy. We could also efficiently transform the substituted furanones to aza-prostaglandin analogues.

  2. Gemini ester quat surfactants and their biological activity.

    Science.gov (United States)

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  3. Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-11-13

    Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.

  4. Rh2(II)-Catalyzed Nitro-group Migration Reactions: Selective Synthesis of 3-Nitroindoles from β-Nitro Styryl Azides

    Science.gov (United States)

    Stokes, Benjamin J.; Liu, Sheng; Driver, Tom G.

    2011-01-01

    Rhodium carboxylate complexes (1 mol %) catalyze the migration of electron withdrawing groups to selectively produce 3-substituted indoles from β-substituted styryl azides. The relative order of migratorial aptitude for this transformation is ester ≪ amide < H < sulfonyl < benzoyl ≪ nitro. PMID:21401042

  5. Chemistry of aminoacylation and peptide bond formation on the 3 ...

    Indian Academy of Sciences (India)

    Madhu

    2006-10-04

    Oct 4, 2006 ... acids to form a polypeptide takes place in a sequential manner, defined by the ... the attachment of the 14C-leucine to tRNA is achieved via an ester bond to the ... P Zamecnik and coworkers at Massachusets General Hospital, Boston, demonstrated the enzymatic attachment of radioactive amino acid to ...

  6. Influence of hydrogen bonding on the generation and stabilization of ...

    Indian Academy of Sciences (India)

    ety totally vanquished liquid crystalline phases while biphenylene and naphthalene units did only reduce the transition .... firms the fact that during heating some of the amide–ester hydrogen bonds change into amide–amide ... their potential applications in LC displays, NLO materials, information storage devices etc. [12].

  7. Ru(II)-catalyzed intermolecular ortho-C-H amidation of aromatic ketones with sulfonyl azides.

    Science.gov (United States)

    Bhanuchandra, M; Yadav, M Ramu; Rit, Raja K; Rao Kuram, Malleswara; Sahoo, Akhila K

    2013-06-07

    Ru(II)-catalyzed intermolecular ortho-C-H amidation of weakly coordinating aromatic ketones with sulfonyl azides is reported. The developed reaction protocol can be extended to various substituted aromatic ketones to afford a wide range of desired C-N bond formation products in good yields.

  8. Rhodium(III)-catalyzed intermolecular amidation with azides via C(sp³)-H functionalization.

    Science.gov (United States)

    Wang, Nuancheng; Li, Renhe; Li, Liubo; Xu, Shansheng; Song, Haibin; Wang, Baiquan

    2014-06-06

    The amidation reactions of 8-methylquinolines with azides catalyzed by a cationic rhodium(III) complex proceed efficiently to give quinolin-8-ylmethanamine derivatives in good yields via C(sp(3))-H bond activation under external oxidant-free conditions. A catalytically competent five-membered rhodacycle has been isolated and characterized, revealing a key intermediate in the catalytic cycle.

  9. Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents

    NARCIS (Netherlands)

    Geurts, Koen; Fletcher, Stephen P.; van Zijl, Anthoni W.; Minnaard, Adriaan J.; Feringa, Ben L.; Bignall, H. E.; Jauncey, D. L.; Lovell, J. E. J.; Tzioumis, A. K.; Kedziora-Chudczer, L. L.; MacQuart, J. P.; Tingay, S. J.; Rayner, D. P.; Clay, R. W.

    Asymmetric allylic alkylations (AAAs) are among the most powerful C-C bond-forming reactions. We present a brief overview of copper-catalyzed AAAs with organometallic reagents and discuss our own contributions to this field. Work with zinc reagents and phosphoramidite ligands provided a framework

  10. Enantioselective copper catalyzed allylic alkylation using Grignard reagents; Applications in synthesis

    NARCIS (Netherlands)

    Zijl, Anthoni Wouter van

    2009-01-01

    Enantioselective copper catalyzed allylic alkylation is a powerful carbon-carbon bond forming reaction. In this thesis the development of a new catalyst for the use of Grignard reagents in this reaction is described. This catalyst is based on copper and the ligand Taniaphos. The high regio- and

  11. Copper(I)-catalyzed olefination of N-sulfonylhydrazones with sulfones.

    Science.gov (United States)

    Xu, Shuai; Gao, Yunpeng; Chen, Ri; Wang, Kang; Zhang, Yan; Wang, Jianbo

    2016-03-25

    The Cu(I)-catalyzed olefination of N-sulfonylhydrazones with sulfones via metal carbene intermediates is reported. This reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of carbon-carbon double bonds. Mechanistically, Cu(I) carbene formation and subsequent carbene migratory insertion are proposed as the key steps.

  12. Manganese-Catalyzed C−H Functionalizations: Hydroarylations and Alkenylations Involving an Unexpected Heteroaryl Shift

    KAUST Repository

    Wang, Chengming

    2017-06-24

    A manganese-catalyzed regio- and stereoselective hydroarylation of allenes is reported. The C−H functionalization method provides access to various alkenylated indoles in excellent yields. Moreover, a hydroarylation/cyclization cascade involving an unexpected C−N bond cleavage and aryl shift has been developed, which provides a new synthetic approach to substituted pyrroloindolones.

  13. Enantioselective Synthesis of α-Acetal-β'-Amino Ketone Derivatives by Rhodium-Catalyzed Asymmetric Hydrogenation.

    Science.gov (United States)

    Llopis, Quentin; Guillamot, Gérard; Phansavath, Phannarath; Ratovelomanana-Vidal, Virginie

    2017-12-01

    A range of β-keto-γ-acetal enamides has been synthesized and transformed into the corresponding enantioenriched α-acetal-β'-amino ketones with enantioinductions of up to 99% by using rhodium/QuinoxP*-catalyzed enantioselective hydrogenation under mild conditions. This method also proved to be highly chemoselective toward the reduction of the C-C double bond.

  14. Nickel-Catalyzed Decarbonylative Silylation, Borylation, and Amination of Arylamides via a Deamidative Reaction Pathway

    KAUST Repository

    Rueping, Magnus

    2017-10-23

    A nickel-catalyzed decarbonylative silylation, borylation, and amination of amides has been developed. This new methodology allows the direct interconversion of amides to arylsilanes, arylboronates, and arylamines and enables a facile route for carbon–heteroatom bond formations in a straightforward and mild fashion.

  15. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions, alkyl iodides, and sulfonamide groups

    OpenAIRE

    Sierra Rayne; Kaya Forest

    2009-01-01

    Temperature dependent rate constants were estimated for the acid- and base-catalyzed and neutral hydrolysis reactions of perfluorinated telomer acrylates (FTAcrs) and phosphate esters (FTPEs), and the SN1 and SN2 hydrolysis reactions of fluorotelomer iodides (FTIs). Under some environmental conditions, hydrolysis of monomeric FTAcrs could be rapid (half-lives of several years in marine systems and as low as several days in some landfills) and represent a dominant portion of their overall degr...

  16. Regiospecific synthesis of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs)

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Paulo; Santos, Juliane M. dos; D' Oca, Marcelo G. M.; Piovesan, Luciana A., E-mail: lpiovesan@gmail.com [Universidade Federal do Rio Grande (UFRS), RS (Brazil). Escola de Quimica e Alimentos; Kuhn, Bruna L.; Moreira, Dayse N.; Flores, Alex F.C.; Martins, Marcos A.P. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2012-11-15

    A series of new fatty N-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters was synthesized by the cyclo condensation of respective fatty hydrazides with 4-alkoxy- 1,1,1-trial omethyl-3-alquen-2-ones. Efficient and regiospecific cyclizations catalyzed by BF{sub 3}-MeOH gave the desired products in good to excellent yields and at high purity. (author)

  17. Radiochemical methods for studying lipase-catalyzed interesterification of lipids

    International Nuclear Information System (INIS)

    Schuch, R.; Mukherjee, K.D.

    1987-01-01

    Reactions involving lipase-catalyzed interesterification of lipids, which are of commendable interest in biotechnology, have been monitored and assayed by radiochemical methods using 14 C-labeled substrates. Medium chain (C 12 plus C 14 ) triacylglycerols were reacted in the presence of an immobilized lipase from Mucor miehei and hexane at 45 0 C with methyl [1- 14 C]oleate, [1- 14 C]oleic acid, [carboxyl- 14 C]trioleoylglycerol, [1- 14 C]octadecenyl alcohol, and [U- 14 C]glycerol, each of known specific activity. The reactions were monitored and the rate of interesterification determined by radio thin layer chromatography from the incorporation of radioactivity into acyl moieties of triacylglycerols (from methyl oleate, oleic acid, and trioleoylglycerol), alkyl moieties of wax esters (from octadecenyl alcohol), and into glycerol backbone of monoacylglycerols and diacylglycerols (from glycerol). (orig.)

  18. Improvements to hydroxymethylated resorcinol coupling agent for durable bonding to wood

    Science.gov (United States)

    Alfred W. Christiansen; E. Arnold Okkonen

    2003-01-01

    Improving the exterior quality bonding of wood to epoxy adhesive resins is important for bonding glass-fiber-reinforced vinyl ester resin laminae to glulam structural members, as well as for repairing glulam members in exterior applications on site. The coupling agent for these applications, hydroxymethylated resorcinol (HMR), was recently improved by using a novolak...

  19. Ester Tuiksoo. Proua Suhkru kibedad päevad / Ester Tuiksoo ; interv. Piret Tali

    Index Scriptorium Estoniae

    Tuiksoo, Ester, 1965-

    2005-01-01

    Põllumajandusminister Ester Tuiksoo, kellel peagi täitub ministri ametis aasta Euroopa Liidu suhkrutrahvist, maaettevõtlusest, põllumajandusest, Euroopa Liidu toetustest, ministri elu- ja teenistuskäigust. Lisa: Ester Tuiksoo

  20. Method of making a cyanate ester foam

    Science.gov (United States)

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  1. Steroidal esters from Ferula sinkiangensis.

    Science.gov (United States)

    Li, Guangzhi; Li, Xiaojin; Cao, Li; Shen, Liangang; Zhu, Jun; Zhang, Jing; Wang, Junchi; Zhang, Lijing; Si, Jianyong

    2014-09-01

    Two new steroidal esters with an unusual framework, Sinkiangenorin A and B, a new organic acid glycoside, Sinkiangenorin C, and four known lignin compounds were isolated from the seeds of Ferula sinkiangensis. The structures of these compounds were established by spectroscopic analysis and single-crystal X-ray diffraction. All of the isolated compounds were tested against Hela, K562 and AGS human cancer cell lines. Sinkiangenorin C showed cytotoxic activity against AGS cells with an IC50 of 36.9 μM. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Improvement of epoxy resin properties by incorporation of TiO2 nanoparticles surface modified with gallic acid esters

    International Nuclear Information System (INIS)

    Radoman, Tijana S.; Džunuzović, Jasna V.; Jeremić, Katarina B.; Grgur, Branimir N.; Miličević, Dejan S.; Popović, Ivanka G.; Džunuzović, Enis S.

    2014-01-01

    Highlights: • Nanocomposites of epoxy resin and TiO 2 nanoparticles surface modified with gallates. • The T g of epoxy resin was increased by incorporation of surface modified TiO 2 . • WVTR of epoxy resin decreased in the presence of surface modified TiO 2 nanoparticles. • WVTR of nanocomposites was reduced with increasing gallates hydrophobic chain length. • Modified TiO 2 nanoparticles react as oxygen scavengers, inhibiting steel corrosion. - Abstract: Epoxy resin/titanium dioxide (epoxy/TiO 2 ) nanocomposites were obtained by incorporation of TiO 2 nanoparticles surface modified with gallic acid esters in epoxy resin. TiO 2 nanoparticles were obtained by acid catalyzed hydrolysis of titanium isopropoxide and their structural characterization was performed by X-ray diffraction and transmission electron microscopy. Three gallic acid esters, having different hydrophobic part, were used for surface modification of the synthesized TiO 2 nanoparticles: propyl, hexyl and lauryl gallate. The gallate chemisorption onto surface of TiO 2 nanoparticles was confirmed by Fourier transform infrared and ultraviolet–visible spectroscopy, while the amount of surface-bonded gallates was determined using thermogravimetric analysis. The influence of the surface modified TiO 2 nanoparticles, as well as the length of hydrophobic part of the gallate used for surface modification of TiO 2 nanoparticles, on glass transition temperature, barrier, dielectric and anticorrosive properties of epoxy resin was investigated by differential scanning calorimetry, water vapor transmission test, dielectric spectroscopy, electrochemical impedance spectroscopy and polarization measurements. Incorporation of surface modified TiO 2 nanoparticles in epoxy resin caused increase of glass transition temperature and decrease of the water vapor permeability of epoxy resin. The water vapor transmission rate of epoxy/TiO 2 nanocomposites was reduced with increasing hydrophobic part chain length of

  3. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    Science.gov (United States)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  4. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin.

    Science.gov (United States)

    Bien-Aime, Stephan; Yu, Weiling; Uhrich, Kathryn E

    2016-07-01

    Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride-ester) (PAE) backbone via melt-condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin-based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo-first order kinetic experiments on model compounds, butyric anhydride and 3-butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin-based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Acid-catalyzed production of biodiesel from waste frying oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, S.; Dube, M.A.; McLean, D.D. [Department of Chemical Engineering, University of Ottawa, Ottawa, ON (Canada); Kates, M. [Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON (Canada)

    2006-03-15

    The reaction kinetics of acid-catalyzed transesterification of waste frying oil in excess methanol to form fatty acid methyl esters (FAME), for possible use as biodiesel, was studied. Rate of mixing, feed composition (molar ratio oil:methanol:acid) and temperature were independent variables. There was no significant difference in the yield of FAME when the rate of mixing was in the turbulent range 100 to 600rpm. The oil:methanol:acid molar ratios and the temperature were the most significant factors affecting the yield of FAME. At 70{sup o}C with oil:methanol:acid molar ratios of 1:245:3.8, and at 80{sup o}C with oil:methanol:acid molar ratios in the range 1:74:1.9-1:245:3.8, the transesterification was essentially a pseudo-first-order reaction as a result of the large excess of methanol which drove the reaction to completion (99+/-1% at 4h). In the presence of the large excess of methanol, free fatty acids present in the waste oil were very rapidly converted to methyl esters in the first few minutes under the above conditions. Little or no monoglycerides were detected during the course of the reaction, and diglycerides present in the initial waste oil were rapidly converted to FAME. (author)

  6. Ultrasonic pretreatment for lipase-catalyed synthesis of phytosterol esters with different acyl donors.

    Science.gov (United States)

    Zheng, Ming-Ming; Wang, Lian; Huang, Feng-Hong; Dong, Ling; Guo, Ping-Mei; Deng, Qian-Chun; Li, Wen-Lin; Zheng, Chang

    2012-09-01

    This study is focused on the enzymatic esterification of phytosterols with different acyl donors to produce the corresponding phytosterol esters catalyzed by Canadia sp. 99-125 lipase under ultrasound irradiation. An ultrasonic frequency of 35 kHz, power of 200 W and time of 1h was determined to guarantee satisfactory degree of esterification and lipase activity. The influence of temperature, substrates concentration and molar ratio was investigated subsequently. The optimum production was achieved in isooctane system at 60°C with phytosterol concentration of 150 μmol/mL and phytosterol to fatty acid molar ratio of 1:1.5, resulting in a phytosterol esters conversion of above 85.7% in short reaction time (8h). Phytosterols esters could also be converted in high yields to the corresponding long-chain acyl esters via transesterification with triacylglycerols (above 90.3%) under ultrasound irradiation. In optimum conditions, the overall esterification reaction rate using the ultrasonic pretreatment process was above 2-fold than that of mechanical stirring process without damage the lipase activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Secreted 3-isopropylmalate methyl ester signals invasive growth during amino acid starvation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dumlao, Darren S; Hertz, Nicholas; Clarke, Steven

    2008-01-15

    The Saccharomyces cerevisiae methyltransferase encoded by TMT1 catalyzes the AdoMet-dependent monomethylation of 3-isopropylmalate, an intermediate of the leucine biosynthetic pathway. The biological significance of methylating 3-isopropylmalate and the relationship between Tmt1 and the leucine biosynthetic pathway is not yet established. We present evidence here showing that methylation of 3-isopropylmalate functions to extracellularly signal yeast to grow invasively. We show that methyl esterification generates 3-isopropylmalate-1-methyl ester. We find that the Tmt1 methyltransferase functions independently of the biosynthetic pathway but is induced when cells are starved for amino acids; the largest induction is observed with the removal of leucine from the media. This amino acid starvation stress response is controlled by the transcriptional activator Gcn4. After methylation, 3-isopropylmalate methyl ester is secreted into the media within 3 h. Thin layer chromatography and gas chromatography mass spectroscopy confirm that the intact molecule is secreted. Finally, we show that purified 3-isopropylmalate methyl ester can enhance the ability of the haploid yeast strain 10560-23C to grow invasively. Our data identifies 3-isopropylmalate methyl ester as an autoinductive molecule that provides a signal to yeast to switch from vegetative to invasive growth in response to amino acid starvation.

  8. ENZYMATIC PRODUCTION OF ETHYL OLEATE ESTER USING A LIPASE FROM CANDIDA ANTARCTICA B

    Directory of Open Access Journals (Sweden)

    N. Sampaio Neta

    2012-05-01

    Full Text Available Lipases are biocatalysts of great importance in different areas, being able to catalyze reactions in aqueous or organic media. Furthermore, these enzymes are capable of using several substrates being stable in a wide range of pH and temperatures. Lipases promote the esterification between fatty acids and ethanol producing oleate esters. The aim of this work is to produce ethyl oleate ester by enzymatic esterification of oleic acid with ethanol. A lipase from Candida antarctica type B was used at a temperature of 55 °C. The reaction was conducted using oleic acid, sodium sulfate anhydrous, lipase and ethanol, with a ratio of oleic acid (0.03 mol or 10 ml, lipase (0.1 mol or 0.01 g, sodium sulfate anhydrous (5 g and ethanol 99 % (100 ml. Several reaction times were studied, namely 48, 72, 96 and 120 hours. Nuclear Magnetic Resonance (1H and 13C and Infrared spectra confirmed the production of ethyl oleate ester for the studied conditions. The highest ethyl oleate production yield was obtained for 96 hours reaction time. Ethyl oleate esters have been reported to possess interesting applications in several industrial fields, such as food, aromatics, cosmetics, detergents, flavors and pharmaceuticals.

  9. Studies on the specificity of Candida rugosa lipase catalyzed esterification reactions in organic media

    Directory of Open Access Journals (Sweden)

    DEJAN BEZBRADICA

    2006-01-01

    Full Text Available In this study, the feasibility of the synthesis of various flavor esters catalyzed by a commercial lipase from Candida rugosa was investigated and the process parameters were optimized. Lipase from C. rugosa successfully catalyzed the synthesis of 19 esters. The highest yields, of more than 90 % after 20 h, were observed in the synthesis of short-chain esters, pentyl propanoate, isopentyl butanoate, and butyl butanoate. Increasing the number of carbon atoms of both substrates above 8 caused a significant decrease of the initial reaction rates and the final yields. The enzyme showed surprisingly low affinity towards pentanoic acid and hexanoic acid, compared with the higher homologues, octanoic acid and decanoic acid. In addition to the number of carbon atoms, the structure of the substrates had a significant influence on the enzyme activity. Namely, the activity of the enzyme towards isopropanol was significantly lower compared with n-propanol. Additionally, cis-9-octadecenoic acid was a better substrate than octadecanoic acid, its saturated analogue.

