WorldWideScience

Sample records for catalyzes enantioselective citrate

  1. Enantioselective addition of diphenyl phosphonate to ketimines derived from isatins catalyzed by binaphthyl-modified organocatalysts

    Science.gov (United States)

    Jang, Hee Seung; Kim, Yubin

    2016-01-01

    Summary Chiral binaphthyl-modified squaramide-catalyzed enantioselective addition of diphenyl phosphonate to ketimines derived from isatins has been achieved. This method affords practical and efficient access to chiral 3-amino-3-phosphonyl-substituted oxindole derivatives in high yields with excellent enantioselectivities (up to 99% ee). PMID:27559405

  2. Gold(I)-Catalyzed Dearomative Rautenstrauch Rearrangement: Enantioselective Access to Cyclopenta[b]indoles

    Science.gov (United States)

    Zi, Weiwei; Wu, Hongmiao; Toste, F. Dean

    2016-01-01

    A highly enantioselective dearomative Rautenstrauch rearrangement catalyzed by cationic (S)-DTBM-Segphosgold(I) is reported. This reaction provides a straightforward method to prepare enantioenriched cyclopenta[b]indoles. These studies show vast difference in enantioselectivity in the reactions of propargyl acetates and propargyl acetals in the chiral ligand-controlled Rautenstrauch reaction. PMID:25710515

  3. Enantioselective aldol reaction between isatins and cyclohexanone catalyzed by amino acid sulphonamides.

    Science.gov (United States)

    Wang, Jun; Liu, Qi; Hao, Qing; Sun, Yanhua; Luo, Yiming; Yang, Hua

    2015-04-01

    Sulphonamides derived from primary α-amino acid were successfully applied to catalyze the aldol reaction between isatin and cyclohexanone under neat conditions. More interestingly, molecular sieves, as privileged additives, were found to play a vital role in achieving high enantioselectivity. Consequently, high yields (up to 99%) along with good enantioselectivities (up to 92% ee) and diastereoselectivities (up to 95:5 dr) were obtained. In addition, this reaction was also conveniently scaled up, demonstrating the applicability of this protocol.

  4. Enantioselective Nazarov Cyclization Catalyzed by a Cinchona Alkaloid Derivative

    Science.gov (United States)

    Huang, Yu-Wen; Frontier, Alison J.

    2015-01-01

    Nucleophilic catalysts for a 1,6 addition/Nazarov cyclization/elimination sequence were evaluated for their ability to induce enantioselectivity in the electrocyclization step. Of the tertiary amines examined, it was found that a cinchona alkaloid derivative was able to generate substituted 5-hydroxy γ-methylene cyclopentenones with excellent enantioselectivity. The study results suggest that successful cyclization depends upon the ability of the dienyl diketone substrate to readily adopt an s-cis conformation. PMID:26085696

  5. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  6. Enantioselective copper catalyzed allylic alkylation using Grignard reagents; Applications in synthesis

    NARCIS (Netherlands)

    Zijl, Anthoni Wouter van

    2009-01-01

    Enantioselective copper catalyzed allylic alkylation is a powerful carbon-carbon bond forming reaction. In this thesis the development of a new catalyst for the use of Grignard reagents in this reaction is described. This catalyst is based on copper and the ligand Taniaphos. The high regio- and enan

  7. Highly Diastereo- and Enantioselective CuH-Catalyzed Synthesis of 2,3-Disubstituted Indolines

    OpenAIRE

    Ascic, Erhad; Buchwald, Stephen L.

    2015-01-01

    A diastereo- and enantioselective CuH-catalyzed method for the preparation of highly functionalized indolines is reported. The mild reaction conditions and high degree of functional group compatibility as demonstrated with substrates bearing heterocycles, olefins, and substituted aromatic groups, renders this technique highly valuable for the synthesis of a variety of cis-2,3-disubstituted indolines in high yield and enantioeselectivity.

  8. Enantioselective Evans-Tishchenko Reduction of b-Hydroxyketone Catalyzed by Lithium Binaphtholate

    Directory of Open Access Journals (Sweden)

    Makoto Nakajima

    2011-06-01

    Full Text Available Lithium diphenylbinaphtholate catalyzed the enantioselective Evans-Tishchenko reduction of achiral b-hydroxyketones to afford monoacyl-protected 1,3-diols with high stereoselectivities. In the reaction of racemic b-hydroxyketones, kinetic optical resolution occurred in a highly stereoselective manner.

  9. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase

    NARCIS (Netherlands)

    Tuynman, A; Lutje Spelberg, Jeffrey; Kooter, IM; Schoemaker, HE; Wever, R

    2000-01-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chlorop

  10. Enantioselective Rh-catalyzed hydrogenation of N-formyl dehydroamino esters with monodentate phosphoramidite ligands

    NARCIS (Netherlands)

    Panella, L; Aleixandre, AM; Kruidhof, GJ; Robertus, J; Feringa, BL; de Vries, JG; Minnaard, AJ; Aleixandre, Alicia Marco; Kruidhof, Gerlof J.; Feringa, Bernard

    2006-01-01

    Enantioselectivities up to > 99% ee were achieved in the rhodium-catalyzed asymmetric hydrogenation of N-formyl dehydroamino esters using morrodentate phosphoramidites as chiral ligands. The substrates were synthesized by condensation of methyl isocyanoacetate with a range of aldehydes and with cycl

  11. Enantioselective direct aldol reactions catalyzed by l-prolinamide derivatives

    OpenAIRE

    Tang, Zhuo; Jiang, Fan; Cui, Xin; Gong, Liu-Zhu; Mi, Ai-Qiao; Jiang, Yao-Zhong; Wu, Yun-Dong

    2004-01-01

    l-Prolinamides 2, prepared from l-proline and simple aliphatic and aromatic amines, have been found to be active catalysts for the direct aldol reaction of 4-nitrobenzaldehyde with neat acetone at room temperature. They give moderate enantioselectivities of up to 46% enantiomeric excess (ee). The enantioselectivity increases as the amide N—H becomes a better hydrogen bond donor. l-Prolinamides 3, derived from the reaction of l-proline with α,β-hydroxyamines such that there is a terminal hydro...

  12. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  13. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  14. Effective and novel enantioselective preparation of pyranopyrazoles and pyranocoumarins that is catalyzed by a quinine-derived primary amine.

    Science.gov (United States)

    Yang, Sai; Shen, Liu-lan; Kim, Yoon-Jung; Jeong, Jin-Hyun

    2016-01-14

    In this study, we executed an effective and novel enantioselective Michael/cyclodehydration sequential reaction between pyrazolin-5-one (or 4-hydroxy-2-pyrone) and chalcones that is catalyzed by a quinine-derived primary amine L7 in the presence of Boc-D-Phg-OH. Chiral pyranopyrazoles and pyranocoumarins were obtained in excellent enantioselectivities (up to 93%) with moderate yields and moderate enantioselectivities with high yields (up to 84%).

  15. Synthesis of Aminophosphine Ligands with Binaphthyl Backbones for Silver(I)-catalyzed Enantioselective Allylation of Benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    WANG,Yi(王以); JI,Bao-Ming(吉保明); DING,Kui-Ling(丁奎岭)

    2002-01-01

    A series of aminophosphine ligands was synthesized from 2amino-2′-hydroxy-1,1′-binaphthyl (NOBIN). Their asymmetric induction efficiency was examined for silver(I)catalyzed enantioselective allylation reaction of benzaldehyde with allyltributyltin.Under the optimized reaction conditions,quantitative yield as well as moderate ee value (54.5% ee)of product was achieved by the catalysis with silver(I)/3 complex. The effects of the binaphthyl backbone and the substituted situated at chelating N, Patoms on enantioselectivity of the reaction were also discussed.

  16. Copper-Catalyzed Enantioselective Synthesis of α-Hydroxyamine Using Monodentate Phosphoramidites

    Institute of Scientific and Technical Information of China (English)

    DONG,Lin; CUN,Lin-Feng; GONG,Liu-Zhu; MI,Ai-Qiao; JIANG,Yao-Zhong

    2004-01-01

    @@ Development of new methods for the introduction of a nitrogen atom to a carbonyl group is still the most important synthetic target. Cu-catalyzed addition of organozinc reagents to α,β-unsaturated carbonyl compounds has been the subject of intensive investigation.[1] Moreover, trapping of the intermediate Zn-enolates has been achieved using nitrosobenzene. To demonstrate the feasibility of developing enantioselective variants of these tandem C-C bond formations,α,β-unsaturated substrates a~d was subjected to standard reaction conditions using Feringa's (L1*, L2*) and our own phosphoramidite ligands (L3*, L4*). In this reaction, medium to high levels of enantioselectivities were observed.

  17. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  18. Origin of enantioselectivity in benzotetramisole-catalyzed dynamic kinetic resolution of azlactones.

    Science.gov (United States)

    Liu, Peng; Yang, Xing; Birman, Vladimir B; Houk, K N

    2012-07-01

    Density functional theory (DFT) calculations were performed to investigate the origins of enantioselectivity in benzotetramisole (BTM)-catalyzed dynamic kinetic resolution of azlactones. The transition states of the fast-reacting enantiomer are stabilized by electrostatic interactions between the amide carbonyl group and the acetate anion bound to the nucleophile. The chiral BTM catalyst confines the conformation of the α-carbon and the facial selectivity of the nucleophilic attack to promote such electrostatic attractions. PMID:22686505

  19. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  20. Rapid Estimation of Enantioselectivity in Lipase-catalyzed Resolution of Glycidyl Butyrate Using pH Indicator

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; WANG Lei; WANG Li-cheng; LI Chun-yuan; WANG Ren; MIAO Qing-hua; YANG Ming; WANG Zhi

    2009-01-01

    A simple method for rapid estimation of the enantioselectivity of lipase in resolution of chiral esters is described. The enantioselectivity of lipase can be estimated rapidly through comparing the dif-ference of hydrolysis rates for the racemic ester and its slow reacting enantiomer under the same condition because the difference mainly depends on the enantioselective ratio(E values). The higher the enantiose-lectivity of enzyme, the larger the difference of hydrolysis rate. The bromothymol blue(BTB) can be used as pH indicator for microplate reader to monitor the formation of acid in lipase-catalyzed hydrolysis ofesters. This method has been successfully used to rapidly estimate the enantioselectivity of several lipases in the resolution of glycidyl butyrate.

  1. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination.

    Science.gov (United States)

    Garza, Victoria J; Krische, Michael J

    2016-03-23

    Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol-mediated reductive coupling of branched allylic acetates 1a-1o with formaldehyde to form primary homoallylic alcohols 2a-2o with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic π-facial discrimination of σ-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition. PMID:26958737

  2. Combination of Novozym 435-catalyzed enantioselective hydrolysis and amidation for the preparation of optically active δ-hexadecalactone

    OpenAIRE

    Shimotori, Yasutaka; Hoshi, Masayuki; Miyakoshi, Tetsuo; 霜鳥, 慈岳; 星,雅之

    2015-01-01

    A new enzymatic method for synthesis of enantiomerically enriched δ-hexadecalactone (3) based on the enzymatic kinetic resolution of N-methyl-5-acetoxyhexadecanamide (1) is described. A combination of lipase-catalyzed hydrolysis and amidation improved enantioselectivity. Lipase-catalyzed amidation was also investigated. Detailed screening of solvents and additive amines was performed. The addition of cyclohexylamine to lipase-catalyzed hydrolysis afforded the best results to give both enantio...

  3. Quantum chemical study on the mechanism of enantioselective reduction of prochiral ketones catalyzed by oxazaborolidines

    Institute of Scientific and Technical Information of China (English)

    LI; Ming

    2001-01-01

    [1]Corey, E. J., Bakshi, R. K., Shibata, S., Highly enantioselective borane reduction ketones catalyzed by chiral oxazaborolidines, J. Am. Chem. Soc., 1987, 109:5551-5553.[2]Wallbaum, S., Martens, J., Asymmetric syntheses with chiral oxazaborolidines, Tetrahedron Asymmetry, 1992, 3: 1475-1504.[3]Deloux, L., Srebnik, M., Asymmetric borane-catalyzed reactions, Chem. Rev., 1993, 93: 763-784.[4]Togni, A., Venanzi, L. M., Nitrogen donors in organometallic chemistry and in homogeneous catalysis, Angew Chem. Int. Ed. Engl., 1994, 33: 497-562.[5]Ager, D. J., Prakash, I., Schaad, D. R., 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis, Chem. Rev., 1996, 96: 835-875.[6]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 4. On the hydride transfer in ketone complexes of borane adducts of oxazaborolidines and regeneration of catalyst, Tetrahedron Asymmetry, 1991, 2:1133-1155.[7]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 8. On the conformational freedom of the ketone of ketone-borane complexes of oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry. 1992, 3: 1563-1572.[8]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 7. On the effects controlling the coordination of borane to chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry,1992, 3: 1441-1453.[9]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 12. On the influence of the nature of the ring system on binding in ketone-borane complexes of chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones. Tetrahedron Asymmetry, 1993, 4: 1597-1602.[10]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 19. Strain and stability-oxazadiboretanes potentially involved in the enantioselective reduction of ketones promoted

  4. Quantum chemical study on the mechanism of enantioselective reduction of prochiral ketones catalyzed by oxazaborolidines

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ab initio molecular orbital study on the mechanism of enantioselective reduction of 3,3-dimethyl butanone-2 with borane catalyzed by chiral oxazaborolidine is performed. As illus trated, this enantioselective reduction is exothermic and goes mainly through the formations of the catalyst-borane adduct, the catalyst-borane-3,3-dimethyl butanone-2 adduct, and the cata lyst-alkoxyborane adduct with a B-O-B-N 4-member ring and through the decomposition of the catalyst-alkoxyborane adduct with the regeneration of the catalyst. During the hydride transfer in the catalyst-borane-3,3-dimethyl butanone-2 adduct to form the catalyst-alkoxyborane adduct, the hydride transfer and the formation of the B-O-B-N 4-member ring in the catalyst-alkoxyborane ad duct happen simultaneously. The controlling step for the reduction is the transfer of hydride from the borane moiety to the carbonyl carbon of 3,3-dimethyl butanone-2. The transition state for the hydride transfer is a twisted chair structure and the reduction leads to R-chiral alcohols.

  5. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase.

    Science.gov (United States)

    Tuynman, A; Spelberg, J L; Kooter, I M; Schoemaker, H E; Wever, R

    2000-02-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.

  6. Kinetics of Lipase Catalyzed Enantioselective Esterification of Racemic Ibuprofen in Isooctane

    Institute of Scientific and Technical Information of China (English)

    谢渝春; 刘会洲; 陈家镛

    2000-01-01

    The kinetics of Candida rugosa lipase catalyzed esteritlcation of racemic ibuprofen with n-butanol in isooctane was studied. The kinetic study was carried out with the addition of 0.1% and 2% (by volume) of water for enzyme activation respectively when celite was added into isooctane for enzyme dispersion. The specific initial rate for S-ibuprofen can be fitted with the Ping Pong Bi Bi mechanism with dead-end competitive inhibition by the alcohol. The time courses of the enantioselective esteriflcation of the two ibuprofen enantiomers with different initial substrate concentrations and water contents were simulated with a model in which both effects of enzyme inactivation by long term reaction and reversed hydrolytic reaction under high water content were taken into consideration.

  7. Enantioselective synthesis of 1,2,4-triazolines by chiral iron(II)-complex catalyzed cyclization of α-isocyano esters and azodicarboxylates.

    Science.gov (United States)

    Wang, Min; Liu, Xiaohua; He, Peng; Lin, Lili; Feng, Xiaoming

    2013-03-28

    Enantioselective cyclization of α-isocyano esters with azodicarboxylates catalyzed by Fe(II)-N,N'-dioxide complexes has been developed. Under mild conditions, a variety of 1,2,4-triazoline derivatives was obtained in high yields and enantioselectivities. PMID:23423581

  8. Cinchona alkaloid squaramide catalyzed enantioselective hydrazination/cyclization cascade reaction of α-isocyanoacetates and azodicarboxylates: synthesis of optically active 1,2,4-triazolines.

    Science.gov (United States)

    Zhao, Mei-Xin; Bi, Hong-Lei; Zhou, Hao; Yang, Hui; Shi, Min

    2013-09-20

    An efficient enantioselective hydrazination/cyclization cascade reaction of α-substituted isocyanoacetates to azodicarboxylates catalyzed by Cinchona alkaloid derived squaramide catalysts has been investigated, affording the optically active 1,2,4-triazolines in excellent yields (up to 99%) and good to excellent enantioselectivities (up to 97% ee) under mild conditions. PMID:23984761

  9. Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines

    Science.gov (United States)

    2016-01-01

    Catalytic synthesis of nonracemic P-chiral phosphine derivatives remains a significant challenge. Here we report Cu-catalyzed enantioselective arylation of secondary phosphine oxides with diaryliodonium salts for the synthesis of tertiary phosphine oxides with high enantiomeric excess. The new process is demonstrated on a wide range of substrates and leads to products that are well-established P-chiral catalysts and ligands. PMID:27689432

  10. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. PMID:26933831

  11. Enantioselective synthesis of benzazepinoindoles bearing trifluoromethylated quaternary stereocenters catalyzed by chiral spirocyclic phosphoric acids.

    Science.gov (United States)

    Li, Xuejian; Chen, Di; Gu, Haorui; Lin, Xufeng

    2014-07-18

    The first highly enantioselective iso-Pictet-Spengler reaction of C-2-linked o-aminobenzylindoles with trifluoromethyl ketones was developed using chiral spirocyclic phosphoric acids as organocatalysts, which afforded optically active benzazepinoindoles bearing trifluoromethylated quaternary stereocenters. PMID:24890313

  12. Enantioselective Rh-Catalyzed Hydroacylation of Olefins: From Serendipitous Discovery to Rational Design

    Science.gov (United States)

    Murphy, Stephen K.

    2015-01-01

    Rh-catalysed hydroacylation allows the construction of chiral ketones from olefins and aldehydes. Since James' and Young's serendipitous discovery of the enantioselective 4-pentenal cyclisation, both intra and intermolecular variants have emerged that enable broader applications. PMID:25277153

  13. Enantioselective CuH-Catalyzed Reductive Coupling of Aryl Alkenes and Activated Carboxylic Acids.

    Science.gov (United States)

    Bandar, Jeffrey S; Ascic, Erhad; Buchwald, Stephen L

    2016-05-11

    A new method for the enantioselective reductive coupling of aryl alkenes with activated carboxylic acid derivatives via copper hydride catalysis is described. Dual catalytic cycles are proposed, with a relatively fast enantioselective hydroacylation cycle followed by a slower diastereoselective ketone reduction cycle. Symmetrical aryl carboxyclic anhydrides provide access to enantioenriched α-substituted ketones or alcohols with excellent stereoselectivity and functional group tolerance. PMID:27121395

  14. Nickel-catalyzed enantioselective hydrovinylation of silyl-protected allylic alcohols:An efficient access to homoallylic alcohols with a chiral quaternary center

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Asymmetric hydrovinylation of silyl-protected allylic alcohols catalyzed by nickel complexes of chiral spiro phosphoramidite ligands was developed.A series of homoallylic alcohols with a chiral quaternary center were produced in high yields(up to 97%) and high enantioselectivities(up to 95% ee).The reaction provides an efficient method for preparing bifunctional compounds with a chiral quaternary carbon center.

  15. (+)-camphor-derived tri- and tetradentate amino alcohols; synthesis and application as ligands in the nickel catalyzed enantioselective conjugate addition of diethylzinc

    OpenAIRE

    Vries, André H.M. de; Imbos, Rosalinde; Feringa, Bernard

    1997-01-01

    Several novel tri- and tetradentate amino alcohol ligands, all derived from (+)-camphor, have been synthesized by using specific N-alkylation procedures. The amino alcohols were employed as chiral ligands in the nickel catalyzed conjugate additions of diethylzine to chalcone and cyclohexenone as model substrates. For the acyclic enone enantioselectivities up to 83% were achieved. (C) 1997 Elsevier Science Ltd.

  16. Enantioselective Hydrogenation of Aromatic Ketones Catalyzed by Ru Complex Using a New Bipyridyl Diphosphine

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; FU Xing-Li; MING Fang-Yong; CHEN Hua; LI Xian-Jun

    2008-01-01

    A series of RuCl2(bipyridyldiphosphine)(1,2-diamine)complexes were synthesized and applied to the asymmetric hydrogenation of aromatic ketones.Solvent effect and a wide variety of aromatic ketones were explored and up to 96% enantioselectivity was achieved in the hydrogenation of o-bromoacetophenone.

  17. Ruthenium-BINAP Catalyzed Alcohol C-H tert-Prenylation via 1,3-Enyne Transfer Hydrogenation: Beyond Stoichiometric Carbanions in Enantioselective Carbonyl Propargylation.

    Science.gov (United States)

    Nguyen, Khoa D; Herkommer, Daniel; Krische, Michael J

    2016-04-27

    The chiral ruthenium complex formed in situ from (TFA)2Ru(CO)(PPh3)2 and (R)-BINAP is found to catalyze the enantioselective C-C coupling of diverse primary alcohols with the 1,3-enyne, TMSC≡CC(Me)═CH2, to form secondary homopropargyl alcohols bearing gem-dimethyl groups. All reagents for this byproduct-free coupling are inexpensive and commercially available, making this protocol a practical alternative to stoichiometric carbanions in enantioselective carbonyl reverse prenylation. PMID:27079149

  18. Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation.

    Science.gov (United States)

    Chen, Ying; Fields, Kimberly B; Zhang, X Peter

    2004-11-17

    5,10-Bis(2',6'-dibromophenyl)porphyrins bearing various substituents at the 10 and 20 positions were demonstrated to be versatile synthons for modular construction of chiral porphyrins via palladium-catalyzed amidation reactions with chiral amides. The quadruple carbon-nitrogen bond formation reactions were accomplished in high yields with different chiral amide building blocks under mild conditions, forming a family of D2-symmetric chiral porphyrins. Cobalt(II) complexes of these chiral porphyrins were prepared in high yields and shown to be active catalysts for highly enantioselective and diastereoselective cyclopropanation under a practical one-pot protocol (alkenes as limiting reagents and no slow addition of diazo reagents).

  19. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  20. Chiral Phosphoric Acid-Catalyzed Enantioselective Formal [3+2] Cycloaddition of Azomethine Imines with Enecarbamates.

    Science.gov (United States)

    Wang, Yang; Wang, Qian; Zhu, Jieping

    2016-06-01

    The first catalytic asymmetric inverse electron demand 1,3-dipolar cycloaddition of azomethine imines with enecarbamates has been developed. Isoquinoline-fused pyrazolidines containing two or three contiguous stereogenic centers were obtained in high yields with excellent regio-, diastereo-, and enantioselectivities. The pyrazolidine ring can be opened to install an aminal, α-amino nitrile, or homoallylamine function with an excellent control of the newly generated stereogenic center. Access to aminobenzo[a]quinolizidine is also documented. PMID:27135440

  1. Asymmetric Roadmap to Diverse Polycyclic Benzopyrans via Phosphine-Catalyzed Enantioselective [4 + 2]-Annulation Reaction.

    Science.gov (United States)

    Danda, Adithi; Kesava-Reddy, Naredla; Golz, Christopher; Strohmann, Carsten; Kumar, Kamal

    2016-06-01

    The catalytic addition of the amino acid derived bifunctional N-acylaminophosphine to an α-substituted allene ester generated a zwitterionic dipole that engaged the vinylogous ester function of 3-cyano-chromones in a [4 + 2] annulation reaction to deliver tetrahydroxanthones embodying three consecutive chiral centers in high yields and with excellent enantioselectivities. The established asymmetric synthesis further paves the way to two different classes of complex, sp(3)-rich tetracyclic benzopyrans via efficient cascade reactions. PMID:27187586

  2. Enantioselective synthesis of fluorinated branched allylic compounds via Ir-catalyzed allylations of functionalized fluorinated methylene derivatives.

    Science.gov (United States)

    Zhang, Hongbo; Chen, Jiteng; Zhao, Xiao-Ming

    2016-08-14

    Enantioselective introduction of the functionalized monofluorinated methylenes into the allylic fragment under Ir catalysis has been realized, which gave the fluorinated branched allyl products in good to high yields with excellent regio- and enantioselectivities. PMID:27383920

  3. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)2 and chiral amino alcohols

    NARCIS (Netherlands)

    Vries, André H.M. de; Feringa, Bernard

    1997-01-01

    Co(acac)2 in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved.

  4. Enantioselective synthesis of 1,2,4-triazolines catalyzed by a cinchona alkaloid-derived organocatalyst.

    Science.gov (United States)

    Shao, Qian; Chen, Jiean; Tu, Meihua; Piotrowski, David W; Huang, Yong

    2013-12-01

    An enantioselective organocatalytic process for the one-step synthesis of poly-substituted 1,2,4-triazolines is reported. The heterocycle formation is believed to go through a step-wise mechanism of nucleophilic addition of an azlactone to an azodicarboxylate in the presence of an organic base catalyst, followed by a TMSCHN2 mediated heterocyclization. Both theoretical calculations and experimental evidence suggest the pre-organization of the transition state for the chirality determining step via a unique 7-membered intramolecular hydrogen bonding. PMID:24145477

  5. Enantioselective Hydrolysis of Phenyl Glycidyl Ether Catalyzed by Newly Isolated Bacillus Megaterium ECU1001

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Microbial epoxide hydrolases from bacterial and fungal sources?1? are hi ghly versatile catalysts for the asymmetric hydrolysis of chiral epoxides which are extensively employed as useful building blocks for the synthesis of various biologically active products in the pharmaceutical and agrochemical industries. Microorganism means allows an unlimited supply of these enzymes for preparative -scale applications. Phenyl glycidyl ether (PGE), an aryl epoxide, is a potenti ally useful compound in the synthesis of chiral amino alcohols and bioactive com pounds such as ?blockers. No suitable biocatalyst with sufficiently high enan tioselectivity (E?20) for the kinetic resolution of this compound was previ ously found among bacteria and fungi. This prompted us to screen epoxide hydrola se-producing microorganisms with higher enantioselectivity toward phenyl glycid yl ether from soil samples.

  6. Enantioselective BINOL-phosphoric acid catalyzed Pictet-Spengler reactions of N-benzyltryptamine

    NARCIS (Netherlands)

    N.V. Sewgobind; M.J. Wanner; S. Ingemann; R. de Gelder; J.H. van Maarseveen; H. Hiemstra

    2008-01-01

    Optically active tetrahydro-beta-carbolines were synthesized via an (R)-BINOL-phosphoric acid-catalyzed asynunetric Pictet-Spengler reaction of N-benzyltryptamine with a series of aromatic and aliphatic aldehydes. The tetrahydro-beta-carbolines were obtained in yields ranging from 77% to 97% and wit

  7. Spectroscopic, Structural, and Computational Characterization of Three Bispidinone Derivatives, as Ligands for Enantioselective Metal Catalyzed Reactions.

    Science.gov (United States)

    Castellano, Carlo; Sacchetti, Alessandro; Meneghetti, Fiorella

    2016-04-01

    Three chiral derivatives of the alkaloid sparteine (bispidines), characterized by the 3,7-diazabicyclo[3.3.1]nonane moiety, were designed as efficient ligands in a number of enantioselective reactions due to their metal coordination properties. A full evaluation of the 3D properties of the compounds was carried out, as the geometrical features of the bicyclic framework are strictly related to the efficiency of the ligands in the asymmetric catalysis. The selected molecules have different molecular complexity for investigating the effects of different chiral groups on the bicycle conformation. We report here a thorough analysis of their molecular arrangement, by NMR spectroscopy, single crystal X-ray crystallography, and computational techniques, which put in evidence their conformational preferences and the parameters needed for the design of more efficient ligands in asymmetric synthetic routes. The results confirmed the high molecular flexibility of the compounds, and indicated how to achieve a control of the chair-chair/boat-chair conformational ratio, by adjusting the relative size of the substituents on the piperidine nitrogens.