  10. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  11. Formation of a hydrogen-bonded barbiturate [2]-rotaxane.

    Science.gov (United States)

    Tron, Arnaud; Thornton, Peter J; Rocher, Mathias; Jacquot de Rouville, Henri-Pierre; Desvergne, Jean-Pierre; Kauffmann, Brice; Buffeteau, Thierry; Cavagnat, Dominique; Tucker, James H R; McClenaghan, Nathan D

    2014-03-07

    Interlocked structures containing the classic Hamilton barbiturate binding motif comprising two 2,6-diamidopyridine units are reported for the first time. Stable [2]-rotaxanes can be accessed either through hydrogen-bonded preorganization by a barbiturate thread followed by a Cu(+)-catalyzed "click" stoppering reaction or by a Cu(2+)-mediated Glaser homocoupling reaction.

  12. Preparation of Spirocyclic β-Proline Esters

    DEFF Research Database (Denmark)

    Fjelbye, Kasper; Marigo, Mauro; Clausen, Rasmus Prætorius

    2017-01-01

    A series of novel N-Bn-protected spirocyclic β-proline esters were prepared using [3+2] cycloaddition and subsequently converted into their corresponding aldehydes. In addition, two novel N-Cbz-protected spirocyclic β-proline esters were prepared using intramolecular cyclization starting from sim...

  13. Production of alpha-hydroxy carboxylic acids and esters from higher sugars using tandem catalyst systems

    Energy Technology Data Exchange (ETDEWEB)

    Orazov, Marat; Davis, Mark E.

    2017-11-07

    The present disclosure is directed to methods and composition used in the preparation of alpha-hydroxy carboxylic acids and esters from higher sugars using a tandem catalyst system comprising retro-aldol catalysts and Lewis acid catalysts. In some embodiments, these alpha-hydroxy carboxylic acids may be prepared from pentoses and hexoses. The retro-aldol and Lewis catalysts may be characterized by their respective ability to catalyze a 1,2-carbon shift reaction and a 1,2-hydride shift reaction on an aldose or ketose substrate.

  14. Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds.

    Science.gov (United States)

    Li, Jingjing; Tian, Hua; Jiang, Min; Yang, Haijun; Zhao, Yufen; Fu, Hua

    2016-07-07

    Novel and efficient consecutive photoredox decarboxylative couplings of adipic acid active esters (bis(1,3-dioxoisoindolin-2-yl)-substituted hexanedioates) with substituted 1-(2-arylethynylsulfonyl)benzenes have been developed under visible-light photocatalysis. The successive photoredox decarboxylative C-C bond formation at room temperature afforded the corresponding cyclic compounds in good yields with tolerance of some functional groups.

  15. Anticholinesterase activity of fluorochloronitroacetic acid esters

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu.Ya.; Brel, V.K. Martynov, I.V.

    1984-11-01

    Results are presented from pharmacologic and biochemical experiments leading to the conclusion that fluorochloronitroacetic acid esters have anticholinesterase activity. Since the esters caused muscular weakness in mice, experiments were performed on isolated tissue preparation. The biochemical experiments consisted of finding the biomolecular constants of irreversible inhibition of acetylcholinesterase by the esters, using acetylcholinesterase from human erythrocytes, as well as horse serum cholinesterase. The ethyl and n-propyl esters of halogen nitroacetic acid were used in all experiments. It was found that the propyl ester caused an increase in the force of individual contractions in the isolated muscle specimens, plus an inability of the muscle to retain tetanus. The substances were determined to have an anticholinesterase effect. The mechanism of cholinesterase inhibition is not yet known. It is probable that the substances acylate the serine hydroxyl of the esterase center of the cholinestersase. 7 references, 1 figure.

  16. Physio-pathological roles of transglutaminase-catalyzed reactions.

    Science.gov (United States)

    Ricotta, Mariangela; Iannuzzi, Maura; Vivo, Giulia De; Gentile, Vittorio

    2010-05-26

    Transglutaminases (TGs) are a large family of related and ubiquitous enzymes that catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted /crosslinked adducts) or -OH groups (to form ester linkages). In the absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. The TG enzymes are also capable of catalyzing other reactions important for cell viability. The distribution and the physiological roles of TG enzymes have been widely studied in numerous cell types and tissues and their roles in several diseases have begun to be identified. "Tissue" TG (TG2), a member of the TG family of enzymes, has definitely been shown to be involved in the molecular mechanisms responsible for a very widespread human pathology: i.e. celiac disease (CD). TG activity has also been hypothesized to be directly involved in the pathogenetic mechanisms responsible for several other human diseases, including neurodegenerative diseases, which are often associated with CD. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, supranuclear palsy, Huntington's disease and other recently identified polyglutamine diseases, are characterized, in part, by aberrant cerebral TG activity and by increased cross-linked proteins in affected brains. In this review, we discuss the physio-pathological role of TG-catalyzed reactions, with particular interest in the molecular mechanisms that could involve these enzymes in the physio-pathological processes responsible for human neurodegenerative diseases.

  17. Gas-phase studies of copper catalyzed aerobic cross coupling of thiol esters and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Tsybizová, A.; Schröder, Detlef; Roithová, J.; Henke, A.; Šrogl, Jiří

    2014-01-01

    Roč. 27, č. 3 (2014), s. 198-203 ISSN 0894-3230 R&D Projects: GA ČR GAP207/12/0846 Grant - others:GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : boronic acids * catalysis * copper * cross coupling * electrospray ionization * mass spectrometry * kinetic studies Subject RIV: CC - Organic Chemistry Impact factor: 1.380, year: 2014

  18. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  19. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  20. Trypsin-Catalyzed Deltamethrin Degradation

    OpenAIRE

    Xiong, Chunrong; Fang, Fujin; Chen, Lin; Yang, Qinggui; He, Ji; Zhou, Dan; Shen, Bo; Ma, Lei; Sun, Yan; Zhang, Donghui; Zhu, Changliang

    2014-01-01

    To explore if trypsin could catalyze the degradation of non-protein molecule deltamethrin, we compared in vitro hydrolytic reactions of deltamethrin in the presence and absence of trypsin with ultraviolet-visible (UV/Vis) spectrophotometry and gas chromatography-mass spectrometry (GC/MS). In addition, acute oral toxicity of the degradation products was determined in Wistar rats. The results show that the absorption peak of deltamethrin is around 264 nm, while the absorption peaks of deltameth...

  1. Synthesis of 2-aryl-2H-benzotrizoles from azobenzenes and N-sulfonyl azides through sequential rhodium-catalyzed amidation and oxidation in one pot.

    Science.gov (United States)

    Ryu, Taekyu; Min, Jiae; Choi, Wonseok; Jeon, Woo Hyung; Lee, Phil Ho

    2014-06-06

    An efficient synthetic method of 2-aryl-2H-benzotriazoles from nonprefunctionalized azobenzenes and N-sulfonyl azides via sequential Rh-catalyzed amidation (C-N bond formation) and oxidation (N-N bond formation) with PhI(OAc)2 in one pot is reported.

  2. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr

    2016-01-01

    a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...

  3. Ester Carbonyl Vibration as a Sensitive Probe of Protein Local Electric Field

    Science.gov (United States)

    Pazos, Ileana M.; Ghosh, Ayanjeet; Tucker, Matthew J.; Gai, Feng

    2014-01-01

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to yielding a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric field map will find use in various applications. In addition, we show that, when situated in a non-hydrogen bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, applying it to amyloid fibrils formed by Aβ16-22 reveals that the interior of such β-sheet assemblies has a ε of ~5.6. PMID:24788907

  4. Ester carbonyl vibration as a sensitive probe of protein local electric field.

    Science.gov (United States)

    Pazos, Ileana M; Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-06-10

    The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization, quantitation and evolution of monoepoxy compounds formed in model systems of fatty acid methyl esters and monoacid triglycerides heated at high temperature

    Directory of Open Access Journals (Sweden)

    Berdeaux, O.

    1999-02-01

    Full Text Available Monoepoxy compounds formed after heating methyl oleate and linoleate, triolein and trilinolein at 180°C for 5, 10 and 15 hours, were characterized and quantitated after derivatization to fatty acid methyl esters by using two base-catalyzed procedures. Structures were identified by GC-MS before and after hydrogénation. A complete recovery of the epoxy compounds was obtained by comparing results from methyl oleate and linoleate before and after transesterification, and good repeatability was also attained. Similar amounts of epoxides were found for methyl esters and triglycerides of the same degree of unsaturation, although formation was considerably greater for the less unsaturated substrates, methyl oleate and triolein, possibly due to the absence of remaining double bonds in the molecule which would involve a lower tendency to participate in further reactions. On other hand, independently of the degree of unsaturation of the model systems and of the period of heating, significantly higher amounts of trans isomers were formed. Finally from comparison between the amounts of epoxides and the level of polar fatty acids in samples, it was deduced that monoepoxy compounds were one of the major groups formed under the conditions used.

    En este estudio se identifican y cuantifican los compuestos epoxidados formados a partir de sistemas modelo de oleato y linoleato de metilo, trioleína y trilinoleína, calentados a 180°C durante 5,10 y 15 horas. La identificación se lleva a cabo mediante CG-EM en las muestras de esteres metílicos antes y después de someter a hidrogenación y para su cuantificación se utilizan dos procedimientos de transesterificación en medio alcalino. La comparación de las cantidades obtenidas, antes y después de la derivatización de los sistemas modelo de esteres metílicos, permitió deducir que la recuperación fue completa, obteniéndose también una excelente repetibilidad. Las cantidades de ep

  6. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  7. Optimization of the Enzyme-Catalyzed Transesterification of Hungarian Sunflower Oil with High Oleic Acid Content

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Sandor; Krar, Marton; Hancsok, Jenoe (Univ. of Pannonia, Dept. of Hydrocarbon and Coal Processing, H-8201 Veszprem (Hungary)). e-mail: kovacss@almos.uni-pannon.hu

    2008-10-15

    In our research work we defined the optimum parameters (temperature, methanol to triglyceride molar ratio, reaction time, number of methanol feeds, and the amount of Candia Antarctica lipase) of the enzyme-catalyzed transesterification of properly pre-treated high oleic acid containing sunflower oil. The oleic acid content of the previously mentioned sunflower oil was present in the structure of the triglycerides. Characteristics of the produced sunflower oil methyl esters were evaluated according to the requirements of the EN 14214 standard. Our experimental results indicated that enzyme-catalyzed transesterification could be successfully used for the conversion of high oleic sunflower oils, since we have found proper combination of process parameters resulting in high yield (>99%) of monoesters. The applied enzyme can be separated after the transesterification and used again. The glycerine - because its reaction inhibiting effect - was separated continuously by membrane separation

  8. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  9. On the mechanism of action of ribonucleases: dinucleotide cleavage catalyzed by imidazole and Zn2+.

    OpenAIRE

    Breslow, R; Huang, D L; Anslyn, E

    1989-01-01

    Cyclization/cleavage of the 2-(p-nitrophenyl) phosphate ester of propylene glycol is catalyzed by imidazole and, much more effectively, by Zn2+ with imidazole. In the latter case, the mechanism involves simultaneous Lewis acid/base catalysis. Similar Zn2+ and imidazole catalysis of cyclization/cleavage is seen with the dinucleotide 3',5'-UpU (uridylyluridine). Again, the zinc system is much more effective than is catalysis by imidazole alone, and in this case simultaneous Lewis acid/base cata...

  10. C-C Double Bond Cleavage of Linear α,β-Unsaturated Ketones

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Gon; Jun, Chul Ho [Yonsei University, Seoul (Korea, Republic of)

    2004-11-15

    In conclusion, we have demonstrated the C-C double bond cleavage of α,β-unsaturated ketone under a catalytic system consisting of Rh(I) complex, 2-amino-3-picoline, cyclohexylamine, and benzoic acid. This reaction undergoes a retro-Mannich-type fragmentation of α,β-unsaturated ketone through the conjugate addition of cyclohexylamine followed by Rh(I)-catalyzed C-H bond activation. The activation of C-H bonds by transition-metal complexes is one of the most efficient methods to form C-C bonds in organic synthesis. We have successfully developed a Rh(I)-catalyzed C-H bond activation series using 2-amino-pyridine derivatives or benzylamine as a chelation auxiliary to induce cyclometalation. In the course of our studies on chelation-assisted C-H bond activation, we reported a Rh(I)-catalyzed hydroiminoacylation of alkynes with allylamine derivatives or aldehydes, which was further applied to the retro-Mannich-type fragmentation of the resulting α,β-unsaturated ketimine by primary amines. Encouraged by these results, we also developed a Rh(I)-catalyzed C-H bond activation of the ring opening in 2-cycloalkenones and a chelation-assisted β-alkylation of α,β-unsaturated ketone using Rh(I) catalyst and various amines.

  11. C-C Double Bond Cleavage of Linear α,β-Unsaturated Ketones

    International Nuclear Information System (INIS)

    Lim, Sung Gon; Jun, Chul Ho

    2004-01-01

    In conclusion, we have demonstrated the C-C double bond cleavage of α,β-unsaturated ketone under a catalytic system consisting of Rh(I) complex, 2-amino-3-picoline, cyclohexylamine, and benzoic acid. This reaction undergoes a retro-Mannich-type fragmentation of α,β-unsaturated ketone through the conjugate addition of cyclohexylamine followed by Rh(I)-catalyzed C-H bond activation. The activation of C-H bonds by transition-metal complexes is one of the most efficient methods to form C-C bonds in organic synthesis. We have successfully developed a Rh(I)-catalyzed C-H bond activation series using 2-amino-pyridine derivatives or benzylamine as a chelation auxiliary to induce cyclometalation. In the course of our studies on chelation-assisted C-H bond activation, we reported a Rh(I)-catalyzed hydroiminoacylation of alkynes with allylamine derivatives or aldehydes, which was further applied to the retro-Mannich-type fragmentation of the resulting α,β-unsaturated ketimine by primary amines. Encouraged by these results, we also developed a Rh(I)-catalyzed C-H bond activation of the ring opening in 2-cycloalkenones and a chelation-assisted β-alkylation of α,β-unsaturated ketone using Rh(I) catalyst and various amines

  12. Synthesis of Trimethylolpropane Esters of Calophyllum Methyl Esters : Effect of Temperature and Molar Ratio

    Directory of Open Access Journals (Sweden)

    Yeti Widyawati

    2014-12-01

    Full Text Available Trimethylolpropane esters were synthesized by transesterification of calophyllum methyl esters and trimethylolpropane using a calcium oxide as the catalyst. The results showed that the optimal reaction conditions (temperature: 130 0C, reaction time: 5 h, reactant molar ratio: 3.9:1, catalyst amount 3%w/w, and formed  trimethylolpropane ester of 79.0% were obtained. The basic physicochemical properties of the trimethylolpropane esters were the following : kinematic viscosities of 56.40 cSt and 8.8 cSt at 40 0C and 100 0C,  viscosity index 193, flash point 218 0C and pour point -3 0C. So Methyl esters of fatty acids of would callophylum  methyl ester is good raw material for the synthesis of lubricating oils.

  13. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    Science.gov (United States)

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-04

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels.

  14. Lipophilic (hydroxy)phenylacetates by solvent-free lipase-catalyzed esterification and transesterification in vacuo.

    Science.gov (United States)

    Weitkamp, Petra; Weber, Nikolaus; Vosmann, Klaus

    2008-07-09

    Various long-chain alkyl (hydroxy)phenylacetates were prepared in high yield by lipase-catalyzed transesterification of the corresponding short-chain alkyl hydroxyphenylacetates and fatty alcohols in equimolar ratios. The reactions were performed in vacuo at moderate temperatures in the absence of solvents and drying agents in direct contact with the reaction mixture. Immobilized lipase B from Candida antarctica (Novozym 435) was the most effective biocatalyst for the various transesterification reactions. Generally, Novozym 435-catalyzed transesterifications of short-chain alkyl (hydroxy)phenylacetates with long-chain alcohols led to higher conversions and enzyme activities than the corresponding esterifications. For example, the transesterification activity was up to 4-fold higher than the esterification activity for the formation of oleyl 4-hydroxy-3-methoxyphenylacetate using Novozym 435 as a biocatalyst. The relative transesterification activities were as follows: phenylacetate > 3-methoxyphenylacetate approximately 4-methoxyphenylacetate > 4-hydroxy-3-methoxyphenylacetate > 3-hydroxyphenylacetate approximately 4-hydroxyphenylacetate > 2-methoxyphenylacetate > 3,4-dihydroxyphenylacetate. With respect to the position of methoxy and hydroxy substituents, the transesterification activity of Novozym 435 decreased in the order meta approximately para > ortho. Compounds with inverse chemical structures, for example, tyrosyl oleate, were obtained by Novozym 435-catalyzed esterification and transesterification of fatty acids and their methyl esters, respectively, with 2-phenylethan-1-ols. In contrast to the transesterifications of short-chain alkyl (hydroxy)phenylacetates with fatty alcohols, higher conversions and enzyme activities were observed for the Novozym 435-catalyzed esterifications of (hydroxy)phenylethanols with long-chain fatty acids than the corresponding transesterifications with fatty acid methyl esters.

  15. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  16. Pharmacokinetics of Ketorolac Pentyl Ester, a Novel Ester Derivative of Ketorolac, in Rabbits

    Directory of Open Access Journals (Sweden)

    Jann-Inn Tzeng

    2005-08-01

    Full Text Available Ketorolac is a potent nonsteroidal anti-inflammatory drug. Recently, a novel ester of ketorolac, ketorolac pentyl ester, was synthesized. When prepared in injectable oil, the new agent demonstrated a long duration of action. Ketorolac pentyl ester was synthesized using a prodrug design by esterification of ketorolac, and appeared to be a prodrug of ketorolac in vivo, which needed to be confirmed. The aim of the present study was to establish the prodrug's pharmacokinetics in vivo, and to confirm whether or not ketorolac pentyl ester was a prodrug of ketorolac. Pharmacokinetic profiles of intravenous ketorolac and its pentyl ester on an equal-molar basis in six rabbits were evaluated. A high-performance liquid chromatographic method was used to determine the plasma concentrations of ketorolac and its pentyl ester. We found that the plasma concentrations of ketorolac pentyl ester declined rapidly after injection and so did the conversion of ketorolac pentyl ester to ketorolac. Also, the conversion of ketorolac was proved complete when compared with intravenous ketorolac under an equi-molar basis. In conclusion, this in vivo pharmacokinetic study confirmed that keterolac pentyl ester was a prodrug of keterolac.

  17. Conversion of carbohydrates to levulinic acid esters

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of converting carbohydrates into levulinic acid, a platform chemical for many chemical end products. More specifically the invention relates to a method for converting carbohydrates such as mono-, di- or polysaccharides, obtained from for example biomass...... production into a suitable levulinic acid ester in the presence of a zeolite or zeotype catalyst and a suitable alcohol, and the ester may be further converted into levulinic acid if desired....

  18. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  19. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  20. Allied, MGC link on cyanate esters

    International Nuclear Information System (INIS)

    Wood, A.

    1993-01-01

    In the latest of a line of joint ventures in its plastics business, Allied Signal has reached agreement with Mitsubishi Gas Chemical (MGC) to jointly develop thermoset cyanate ester resins and blends. The deal will involve further development of Allied Signal's Primaset phenol-formaldehyde cyanate ester resins, a new entrant in the thermoset arena. Although the Primaset resins were discovered in the 1960s, this would be the first time they are available commercially. The deal will marry Primaset technology with MGC's Skylex bisphenol A cyanate ester resins, says Fred DiAntonis, director/advanced materials at Allied Signal. The two firms are looking at marketing blends of the two materials. The potential market for these resins, used commercially by the electronics industry in printed circuit boards and by the aerospace industry in composites, is significant, says Robert P. Viarengo, Allied Signal president/performance materials. By aligning ourselves with MGC, the world leader in cyanate ester resin, we anticipate moving forward aggressively. The main competitor is Ciba, which acquired bisphenol A cyanate ester resins with its purchase of Rhone-Poulenc's high temperature resins business. DiAntonis estimates the market for cyanate ester resins could be worth $150 million by the end of the decade, although development costs have been in the tens of millions of dollars range

  1. Allenyl esters as quenching agents for ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Roy, Animesh; Silvestri, Maximilian A; Hall, Robert A; Lepore, Salvatore D

    2017-01-04

    In the attempt to synthesize substituted allenyl esters through a metathesis coupling of unsubstituted allenyl esters and alkenes using a variety of ruthenium catalysts, it was discovered that allenyl esters themselves cleanly arrested the activity of the catalysts. Further studies suggests possible utility of allene esters as general quenching agents for metathesis reactions. To explore this idea, several representative olefin metathesis reactions, including ring closing, were successfully terminated by the addition of simple allenyl esters for more convenient purification.

  2. Catalyst-Controlled Site-Selectivity Switching in Pd-Catalyzed Cross-Coupling of Dihaloarenes

    Directory of Open Access Journals (Sweden)

    Kei Manabe

    2014-08-01

    Full Text Available Pd-catalyzed, site-selective mono-cross-coupling of substrates with two identical halo groups is a useful method for synthesizing substituted monohalogenated arenes. Such arenes constitute an important class of compounds, which are commonly identified as drug components and synthetic intermediates. Traditionally, these site-selective reactions have been realized in a “substrate-controlled” manner, which is based on the steric and electronic differences between the two carbon-halogen bonds of the substrate. Recently, an alternative strategy, “catalyst-controlled” site-selective cross-coupling, has emerged. In this strategy, the preferred reaction site of a dihaloarene can be switched, merely by changing the catalyst used. This type of selective reaction further expands the utility of Pd-catalyzed cross-coupling. In this review, we summarize the reported examples of catalyst-controlled site-selectivity switching in Pd-catalyzed cross-coupling of dihaloarenes.

  3. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  4. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Abdulahad, Waseem S.

    2014-01-01

    Highlights: • Biodiesel ethyl ester has been developed from mustard seed oil. • Variables affect the transesterification were investigated. • Dry washing using the activated carbon produced from the extraction remaining was applied to purify the ethyl esters. • Properties of the produced fuels were measured. • Blending of the produced ethyl ester with petro diesel was also investigated. - Abstract: The present study reports the production of mustard seed oil ethyl esters (MSOEE) through alkali-catalyzed transesterification with ethanol using potassium hydroxide as a catalyst. The influence of the process parameters such as catalyst concentration, ethanol to oil molar ratio, reaction temperature, reaction duration and the catalyst type was investigated so as to find out the optimal conditions for the transesterification process. As a result, optimum conditions for production of MSOEE were found to be: 0.90% KOH wt/wt of oil, 8:1 ethanol to oil molar ratio, a reaction temperature of 60 °C, and a reaction time of 60 min. Dry washing method with (2.50% wt.) of the activated carbon that was produced from the de-oiled cake was used to purify the crude ethyl ester from the residual catalyst and glycerol. The transesterification process provided a yield of 94% w/w of ethyl esters with an ester content of 98.22% wt. under the optimum conditions. Properties of the produced ethyl esters satisfied the specifications prescribed by the ASTM standards. Blending MSOEE with petro diesel was also investigated. The results showed that the ethyl esters had a slight influence on the properties of petro diesel

  5. Asymmetric Synthesis of N-Boc-(R)-Silaproline via Rh-Catalyzed Intramolecular Hydrosilylation of Dehydroalanine and Continuous Flow N-Alkylation.

    Science.gov (United States)

    Chung, John Y L; Shevlin, Michael; Klapars, Artis; Journet, Michel

    2016-04-15

    An asymmetric synthesis of a silicon-containing proline surrogate, N-Boc-(R)-silaproline (1), is described. Starting from N-Boc-dehydroalanine ester, deprotonation, followed by N-alkylation with chloromethyldimethylsilane under flow conditions, afforded the N-alkylated product 8 in 91% yield. An unprecedented enantioselective (NBD)2RhBF4/Josiphos 404-1 catalyzed 5-endo-trig hydrosilylation afforded the silaproline ester in 85-90% yield and >95% ee. Subsequent saponification and salt formation upgraded 1 to >99% ee.

  6. Rapid Enzymatic Method for Pectin Methyl Esters Determination

    Directory of Open Access Journals (Sweden)

    Lucyna Łękawska-Andrinopoulou

    2013-01-01

    Full Text Available Pectin is a natural polysaccharide used in food and pharma industries. Pectin degree of methylation is an important parameter having significant influence on pectin applications. A rapid, fully automated, kinetic flow method for determination of pectin methyl esters has been developed. The method is based on a lab-made analyzer using the reverse flow-injection/stopped flow principle. Methanol is released from pectin by pectin methylesterase in the first mixing coil. Enzyme working solution is injected further downstream and it is mixed with pectin/pectin methylesterase stream in the second mixing coil. Methanol is oxidized by alcohol oxidase releasing formaldehyde and hydrogen peroxide. This reaction is coupled to horse radish peroxidase catalyzed reaction, which gives the colored product 4-N-(p-benzoquinoneimine-antipyrine. Reaction rate is proportional to methanol concentration and it is followed using Ocean Optics USB 2000+ spectrophotometer. The analyzer is fully regulated by a lab written LabVIEW program. The detection limit was 1.47 mM with an analysis rate of 7 samples h−1. A paired t-test with results from manual method showed that the automated method results are equivalent to the manual method at the 95% confidence interval. The developed method is rapid and sustainable and it is the first application of flow analysis in pectin analysis.

  7. X hydrogen bonds

    Indian Academy of Sciences (India)

    sigma electrons, can be hydrogen bond acceptors.11–14. The recent IUPAC report and recommendation on hydro gen bond have recognised the diverse nature of hydro- gen bond donors and acceptors.13,14. Unlike methane, hydrogen bonding by higher alkanes has not received much attention. One of the earlier works.

  8. Adhesive wafer bonding

    Science.gov (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.

    2006-02-01

    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  9. The mechanism and thermodynamics of transesterification of acetate-ester enolates in the gas phase

    Science.gov (United States)

    Haas, George W.; Giblin, Daryl E.; Gross, Michael L.

    1998-01-01

    In solution, base-catalyzed hydrolysis and transesterification of esters are initiated by hydroxide- or alkoxide-ion attack at the carbonyl carbon. At low pressures in the gas phase, however, transesterification proceeds by an attack of the enolate anion of an acetate ester on an alcohol. Fourier transform mass spectrometry (FTMS) indicates that the reaction is the second-order process: -CH2-CO2-R + R'-OH --> - CH2-CO2-R' + R-OH and there is little to no detectable production of either alkoxide anion. Labeling studies show that the product and reactant enolate anion esters undergo exchange of hydrogens located [alpha] to the carbonyl carbon with the deuterium of R'-OD. The extent of the H/D exchange increases with reaction time, pointing to a short-lived intermediate. The alcoholysis reaction rate constants increase with increasing acidity of the primary, straight-chained alkyl alcohols, whereas steric effects associated with branched alcohols cause the rate constants to decrease. Equilibrium constants, which were determined directly from measurements at equilibrium and which were calculated from the forward and reverse rate constants, are near unity and show internal consistency. In the absence of steric effects, the larger enolate is always the favored product at equilibrium. The intermediate for the transesterification reaction, which can be generated at a few tenths of a torr in a tandem mass spectrometer, is tetrahedral, but other adducts that are collisionally stabilized under these conditions are principally loosely bound complexes.

  10. Ru(II)-catalyzed selective C-H amination of xanthones and chromones with sulfonyl azides: synthesis and anticancer evaluation.

    Science.gov (United States)

    Shin, Youngmi; Han, Sangil; De, Umasankar; Park, Jihye; Sharma, Satyasheel; Mishra, Neeraj Kumar; Lee, Eui-Kyung; Lee, Youngil; Kim, Hyung Sik; Kim, In Su

    2014-10-03

    A ketone-assisted ruthenium-catalyzed selective amination of xanthones and chromones C-H bonds with sulfonyl azides is described. The reactions proceed efficiently with a broad range of substrates with excellent functional group compatibility. This protocol provides direct access to 1-aminoxanthones, 5-aminochromones, and 5-aminoflavonoid derivatives known to exhibit potent anticancer activity.

  11. Hydroformylation of methyl oleate catalyzed by rhodium complexes; Hidroformilacao do oleato de metila catalisada por complexos de rodio

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Nery Furlan [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Ciencias Naturais; Rosa, Ricardo Gomes da; Gregorio, Jose Ribeiro, E-mail: jrg@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2012-07-01

    In this work, we describe the hydroformylation of methyl oleate catalyzed by several rhodium complexes. Parameters including total pressure, phosphorous/rhodium and CO/H{sub 2} ratio, temperature and phosphorous ligands were scanned. Total conversion of the starting double bonds was achieved while maintaining excellent selectivity in aldehydes. (author)

  12. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara

    2017-06-05

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  13. Palladium-catalyzed aryl C-H olefination with unactivated, aliphatic alkenes.

    Science.gov (United States)

    Deb, Arghya; Bag, Sukdev; Kancherla, Rajesh; Maiti, Debabrata

    2014-10-01

    Palladium-catalyzed coupling between aryl halides and alkenes (Mizoroki-Heck reaction) is one of the most popular reactions for synthesizing complex organic molecules. The limited availability, problematic synthesis, and higher cost of aryl halide precursors (or their equivalents) have encouraged exploration of direct olefination of aryl carbon-hydrogen (C-H) bonds (Fujiwara-Moritani reaction). Despite significant progress, the restricted substrate scope, in particular noncompliance of unactivated aliphatic olefins, has discouraged the use of this greener alternative. Overcoming this serious limitation, we report here a palladium-catalyzed chelation-assisted ortho C-H bond olefination of phenylacetic acid derivatives with unactivated, aliphatic alkenes in good to excellent yields with high regio- and stereoselectivities. The versatility of this operationally simple method has been demonstrated through drug diversification and sequential C-H olefination for synthesizing divinylbenzene derivatives.

  14. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters

    Science.gov (United States)

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  15. Copper-catalyzed recycling of halogen activating groups via 1,3-halogen migration.

    Science.gov (United States)

    Grigg, R David; Van Hoveln, Ryan; Schomaker, Jennifer M

    2012-10-03

    A Cu(I)-catalyzed 1,3-halogen migration reaction effectively recycles an activating group by transferring bromine or iodine from a sp(2) to a benzylic carbon with concomitant borylation of the Ar-X bond. The resulting benzyl halide can be reacted in the same vessel under a variety of conditions to form an additional carbon-heteroatom bond. Cross-over experiments using an isotopically enriched bromide source support intramolecular transfer of Br. The reaction is postulated to proceed via a Markovnikov hydrocupration of the o-halostyrene, oxidative addition of the resulting Cu(I) complex into the Ar-X bond, reductive elimination of the new sp(3) C-X bond, and final borylation of an Ar-Cu(I) species to turn over the catalytic cycle.

  16. Carbon Fiber—Vinyl Ester Interfacial Adhesion Improvement by the Use of an Epoxy Coating

    Science.gov (United States)

    Vautard, Frederic; Xu, Lanhong; Drzal, Lawrence T.

    With the use of composites expanding into larger structural applications, vinyl ester matrices which are not dependent on an autoclave cure and are more environmentally resistant to water absorption are being investigated. The degree of adhesion between the fiber and matrix has been recognized to be a critical factor in determining the performance of fiber-reinforced composites. The mechanical properties of carbon fiber-vinyl ester composites are low compared to carbon fiber-epoxy composites, partly because of lower interfacial adhesion. The origins of this limitation were investigated. The influence of preferential adsorption of the matrix constituents on the interfacial adhesion was not significant. However, the high cure volume shrinkage was found to be an important factor. An engineered interphase consisting of a partially cross-linked epoxy sizing that could chemically bond to the carbon fiber and form an interpenetrating network with the vinyl ester matrix was found to sharply improve the interfacial adhesion. The mechanisms involved in that improvement were investigated. The diffusion of styrene in the epoxy coating decreased the residual stress induced by the volume shrinkage of the vinyl ester matrix. The optimal value of the thickness was found to be a dominant factor in increasing the value of the interfacial shear strength according to a 2D non-linear finite element model.

  17. Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes.

    Science.gov (United States)

    Gao, Yang; Gao, Yinglan; Wu, Wanqing; Jiang, Huanfeng; Yang, Xiaobo; Liu, Wenbo; Li, Chao-Jun

    2017-01-18

    We describe herein a palladium-catalyzed tandem oxidative arylation/olefination reaction of aromatic tethered alkenes/alkynes for the synthesis of dihydrobenzofurans and 2 H-chromene derivatives. This reaction features a 1,2-difunctionalization of C-C π-bond with two C-H bonds using O 2 as terminal oxidant at room temperature. The products obtained are valuable synthons and important scaffolds in biological agents and natural products. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Copper-catalyzed C(sp2)-H amidation with azides as amino sources.

    Science.gov (United States)

    Peng, Jiangling; Xie, Zeqiang; Chen, Ming; Wang, Jian; Zhu, Qiang

    2014-09-19

    A copper-catalyzed C-H amidation process, with azides as amino sources under oxidant-free conditions, has been developed. When N-heterocycles were employed as directing groups, sulfonylazide and benzoylazide could be used as amidating reagents to provide corresponding N-arylamides. When amidines or imine were used, tandem C-N/N-N bond formation occurred to afford indazole derivatives in one pot.

  19. Rhodium-catalyzed asymmetric hydrogenation of unprotected NH imines assisted by a thiourea.

    Science.gov (United States)

    Zhao, Qingyang; Wen, Jialin; Tan, Renchang; Huang, Kexuan; Metola, Pedro; Wang, Rui; Anslyn, Eric V; Zhang, Xumu

    2014-08-04

    Asymmetric hydrogenation of unprotected NH imines catalyzed by rhodium/bis(phosphine)-thiourea provided chiral amines with up to 97% yield and 95% ee. (1)H NMR studies, coupled with control experiments, implied that catalytic chloride-bound intermediates were involved in the mechanism through a dual hydrogen-bonding interaction. Deuteration experiments proved that the hydrogenation proceeded through a pathway consistent with an imine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pd-Catalyzed regioselective C-H halogenation of quinazolinones and benzoxazinones.

    Science.gov (United States)

    Dabiri, Minoo; Farajinia Lehi, Noushin; Kazemi Movahed, Siyavash; Khavasi, Hamid Reza

    2017-08-07

    A Pd-catalyzed ortho-selective halogenation of benzoxazinone and quinazolinone scaffolds has been described employing N-halosuccinimide as both a halogen source and an oxidant reagent via C-H bond activation. This transformation shows high chemo- and regioselectivities and demonstrates a broad range of benzoxazinone and quinazolinone substrates with different functional groups and has been scaled up to the gram level.

  1. Lipase-catalyzed biodiesel production with methyl acetate as acyl acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Huang Ying; Yan Yunjun [School of Life Science and Technology, Huazhong Univ. of Science and Technology, Wuhan (China)

    2008-03-15

    Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rape-seed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cotton-seed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production. (orig.)

  2. Interleukin-1 as an injury signal mobilizes retinyl esters in hepatic stellate cells through down regulation of lecithin retinol acyltransferase.

    Directory of Open Access Journals (Sweden)

    Yujiro Kida

    Full Text Available Retinoids are mostly stored as retinyl esters in hepatic stellate cells (HSCs through esterification of retinol and fatty acid, catalyzed by lecithin-retinol acyltransferase (LRAT. This study is designated to address how retinyl esters are mobilized in liver injury for tissue repair and wound healing. Initially, we speculated that acute inflammatory cytokines may act as injury signal to mobilize retinyl esters by down-regulation of LRAT in HSCs. By examining a panel of cytokines we found interleukin-1 (IL-1 can potently down-regulate mRNA and protein levels of LRAT, resulting in mobilization of retinyl esters in primary rat HSCs. To simulate the microenvironment in the space of Disse, HSCs were embedded in three-dimensional extracellular matrix, by which HSCs retaine quiescent phenotypes, indicated by up-regulation of LRAT and accumulation of lipid droplets. Upon IL-1 stimulation, LRAT expression went down together with mobilization of lipid droplets. Secreted factors from Kupffer cells were able to suppress LRAT expression in HSCs, which was neutralized by IL-1 receptor antagonist. To explore the underlying mechanism we noted that the stability of LRAT protein is not significantly regulated by IL-1, indicating the regulation is likely at transcriptional level. Indeed, we found that IL-1 failed to down-regulate recombinant LRAT protein expressed in HSCs by adenovirus, while transcription of endogenous LRAT was promptly decreased. Following liver damage, IL-1 was promptly elevated in a close pace with down-regulation of LRAT transcription, implying their causative relationship. After administration of IL-1, retinyl ester levels in the liver, as measured by LC/MS/MS, decreased in association with down-regulation of LRAT. Likewise, IL-1 receptor knockout mice were protected from injury-induced down-regulation of LRAT. In summary, we identified IL-1 as an injury signal to mobilize retinyl ester in HSCs through down-regulation of LRAT, implying a

  3. Production and Characterization of Ethyl Ester from Crude Jatropha curcas Oil having High Free Fatty Acid Content

    Science.gov (United States)

    Kumar, Rajneesh; Dixit, Anoop; Singh, Shashi Kumar; Singh, Gursahib; Sachdeva, Monica

    2015-09-01

    The two step process was carried out to produce biodiesel from crude Jatropha curcas oil. The pretreatment process was carried out to reduce the free fatty acid content by (≤2 %) acid catalyzed esterification. The optimum reaction conditions for esterification were reported to be 5 % H2SO4, 20 % ethanol and 1 h reaction time at temperature of 65 °C. The pretreatment process reduced the free fatty acid of oil from 7 to 1.85 %. In second process, alkali catalysed transesterification of pretreated oil was carried and the effects of the varying concentrations of KOH and ethanol: oil ratios on percent ester recovery were investigated. The optimum reaction conditions for transesterification were reported to be 3 % KOH (w/v of oil) and 30 % (v/v) ethanol: oil ratio and reaction time 2 h at 65 °C. The maximum percent recovery of ethyl ester was reported to be 60.33 %.