  8. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    Science.gov (United States)

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.

  9. Enantioselective Sulfide Oxidation Catalyzed by 2,10-Camphanediol Derived Titanium Complex and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZENG Qing-Le; TANG Hong-Yan; ZHANG Song; LIU Jian-Chuan

    2008-01-01

    Cumyl hydroperoxide (CHP) and tea-butyl hydroperoxide (TBHP) produced (R)- and (S)-sulfoxide in 2,10-camphanediol-titanium catalyzed sulfoxidation, respectively. During kinetic resolution, the salfoxide configu- ration was reversed with CHP, but kept with TBHP. Based on these results and the ESI-MS data, the mechanism of sulfoxidation was proposed to be intramolecular nucleophilic oxygen transfer to a coordinated sulfide.

  10. DFT Study on the Origin of the Enantioselectivity of (S)-4-HydroxyIproline-Catalyzed Direct Aldol Reaction between Acetone and 4-Nitrobenzaldehyde

    Institute of Scientific and Technical Information of China (English)

    FAN,Jian-Fen; WU,Li-Fen; SUN,Yun-Peng

    2007-01-01

    DFT-B3LYP calculations were carried out to study the enantioselectivity of the(S)-4-hydroxylproline-catalyzed direct aldol reaction between acetone and 4-nitrobenzaldehyde.Four transition structures associated with the stereo-controlling step of the reaction have been determined.They are corresponding to the anti and syn arrangements of the methylene moiety related to the carboxylic acid group in enamine intermediate and the si and re attacks to the aldehyde carbonyl carbon.The effect of DMSO solvent on the stereo-controlling step was investigated with polarized continuum model(PCM).The computed energies of the transition states reveal the moderate enantioselectivity of the reaction.

  11. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.

    Science.gov (United States)

    Sarkar, Binoy; Naidu, Ravi; Krishnamurti, Gummuluru S R; Megharaj, Mallavarapu

    2013-01-01

    Unlike lower valent iron (Fe), the potential role of lower valent manganese (Mn) in the reduction of hexavalent chromium (Cr(VI)) in soil is poorly documented. In this study, we report that citrate along with Mn(II) and clay minerals (montmorillonite and kaolinite) reduce Cr(VI) both in aqueous phase and in the presence of dissolved organic carbon (SDOC) extracted from a forest soil. The reduction was favorable at acidic pH (up to pH 5) and followed the pseudo-first-order kinetic model. The citrate (10 mM) + Mn(II) (182.02 μM) + clay minerals (3% w/v) system in SDOC accounted for complete reduction of Cr(VI) (192.32 μM) in about 72 h at pH 4.9. In this system, citrate was the reductant, Mn(II) was a catalyst, and the clay minerals acted as an accelerator for both the reductant and catalyst. The clay minerals also serve as a sink for Cr(III). This study reveals the underlying mechanism of the Mn(II)-induced reduction of Cr(VI) by organic ligand in the presence of clay minerals under certain environmental conditions.

  12. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)(2) and chiral amino alcohols

    NARCIS (Netherlands)

    de Vries, A.H.M.; Feringa, B.L.

    1997-01-01

    Co(acac)(2) in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved. (C) 1997 Elsevier Science Ltd.

  13. Resolution of 2-Octanol via Lipase-catalyzed Enantioselective Acetylation in Organic Solvents

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; LI Zheng-qiang; Yu Da-hai; WENG Liang; LIU Ming; ZHANG Gui-rong; CAO Shu-gui

    2004-01-01

    The lipases from different sources were screened for their ability to catalyze the resolution of 2-octanol in organic solvents with vinyl acetate as the acylating reagent. The medium effect has been studied on the irreversible transesterification with varying water activity(aw). The influence of vinyl acetate concentration on it has also been investigated. Under the optimal conditions, the enantiomeric ratio(E value) of pseudomonas fluorescence lipase(PFL) exceeded 200 with an enantiomeric excess(e. e. ) of S-2-octanol above 99% at a 51% degree of conversion.

  14. Enantioselective Oxidation of Alkenes with Potassium Permanganate Catalyzed by Chiral Dicationic Bisguanidinium.

    Science.gov (United States)

    Wang, Chao; Zong, Lili; Tan, Choon-Hong

    2015-08-26

    Chiral anion-controlled ion-pairing catalysis was demonstrated to be a wide-ranging strategy that can utilize a variety of cationic metal species. In a similar manner, we envision a complementary strategy using chiral cation in partnership with inorganic anionic metal salts. Herein, we report a chiral dicationic bisguanidinium-catalyzed asymmetric oxidation reaction of alkenes with potassium permanganate. Chiral induction is attributed to ion-pairing interaction between chiral cation and enolate anion. The success of the current permanganate oxidation reaction together with mechanistic insights should provide inspiration for expansion to other anionic metal salts and would open up new paradigms for asymmetric transition metal catalysis, phase-transfer catalysis, and ion-pairing catalysis. PMID:26237178

  15. TRANSPORT OF CITRATE CATALYZED BY THE SODIUM-DEPENDENT CITRATE CARRIER OF KLEBSIELLA-PNEUMONIAE IS OBLIGATORILY COUPLED TO THE TRANSPORT OF 2 SODIUM-IONS

    NARCIS (Netherlands)

    LOLKEMA, JS; ENEQUIST, H; VANDERREST, ME

    1994-01-01

    Aerobically grown Escherichia coli GM48 harboring plasmid pKScitS that codes for the sodium-dependent citrate carrier from Klebsiella pneumoniae (CitS) allows initial-rate measurements of citrate uptake in whole cells. The cation stoichiometry and selectivity of CitS was studied using this experimen

  16. Transport of citrate catalyzed by the sodium-dependent citrate carrier of Klebsiella pneumoniae is obligatorily coupled to the transport of two sodium ions

    NARCIS (Netherlands)

    Lolkema, Juke S.; Enequist, Hans; Rest, Michel E. van der

    1994-01-01

    Aerobically grown Escherichia coli GM48 harboring plasmid pKScitS that codes for the sodium-dependent citrate carrier from Klebsiella pneumoniae (CitS) allows initial-rate measurements of citrate uptake in whole cells. The cation stoichiometry and selectivity of CitS was studied using this experimen

  17. H8-BINOL chiral imidodiphosphoric acids catalyzed enantioselective synthesis of dihydroindolo-/-pyrrolo[1,2-a]quinoxalines.

    Science.gov (United States)

    Fan, Yan-Sen; Jiang, Yi-Jun; An, Dong; Sha, Di; Antilla, Jon C; Zhang, Suoqin

    2014-12-01

    The first enantioselective synthesis of 5,6-dihydroindolo[1,2-a]quinoxalines is achieved by using a newly developed H8-BINOL-type imidodiphosphoric acid catalyst with low catalyst loading through efficient Pictet-Spengler-type reactions of indolyl anilines with ketones. This methodology also generates phenyl-4,5-dihydropyrrolo[1,2-a]quinoxalines with high yields and excellent enantioselectivities. Moreover, this method was utilized to synthesize an HIV-1 inhibitor with high yield and good enantioselectivity through a one-step procedure. PMID:25415871

  18. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    International Nuclear Information System (INIS)

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  19. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: graca@qmc.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2011-07-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  20. Norcoclaurine Synthase: Mechanism of an Enantioselective Pictet-Spengler Catalyzing Enzyme

    Directory of Open Access Journals (Sweden)

    Alberto Macone

    2010-03-01

    Full Text Available The use of bifunctional catalysts in organic synthesis finds inspiration in the selectivity of enzymatic catalysis which arises from the specific interactions between basic and acidic amino acid residues and the substrate itself in order to stabilize developing charges in the transition state. Many enzymes act as bifunctional catalysts using amino acid residues at the active site as Lewis acids and Lewis bases to modify the substrate as required for the given transformation. They bear a clear advantage over non-biological methods for their ability to tackle problems related to the synthesis of enantiopure compounds as chiral building blocks for drugs and agrochemicals. Moreover, enzymatic synthesis may offer the advantage of a clean and green synthetic process in the absence of organic solvents and metal catalysts. In this work the reaction mechanism of norcoclaurine synthase is described. This enzyme catalyzes the Pictet-Spengler condensation of dopamine with 4-hydroxyphenylacetaldehyde (4-HPAA to yield the benzylisoquinoline alkaloids central precursor, (S-norcoclaurine. Kinetic and crystallographic data suggest that the reaction mechanism occurs according to a typical bifunctional catalytic process.

  1. Cu(I)-Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Aryl-N-sulfonylaziridines as Alkylating Agents.

    Science.gov (United States)

    Ge, Chen; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-07-01

    A highly enantioselective Friedel-Crafts alkylation of indoles with N-sulfonylaziridines as alkylating agents has been developed by utilizing the complex of Cu(CH3CN)4BF4/(S)-Segphos as a catalyst. A range of optically active tryptamine derivatives are obtained in good to excellent yields and enantioselectivities (up to >99% ee) via a kinetic resolution process. PMID:27309541

  2. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D.; Krische, Michael J.

    2015-01-01

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo- and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k and 6m, respectively. Primary alcohols 2a, 2l and 2p were converted to the siloxy-crotylation products 3a, 3l and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  3. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes. PMID:26418572

  4. Amine-Catalyzed Asymmetric (3 + 3) Annulations of β'-Acetoxy Allenoates: Enantioselective Synthesis of 4H-Pyrans.

    Science.gov (United States)

    Ni, Chunjie; Tong, Xiaofeng

    2016-06-29

    The asymmetric (3 + 3) annulations of β'-acetoxy allenoates with either 3-oxo-nitriles or pyrazolones have been realized by using 6'-deoxy-6'-[(l)-N,N-(2,2'-oxidiethyl)-valine amido]quinine (6h) as the catalyst. The three functions of catalyst 6h, including Lewis base (quinuclidine N), H-bond donor (amide NH), and Brønsted base (morpholine N), cooperatively take crucial roles on the chemo- and enantioselectivity, allowing for the construction of 4H-pyran and 4H-pyrano[2,3-c]pyrazole in high yields and enantioselectivity. PMID:27310820

  5. Intermolecular gold-catalyzed diastereo- and enantioselective [2+2+3] cycloadditions of 1,6-enynes with nitrones.

    Science.gov (United States)

    Gawade, Sagar Ashok; Bhunia, Sabyasachi; Liu, Rai-Shung

    2012-07-27

    Going for gold: The title reaction has been developed and demonstrates a wide substrate scope with respect to the 1,6-enynes and nitrones (see scheme; DCE = 1,2-dichloroethane, Tf = trifluoromethanesulfonyl). The results for the enantioselective versions are also presented.

  6. Long-chain ethers as solvents can amplify the enantioselectivity of the Carica papaya lipase-catalyzed transesterification of 2-(substituted phenoxy)propanoic acid esters.

    Science.gov (United States)

    Miyazawa, Toshifumi; Iguchi, Wakana

    2013-10-01

    The enantioselectivity of the transesterification of the 2,2,2-trifluoroethyl esters of 2-(substituted phenoxy)propanoic acids, as catalyzed by the lipase from Carica papaya, was greatly improved by using long-chain ethers, such as di-n-hexyl ether, as solvents instead of the conventional diisopropyl ether. Thus, for example, the E value was enhanced from 21 [in diisopropyl ether (0.8 ml)] to 57 [in di-n-hexyl ether (0.8 ml)] in the reaction of 2,2,2-trifluoroethyl(RS)-2-phenoxypropanoate (0.1 mmol) with methanol (0.4 mmol) in the presence of the plant lipase preparation (10 mg); it was also improved from 13 (in diisopropyl ether) to 44 (in di-n-hexyl ether) in the reaction of 2,2,2-trifluoroethyl(RS)-2-(2-chlorophenoxy)propanoate with methanol under the same reaction conditions.

  7. Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium-catalyzed intermolecular Heck coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Norrby, Per-Ola; Kaukoranta, Päivi;

    2008-01-01

    The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph....... The steric interactions in this transition state fully account for the enantioselectivity observed with the ligands studied. The calculations also predict relative reactivity and nonlinear mixing effects for the investigated ligands; these predictions are fully validated by experimental testing. Finally...

  8. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  9. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase.

    Science.gov (United States)

    Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-03-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.

  10. Enantioselective Solvent-Free Synthesis of 3-Alkyl-3-hydroxy-2-oxoindoles Catalyzed by Binam-Prolinamides

    Directory of Open Access Journals (Sweden)

    Abraham Bañn-Caballero

    2015-07-01

    Full Text Available BINAM-prolinamides are very efficient catalyst for the synthesis of non-protected and N-benzyl isatin derivatives by using an aldol reaction between ketones and isatins under solvent-free conditions. The results in terms of diastereo- and enantioselectivities are good, up to 99% de and 97% ee, and higher to those previously reported in the literature under similar reaction conditions. A high variation of the results is observed depending on the structure of the isatin and the ketone used in the process. While 90% of ee and 97% ee, respectively, is obtained by using (Ra-BINAM-l-(bisprolinamide as catalyst in the addition of cyclohexanone and α-methoxyacetone to free isatin, 90% ee is achieved for the reaction between N-benzyl isatin and acetone using N-tosyl BINAM-l-prolinamide as catalyst. This reaction is also carried out using a silica BINAM-l-prolinamide supported catalyst under solvent-free conditions, which can be reused up to five times giving similar results.

  11. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli

    2015-06-02

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  12. Highly enantioselective and efficient synthesis of flavanones including pinostrobin through the rhodium-catalyzed asymmetric 1,4-addition.

    Science.gov (United States)

    Korenaga, Toshinobu; Hayashi, Keigo; Akaki, Yusuke; Maenishi, Ryota; Sakai, Takashi

    2011-04-15

    An efficient synthesis of bioactive chiral flavanones (1) was achieved through the Rh-catalyzed asymmetric 1,4-addition of arylboronic acid to chromone. The reaction in toluene proceeded smoothly at room temperature in the presence of 0.5% Rh catalyst with electron-poor chiral diphosphine MeO-F(12)-BIPHEP. In this reaction, the 1,2-addition to (S)-1 frequently occurred to yield (2S,4R)-2,4-diaryl-4-chromanol as a byproduct, which could be reduced by changing the reaction solvent to CH(2)Cl(2) to deactivate the Rh catalyst (3% required). PMID:21413690

  13. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    as a new class of potential inhibitors, whose sequence was rationally selected from a previously reported FVIIa-TF specificity profile. Since arginine was found to be the most active P1-amino acid, a mild and efficient synthesis of the corresponding arginyl benzyl ketone building block was sought. Two...... stategies were proposed, the one involving a tetramic acid key intermediate being the most straightforward and with less protective group manipulation. For introduction of the benzyl functionality, a palladium-catalyzed -arylation was developed. This transformation occurs under mild conditions showing high...... functional group tolerance. Unfortunately, these -aryl tetramic acids were too unreactive and ring opening toward the synthesis of the building block did not succeed. However, -aryl tetramic acids are still interesting compounds due to their potential biological activity. The building block 3.15 (P1...

  14. Palladium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Five-, Six-, and Seven-Membered β-Substituted Cyclic Enones: Enantioselective Construction of All-Carbon Quaternary Stereocenters

    KAUST Repository

    Kikushima, Kotaro

    2011-05-11

    The first enantioselective Pd-catalyzed construction of all-carbon quaternary stereocenters via 1,4-addition of arylboronic acids to β-substituted cyclic enones is reported. Reaction of a wide range of arylboronic acids and cyclic enones using a catalyst prepared from Pd(OCOCF(3))(2) and a chiral pyridinooxazoline ligand yields enantioenriched products bearing benzylic stereocenters. Notably, this transformation is tolerant to air and moisture, providing a practical and operationally simple method of synthesizing enantioenriched all-carbon quaternary stereocenters.

  15. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  16. A Quinine-Squaramide Catalyzed Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Trifluoromethyl Ketimines with Naphthols and Electron-Rich Phenols.

    Science.gov (United States)

    Zhou, Ding; Huang, Zheng; Yu, Xueting; Wang, Youxin; Li, Jian; Wang, Wei; Xie, Hexin

    2015-11-20

    A highly enantioselective aza-Friedel-Crafts (aza-F-C) reaction of cyclic trifluoromethyl ketimines and naphthols/phenols was developed with fluorenyl-substituted quinine-squaramide as the catalyst. This protocol enables direct access to biologically important chiral trifluoromethyl dihydroquinazolinones with up to 99% yields and up to 99% ee's.

  17. Syntheses and Crystal Structures of Chiral BINOL Derivatives and Their Applications in Enantioselective Lewis Acid Catalyzed Addition of Diethylzinc to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-Hua; YU Han; Yang Liang-Zhun; YAO Mei; FANG Hai-Bin; XUE Yun-Ning

    2007-01-01

    Two novel chiral BINOL derivatives with bis(benzylamine) groups at the 3,3' positions have been synthesized through the condensation reaction between 2,2'-bis(methoxy- methyleneoxy)-1,1'-binaphthyl-3,3'-dicarboxylic acid and benzylamine or N-phenyl benzylamine in the presence of triethylamine. Suitable single crystal of (R)-N,N'-dibenzyl-2,2'-dihydroxy-1,1'-binaphthly-3,3'-diformamide (R)-3 for X-ray diffraction was obtained by recrystallization at room temperature from the mixture solvents. Crystallographic data of (R)-3: C40H36N2O6, Mr=640.71, monoclinic, space group P21, a=6.746(3), b=21.883(9), c=11.723(5) (A), β=104.605(7)°, Z=2, V=1674.7(12) (A)3, Dc=1.271 g/cm3, F(000)=676, R=0.0729, Wr=0.1687 and μ(MoKα)=0.086 mm-1. Two chiral BINOL ligands were found to be effective in the enantioselective addition of diethylzinc to aldehydes and much different enantioselectivity was observed both in the presence and absence of Ti(OiPr)4. In the former case, (R)-3 showed moderate enantioselectivity, which was lower than that of (R)-BINOL's; and in the latter case, (R)-4 gave the highest enantioselectivity up to 93.3% ee.*

  18. Enantioselective Synthesis of Polysubstituted Spiro-nitroprolinates Mediated by a (R,R)-Me-DuPhos·AgF-Catalyzed 1,3-Dipolar Cycloaddition

    OpenAIRE

    Cayuelas Rubio, Alberto; Ortiz, Ricardo; Nájera Domingo, Carmen; Sansano, Jose M.; Larrañaga Agirre, Olatz; Cózar Ruano, Abel de; Cossío Mora, Fernando Pedro

    2016-01-01

    The synthesis of constrained spirocycles is achieved effectively by means of 1,3-dipolar cyclodditions employing α-imino γ-lactones as azomethine ylide precursors and nitroalkenes as dipolarophiles. The complex formed by (R,R)-Me-DuPhos 18 and AgF is the most efficient bifunctional catalyst. Final spiro-nitroprolinates cycloadducts are obtained in good to moderate yields and both high diastereo- and enantioselectivities. Density functional theory (DFT) calculations supported the expected abso...

  19. PCN pincer palladium(II) complex catalyzed enantioselective hydrophosphination of enones: synthesis of pyridine-functionalized chiral phosphine oxides as NC(sp(3))O pincer preligands.

    Science.gov (United States)

    Hao, Xin-Qi; Huang, Juan-Juan; Wang, Tao; Lv, Jing; Gong, Jun-Fang; Song, Mao-Ping

    2014-10-17

    A series of chiral PCN pincer Pd(II) complexes VI-XIII with aryl-based aminophosphine-imidazoline or phosphinite-imidazoline ligands were synthesized and characterized. They were examined as enantioselective catalysts for the hydrophosphination of enones. Among them, complex IX, which features a Ph2PO donor as well as an imidazoline donor with (4S)-phenyl and N-Tol-p groups, was found to be the optimal catalyst. Thus, in the presence of 2-5 mol % of complex IX a wide variety of enones reacted smoothly with diarylphosphines to give the corresponding chiral phosphine derivatives in high yields with enantioselectivities of up to 98% ee. In particular, heteroaryl species such as 2-thienyl-, 2-furyl-, and 2-pyridinyl-containing enones that have a strong coordination ability to the Pd center were also appropriate substrates for the current catalytic system. For example, hydrophosphination of 2-alkenoylpyridines with diphenylphosphine followed by oxidation with H2O2 afforded the corresponding pyridine-functionalized chiral phosphine oxides in good yields with good to excellent enantioselectivities (10 examples, up to 95% ee). Furthermore, it had been demonstrated that the obtained pyridine-containing phosphine oxide acted as a tridentate ligand in the reaction with PdCl2 to form an intriguing NCsp(3)O pincer Pd(II) complex via Csp(3)-H bond activation, which to our knowledge is the first example of a chiral DCsp(3)D' Pd pincer (D ≠ D'; D and D' denote donor atoms such as P, N, etc.).

  20. Highly Diastereo- and Enantioselective Michael Addition of Nitroalkanes to 2-Enoyl-Pyridine N-Oxides Catalyzed by Scandium(III)/Copper(II) Complexes.

    Science.gov (United States)

    Li, Lijun; Zhang, Sheng; Hu, Yanbin; Li, Yanan; Li, Chong; Zha, Zhenggen; Wang, Zhiyong

    2015-09-01

    A C2 -symmetric Schiff-base ligand, derived from tridentate-Schiff-base, was developed and successfully applied to the asymmetric Michael addition of nitroalkanes to 2-enoyl-pyridine N-oxides. With this newly catalytic system, an unprecedented diastereoselectivity was obtained in the asymmetric Michael addition of nitroalkanes to 2-enoyl-pyridine N-oxides. In addition, a switch in enantioselectivity was achieved by using this newly catalytic system and our previous catalyst. After a facile reduction, the optically active adduct was converted to a biologically active dihydro-2H-pyrrol 4 a. Furthermore, a connection of two tridentate-Schiff-base subunits proved to be an effective strategy in ligand design. PMID:26202331

  1. (+)-camphor-derived tri- and tetradentate amino alcohols; synthesis and application as ligands in the nickel catalyzed enantioselective conjugate addition of diethylzinc

    NARCIS (Netherlands)

    Vries, André H.M. de; Imbos, Rosalinde; Feringa, Bernard

    1997-01-01

    Several novel tri- and tetradentate amino alcohol ligands, all derived from (+)-camphor, have been synthesized by using specific N-alkylation procedures. The amino alcohols were employed as chiral ligands in the nickel catalyzed conjugate additions of diethylzine to chalcone and cyclohexenone as mod

  2. γ‐ and δ-Lactams through Palladium-Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMR Investigation, and DFT Rationalization

    DEFF Research Database (Denmark)

    Bantreil, Xavier; Prestat, Guillaume; Moreno, Aitor;

    2011-01-01

    The Pd-catalyzed intramolecular allylic alkylation of unsaturated amides to give gamma- and delta-lactams has been studied in the presence of chiral ligands. Ligand (R)-3,5-tBu-MeOBIPHEP (MeOBIPHEP=6,6'-dimethoxybiphenyl-2,2-diyl)bis(diphenylphosphine)) afforded the best results and allowed the c...

  3. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  4. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    Science.gov (United States)

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  5. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  6. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan

    OpenAIRE

    Akihiko Shimada; Haruka Ozaki

    2012-01-01

    The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or functio...

  7. Enantioselective reduction of acetophenone analogues using carrot and celeriac enzymes system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The enantioselective reduction of acetophenone analogues catalyzed by carrot and celeriac was performed in moderate conversions and excellent enantiomeric excesses.The steric factors and electronic effects of the substituents at the aromatic ring were found to significantly affect the efficiency of the enantioselective reduction of acetophenone analogues,while they had a little effect on the enantioselectivity of acetophenone analogues reduction.It was also found that the conversions of acetophenone anal...

  8. Organocatalytic enantioselective Michael addition reactions of fluoromalonates with α,β-unsaturated aldehydes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new organocatalytic enantioselective Michael addition of α-fluoromalonate to enals has been developed.The process is efficiently catalyzed by readily available chiral diphenylpyrolinol TES ether under mild reaction conditions to afford versatile highly enantioenriched fluorinated aldehydes.

  9. Enantioselective and Regiodivergent Functionalization of N-Allylcarbamates by Mechanistically Divergent Multicatalysis.

    Science.gov (United States)

    Richmond, Edward; Khan, Ismat Ullah; Moran, Joseph

    2016-08-22

    A pair of mechanistically divergent multicatalytic reaction sequences has been developed consisting of nickel-catalyzed isomerization of N-allylcarbamates and subsequent phosphoric-acid-catalyzed enantioselective functionalization of the resulting intermediates. By appropriate selection of reaction partners, in situ generated imines and ene-carbamates are mechanistically partitioned to yield opposing functionalized products. Formal α-functionalization to give protected α-arylamines is achieved upon enantioselective Friedel-Crafts reaction with arene nucleophiles, whereas formal β-functionalization is achieved upon reaction with diarylimine electrophiles in an enantioselective Povarov-[4+2] cycloaddition. PMID:27461524

  10. Synthesis of Tributyl Citrate Catalyzed by MgBr2·6H2O%六水合溴化镁催化合成柠檬酸三丁酯

    Institute of Scientific and Technical Information of China (English)

    骈继鑫; 邓功达; 王湘波; 王卫; 何林

    2014-01-01

    Green plasticizer is a hot topic in currently academic research and tributyl citrate (abbreviated as TBC) as a new“green”plastic plasticizer, gets the favour of people of all ages.The esterification reaction of citric acid and n-butyl alcohol catalyzed by MgBr2·6H2O was studied in this article.Different factors such as catalyst loading,temperature,the ratio of citric acid and n-butyl alcohol,reaction time were investigated through controlled experiments and the optimal reaction conditions were obtained.When the reaction was conducted for 4 h at 140 ℃ in the presence of 10 mol% MgBr2·6H2O and a 5.5-fold excess of n-butyl alcohol, the desired tributyl citrate could be obtained above 98% yield.The method has the advantages of short reaction time,fewer side effects,high efficiency of esterification,cheapness,etc.%绿色增塑剂是当前学术界研究的一个热点,而柠檬酸三丁酯作为一种新型绿色的塑料增塑剂受到了人们的青睐,为此,本文研究了六水合溴化镁催化一水合柠檬酸与正丁醇酯化合成绿色增塑剂柠檬酸三丁酯的反应条件,通过实验考察了催化剂用量、反应温度、酸醇物质的量比、反应时间等因素对反应的影响,确定出最佳反应条件为:催化剂用量10 mol%,酸醇物质的量比1∶5.5,反应温度140℃,反应时间为4 h,酯化率可达到98%以上。上述方法具有反应时间短,副反应少,酯化率高,价廉易得等优点。

  11. A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Bennett, George D.

    2006-01-01

    A number of laboratory exercises for the organic chemistry curriculum that emphasize enantioselective synthesis of the aldol condensation which involves the proline-catalyzed condensation between acetone and isobutyraldehyde are explored. The experiment illustrates some of the trade-offs involved in green chemistry like the use of acetone in large…

  12. Enantioselective Hydroxylation of 4-Alkylphenols by Vanillyl Alcohol Oxidase

    NARCIS (Netherlands)

    Drijfhout, Falko P.; Fraaije, Marco W.; Jongejan, Hugo; Berkel, Willem J.H. van; Franssen, Maurice C.R.