  4. Structure of ruthenium(II) complexes with coproporphyrin I tetraethyl ester

    Science.gov (United States)

    Zverev, S. A.; Andreev, S. V.; Zamilatskov, I. A.; Kurochkina, N. M.; Tyurin, V. S.; Senchikhin, I. N.; Ponomarev, G. V.; Erzina, D. R.; Chernyshev, V. V.

    2017-08-01

    The reaction between coproporphyrin I tetraethyl ester and ruthenium(II) dodecacarbonyl in toluene is investigated. The formation of two different products, complexes 2 and 3 of ruthenium(II) with coproporphyrin I tetraethyl ester, studied by means of mass spectrometry, electronic absorption spectroscopy, NMR, X-ray diffraction, and thermogravimetric analysis, is revealed. Structures are proposed for the products, of which ( 2) is a monocarbonyl complex of ruthenium(II) porphyrin that exists as a coordination polymer formed owing to intermolecular axial bonding between the oxygen atoms of carboethoxyl groups and ruthenium(II). The structure proposed for second product ( 3) is in the form of the corresponding monomer of a monocarbonyl complex of ruthenium(II) porphyrin. It is established that polymeric complex 2 transforms into monomeric complex 3 when it is heating in pyridine.

  5. Catalysis of Protein Disulfide Bond Isomerization in a Homogeneous Substrate†

    Science.gov (United States)

    Kersteen, Elizabeth A.; Barrows, Seth R.; Raines, Ronald T.

    2008-01-01

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a _-hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N-and C-terminus contain a fluorescence donor (tryptophan) and acceptor (N_-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E°_ = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys—Gly—His—Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/KM = 1.7 _ 105 M–1M s–1, which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that

  6. Catalysis of protein disulfide bond isomerization in a homogeneous substrate.

    Science.gov (United States)

    Kersteen, Elizabeth A; Barrows, Seth R; Raines, Ronald T

    2005-09-13

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude

  7. Zero birefringence films of pullulan ester derivatives

    Science.gov (United States)

    Danjo, Takahiro; Enomoto, Yukiko; Shimada, Hikaru; Nobukawa, Shogo; Yamaguchi, Masayuki; Iwata, Tadahisa

    2017-04-01

    High-performance films with almost zero-birefringence and zero-wavelength dispersion were succeeded to prepare from pullulan esters derivatives (PLEs) without any additives. Optical transmittance analysis, birefringence measurement of PLE cast film and hot stretched films, and infrared dichroism analysis were conducted to characterize optical properties of PLE films comparing with cellulose triacetate which is commercially used as low-birefringence in optical devices. The aims of this study, characterization of optical properties of pullulan esters, can develop a deep understanding of the fundamental knowing and applicability of polysaccharides. Accordingly, authors believe this paper will open the gate for researches in the application of polysaccharides.

  8. Application conditions for ester cured alkaline phenolic resin sand

    Directory of Open Access Journals (Sweden)

    Ren-he Huang

    2016-07-01

    Full Text Available Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A; 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B; glycerol diacetate; dibasic ester (DBE (i.e. low-speed ester C, were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand and the amount of added organic ester and curing temperature were investigated. The results indicated the following: (1 The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2 High-speed ester A (propylene carbonate has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3 High-speed ester A, medium-speed ester B (glycerol triacetate and low-speed ester C (dibasic ester, i.e., DBE should be used below 15 ìC, 35 ìC and 50 ìC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4 There should be a suitable solid content (generally 45wt.%-65wt.% of resin, alkali content (generally 10wt.%-15wt.% of resin and viscosity of alkaline phenolic resin (generally 50-300 mPa≤s in the preparation of alkaline phenolic resin. Finally, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  9. Gold-catalyzed cyclization reactions of allenol and alkynol derivatives.

    Science.gov (United States)

    Alcaide, Benito; Almendros, Pedro

    2014-03-18

    Although gold is chemically inert as a bulk metal, the landmark discovery that gold nanoparticles can be effective catalysts has opened up new and exciting research opportunities in the field. In recent years, there has been growth in the number of reactions catalyzed by gold complexes [gold(I) and gold(III)], usually as homogeneous catalysts, because they are soft Lewis acids. In addition, alkynes and allenes have interesting reactivities and selectivities, notably their ability to produce complex structures in very few steps. In this Account, we describe our work in gold catalysis with a focus on the formation of C-C and C-O bonds using allenes and alkynes as starting materials. Of these, oxa- and carbo-cyclizations are perhaps the best known and most frequently studied. We have divided those contributions into sections arranged according to the nature of the starting material (allene versus alkyne). Gold-catalyzed carbocyclizations in allenyl C2-linked indoles, allenyl-β-lactams, and allenyl sugars follow different mechanistic pathways. The cyclization of indole-tethered allenols results in the efficient synthesis of carbazole derivatives, for example. However, the compound produced from gold-catalyzed 9-endo carbocyclization of (aryloxy)allenyl-tethered 2-azetidinones is in noticeable contrast to the 5-exo hydroalkylation product that results from allenyl sugars. We have illustrated the unusual preference for the 4-exo-dig cyclization in allene chemistry, as well as the rare β-hydride elimination reaction, in gold catalysis from readily available α-allenols. We have also observed in γ-allenols that a (methoxymethyl)oxy protecting group not only masks a hydroxyl functionality but also exerts directing effects as a controlling unit in a gold-catalyzed regioselectivity reversal. Our recent work has also led to a combined experimental and computational study on regioselective gold-catalyzed synthetic routes to 1,3-oxazinan-2-ones (kinetically controlled

  10. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    Science.gov (United States)

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  11. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  12. A review on production of biodiesel using catalyzed transesterification

    Science.gov (United States)

    Dash, Santosh Kumar; Lingfa, Pradip

    2017-07-01

    Biodiesel is arguably an important fuel for compression ignition engine as far as sustainability and environmental issues are concerned. It can be produced from both edible and non-edible vegetable oils and animal fats. Owing to higher viscosity, the utilization of crude vegetable oil is not advisable as it results engine failure. For reducing the viscosity and improving the other fuel characteristics comparable to that of diesel fuel, different approaches have been developed. However, transesterification process is very reliable, less costly and easy method compared to other methods. Due to more free fatty acids content in most of the non-edible vegetable oils, a pretreatment is employed to convert the acids to ester, then transesterified with suitable alcohol. Primarily yield of biodiesel depends upon the molar ratio of oil/alcohol, reaction temperature, reaction time, amount of catalyst, type of catalyst, stirring speed. Both homogeneous and heterogeneous catalysts are used for synthesis purposes. Heterogeneous catalysts are less costly, environmental benign and can be derived from natural resources. Enzymatic catalysts are more environmental benign than heterogeneous catalysts but are costly, which hinders its widespread research and utilization. This article reviews the results of prominent works and researches in the field of production of biodiesel via catalyzed transesterification process.

  13. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    Science.gov (United States)

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Australia's Bond Home Bias

    OpenAIRE

    Anil V. Mishra; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  15. Identification of the catalytic residues of alpha-amino acid ester hydrolase from Acetobacter turbidans by labeling and site-directed mutagenesis

    NARCIS (Netherlands)

    Polderman - Tijmes, Jolanda j.; Jekel, Peter A.; Jeronimus-Stratingh, CM; Bruins, Andries P.; van der Laan, Jan-Metske; Sonke, Theo; Janssen, Dick B.

    2002-01-01

    The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing the side chain peptide bond in beta-lactam antibiotics. Data base searches revealed that the enzyme contains an active site serine consensus sequence Gly-X-Ser-Tyr-X-Gly that is also

  16. Enzymatic Synthesis of Glyserol-Coconut Oil Fatty Acid and Glycerol-Decanoic Acis Ester as Emulsifier and Antimicrobial Agents Using Candida rugosa Lipase EC 3.1.1.3

    Science.gov (United States)

    Handayani, Sri; Putri, Ayu Tanissa Tamara; Setiasih, Siswati; Hudiyono, Sumi

    2018-01-01

    In this research, enzymatic esterification was carried out between glycerol and fatty acid from coconut oil and decanoic acid using n-hexane as solvent. In this reaction Candida rugosa lipase was used as biocatalyst. Optimization esterification reaction was carried out for parameter of the substrate ratio. The mmol ratio between fatty acid and glycerol were used are 1:1, 1:2, 1:3, and 1: 4. The highest conversion percentage obtained at the mole ratio of 1: 4 with the value of 78.5% for the glycerol-decanoic acid ester and 55.4% for the glycerol coconut oil fatty acid ester. Esterification products were characterized by FT-IR. The FT-IR spectrum showed that the ester bond was formed as indicated by the wave number 1750-1739 cm-1. The esterification products were then examined by simple emulsion test and was proved to be an emulsifier. The glycerol-coconut oil fatty acid ester produced higher stability emulsion compare with glycerol decanoic ester. The antimicrobial activity assay using disc diffusion method showed that both glycerol-coconut oil fatty acid ester and glycerol-decanoic ester had the ability inhibiting the growth of Propionibacterium acnes and Staphylococcus epidermidis. Glycerol-decanoic ester shows higher antimicrobial activity than glycerol-coconut oil fatty acid ester.

  17. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  18. Kinetics and Mechanism of Ni/Zeolite-Catalyzed Hydrocracking of Palm Oil into Bio-Fuel

    Directory of Open Access Journals (Sweden)

    Sri Kadarwati

    2013-05-01

    Full Text Available Kinetics and mechanisms of Ni/zeolite-catalyzed cracking reaction of methyl ester palm oil (MEPO were studied using a continuous flow-fixed bed reactor system at an atmospheric pressure. The catalyst was prepared by wet impregnation method with a solution of nickel nitrate hexahydrate as the precursor and zeolite as carrier. The characteristics of catalyst including active Ni metal content, crystallinity, total acidity, and porosity were evaluated. The reactions were performed with a varied hydrogen flow rate as a carrier gas as well as a reductant and reaction time. Liquid products were analyzed by GC. Analysis by GC-MS was only conducted on a product at hydrogen flow rate with the best conversion. It has been shown that the catalyst has a superior character for hydrocracking reactions of MEPO into green fuel. No considerable effect of hydrogen flow rate on the total conversion was observed. The tests showed that the kinetics of Ni/zeolite-catalyzed cracking reaction followed pseudo-first order kinetics. GC-MS analysis revealed the formation of light hydrocarbon products with C6-C8 of aliphatic and cyclic components without oxygenates. Distribution of the product indicated that the cracking reaction as well as the isomerization of the products of hydrocracking occurred. Thus, Ni/zeolite-catalyzed cracking involved cracking /hydrogenation, isomerization, cyclization, and deoxygenation.

  19. Trypsin-catalyzed deltamethrin degradation.

    Directory of Open Access Journals (Sweden)

    Chunrong Xiong

    Full Text Available To explore if trypsin could catalyze the degradation of non-protein molecule deltamethrin, we compared in vitro hydrolytic reactions of deltamethrin in the presence and absence of trypsin with ultraviolet-visible (UV/Vis spectrophotometry and gas chromatography-mass spectrometry (GC/MS. In addition, acute oral toxicity of the degradation products was determined in Wistar rats. The results show that the absorption peak of deltamethrin is around 264 nm, while the absorption peaks of deltamethrin degradation products are around 250 nm and 296 nm. In our GC setting, the retention time of undegraded deltamethrin was 37.968 min, while those of deltamethrin degradation products were 15.289 min and 18.730 min. The LD50 of deltamethrin in Wistar rats is 55 mg/kg, while that of deltamethrin degradation products is 3358 mg/kg in female rats and 1045 mg/kg in male rates (61-fold and 19-fold reductions in toxicity, suggesting that trypsin could directly degrade deltamethrin, which significantly reduces the toxicity of deltamethrin. These results expand people's understanding of the functions of proteases and point to potential applications of trypsin as an attractive agent to control residual pesticides in the environment and on agricultural products.

  20. Synthesis and stability of new spiroaminoborate esters

    OpenAIRE

    Stepanenko, Viatcheslav; de Jesús, Melvin; Garcia, Carmelo; Barnes, Charles L.; Ortiz-Marciales, Margarita

    2012-01-01

    New spiroaminoborate esters derived from 1,1-diphenylprolinol, ephedrine and dihydroquinine with different alkoxy substituents were prepared as stable crystalline compounds and characterized by spectroscopical analysis and specific rotation. The structure of the spiroborate 4 derived from 1,1-diphenylprolinol and dicyclohexyl-1,1′-diol was confirmed by X-ray analysis.

  1. 1347-IJBCS-Article-Dr Innocent Ester

    African Journals Online (AJOL)

    KODJIO NORBERT

    Say (Culicidae: Diptera). Ester INNOCENT 1*, Eliangiringa KAALE 2 and Zakaria H. MBWAMBO 1. 1 Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences,. P.O. Box 65001, Dar es Salaam, Tanzania. 2Department of Medicinal Chemistry, School of Pharmacy, Muhimbili University of Health and ...

  2. Two New Phorbol Esters from Euphorbia bothae

    African Journals Online (AJOL)

    NICO

    Euphorbias of South Africa: Two New Phorbol Esters from. Euphorbia bothae. Wendy L. Popplewell,1 Eloise A. Marais,1 Linda Brand,2. Brian H. Harvey2 and Michael T. Davies-Coleman1*. 1Department of Chemistry, Rhodes University, Grahamstown, 6140 South Africa. 2Unit for Drug Research and Development, Division ...

  3. Avocado and olive oil methyl esters

    Science.gov (United States)

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, incl...

  4. Ester Tuiksoo - Eesti esimene naissoost põllumajandusminister / Ester Tuiksoo ; interv. Toomas Verrev

    Index Scriptorium Estoniae

    Tuiksoo, Ester, 1965-

    2007-01-01

    Ametist lahkuv põllumajandusminister Ester Tuiksoo räägib saadud juhtimiskogemusest, Euroopa Liidu ühise põllumajanduspoliitika juurutamisest, rahvuskala valimisest, Rahvaliidu käekäigust parlamendivalimistel

  5. Euphorbias of South Africa: Two New Phorbol Esters from ...

    African Journals Online (AJOL)

    Euphorbias of South Africa: Two New Phorbol Esters from Euphorbia bothae. ... WL Popplewell, EA Marais, L Brand, BH Harvey, MT Davies-Coleman. Abstract. Two known phorbol esters, 12-deoxyphorbol-13-isobutyrate-20-acetate (1) and 12-deoxyphorbol-13-(2-methylbutyrate)-20-acetate (2), and two new phorbol esters, ...

  6. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  7. 21 CFR 172.859 - Sucrose fatty acid esters.

    Science.gov (United States)

    2010-04-01

    ... solvents which may be used in the preparation of sucrose fatty acid esters are those generally recognized... preparation of sucrose fatty acid esters. (b) Sucrose fatty acid esters meet the following specifications: (1..., 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National Archives...

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for packaging...

  9. Activated Sludge Biodegradation of 12 Commercial Phthalate Esters

    OpenAIRE

    O'Grady, Dean P.; Howard, Philip H.; Werner, A. Frances

    1985-01-01

    The activated sludge biodegradability of 12 commercial phthalate esters was evaluated in two test systems: (i) a semicontinuous activated sludge test and (ii) an acclimated 19-day die-away procedure. Both procedures demonstrated that phthalate esters are rapidly biodegraded under activated sludge conditions when loss of the parent phthalate ester (primary degradation) is measured.

  10. Celorbicol, isocelorbicol, and their esters: new sesquiterpenoids from Celastrus orbiculatus

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.R. Jr. (Dept. of Agriculture, Peoria, IL); Miller, R.W.; Weisleder, D.; Rohwedder, W.K.; Eickman, N.; Clardy, J.

    1976-10-01

    Esters of two new sesquiterpenoid polyalcohols - celorbicol and isocelorbicol - have been isolated from Celastrus orbiculatus. Structures of the parent alcohols have been established by x-ray crystallography, and those of the derived esters have been assigned by NMR spectroscopy. These compounds are structurally related to other polyesters and ester alkaloids from the Celastraceae, all of which are based on the dihydroagarofuran ring system.

  11. Enantioselective, transition metal catalyzed cycloisomerizations.

    Science.gov (United States)

    Marinetti, Angela; Jullien, Hélène; Voituriez, Arnaud

    2012-07-21

    This review illustrates enantioselective transition-metal promoted skeletal rearrangements of polyunsaturated substrates possessing olefin, alkyne or allene functions. These processes are classified according to the number of carbon atoms involved in the cyclization, from (1C+1C) to (2C+2C+2C) or (2C+5C) cyclizations. Thus, for instance, (1C+1C) processes are typified notably by Alder-ene type reactions taking place mainly under palladium and rhodium catalysis, in the presence of chiral phosphorus ligands. Also, rhodium, platinum, and gold promoted insertions of unsaturated carbon-carbon bonds into C-H bonds belong to this class. For each class of reactions or substrate type the best ligand-metal pairs are highlighted. Unfortunately, unlike other transition metal promoted reactions, the mechanisms of chiral induction and stereochemical pathways have not been established so far in any of these reactions. In only a few instances, qualitative heuristic models have been tentatively proposed. Although the available stereochemical information is systematically given here, the paper focuses mainly on synthetic aspects of enantioselective cycloisomerizations.

  12. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  13. Rearrangement of beta,gamma-unsaturated esters with thallium trinitrate: synthesis of indans bearing a beta-keto ester moiety

    Directory of Open Access Journals (Sweden)

    Silva Jr. Luiz F.

    2006-01-01

    Full Text Available The rearrangement of beta,gamma-unsaturated esters, such as 2-(3,4-dihydronaphthalen-1-yl-propionic acid ethyl ester, with thallium trinitrate (TTN in acetic acid leads to 3-indan-1-yl-2-methyl-3-oxo-propionic acid ethyl ester in good yield, through a ring contraction reaction. The new indans thus obtained feature a beta-keto ester moiety, which would be useful for further functionalization.

  14. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  15. ANALYSIS OF COCONUT ETHYL ESTER (BIODIESEL) AND ...

    African Journals Online (AJOL)

    The effect of biodiesel and its blends synthesized from coconut oil (CNO) via alkali catalyzed transeterification on the key fuel properties and corrosion characteristics of copper were investigated. The transesterification of the CNO via ethanol in the presence of potassium hydroxide was performed and the resulting coconut ...

  16. End-labeled amino terminated monotelechelic glycopolymers generated by ROMP and Cu(I-catalyzed azide–alkyne cycloaddition

    Directory of Open Access Journals (Sweden)

    Ronald Okoth

    2013-03-01

    Full Text Available Functionalizable monotelechelic polymers are useful materials for chemical biology and materials science. We report here the synthesis of a capping agent that can be used to terminate polymers prepared by ring-opening metathesis polymerization of norbornenes bearing an activated ester. The terminating agent is a cis-butene derivative bearing a Teoc (2-trimethylsilylethyl carbamate protected primary amine. Post-polymerization modification of the polymer was accomplished by amidation with an azido-amine linker followed by Cu(I-catalyzed azide–alkyne cycloaddition with propargyl sugars. Subsequent Teoc deprotection and conjugation with pyrenyl isothiocyanates afforded well-defined end-labeled glycopolymers.

  17. Rh-Catalyzed reductive Mannich-type reaction and its application towards the synthesis of (±-ezetimibe

    Directory of Open Access Journals (Sweden)

    Motoyuki Isoda

    2016-07-01

    Full Text Available An effective synthesis for syn-β-lactams was achieved using a Rh-catalyzed reductive Mannich-type reaction. A rhodium–hydride complex (Rh–H derived from diethylzinc (Et2Zn and a Rh catalyst was used for the 1,4-reduction of an α,β-unsaturated ester to give a Reformatsky-type reagent, which in turn, reacted with an imine to give the syn-β-lactam. Additionally, the reaction was applied to the synthesis of (±-ezetimibe, a potent β-lactamic cholesterol absorption inhibitor.

  18. Rh-Catalyzed reductive Mannich-type reaction and its application towards the synthesis of (±)-ezetimibe.

    Science.gov (United States)

    Isoda, Motoyuki; Sato, Kazuyuki; Kunugi, Yurika; Tokonishi, Satsuki; Tarui, Atsushi; Omote, Masaaki; Minami, Hideki; Ando, Akira

    2016-01-01

    An effective synthesis for syn-β-lactams was achieved using a Rh-catalyzed reductive Mannich-type reaction. A rhodium-hydride complex (Rh-H) derived from diethylzinc (Et2Zn) and a Rh catalyst was used for the 1,4-reduction of an α,β-unsaturated ester to give a Reformatsky-type reagent, which in turn, reacted with an imine to give the syn-β-lactam. Additionally, the reaction was applied to the synthesis of (±)-ezetimibe, a potent β-lactamic cholesterol absorption inhibitor.

  19. Investigation of transition metal-catalyzed nitrene transfer reactions in water.

    Science.gov (United States)

    Alderson, Juliet M; Corbin, Joshua R; Schomaker, Jennifer M

    2018-04-11

    Transition metal-catalyzed nitrene transfer is a powerful method for incorporating new CN bonds into relatively unfunctionalized scaffolds. In this communication, we report the first examples of site- and chemoselective CH bond amination reactions in aqueous media. The unexpected ability to employ water as the solvent in these reactions is advantageous in that it eliminates toxic solvent use and enables reactions to be run at increased concentrations with lower oxidant loadings. Using water as the reaction medium has potential to expand the scope of nitrene transfer to encompass a variety of biomolecules and highly polar substrates, as well as enable pH control over the site-selectivity of CH bond amination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Catalytic effect of carbon nanotubes on polymerization of cyanate ester resins

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available Kinetic peculiarities of polycyclotrimerization process of dicyanate ester of bisphenol A (DCBA in the presence of multi-walled carbon nanotubes (MWCNTs have been investigated using Fourier Transform Infrared Spectroscopy (FTIR spectroscopy technique. It has been found that even very small amounts of MWCNTs (0.01–0.1 wt% catalyze the reaction of polycyclotrimerization of DCBA leading to formation of polycyanurate network (PCN/MWCNTs nanocomposite. However, some decrease in final degree of conversion for nanocomposites compared to the neat PCN within the temperature/time schedule used was observed. The kinetic rate constants increased with addition of MWCNTs and energies of activation were found to be significantly decreased even at low contents of MWCNTs.

  1. Solvent effects on lipase-catalyzed esterification of glycerol and fatty acids.

    Science.gov (United States)

    Janssen, A E; Van der Padt, A; Riet, K V

    1993-10-01

    The lipase-catalyzed acylglycerol synthesis with fatty acids of different chain length is studied. Measured ester mole fractions at equilibrium are compared with calculated mole fractions. For these calculations the computer program TREP (Two-phase Reaction Equilibrium Prediction) is used. This program is based on the UNIFAC group contribution method and is developed for nondilute two-phase reaction systems.With one set of equilibrium constants, namely 1.3, 0.8, and 0.6 for monoester, diester, and triester synthesis, respectively, the equilibrium position of the reaction between glycerol and all saturated fatty acids with a chain length from 6 to 18 and oleic acid (cis-9-octadecenoic acid) can be calculated. Deviations, expressed as the ratio between calculated and measured ester mole fractions, usually were between 0.7 and 1.2. In the presence of solvents, the deviations of the monoester mole fractions were higher and rose up to 3. Without addition of a solvent, the ester mole fractions at equilibrium are dependent on the fatty acid chain length. With the short-chain hexanoic acid, the monoester mole fraction is the highest ester mole fraction, while for the long-chain oleic acid, the diester mole fraction is the highest one. The ester mole fractions become independent on the chain length of the fatty acid with a solvent added in a sufficient high concentration. Both reactions, with saturated and unsaturated C(18) fatty acids, lead to the same equilibrium position. The program TREP is found to make good predictions of the equilibrium amounts of ester and fatty acid. However, systematic deviations arise between measured and calculated amounts of water and glycerol in the organic phase. The calculated water and glycerol amounts are always lower than the measured ones. These deviations seem to be highest in nonpolar media and are probably due to deficiencies in the UNIFAC calculation method. Some preliminary experiments show the effect of the choice of solvent on the

  2. Real-Time monitoring of intracellular wax ester metabolism

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-09-01

    Full Text Available Abstract Background Wax esters are industrially relevant molecules exploited in several applications of oleochemistry and food industry. At the moment, the production processes mostly rely on chemical synthesis from rather expensive starting materials, and therefore solutions are sought from biotechnology. Bacterial wax esters are attractive alternatives, and especially the wax ester metabolism of Acinetobacter sp. has been extensively studied. However, the lack of suitable tools for rapid and simple monitoring of wax ester metabolism in vivo has partly restricted the screening and analyses of potential hosts and optimal conditions. Results Based on sensitive and specific detection of intracellular long-chain aldehydes, specific intermediates of wax ester synthesis, bacterial luciferase (LuxAB was exploited in studying the wax ester metabolism in Acinetobacter baylyi ADP1. Luminescence was detected in the cultivation of the strain producing wax esters, and the changes in signal levels could be linked to corresponding cell growth and wax ester synthesis phases. Conclusions The monitoring system showed correlation between wax ester synthesis pattern and luminescent signal. The system shows potential for real-time screening purposes and studies on bacterial wax esters, revealing new aspects to dynamics and role of wax ester metabolism in bacteria.

  3. Native lignin for bonding fiber boards - evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica)

    DEFF Research Database (Denmark)

    Felby, Claus; Thygesen, Lisbeth Garbrecht; Sanadi, Anand

    2004-01-01

    The auto-adhesion of beech wood (Fagus sylvatica) fibers can be enhanced by a pretreatment of the fibers with a phenol oxidase enzyme. The mechanism of enzymatic catalyzed bonding is linked to the generation of stable radicals in lignin by oxidation. Fiberboards made from laccase-treated fibers...... indicate that lignin extractives are precipitated on the fiber surfaces. The improved bonding may be related to several factors, linked to a more lignin rich fiber surface, such as surface molecular entanglements and covalent bonding between fibers through cross-linking of radicals. (C) 2004 Published...

  4. Synthesis of Estolide 2-ethylhexyl Ester from Ricinus communis

    International Nuclear Information System (INIS)

    Nazrizawati Ahmad Tajuddin; Nor Habibah Rosli

    2013-01-01

    Estolide 2-ethylhexyl ester synthesized through condensation reaction between ricinoleic acid from castor oil (Ricinus communis) and lauric acid, and then capped with 2-ethylhexyl alcohol. The reaction was continuously conducted under vacuum for 24 hours. Product of 2-ethylhexyl ester was characterized by using Fourier Transform Infrared (FTIR) to determine functional group and Nuclear Magnetic Resonans (NMR) for structure's determination. The presence of ester group at 1738.23 cm -1 wavenumber indicates that the formation of estolide ester has occurred. The vibration peak of C-O at 1174.60 cm -1 and 1117.10 cm -1 support the formation of ester. The presence of CH 2 bending indicated the long-chain compound. The ester methine signal at 3.8669 ppm indicated the estolide linkage in the 1 H-NMR spectrum while the 13 C-NMR showed two carbonyl signals at 173.41 ppm for acid and 173.56 ppm for ester. (author)

  5. Fullerene-catalyzed reduction of azo derivatives in water under UV irradiation

    KAUST Repository

    Guo, Yong

    2012-09-27

    Metal-free fullerene (C60) was found to be an effective catalyst for the reduction of azo groups in basic aqueous solution under UV irradiation in the presence of NaBH4. Use of NaBH4 by itself is not sufficient to reduce the azo dyes without the assistance of a metal catalyst such as Pd and Ag. Experimental and theoretical results suggest that C 60 catalyzes this reaction by using its vacant orbital to accept the electron in the bonding orbital of azo dyes, which leads to the activation of the N=N bond. UV irradiation increases the ability of C60 to interact with electron-donor moieties in azo dyes. Filling a vacancy: Experimental and theoretical methods have been combined to show that C60-catalyzed reductions of azo compounds form aromatic amines under UV irradiation (see scheme). The obtained results show that C60 acts as an electron acceptor to catalyze the reduction of azo compounds, and the role of UV irradiation is to increase the ability of C60 to interact with electron-donor moieties in azo compounds. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wenning, Leonie; Yu, Tao; David, Florian; Nielsen, Jens; Siewers, Verena

    2017-05-01

    Wax esters (WEs) are neutral lipids and can be used for a broad range of commercial applications, including personal care products, lubricants, or coatings. They are synthesized by enzymatic reactions catalyzed by a fatty acyl reductase (FAR) and a wax ester synthase (WS). At present, commercially used WEs are mainly isolated from Simmondsia chinensis (jojoba), but the high extraction costs and limited harvest areas constrain their use. The use of FARs in combination with different WSs to achieve a synthesis of jojoba-like WEs in bacteria and yeast has been reported previously, but the products were restricted to C28-C36 WEs. These rather short WEs make up only a very small percentage of the total WEs in natural jojoba oil. The synthesis of longer chain WEs (up to C44) in Saccharomyces cerevisiae has so far only been achieved after substrate feeding. Here we identified new routes for producing very long-chain fatty alcohols (VLCFOHs) up to a chain length of C22 by heterologous expression of a FAR derived from Apis mellifera (AmFAR1) or Marinobacter aquaeolei VT8 (Maqu_2220) in S. cerevisiae and achieved maximum yields of 3.22 ± 0.36 mg/g cell dry weight (CDW) and 7.84 ± 3.09 mg/g CDW, respectively, after 48 h. Moreover, we enabled the synthesis of jojoba-like WEs up to a chain length of C42, catalyzed by a combination of Maqu_2220 together with the WS from S. chinensis (SciWS) and the S. cerevisiae elongase Elo2p, with a maximum yield of 12.24 ± 3.35 mg/g CDW after 48 h. Biotechnol. Bioeng. 2017;114: 1025-1035. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Enzymatic synthesizing of phytosterol oleic esters.

    Science.gov (United States)

    Pan, Xinxin; Chen, Biqiang; Wang, Juan; Zhang, Xinzhi; Zhul, Biyun; Tan, Tianwei

    2012-09-01

    A method of synthesizing the phytosterol esters from oleic acid and sterols was studied, using immobilized lipase Candida sp. 99-125 as catalyst. Molar ratio (oleic acid/phytosterols), temperature, reaction period, organic solvents, catalyst, and silica-gel drier were optimized, and the result showed that 93.4% of the sterols had been esterified under the optimal synthetic condition: the molar ratio of oleic acid/phytosterol is 1:1 in 10 mL iso-octane, immobilized lipase (w, 140% of the sterols), incubated in an orbital shaker (200 rpm) at a temperature of 45 °C for 24 h. The immobilized lipase could be reused for at least 13 times with limited loss of esterification activity. The conversion still maintained up to 86.6%. Hence, this developed process for synthesizing phytosterol esters could be considered as simple and low-energy consumption compared to existing chemical processes.

  8. Atmospheric oxidation of selected alcohols and esters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Cavalli, F.

    2001-03-01

    The decision whether it is appropriate and beneficial for the environment to deploy specific oxygenated organic compounds as replacements for traditional solvent types requires a quantitative assessment of their potential atmospheric impacts including tropospheric ozone and other photooxidant formation. This involves developing chemical mechanisms for the gasphase atmospheric oxidation of the compounds which can be reliably used in models to predict their atmospheric reactivity under a variety of environmental conditions. Until this study, there was very little information available concerning the atmospheric fate of alcohols and esters. The objectives of this study were to measure the atmospheric reaction rates and to define atmospheric reaction mechanisms for the following selected oxygenated volatile organic compounds: the alcohols, 1-butanol and 1-pentanol, and the esters, methyl propionate and dimethyl succinate. The study has successfully addressed these objectives. (orig.)

  9. Naturally occurring antifungal aromatic esters and amides

    International Nuclear Information System (INIS)

    Ali, M.S.; Shahnaz; Tabassum, S.; Ogunwande, I.A.; Pervez, M.K.

    2010-01-01

    During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

  10. The design, synthesis, and characterization of poly(carbonate-ester)s based on dihydroxyacetone for use as potential biomaterials

    Science.gov (United States)

    Weiser, Jennifer Rose

    The creation of new devices and materials with desirable biomedical characteristics, such as biocompatibility and easily tunable physico-chemical parameters, has played a key role in the advancement of the biomedical industry. In recent years, the combination of classical engineering principles with polymer chemistry has led to a wide range of materials that influence the manner in which drugs are delivered, tissues are engineered, and surgery is performed. The work presented in this thesis is focused on the design, synthesis, and characterization of a poly(carbonate-ester) biomaterial based on lactic acid (LA) and a carbonate form of dihydroxyacetone (DHAC) as vehicles for controlled release. The goal of this work was to synthesize a variety of pLAx- co-DHACy copolymers and characterize their behavior to better understand their structure/function relationships. The results show that random copolymers based on dihydroxyacetone and lactic acid are easily and reliably producible, with unique characteristics. In vitro degradation studies showed that the poly(carbonate-ester)s had an unexpected degradation pattern, in that the carbonate bond was more labile to hydrolysis than that of the ester bond. The resulting degradation pattern made from these biomaterials did not appear to have an acidic interior environment, due to a lack of visible viscous core commonly seen with bulk degrading lactic acid based polymers. Due to the insolubility of the poly(carbonate-ester)s, exploration of copolymer degradation was determined by the development of a newly discovered technique to quantify dihydroxyacetone release from the matrix using the bicinchoninic acid assay. Finally, the release kinetics and mechanism from these poly(carbonate-ester)s was studied following the incorporation of two different model proteins, bovine serum albumin and lysozyme. Their release behaviors and activities were analyzed to explore the controlled release capabilities of these materials and to

  11. Influence of ammonium salts on the lipase/esterase activity assay using p-nitrophenyl esters as substrates.

    Science.gov (United States)

    De Yan, Hong; Zhang, Yin Jun; Liu, Hong Cai; Zheng, Jian Yong; Wang, Zhao

    2013-01-01

    p-Nitrophenyl esters with a short-chain carboxylic group, such as p-nitrophenyl acetate (p-NPA) and p-nitrophenyl butyrate (p-NPB), could be effectively hydrolyzed by ammonium salts. p-Nitrophenyl esters were usually used as substrates to assay the lipase/esterase activity. Ammonium sulfate precipitation was often used to purify proteins, and some ammonium salts were usually used as nitrogen sources or inorganic salts for the lipase/esterase production. To study the effect of ammonium salts on the assay of the lipase/esterase activity, the contributing factors of hydrolysis of p-NPA/p-NPB catalyzed by ammonium salts were investigated. The lipase activities were compared in the presence and absence of ammonium sulfate. The hydrolysis reaction could be catalyzed under neutral and alkaline circumstances. The hydrolysis rate increased with the increase in the reaction temperature or the concentration of ammonium ion. When p-NPA was employed as the substrate for the analysis of the lipase/esterase activity, the effect of ammonium sulfate on the analysis could be neutralized by setting a control when the concentration of ammonium sulfate was less than 40% saturation. However, when the concentration of ammonium sulfate increased from 40% to 100% saturation, the enzyme activities decreased about 13-40%, which could not be ignored for accurate analysis of the enzyme activity. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  12. Isolation and characterization of arginine ester hydrolase from Heloderma horridum (beaded lizard) venom.

    Science.gov (United States)

    Nikai, T; Imai, K; Komori, Y; Sugihara, H

    1992-03-01

    1. An arginine ester hydrolase was isolated from Heloderma horridum (beaded lizard) venom by Sephadex G-75, DEAE-Sephacel and Q-Sepharose column chromatography, resulting in 5.4 mg of purified enzyme from 320.0 mg of crude venom. 2. The enzyme was shown to be homogeneous by both SDS and non-SDS disc electrophoresis on polyacrylamide gel at pH 8.3. 3. The enzyme possesses arginine ester hydrolase and transglutaminase-like activities, but did not exhibit clotting activity. 4. Molecular weight was determined to be ca 29 kDa, with an isoelectric point of 4.4. 5. The enzyme was stable to heat treatment (95 degrees C, 10 min) and to pH changes over the range 2-11. 6. The arginine ester hydrolase was inactivated by diisopropylfluorophosphate (DFP), beta-mercaptoethanol and N-bromosuccinimide, suggesting that serine, disulfide bonds and tryptophan are involved in enzymatic activity. 7. Amino terminal sequences were determined and appear to be similar to porcine pancreatic kallikrein.

  13. Substituted Caffeic and Ferulic Acid Phenethyl Esters: Synthesis, Leukotrienes Biosynthesis Inhibition, and Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Pier Morin

    2017-07-01

    Full Text Available Glioblastoma multiforme (GBM is an aggressive brain tumor that correlates with short patient survival and for which therapeutic options are limited. Polyphenolic compounds, including caffeic acid phenethyl ester (CAPE, 1a, have been investigated for their anticancer properties in several types of cancer. To further explore these properties in brain cancer cells, a series of caffeic and ferulic acid esters bearing additional oxygens moieties (OH or OCH3 were designed and synthesized. (CAPE, 1a, but not ferulic acid phenethyl ester (FAPE, 1b, displayed substantial cytotoxicity against two glioma cell lines. Some but not all selected compounds derived from both (CAPE, 1a and (FAPE, 1b also displayed cytotoxicity. All CAPE-derived compounds were able to significantly inhibit 5-lipoxygenase (5-LO, however FAPE-derived compounds were largely ineffective 5-LO inhibitors. Molecular docking revealed new hydrogen bonds and π-π interactions between the enzyme and some of the investigated compounds. Overall, this work highlights the relevance of exploring polyphenolic compounds in cancer models and provides additional leads in the development of novel therapeutic strategies in gliomas.

  14. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.

    Science.gov (United States)

    Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar

    2017-08-07

    This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  16. Face selective reduction of the exocyclic double bond in isatin derived spirocyclic lactones†

    OpenAIRE

    Rana, Sandeep; Natarajan, Amarnath

    2012-01-01

    We report an unusual face selective reduction of the exocyclic double bond in the α-methylene-γ-butyrolactone motif of spiro-oxindole systems. The spiro-oxindoles were assembled by an indium metal mediated Barbier-type reaction followed by an acid catalyzed lactonization.