    1998-01-01

    Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum catalyzes the enantioselective hydroxylation of 4-ethylphenol, 4-propylphenol, and 2-methoxy-4-propylphenol into 1-(4'-hydroxyphenyl)ethanol, 1-(4'-hydroxyphenyl)propanol, and 1-(4'-hydroxy-3'-methoxyphenyl)propanol, respectively, with a

  13. Enantioselective Total Synthesis of (-)-Alstoscholarisine A.

    Science.gov (United States)

    Liang, Xiao; Jiang, Shi-Zhi; Wei, Kun; Yang, Yu-Rong

    2016-03-01

    We report a concise and highly enantioselective total synthesis of (-)-alstoscholarisine A (1), a recently isolated monoterpenoid indole alkaloid that has significant bioactivity in promoting adult neuronal stem cells proliferation. A highly enantioselective (99% ee), intramolecular Ir-catalyzed Friedel-Crafts alkylation of indole 9 with a secondary allylic alcohol was utilized to establish the first stereogenic center upon which the other three contiguous chiral centers were readily set by a highly stereoselective tandem 1,4-addition and aldol reaction. The key tetrahydropyran was constructed through a hemiacetal reduction, and the final aminal bridge was forged by a one-pot reductive amination/cyclization. The conciseness of this approach was highlighted by building core bonds in each step with a minimalist protecting group strategy. PMID:26882407

  14. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    Science.gov (United States)

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding.

  15. Bio-renewable enantioselective aldol reaction in natural deep eutectic solvents

    OpenAIRE

    Martínez Flores, Regina; Berbegal, Lucía; Guillena Townley, Gabriela; Ramón Dangla, Diego José

    2016-01-01

    Among the deep eutectic solvents (DES), natural deep eutectic solvents (NADES) formed by D-glucose and racemic malic acid are suitable media to perform the enantioselective L-proline catalyzed intermolecular aldol reaction, creating simultaneously and selectively a C–C bond and a new stereocenter. The scope of the reaction was found to be broad, with products being obtained with good levels of diastereo- and enantioselectivities. Furthermore, when the reaction was performed at a large scale, ...

  16. Crystal Structure of (R)-3,3'-Bis(benzyloxymethyl)-1,1 '-bi-2,2'-naphthol and Its Applications in Enantioselective Lewis Acid Catalyzed Addition of Diethylzinc to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-Hua; YU Han; XUE Yun-Ning; YAO Mei; FANG Hai-Bin

    2007-01-01

    The title compound (R)-3,3'-bis(benzyloxymethyl)-1,1'-bi-2,2'-naphthol (R)-3 has been synthesized through the deprotection of MOM group by iprOH/HC1 in 83% isolated yield and the suitable single crystals for X-ray diffraction were obtained by recrystallization at room temperature from the mixture solvents. Crystallographic data for (R)-3: C36H30O4, Mr = 526.60,triclinic, space group P1, a = 10.057(6), b = 11.934(7), c = 12.314(6) (A), α = 85.52(2), β =70.245(13), γ = 76.554(11)°, Z= 2, V= 1352.8(13) (A)3, Dc = 1.293 g/cm3, F(000) = 556, R = 0.0745,wR = 0.1933 and μ(MoKα) = 0.083 mm-1. The title compound (R)-3 was found to be effective in the enantioselective addition of diethylzinc to aldehydes both in the presence and absence of Ti(OiPr)4. In the latter case, (R)-3 showed much higher catalytic activity and enantioselectivity than (R)-BINOL's.

  17. Citrat og nyresten

    DEFF Research Database (Denmark)

    Osther, P J

    1993-01-01

    Citrate is an important naturally occurring inhibitor of calcium stone formation in urine. Urinary citrate excretion was examined in 43 consecutive patients with recurrent idiopathic calcium nephrolithiasis and in 50 normal controls by a specific enzymatic technique. Hypocitraturia (<1.6 mmol/24h...

  18. Enantioselective biotransformations of nitriles in organic synthesis.

    Science.gov (United States)

    Wang, Mei-Xiang

    2015-03-17

    The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by

  19. Iridium-catalyzed annulation of salicylimines with 1,3-dienes.

    Science.gov (United States)

    Ebe, Yusuke; Nishimura, Takahiro

    2014-07-01

    Iridium-catalyzed annulation of salicylimines with 1,3-dienes gave high yields of the corresponding 4-aminochromanes with high stereoselectivity. The use of a chiral diene ligand enabled the asymmetric reaction to give 4-aminochromanes with high enantioselectivity.

  20. Trisilver(I citrate

    Directory of Open Access Journals (Sweden)

    Andreas Fischer

    2011-02-01

    Full Text Available Trisilver(I citrate, 3Ag+·C6H5O73−, was obtained by evaporation of a saturated aqueous solution of the raw material that had been obtained from sodium dihydrogen citrate and silver nitrate. It features one formula unit in the asymmetric unit. There is an intramolecular O—H...O hydrogen bond between the OH group and one of the terminal carboxylate groups. Different citrate groups are linked via the three Ag+ ions, yielding a three-dimensional network with rather irregular [AgO4] polyhedra.

  1. Enantioselective Synthesis of SNAP-7941: Chiral Dihydropyrimidone Inhibitor of MCH1-R

    OpenAIRE

    Goss, Jennifer M.; Schaus, Scott E.

    2008-01-01

    An enantioselective synthesis of SNAP-7941, a potent melanin concentrating hormone receptor antagonist, was achieved using two organocatalytic methods. The first method utilized to synthesize the enantioenriched dihydropyrimidone core was the Cinchona alkaloid-catalyzed Mannich reaction of β-keto esters to acyl imines and the second was chiral phosphoric acid-catalyzed Biginelli reaction. Completion of the synthesis was accomplished via selective urea formation at the N3 position of the dihyd...

  2. Novel chiral thioureas for highly enantioselective Michael reactions of malonates to nitroalkenes

    Institute of Scientific and Technical Information of China (English)

    Li Jun Yan; Quan Zhong Liu; Xue Lian Wang

    2009-01-01

    Highly efficient Michael addition reactions of malonates to nitroalkenes catalyzed by novel chiral thioureas derived from optically pure BINOL and amino acids are reported. Various trans-nitroalkenes reacted with malonates affording the desired products in up to 95% yield with excellent enantioselectivities (up to 97% ee).

  3. Diversity-Oriented Enantioselective Synthesis of Highly Functionalized Cyclic and Bicyclic Alcohols

    NARCIS (Netherlands)

    Mao, Bin; Fananas Mastral, Martin; Lutz, Martin; Feringa, Ben L.

    2013-01-01

    The copper-catalyzed hetero-allylic asymmetric alkylation (h-AAA) of functionalized Grignard reagents that contain alkene or alkyne moieties has been achieved with excellent regio-and enantioselectivity. The corresponding alkylation products were further transformed into a variety of highly function

  4. Activity and Enantioselectivity of the Hydroxynitrile Lyase MeHNL in Dry Organic Solvents

    NARCIS (Netherlands)

    Hanefeld, U.; Paravidino, M.; Sorgedrager, M.; Orru, R.V.A.

    2010-01-01

    Water concentration affects both the enantioselectivity and activity of enzymes in dry organic media. Its influence has been investigated using the hydrocyanation of benzaldehyde catalyzed by hydroxynitrile lyase cross-linked enzyme aggregate (MeHNL-CLEA) as a model reaction. The enzyme displayed hi

  5. Gastrointestinal citrate absorption in nephrolithiasis

    Science.gov (United States)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  6. Development of catalysts and ligands for enantioselective gold catalysis.

    Science.gov (United States)

    Wang, Yi-Ming; Lackner, Aaron D; Toste, F Dean

    2014-03-18

    During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely

  7. Flexible enantioselectivity of tryptophanase attributable to benzene ring in heterocyclic moiety of d-tryptophan.

    Science.gov (United States)

    Shimada, Akihiko; Ozaki, Haruka

    2012-01-01

    The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.

  8. Diastereo- and enantioselective three-component coupling approach to highly substituted pyrrolidines.

    Science.gov (United States)

    Chaulagain, Mani Raj; Felten, Albert E; Gilbert, Kevin; Aron, Zachary D

    2013-09-20

    The enantioselective synthesis of substituted pyrrolidines through a mild Lewis-acid catalyzed three-component coupling reaction between picolinaldehyde, amino acids, and activated olefins is reported. The reaction uses low catalyst loadings of commercially available chiral diamines and copper triflate proposed to self-assemble in conjunction with the chelating aldehydes, 4-substituted-2-picolinaldehydes or 4-methylthiazole-2-carboxaldehyde, to generate a catalyst complex. A model is provided to explain how this complex directs enantioselectivity. This work represents a significant advance in the ease, scope, and cost of producing highly substituted, enantioenriched pyrrolidines.

  9. Organocatalytic Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Ketimines with Pyrroles using Imidazolinephosphoric Acid Catalysts.

    Science.gov (United States)

    Nakamura, Shuichi; Matsuda, Nazumi; Ohara, Mutsuyo

    2016-07-01

    Organocatalytic enantioselective aza-Friedel-Crafts reactions of cyclic ketimines with pyrroles or indoles were catalyzed by imidazoline/phosphoric acid catalysts. The reaction was applied to various 3H-indol-3-ones to afford products in excellent yields and enantioselectivities. The chiral catalysts can be recovered by a single separation step using column chromatography and are reusable without further purification. Based on the experimental investigations, a possible transition state has been proposed to explain the origin of the asymmetric induction. PMID:27124556

  10. Enantioselective Organocatalytic Construction of Spiroindane Derivatives by Intramolecular Friedel-Crafts-Type 1,4-Addition.

    Science.gov (United States)

    Yoshida, Keisuke; Itatsu, Yukihiro; Fujino, Yuta; Inoue, Hiroki; Takao, Ken-Ichi

    2016-06-01

    The highly enantioselective organocatalytic construction of spiroindanes containing an all-carbon quaternary stereocenter by intramolecular Friedel-Crafts-type 1,4-addition is described. The reaction was catalyzed by a cinchonidine-based primary amine and accelerated by water and p-bromophenol. A variety of spiro compounds containing quaternary stereocenters were obtained with excellent enantioselectivity (up to 95 % ee). The reaction was applied to the asymmetric formal synthesis of the spirocyclic natural products (-)-cannabispirenones A and B. PMID:27111396

  11. Enantioselective Synthesis of Chiral Piperidines via the Stepwise Dearomatization/Borylation of Pyridines.

    Science.gov (United States)

    Kubota, Koji; Watanabe, Yuta; Hayama, Keiichi; Ito, Hajime

    2016-04-01

    We have developed a novel approach for the synthesis of enantioenriched 3-boryl-tetrahydropyridines via the Cu(I)-catalyzed regio-, diastereo-, and enantioselective protoborylation of 1,2-dihydropyridines, which were obtained by the partial reduction of the pyridine derivatives. This dearomatization/enantioselective borylation stepwise strategy provides facile access to chiral piperidines together with the stereospecific transformation of a stereogenic C-B bond from readily available starting materials. Furthermore, the utility of this method is demonstrated for the concise synthesis of the antidepressant drug (-)-paroxetine. A theoretical study of the reaction mechanism is also described. PMID:26967578

  12. The concise synthesis of chiral tfb ligands and their application to the rhodium-catalyzed asymmetric arylation of aldehydes

    OpenAIRE

    Nishimura, Takahiro; Kumamoto, Hana; Nagaosa, Makoto; Hayashi, Tamio

    2009-01-01

    New C2-symmetric tetrafluorobenzobarrelene ligands were prepared and applied successfully to the rhodium-catalyzed asymmetric addition of arylboronic acids to aromatic aldehydes giving chiral diarylmethanols in high yield with high enantioselectivity.

  13. 油包水微乳液中抗体酶催化布洛芬酯选择性水解的酶学特性%Enzymological Characteristics of Catalytic Antibody-catalyzed enantioselective Hydrolysis of Ibuprofen Ester in Water-in-oil microemulsion

    Institute of Scientific and Technical Information of China (English)

    杨根生; 戚映丹; 欧志敏; 姚善泾

    2009-01-01

    The asymmetric hydrolyzation of racemic ibuprofen ester is one of the most important methods for chiral separation of ibuprofen. A catalytic antibody that accelerates the rate of enantioselective hydrolysis of ibuprofen methyl ester was successfully elicited against an immunogen consisting of tetrahedral sulfate hapten attached to bovine serum albumin (BSA). The rate constant enhancement factor Kcat/Kuncat was about 1.6x104. The catalytic activity of the catalytic antibody in a reverse micelle reaction system based on sodium b/s (2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane was studied. Kinetic analysis of the catalytic antibody-catalyzed reaction was found to be possible in this system. Kinetic studies showed that hydrolysis in the microemulsion system follow Michaelis-Menten kinetics. The catalytic antibody can also accelerate catalysis of S-ibuprofen methyl ester in the microemulsion system. Temperature effects, the pH profile, Km,app and Kcat were determined. The dependence of the catalytic antibody hydrolytic activity on the Wo (molar ratio of water to surfactant) showed a bell-shaped curve, presenting a maximum at about wo = 21.%根据过渡态理论设计和合成了能诱导产生催化选择性水解布洛芬甲酯的催化抗体的四面体硫酸盐半抗原,并与牛血清白蛋白(BSA)偶联制备成免疫源,通过免疫手段成功筛选出具有加速选择性水解生成S-布洛芬的特异性催化抗体.其Kcat,app/Kuncat,app达1.6x104.进一步地将催化抗体运用到W/O微乳体系(反胶束)中进行布洛芬酯的选择性水解研究,其动力学研究证明其催化过程同样遵循Michaelis.Menten方程.考察了pH值和温度对催化初速度影响,Wo(体系中水和琥珀酸二辛酯磺酸钠(AOT)的摩尔比)对催化初速度影响呈现为钟罩型,最适的Wo.为21.

  14. Organocatalytic Enantioselective Pictet-Spengler Reactions for the Syntheses of 1-Substituted 1,2,3,4-Tetrahydroisoquinolines

    NARCIS (Netherlands)

    E. Mons; M.J. Wanner; S. Ingemann; J.H. van Maarseveen; H. Hiemstra

    2014-01-01

    A series of 1-substituted 1,2,3,4-tetrahydroisoquinolines was prepared from N-(o-nitrophenylsulfenyl)-phenylethylamines through BINOL-phosphoric acid [(R)-TRIP]-catalyzed asymmetric Pictet-Spengler reactions. The sulfenamide moiety is crucial for the rate and enantioselectivity of the iminium ion cy

  15. Isonitrile iron(II) complexes with chiral N2P2 macrocycles in the enantioselective transfer hydrogenation of ketones.

    Science.gov (United States)

    Bigler, Raphael; Mezzetti, Antonio

    2014-12-19

    Bis(isonitrile) iron(II) complexes bearing a C2-symmetric N2P2 macrocyclic ligand, which are easily prepared from the corresponding bis(acetonitrile) analogue, catalyze the asymmetric transfer hydrogenation (ATH) of a broad scope of ketones in excellent yields (up to 98%) and with high enantioselectivity (up to 91% ee).

  16. Enantioselective synthesis of benzofurans and benzoxazines via an olefin cross-metathesis-intramolecular oxo-Michael reaction.

    Science.gov (United States)

    Zhang, Jun-Wei; Cai, Quan; Gu, Qing; Shi, Xiao-Xin; You, Shu-Li

    2013-09-11

    Chiral phosphoric acid and Hoveyda-Grubbs II were found to catalyze an olefin cross-metathesis-intramolecular oxo-Michael cascade reaction of the ortho-allylphenols and enones to provide a variety of benzofuran and benzoxazine derivatives in moderate to good yields and enantioselectivity.

  17. ASYMMETRIC HYDROSILYLATION CATALYZED BY POLYMER—SUPPORTED THIAZOLIDINE RHODIUM CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    LEIYanohui; LIHong; 等

    1999-01-01

    Asymmetric hydrisilylation catalyzed by polymeric thiazolidine rhodium catalysts was conducted.Almost the same optical yields have been obtained when comb-shaped polymeric ligands and their corresponding monomer complexed rhodium cataltysts were used to asymmetric hydrosilylation of acetophenone.Optical yield of chiral 1-methylbenzyl alcohol reaches as high as 71.5%.Temperature dependence of enantioselective hydrosilylation of acetophenone was discussed.

  18. Cyclopalladated complexes in enantioselective catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dunina, Valeria V; Gorunova, Olga N; Zykov, P A; Kochetkov, Konstantin A

    2011-01-31

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  19. Cyclopalladated complexes in enantioselective catalysis

    Science.gov (United States)

    Dunina, Valeria V.; Gorunova, Olga N.; Zykov, P. A.; Kochetkov, Konstantin A.

    2011-01-01

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  20. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  1. Alverine citrate induced acute hepatitis

    Institute of Scientific and Technical Information of China (English)

    Mehmet Arhan; Seyfettin K(o)klü; Aydln S K(o)ksal; (O)mer F Yolcu; Senem Koruk; Irfan Koruk; Ertugrul Kayacetin

    2004-01-01

    Alverine citrate is a commonly used smooth muscle relaxant agent. A MEDLINE search on January 2004 revealed only 1 report implicating the hepatotoxicity of this agent. A 34-year-old woman was investigated because of the finding of elevated liver function tests on biochemical screening. Other etiologies of hepatitis were appropriately ruled out and elevated enzymes were ascribed to alverine citrate treatment.Although alverine citrate hepatotoxicity was related to an immune mechanism in the first case, several features such as absence of predictable dose-dependent toxicity of alverine citrate in a previous study and absence of hypersensitivity manifestations in our patient are suggestive of a metabolic type of idiosyncratic toxicity.

  2. Linking homogeneous and heterogeneous enantioselective catalysis through a self-assembled coordination polymer.

    Science.gov (United States)

    García, José I; López-Sánchez, Beatriz; Mayoral, José A

    2008-11-01

    Combining the advantages of homogeneous and heterogeneous enantioselective catalysis is possible through self-supported copper coordination polymers, based on a new kind of ditopic chiral ligand bearing two azabis(oxazoline) moieties. When the coordination polymer is used to catalyze a cyclopropanation reaction, it becomes soluble in reaction conditions but precipitates after reaction completion, allowing easy recovery and efficient reuse in the same reaction up to 14 times.

  3. Enantioselective Syntheses of Heteroyohimbine Natural Products: A Unified Approach through Cooperative Catalysis.

    Science.gov (United States)

    Younai, Ashkaan; Zeng, Bi-Shun; Meltzer, Herbert Y; Scheidt, Karl A

    2015-06-01

    Alstonine and serpentine are pentacyclic indoloquinolizidine alkaloids (referred to as "anhydronium bases") containing three contiguous stereocenters. Each possesses interesting biological activity, with alstonine being the major component of a plant-based remedy to treat psychosis and other nervous system disorders. This work describes the enantioselective total syntheses of these natural products with a cooperative hydrogen bonding/enamine-catalyzed Michael addition as the key step.

  4. Understanding water effect on Candida antarctica lipase B activity and enantioselectivity towards secondary alcohols.

    OpenAIRE

    Léonard, Valérie; Marton, Z; Lamare, Sylvain; Hult, Karl; Graber, Marianne

    2009-01-01

    6 pages International audience The effect of water activity (aW) on Candida antarctica lipase B (CALB) activity and enantioselectivity towards secondary alcohols was assessed. Experimental results for the resolution of racemic pentan-2-ol, hexan-3-ol, butan-2-ol and octan-4-ol by immobilized CALB-catalyzed acylation with methyl propanoate, were obtained by using a solid/gas reactor. Water and substrate adsorption mechanism on immobilized CALB, were then studied using moisture sorption a...

  5. Enantioselective Synthesis of (+)-Peganumine A.

    Science.gov (United States)

    Piemontesi, Cyril; Wang, Qian; Zhu, Jieping

    2016-09-01

    A gram-scale enantioselective total synthesis of (+)-peganumine A was accomplished in 7 steps from commercially available 6-methoxytryptamine. Key steps included (a) a Liebeskind-Srogl cross-coupling; (b) a one-pot construction of the tetracyclic skeleton from an ω-isocyano-γ-oxo-aldehyde via a sequence of an unprecedented C-C bond forming lactamization and a transannular condensation; (c) a one-pot organocatalytic process merging two achiral building blocks into an octacyclic structure via a sequence of enantioselective Pictet-Spengler reaction followed by a transannular cyclization. This last reaction created two spirocycles and a 2,7-diazabicyclo[2.2.1]heptan-3-one unit with excellent control of both the absolute and relative stereochemistry of the two newly created quaternary stereocenters. PMID:27558528

  6. Gold(I)-Catalyzed enantioselective synthesis of functionalized indenes

    OpenAIRE

    Martínez Cuezva, Alberto; García García, Patricia; Fernández Rodríguez, Manuel A.; Rodríguez, Félix; Sanz Díez, Roberto

    2010-01-01

    MEC/FEDER (CTQ2007-61436/BQU, FPU grant to A.M., Ramon y Cajal and Juan de la Cierva contracts to M.A.F.-R. and P.G.-G.) and Junta de Castilla y Leon (BU021A09) for financial support. We also thank Dr. A. Mendoza (Universidad de Oviedo) for his assistance with the X-ray crystallographic analysis

  7. The Reaction of 2-Aroylvinylcinnamaldehydes with Aromatic Aldehydes by Dual Catalysis with a Chiral N-Heterocyclic Carbene and a Lewis Acid: Enantioselective Construction of Tetrahydroindeno[1,2-c]furan-1-ones.

    Science.gov (United States)

    Wang, Gang; Wang, Zhan-Yong; Niu, Shuang-Shuo; Rao, Yin; Cheng, Ying

    2016-09-16

    The cooperative chiral N-heterocyclic carbene and Lewis acid catalyzed reactions between 2-aroylvinylcinnamaldehydes and various aromatic aldehydes produced multifunctional tetrahydroindeno[1,2-c]furan-1-ones with excellent enantioselectivity. This work developed a versatile and efficient method for highly enantioselective construction of chiral tetrahydroindeno[1,2-c]furan-1-one, which are not easily prepared by other synthetic methods. PMID:27548098

  8. Alverine citrate induced acute hepatitis.

    Science.gov (United States)

    Arhan, Mehmet; Koklu, Seyfettin; Koksal, Aydln-S; Yolcu, Omer-F; Koruk, Senem; Koruk, Irfan; Kayacetin, Ertugrul

    2004-08-01

    Alverine citrate is a commonly used smooth muscle relaxant agent. A MEDLINE search on January 2004 revealed only 1 report implicating the hepatotoxicity of this agent. A 34-year-old woman was investigated because of the finding of elevated liver function tests on biochemical screening. Other etiologies of hepatitis were appropriately ruled out and elevated enzymes were ascribed to alverine citrate treatment. Although alverine citrate hepatotoxicity was related to an immune mechanism in the first case, several features such as absence of predictable dose-dependent toxicity of alverine citrate in a previous study and absence of hypersensitivity manifestations in our patient are suggestive of a metabolic type of idiosyncratic toxicity. PMID:15259090

  9. Citrate-Stabilized Gold Nanorods

    OpenAIRE

    Mehtala, Jonathan G; Zemlyanov, Dmitry Y.; Max, Joann P.; Kadasala, Naveen; Zhao, Shou; Wei, Alexander

    2014-01-01

    Stable aqueous dispersions of citrate-stabilized gold nanorods (cit-GNRs) have been prepared in scalable fashion by surfactant exchange from cetyltrimethylammonium bromide (CTAB)-stabilized GNRs, using polystyrenesulfonate (PSS) as a detergent. The surfactant exchange process was monitored by infrared spectroscopy, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopy (XPS). The latter established the quantitative displacement of CTAB (by PSS) and of PSS (by citrate)....

  10. Modular Terpenoid Construction via Catalytic Enantioselective Formation of All-Carbon Quaternary Centers: Total Synthesis of Oridamycin A, Triptoquinones B and C, and Isoiresin.

    Science.gov (United States)

    Feng, Jiajie; Noack, Florian; Krische, Michael J

    2016-09-28

    Total syntheses of oridamycin A, triptoquinones B and C, and isoiresin are accomplished from a common intermediate prepared via iridium-catalyzed alcohol C-H tert-(hydroxy)prenylation - a byproduct-free process that forms an all-carbon quaternary stereocenter with excellent control of diastereo- and enantioselectivity.

  11. Enantioselectivity of Photochemical Reactions within Polymer Microcapsules

    Institute of Scientific and Technical Information of China (English)

    MA,Lei; WU,Li-Zhu; ZHANG,Li-Ping; TUNG,Chen-Ho

    2003-01-01

    Polymer microcapsule was employed as a reaction medium to achieve enantioselectivity in photochemical reduction of phenyl cyclohexyl ketone and photoelectrocyclization of tropolone methyl ether unader the influence of various chiral inductors. In all cases,low but evident enantioselectivity was observed. The poor enantioselectivity is probably due to the facts that not all the capsules include simultaneously both the chiral inductor and the reactant molecules, and the wall of the microcapsule is not rigid enough tohold the reactant and the chiral inductor moleculesin close contact.

  12. Safety Assessment of Citric Acid, Inorganic Citrate Salts, and Alkyl Citrate Esters as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-05-26

    The CIR Expert Panel (Panel) assessed the safety of citric acid, 12 inorganic citrate salts, and 20 alkyl citrate esters as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration. Citric acid is reported to function as a pH adjuster, chelating agent, or fragrance ingredient. Some of the salts are also reported to function as chelating agents, and a number of the citrates are reported to function as skin-conditioning agents but other functions are also reported. The Panel reviewed available animal and clinical data, but because citric acid, calcium citrate, ferric citrate, manganese citrate, potassium citrate, sodium citrate, diammonium citrate, isopropyl citrate, stearyl citrate, and triethyl citrate are generally recognized as safe direct food additives, dermal exposure was the focus for these ingredients in this cosmetic ingredient safety assessment.

  13. Studies on Atropo-Enantioselective Synthesis of the Natural Chiral Axial Biaryls

    Institute of Scientific and Technical Information of China (English)

    LIN Guo-Qiang

    2004-01-01

    Ary-aryl bond formation plays an important role in modem organic synthesis. These bonds are very of ten occurred in natural products such as alkaloids as well as in numerous biologically active parts of pharmaceutical and agrochemical specialties. In addition, they are also the scaffolds of some of the most efficient and selective ligands for asymmetric catalysts, especially when atropisomery is possible.In this report, we report the structure and the enantioselective synthesis of some natural occurring bioactive products. The focus will be Mainly in our recently discovered Ni(0) catalyzed homo-coupling and cross-coupling of aryl halide with coumarinyl mesylates and the enantioselective synthesis of phthalides in the presence of bidentated ligands with up to 99% e.e.

  14. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan

    2008-05-22

    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  15. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.

    Science.gov (United States)

    Bordeaux, Melanie; Tyagi, Vikas; Fasan, Rudi

    2015-02-01

    Using rational design, an engineered myoglobin-based catalyst capable of catalyzing the cyclopropanation of aryl-substituted olefins with catalytic proficiency (up to 46,800 turnovers) and excellent diastereo- and enantioselectivity (98-99.9%) was developed. This transformation could be carried out in the presence of up to 20 g L(-1) olefin substrate with no loss in diastereo- and/or enantioselectivity. Mutagenesis and mechanistic studies support a cyclopropanation mechanism mediated by an electrophilic, heme-bound carbene species and a model is provided to rationalize the stereopreference of the protein catalyst. This work shows that myoglobin constitutes a promising and robust scaffold for the development of biocatalysts with carbene-transfer reactivity.