  17. Methyl and ethyl soybean esters production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Park, Kil Jin; Zorzeto, Thais Queiroz [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Biodiesel is a fuel obtained from triglycerides found in nature, like vegetable oils and animal fats. Nowadays it has been the subject of many researches impulses by the creation of the Brazilian law that determined the blend of 2% of biodiesel with petrodiesel. Basically, there are no limitations on the oilseed type for chemical reaction, but due to high cost of this major feedstock, it is important to use the grain that is available in the region of production. Soybean is the oilseed mostly produced in Brazil and its oil is the only one that is available in enough quantity to supply the current biodiesel demand. The objective of this work was to study the effects of reaction time and temperature on soybean oil transesterification reaction with ethanol and methanol. A central composite experimental design with five variation levels was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that none of the factors affected the ethyl esters production. However, the methyl esters production suffered the influence of temperature (linear effect), reaction time (linear and quadratic) and interaction of these two variables. None of the generated models showed significant regression consequently it was not possible to build the response surface. The experiments demonstrated that methanol is the best alcohol for transesterification reactions and the ester yield was up to 85%. (author)

  18. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    Science.gov (United States)

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.

  19. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions and sulfonamide groups.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2010-01-01

    Temperature-dependent rate constants were estimated for the acid- and base-catalyzed and neutral hydrolysis reactions of perfluorinated telomer acrylates (FTAcrs) and phosphate esters (FTPEs), and the S(N)1 and S(N)2 hydrolysis reactions of fluorotelomer iodides (FTIs). Under some environmental conditions, hydrolysis of monomeric FTAcrs could be rapid (half-lives of several years in marine systems and as low as several days in some landfills) and represent a dominant portion of their overall degradation. Abiotic hydrolysis of monomeric FTAcrs may be a significant contributor to current environmental loadings of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Polymeric FTAcrs are expected to be hydrolyzed more slowly, with estimated half-lives in soil and natural waters ranging between several centuries to several millenia absent additional surface area limitations on reactivity. Poor agreement was found between the limited experimental data on FTPE hydrolysis and computational estimates, requiring more detailed experimental data before any further modeling can occur on these compounds or their perfluoroalkyl sulfonamidoethanol phosphate ester (PFSamPE) analogs. FTIs are expected to have hydrolytic half-lives of about 130 days in most natural waters, suggesting they may be contributing to substantial FTOH and PFCA inputs in aquatic systems. Perfluoroalkyl sulfonamides (PFSams) appear unlikely to undergo abiotic hydrolysis at the S-N, C-S, or N-C linkages under environmentally relevant conditions, although potentially facile S-N hydrolysis via intramolecular catalysis by ethanol and acetic acid amide substituents warrants further investigation.

  20. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    KAUST Repository

    Urban, Jiří T.

    2011-09-26

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. © 2011 Wiley Periodicals, Inc.

  1. Chemical synthesis of an indomethacin ester prodrug and its metabolic activation by human carboxylesterase 1.

    Science.gov (United States)

    Takahashi, Masato; Ogawa, Tomohiro; Kashiwagi, Hiroshi; Fukushima, Fumiya; Yoshitsugu, Misaki; Haba, Masami; Hosokawa, Masakiyo

    2018-02-21

    It is necessary to consider the affinity of prodrugs for metabolic enzymes for efficient activation of the prodrugs in the body. Although many prodrugs have been synthesized with consideration of these chemical properties, there has been little study on the design of a structure with consideration of biological properties such as substrate recognition ability of metabolic enzymes. In this report, chemical synthesis and evaluation of indomethacin prodrugs metabolically activated by human carboxylesterase 1 (hCES1) are described. The synthesized prodrugs were subjected to hydrolysis reactions in solutions of human liver microsomes (HLM), human intestine microsomes (HIM) and hCES1, and the hydrolytic parameters were investigated to evaluate the hydrolytic rates of these prodrugs and to elucidate the substrate recognition ability of hCES1. It was found that the hydrolytic rates greatly change depending on the steric hindrance and stereochemistry of the ester in HLM, HIM and hCES1 solutions. Furthermore, in a hydrolysis reaction catalyzed by hCES1, the V max value of n-butyl thioester with chemically high reactivity was significantly lower than that of n-butyl ester. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix.

    Science.gov (United States)

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Taguchi, Tetsushi

    2014-02-01

    Novel techniques for creating a strong bond between polymeric matrices and biometals are required. We immobilized polymeric matrices on the surface of biometal for drug-eluting stents through covalent bond. We performed to improve the bonding strength between a cobalt-chromium alloy and a citric acid-crosslinked gelatin matrix by ultraviolet irradiation on the surface of cobalt-chromium alloy. The ultraviolet irradiation effectively generated hydroxyl groups on the surface of the alloy. The bonding strength between the gelatin matrix and the alloy before ultraviolet irradiation was 0.38 ± 0.02 MPa, whereas it increased to 0.48 ± 0.02 MPa after ultraviolet irradiation. Surface analysis showed that the citric acid derivatives occurred on the surface of the cobalt-chromium alloy through ester bond. Therefore, ester bond formation between the citric acid derivatives active esters and the hydroxyl groups on the cobalt-chromium alloy contributed to the enhanced bonding strength. Ultraviolet irradiation and subsequent immobilization of a gelatin matrix using citric acid derivatives is thus an effective way to functionalize biometal surfaces.

  3. N,N-bis(cyclohexanol)amine aryl esters inhibit P-glycoprotein as transport substrates.

    Science.gov (United States)

    Neri, Annalisa; Frosini, Maria; Valoti, Massimo; Cacace, Marcello G; Teodori, Elisabetta; Sgaragli, Giampietro

    2011-12-15

    P-Glycoprotein (Pgp) inhibition by three sets of four isomers of N,N-bis(cyclohexanol)amine aryl esters was assessed on rhodamine 123 (R123) efflux in human MDR1-gene transfected mouse T-lymphoma L5178 cells and on Sf9 ATPase activity. The most active compounds inhibited Pgp with IC(50) values much lower than those of either cyclosporin A (CSA) or GF120918. As to R123 efflux inhibition, the role of the bond present in the second aryl moiety appeared important since the triple bond derivatives (3a-d) were the most powerful as compared to the double bond (2a-d) and the single bond (1a-d) counterparts. Concentration-inhibition curves of 2c and 3d exhibited a biphasic behaviour suggesting the existence of two binding sites in the recognition domain of Pgp. Persistence of inhibition by these compounds resulted to be intermediate between that caused by CSA and GF120918. R123 exhibited positive interaction with CSA, 1d, 1c, 2d, 2c and 3c, the concentration-inhibition curves being shifted leftward when R123 concentration was increased, while it exhibited negative interaction with 3d and no effect with GF120918. Sf9 ATPase activity was stimulated in an increasing order of potency by 2c, 3c, 2d, CSA, epirubicin and 3d. In a decreasing order of potency 3d, 2c, GF120918, CSA, 2d and 3c inhibited at sub-nanomolar concentrations epirubicin-stimulated ATPase activity. In conclusion, isomeric geometry and restriction of molecular flexibility of N,N-bis(cyclohexanol)amine aryl esters were crucial for their presentation to and inhibition of Pgp as transport substrates, R123 and epirubicin cooperating with them to this inhibition. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Bryan R.; Vaughn, Steven F. [United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604 (United States)

    2010-04-15

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g{sup -1}. The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm{sup 2} s{sup -1} (40 C), and 14.6 h (110 C). The cold filter plugging and pour points were -15 C and -19 C, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition. (author)

  5. Coriander seed oil methyl esters as biodiesel fuel: Unique fatty acid composition and excellent oxidative stability

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2010-01-01

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt%) acid. Most of the remaining fatty acid profile consisted of common 18 carbon constituents such as linoleic (9Z,12Z-octadeca-dienoic; 13.0 wt%), oleic (9Z-octadecenoic; 7.6 wt%) and stearic (octadecanoic; 3.1 wt%) acids. A standard transesterification procedure with methanol and sodium methoxide catalyst was used to provide C. sativum oil methyl esters (CSME). Acid-catalyzed pretreatment was necessary beforehand to reduce the acid value of the oil from 2.66 to 0.47 mg g -1 . The derived cetane number, kinematic viscosity, and oxidative stability (Rancimat method) of CSME was 53.3, 4.21 mm 2 s -1 (40 o C), and 14.6 h (110 o C). The cold filter plugging and pour points were -15 o C and -19 o C, respectively. Other properties such as acid value, free and total glycerol content, iodine value, as well as sulfur and phosphorous contents were acceptable according to the biodiesel standards ASTM D6751 and EN 14214. Also reported are lubricity, heat of combustion, and Gardner color, along with a comparison of CSME to soybean oil methyl esters (SME). CSME exhibited higher oxidative stability, superior low temperature properties, and lower iodine value than SME. In summary, CSME has excellent fuel properties as a result of its unique fatty acid composition.

  6. Mechanistic studies of copper(I)-catalyzed 1,3-halogen migration.

    Science.gov (United States)

    Van Hoveln, Ryan; Hudson, Brandi M; Wedler, Henry B; Bates, Desiree M; Le Gros, Gabriel; Tantillo, Dean J; Schomaker, Jennifer M

    2015-04-29

    An ongoing challenge in modern catalysis is to identify and understand new modes of reactivity promoted by earth-abundant and inexpensive first-row transition metals. Herein, we report a mechanistic study of an unusual copper(I)-catalyzed 1,3-migration of 2-bromostyrenes that reincorporates the bromine activating group into the final product with concomitant borylation of the aryl halide bond. A combination of experimental and computational studies indicated this reaction does not involve any oxidation state changes at copper; rather, migration occurs through a series of formal sigmatropic shifts. Insight provided from these studies will be used to expand the utility of aryl copper species in synthesis and develop new ligands for enantioselective copper-catalyzed halogenation.

  7. Rhodium(III)- and iridium(III)-catalyzed C7 alkylation of indolines with diazo compounds.

    Science.gov (United States)

    Ai, Wen; Yang, Xueyan; Wu, Yunxiang; Wang, Xuan; Li, Yuanchao; Yang, Yaxi; Zhou, Bing

    2014-12-22

    A Rh(III)-catalyzed procedure for the C7-selective C-H alkylation of various indolines with α-diazo compounds at room temperature is reported. The advantages of this process are: 1) simple, mild, and pH-neutral reaction conditions, 2) broad substrate scope, 3) complete regioselectivity, 4) no need for an external oxidant, and 5) N2 as the sole byproduct. Furthermore, alkylation and bis-alkylation of carbazoles at the C1 and C8 positions have also been developed. More significantly, for the first time, a successful Ir(III)-catalyzed intermolecular insertion of arene C-H bonds into α-diazo compounds is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions

    Science.gov (United States)

    2016-01-01

    Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts. PMID:27689804

  9. Production of fatty acid butyl esters using the low cost naturally immobilized Carica papaya lipase.

    Science.gov (United States)

    Su, Erzheng; Wei, Dongzhi

    2014-07-09

    In this work, the low cost naturally immobilized Carica papaya lipase (CPL) was investigated for production of fatty acid butyl esters (FABE) to fulfill the aim of reducing the lipase cost in the enzymatic butyl-biodiesel process. The CPL showed specificities to different alcohol acyl acceptors. Alcohols with more than three carbon atoms did not have negative effects on the CPL activity. The CPL catalyzed butanolysis for FABE production was systematically investigated. The reaction solvent, alcohol/oil molar ratio, enzyme amount, reaction temperature, and water activity all affected the butanolysis process. Under the optimized conditions, the highest conversion of 96% could be attained in 24 h. These optimal conditions were further applied to CPL catalyzed butanolysis of other vegetable oils. All of them showed very high conversion. The CPL packed-bed reactor was further developed, and could be operated continuously for more than 150 h. All of these results showed that the low cost Carica papaya lipase can be used as a promising lipase for biodiesel production.

  10. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  11. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.

    Science.gov (United States)

    Zhang, Pan; Ni, Shao-Fei; Dang, Li

    2016-09-20

    The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2 PCH2 CH2 PMe2 ), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2 PCH2 CH2 CH2 PMe2 ), together with a more electron-withdrawing diphosphine ligand, PN(Me) P (Me2 PCH2 N(Me) CH2 PMe2 ), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cis-trans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru-H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru-H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cis-trans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PN(Me) PRu complex, cis-trans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cis-trans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition-metal-catalyzed CO2 transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recent advances in the ruthenium(ii)-catalyzed chelation-assisted C-H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2017-08-08

    The transition-metal-catalyzed chelation-assisted alkenylation at the inert C-H bond of aromatics with alkenes is one of the efficient methods to synthesize substituted vinylarenes in a highly regio- and stereoselective manner. Palladium, rhodium and ruthenium complexes are frequently used as catalysts for this type of transformation. The present review describes the recent advances in the ruthenium-catalyzed chelation-assisted alkenylation at the C-H bond of aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway. Several directing groups including 2-pyridyl, carbonyl, amidine, amide, amine, imidate, sulphonic acid, triazole, cyano, oxazolidinone and hydontoin are widely used in the reaction. The scope, limitation and mechanistic investigation of the alkenylation reactions are discussed elaborately. This feature article includes all the reported ruthenium-catalyzed alkenylation reactions via the deprotonation pathway until the end of March 2017.

  13. Synthesis of 2,3-Benzodiazepines via Rh(III)-Catalyzed C-H Functionalization of N-Boc Hydrazones with Diazoketoesters.

    Science.gov (United States)

    Wang, Jie; Wang, Lili; Guo, Shan; Zha, Shanke; Zhu, Jin

    2017-07-07

    An efficient Rh(III)-catalyzed C-H activation protocol has been developed for the synthesis of 2,3-benzodiazepines with use of N-Boc hydrazones and diazoketoesters as substrates. The reaction features retention of the C═N and N-N bonds and selective cleavage of the N-Boc moiety.

  14. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun

    2016-01-12

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shape Bonding method

    Science.gov (United States)

    Pontius, James T. (Inventor)

    2010-01-01

    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  16. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  17. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...... bonds. The purpose is further to analyse the tax consequences of issuing bonds in both a direct issue of bonds and through securitization....

  18. Lipase-Catalyzed Kinetic Resolution of Novel Antifungal N-Substituted Benzimidazole Derivatives.

    Science.gov (United States)

    Łukowska-Chojnacka, Edyta; Staniszewska, Monika; Bondaryk, Małgorzata; Maurin, Jan K; Bretner, Maria

    2016-04-01

    A series of new N-substituted benzimidazole derivatives was synthesized and their antifungal activity against Candida albicans was evaluated. The chemical step included synthesis of appropriate ketones containing benzimidazole ring, reduction of ketones to the racemic alcohols, and acetylation of alcohols to the esters. All benzimidazole derivatives were obtained with satisfactory yields and in relatively short times. All synthesized compounds exhibit significant antifungal activity against Candida albicans 900028 ATCC (% cell inhibition at 0.25 μg concentration > 98%). Additionally, racemic mixtures of alcohols were separated by lipase-catalyzed kinetic resolution. In the enzymatic step a transesterification reaction was applied and the influence of a lipase type and solvent on the enantioselectivity of the reaction was studied. The most selective enzymes were Novozyme SP 435 and lipase Amano AK from Pseudomonas fluorescens (E > 100). © 2016 Wiley Periodicals, Inc.

  19. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    DEFF Research Database (Denmark)

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter

    2017-01-01

    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group...... in the para position or a cyano group in the ortho position. A range of other substituents gave no conversion of the aryl halide or led to the formation of side products. A broader scope was observed for the Grignard reagents, where a variety of alkyl- and arylmagnesium chlorides participated in the coupling....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  20. Palladium-Catalyzed Asymmetric Allylic Allylation of Racemic Morita-Baylis-Hillman Adducts.

    Science.gov (United States)

    Wang, Xubin; Wang, Xiaoming; Han, Zhaobin; Wang, Zheng; Ding, Kuiling

    2017-01-19

    A palladium-catalyzed asymmetric allyl-allyl cross-coupling of acetates of racemic Morita-Baylis-Hillman adducts and allylB(pin) has been developed using a spiroketal-based bis(phosphine) as the chiral ligand, thus affording a series of chiral 1,5-dienes bearing a vinylic ester functionality in good yields, high branched regioselectivities, and uniformly excellent enantioselectivities (95-99 % ee). Further synthetic manipulations of the allylation products provided novel ways for rapid access to a range of chiral polycyclic lactones and polycyclic lactams, as well as the antidepressant drug (-)-Paroxetine, in high optical purities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol.

    Science.gov (United States)

    Zhang, Ting; Zhou, Yujie; Liu, Dehua; Petrus, Leo

    2007-05-01

    Bagasse was liquefied in ethylene glycol (EG) catalyzed by sulfuric acid at 190 degrees C under atmospheric pressure. The compositions of the crude products obtained were analyzed after separating them into three fractions: a water-soluble fraction, an acetone-soluble fraction and a residue. With infrared, gel permeation chromatography and elemental analyses, the residue mainly included undissolved cellulose and lignin derivatives and the acetone-soluble fraction mainly contained lignin degradation products with high molecular weights. The water-soluble fraction, after further analyzed by GC-MS and HPLC, showed EG, diethylene glycol, EG derivatives, saccharides, alcohols, aldehydes, ketones, phenols, especially some acids such as formic acid, levulinic acid, acetic acid, oxalic acid and 2-hydroxy-butyric acid and their esters. The Higher Heating Value (HHV) of the residue and the acetone-soluble fractions were higher than that of bagasse. The results showed that some useful chemicals and biofuels could be obtained by this process.

  2. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    Science.gov (United States)

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The biosynthesis of hydroxycinnamoyl quinate esters and their role in the storage of cocaine in Erythroxylum coca.

    Science.gov (United States)

    Torre, José Carlos Pardo; Schmidt, Gregor W; Paetz, Christian; Reichelt, Michael; Schneider, Bernd; Gershenzon, Jonathan; D'Auria, John C

    2013-07-01

    Complexation of alkaloids is an important strategy plants utilize to facilitate storage in vacuoles and avoid autotoxicity. Previous studies have implicated hydroxycinnamoyl quinate esters in the complexation of purine alkaloids in Coffea arabica. The goal of this study was to determine if Erythroxylum coca uses similar complexation agents to store abundant tropane alkaloids, such as cocaine and cinnamoyl cocaine. Metabolite analysis of various E. coca organs established a close correlation between levels of coca alkaloids and those of two hydroxycinnamoyl esters of quinic acid, chlorogenic acid and 4-coumaroyl quinate. The BAHD acyltransferase catalyzing the final step in hydroxycinnamoyl quinate biosynthesis was isolated and characterized, and its gene expression found to correlate with tropane alkaloid accumulation. A physical interaction between chlorogenic acid and cocaine was observed and quantified in vitro using UV and NMR spectroscopic methods yielding similar values to those reported for a caffeine chlorogenate complex in C. arabica. These results suggest that storage of cocaine and other coca alkaloids in large quantities in E. coca involves hydroxycinnamoyl quinate esters as complexation partners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  5. Homogenous Pd-catalyzed asymmetric hydrogenation of unprotected indoles: scope and mechanistic studies.

    Science.gov (United States)

    Duan, Ying; Li, Lu; Chen, Mu-Wang; Yu, Chang-Bin; Fan, Hong-Jun; Zhou, Yong-Gui

    2014-05-28

    An efficient palladium-catalyzed asymmetric hydrogenation of a variety of unprotected indoles has been developed that gives up to 98% ee using a strong Brønsted acid as the activator. This methodology was applied in the facile synthesis of biologically active products containing a chiral indoline skeleton. The mechanism of Pd-catalyzed asymmetric hydrogenation was investigated as well. Isotope-labeling reactions and ESI-HRMS proved that an iminium salt formed by protonation of the C═C bond of indoles was the significant intermediate in this reaction. The important proposed active catalytic Pd-H species was observed with (1)H NMR spectroscopy. It was found that proton exchange between the Pd-H active species and solvent trifluoroethanol (TFE) did not occur, although this proton exchange had been previously observed between metal hydrides and alcoholic solvents. Density functional theory calculations were also carried out to give further insight into the mechanism of Pd-catalyzed asymmetric hydrogenation of indoles. This combination of experimental and theoretical studies suggests that Pd-catalyzed hydrogenation goes through a stepwise outer-sphere and ionic hydrogenation mechanism. The activation of hydrogen gas is a heterolytic process assisted by trifluoroacetate of Pd complex via a six-membered-ring transition state. The reaction proceeds well in polar solvent TFE owing to its ability to stabilize the ionic intermediates in the Pd-H generation step. The strong Brønsted acid activator can remarkably decrease the energy barrier for both Pd-H generation and hydrogenation. The high enantioselectivity arises from a hydrogen-bonding interaction between N-H of the iminium salt and oxygen of the coordinated trifluoroacetate in the eight-membered-ring transition state for hydride transfer, while the active chiral Pd complex is a typical bifunctional catalyst, effecting both the hydrogenation and hydrogen-bonding interaction between the iminium salt and the coordinated

  6. Aerobic Pd-Catalyzed sp3 C–H Olefination: A Route to Both N-Heterocyclic Scaffolds and Alkenes

    Science.gov (United States)

    Stowers, Kara J.; Fortner, Kevin C.

    2011-01-01

    This communication describes a new method for the Pd/polyoxometalate-catalyzed aerobic olefination of unactivated sp3 C–H bonds. Nitrogen heterocycles serve as directing groups, and air is used as the terminal oxidant. The products undergo reversible intramolecular Michael addition, which protects the mono-alkenylated product from over-functionalization. Hydrogenation of the Michael adducts provides access to bicyclic nitrogen-containing scaffolds that are prevalent in alkaloid natural products. Additionally, the cationic Michael adducts undergo facile elimination to release α,β-unsaturated olefins, which can be elaborated in numerous C–C and C–heteroatom bond-forming reactions. PMID:21476513

  7. Iodine-catalyzed regioselective thiolation of imidazo[1,2-a]pyridines using sulfonyl hydrazides as a thiol surrogate.

    Science.gov (United States)

    Bagdi, Avik Kumar; Mitra, Shubhanjan; Ghosh, Monoranjan; Hajra, Alakananda

    2015-03-21

    Iodine-catalyzed regioselective sulfenylation of imidazo[1,2-a]pyridines via C(sp(2))-H bond functionalization has been achieved using sulfonyl hydrazides as a thiol surrogate. A library of 3-sulfanylimidazopyridines with broad functionalities was synthesized under metal and oxidant-free practical reaction conditions. This methodology is also applicable for the regioselective sulfenylation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole.

  8. Oxidant-free Rh(III)-catalyzed direct C-H olefination of arenes with allyl acetates.

    Science.gov (United States)

    Feng, Chao; Feng, Daming; Loh, Teck-Peng

    2013-07-19

    Rh(III)-catalyzed direct olefination of arenes with allyl acetate via C-H bond activation is described using N,N-disubstituted aminocarbonyl as the directing group. The catalyst undergoes a redox neutral process, and high to excellent yields of trans-products are obtained. This protocol exhibits a wide spectrum of functionality compatibility because of the simple reaction conditions employed and provides a highly effective synthetic method in the realm of C-H olefination.

  9. Enantioselective Direct Mannich-Type Reactions Catalyzed by Frustrated Lewis Acid/Brønsted Base Complexes.

    Science.gov (United States)

    Shang, Ming; Cao, Min; Wang, Qifan; Wasa, Masayuki

    2017-10-16

    An enantioselective direct Mannich-type reaction catalyzed by a sterically frustrated Lewis acid/Brønsted base complex is disclosed. Cooperative functioning of the chiral Lewis acid and achiral Brønsted base components gives rise to in situ enolate generation from monocarbonyl compounds. Subsequent reaction with hydrogen-bond-activated aldimines delivers β-aminocarbonyl compounds with high enantiomeric purity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mutagenic activity of phthalate esters in bacterial liquid suspension assays.

    OpenAIRE

    Seed, J L

    1982-01-01

    The mutagenic activities of several phthalate esters have been evaluated in an 8-azaguanine resistance assay in Salmonella typhimurium. Three phthalate esters were found to be mutagenic: dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate. A number of other phthalate esters were not found to be mutagenic, including di(2-ethylhexyl) phthalate, di-n-octyl phthalate, diallyl phthalate, diisobutyl phthalate and diisodecyl phthalate. A metabolite of di(2-ethylhexyl) phthalate, 2-ethylhe...

  11. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation.

    Science.gov (United States)

    Saerens, S M G; Delvaux, F; Verstrepen, K J; Van Dijck, P; Thevelein, J M; Delvaux, F R

    2008-01-01

    Volatile esters are responsible for the fruity character of fermented beverages and thus constitute a vital group of aromatic compounds in beer and wine. Many fermentation parameters are known to affect volatile ester production. In order to obtain insight into the production of ethyl esters during fermentation, we investigated the influence of several fermentation variables. A higher level of unsaturated fatty acids in the fermentation medium resulted in a general decrease in ethyl ester production. On the other hand, a higher fermentation temperature resulted in greater ethyl octanoate and decanoate production, while a higher carbon or nitrogen content of the fermentation medium resulted in only moderate changes in ethyl ester production. Analysis of the expression of the ethyl ester biosynthesis genes EEB1 and EHT1 after addition of medium-chain fatty acid precursors suggested that the expression level is not the limiting factor for ethyl ester production, as opposed to acetate ester production. Together with the previous demonstration that provision of medium-chain fatty acids, which are the substrates for ethyl ester formation, to the fermentation medium causes a strong increase in the formation of the corresponding ethyl esters, this result further supports the hypothesis that precursor availability has an important role in ethyl ester production. We concluded that, at least in our fermentation conditions and with our yeast strain, the fatty acid precursor level rather than the activity of the biosynthetic enzymes is the major limiting factor for ethyl ester production. The expression level and activity of the fatty acid biosynthetic enzymes therefore appear to be prime targets for flavor modification by alteration of process parameters or through strain selection.

  12. Isolation and identification of an ester from a crude oil

    Science.gov (United States)

    Phillips, H.F.; Breger, I.A.

    1958-01-01

    A dioctylphthalate has been isolated from a crude oil by means of adsorption column chromatography. The ester was identified by means of elemental analysis, refractive index, and its infra-red absorption spectrum. Saponification of the isolate and examination of the resultant alcohol by means of infrared absorption spectra led to the conclusion that the ester is a branched chain dioctylphthalate. This is the first reported occurrence of an ester in crude petroleum. ?? 1958.

  13. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Energy Technology Data Exchange (ETDEWEB)

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  14. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    Science.gov (United States)

    Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  15. Pd(II)-Catalyzed C–H Functionalizations Directed by Distal Weakly Coordinating Functional Groups

    Science.gov (United States)

    Li, Gang; Wan, Li; Zhang, Guofu; Leow, Dasheng; Spangler, Jillian

    2015-01-01

    Ortho-C(sp2)–H olefination and acetoxylation of broadly useful synthetic building blocks phenylacetyl Weinreb amides, esters, and ketones are developed without installing an additional directing group. The interplay between the distal weak coordination and the ligand-acceleration is crucial for these reactions to proceed under mild conditions. The tolerance of longer distance between the target C–H bonds and the directing functional groups also allows for the functionalizations of more distal C–H bonds in hydrocinnamoyl ketones, Weinreb amides and biphenyl Weinreb amides. Mechanistically, the coordination of these carbonyl groups and the bisdentate amino acid ligand with Pd(II) centers provides further evidence for our early hypothesis that the carbonyl groups of the potassium carboxylate is responsible for the directed C–H activation of carboxylic acids. PMID:25768039

  16. Emission and Mechanical Evaluations of Vinyl-Ester Resin Systems

    National Research Council Canada - National Science Library

    Sands, James

    2003-01-01

    Vinyl-ester resins (VE) are frequently used in liquid molding of composite materials for several applications including naval and army structures, commercial boat manufacturing, and building construction...

  17. A novel thermooxidatively stable poly(ester-imide-benzoxazole)

    Energy Technology Data Exchange (ETDEWEB)

    Sundar, R.A.; Mathias, L.J. [Univ. of Sothern Mississippi, Hattiesburg, MS (United States)

    1993-12-31

    A poly(ester-amide-imide) was synthesized by the low temperature solution polycondensation of 4-amino-5-hydroxy-N,4{prime}-hydroxyphenyl phthalimide with isophthaloyl chloride. Subsequent thermal cyclodehydration of the poly(ester-amide-imide) at 320{degrees}C in vacuum afforded the poly(ester-imide-benzoxazole). This polymer was only soluble in sulfuric acid. FTIR and NMR spectra confirmed structure. The poly(ester-imide-benzoxazole) had no detectable thermal transitions up to 500{degrees}C in nitrogen, and was reasonably stable in air and nitrogen, with weight retentions of 95% at 500{degrees}C.

  18. Investigation of bifunctional ester additives for methanol-gasoline system

    International Nuclear Information System (INIS)

    Zhang, J.; Yang, C.; Tang, Y.; Du, Q.; Song, N.; Zhang, Z.

    2014-01-01

    To explore new and multifunctional additives for methanol-gasoline, tartaric ester were synthesized and screened as phase stabilizer and saturation vapor pressure depressor for methanol-gasoline. The effect of the esters structure on the efficiency was discussed. The results show that the stabilities of the blends depend on the length of the glycolic esters alkoxy group. In addition, the tartaric esters also can depress the saturation vapor pressure of methanol-gasoline effectively in M15. Effect of the structure on the efficiency was also discussed. (author)

  19. Modification of Purine and Pyrimidine Nucleosides by Direct C-H Bond Activation

    Directory of Open Access Journals (Sweden)

    Yong Liang

    2015-03-01

    Full Text Available Transition metal-catalyzed modifications of the activated heterocyclic bases of nucleosides as well as DNA or RNA fragments employing traditional cross-coupling methods have been well-established in nucleic acid chemistry. This review covers advances in the area of cross-coupling reactions in which nucleosides are functionalized via direct activation of the C8-H bond in purine and the C5-H or C6-H bond in uracil bases. The review focuses on Pd/Cu-catalyzed couplings between unactivated nucleoside bases with aryl halides. It also discusses cross-dehydrogenative arylations and alkenylations as well as other reactions used for modification of nucleoside bases that avoid the use of organometallic precursors and involve direct C-H bond activation in at least one substrate. The scope and efficiency of these coupling reactions along with some mechanistic considerations are discussed.

  20. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  1. Muon catalyzed fusion under compressive conditions

    International Nuclear Information System (INIS)

    Cripps, G.; Goel, B.; Harms, A.A.

    1991-01-01

    The viability of a symbiotic combination of Muon Catalyzed Fusion (μCF) and high density generation processes has been investigated. The muon catalyzed fusion reaction rates are formulated in the temperature and density range found under moderate compressive conditions. Simplified energy gain and power balance calculations indicate that significant energy gain occurs only if standard type deuterium-tritium (dt) fusion is ignited. A computer simulation of the hydrodynamics and fusion kinetics of a spherical deuterium-tritium pellet implosion including muons is performed. Using the muon catalyzed fusion reaction rates formulated and under ideal conditions, the pellet ignites (and thus has a significant energy gain) only if the initial muon concentration is approximately 10 17 cm -3 . The muons need to be delivered to the pellet within a very short-time (≅ 1 ns). The muon pulse required in order to make the high density and temperature muon catalyzed fusion scheme viable is beyond the present technology for muon production. (orig.) [de

  2. Tandem transformation of glycerol to esters.

    Science.gov (United States)

    Sotenko, Maria V; Rebroš, Martin; Sans, Victor S; Loponov, Konstantin N; Davidson, Matthew G; Stephens, Gill; Lapkin, Alexei A

    2012-12-31

    Tandem transformation of glycerol via microbial fermentation and enzymatic esterification is presented. The reaction can be performed with purified waste glycerol from biodiesel production in a continuous mode, combining continuous fermentation with membrane-supported enzymatic esterification. Continuous anaerobic fermentation was optimized resulting in the productivity of 2.4 g L⁻¹ h⁻¹ of 1,3-propanediol. Biphasic esterification of 1,3-propanediol was optimized to achieve ester yield of up to 75%. A hollow fibre membrane contactor with immobilized Rhizomucor miehei lipase was demonstrated for the continuous tandem fermentation-esterification process. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  4. Palladium-catalysed arylation of acetoacetate esters to yield 2-arylacetic acid esters

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2004-05-24

    Full Text Available The coupling reaction between ethyl acetoacetate and a number of aryl halides in the presence of palladium acetate, a bulky and electron rich phosphine and K3PO4 is described. The arylated acetoacetate ester is de-acylated under the reaction...

  5. Rhodium(III)-Catalyzed Imidoyl C-H Activation for Annulations to Azolopyrimidines.

    Science.gov (United States)

    Halskov, Kim Søholm; Witten, Michael R; Hoang, Gia L; Mercado, Brandon Q; Ellman, Jonathan A

    2018-03-27

    Azolopyrimidines are efficiently prepared by direct imidoyl C-H bond activation. Annulations of N-azolo imines with sulfoxonium ylides and diazoketones under redox-neutral conditions and alkynes under oxidizing conditions provide products with various arrangements of nitrogen atoms and carbon substituents. We have also probed the mechanism of this first example of Rh(III)-catalyzed direct imidoyl C-H activation by structural characterization of a catalytically competent rhodacycle obtained after C-H activation and by kinetic isotope effects.

  6. Transition-Metal-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation: Sustainable Chemistry to Access Bioactive Molecules.

    Science.gov (United States)

    Ayad, Tahar; Phansavath, Phannarath; Ratovelomanana-Vidal, Virginie

    2016-12-01

    Over the last few decades, the development of new and highly efficient synthetic methods to obtain chiral compounds has become an increasingly important and challenging research area in modern synthetic organic chemistry. In this account, we review recent work from our laboratory toward the synthesis of valuable chiral building blocks through transition-metal-catalyzed asymmetric hydrogenation and transfer hydrogenation of C=O, C=N and C=C bonds. Application to the synthesis of biologically relevant products is also described. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Iridium- and Ruthenium-Catalyzed N-alkylation of Amines with Alcohols and Amines

    DEFF Research Database (Denmark)

    Lorentz-Petersen, Linda Luise Reeh

    Many biologically active molecules contain one or more nitrogen atoms. Consequently, CN bond formation is a crucial area in the development of pharmaceuticals. The main part of this thesis is devoted to environmentally benign syntheses of different nitrogen scaffolds. Iridium and ruthenium...... experiments of the iridium catalyzed reactions revealed that the Voigt isomerization of the α-imino alcohol intermediate to the corresponding α-imino ketone plays a significant role. Synthesis of indoles Anilines and vicinal diols were reacted in the presence of a ruthenium complex (RuCl3 with PPh3...

  8. Lipase-Catalyzed Transesterification of Rapeseed Oil for Biodiesel Production with tert-Butanol

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    Biodiesel is a fatty acid alkyl ester that can be derived from any vegetable oil or animal fat via the process of transesterification. It is a renewable, biodegradable, and nontoxic fuel. In this paper, we have evaluated the efficacy of a transesterification process for rapeseed oil with methanol in the presence of an enzyme and tert-butanol, which is added to ameliorate the negative effects associated with excess methanol. The application of Novozym 435 was determined to catalyze the transesterification process, and a conversion of 76.1% was achieved under selected conditions (reaction temperature 40 °C, methanol/oil molar ratio 3:1, 5% (w/w) Novozym 435 based on the oil weight, water content 1% (w/w), and reaction time of 24h). It has also been determined that rapeseed oil can be converted to fatty acid methyl ester using this system, and the results of this study contribute to the body of basic data relevant to the development of continuous enzymatic processes.

  9. Revised Theoretical Model on Enantiocontrol in Phosphoric Acid Catalyzed H-Transfer Hydrogenation of Quinoline.

    Science.gov (United States)

    Pastor, Julien; Rezabal, Elixabete; Voituriez, Arnaud; Betzer, Jean-François; Marinetti, Angela; Frison, Gilles

    2018-03-02

    The enantioselective H-transfer hydrogenation of quinoline by Hantzsch ester is a relevant example of Brønsted acid catalyzed cascade reactions, with phosphoric acid being a privileged catalyst. The generally accepted mechanism points out the hydride transfer step as the rate- and stereodetermining step, however computations based on these models do not totally fit with experimental observations. We hereby present a computational study that enlightens the stereochemical outcome and quantitatively reproduces the experimental enantiomeric excesses in a series of H-transfer hydrogenations. Our calculations suggest that the high stereocontrol usually attained with BINOL-derived phosphoric acids results mostly from the steric constraints generated by an aryl substituent of the catalyst, which hinders the access of the Hantzsch ester to the catalytic site and enforces approach through a specific way. It relies on a new model involving the preferential assembly of one of the stereomeric complexes formed by the chiral phosphoric acid and the two reaction partners. The stereodetermining step thus occurs prior to the H-transfer step.

  10. Kinetics of aggregation growth with competition between catalyzed birth and catalyzed death

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Lin Zhenquan

    2008-01-01

    An aggregation growth model of three species A, B and C with the competition between catalyzed birth and catalyzed death is proposed. Irreversible aggregation occurs between any two aggregates of the like species with the constant rate kernels I n (n = 1,2,3). Meanwhile, a monomer birth of an A species aggregate of size k occurs under the catalysis of a B species aggregate of size j with the catalyzed birth rate kernel K(k,j) = Kkj v and a monomer death of an A species aggregate of size k occurs under the catalysis of a C species aggregate of size j with the catalyzed death rate kernel L(k,j)=Lkj v , where v is a parameter reflecting the dependence of the catalysis reaction rates of birth and death on the size of catalyst aggregate. The kinetic evolution behaviours of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A species a k (t) is found to be dependent crucially on the competition between the catalyzed birth and death of A species, as well as the irreversible aggregation processes of the three species: (1) In the v k (t) satisfies the conventional scaling form; (2) In the v ≥ 0 case, the competition between the catalyzed birth and death dominates the process. When the catalyzed birth controls the process, a k (t) takes the conventional or generalized scaling form. While the catalyzed death controls the process, the scaling description of the aggregate size distribution breaks down completely

  11. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    OpenAIRE

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant E...

  12. Chemisorption bonding and catalysis

    International Nuclear Information System (INIS)

    Danese, J.B.; Schrieffer, J.R.

    1976-01-01

    The general features of the LCAO--MO, Green's function, and multiple-scattering chi α methods and their applications to surfaces and surface-related problems are discussed. Emphasis is placed on the localization of bonding in surface complexes

  13. Tile-bonding tool

    Science.gov (United States)

    Haynie, C. C.; Holt, J. W.