  16. Enhancement of Aminoacylase Activity by Sodium Citrate

    Institute of Scientific and Technical Information of China (English)

    于范利; 曹志方; 李森; 周海梦

    2001-01-01

    Kidney and other tissues of animals and humans have a high concentration of citrate which is an important intermediate substance in the citrate cycle. Citrate may play an important physiological role in metabolism. In this paper, we studied the interaction of the sodium salt of citrate with aminoacylase which is an important enzyme in metabolism and found sodium citrate can enhance the activity of aminoacylase. The maximum enzyme activity induced by sodium citrate increased approximately 3 folds over the enzyme activity without sodium citrate. The initial reaction rates (Ⅴ) for different concentrations of sodium citrate were obtained, showing that sodium citrate is a non-competitive activator. The result of the ANS binding fluorescence measurements for aminoacylase indicated that increasing sodium citrate concentrations markedly increased the ANS binding fluorescence with a blue shift of the emission spectra peak. This suggests the formation of more hydrophobic regions. Aggregates formed quickly when aminoacylase was incubated with sodium citrate (0.3 mol/L) and guanidinium chloride (0- 3. 5 mol/L). Aminoacylase lost enzyme activity in the guanidinium chloride more quickly in the presence of sodium citrate than in the absence of sodium citrate. The intrinsic fluorescence emission intensity decreased more quickly and the red shift of the emission spectra peak was larger than that without sodium citrate.

  17. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described. PMID:19194597

  18. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    Science.gov (United States)

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  19. Chiral Diamine-catalyzed Asymmetric Aldol Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Hui; XU Da-zhen; WU Lu-lu; WANG Yong-mei

    2012-01-01

    A highly efficient catalytic system composed of a simple and commercially available chiral primary diamine (1R,2R)-cyclohexane-1,2-diamine(6) and trifluoroacetic acid(TFA) was employed for asymmetric Aldol reaction in i-PrOH at room temperature.A loading of 10%(molar fraction) catalyst 6 with TFA as a cocatalyst could catalyze the Aldol reactions of various ketones or aldehydes with a series of aromatic aldehydes,furnishing Aldol products in moderate to high yields(up to >99%) with enantioselectivities of up to >99% and diastereoselectivities of up to 99:1.

  20. Highly enantioselective transfer hydrogenation of ketones with chiral (NH)2 P2 macrocyclic iron(II) complexes.

    Science.gov (United States)

    Bigler, Raphael; Huber, Raffael; Mezzetti, Antonio

    2015-04-20

    Bis(isonitrile) iron(II) complexes bearing a C2 -symmetric diamino (NH)2 P2 macrocyclic ligand efficiently catalyze the hydrogenation of polar bonds of a broad scope of substrates (ketones, enones, and imines) in high yield (up to 99.5 %), excellent enantioselectivity (up to 99 % ee), and with low catalyst loading (generally 0.1 mol %). The catalyst can be easily tuned by modifying the substituents of the isonitrile ligand.

  1. Enantioselective Allylic C-H Oxidation of Terminal Olefins to Isochromans by Palladium(II)/Chiral Sulfoxide Catalysis.

    Science.gov (United States)

    Ammann, Stephen E; Liu, Wei; White, M Christina

    2016-08-01

    The enantioselective synthesis of isochroman motifs has been accomplished by palladium(II)-catalyzed allylic C-H oxidation from terminal olefin precursors. Critical to the success of this goal was the development and utilization of a novel chiral aryl sulfoxide-oxazoline (ArSOX) ligand. The allylic C-H oxidation reaction proceeds with the broadest scope and highest levels of asymmetric induction reported to date (avg. 92 % ee, 13 examples with greater than 90 % ee). PMID:27376625

  2. Palladium(0)-Catalyzed Intermolecular Allylic Dearomatization of Indoles by a Formal [4+2] Cycloaddition Reaction.

    Science.gov (United States)

    Gao, Run-Duo; Xu, Qing-Long; Zhang, Bo; Gu, Yiting; Dai, Li-Xin; You, Shu-Li

    2016-08-01

    Bridged indoline derivatives were synthesized by an intermolecular Pd-catalyzed allylic dearomatization reaction of substituted indoles. The reaction between indoles and allyl carbonates bearing a nucleophilic alcohol side-chain proceeds in a cascade fashion, providing bridged indolines in excellent enantioselectivity. PMID:27321285

  3. 21 CFR 184.1751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68... may be prepared in an anhydrous state or may contain two moles of water per mole of sodium citrate....

  4. 21 CFR 184.1449 - Manganese citrate.

    Science.gov (United States)

    2010-04-01

    ... sodium citrate to complete the reaction. (b) The ingredient must be of a purity suitable for its intended... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese citrate. 184.1449 Section 184.1449 Food... Specific Substances Affirmed as GRAS § 184.1449 Manganese citrate. (a) Manganese citrate (Mn3(C6H5O7)2,...

  5. 21 CFR 184.1298 - Ferric citrate.

    Science.gov (United States)

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1298 Ferric citrate. (a) Ferric citrate (iron (III) citrate, C6H5FeO7, CAS Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  6. 21 CFR 582.6751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  7. 21 CFR 582.1751 - Sodium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.6625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  10. Synthesis of novel chiral tetraaza ligands and their application in enantioselective transfer hydrogenation of ketones

    Institute of Scientific and Technical Information of China (English)

    Shen Luan Yu; Yan Yun Li; Zhen Rong Dong; Jing Xing Gao

    2012-01-01

    Novel chiral tetraaza ligands (R)-N,N'-bis[2-(piperidin-l-yl)benzylidene]propane-1,2-diamine 6 and (S)-N-[2-(piperidin-1-yl)benzylidene]-3-{ [2-(piperidin-1-yl)benzylidene]amino}-alanine sodium salt 7 have been synthesized and fully characterized by NMR,IR,MS and CD spectra.The catalytic property of the ligands was investigated in Ir-catalyzed enantioselective transfer hydrogenation of ketones.The corresponding optical active alcohols were obtained with high yields and moderate ees under mild reaction conditions.

  11. Schiff-base Amino Alcohol-zinc Complex for Enantioselective Addition of Phenylacetylene to Aromatic Ketones

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; HONG Liang; WANG Quan; ZHANG Bang-zhi; WANG Rui

    2008-01-01

    A complete study of the asymmetric addition of phenylacetylene to ketones catalyzed by Schiff-base amino alcohol-Zn complex is reported in this article. The Schiff-base amino alcohols were easily prepared from amino acids in three steps. When the amount of ligand was 1%(molar fraction), an e.e. value up to 94% was obtained. A series of practical chiral ligands were applied in the enantioselective addition of phenylacetylene to ketones without adding another stronger Lewis acid except zinc.

  12. Enantioselective Total Synthesis of (+)-Steenkrotin A and Determination of Its Absolute Configuration.

    Science.gov (United States)

    Pan, Saiyong; Gao, Beiling; Hu, Jialei; Xuan, Jun; Xie, Hujun; Ding, Hanfeng

    2016-01-18

    The first enantioselective total synthesis of (+)-steenkrotin A has been achieved in 18 steps and 4.2 % overall yield. The key features of the strategy entail a Rh-catalyzed O-H bond insertion followed by an intramolecular carbonyl-ene reaction, two sequential SmI2 -mediated Ueno-Stork and ketyl-olefin cyclizations, and a cascade intramolecular aldol condensation/vinylogous retro-aldol/aldol process with inversion of the relative configuration at the C7 position. The absolute configuration of (+)-steenkrotin A was determined based on the stepwise construction of the stereocenters during the total synthesis. PMID:26660855

  13. Genome-wide identification of citrus ATP-citrate lyase genes and their transcript analysis in fruits reveals their possible role in citrate utilization.

    Science.gov (United States)

    Hu, Xiao-Mei; Shi, Cai-Yun; Liu, Xiao; Jin, Long-Fei; Liu, Yong-Zhong; Peng, Shu-Ang

    2015-02-01

    ATP-citrate lyase (ACL, EC4.1.3.8) catalyzes citrate to oxaloacetate and acetyl-CoA in the cell cytosol, and has important roles in normal plant growth and in the biosynthesis of some secondary metabolites. We identified three ACL genes, CitACLα1, CitACLα2, and CitACLβ1, in the citrus genome database. Both CitACLα1 and CitACLα2 encode putative ACL α subunits with 82.5 % amino acid identity, whereas CitACLβ1 encodes a putative ACL β subunit. Gene structure analysis showed that CitACLα1 and CitACLα2 had 12 exons and 11 introns, and CitACLβ1 had 16 exons and 15 introns. CitACLα1 and CitACLβ1 were predominantly expressed in flower, and CitACLα2 was predominantly expressed in stem and fibrous roots. As fruits ripen, the transcript levels of CitACLα1, CitACLβ1, and/or CitACLα2 in cultivars 'Niuher' and 'Owari' increased, accompanied by significant decreases in citrate content, while their transcript levels decreased significantly in 'Egan No. 1' and 'Iyokan', although citrate content also decreased. In 'HB pummelo', in which acid content increased as fruit ripened, and in acid-free pummelo, transcript levels of CitACLα2, CitACLβ1, and/or CitACLα1 increased. Moreover, mild drought stress and ABA treatment significantly increased citrate contents in fruits. Transcript levels of the three genes were significantly reduced by mild drought stress, and the transcript level of only CitACLβ1 was significantly reduced by ABA treatment. Taken together, these data indicate that the effects of ACL on citrate use during fruit ripening depends on the cultivar, and the reduction in ACL gene expression may be attributed to citrate increases under mild drought stress or ABA treatment.

  14. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    D Rajagopal; R Narayanan; S Swaminathan

    2001-06-01

    The enantioselective cyclization of the prochiral cyclic substrates 1 to 7 and 26, can be carried out in the neat using -proline as catalyst. The substrates 18 to 22 and 27 could not be cyclized with S-proline but could be cyclized with a mixture of -phenylalanine and -camphorsulphonic acid. The enantioselective cyclization of prochiral acyclic triones 45 and 47 and also the racemic tricarbonyl compounds 54 to 57 could also be carried out in the \\text{neat} using -proline as catalyst. The optically active enediones obtained in the above cyclizations could also be obtained directly from 1,3-diones or 2-hydroxymethylene cycloalkanones in a one-pot reaction with methyl vinyl ketone (MVK) and S-proline in the absence of solvents. 13C NMR studies of the one-pot synthesis of S-11 and S-14 reveal that the annulations involve initial formation of an acid-base complex followed by a Michael reaction and then an enantioselective cyclization. Such enantioselective cyclizations probably occur on the surface of -proline crystals.

  15. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.

    2011-06-10

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  17. (Salen)Ti(Ⅳ)-Catalyzed Asymmetric Ring-opening of meso Epoxides Using Dithiophosphorus Acid as the Nucleophile

    Institute of Scientific and Technical Information of China (English)

    Zheng Hong ZHOU; Zhao Ming LI; Bing LIU; Kang Ying LI; Li Xin WANG; Guo Feng ZHAO; Qi Lin ZHOU; Chu Chi TANG

    2006-01-01

    The asymmetric ring-opening of epoxides with dithiophosphorus acids catalyzed by a (salen)Ti(Ⅳ) complex formed in situ from the reaction of Ti(OPr-i)4 and the chiral Schiff base derived from (1R,2R)-(+)-diaminocyclohexane was realized. The resulting products were obtained with low to good enantioselectivity (up to 73% ee).

  18. Ru/Me-BIPAM-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes and α-Ketoesters

    Directory of Open Access Journals (Sweden)

    Momoko Watanabe

    2011-06-01

    Full Text Available A ruthenium-catalyzed asymmetric arylation of aliphatic aldehydes and α-ketoesters with arylboronic acids has been developed, giving chiral alkyl(arylmethanols and α-hydroxy esters in good yields. The use of a chiral bidentate phosphoramidite ligand (Me-BIPAM achieved excellent enantioselectivities.

  19. Synthesis of novel chiral phosphine-triazine ligand derived from α-phenylethylamine for Pd-catalyzed asymmetric allylic alkylation

    Institute of Scientific and Technical Information of China (English)

    Jia Di Huang; Xiang Ping Hu; Zhuo Zheng

    2008-01-01

    A novel chiral phosphine-triazine ligand was synthesized from chiral model reaction of Pd-catalyzed allylic alkylation of rac-l,3-diphenylprop-2-en-l-yl pivalate with dimethyl malonate, good enantioselectivity (90% e.e.) was obtained by using this ligand.

  20. PipPhos and MorfPhos : Privileged monodentate phosphoramidite ligands for rhodium-catalyzed asymmetric hydrogenation

    NARCIS (Netherlands)

    Bernsmann, Heiko; van den Berg, M; Hoen, Robert; Minnaard, AJ; Mehler, G; Reetz, MT; De Vries, JG; Feringa, BL

    2005-01-01

    A library of 20 monodentate phosphoramidite ligands has been prepared and applied in rhodium-catalyzed asymmetric hydrogenation. This resulted in the identification of two ligands, PipPhos and MorfPhos, that afford excellent and in several cases unprecedented enantioselectivities in the hydrogenatio

  1. Membrane Topology of the Sodium Ion-dependent Citrate Carrier of Klebsiella pneumoniae. Evidence for a New Structural Class of Secondary Transporters

    OpenAIRE

    Geest, Marleen van; Lolkema, Juke S.

    1996-01-01

    The predicted secondary structure model of the sodium ion-dependent citrate carrier of Klebsiella pneumoniae (CitS) presents the 12-transmembrane helix motif observed for many secondary transporters. Biochemical evidence presented in this paper is not consistent with this model. N-terminal and C-terminal fusions of CitS with the biotin acceptor domain of the oxaloacetate decarboxylase of K. pneumoniae catalyze citrate transport, showing the correct folding of the CitS part of the fusion prote...

  2. Highly enantioselective synthesis of beta-heteroaryl-substituted dihydrochalcones through Friedel-Crafts alkylation of indoles and pyrrole.

    Science.gov (United States)

    Wang, Wentao; Liu, Xiaohua; Cao, Weidi; Wang, Jun; Lin, Lili; Feng, Xiaoming

    2010-02-01

    A highly enantioselective Friedel-Crafts (F-C) alkylation of indoles and pyrrole with chalcone derivatives catalyzed by a chiral N,N'-dioxide-Sc(OTf)(3) complex has been developed that tolerates a wide range of substrates. The reaction proceeds in moderate to excellent yields and high enantioselectivities (85-92 % enantiomeric excess) using 2 mol % (for indole) or 0.5 mol % (for pyrrole) catalyst loading, which showed the potential value of the catalyst system. Meanwhile, a strong positive nonlinear effect was observed. On the basis of the experimental results and previous reports, a possible working model is proposed to explain the origin of the activation and asymmetric induction. PMID:20013964

  3. Enantioselectivity in environmental risk assessment of modern chiral pesticides

    International Nuclear Information System (INIS)

    Chiral pesticides comprise a new and important class of environmental pollutants nowadays. With the development of industry, more and more chiral pesticides will be introduced into the market. But their enantioselective ecotoxicology is not clear. Currently used synthetic pyrethroids, organophosphates, acylanilides, phenoxypropanoic acids and imidazolinones often behave enantioselectively in agriculture use and they always pose unpredictable enantioselective ecological risks on non-target organisms or human. It is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in environmental risk assessment. The enantioselective toxicology and the fate of these currently widely used pesticides have been discussed in this review article. - Chiral pesticides could pose unpredictable enantioselective toxicity on non-target organisms.

  4. Ranitidine bismuth citrate: A review

    Directory of Open Access Journals (Sweden)

    N Chiba

    2001-01-01

    Full Text Available Recognition of the relationship between Helicobacter pylori infection and the development of gastroduodenal disease has increased greatly in recent years. To avoid complications of H pylori infection, such as the development of recurrent duodenal and gastric ulcers, effective therapies are required for eradication of the infection. This article reviews ranitidine bismuth citrate (RBC, a novel complex of ranitidine, bismuth and citrate, which was developed specifically for the purpose of eradicating H pylori. Dual therapy with RBC in combination with clarithromycin for 14 days yields eradication rates of 76%. Triple therapy bid for one week with a proton pump inhibitor, clarithromycin and either amoxicillin or a nitroimidazole (tinidazole or metronidazole is advocated as the treatment of choice for H pylori eradication. Analogous regimens with RBC in place of proton pump inhibitors show effective eradication rates in comparative studies and with pooled data. RBC, used alone or in combination with other antibiotics, appears to be a safe and effective drug for the treatment of H pylori infection. Bismuth levels do not appear to rise to toxic levels.

  5. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.

    2010-06-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  6. Enantioselective aldol reactions with masked fluoroacetates

    Science.gov (United States)

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.

  7. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    Science.gov (United States)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  8. Robust, chiral, and porous BINAP-based metal-organic frameworks for highly enantioselective cyclization reactions.

    Science.gov (United States)

    Sawano, Takahiro; Thacker, Nathan C; Lin, Zekai; McIsaac, Alexandra R; Lin, Wenbin

    2015-09-30

    We report here the design of BINAP-based metal-organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee's) and 4-7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson-Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson-Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson-Khand cyclization reactions without deterioration of yields or ee's. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions. PMID:26335305

  9. Robust, Chiral, and Porous BINAP-Based Metal–Organic Frameworks for Highly Enantioselective Cyclization Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Thacker, Nathan C.; Lin, Zekai; McIsaac, Alexandra R.; Lin, Wenbin (UC)

    2016-05-06

    We report here the design of BINAP-based metal–organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee’s) and 4–7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson–Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson–Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson–Khand cyclization reactions without deterioration of yields or ee’s. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.

  10. Enantioselectivity in the phytotoxicity of herbicide imazethapyr.

    Science.gov (United States)

    Zhou, Qingyan; Xu, Chao; Zhang, Yongsong; Liu, Weiping

    2009-02-25

    Chiral compounds usually behave enantioselectively in phyto-biochemical processes. With the increasing application of chiral herbicides, their enantioselective phytotoxicity to plants merits further study, and little information is available in this area. The purpose of this study was to examine the enantioselective phytotoxicity of the herbicide imazethapyr (IM) on the roots of maize (Zea mays L.) seedlings. Enantiomers of IM were separated by HPLC, and their absolute configurations were confirmed as S-(+)-IM and R-(-)-IM by the octant rule. Plant growth measurements and morphological, microscopic, and ultrastructural observations were conducted after treatment with individual IM enantiomers and the racemate. Observations of root morphology showed that the root diameter significantly increased, whereas the root volume, surface area, and number of root tips decreased significantly. IM enantiomers selectively damaged root hair growth and significantly reduced the sloughing of border cells from the tips. IM also had adverse effects on cell organelles, such as statocytes, mitochondria, dictyosomes, and endoplasmic reticulum in maize roots. Moreover, cell membranes and cell walls were thicker than usual after IM treatment. All of the results showed the same trend that the R-(-)-IM affected the root growth of maize seedlings more severely than the S-(+)-IM. The inhibition abilities of (+/-)-IM was between S-(+)- and R-(-)-IM. The behavior of the active enantiomer, instead of just the racemate, may have more relevance to the herbicidal effects and ecological safety of IM. Therefore, enantiomeric differences should be considered when evaluating the bioavailability of the herbicide IM.

  11. From a Sequential to a Concurrent Reaction in Aqueous Medium: Ruthenium-Catalyzed Allylic Alcohol Isomerization and Asymmetric Bioreduction.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Liardo, Elisa; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2016-07-18

    The ruthenium-catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning. PMID:27258838

  12. Organocatalytic enantioselective Pictet-Spengler reactions for the syntheses of 1-substituted 1,2,3,4-tetrahydroisoquinolines.

    Science.gov (United States)

    Mons, Elma; Wanner, Martin J; Ingemann, Steen; van Maarseveen, Jan H; Hiemstra, Henk

    2014-08-15

    A series of 1-substituted 1,2,3,4-tetrahydroisoquinolines was prepared from N-(o-nitrophenylsulfenyl)phenylethylamines through BINOL-phosphoric acid [(R)-TRIP]-catalyzed asymmetric Pictet-Spengler reactions. The sulfenamide moiety is crucial for the rate and enantioselectivity of the iminium ion cyclization and the products are readily recrystallized to high enantiomeric purity. Using this methodology we synthesized the natural products (R)-crispine A, (R)-calycotomine and (R)-colchietine, the synthetic drug (R)-almorexant and the (S)-enantiomer of a biologically active (R)-AMPA-antagonist. PMID:25046801

  13. Triply Hydrogen-Bond-Directed Enantioselective Assembly of Pyrrolobenzo-1,4-diazine Skeletons with Quaternary Stereocenters.

    Science.gov (United States)

    Shen, Xiaoming; Wang, Yongtao; Wu, Tiandi; Mao, Zhenjun; Lin, Xufeng

    2015-06-15

    Highly efficient synthesis of optically enriched pyrrolobenzo-1,4-diazines bearing quaternary stereocenters has been realized through the chiral Brønsted acid-catalyzed Pictet-Spengler reaction of 2-(1H-pyrrol-1-yl)anilines and α-ketoamides in good to excellent yields and enantioselectivities. Computational studies suggest an unprecedented phenomenon whereby the chiral phosphoric acid catalyst employs attractive arene C-H⋅⋅⋅N hydrogen bonding to activate the substrate and induce chirality through a triple hydrogen-bonding interaction. PMID:25965054

  14. Chiral separation by enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Schuur, B.; Verkuijl, B. J. V.; Minnaard, A. J.; De Vries, J. G.; Heeres, H. J.; Feringa, B. L.

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and ch

  15. Chiral amides via copper-catalysed enantioselective conjugate addition

    NARCIS (Netherlands)

    Schoonen, Anne K.; Fernández-Ibáñez, M. Ángeles; Fañanás-Mastral, Martín; Teichert, Johannes F.; Feringa, Bernard

    2014-01-01

    A highly enantioselective one pot procedure for the synthesis of β-substituted amides was developed starting from the corresponding α,β-unsaturated esters. This new methodology is based on the copper-catalysed enantioselective conjugate addition of Grignard reagents to α,β-unsaturated esters and sub

  16. Chiral separation by enantioselective liquid-liquid extraction.

    Science.gov (United States)

    Schuur, Boelo; Verkuijl, Bastiaan J V; Minnaard, Adriaan J; de Vries, Johannes G; Heeres, Hero J; Feringa, Ben L

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and chemical engineers in the fields of fine chemicals, pharmaceuticals, agrochemicals, fragrances and foods. In this review the principles and advances of resolution through enantioselective liquid-liquid extraction are discussed, starting with an introduction on the principles of enantioselective liquid-liquid extraction including host-guest chemistry, extraction and phase transfer mechanisms, and multistage liquid-liquid extraction processing. Then the literature on enantioselective liquid-liquid extraction systems is reviewed, structured on extractant classes. The following extractant classes are considered: crown ether based extractants, metal complexes and metalloids, extractants based on tartrates, and a final section with all other types of chiral extractants. PMID:21107491

  17. Asymmetric Michael Addition of Activated Alkenes to Nitro Alkenes Catalyzed by Organic Catalyst

    Institute of Scientific and Technical Information of China (English)

    XUE Dong; CHEN Yong-Chun; CUI Xin; WANG Qi-Wei; ZHU Jin; DENG Jin-Gen

    2003-01-01

    @@ Enantioselective Michael addition is one of the most powerfulbond-forming reaction in organic synthesis. [1] A mong the Michael acceptors, nitro alkenes are very attractive, because the nitro group is the most electron-withdrawing group known and it can serve as masked functionality to be further transformed after the addition has taken place. [2] Recently, asymmetric Michael reactions catalyzed by organic catalyst have draw much attention.[3

  18. Lewis Acid Catalyzed Friedel-Crafts Alkylation of Alkenes with Trifluoropyruvates.

    Science.gov (United States)

    Xiang, Bin; Xu, Teng-Fei; Wu, Liang; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-05-01

    A Friedel-Crafts alkylation reaction of styrenes with trifluoropyruvates has been developed, which delivered allylic alcohols in excellent yields (up to 98%) using the Ni(ClO4)2·6H2O/bipyridine complex as a catalyst. The asymmetric reaction was catalyzed by the chiral Cu(OTf)2/bisoxazoline complex to afford the corresponding chiral allylic alcohols bearing trifluoromethylated quaternary stereogenic centers in moderate enantioselectivities (up to 75% ee). PMID:27028539

  19. Improvement of enantioselectivity of the B-type halohydrin hydrogen-halide-lyase from Corynebacterium sp. N-1074.

    Science.gov (United States)

    Watanabe, Fumiaki; Yu, Fujio; Ohtaki, Akashi; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Yohda, Masafumi

    2016-09-01

    Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins, producing the corresponding epoxides. The H-Lyases have been classified into A, B and C subtypes based on amino acid sequence similarities. These enzymes have attracted much attention as industrial catalysts in the synthesis of chiral chemicals from prochiral halohydrins. In the present study, we constructed mutants of B-type H-Lyase from Corynebacterium sp. N-1074 (HheB) displaying higher enantioselectivity by structure-based site-directed mutagenesis and random mutagenesis. A triple mutant of HheB exhibited 98.5% enantioselectivity, the highest ever reported, toward (R)-4-chloro-3-hydroxy-butyronitrile production, with the yield reaching approximately two-fold that of the wild-type enzyme. We discuss the structural basis of the high enantioselectivity and productivity of the mutant by comparing the crystal structures of the mutant HheB and the wild-type enzyme in complex with or without the substrate analogue. PMID:27215832

  20. Improvement of enantioselectivity of the B-type halohydrin hydrogen-halide-lyase from Corynebacterium sp. N-1074.

    Science.gov (United States)

    Watanabe, Fumiaki; Yu, Fujio; Ohtaki, Akashi; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Yohda, Masafumi

    2016-09-01

    Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins, producing the corresponding epoxides. The H-Lyases have been classified into A, B and C subtypes based on amino acid sequence similarities. These enzymes have attracted much attention as industrial catalysts in the synthesis of chiral chemicals from prochiral halohydrins. In the present study, we constructed mutants of B-type H-Lyase from Corynebacterium sp. N-1074 (HheB) displaying higher enantioselectivity by structure-based site-directed mutagenesis and random mutagenesis. A triple mutant of HheB exhibited 98.5% enantioselectivity, the highest ever reported, toward (R)-4-chloro-3-hydroxy-butyronitrile production, with the yield reaching approximately two-fold that of the wild-type enzyme. We discuss the structural basis of the high enantioselectivity and productivity of the mutant by comparing the crystal structures of the mutant HheB and the wild-type enzyme in complex with or without the substrate analogue.

  1. 21 CFR 184.1307c - Ferrous citrate.

    Science.gov (United States)

    2010-04-01

    ... the reaction of sodium citrate with ferrous sulfate or by direct action of citric acid on iron filings... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous citrate. 184.1307c Section 184.1307c Food... Specific Substances Affirmed as GRAS § 184.1307c Ferrous citrate. (a) Ferrous citrate (iron (II)...

  2. 21 CFR 184.1195 - Calcium citrate.

    Science.gov (United States)

    2010-04-01

    ... with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National Academy Press, 2101... four moles of water per mole of calcium citrate. (b) The ingredient meets the specifications of...

  3. Characterization of Al-responsive citrate excretion and citrate-transporting MATEs in Eucalyptus camaldulensis.

    Science.gov (United States)

    Sawaki, Yoshiharu; Kihara-Doi, Tomonori; Kobayashi, Yuriko; Nishikubo, Nobuyuki; Kawazu, Tetsu; Kobayashi, Yasufumi; Koyama, Hiroyuki; Sato, Shigeru

    2013-04-01

    Many plant species excrete organic acids into the rhizosphere in response to aluminum stress to protect sensitive cells from aluminum rhizotoxicity. When the roots of Eucalyptus camaldulensis, a major source of pulp production, were incubated in aluminum-toxic medium, citrate released into the solution increased as a function of time. Citrate excretion was inducible by aluminum, but not by copper or sodium chloride stresses. This indicated that citrate is the major responsive organic acid released from the roots of this plant species to protect the root tips from aluminum damage. Four genes highly homologs to known citrate-transporting multidrugs and toxic compounds exclusion proteins, named EcMATE1-4, were isolated using polymerase chain reaction-based cloning techniques. Their predicted proteins included 12 membrane spanning domains, a common structural feature of citrate-transporting MATE proteins, and consisted of 502-579 amino acids with >60 % homology to orthologous genes in other plant species. One of the homologs, designated EcMATE1, was expressed in the roots more abundantly than in the shoots and in response to both Al and low pH stresses. Ectopic expression of EcMATE1 and 3 in tobacco hairy roots enhanced Al-responsive citrate excretion. Pharmacological characterization indicated that Al-responsive citrate excretion involved a protein phosphorylation/dephosphorylation process. These results indicate that citrate excretion through citrate-transporting multidrugs and toxic compounds exclusion proteins is one of the important aluminum-tolerance mechanisms in Eucalyptus camaldulensis.

  4. Chiral N-1-adamantyl-N-trans-cinnamylaniline type ligands: synthesis and application to palladium-catalyzed asymmetric allylic alkylation of indoles.

    Science.gov (United States)

    Mino, Takashi; Nishikawa, Kenji; Asano, Moeko; Shima, Yamato; Ebisawa, Toshibumi; Yoshida, Yasushi; Sakamoto, Masami

    2016-08-21

    Such chiral phosphine-internal olefin hybrid type ligands as N-1-adamantyl-N-cinnamylaniline derivatives 1 with C(aryl)-N(amine) bond axial chirality were synthesized and utilized for the palladium-catalyzed asymmetric allylic alkylation of indoles to afford the desired products in high enantioselectivities (up to 98% ee). PMID:27425209

  5. Phenylalanine Aminomutase-Catalyzed Addition of Ammonia to Substituted Cinnamic Acids : a Route to Enantiopure alpha- and beta-Amino Acids

    NARCIS (Netherlands)

    Szymanski, Wiktor; Wu, Bian; Weiner, Barbara; Wildeman, Stefaan de; Feringa, Ben L.; Janssen, Dick B.

    2009-01-01

    An approach is described for the synthesis of aromatic alpha- and beta-amino acids that Uses phenylalanine aminomutase to catalyze a highly enantioselective addition of ammonia to substituted cinnamic acids. The reaction has a broad scope and yields Substituted alpha- and beta-phenylalanines with ex

  6. Synthesis of Novel Monophosphoramidite Ligands Derived from L-Proline for Rh-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Acid Esters

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Two novel monophosphoramidites were synthesized through a five-step transformation from commercially available L-proline. In the Ph-catalyzed asymmetric hydrogenation of α-dehydroamino acid derivatives, ligand (Sc,Ra)-1b showed good enantioselectivity and up to 91% e.e. was obtained.

  7. Synthesis of solution-phase phosphoramidite and phosphite ligand libraries and their in situ screening in the rhodium-catalyzed asymmetric addition of arylboronic acids

    NARCIS (Netherlands)

    Jagt, Richard B. C.; Toullec, Patrick Y.; Schudde, Ebe P.; de Vries, Johannes G.; Feringa, Ben L.; Minnaard, Adriaan J.

    2007-01-01

    Herein, we report the automated parallel synthesis of solution-phase libraries of phosphoramidite ligands for the development of enantioselective catalysts. The ligand libraries are screened in situ in the asymmetric rhodium-catalyzed addition of arylboronic acids to aldehydes and imines. It is show

  8. Combination of Oxyanion Gln114 Mutation and Medium Engineering to Influence the Enantioselectivity of Thermophilic Lipase from Geobacillus zalihae

    Directory of Open Access Journals (Sweden)

    Thean Chor Leow

    2012-09-01

    Full Text Available The substitution of the oxyanion Q114 with Met and Leu was carried out to investigate the role of Q114 in imparting enantioselectivity on T1 lipase. The mutation improved enantioselectivity in Q114M over the wild-type, while enantioselectivity in Q114L was reduced. The enantioselectivity of the thermophilic lipases, T1, Q114L and Q114M correlated better with log p as compared to the dielectric constant and dipole moment of the solvents. Enzyme activity was good in solvents with log p < 3.5, with the exception of hexane which deviated substantially. Isooctane was found to be the best solvent for the esterification of (R,S-ibuprofen with oleyl alcohol for lipases Q114M and Q114L, to afford E values of 53.7 and 12.2, respectively. Selectivity of T1 was highest in tetradecane with E value 49.2. Solvents with low log p reduced overall lipase activity and dimethyl sulfoxide (DMSO completely inhibited the lipases. Ester conversions, however, were still low. Molecular sieves employed as desiccant were found to adversely affect catalysis in the lipase variants, particularly in Q114M. The higher desiccant loading also increased viscosity in the reaction and further reduced the efficiency of the lipase-catalyzed esterifications.

  9. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheolwoong; Seo, Seung Woo; Lee, Yona; Kim, Sunggon [Kyonggi Univ., Suwon (Korea, Republic of)

    2014-02-15

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used.

  10. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    International Nuclear Information System (INIS)

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used

  11. Bifunctional Enantioselective Ligands of Chiral BINOL Derivatives for Asymmetric Addition of Alkynylzinc to Aldehydes

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-Wei; ZHENG Li-Fei; WU Ling-Lin; ZONG Li-Li; CHENG Yi-Xiang

    2008-01-01

    Four analogous binaphthyl compounds (R)-3a-3d containing (R)-3,3'-bis(2-pyridyl) groups were synthesized by the conjugation of (R)-2,2'-dimethoxy-1,1'-binaphthyl-3,3'-diboronic acid [(R)-2] with 2-bromopyridine,2-bromo-5-methylpyridine, 2-chloro-4-fluoropyridine and 2-chloro-3-(trifluoromethyl)pyridine via Pd-catalyzed Suzuki reactions, respectively.The application of the four chiral ligands in combination with Et2Zn and Ti(Oi-Pr)4 to the asymmetric addition of phenylacetylene to various aldehydes has been studied.The results show that (R)-3a and (R)-3b are not good catalysts for the alkynylzinc addition to aldehydes, (R)-3d shows good enantioselectivity only for the alkynylzinc addition to aliphatic aldehydes, and (R)-3c exhibits excellent enantioselectivity for phenylethynylzinc addition to both aromatic and aliphatic aldehydes.All the four chiral ligands produced the opposite configuration of the propargylic alcohols to that of the chiral ligands.

  12. Mean platelet volume measurement, EDTA or citrate?

    Science.gov (United States)

    Dastjerdi, Mansour Siavash; Emami, Tajolmolouk; Najafian, Alireza; Amini, Masoud

    2006-10-01

    Most laboratories use EDTA for anticoagulation of whole blood prior to automated cell counting but due to platelet swelling, mean platelet volume (MPV) values may increase with its use. MPV changes may be less with acid citrate based anticoagulation. As MPV is a marker of platelet function and its precise measurement is important in a number of clinical situations, this study was performed to assess if EDTA and citrate based anticoagulated blood samples can be used interchangeably for MPV measurement. In this cross sectional descriptive study, EDTA and citrate based anticoagulated blood samples of the same patients were assessed by auto-analyzer within 1 h of sampling. In the 61 evaluated patients, there was a close correlation between MPV as measured by EDTA and citrate, but mean MPV measured from EDTA samples was 0.66 fL (9%) more than citrate. There was also a significant negative correlation between platelets count and MPV by both methods. The results of our study reveal that MPV can be measured accurately by both methods of anticoagulation; EDTA and citrate if analysis be performed within 1 h of sampling. PMID:17607580

  13. Conjugate addition–enantioselective protonation reactions

    Science.gov (United States)

    Phelan, James P

    2016-01-01

    Summary The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals. PMID:27559372

  14. Multivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel–Crafts alkylations

    Directory of Open Access Journals (Sweden)

    Tommaso Pecchioli

    2015-05-01

    Full Text Available The first immobilization of a MacMillan’s first generation organocatalyst onto dendritic support is described. A modified tyrosine-based imidazolidin-4-one was grafted to a soluble high-loading hyperbranched polyglycerol via a copper-catalyzed alkyne–azide cycloaddition (CuAAC reaction and readily purified by dialysis. The efficiency of differently functionalized multivalent organocatalysts 4a–c was tested in the asymmetric Friedel–Crafts alkylation of N-methylpyrrole with α,β-unsaturated aldehydes. A variety of substituted enals was investigated to explore the activity of the catalytic system which was also compared with monovalent analogues. The catalyst 4b showed excellent turnover rates and no loss of activity due to immobilization, albeit moderate enantioselectivities were observed. Moreover, easy recovery by selective precipitation allowed the reuse of the catalyst for three cycles.

  15. Rerouting Citrate Metabolism in Lactococcus lactis to Citrate-Driven Transamination

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.

    2012-01-01

    Oxaloacetate is an intermediate of the citrate fermentation pathway that accumulates in the cytoplasm of Lactococcus lactis ILCitM(pFL3) at a high concentration due to the inactivation of oxaloacetate decarboxylase. An excess of toxic oxaloacetate is excreted into the medium in exchange for citrate

  16. Sodium bicarbonate and sodium citrate: ergogenic aids?

    Science.gov (United States)

    Requena, Bernardo; Zabala, Mikel; Padial, Paulino; Feriche, Belén

    2005-02-01

    Numerous studies have used exogenous administration of sodium bicarbonate (NaHCO(3)) and sodium citrate (Na-citrate) in an attempt to enhance human performance. After ingestion of NaHCO(3) and Na-citrate, two observations have been made: (a) There was great individual variability in the ergogenic benefit reached, which can be attributed to the level of physical conditioning of the subjects and to their tolerance of the buffer substance; and (b) the subjects who had ingested NaHCO(3) and Na-citrate show higher levels of pH, bicarbonate, and lactate ions concentrations in their exercising blood than do the subjects who had ingested the placebo. A majority of the studies have suggested that the ingestion of both substances provides an ergogenic effect due to the establishment and maintenance of an elevated pH level during exercise. However, the exact mechanism by which the ergogenic effects occur has not been demonstrated conclusively. Sodium bicarbonate and Na-citrate seem to be effective in activities with a sufficient duration to generate a difference in the hydrogen ion gradient, characterized by a very high intensity and involving large muscular groups. However, in activities of equally high intensity, but with longer duration, the results obtained have been conflicting and inconclusive. PMID:15705037

  17. Enantioselective alcohol synthesis using ketoreductases, lipases or an aldolase

    NARCIS (Netherlands)

    Sorgedrager, M.J.

    2006-01-01

    The demand for optically pure secondary alcohols, which has grown rapidly in recent years, has spurred the development of adequate enantioselective synthetic procedures. Although there are various chemical methods available, biocatalysts are increasingly applied due to their natural characteristic t

  18. Enantioselective Degradation of Triadimefon in Green-house Soil

    Directory of Open Access Journals (Sweden)

    Liu Hong Cheng

    2015-09-01

    Full Text Available To study enantioselctive degradation of triadimefon, the enantioselective degradation of triadimefon in greenhouse soil and normal soil were investigated in detail. The enantiomers of triadimefon were separated by Chiralpak AD column and determined by Liquid Chromatography Via Tandem Mass Spectrometry (LC-MS/MS. The degradation exhibited some enantioselective, resulting in a concentration order of R-(- tridimefon>S-(+ triadimefon and the degradation of triadimefon in greenhouse soils with high content of organic matter was faster than normal soil.

  19. Enantioselective Determination of Fluoxetine and Norfluoxetine in Wastewater

    OpenAIRE

    Ribeiro, Ana R.; Maia, Alexandra S.; Moreira, Irina S.; Afonso, Carlos; Castro, Paula M. L.; Tiritan, Maria E.

    2013-01-01

    Microbial degradation of chiral compounds during wastewater treatment processes can be enantioselective and needs chiral analytical methodology to discriminate the biodegradation of both enantiomers. An enantioselective HPLC-FD method was developed and validated to monitor the degradation of fluoxetine (FLX) enantiomers by wastewater and the possible formation of its metabolite norfluoxetine (NFLX). The Solid Phase Extraction (SPE) of 50 mL of wastewater samples on 500 mg ...

  20. Vibrational study of tamoxifen citrate polymorphism

    Science.gov (United States)

    Gamberini, M. C.; Baraldi, C.; Tinti, A.; Palazzoli, F.; Ferioli, V.

    2007-09-01

    The trans isomer of ( Z)-2-[ p-(1,2-diphenyl-butenyl)phenoxy]- N, N-dimethyletylamine (tamoxifen) is well known for its endocrine activity as an antiestrogenic agent. Its citrate salt, a widely used pharmaceutical agent, appears in three main polymorphic forms, two of which are well known (I and II) and another form not yet well evidenced. A vibrational study has been conducted for identifying the two known polymorphic forms of tamoxifen citrate (I and II) and for characterising the other form (form III) examined in this study. Other techniques for the characterization of the different polymorphs, such as XRDP, have been used.

  1. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    Science.gov (United States)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Rh-Catalyzed Asymmetric Hydrogenation of a-Enol Ester Phosphonates with 1-Phenylethylamine-Derived Phosphine- Phosphoramidite Ligands

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    HU Juan, WANG Dao-yong, ZHENG Zhuo, HU Xiang-ping J. Mol. Catal. (China) 2012, 26(6), 487 ~492 Chiral phosphine-phosphoramidite ligand, ( So, S,, )-2b, was found to be highly efficient in the Rh-catalyzed asymmetric hydrogenation of various α-enol ester phosphonates, in which excellent enantioselectivities (up to 〉99% ee) and high catalyticactivity ( S/C up to 5000) were achieved.

  3. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    Science.gov (United States)

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction. PMID:16189834

  4. Kinetic Resolution of 2-Chloro-1-(3,4-dichlorophenyl)ethanol by Lipase-Catalyzed Transesterification

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-Hui; LI Ya-Feng; LIU Yong-Jun; ZHANG Shu-Sheng

    2007-01-01

    Kinetic resolution of racemic 2-chloro-l-(3,4-dichlorophenyl)ethanol was performed by free Alcaligene sp. lipase-catalyzed irreversible transesterification affording the (R)-isomer with≥95% ee and the (S)-isomer with ≥90% ee. The activity of lipase Alcaligene sp. strongly depends on the basicity of the reaction system, and an organic base such as triethylamine can enhance the activity of the lipase and enantioselectivity markedly.

  5. 21 CFR 172.370 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Iron-choline citrate complex. 172.370 Section 172... CONSUMPTION Special Dietary and Nutritional Additives § 172.370 Iron-choline citrate complex. Iron-choline citrate complex made by reacting approximately equimolecular quantities of ferric hydroxide, choline,...

  6. 21 CFR 573.580 - Iron-choline citrate complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Iron-choline citrate complex. 573.580 Section 573.580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.580 Iron-choline citrate complex. Iron-choline citrate complex made...

  7. Ventricular tachycardia after administration of sildenafil citrate: a case report

    Directory of Open Access Journals (Sweden)

    Rasmussen Jeppe G

    2007-08-01

    Full Text Available Abstract Background It has not previously been reported that sildenafil citrate causes malignant arrhythmias in humans. Case presentation A 41-year-old man developed sustained ventricular tachycardia following sildenafil citrate administration. Conclusion It cannot be dismissed that this patient experienced ventricular tachycardia as an adverse effect of sildenafil citrate administration.

  8. 21 CFR 184.1296 - Ferric ammonium citrate.

    Science.gov (United States)

    2010-04-01

    ... citrate (iron (III) ammonium citrate) is prepared by the reaction of ferric hydroxide with citric acid, followed by treatment with ammonium hydroxide, evaporating, and drying. The resulting product occurs in two forms depending on the stoichiometry of the initial reactants. (1) Ferric ammonium citrate (iron...

  9. 21 CFR 522.800 - Droperidol and fentanyl citrate injection.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Droperidol and fentanyl citrate injection. 522.800... § 522.800 Droperidol and fentanyl citrate injection. (a) Specifications. Droperidol and fentanyl citrate injection is a sterile solution containing 20 milligrams of droperidol and 0.4 milligram of fentanyl...

  10. Lipase-catalyzed Kinetic Resolution of Racemic 1-Trimethylsilylethanol in Organic Solvent

    Institute of Scientific and Technical Information of China (English)

    吴虹; 宗敏华; 王菊芳; 罗涤衡; 娄文勇

    2004-01-01

    The enantioselective esterification of racemic 1-trimethylsilylethanol with acids catalyzed by lipase in organic solvent was successfully performed. The influence of some factors on the reaction was investigated. Among the four lipases explored, Candlda rugosa lipase (CRL) showed the highest activity and enantioselectivity. Octanoic acid was the best acyl donor among the eleven acids studied and n-hexane was the most suitable medium for the reaction. The optimum shaking rate and temperature were found to be 150 r-rain-i and 20~(3 to 30~C, respectively.The enantiomeric excess of the remaining (S)-(-)-1-trimethylsilylethanol was 93% when substrate conversion was 53% upon incubation of the reaction mixture at 30~C, 150 r-rain-i for 12 h.

  11. Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor

    OpenAIRE

    Yonghong Zhang; Fangzhi Hu; Bin Wang; Xiaomei Zhang; Chenjiang Liu

    2015-01-01

    A novel chiral 1,10-phenanthroline-based fluorescent sensor was designed and synthesized from optical active β-amino acids. It used 1,10-phenanthroline moiety as a fluorescent signaling site and binding site, with optically active β-amino acids as a chiral barrier site. Notably, the optically active β-amino acids were obtained by a Lewis base catalyzed hydrosilylation of β-enamino esters according to our former work. The chiral sensor has been used to conduct the enantioselective recognition ...

  12. Citrate Anticoagulation for CRRT in Children: Comparison with Heparin

    Directory of Open Access Journals (Sweden)

    Sara Nicole Fernández

    2014-01-01

    Full Text Available Regional anticoagulation with citrate is an alternative to heparin in continuous renal replacement therapies, which may prolong circuit lifetime and decrease hemorrhagic complications. A retrospective comparative cohort study based on a prospective observational registry was conducted including critically ill children undergoing CRRT. Efficacy, measured as circuit survival, and secondary effects of heparin and citrate were compared. 12 patients on CRRT with citrate anticoagulation and 24 patients with heparin anticoagulation were analyzed. Median citrate dose was 2.6 mmol/L. Median calcium dose was 0.16 mEq/kg/h. Median heparin dose was 15 UI/kg/h. Median circuit survival was 48 hours with citrate and 31 hours with heparin (P=0.028. 66.6% of patients treated with citrate developed mild metabolic alkalosis, which was directly related to citrate dose. There were no cases of citrate intoxication: median total calcium/ionic calcium index (CaT/I of 2.16 and a maximum CaT/I of 2.33, without metabolic acidosis. In the citrate group, 45.5% of patients developed hypochloremia and 27.3% hypomagnesemia. In the heparin group, 27.8% developed hypophosphatemia. Three patients were moved from heparin to citrate to control postoperatory bleeding. In conclusion citrate is a safe and effective anticoagulation method for CRRT in children and it achieves longer circuit survival than heparin.

  13. Pyrolytic citrate synthesis and ozone annealing

    International Nuclear Information System (INIS)

    A pyrolytic procedure is described that via a citrate synthesis allowed us to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, results already to contain a large amount of superconducting microcrystals. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurement show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  14. Pyrolitic citrate synthesis and ozone annealing

    International Nuclear Information System (INIS)

    A pyrolytic procedure that via a citrate synthesis allowed to obtain very fine grained YBCO powders that, after a first furnace thermal treatment in ozone, result already to contain a large amount of superconducting microcystals is described. A second identical thermal treatment gives a final product strongly textured, as shown by magnetic torque measurements. Complementary structural and diamagnetic measurements show the high quality of these sintered pellets. The role covered by both the pyrolytic preparation and the ozone annealing are discussed

  15. An enantioselective formal synthesis of montelukast sodium.

    Science.gov (United States)

    Bollikonda, Satyanarayana; Mohanarangam, Saravanan; Jinna, Rajender Reddy; Kandirelli, Venkata Kiran Kumar; Makthala, Laxman; Sen, Saikat; Chaplin, David A; Lloyd, Richard C; Mahoney, Thomas; Dahanukar, Vilas Hareshwar; Oruganti, Srinivas; Fox, Martin E

    2015-04-17

    A formal synthesis of the antiasthma drug montelukast sodium is described, wherein the key chiral diol intermediate was accessed with greater convergence of the C-C bond-forming steps as compared to previous routes. Improved synthetic efficiency was achieved by deploying homogeneous metal-based catalysis in two pivotal steps. In the first, a tandem Mizoroki-Heck reaction and double-bond isomerization between a previously known allyl alcohol intermediate and a hindered 2-(2-halophenyl)propan-2-ol secured direct access to the 3-(2-(2-hydroxypropan-2-yl)phenyl)-1-phenylpropan-1-one moiety in the product. In the second step, asymmetric hydrogenation of the ketone functionality in the Mizoroki-Heck reaction product provided a convenient method to introduce the benzylic alcohol chiral center and obtain the desired chiral diol precursor of montelukast sodium. A detailed catalyst screening led to the identification of ((R)-Xyl-BINAP)((R,R)-DPEN)RuCl2 as a catalyst that afforded an enantioselectivity of 99% ee in the hydrogenation step on a multigram lab scale at a molar substrate:catalyst loading of 5000:1. PMID:25807000

  16. Scalable enantioselective total synthesis of taxanes

    Science.gov (United States)

    Mendoza, Abraham; Ishihara, Yoshihiro; Baran, Phil S.

    2012-01-01

    Taxanes form a large family of terpenes comprising over 350 members, the most famous of which is Taxol (paclitaxel), a billion-dollar anticancer drug. Here, we describe the first practical and scalable synthetic entry to these natural products via a concise preparation of (+)-taxa-4(5),11(12)-dien-2-one, which has a suitable functional handle with which to access more oxidized members of its family. This route enables a gram-scale preparation of the ‘parent’ taxane—taxadiene—which is the largest quantity of this naturally occurring terpene ever isolated or prepared in pure form. The characteristic 6-8-6 tricyclic system of the taxane family, containing a bridgehead alkene, is forged via a vicinal difunctionalization/Diels-Alder strategy. Asymmetry is introduced by means of an enantioselective conjugate addition that forms an all-carbon quaternary centre, from which all other stereocentres are fixed through substrate control. This study lays a critical foundation for a planned access to minimally oxidized taxane analogues and a scalable laboratory preparation of Taxol itself.

  17. Nickel electrodeposition from novel citrate bath

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new type of electroplating bath suitable for nickel electrodeposition was developed. Trisodium citrate was used as a complexing agent and a buffer in the bath. The buffering capacity between trisodium citrate and boric acid were compared. The effects were investigated under different conditions of bath composition, current density, pH and temperature on the potentiodynamic cathodic polarization curves, cathodic current efficiency and throwing index, as well as the electrical conductivity of these baths. The optimum conditions for producing sound and satisfactory nickel deposits were: NiSO4·6H2O 350 g/L, NiC12·6H2O 45 g/L and Na3C6H5O7 30 g/L at pH=4 and 55 ℃. The surface morphology of the as-plated Ni deposit was examined by SEM. The results reveal that the nickel deposition obtained from the optimum conditions are composed of compact, non-porous fine grains covering the entire surface. X-ray analysis shows that nickel deposits obtained from the citrate bath have a fine crystal structure compared with deposits from the Watts bath.

  18. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

    Science.gov (United States)

    Bocato, Mariana Zuccherato; de Lima Moreira, Fernanda; de Albuquerque, Nayara Cristina Perez; de Gaitani, Cristiane Masetto; de Oliveira, Anderson Rodrigo Moraes

    2016-09-01

    A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data. PMID:27381871

  19. Optimization and multigram scalability of a catalytic enantioselective borylative migration for the synthesis of functionalized chiral piperidines.

    Science.gov (United States)

    Kim, You-Ri; Hall, Dennis G

    2016-05-18

    The development of new, efficient and economical methods for the preparation of functionalized, optically enriched piperidines is important in the field of drug discovery where this class of heterocycles is often deemed a privileged structure. We have optimized a Pd-catalyzed enantioselective borylative migration of an alkenyl nonaflate derivative of the simple precursor, N-Boc-4-piperidone. This anomalous borylation reaction lends access to a chiral optically enriched piperidinyl allylic boronate that can be employed in carbonyl allylboration and stereoselective cross-coupling to produce substituted dehydropiperidines related to numerous pharmaceutical agents. A systematic fine-tuning of reaction conditions revealed that diethyl ether and the green solvent cyclopentyl methyl ether are suitable reaction solvents providing the highest enantioselectivity (up to 92% ee) under a low catalyst loading of 3 mol%. Optimization of the aldehyde allylboration step led to higher yields with further solvent economy. The multigram-scalability of the entire process was demonstrated under the reaction conditions that provide optimal atom-economy and efficiency. PMID:27143333

  20. Molecular and Merrifield supported chiral diamines for enantioselective addition of ZnR2 (R = Me, Et) to ketones.

    Science.gov (United States)

    Calvillo-Barahona, Mercedes; Cordovilla, Carlos; Genov, Miroslav N; Martínez-Ilarduya, Jesús M; Espinet, Pablo

    2013-10-28

    Chiral 1,2-ethylenediamines have been previously reported as active catalysts in the enantioselective addition reactions of ZnR2 to either methyl- or trifluoromethyl-ketones. Subtle changes in the molecular structure of different catalysts are described herein and lead to a dramatic effect in their catalytic activity. From these findings, we demonstrate the selective reactivity of the ligands used in the addition of ZnR2 (R = Me, Et) to methyl- and trifluoromethyl-ketones offering an enantioselective access either to chiral non-fluorinated alcohols or to chiral fluorinated tertiary alcohols. Considering the importance of the chiral trifluoromethyl carbinol fragment in several biologically active compounds, we have extended the scope of the addition reaction of ZnEt2 to several trifluoromethylketones catalyzed by (R,R)-1,2-diphenylethylenediamine derivatives. This work explores a homogeneous approach that provides excellent yields and very high ee and the use of a heterogenized tail-tied ligand affording moderate ee, high yields and allowing an easier handling and recycling.

  1. Dietary citrate treatment of polycystic kidney disease in rats.

    Science.gov (United States)

    Tanner, George A; Tanner, Judith A

    2003-01-01

    Progression of autosomal-dominant polycystic kidney disease (ADPKD) in the heterozygous male Han:SPRD rat is dramatically slowed by ingestion of potassium or sodium citrate. This study examined the efficacy of delayed therapy with sodium citrate, the effect of sodium citrate therapy on kidney cortex levels of transforming growth factor-beta (TGF-beta), and the response to calcium citrate ingestion. Rats were provided with citrate salts in their food, and renal clearance, blood pressure, blood chemistry, and survival determinations were made. Sodium citrate therapy was most effective when started at age 1 month, and delay of therapy until age 3 months produced no benefit. Kidney cortex TGF-beta levels were elevated in 3- and 8-month-old rats with ADPKD, but not in 6-week-old rats. Sodium citrate treatment, started at age 1 month, lowered TGF-beta levels to normal in 3-month-old rats, but this is probably not the primary mechanism of citrate's beneficial effect. Calcium citrate had only a modest effect in preserving glomerular filtration rate. Effective treatment of ADPKD in this rat model requires early administration of a readily absorbed alkalinizing citrate salt. Existing data on ADPKD patients on vegetarian diets or with kidney stones should be studied in light of these findings.

  2. Development of Enantioselective Fluorescent Sensors for Chiral Recognition

    Institute of Scientific and Technical Information of China (English)

    Lin Pu

    2004-01-01

    Novel chiral compounds have been synthesized for the enantioselective fluorescent recognition of alpha-hydroxycarboxylic acids and amino acids. By introducing dendritic branches to the chiral receptor units, the fluorescence signals of the receptors are significantly amplified because of the light-harvesting effect of the dendritic structure. This has greatly increased the sensitivity of the sensors in the fluorescent recognition. Highly enantioselective fluorescent responses have also been achieved. These sensors are potentially useful for the high throughput screening of chiral catalysts for asymmetric synthesis.

  3. A Dual Lewis Base Activation Strategy for Enantioselective Carbene-Catalyzed Annulations

    OpenAIRE

    Izquierdo, Javier; Orue, Ane; Scheidt, Karl A.

    2013-01-01

    A dual activation strategy integrating NHC catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinione methides in an enatioselective formal [4+3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activations modes.

  4. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  5. Ti-catalyzed straightforward synthesis of exocyclic allenes.

    Science.gov (United States)

    Muñoz-Bascón, Juan; Hernández-Cervantes, Carmen; Padial, Natalia M; Alvarez-Corral, Míriam; Rosales, Antonio; Rodríguez-García, Ignacio; Oltra, J Enrique

    2014-01-13

    Exocyclic allenes constitute useful building blocks in organic synthesis and have recently been identified as key intermediates in the synthesis of natural products. Here the first general method for the most straightforward synthesis of exocyclic allenes reported to date is presented. This method is based on the Barbier-type cyclization of propargyl halides catalyzed by titanium; a safe, abundant, and ecofriendly metal. The reaction proceeds under mild conditions compatible with different functional groups and provides good yields of five-, six-, and seven-membered carbocycles and nitrogen-containing heterocycles bearing an exocyclic allene group. Experimental evidence supporting the proposed reaction mechanism is also provided. Moreover, this procedure can be carried out in an enantioselective manner by using chiral titanocene(III) catalysts. The utility of this method has been proved in the synthesis of the natural alkaloid stemoamide. PMID:24339337

  6. 77 FR 24461 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-04-24

    ... all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  7. 76 FR 5782 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-02-02

    ... includes all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  8. 77 FR 6061 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-02-07

    ... includes all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  9. [A case report of alverine-citrate-induced acute hepatitis].

    Science.gov (United States)

    Han, Jee Young; Lee, Jin Woo; Kim, Joon Mee; Joo, Kowoon; Chon, Ung; Lee, Jung Il; Jeong, Seok; Lee, Don Haeng; Kim, Young Soo; Min, Kyung Sun

    2010-03-01

    Alverine citrate is one of the most commonly used antispasmodic drugs for patients with irritable bowel syndrome. Alverine-citrate-induced hepatotoxicity is extremely rare, with only a few cases having been reported worldwide. We present a case of a 75-year-old female patient who experienced complicated jaundice and abdominal discomfort after taking alverine citrate. Other causes of hepatitis were ruled out and the results of the liver function test returned to normal after ceasing the drug. This is the first case report in Korea of alverine-citrate-induced hepatotoxicity. PMID:20375645

  10. Urinary Citrate: A view in Chronic Renal Failure

    Directory of Open Access Journals (Sweden)

    SANTHOSH KUMAR.N

    2013-12-01

    Full Text Available Aim & Objective: To evaluate the 24 hour urinary citrate levels in chronic renal failure and healthy controls and to define the role of urinary citrates in the chronic renal failures. Materials and Methods: The 24 hours urinary citrates, Blood urea, Serum creatinine, Na+, K+were evaluated in 25 chronic renal failure patients and25 healthy subjects taken as controls. In both groups participants were on their usual diet. In addition, none of the participant was taking any drugs that could interfere with the citrate excretion. Results: The mean 24 hour urinary citrate excretion in patients and healthy controls was 296.3 ± 8.543mg and 323.9 ± 4.304mg respectively. Using previously defined values of normal urinary citrates as more than 320 mg.The difference in 24 hour urinary citrateexcretion in all patients and healthy control was statistically significant (

    citrate excretion in recurrent renal failures and healthy controls. Uniformly low citrate excretion in patients indicates that low citrate levels may be a feature seen in predisposing factor for renal failure

  11. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.

    Science.gov (United States)

    Li, Yan-Yun; Yu, Shen-Luan; Shen, Wei-Yi; Gao, Jing-Xing

    2015-09-15

    Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4

  12. Catalyzing RE Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Kate; Elgqvist, Emma; Walker, Andy; Cutler, Dylan; Olis, Dan; DiOrio, Nick; Simpkins, Travis

    2016-09-01

    This poster details how screenings done with REopt - NREL's software modeling platform for energy systems integration and optimization - are helping to catalyze the development of hundreds of megawatts of renewable energy.

  13. Catalyzing alignment processes

    DEFF Research Database (Denmark)

    Lauridsen, Erik Hagelskjær; Jørgensen, Ulrik

    2004-01-01

    This paper describes how environmental management systems (EMS) spur the circulation of processes that support the constitution of environmental issues as specific environ¬mental objects and objectives. EMS catalyzes alignmentprocesses that produce coherence among the different elements involved ...

  14. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  15. Dynamic control of chirality in phosphine ligands for enantioselective catalysis

    NARCIS (Netherlands)

    Zhao, Depeng; Neubauer, Thomas M; Feringa, Ben L

    2015-01-01

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly

  16. Enantioselective Enzymes by Computational Design and In Silico Screening

    NARCIS (Netherlands)

    Wijma, Hein J; Floor, Robert J; Bjelic, Sinisa; Marrink, Siewert J; Baker, David; Janssen, Dick B

    2015-01-01

    Computational enzyme design holds great promise for providing new biocatalysts for synthetic chemistry. A strategy to design small mutant libraries of complementary enantioselective epoxide hydrolase variants for the production of highly enantioenriched (S,S)-diols and (R,R)-diols is developed. Key

  17. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

    Science.gov (United States)

    Boersma, Ykelien L; Pijning, Tjaard; Bosma, Margriet S; van der Sloot, Almer M; Godinho, Luís F; Dröge, Melloney J; Winter, Remko T; van Pouderoyen, Gertie; Dijkstra, Bauke W; Quax, Wim J

    2008-08-25

    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%. PMID:18721749

  18. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    2007-01-01

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  19. Kinetic analysis of the hydrolysis of methyl parathion using citrate-stabilized 10 nm gold nanoparticles.

    Science.gov (United States)

    Nita, Rafaela; Trammell, Scott A; Ellis, Gregory A; Moore, Martin H; Soto, Carissa M; Leary, Dagmar H; Fontana, Jake; Talebzadeh, Somayeh F; Knight, D Andrew

    2016-02-01

    "Ligand-free" citrate-stabilized 10 nm gold nanoparticles (AuNPs) promote the hydrolysis of the thiophosphate ester methyl parathion (MeP) on the surface of gold as a function of pH and two temperature values. At 50 °C, the active surface gold atoms show catalytic turnover ∼4 times after 8 h and little turnover of gold surface atoms at 25 °C with only 40% of the total atoms being active. From Michaelis-Menten analysis, k(cat) increases between pH 8 and 9 and decreases above pH 9. A global analysis of the spectral changes confirmed the stoichiometric reaction at 25 °C and the catalytic reaction at 50 °C and mass spectrometry confirmed the identity of p-nitrophenolate (PNP) product. Additional decomposition pathways involving oxidation and hydrolysis independent of the formation of PNP were also seen at 50 °C for both catalyzed and un-catalyzed reactions. This work represents the first kinetic analysis of ligand-free AuNP catalyzed hydrolysis of a thiophosphate ester. PMID:26547026

  20. Rh(I)–Bisphosphine-Catalyzed Asymmetric, Intermolecular Hydroheteroarylation of α-Substituted Acrylate Derivatives

    Science.gov (United States)

    2015-01-01

    Asymmetric hydroheteroarylation of alkenes represents a convenient entry to elaborated heterocyclic motifs. While chiral acids are known to mediate asymmetric addition of electron-rich heteroarenes to Michael acceptors, very few methods exploit transition metals to catalyze alkylation of heterocycles with olefins via a C–H activation, migratory insertion sequence. Herein, we describe the development of an asymmetric, intermolecular hydroheteroarylation reaction of α-substituted acrylates with benzoxazoles. The reaction provides 2-substitued benzoxazoles in moderate to excellent yields and good to excellent enantioselectivities. Notably, a series of mechanistic studies appears to contradict a pathway involving enantioselective protonation of a Rh(I)–enolate, despite the fact that such a mechanism is invoked almost unanimously in the related addition of aryl boronic acids to methacrylate derivatives. Evidence suggests instead that migratory insertion or beta-hydride elimination is enantiodetermining and that isomerization of a Rh(I)–enolate to a Rh(I)–heterobenzyl species insulates the resultant α-stereocenter from epimerization. A bulky ligand, CTH-(R)-Xylyl-P-Phos, is crucial for reactivity and enantioselectivity, as it likely discourages undesired ligation of benzoxazole substrates or intermediates to on- or off-cycle rhodium complexes and attenuates coordination-promoted product epimerization. PMID:25545834

  1. 21 CFR 520.622b - Diethylcarbamazine citrate syrup.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diethylcarbamazine citrate syrup. 520.622b Section... Diethylcarbamazine citrate syrup. (a)(1) Specifications. Each milliliter of syrup contains 60 milligrams of... veterinarian. (b)(1) Specifications. Each milliliter of syrup contains 60 milligrams of...

  2. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the well-s

  3. Structural basis for norovirus inhibition and fucose mimicry by citrate.

    Science.gov (United States)

    Hansman, Grant S; Shahzad-Ul-Hussan, Syed; McLellan, Jason S; Chuang, Gwo-Yu; Georgiev, Ivelin; Shimoike, Takashi; Katayama, Kazuhiko; Bewley, Carole A; Kwong, Peter D

    2012-01-01

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 Å and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 μM). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 μM) and H type 2 trisaccharide (390 μM), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.

  4. Structural Basis for Norovirus Inhibition and Fucose Mimicry by Citrate

    Energy Technology Data Exchange (ETDEWEB)

    Hansman, Grant S.; Shahzad-ul-Hussan, Syed; McLellan, Jason S.; Chuang, Gwo-Yu; Georgiev, Ivelin; Shimoike, Takashi; Katayama, Kazuhiko; Bewley, Carole A.; Kwong, Peter D. (NIAID)

    2012-01-20

    Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 {angstrom} and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 {mu}M). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 {mu}M) and H type 2 trisaccharide (390 {mu}M), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.

  5. L-Proline catalyzed aldol reactions between acetone and aldehydes in supercritical fluids:An environmentally friendly reaction procedure

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The direct asymmetric aldol reaction between various aldehydes and acetone catalyzed by L-proline catalyst was successfully carried out in supercritical CO2 (scCO2) and 1,1,1,2-tetrafluoroethane (R-134a) fluids.The enantioselectivity of 84% ee to the targeted product was achieved under 20 MPa,40 °C,and 15 mol% of the catalyst in supercritical CO2 (scCO2) fluid.The effects of reaction parameters,such as temperature,pressure,catalyst loading and different substituted aldehydes on both enantioselectivity and aldol yield were discussed.The titled reaction was also performed in 1,1,1,2-tetrafluoroethane,and the obtained results were compared with those in scCO2.This new reaction procedure provides an environmental asymmetric aldol reaction system as compared with that in organic solvents.

  6. Large-scale ruthenium- and enzyme-catalyzed dynamic kinetic resolution of (rac-1-phenylethanol

    Directory of Open Access Journals (Sweden)

    Bäckvall Jan-E

    2007-12-01

    Full Text Available Abstract The scale-up of the ruthenium- and enzyme-catalyzed dynamic kinetic resolution (DKR of (rac-1-phenylethanol (2 is addressed. The immobilized lipase Candida antarctica lipase B (CALB was employed for the resolution, which shows high enantioselectivity in the transesterification. The ruthenium catalyst used, (η 5-C5Ph5RuCl(CO2 1, was shown to possess very high reactivity in the "in situ" redox racemization of 1-phenylethanol (2 in the presence of the immobilized enzyme, and could be used in 0.05 mol% with high efficiency. Commercially available isopropenyl acetate was employed as acylating agent in the lipase-catalyzed transesterifications, which makes the purification of the product very easy. In a successful large-scale DKR of 2, with 0.05 mol% of 1, (R-1-phenylethanol acetate (3 was obtained in 159 g (97% yield in excellent enantiomeric excess (99.8% ee.

  7. 76 FR 77206 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2011-12-12

    ... grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their unblended... citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended ] form(s) of citric acid, sodium citrate, and potassium citrate constitute...

  8. 76 FR 77772 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Final Results of the...

    Science.gov (United States)

    2011-12-14

    ... granulation sizes of citric acid, sodium citrate, and potassium citrate in their unblended forms, whether dry..., sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium citrate constitute 40 percent or more,...

  9. 77 FR 74171 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Final Results of...

    Science.gov (United States)

    2012-12-13

    ... sodium citrate, otherwise known as citric acid sodium salt, and the monohydrate and monopotassium forms of potassium citrate.\\5\\ Sodium citrate also includes both trisodium citrate and monosodium citrate... acid and sodium citrate are classifiable under 2918.14.0000 and 2918.15.1000 of the Harmonized...

  10. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  11. Enantioselective extraction of terbutaline enantiomers by lipophilic tartaric acid

    Institute of Scientific and Technical Information of China (English)

    唐课文; 周春山

    2003-01-01

    Distribution behavior of terbutaline enantiomers was examined in the aqueous and organic solvent of a two-phase system containing L-dibenzoyltartaric acid and lipophilic phase transfer reagent of Na-tetraphenylborate. The influences of pH, organic solvents, concentrations of Na-tetraphenylborate and L-dibenzoyltartaric acid on the partition coefficients and enantioselectivity of terbutaline enantiomers, were investigated. The results show that tetraphenylborate lipophilic anion and terbutaline enantiomers form two lipophilic salt complexes , which facilitates the solubility of the enantiomers in the organic phase. L-dibenzoyltartaric acid forms more stable complexes with enantiomer Ⅱ than with enantiomer I . Enantioselectivity and partition coefficient increase with the addition of the length of alkyl chain of alcohols. pH and concentrations of lipophilic anion and L-dibenzoyltartaric acid influence them obviously and differently.

  12. Enantioselective reduction of acetyldimethylphenylsilane by Trigonopsis variabilis (DSM 70714)

    OpenAIRE

    Syldatk, C.; Andree, H.; Stoffregen, A.; F. Wagner; Stumpf, B; Ernst, L; Zilch, H.; Tacke, Reinhold

    2012-01-01

    Growing and resting cells of the yeast Trigonapsis variabilis (DSM 70714) can be used for the enantioselective reduction of the organosilicon compound acetyldimethylphenylsilane (J) to give optically active (R)-(1-hydroxyethyl)dimethylphenylsilane [(R)-2] in good yields. The enantiomeric purity of the isolated product was determined tobe 62-86% ee depending on the substrate concentration used. Both substrate and product caused an inhibition of the reaction at concentrations higher than 0.35 a...

  13. Muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nagamine, K. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawamura, N. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-12-15

    The latest progress of muon catalyzed fusion study at the RIKEN-RAL muon facility (and partly at TRIUMF) is reported. The topics covered are magnetic field effect, muon transfer to {sup 3}He in solid D/T and ortho-para effect in dd{mu} formation.

  14. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    Science.gov (United States)

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  15. Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing

    Directory of Open Access Journals (Sweden)

    Uwe Pieles

    2006-06-01

    Full Text Available In view of the chiral nature of many bio-molecules (and all bio-macromolecules,most of therapeutically active compounds which target these molecules need to be chiraland “good handed” to be effective. In addition to asymmetric synthetic and separationmethodologies, enantioselective chemical sensors, able to distinguish between twoenantiomers of the same molecule, are of relevance. In order to design these sensing tools,two major classes of enantioselective layers have been developed. The first is based onmolecularly imprinted polymers which are produced (polymerized in the presence of theirtarget, thus the polymeric material keep in “memory” the size and the shape of this moleculeand the system could be used for sensing (not reviewed here. The second approach makesuse of sensitive layers containing chiral macrocyclic receptors able of stereoselectivemolecular recognition; these receptors are mainly based on cyclodextrins. In thiscontribution, are reviewed achievements in the use of native or chemically modifiedcyclodextrins for chiral sensing purposes (at interfaces. Potentialities of other chiralmacrocycles based on calixarenes, calix-resorcinarenes or crown-ethers as supramolecularreceptors for enantioselective sensing are discussed.

  16. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    Science.gov (United States)

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  17. Role of Ga-67 citrate imaging in pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Aburano, T.; Yokoyama, K.; Hisada, K.; Kakuma, K.; Ichiyanagi, K.

    1988-11-01

    Two patients with pancreatitis in whom an area of predominant uptake of Ga-67 citrate was demonstrated involving the entire pancreas are presented. Ultrasound and x-ray CT did not reveal any morphologic abnormalities in the pancreas, whereas Ga-67 citrate imaging indicated the presence of active inflammatory change. Ga-67 citrate imaging may be useful in confirming the diagnosis of acute pancreatitis or acute exacerbation of chronic pancreatitis based on clinical and laboratory data, especially when ultrasound and/or x-ray CT cannot reveal any morphologic abnormalities in the pancreas.

  18. Enantioselective carbenoid insertion into C(sp3)–H bonds

    Science.gov (United States)

    Santiago, J V

    2016-01-01

    Summary The enantioselective carbenoid insertion into C(sp3)–H bonds is an important tool for the synthesis of complex molecules due to the high control of enantioselectivity in the formation of stereogenic centers. This paper presents a brief review of the early issues, related mechanistic studies and recent applications on this chemistry area. PMID:27340479

  19. Enantioselective Friedel-Crafts Alkylation Reactions of 3-Substituted Indoles with Electron-Deficient Alkenes.

    Science.gov (United States)

    Weng, Jian-Quan; Fan, Ren-Jie; Deng, Qiao-Man; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-04-01

    Highly enantioselective Friedel-Crafts C2-alkylation reactions of 3-substituted indoles with α,β-unsaturated esters and nitroalkenes were developed using chiral Lewis acids as catalysts, which afforded chiral indole derivatives bearing C2-benzylic stereogenic centers in good to excellent yields (up to 99%) and enantioselectivities (up to 96% ee). PMID:26959867

  20. Enantioselective Pinacol Coupling of Aromatic Aldehydes Induced by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    Qing Fang CHENG; Xing You XU; Ming Yan WANG; Jun CHEN; Wei Xing MA; Xu Jie YANG

    2006-01-01

    Asymmetric pinacol coupling of aromatic aldehydes with TiCl4-Zn in the presence of enantiopure squaric acid amidoalcohols afforded 1, 2-diols in excellent yields with high dldiastereoselectivities and enantioselectivities in the range of 46-89% ee. Some factors influencing dl-diastereoselectivity and enantioselectivity were discussed.

  1. Enantioselective Addition of Organolithium Reagents to Imines Mediated by C2-Symmetric Bis(aziridine) Ligands

    DEFF Research Database (Denmark)

    Johansson, F.; Tanner, David Ackland

    1998-01-01

    The C-2-symmetric bis(aziridine) ligands 1 - 5 have been screened in the enantioselective addition of organolithium reagents to imines. Ligand 1 (used in stoichiometric amounts) was found to be superior in terms of chemical yield and enantioselectivity, the best result being 90% yield and 89% e.e...

  2. Enhancement of the enantioselectivity of carboxylesterase A by structure-based mutagenesis

    NARCIS (Netherlands)

    Godinho, Luis F.; Reis, Carlos R.; Rozeboom, Henriette J.; Dekker, Frank J.; Dijkstra, Bauke W.; Poelarends, Gerrit J.; Quax, Wim J.

    2012-01-01

    Previously studied Bacillus subtilis carboxylesterases (CesA and CesB) have potential for the kinetic resolution of racemic esters of 1,2-O-isopropylideneglycerol (IPG). CesA exhibits high activity but low enantioselectivity towards IPG-butyrate and IPG-caprylate, while the more enantioselective Ces

  3. Catalytic Enantioselective Alkylation of Benzaldehyde with Diethylzinc Using Chiral Nonracemic (Thio)-phosphoramidates

    NARCIS (Netherlands)

    Hulst, Ron; Heres, Hero; Fitzpatrick, Kevin; Peper, Nathalie C.M.W.; Kellogg, Richard M.

    1996-01-01

    Two chiral nonracemic γ-amino alcohols, ephedrine thiol and the corresponding (thio)-phosphoramidates have been examined as catalysts for the enantioselective alkylation of benzaldehyde by diethylzinc. Addition of titanium tetraisopropoxide increases the yield as well as the enantioselectivity; 1-ph

  4. 76 FR 34044 - Citric Acid and Certain Citrate Salts From Canada: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-06-10

    ... Citrate Salts From Canada: Preliminary Results of Antidumping Duty Administrative Review, 76 FR 5782... The scope of this order includes all grades and granulation sizes of citric acid, sodium citrate, and.... The scope also includes blends of citric acid, sodium citrate, and potassium citrate; as well...

  5. Tritium catalyzed deuterium tokamaks

    International Nuclear Information System (INIS)

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the 3He from the D(D,n)3He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general)

  6. Phenotypes of gene disruptants in relation to a putative mitochondrial malate-citrate shuttle protein in citric acid-producing Aspergillus niger.

    Science.gov (United States)

    Kirimura, Kohtaro; Kobayashi, Keiichi; Ueda, Yuka; Hattori, Takasumi

    2016-09-01

    The mitochondrial citrate transport protein (CTP) functions as a malate-citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.

  7. Highly Enantioselective Formation of α-Allyl-α-Arylcyclopentanones via Pd-Catalysed Decarboxylative Asymmetric Allylic Alkylation.

    Science.gov (United States)

    Akula, Ramulu; Doran, Robert; Guiry, Patrick J

    2016-07-11

    A highly enantioselective Pd-catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α-aryl-β-keto esters employing the (R,R)-ANDEN-phenyl Trost ligand has been developed. The product (S)-α-allyl-α-arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all-carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)-tanikolide. PMID:27191198

  8. Competitive and cooperative adsorption of arsenate and citrate on goethite

    Institute of Scientific and Technical Information of China (English)

    SHI Rong; JIA Yongfeng; WANG Chengzhi

    2009-01-01

    The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly affected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006--0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no effect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the water-goethite interface as well.

  9. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer

    OpenAIRE

    Fukushima, Tatsuya; Sia, Allyson K.; Allred, Benjamin E.; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N.; Raymond, Kenneth N.

    2012-01-01

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the Gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated ...

  10. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

    Science.gov (United States)

    Martino, Gabriela P; Quintana, Ingrid M; Espariz, Martín; Blancato, Victor S; Magni, Christian

    2016-02-01

    Enterococcus is one of the most controversial genera belonging to Lactic Acid Bacteria. Research involving this microorganism reflects its dual behavior as regards its safety. Although it has also been associated to nosocomial infections, natural occurrence of Enterococcus faecium in food contributes to the final quality of cheese. This bacterium is capable of fermenting citrate, which is metabolized to pyruvate and finally derives in the production of the aroma compounds diacetyl, acetoin and 2,3 butanediol. Citrate metabolism was studied in E. faecium but no data about genes related to these pathways have been described. A bioinformatic approach allowed us to differentiate cit(-) (no citrate metabolism genes) from cit(+) strains in E. faecium. Furthermore, we could classify them according to genes encoding for the transcriptional regulator, the oxaloacetate decarboxylase and the citrate transporter. Thus we defined type I organization having CitI regulator (DeoR family), CitM cytoplasmic soluble oxaloacetate decarboxylase (Malic Enzyme family) and CitP citrate transporter (2-hydroxy-carboxylate transporter family) and type II organization with CitO regulator (GntR family), OAD membrane oxaloacetate decarboxylase complex (Na(+)-transport decarboxylase enzyme family) and CitH citrate transporter (CitMHS family). We isolated and identified 17 E. faecium strains from regional cheeses. PCR analyses allowed us to classify them as cit(-) or cit(+). Within the latter classification we could differentiate type I but no type II organization. Remarkably, we came upon E. faecium GM75 strain which carries the insertion sequence IS256, involved in adaptative and evolution processes of bacteria related to Staphylococcus and Enterococcus genera. In this work we describe the differential behavior in citrate transport, metabolism and aroma generation of three strains and we present results that link citrate metabolism and genetic organizations in E. faecium for the first time.

  11. Phosphine-Catalyzed [2 + 4] Annulation of Allenoates with Thiazolone-Derived Alkenes: Synthesis of Functionalized 6,7-Dihydro-5H-pyrano[2,3-d]thiazoles.

    Science.gov (United States)

    Wang, Chang; Gao, Zhenzhen; Zhou, Leijie; Yuan, Chunhao; Sun, Zhanhu; Xiao, Yumei; Guo, Hongchao

    2016-07-15

    Phosphine-catalyzed [2 + 4] annulation of allenoates with thiazolone-derived alkenes has been achieved under mild conditions, giving biologically important 6,7-dihydro-5H-pyrano[2,3-d]thiazole derivatives in high to excellent yields. With the use of Kwon's phosphine as the chiral catalyst, optically active products were obtained in good yields with excellent enantioselectivities. PMID:27378106

  12. Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents.

    Science.gov (United States)

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-01-01

    The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction. PMID:26437947

  13. Permanent microporosity and enantioselective sorption in a chiral open framework.

    Science.gov (United States)

    Bradshaw, Darren; Prior, Timothy J; Cussen, Edmund J; Claridge, John B; Rosseinsky, Matthew J

    2004-05-19

    A homochiral microporous material is presented. The phase has 47% permanently porous void volume and is shown to have >1 nm diameter pores with three-dimensional channels using probe molecule sorption. Enantioselective guest sorption is strongly dependent on guest size. The homochiral microporous phase was identified by reactive selection from a first-generation chiral but nonporous framework. Chiral permanent porosity is established by directional noncovalent interactions between framework-forming and nonframework forming components of the stable second-generation material, which become stronger upon loss of the guests from the pore system. PMID:15137776

  14. Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-05-01

    Full Text Available A novel chiral 1,10-phenanthroline-based fluorescent sensor was designed and synthesized from optical active β-amino acids. It used 1,10-phenanthroline moiety as a fluorescent signaling site and binding site, with optically active β-amino acids as a chiral barrier site. Notably, the optically active β-amino acids were obtained by a Lewis base catalyzed hydrosilylation of β-enamino esters according to our former work. The chiral sensor has been used to conduct the enantioselective recognition of chiral mono and dicarboxylic acids derivatives. Using this fluorescent sensor, a moderate “turn-off” fluorescence-diminishment response towards enantiomer of tartaric acids, and proline was observed. It found that l-enantiomers quench the chiral fluorescence sensor more efficiently than d-enantiomers due to the absolute configuration of the β-amino acid.

  15. Synthesis of chiral N-phosphoryl aziridines through enantioselective aziridination of alkenes with phosphoryl azide via Co(II-based metalloradical catalysis

    Directory of Open Access Journals (Sweden)

    Jingran Tao

    2014-06-01

    Full Text Available The Co(II complex of a new D2-symmetric chiral porphyrin 3,5-DiMes-QingPhyrin, [Co(P6], can catalyze asymmetric aziridination of alkenes with bis(2,2,2-trichloroethylphosphoryl azide (TcepN3 as a nitrene source. This new Co(II-based metalloradical aziridination is suitable for different aromatic olefins, producing the corresponding N-phosphorylaziridines in good to excellent yields (up to 99% with moderate to high enantioselectivities (up to 85% ee. In addition to mild reaction conditions and generation of N2 as the only byproduct, this new metalloradical catalytic system is highlighted with a practical protocol that operates under neutral and non-oxidative conditions.

  16. Preparation of lead titanate zirconate from metal citrates

    International Nuclear Information System (INIS)

    Lead titanate zirconate (PZT) preparation from its metal constituent citrates have been investigated. Metal citrates were obtained by forced precipitation using a dehydration alcohol mixture. Salt solutions of lead nitrate and octahydrated zirconyl chloride, and titanium tetrachloride were treated separately with citric acid and ammonium hydroxide. Zirconium, titanium and lead oxides resulted from thermal decomposition of corresponding citrates at 5000 C, 4500 C and 2500 C, respectively. Lead titanate (PT) and lead zirconate (P Z) were obtained by calcining at 4500 C and 5000 C, respectively, after adequate heating of citrates mechanically mixed in ethyl ether. PZT samples were obtained with different starting stoichiometry. Rhombohedral PZT-1 53/47 sample was prepared from co precipitating zirconyl ammonium and ammonium lead citrates in presence of ethanolic titanium oxide dispersion, and calcinating at 8000 C. Rhombohedral PZT-q 52/48 sample was obtained from heating at 5000 C for 2 hours a mixture of metal citrates coprecipitated by dehydration mixture of acetone-ethanol-formic acid (2:1:0,06). Tetragonal PZT-m stoichiometry 53/47 sample were obtained by calcining at after 6000 C for 2 hours after heating a mechanically mixed metal citrates. PT phase arose at 4000 C. PZT-m powders obtained in a range of 4000 C-8000 C were isostatically pressed, and sintered at 11000 C and 12000 C in saturated Pb O atmosphere. Rhombohedral sintered PZT was obtained with 7,78 g.cm-3 at 12000 C. (author). 123 refs, 53 figs, 32 tabs

  17. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  18. Catalyzed Ceramic Burner Material

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  19. Substitution of Val72 residue alters the enantioselectivity and activity of Penicillium expansum lipase.

    Science.gov (United States)

    Tang, Lianghua; Su, Min; Zhu, Ling; Chi, Liying; Zhang, Junling; Zhou, Qiong

    2013-01-01

    Error-prone PCR was used to create more active or enantioselective variants of Penicillium expansum lipase (PEL). A variant with a valine to glycine substitution at residue 72 in the lid structure exhibited higher activity and enantioselectivity than those of wild-type PEL. Site-directed saturation mutagenesis was used to explore the sequence-function relationship and the substitution of Val72 of P. expansum lipase changed both catalytic activity and enantioselectivity greatly. The variant V72A, displayed a highest enantioselectivity enhanced to about twofold for the resolution of (R, S)-naproxen (E value increased from 104 to 200.7 for wild-type PEL and V72A variant, respectively). In comparison to PEL, the variant V72A showed a remarkable increase in specific activity towards p-nitrophenyl palmitate (11- and 4-fold increase at 25 and 35 °C, respectively) whereas it had a decreased thermostability. The results suggest that the enantioselective variant V72A could be used for the production of pharmaceutical drugs such as enantiomerically pure (S)-naproxen and the residue Val 72 of P. expansum lipase plays a significant role in the enantioselectivity and activity of this enantioselective lipase. PMID:22972595

  20. Bacillus cereus iron uptake protein fishes out an unstable ferric citrate trimer.

    Science.gov (United States)

    Fukushima, Tatsuya; Sia, Allyson K; Allred, Benjamin E; Nichiporuk, Rita; Zhou, Zhongrui; Andersen, Ulla N; Raymond, Kenneth N

    2012-10-16

    Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins. Here we report a unique siderophore-binding protein from the gram-positive pathogenic bacterium Bacillus cereus that binds multinuclear ferric citrate complexes. We have demonstrated that B. cereus ATCC 14579 takes up (55)Fe radiolabeled ferric citrate and that a protein, BC_3466 [renamed FctC (ferric citrate-binding protein C)], binds ferric citrate. The dissociation constant (K(d)) of FctC at pH 7.4 with ferric citrate (molar ratio 1:50) is 2.6 nM. This is the tightest binding observed of any B. cereus siderophore-binding protein. Nano electrospray ionization-mass spectrometry (nano ESI-MS) analysis of FctC and ferric citrate complexes or citrate alone show that FctC binds diferric di-citrate, and triferric tricitrate, but does not bind ferric di-citrate, ferric monocitrate, or citrate alone. Significantly, the protein selectively binds triferric tricitrate even though this species is naturally present at very low equilibrium concentrations.

  1. 77 FR 33167 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2012-06-05

    ... sizes of citric acid, sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate... form(s) of citric acid, sodium citrate, and potassium citrate constitute 40 percent or more, by...

  2. 76 FR 34048 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-06-10

    ... all grades and granulation sizes of citric acid, sodium citrate, and potassium citrate in their... blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate, and potassium...

  3. 76 FR 33219 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2011-06-08

    ..., sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate, and potassium... acid, sodium citrate, and potassium citrate constitute 40 percent or more, by weight, of the blend....

  4. 77 FR 47370 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Intent To Rescind...

    Science.gov (United States)

    2012-08-08

    ..., sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution, and regardless of packaging type. The scope also includes blends of citric acid, sodium citrate, and potassium... acid, sodium citrate, and potassium citrate constitute 40 percent or more, by weight, of the blend....

  5. Theoretical Study on Sulfur Dioxide Absorption with Citrate Solution

    Institute of Scientific and Technical Information of China (English)

    薛娟琴; 洪涛; 王召启; 李林波

    2006-01-01

    The citrate absorption of SO2 is currently one of the most successful and economic methods to harness sulfur dioxide pollution.In order to theoretically elucidate the mechanism of SO2 absorption by citrate solution and provide theoretical instruction for experiments and industrial process, the theory of multi-buffer solution, combined with computer numerical calculation methods, was applied to study the distribution parameters of the components of the citrate solution in the process of SO2 absorption and the following results were obtained: (1) HCi2- and H2Ci- in the citrate solution played the dominant role in the absorption and desorption processes; (2) Through the calculation for the buffer capacity of citrate solution, it was found that the pH of the absorption and desorption solution should be in the range of 2~8, while at pH=4.5 the buffer capacity reached its maximum. Some valuable parameters were obtained, which are instructive to the ensuing experiments and industrial design.

  6. Residue Val237 is critical for the enantioselectivity of Penicillium expansum lipase.

    Science.gov (United States)

    Tang, Lianghua; Su, Min; Chi, Liying; Zhang, Junling; Zhang, Huihui; Zhu, Ling

    2014-03-01

    The shape of the hydrophobic tunnel leading to the active site of Penicillium expansum lipase (PEL) was redesigned by single-point mutations, in order to better understand enzyme enantioselectivity towards naproxen. A variant with a valine-to-glycine substitution at residue 237 exhibited almost no enantioselectivity (E = 1.1) compared with that (E = 104) of wild-type PEL. The function of the residue, Val237, in the hydrophobic tunnel was further analyzed by site-directed mutagenesis. For each of these variants a significant decrease of enantioselectivity (E lipase. PMID:24338160

  7. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa.

    Science.gov (United States)

    Zhang, Wenjun; Cheng, Cheng; Chen, Li; Di, Shanshan; Liu, Chunxiao; Diao, Jinling; Zhou, Zhiqiang

    2016-09-01

    Enantioselectivity in ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to Chlorella pyrenoidosa was studied. The 96h-EC50 values of rac- and the four enantiomers were 9.005, 6.616, 8.311, 4.290 and 9.410 mg/L, respectively. At the concentrations of 8 mg/L and 14 mg/L, the contents of pigments exposed in rac-, enantiomer-2 and 4 were higher than that exposed in enantiomer-1 and 3. The superoxide dismutase (SOD) and catalase (CAT) activity of algae exposed to enantiomer-1 and 3 was higher than that exposed to the rac-, enantiomer-2 and 4 at three levels. In addition, the malondialdehyde (MDA) concentrations in algae disposed with enantiomer-1 and 3 were increased remarkably at three levels. For the digestion experiment, the half-lives of four enantiomers in algae suspension were 28.06, 19.10, 21.13, 15.17 days, respectively. During the uptake experiment, the order of the concentrations of cyproconazole in algae cells was enantiomer-4, 2, 3 and 1. Based on these data, we concluded that ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to C. pyrenoidosa were enantioselective, and such enantiomeric differences must be taken into consideration when assessing the risk of cyproconazole to environment. PMID:27268794

  8. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    Science.gov (United States)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  9. Citrate anticoagulation in the ICU: the Leeds experience.

    Science.gov (United States)

    Trumper, Charlotte

    2016-09-01

    Continuous renal replacement therapy (CRRT) is widely used in the management of critically ill patients with acute kidney injury. It requires effective anticoagulation of the extracorporeal blood circuit. Although heparin is the most commonly prescribed anticoagulant, there are issues associated with heparin, and there has been increasing interest in regional citrate anticoagulation as an alternative. In 2013, The Leeds Teaching Hospitals NHS Trust switched from heparin to citrate anticoagulant for CRRT in intensive care units (ICUs) across the Trust. This article examines the reasons for the switch, the implementation of citrate and the impact of this quality-improvement project in terms of patient outcome data and feedback from the ICU nursing team. PMID:27615524

  10. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  11. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.

    2010-10-12

    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone

  12. Efficacy of preventing hemodialysis catheter infections with citrate lock.

    Science.gov (United States)

    Silva, Jorge; Antunes, Jorge; Carvalho, Telmo; Ponce, Pedro

    2012-10-01

    Prevalent use of tunneled dialysis catheters can reach 30%. Infection remains the most serious catheter-related problem. Catheter locks are increasingly used for prevention, but are not yet recommended either by the Food and Drug Association or European Medicines Agency, on the basis of increasing bacterial resistance or lock toxicity. The aim was to test safety and effectiveness of citrate. A prospective, interventional study was conducted to assess the safety and efficacy of a 30% citrate lock in preventing catheter-related bacteremia (CRB). A total of 157 prevalent tunneled catheters were locked with citrate and prospectively followed during a 1-year period. The primary endpoint was first CRB diagnosed according to two of the diagnostic criteria for Catheter Infection of Centers for Disease Control and Prevention (CDC), namely definite and probable infection. The CDC criterion of possible but not proved infection was not considered. This citrate lock cohort (n = 157) had 10 episodes of CRB. We observed 0.49 CRB episodes/1000 patient-days and the mean infection-free catheter day was 130.6 ± 100.9. No clinically relevant adverse events were observed. No proved tunnel or exit site infection was observed and no patients died because of CRB. Catheter obstruction episodes were reported on 69 occasions out of 14 catheters. These results were compared with an historical cohort from a previous study of catheter locking with low-dose gentamicin and did not show significant difference in efficacy. Citrate lock is effective in preventing CRB. No toxicity was observed. The use of citrate lock may have advantages over antibiotic locks: no reported bacterial resistance, lower industrial cost, and less manipulation. PMID:22515732

  13. Effect of sildenafil citrate on penile erection of rhesus macaques

    Institute of Scientific and Technical Information of China (English)

    Xun-BinHuang; Cheng-LiangXiong; Cheng-GaoYu; Jie-LingZhou; Ji-YunShen

    2004-01-01

    Aim: To examine the effect of sildenafil citrate on penile erection of male rhesus macaque. Methods:Twenty Macaca mulatta were divided into the sildenafil treated and the control groups of l0 animals each. The penile size, the corpus cavernosal electromyogram (EMG) and the intra-corpus cavernosal pressure (ICP) were determined. Results: The diameter of penis and the ICP were significantly increased and the corpus cavernosal EMG significantly reduced in the sildenafil group. Conclusion: Sildenafil citrate increases the penile size and ICP and reduces the corpus cavernosal EMG in male rhesus macaque. (Asian J Androl 2004 Sep; 6: 233-235)

  14. Enantioselective accumulation of (--)-pinoresinol through O-demethylation of (+/-)-eudesmin by Aspergillus niger.

    Science.gov (United States)

    Kasahara, H; Miyazawa, M; Kameoka, H

    1997-04-01

    Microbial transformation of (+/-)-eudesmin by Aspergillus niger was investigated. Enantioselective accumulation of (--)-pinoresinol was shown through O-demethylation of (+/-)-eudesmin. This fungus O- demethylated both enantiomers of eudesmin, but the conversion rates for each enantiomer were clearly different.

  15. Asymmetric Synthesis of N-(Diphenylphosphinyl)furfurylamine by the Enantioselective Alkylation of Furfurylimine

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Optically active N-(diphenylphosphinyl)furfurylamines 2 with good ee values were obtained by the enantioselective addition of dialkylzincs to furfuryl imine 1 in the presence of chiral aminoalcohol derivatives and oxazolines.

  16. Using Natural Cinchona Alkaloids to Promote the Enantioselective Addition of Dialkylzinc to N-Diphenylphosphinylimines

    Institute of Scientific and Technical Information of China (English)

    张海乐; 方春梅; 李昕; 龚流柱; 宓爱巧; 崔欣; 蒋耀忠

    2003-01-01

    Cinchona alkaloids are utilized as chiral ligands to promote the enantioselective addition of dialkylzinc to N-diphenyiphosphinylirnlnes affording enantiomerically enriched N-diphenyiphosphinylamines in up to 91% ee.

  17. Synthesis of Metal-Organic Zeolites with Homochirality and High Porosity for Enantioselective Separation.

    Science.gov (United States)

    Xu, Zhong-Xuan; Liu, Liyang; Zhang, Jian

    2016-07-01

    Using lactic acid derivatives as chiral ligands, a pair of unprecedented homochiral metal-organic zeolites have been synthesized that feature zeotype CAN topology and have high porosity for enantioselective separation of racemates.

  18. ENANTIOSELECTIVE TRANSFORMATION OF CHIRAL PCBS AND THE INSECTICIDE FIPRONIL IN NATURAL ANOXIC SEDIMENTS

    Science.gov (United States)

    In this study, we examined the microbial transformation of two chiral PCB congeners and the insecticide fipronil in natural sediment microcosms. The specific goals of the study were to identify biotransformation pathways and determine if enantioselective microbial transformation ...

  19. Improved cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran.

    Science.gov (United States)

    Wang, Z Jane; Renata, Hans; Peck, Nicole E; Farwell, Christopher C; Coelho, Pedro S; Arnold, Frances H

    2014-06-23

    Engineering enzymes capable of modes of activation unprecedented in nature will increase the range of industrially important molecules that can be synthesized through biocatalysis. However, low activity for a new function is often a limitation in adopting enzymes for preparative-scale synthesis, reaction with demanding substrates, or when a natural substrate is also present. By mutating the proximal ligand and other key active-site residues of the cytochrome P450 enzyme from Bacillus megaterium (P450-BM3), a highly active His-ligated variant of P450-BM3 that can be employed for the enantioselective synthesis of the levomilnacipran core was engineered. This enzyme, BM3-Hstar, catalyzes the cyclopropanation of N,N-diethyl-2-phenylacrylamide with an estimated initial rate of over 1000 turnovers per minute and can be used under aerobic conditions. Cyclopropanation activity is highly dependent on the electronic properties of the P450 proximal ligand, which can be used to tune this non-natural enzyme activity. PMID:24802161

  20. Mechanistic insights into a BINOL-derived phosphoric acid-catalyzed asymmetric Pictet-Spengler reaction.

    Science.gov (United States)

    Overvoorde, Lois M; Grayson, Matthew N; Luo, Yi; Goodman, Jonathan M

    2015-03-01

    The reaction of tryptamine and (2-oxocyclohexyl)acetic acid can be catalyzed by 3,3'-bis(triphenylsilyl)-1,1'-bi-2-naphthol phosphoric acid to give an asymmetric β-carboline. This reaction was first studied by Holloway et al. ( Org. Lett. 2010 , 12 , 4720 - 4723 ), but their mechanistic work did not explain the high stereoselectivity achieved. This study uses density functional theory and hybrid quantum mechanics/molecular mechanics calculations to investigate this reaction and provide a model to explain its outcome. The step leading to diastereo- and enantioselectivity is an asymmetric Pictet-Spengler reaction involving an N-acyliminium ion bound to the catalyst in a bidentate fashion. This interaction occurs via hydrogen bonds between the two terminal oxygen atoms of the catalyst phosphate group and the hydrogen atoms at N and C2 of the substrate indole group. These bonds hold the transition structure rigidly and thus allow the catalyst triphenylsilyl groups to influence the enantioselectivity. PMID:25654215

  1. Enantioselective Alternating Copolymerization of Propylene with Carbon Monoxide Using Cationic Palladium-Chiral Diphosphine Catalyst

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Enantioselective alternating copolymerization of carbon monoxide with propylene was carried out using palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis (diphenylphosphino)-L-iditol (DDPPI). The chiral diphosphine was proved to be effective at enantioselective copolymerization. Optical rotation, elemental analysis, 1H, 13C-NMR and IR spectra showed that the copolymer was optically active, isotactic, alternating poly(1,4-ketone) structure.

  2. Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis

    OpenAIRE

    Luca Deiana; Samson Afewerki; Carlos Palo-Nieto; Oscar Verho; Johnston, Eric V.; Armando Córdova

    2012-01-01

    The concept of combining heterogeneous transition metal and amine catalysis for enantioselective cascade reactions has not yet been realized. This is of great advantage since it would allow for the recycling of expensive and non-environmentally friendly transition metals. We disclose that the use of a heterogeneous Pd-catalyst in combination with a simple chiral amine co-catalyst allows for highly enantioselective cascade transformations. The preparative power of this process has been demonst...

  3. Acetylphosphonate as a Surrogate of Acetate or Acetamide in Organocatalyzed Enantioselective Aldol Reactions

    Science.gov (United States)

    Guang, Jie; Guo, Qunsheng

    2012-01-01

    Highly enantioselective aldol reactions of acetylphosphonates and activated carbonyl compounds was realized with cinchona alkaloid derived catalysts, in which the acetylphosphonate was directly used as an enolate precursor for the first time. The aldol product obtained was converted in situ to its corresponding ester or amide through methanolysis or aminolysis. The overall process may be viewed as formal highly enantioselective acetate or acetamide aldol reactions, which are very difficult to achieve directly with organocatalytic methods. PMID:22650245

  4. Hemodiafiltration using pre-dilutional on-line citrate dialysate: A new technique for regional citrate anticoagulation: A feasibility study

    Directory of Open Access Journals (Sweden)

    Radhouane Bousselmi

    2015-01-01

    Full Text Available A prospective, observational, feasibility study was carried out on four patients with end-stage renal failure undergoing bicarbonate hemodialysis to study the feasibility of an on-line hemodiafiltration technique using a citrate dialysate with pre-dilutional infusion of citrate as a technique for regional citrate anticoagulation. All patients had contraindication to systemic heparin anticoagulation. The dialysis technique consisted of an on-line hemodiafiltration with a citrate dialysate without calcium using a Fresenius 4008S dialysis machine and Fresenius Polysulfone F60 dialyzers. The infusion solution was procured directly from the dialysate and was infused into the arterial line. To avoid the risk of hypocalcemia, calcium gluconate was infused to the venous return line. The study was carried out in two stages. During the first stage, the citrate infusion rate was 80 mL/min and the calcium infusion rate was 9 mmol/h. At the second stage, the rates were 100 mL/min and 11 mmol/h, respectively. The primary endpoint of this study was the incidence of thrombosis in the extracorporeal blood circuit and/or the dialyzer. A total of 78 sessions were conducted. All the sessions were well tolerated clinically and there were no major incidents in any of the four patients. At the first stage of the study, there were five incidences of small clots in the venous blood chamber, an incidence of extracorporeal blood circuit thrombosis of 12.5%. At the second stage of the study, no cases of extracorporeal blood circuit or dialyzer thrombosis were noted. Hemodiafiltration with on-line citrate dialysate infusion to the arterial line is safe and allows an effective regional anticoagulation of the extracorporeal blood circuit without the need for systemic anticoagulation.

  5. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  6. Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils.

    Science.gov (United States)

    Li, Yuanbo; Dong, Fengshou; Liu, Xingang; Xu, Jun; Han, Yongtao; Zheng, Yongquan

    2015-03-01

    Tebuconazole and myclobutanil are two widely used triazole fungicides, both comprising two enantiomers with different fungicidal activity. However, their non-target toxicity and environmental behavior with respect to enantioselectivity have received limited attention. In the present study, tebuconazole and myclobutanil enantiomers were isolated and used to evaluate the occurrence of enantioselectivity in their acute toxicity to three non-target organisms (Scenedesmus obliquus, Daphnia magna, and Danio rerio). Significant differences were found: R-(-)-tebuconazole was about 1.4-5.9 times more toxic than S-(+)-tebuconazole; rac-myclobutanil was about 1.3-6.1 and 1.4-7.3 more toxic than (-)-myclobutanil and (+)-myclobutanil, respectively. Enantioselectivity was further investigated in terms of fungicide degradation in seven soil samples, which were selected to cover a broad range of soil properties. In aerobic or anaerobic soils, the S-(+)-tebuconazole degraded faster than R-(-)-tebuconazole, and the enantioselectivity showed a correlation with soil organic carbon content. (+)-Myclobutanil was preferentially degraded than (-)-myclobutanil in aerobic soils, whereas both enantiomers degraded at similar rates in anaerobic soils. Apparent correlations of enantioselectivity with soil pH and soil texture were observed for myclobutanil under aerobic conditions. In addition, both fungicides were configurationally stable in soils, i.e., no enantiomerization was found. Enantioselectivity may be a common phenomenon in both aquatic toxicity and biodegradation of chiral triazole fungicides, and this should be considered when assessing ecotoxicological risks of these compounds in the environment.

  7. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-26

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  8. Polymeric architectures of bismuth citrate based on dimeric building blocks

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Four bismuth complexes, (H2En)[Bi2(cit)2(H2O)4/3]·(H2O)x (1), (H2En)3[Bi2(cit)2Cl4]·(H2O)x (2), (HPy)2[Bi2(cit)2(H2O)8/5]·(H2O)x (3) and (H2En)[Bi2(cit)2](H2O)x (4) [cit = citrate4-; En = ethylenediamine; Py = pyridine] have been synthesized and crystallized. The crystal structures reveal that the basic building blocks in all of these complexes are bismuth citrate dimeric units which combine to form polymeric architectures. The embedded protonated ethylenediamine and pyridine moieties in the polymeric frameworks have been identified by X-ray crystallography and solid-state cross polarization/magic angle spinning (CP/MAS) 13C NMR. Based on the framework of complex 1, a structural model of a clinically used antiulcer drug, ranitidine bismuth citrate (RBC) was generated. The behavior of the protonated amine-bismuth citrate complexes in acidic aqueous solution has been studied by electrospray ionization-mass spectrometry (ESI-MS).

  9. Genetics of mesophilic citrate fermenting lactic acid bacteria.

    NARCIS (Netherlands)

    David, S.

    1992-01-01

    A prerequisite for the stabilization of important features, such as aroma production, in starter strains used in dairy fermentations, is an extensive knowledge of the genetic basis of these properties. In this thesis the genetic basis of citrate metabolism in Lactococcus lactis subsp. lactis var. di

  10. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  11. Tumour imaging using technetium-99m-citrate

    International Nuclear Information System (INIS)

    Sixteen patients with soft tissue malignancy or fibroadenoma of the breast (Group A) were imaged using 99mTc-citrate. Majority of the patients (n=14) has new untreated lesions. Appreciable skeletal uptake of the tracer was serendipitously noticed in all cases. One of these had widespread bone metastases seen almost identically in 99mTc-citrate and 99mTc-MDP studies. Accordingly, 10 patients (Group B) having more than 40 malignant lesions on the bone scan underwent 99mTc-citrate study. In group A, accumulation of the tracer was seen in all malignant breast nodules and axillary lymphnode mass (n=4), medullary carcinoma of the thyroid along with its metastasis and a carcinoid (n=4) and an ovarian malignancy. Uptake and outflow pattern could differentiate fibroadenoma (n=3) from carcinoma of the breast. No significant uptake was seen in liver secondaries (n>10), lymphoma lesions (n=5), papillary carcinoma of thyroid, renal cell and embryonal cell carcinoma. In group B patients, the radiotracer accumulated well in the metastatic lesions while there was distinctly lesser uptake in normal/degenerated joints compared to the bone scan. The study shows potential of the tracer in imaging soft tissue malignancies. Bone scanning with 99mTc-citrate is an interesting possibility since mechanism of its uptake appears to be different to 99mTc-MDP. (author)

  12. Short, Enantioselective Total Synthesis of Highly Oxidized Taxanes.

    Science.gov (United States)

    Yuan, Changxia; Jin, Yehua; Wilde, Nathan C; Baran, Phil S

    2016-07-11

    In the realm of natural product chemistry, few isolates have risen to the level of fame justifiably accorded to Taxol (1) and its chemical siblings. This report describes the most concise route to date for accessing the highly oxidized members of this family. As representative members of taxanes containing five oxygen atoms, decinnamoyltaxinine E (2) and taxabaccatin III (3), have succumbed to enantioselective total synthesis for the first time in only 18 steps from a simple olefin starting material. The strategy holistically mimics nature's approach (two-phase synthesis) and features a carefully choreographed sequence of stereoselective oxidations and a remarkable redox-isomerization to set the key trans-diol present in 2 and 3. This work lays the critical groundwork necessary to access even higher oxidized taxanes such as 1 in a more practical fashion, thus empowering a medicinal chemistry campaign that is not wedded to semi-synthesis. PMID:27240325

  13. Photomechanical actuation of ligand geometry in enantioselective catalysis.

    Science.gov (United States)

    Kean, Zachary S; Akbulatov, Sergey; Tian, Yancong; Widenhoefer, Ross A; Boulatov, Roman; Craig, Stephen L

    2014-12-22

    A catalyst that couples a photoswitch to the biaryl backbone of a chiral bis(phosphine) ligand, thus allowing photochemical manipulation of ligand geometry without perturbing the electronic structure is reported. The changes in catalyst activity and selectivity upon switching can be attributed to intramolecular mechanical forces, thus laying the foundation for a new class of catalysts whose selectivity can be varied smoothly and in situ over a useful range by controlling molecular stress experienced by the catalyst during turnover. Forces on the order of 100 pN are generated, thus leading to measurable changes in the enantioselectivities of asymmetric Heck arylations and Trost allylic alkylations. The differential coupling between applied force and competing stereochemical pathways is quantified and found to be more efficient for the Heck arylations.

  14. Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction

    Directory of Open Access Journals (Sweden)

    Kaoru Nobuoka

    2014-01-01

    Full Text Available Chiral ionic liquids, starting from (S-proline, have been prepared and evaluated the ability of a chiral catalyst. In Michael reaction of trans-β-nitrostyrene and cyclohexanone, all the reactions were carried out under homogeneous conditions without any solvent except for excess cyclohexanone. The chiral ionic liquid catalyst with the positive charge delocalized bulky pyrrolidinium cation shows excellent yields (up to 92%, diastereoselectivities (syn/anti = 96/4, and enantioselectivities (up to 95% ee and could be reused at least three times without any loss of its catalytic activity. Such results demonstrated a promising new approach for green and economic chiral synthesis by using the chiral ionic liquids as a chiral catalyst and a chiral medium.

  15. Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334

    NARCIS (Netherlands)

    Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcon, Sergio; Lolkema, Juke S.

    2013-01-01

    The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacill

  16. 76 FR 19997 - Determination That FENTORA (Fentanyl Citrate) Buccal Tablet, 300 Micrograms, Was Not Withdrawn...

    Science.gov (United States)

    2011-04-11

    ... HUMAN SERVICES Food and Drug Administration Determination That FENTORA (Fentanyl Citrate) Buccal Tablet... determined that FENTORA (fentanyl citrate) buccal tablet, 300 micrograms (mcg), was not withdrawn from sale... drug applications (ANDAs) for fentanyl citrate buccal tablet, 300 mcg, if all other legal...

  17. Enzyme Basis for pH Regulation of Citrate and Pyruvate Metabolism by Leuconostoc oenos

    NARCIS (Netherlands)

    Ramos, Ana; Lolkema, Juke S.; Konings, Wilhelmus; Santos, Helena

    1995-01-01

    Citrate and pyruvate metabolism by nongrowing cells of Leuconostoc oenos was investigated. 13C nuclear magnetic resonance (NMR) spectroscopy was used to elucidate the pathway of citrate breakdown and to probe citrate or pyruvate utilization, noninvasively, in living cell suspensions. The utilization

  18. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  19. Lipase-Catalyzed Kinetic Resolution of Novel Antifungal N-Substituted Benzimidazole Derivatives.

    Science.gov (United States)

    Łukowska-Chojnacka, Edyta; Staniszewska, Monika; Bondaryk, Małgorzata; Maurin, Jan K; Bretner, Maria

    2016-04-01

    A series of new N-substituted benzimidazole derivatives was synthesized and their antifungal activity against Candida albicans was evaluated. The chemical step included synthesis of appropriate ketones containing benzimidazole ring, reduction of ketones to the racemic alcohols, and acetylation of alcohols to the esters. All benzimidazole derivatives were obtained with satisfactory yields and in relatively short times. All synthesized compounds exhibit significant antifungal activity against Candida albicans 900028 ATCC (% cell inhibition at 0.25 μg concentration > 98%). Additionally, racemic mixtures of alcohols were separated by lipase-catalyzed kinetic resolution. In the enzymatic step a transesterification reaction was applied and the influence of a lipase type and solvent on the enantioselectivity of the reaction was studied. The most selective enzymes were Novozyme SP 435 and lipase Amano AK from Pseudomonas fluorescens (E > 100). PMID:26922853

  20. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    Full Text Available Desulfuromonas acetoxidans obtains energy for growth by the anaerobic oxidation of organic compounds with the carbon dioxide formation. It was found that ferrum and manganese are used as terminal electron acceptors in the processes of anaerobic respiration, such as dissimilative Fe3+- and Mn4+-reduction, carried out by these bacteria (Lovely, 1991. D. acetoxidans ІМV B-7384 can be used as anode biocatalyst in microbial fuel cell with high electron recovery through acetate oxidation to the electric current as a result of electron transfer to the anode or 3d-type transition metals, such as ferrum and manganese, in the process of their reduction. Investigation of biochemical changes of D. acetoxidans ІМV B-7384 under the influence of Fe (III compounds is important for optimization of the process of bacterial electricity generation. ATP-hydrolase is located in cytoplasmic membrane, and its subunits are exposed to both the cytoplasm and the external environment. Therefore, the changes of that enzyme activity can be used as an indicator of various stress exposure. Presence of ferric iron ions in the bacterial growth medium could catalyze generation of organic reactive oxygen species, such as peroxyl (ROO- and alkoxyl (RO- radicals. Lipid peroxidation is one of the main reasons of cell damage and it’s following death under the influence of reactive oxygen metabolites. It is known that lipid peroxidation and membrane transport processes are somehow interrelated, but mechanisms of such interaction are still unidentified. In our previous researche we have shown the influence of ferric (III citrate on the intensity of lipid peroxidation of D. аcetoxidans ІМV В-7384. Significant increase of the content of lipid peroxidation products (lipid hydroperoxides, conjugated dienes and malondialdehyde in bacterial cells has been observed under the addition of ferric (III citrate into the cultural medium. The increase of the concentration of lipid

  1. Asymmetric, Three-Component, One-Pot Synthesis of Spiropyrazolones and 2,5-Chromenediones from Aldol Condensation/NHC-Catalyzed Annulation Reactions.

    Science.gov (United States)

    Wang, Lei; Li, Sun; Chauhan, Pankaj; Hack, Daniel; Philipps, Arne R; Puttreddy, Rakesh; Rissanen, Kari; Raabe, Gerhard; Enders, Dieter

    2016-04-01

    A novel one-pot, three-component diastereo- and enantioselective synthesis of spiropyrazolones has been developed involving the aldol condensation of an enal to generate α,β-unsaturated pyrazolones, which react with a second equivalent of enal through an N-heterocyclic carbene (NHC)-catalyzed [3+2] annulation. The desired spirocyclopentane pyrazolones are obtained in moderate to good yields and good to excellent stereoselectivities. Alternatively, starting from cyclic 1,3-diketones, 2,5-chromenediones are available through [2+4] annulation. PMID:26864437

  2. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    DEFF Research Database (Denmark)

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard;

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The methodol...... the Suzuki cross-coupling reaction to the isomerization/N-acyliminium cyclization sequence. Finally, diastereo- and enantioselective versions of the title reaction have been examined using substrate control (with dr >15: 1) and asymmetric catalysis (ee up to 57%), respectively...

  3. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    Science.gov (United States)

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  4. [The potential effects of linalool on enantioselective skin permeation of norgestrel].

    Science.gov (United States)

    Rong, Yi; Yu, Wen-Ying; Guo, Xia; Zeng, Shan-Shan; Shen, Zheng-Rong; Zeng, Su; Ye, Jin-Cui

    2014-08-01

    The purpose of this study is to investigate the enantioselectivity of norgestrel (NG) transdermal permeation and the potential influence of linalool and lipids on the enantioselectivity. In vitro skin permeation studies of NG across the excised rat skins were performed with Valia-Chien diffusion cells, and the permeation samples were analyzed by enantioselective HPLC. The possible enantioselective permeation of NG across intact rat back skin and lipids extracted rat back skin and the influence of linalool were evaluated. The skin permeation rate of dl-NG was two times higher than that of l-NG when donor solutions (EtOH/H2O 2 : 8, v/v) containing l-NG or dl-NG. It may be mainly attributed to the solubility discrepancy between enantiomer and racemate. The enantioselective permeation of dl-NG across intact rat skin was observed when the donor solutions containing dl-linalool. The permeation flux of l-NG was 22% higher than that of d-NG. But interestingly, the enantioselective permeation of dl-NG disappeared under the same experimental condition except that the lipid extracted rat skin was used. Attenuated total reflection-fourier transform infrared spectroscopy analysis of stratum corneum showed that the wave number for asymmetric CH2 stretching vibrations of lipids treated with dl-linalool was greater than that of the control. The results indicated that the enantioselective permeation of NG may be contributed by the interaction between dl-linalool and lipids. More than half of lipids were composed of ceramides. The stereospecific interaction maybe existed among chiral enhancer (linalool), lipids (ceramides) and/or chiral drugs (NG).

  5. Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS.

    Science.gov (United States)

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Kumar, G Naresh

    2014-10-01

    Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.

  6. Metformin-clomiphene citrate vs. clomiphene citrate alone: Polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Aqueela Ayaz

    2013-01-01

    Full Text Available Background: Polycystic ovary syndrome (PCOS is the commonest endocrinopathy in women that is associated with reproductive and metabolic disorders. Objectives: We compared the ovulation and conception rates after the treatment with clomiphene citrate (CC alone and in combination with metformin in infertile patients presented with polycystic ovarian syndrome (PCOS. Materials and Methods: This randomized controlled trial of independent cases and controls was conducted at the Department of Obstetrics and Gynecology, Hera General Hospital, Makkah, Saudi Arabia from February 01 to December 31, 2008. The 42 subjects diagnosed as PCOS were divided into group A and B (21 subjects in each for management with CC + metformin and CC alone, respectively. Group A received 500 mg three times a day of metformin continuously from the first cycle for 6 months or till pregnancy was confirmed. In both groups CC was started at a dose of 50 mg from day-2 till day-6 of the menstrual cycle. The dose of CC was increased to 100 mg in second and 150 mg in third cycle, and then remained 150 mg for the remaining three cycles. With ovulation the dose of CC was unaltered in both groups. Data were analyzed using Statistical Package for the Social Sciences (SPSS version 16. Results: More than 50% females in both groups were had body mass index > 25. Group A achieved high rate of regular cycles, ovulation success, and conception than group B (71.4% vs. 38.1%; P = 0.03, (76.2% vs. 38.1%; P = 0.021, and (66.6% vs. 28.6%; P = 0.01, respectively. Conclusion: Management with metformin + CC increased the ovulation and conception rates.

  7. Production of technical-grade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica.

    Science.gov (United States)

    Kamzolova, Svetlana V; Vinokurova, Natalia G; Lunina, Julia N; Zelenkova, Nina F; Morgunov, Igor G

    2015-10-01

    The production of technical-grade sodium citrate from the glycerol-containing biodiesel waste by Yarrowia lipolytica was studied. Batch experiments showed that citrate was actively produced within 144 h, then citrate formation decreased presumably due to inhibition of enzymes involved in this process. In contrast, when the method of repeated batch cultivation was used, the formation of citrate continued for more than 500 h. In this case, the final concentration of citrate in the culture liquid reached 79-82 g/L. Trisodium citrate was isolated from the culture liquid filtrate by the addition of a small amount of NaOH, so that the pH of the filtrate increased to 7-8. This simple and economic isolation procedure gave the yield of crude preparation containing trisodium citrate 5.5-hydrate up to 82-86%.

  8. Chiral Cu(II-catalyzed enantioselective β-borylation of α,β-unsaturated nitriles in water

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    2015-10-01

    Full Text Available The promising performance of copper(II complexes was demonstrated for asymmetric boron conjugate addition to α,β-unsaturated nitriles in water. The catalyst system, which consisted of Cu(OAc2 and a chiral 2,2′-bipyridine ligand, enabled β-borylation and chiral induction in water. Subsequent protonation, which was accelerated in aqueous medium, led to high activity of this asymmetric catalysis. Both solid and liquid substrates were suitable despite being insoluble in water.

  9. Transfer Hydrogenation of C= C Double Bonds Catalyzed by Ruthenium Amido-Complexes:Scopes, Limitation and Enantioselectivity

    Institute of Scientific and Technical Information of China (English)

    XUE,Dong; CHENG,Ying-Chun; CUI,Xin; WANG,Qi-Wei; ZHU,Jin; DENG,Jin-Gen

    2004-01-01

    @@ The reduction of C = C double bonds is one of the most fundamental synthetic transformations and plays a key role in the manufacturing of a wide variety of bulk and fine chemicals. Hydrogenation of olefinic substrates can be achieved readily with molecular hydrogen in many cases, but transfer hydrogenation methods using suitable donor molecules such as formic acid or alcohols are receiving increasing attention as possible synthetic alternatives because it requires no special equipment and avoids the handling of potentially hazardous gaseous hydrogen.

  10. Enantioselective addition of diethylzinc to aryl aldehydes catalyzed by 1,2,3,4-tetrahydroisoquinoline β-amino alcohol

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly effective,new chiral 1,2,3,4-tetrahydroisoquinoline catalyst 1 for the diethylzinc addition to aryl aldehydes has been investigated.Using 10 mol%of this chiral catalyst,secondary alcohols can be obtained in up to 87%yield and 99.5%ee under mild conditions.

  11. Temperature Dual Enantioselective Control in a Rhodium-Catalyzed Michael-Type Friedel-Crafts Reaction: A Mechanistic Explanation.

    Science.gov (United States)

    Méndez, Isabel; Rodríguez, Ricardo; Polo, Víctor; Passarelli, Vincenzo; Lahoz, Fernando J; García-Orduña, Pilar; Carmona, Daniel

    2016-07-25

    By changing the temperature from 283 to 233 K, the S (99 % ee) or R (96 % ee) enantiomer of the Friedel-Crafts (FC) adduct of the reaction between N-methyl-2-methylindole and trans-β-nitrostyrene can be obtained by using (SRh ,RC )-[(η(5) -C5 Me5 )Rh{(R)-Prophos}(H2 O)][SbF6 ]2 as the catalyst precursor. This catalytic system presents two other uncommon features: 1) The ee changes with reaction time showing trends that depend on the reaction temperature and 2) an increase in the catalyst loading results in a decrease in the ee of the S enantiomer. Detection and characterization of the intermediate metal-nitroalkene and metal-aci-nitro complexes, the free aci-nitro compound, and the FC adduct-complex, together with solution NMR measurements, theoretical calculations, and kinetic studies have allowed us to propose two plausible alternative catalytic cycles. On the basis of these cycles, all the above-mentioned observations can be rationalized. In particular, the reversibility of one of the cycles together with the kinetic resolution of the intermediate aci-nitro complexes account for the high ee values achieved in both antipodes. On the other hand, the results of kinetic measurements explain the unusual effect of the increment in catalyst loading. PMID:27345293

  12. (Enantio)selective Hydrogen Autotransfer: Ruthenium-Catalyzed Synthesis of Oxazolidin-2-ones from Urea and Diols.

    Science.gov (United States)

    Peña-López, Miguel; Neumann, Helfried; Beller, Matthias

    2016-06-27

    A novel strategy for the synthesis of oxazolidin-2-ones from vicinal diols and urea is described. In this heterocycle synthesis, two different C-O and C-N bonds are sequentially formed in a domino process consisting of nucleophilic substitution and alcohol amination. The use of readily available starting materials and the good atom economy render this process environmentally benign. While this transformation is already highly chemo- and regioselective, we also developed the first asymmetric version of this method using (R)-(+)-MeO-BIPHEP as the chiral ligand. PMID:27072612

  13. Highly enantioselective synthesis of fluorinated gamma-amino alcohols through proline-catalyzed cross-Mannich reaction.

    Science.gov (United States)

    Fustero, Santos; Jiménez, Diego; Sanz-Cervera, Juan F; Sánchez-Roselló, María; Esteban, Elisabet; Simón-Fuentes, Antonio

    2005-08-01

    A new, simple route for the synthesis of fluorinated beta-alkyl gamma-amino alcohols in optically pure form in only two steps and featuring proline catalysis from inexpensive and readily available starting materials is described. The applied strategy allows for the introduction of diversity into both the beta-fluoroalkyl and alpha-alkyl groups of these compounds. [reaction: see text

  14. 77 FR 33399 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2012-06-06

    ... Certain Citrate Salts from Canada and the People's Republic of China: Antidumping Duty Orders, 74 FR 25703... Administrative Review, 77 FR 1455 (January 10, 2012). \\10\\ See Citric Acid and Certain Citrate Salts from the... acid, sodium citrate, and potassium citrate in their unblended forms, whether dry or in solution,...

  15. 77 FR 56188 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Notice of Rescission...

    Science.gov (United States)

    2012-09-12

    ... the order includes all grades and granulation sizes of citric acid, sodium citrate, and potassium... also includes blends of citric acid, sodium citrate, and potassium citrate; as well as blends with other ingredients, such as sugar, where the unblended form(s) of citric acid, sodium citrate,...

  16. 78 FR 34642 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2013-06-10

    ... dihydrate and anhydrous forms of sodium citrate, otherwise known as citric acid sodium salt, and the monohydrate and monopotassium forms of potassium citrate.\\1\\ Sodium citrate also includes both trisodium... monosodium salt, respectively. Citric acid and sodium citrate are classifiable under 2918.14.0000 and...

  17. Asymmetric azidation-cycloaddition with open-chain peptide-based catalysts. A sequential enantioselective route to triazoles.

    Science.gov (United States)

    Guerin, David J; Miller, Scott J

    2002-03-13

    A family of beta-substituted histidine-containing peptides has been synthesized to probe the effect of noncovalent conformational rigidification on catalyst enantioselectivity. Unambiguous enhancement of enantioselectivity in the conjugate addition of azide to alpha,beta-unsaturated carboxylate derivatives has been achieved, enabling application to a sequential asymmetric azidation/cycloaddition for the synthesis of optically enriched triazoles and triazolines. PMID:11878965

  18. Dual catalysis for the redox annulation of nitroalkynes with indoles: enantioselective construction of indolin-3-ones bearing quaternary stereocenters.

    Science.gov (United States)

    Liu, Ren-Rong; Ye, Shi-Chun; Lu, Chuan-Jun; Zhuang, Gui-Lin; Gao, Jian-Rong; Jia, Yi-Xia

    2015-09-14

    The enantioselective redox annulation of nitroalkynes with indoles is enabled by gold/chiral phosphoric acid dual catalysis. A range of indolin-3-one derivatives bearing quaternary stereocenters at the C2 position were afforded in good yields and excellent enantioselectivities (up to 96 % ee) from readily available starting materials.

  19. Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase

    NARCIS (Netherlands)

    Kamerbeek, NM; Olsthoorn, AJJ; Fraaije, MW; Janssen, DB; Kamerbeek, Nanne M.; Olsthoorn, Arjen J.J.

    2003-01-01

    The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of ca

  20. Subclinical abortions in patients treated with clomiphene citrate

    International Nuclear Information System (INIS)

    Using radioimmunoassay for human chorionic gonadotrophin beta-subunit, 39 treatment cycles of clomiphene citrate therapy were studied prospectively for incidence of subclinical abortions. Eight treatment cycles resulted in clinically recognizable pregnancies and three other treatment cycles ended up with subclinical abortions. The plasma progesterone levels in patients with subclinical abortions at the 13th day after ovulation were lower than those in patients with normal pregnancies. (author)

  1. Silver-YBCO composite through citrate gel decomposition

    International Nuclear Information System (INIS)

    Silver-YBCO composite containing upto 75% silver has been prepared by thermal decomposition of citrate gel. In this paper the morphological and structural changes taking place during the decomposition of the gel in the range 100--900 degrees C are presented. Heat treatment at 915 degrees C of the composite powder containing Ag2O above a critical limit has been found to impart superconductivity without any external oxygen annealing. The mechanical and microstructural features of the sintered composite are presented

  2. Renal Localization of {sup 67}Ga Citrate in Noninfectious Nephritis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Wook; Jeong, Min Soo; Rhee, Sunn Kgoo; Kim, Sam Yong; Shin, Young Tai; Ro, Heung Kyu [Chungnam University College of Medicine, Deajeon (Korea, Republic of)

    1992-07-15

    {sup 67}Ga citrate scan has been requested for detection or follow-up of inflammatory or neoplastic disease. Visualization of {sup 67}Ga citrate in the kidneys at 48 and 72 hr post injection is usually interpreted as evidence of renal pathology. But precise mechanisms of abnormal {sup 67}Ga uptake in kidneys were unknown. We undertook a study to determine the clinical value of {sup 67}Ga citrate imaging of the kidneys in 68 patients with primary or secondary nephropathy confirmed by renal biopsy and 66 control patients without renal disease. Renal uptake in 48 to 72 hr images was graded as follows: Grade 0=background activity;1=faint uptake greater than background; 2=definite uptake, but less than lumbar vertebrae;3 same uptake as lumbar vertebrae, but less than liver; 4=same or higher uptake than liver. The results were as follows. 1) 42 of 68(62%) patients with noninfectious nephritis showed grade 2 or higher {sup 67}Ga renal uptake but only 10 percent of control patients showed similar uptake. 2) In 14 patients with systemic lupus erythematosus, 8 of 9 (89%) patients with lupus nephritis exhibited marked renal uptake. 3) 36 of 41 patients (88%) with combined nephrotic syndrome showed Grade 2 or higher renal uptake. 4) Renal {sup 67}Ga uptake was correlated with clinical severity of nephrotic syndrome determined by serum albumin level, 24 hr urine protein excretion and serum lipid levels. 5) After complete remission of nephrotic syndrome, renal uptake in all 8 patients who were initially Grade 3 or 4, decreased to Grade 1 or 0. In conclusion, we think that the mechanism of renal {sup 67}Ga uptake in nephrotic syndrome might be related to the pathogenesis of nephrotic syndrome. In systemic lupus erythematosus, {sup 67}Ga citrate scan is useful in predicting renal involvement.

  3. Electrodeposition of iron-molybdenum coatings from citrate electrolyte

    OpenAIRE

    Ved, M. V.; Sakhnenko, N. D.; Karakurkchi, A. V.; Zyubanova, S. I.

    2014-01-01

    Specifi c features of the electrodeposition of iron–molybdenum coatings from a citrate electrolyte based on iron(III) sulfate and sodium molybdate in dc and unipolar pulsed modes were studied. It was demonstrated that bright compact coatings with varied content of molybdenum can be produced by varying the relative concentrations of salts of the alloy-forming components and the solution pH. The current density ranges providing the high efficiency of the galvanostastic electrolysis were determi...

  4. Electrodeposition of iron-molybdenum-tungsten coatings from citrate electrolytes

    OpenAIRE

    Karakurkchi, A. V.; Ved, M. V.; Sakhnenko, N. D.; Yermolenko, I. Yu.

    2015-01-01

    Specific features of the electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes based on iron(III) sulfate in the dc mode and with a unipolar pulsed current were studied. It was shown that varying the relative concentrations of salts of alloy-forming metals and the solution pH makes it possible to obtain lustrous compact coatings with low porosity and various contents of high-melting components. The effect of temperature on the coating composition and current efficie...

  5. Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems

    Directory of Open Access Journals (Sweden)

    Zhang Bo-Bo

    2012-08-01

    μmol/min gcwm, 98.6% and >99%, respectively. The efficient whole-cell biocatalytic process was shown to be feasible on a 450-mL scale. Moreover, the immobilized cells remained around 87% of their initial activity even after being used repeatedly for 8 batches in the C4mim·PF6/buffer biphasic system, exhibiting excellent operational stability. Conclusions For the first time, we have successfully utilized immobilized Candida parapsilosis CCTCC M203011 cells, for efficiently catalyzing anti-Prelog enantioselective reduction of ATMS to enantiopure (R-1-TMSE in the C4mim·PF6/buffer biphasic system. The substantially improved biocatalytic process appears to be effective and competitive on a preparative scale.

  6. 有机介质中脂肪酶促动力学拆分外消旋1-三甲基硅乙醇%Lipase-catalyzed Kinetic Resolution of Racemic 1-Trimethylsilylethanol in Organic Solvent

    Institute of Scientific and Technical Information of China (English)

    吴虹; 宗敏华; 王菊芳; 罗涤衡; 娄文勇

    2004-01-01

    The enantioselective esterification of racemic 1-trimethylsilylethanol with acids catalyzed by lipase in organic solvent was successfully performed.The influence of some factors on the reaction was investigated.Among the four lipases explored,Candida rugosa lipase(CRL)showed the highest activity and enantioselectivity.Octanoic acid was the best acyl donor among the eleven acids studied and n-hexane was the most suitable medium for the reaction.The optimum shaking rate and temperature were found to be 150 r·min-1 and 20°C to 30°C,respectively.The enantiomeric excess of the remaining(S)-(-)-1-trimethylsilylethanol was 93% when substrate conversion was 53% upon incubation of the reaction mixture at 30°C,150 r·min-1 for 12 h.

  7. Sildenafil citrate and uteroplacental perfusion in fetal growth restriction

    Directory of Open Access Journals (Sweden)

    Marzieh Vahid Dastjerdi

    2012-01-01

    Full Text Available Background: To determine whether the phosphodiesterase type 5 inhibitor, Sildenafil citrate, affects uteroplacental perfusion. Materials and Methods: Based on a randomized double-blinded and placebo-controlled trial, forty one pregnant women with documented intrauterine growth retardation at 24-37 weeks of gestation were evaluated for the effect of a single dose of Sildenafil citrate on uteroplacental circulation as determined by Doppler ultrasound study of the umbilical and middle cerebral arteries. Statistical analysis included χ2 -test to compare proportions, and independent-samples t-test and paired student′s t-test to compare continuous variables. Results: Sildenafil group fetuses demonstrated a significant decrease in systolic/diastolic ratios (0.60 [SD 0.40] [95% Cl 0.37-0.84], P=0.000, and pulsatility index (0.12 [SD 0.15] [95% Cl 0.02-0.22], P=0.019 for the umbilical artery and a significant increase in middle cerebral artery pulsatility index (MCA PI (0.51 [SD 0.60] [95% Cl 0.16-0.85], P=0.008. Conclusion: Doppler velocimetry index values reflect decreased placental bed vascular resistance after Sildenafil. Sildenafil citrate can improve fetoplacental perfusion in pregnancies complicated by intrauterine growth restriction. It could be a potential therapeutic strategy to improve uteroplacental blood flow in pregnancies with fetal growth restriction (FGR.

  8. CitI, a Transcription Factor Involved in Regulation of Citrate Metabolism in Lactic Acid Bacteria†

    Science.gov (United States)

    Martin, Mauricio G.; Magni, Christian; de Mendoza, Diego; López, Paloma

    2005-01-01

    A large variety of lactic acid bacteria (LAB) can utilize citrate under fermentative conditions. Although much information concerning the metabolic pathways leading to citrate utilization by LAB has been gathered, the mechanisms regulating these pathways are obscure. In Weissella paramesenteroides (formerly called Leuconostoc paramesenteroides), transcription of the citMDEFCGRP citrate operon and the upstream divergent gene citI is induced by the presence of citrate in the medium. Although genetic experiments have suggested that CitI is a transcriptional activator whose activity can be modulated in response to citrate availability, specific details of the interaction between CitI and DNA remained unknown. In this study, we show that CitI recognizes two A+T-rich operator sites located between citI and citM and that the DNA-binding affinity of CitI is increased by citrate. Subsequently, this citrate signal propagation leads to the activation of the cit operon through an enhanced recruitment of RNA polymerase to its promoters. Our results indicate that the control of CitI by the cellular pools of citrate provides a mechanism for sensing the availability of citrate and adjusting the expression of the cit operon accordingly. In addition, this is the first reported example of a transcription factor directly functioning as a citrate-activated switch allowing the cell to optimize the generation of metabolic energy. PMID:16030208

  9. Enantioselective Pharmacokinetics of α-Lipoic Acid in Rats

    Directory of Open Access Journals (Sweden)

    Ryota Uchida

    2015-09-01

    Full Text Available α-Lipoic acid (LA is widely used for nutritional supplements as a racemic mixture, even though the R enantiomer is biologically active. After oral administration of the racemic mixture (R-α-lipoic acid (RLA and S-α-lipoic acid (SLA mixed at the ratio of 50:50 to rats, RLA showed higher plasma concentration than SLA, and its area under the plasma concentration-time curve from time zero to the last (AUC was significantly about 1.26 times higher than that of SLA. However, after intravenous administration of the racemic mixture, the pharmacokinetic profiles, initial concentration (C0, AUC, and half-life (T1/2 of the enantiomers were not significantly different. After oral and intraduodenal administration of the racemic mixture to pyrolus-ligated rats, the AUCs of RLA were significantly about 1.24 and 1.32 times higher than that of SLA, respectively. In addition, after intraportal administration the AUC of RLA was significantly 1.16 times higher than that of SLA. In conclusion, the enantioselective pharmacokinetics of LA in rats arose from the fraction absorbed multiplied by gastrointestinal availability (FaFg and hepatic availability (Fh, and not from the total clearance.

  10. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols

    Science.gov (United States)

    Shi, Shi-Liang; Wong, Zackary L.; Buchwald, Stephen L.

    2016-04-01

    The chirality, or ‘handedness’, of a biologically active molecule can alter its physiological properties. Thus it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation. Despite many advances in asymmetric synthesis, developing general and practical strategies for obtaining all possible stereoisomers of an organic compound that