    1978-01-01

    Device applies uniform, constant, precise pressure to hold tiles in place during bonding. Tool consists of pressure bladders supported by adjustable pole. Pole can accomodate single or multiple bladders. Tiles can be flat or contoured.

  14. Bond markets in Africa

    Directory of Open Access Journals (Sweden)

    Yibin Mu

    2013-07-01

    Full Text Available African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on government securities and corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to better institutions and interest rate volatility, and inversely related to smaller fiscal deficits, higher interest rate spreads, exchange rate volatility, and current and capital account openness. Corporate bond market capitalization is directly linked to economic size, the level of development of the economy and financial markets, better institutions, and interest rate volatility, and inversely related to higher interest rate spreads and current account openness. Policy implications follow.

  15. Highly efficient preparation of lipophilic hydroxycinnamates by solvent-free lipase-catalyzed transesterification.

    Science.gov (United States)

    Weitkamp, Petra; Vosmann, Klaus; Weber, Nikolaus

    2006-09-20

    Various medium- or long-chain alkyl cinnamates and hydroxycinnamates, including oleyl p-coumarate as well as palmityl and oleyl ferulates, were prepared in high yield by lipase-catalyzed transesterification of an equimolar mixture of a short-chain alkyl cinnamate and a fatty alcohol such as lauryl, palmityl, and oleyl alcohol under partial vacuum at moderate temperature in the absence of solvents and drying agents in direct contact with the reaction mixture. Immobilized lipase B from Candida antarctica was the most effective biocatalyst for the various transesterification reactions. Transesterification activity of this enzyme was up to 56-fold higher than esterification activity for the preparation of medium- and long-chain alkyl ferulates. The relative transesterification activities found for C. antarctica lipase were of the following order: hydrocinnamate > cinnamate > 4-hydroxyhydrocinnamate > 3-methoxycinnamate > 2-methoxycinnamate approximately 4-methoxycinnamate approximately 3-hydroxycinnamate > hydrocaffeate approximately 4-hydroxycinnamate > ferulate > 2-hydroxycinnamate > caffeate approximately sinapate. With respect to the position of the hydroxy substituents at the phenyl moiety, the transesterification activity of C. antarctica lipase B increased in the order meta > para > ortho. The immobilized lipases from Rhizomucor miehei and Thermomyces lanuginosus demonstrated moderate and low transesterification activity, respectively. Compounds with inverse chemical structure, that is, 3-phenylpropyl alkanoates such as 3-(4-hydroxyphenyl)propyl oleate and 3-(3,4-dimethoxyphenyl)propyl oleate, were obtained by C. antarctica lipase-catalyzed transesterification of fatty acid methyl esters with the corresponding 3-phenylpropan-1-ols in high yield, as well.

  16. A novel chemoenzymatic synthesis of propyl caffeate using lipase-catalyzed transesterification in ionic liquid.

    Science.gov (United States)

    Pang, Na; Gu, Shuang-Shuang; Wang, Jun; Cui, Hong-Sheng; Wang, Fang-Qin; Liu, Xi; Zhao, Xing-Yu; Wu, Fu-An

    2013-07-01

    Propyl caffeate has the highest antioxidant capacity in the caffeate alkyl esters family, but industrial production of propyl caffeate is hindered by low yields using either the chemical or enzymatic catalysis method. To set up a high-yield process for obtaining propyl caffeate, a novel chemoenzymatic synthesis method using lipase-catalyzed transesterification of an intermediate methyl caffeate or ethyl caffeate and 1-propanol in ionic liquid was established. The maximum propyl caffeate yield of 98.5% was obtained using lipase-catalyzed transesterification under the following optimal conditions: Novozym 435 as a biocatalyst, [Bmim][CF3SO3] as a medium, a molar ratio of methyl caffeate to 1-propanol of 1:5, a mass ratio of methyl caffeate to lipase of 1:20, and a reaction temperature of 60°C. The two-step conversion of caffeic acid to propyl caffeate via methyl caffeate is an efficient way to prepare propyl caffeate with an overall yield of 82.7%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Optimization of lipase-catalyzed transesterification of lard for biodiesel production using response surface methodology.

    Science.gov (United States)

    Huang, Ying; Zheng, Hai; Yan, Yunjun

    2010-01-01

    Biodiesel, an alternative diesel fuel made from renewable biological resources, has become more and more attractive recently. Combined use of two immobilized lipases with complementary position specificity instead of one lipase is a potential way to significantly reduce cost of lipase-catalyzed biodiesel production. In this study, the process of biodiesel production from lard catalyzed by the combined use of Novozym435 (non-specific) and Lipozyme TLIM (1,3-specific) was optimized by response surface methodology. The optimal reaction conditions were 0.04 of amount of lipase/oil (w/w), 0.49 of proportion of Novozym435/total lipases (w/w), 0.55 of quantity of tert-butanol/oil (v/v), 5.12 of quantity of methanol/oil (mol/mol), and 20 h of reaction time, by which 97.2% of methyl ester (ME) yield was attained, very close to the predicted value (97.6%). This optimal reaction condition could be true of other similar reactions with plant and animal oil resources; their ME yield could be higher than 95%. The lipases regenerated by washing with organic solvent after each reaction cycle could be continuously reused for 20 cycles without any loss of activity, exhibiting very high manipulation stability.

  18. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    Science.gov (United States)

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. NADP+ enhances cholera and pertussis toxin-catalyzed ADP-ribosylation of membrane proteins

    International Nuclear Information System (INIS)

    Kawai, Y.; Whitsel, C.; Arinze, I.J.

    1986-01-01

    Cholera or pertussis toxin-catalyzed [ 32 P]ADP-ribosylation is frequently used to estimate the concentration of the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins which modulate the activity of adenylate cyclase. With this assay, however, the degradation of the substrate, NAD + , by endogenous enzymes such as NAD + -glycohydrolase (NADase) present in the test membranes can influence the results. In this study the authors show that both cholera and pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of liver membrane proteins is markedly enhanced by NADP + . The effect is concentration dependent; with 20 μM [ 32 P]NAD + as substrate maximal enhancement is obtained at 0.5-1.0 mM NADP + . The enhancement of [ 32 P]ADP-ribosylation by NADP + was much greater than that by other known effectors such as Mg 2+ , phosphate or isoniazid. The effect of NADP + on ADP-ribosylation may occur by inhibition of the degradation of NAD + probably by acting as an alternate substrate for NADase. Among inhibitors tested (NADP + , isoniazid, imidazole, nicotinamide, L-Arg-methyl-ester and HgCl 2 ) to suppress NADase activity, NADP + was the most effective and, 10 mM, inhibited activity of the enzyme by about 90%. In membranes which contain substantial activities of NADase the inclusion of NADP + in the assay is necessary to obtain maximal ADP-ribosylation

  20. Lipase catalyzed transesterification of ethyl butyrate synthesis inn-hexane- a kinetic study.

    Science.gov (United States)

    Devi, N Annapurna; Radhika, G B; Bhargavi, R J

    2017-08-01

    Kinetics of lipase catalyzed transesterification of ethyl caprate and butyric acid was investigated. The objective of this work was to propose a reaction mechanism and develop a rate equation for the synthesis of ethyl butyrate by transesterification using surfactant coated lipase from Candida rugosa . The reaction rate could be described in terms of Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both the substrates. The values of kinetic parameters computed were V max  = 2.861 μmol/min/mg; K m(acid)  = 0.0746 M; K m(ester)  = 0.125 M; K i acid = 0.450 M. This study indicated a competitive enzyme inhibition by butyric acid during lipase catalyzed transesterification reaction. Experimental observations had clearly indicated that the substrates as well as product act as dead-end inhibitors.

  1. Intramolecular C-H Bond Activation through a Flexible Ester Linkage

    Czech Academy of Sciences Publication Activity Database

    Shaffer, Christopher; Schröder, Detlef; Gutz, Ch.; Lutzen, A.

    2012-01-01

    Roč. 51, č. 32 (2012), s. 8097-8100 ISSN 1433-7851 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : C-H activation * copper * gas phase * ion mobility * oxidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.734, year: 2012

  2. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  3. Diffusion bonding techniques

    International Nuclear Information System (INIS)

    Peters, R.D.

    1978-01-01

    The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force

  4. Effects of mixing technologies on continuous methyl ester production: Comparison of using plug flow, static mixer, and ultrasound clamp

    International Nuclear Information System (INIS)

    Somnuk, Krit; Prasit, Tanongsak; Prateepchaikul, Gumpon

    2017-01-01

    Highlights: • Four types of continuous reactors were compared with methyl ester conversion. • Plug flow, static mixer, ultrasound clamp, SM with ultrasound reactors were tested. • The 16 × 400 W ultrasound clamps were operated at 20 kHz frequency for US reactor. • The US reactor was clearly superior over the other types of continuous reactor. • The US reactor was the most effective alternative with short reactor length. - Abstract: Four types of continuous reactors, namely plug flow reactor (PF), static mixer reactor (SM), ultrasound clamp on tubular reactor (US), and static mixer combined with ultrasound (SM/US) were compared for their purities of methyl ester in biodiesel production from refined palm oil (RPO). The reactor conditions were: KOH 4, 6, 8, 10, and 12 g L −1 , methanol content 20 vol.%, and under 20 L h −1 RPO flow rate at 60 °C temperature. The highest purity of methyl esters: 81.99 wt.% for PF, 95.70 wt.% for SM, 98.98 wt.% for US, and 97.67 wt.% for SM/US, were achieved with 900 mm, 900 mm, 700 mm, and 900 mm reactor lengths respectively, and 12 g L −1 of KOH was used in all cases. The 16 × 400 W ultrasound clamp was operated at 20 kHz frequency, and among short length reactors the US case was more effective than PF, SM, or SM/US. Moreover, ester purity from the US reactor was slightly decreased by the lowest 4 g L −1 KOH. The US reactor was clearly superior over the other types of continuous reactor, and had the potential to reduce KOH consumption by sonochemical effects on the base-catalyzed transesterification reaction.

  5. Response surface methodology optimization of lipase catalyzed transesterification of Jatropha curcas L. seed oil for biodiesel production

    International Nuclear Information System (INIS)

    Li, Yingxia; Wang, Yun; Guan, Xiu Li; Yu, Dong Dong

    2013-01-01

    The immobilized lipase-catalyzed transesterification of Jatropha curcas L. seed oil and methanol for biodiesel production in tert-butanol was investigated. The effects of different tert-butanol volume, methanol molar ratio, reaction temperature, reaction time and immobilized lipase amount on the total conversion were systematically analyzed by response surface methodology (RSM). RSM analysis showed good correspondence between experimental and predicted values. The optimal conditions for the transesterification were a reaction time of 17.355 h, a reaction temperature of 34.868 °C, an immobilized lipase amount of 12.435 %, a methanol molar ratio of 5.282:1, a tert-butanol volume ratio of 0.577:1. The optimal predicted yield of fatty acid methyl esters (FAME) was 88.5 % and the actual value was 88.1 %. The predicted yield of fatty acid esters and the real one was very close, indicating that the RSM based on central composite design (CCD) was adaptable for a FAME study for the present transesterification system. Moreover, the infrared spectrum of biodiesel showed the characteristic bands of C=O, O–C–O, C=C and –(CH 2 )n–. Furthermore, GC-linked mass spectrometry showed that biodiesel was mainly composed of the methyl esters of hexadecanoic, 9,12-octadecadienoic and 9-octadecadienoic acid

  6. Production of Structured Phosphatidylcholine with High Content of DHA/EPA by Immobilized Phospholipase A1-Catalyzed Transesterification

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2014-08-01

    Full Text Available This paper presents the synthesis of structured phosphatidylcholine (PC enriched with docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA by transesterification of DHA/EPA-rich ethyl esters with PC using immobilized phospholipsase A1 (PLA1 in solvent-free medium. Firstly, liquid PLA1 was immobilized on resin D380, and it was found that a pH of 5 and a support/PLA1 ratio (w/v of 1:3 were the best conditions for the adsorption. Secondly, the immobilized PLA1 was used to catalyze transesterification of PC and DHA/EPA-rich ethyl esters. The maximal incorporation of DHA and EPA achieved was 30.7% for 24 h of reaction at 55 °C using a substrate mass ratio (PC/ethyl esters of 1:6, an immobilized PLA1 loading of 15% and water dosage of 1.25%. Then the reaction mixture was analyzed by 31P nuclear magnetic resonance (NMR. The composition of reaction product included 16.5% PC, 26.3% 2-diacyl-sn-glycero-3-lysophosphatidylcholine (1-LPC, 31.4% 1-diacyl-sn-glycero-3-lysophosphatidylcholine (2-LPC, and 25.8% sn-glycerol-3-phosphatidylcholine (GPC.

  7. Deuterium isotope effects in the thermal decomposition of β-hydroxy ketones and β-hydroxy esters

    International Nuclear Information System (INIS)

    Quijano, J.; Rodrigues, M.M.; Yepes, M.S.; Gallego, L.H.

    1986-01-01

    In a previous publication it was proposed that β-hydroxy-ketones decompose thermally to mixtures of aldehydes and ketones in a reaction that is the reverse of the aldol condensation, and that β-hydroxy esters pyrolyze to form a mixture of the corresponding ester and aldehyde or ketone. This decomposition follows first-order kinetics and appears to be unimolecular. Based on these data it was proposed that the reaction involves a cyclic six-membered transition state. To further corroborate this mechanism, thermolysis was carried out with the hydrogen replaced by deuterium. The small primary isotope effect observed agrees with the proposed transition state geometry, and the low cumulative secondary deuterium effect is a good indication that no C-H bond is broken in the rate controlling step. (author)

  8. Cyanate ester-nanoparticle composites as multifunctional structural capacitors

    Science.gov (United States)

    De Leon, J. Eliseo

    An important goal of engineering is to increase the energy density of electrical energy storage devices used to deliver power onboard mobile platforms. Equally important is the goal to reduce the overall mass of the vehicles transporting these devices to achieve increased fuel and cost efficiency. One approach to meeting both these objectives is to develop multifunctional systems that serve as both energy storage and load bearing structural devices. Multifunctional devices consist of constituents that individually perform a subset of the overall desired functions. However, the synergy achieved by the combination of each constituent's characteristics allows for system-level benefits that cannot be achieved by simply optimizing the separate subsystems. We investigated multifunctional systems consisting of light weight polymer matrix and high dielectric constant fillers to achieve these objectives. The monomer of bisphenol E cyanate ester exhibited excellent processing ability because of its low room temperature viscosity. Additionally, the fully cured thermoset demonstrated excellent thermal stability, specific strength and stiffness. Fillers, including multi-walled carbon nanotubes, nanometer scale barium titanate and nanometer scale calcium copper titanate, offer high dielectric constants that raised the effective dielectric constant of the polymer matrix composite. The combination of high epsilon'and high dielectric strength produce high energy density components exhibiting increased electrical energy storage. Mechanical (load bearing) improvements of the PMCs were attributed to covalently bonded nanometer and micrometer sized filler particles, as well as the continuous glass fiber, integrated into the resin systems which increased the structural characteristics of the cured composites. Breakdown voltage tests and dynamic mechanical analysis were employed to demonstrate that precise combinations of these constituents, under the proper processing conditions, can

  9. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have...... states (TSs) for the two reactions into the active site of CYP17A1 showed that the TS for the C17 hydroxylation needs to be distorted by 13 kJ·mol–1, whereas the TS for the 17,20 lyase reaction easily can be accommodated in the protein. Finally, differences in the hydrogen-bond pattern of the substrates...

  10. Preparation of esters of gallic acid with higher primary alcohols

    NARCIS (Netherlands)

    Kerk, G.J.M. van der; Verbeek, J.H.; Cleton, J.C.F.

    1951-01-01

    The esters of gallic acid and higher primary alcohols, especially fatty alcohols, have recently gained considerable interest as possible antioxidants for fats. Two independent methods for the preparation of these esters are described. In the first method the hitherto unknown compound galloyl

  11. Production of both esters and biogas from Mexican poppy

    African Journals Online (AJOL)

    AJL

    esters, use oils of plant origin like vegetable oils and tree born oil seeds are ... Usage of ester will allow a balance to be sought between agriculture .... Sci. Technol. Plastic tube. Stopper. Glass bottle. (1 liter capacity). Rubber cap. Gas collector. Digester. Displaced water. Figure 1. Reactor design (see experimental set up).

  12. Alternative Production of Fatty Acid Methyl Esters from Triglycerides ...

    African Journals Online (AJOL)

    The catalysts activity was tested in thermocatalytic cracking of triglyceride; a direct conversion process for fatty acid methyl esters (biodiesel). The SZ1 not only exhibited higher conversion of triglycerides but higher fatty acid methyl esters (FAMEs) yields of approximately 59% after 3h as compared to SZ2 (32%). In addition ...

  13. Effect of Sucrose Esters on the Physicochemical Properties of Wheat ...

    African Journals Online (AJOL)

    HP

    modified starch were analyzed by Fourier transform infrared spectroscopy (FITR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Results: The properties of wheat starch changed greatly by adding different sucrose esters to their structures. Starch containing 0.30 % sucrose esters had the ...

  14. Phthalic acid esters found in municipal organic waste

    DEFF Research Database (Denmark)

    Hartmann, Hinrich; Ahring, Birgitte Kiær

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2- ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half...... matter with high biogas yields and efficient reduction of the phthalic acid ester contamination....

  15. Determination of Phthalate Esters in the Aquatic Environment ...

    African Journals Online (AJOL)

    The use of solid phase extraction and capillary GLC provides the basis for selective determination of phthalate ester plasticizers in rivers and marine water samples. Of the several solvent ratios (methanol in dichloromethane) that were tried for selective elution of phthalate esters from the C18 solid phase glass catridge, the ...

  16. Protective effect of glucosamine cyclohexyl ester on osteoarthritis in ...

    African Journals Online (AJOL)

    Purpose: To investigate the therapeutic effect of glucosamine cyclohexyl ester on osteoarthritis (OA) in a rat model. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays were used to analyze the effect of glucosamine cyclohexyl ester on changes in mRNA and protein ...

  17. Effect of Sucrose Esters on the Physicochemical Properties of Wheat ...

    African Journals Online (AJOL)

    HP

    International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African Index. Medicus, JournalSeek .... Table 1: Rapid visco-analyzer parameters for wheat starch modified with sucrose esters. Content of sucrose esters δ%ε. Peak. (cP). Trough. (cP). Breakdown. (cP). Final. (cP). Setback.

  18. Distribution of phthalate esters in underground water from power ...

    African Journals Online (AJOL)

    This study investigates the distribution of phthalateacid esters (PAEs) in groundwater from some power stations in Delta State. Groundwater samples were collected from eight power transmission and distribution stations. Concentrations (μg/L) of six phthalate acid esters compounds in the groundwater ranged from ...

  19. Protective effect of glucosamine cyclohexyl ester on osteoarthritis in ...

    African Journals Online (AJOL)

    Purpose: To investigate the therapeutic effect of glucosamine cyclohexyl ester on osteoarthritis (OA) in a rat model. Methods: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assays were used to analyze the effect of glucosamine cyclohexyl ester on changes in mRNA and.

  20. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    Science.gov (United States)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond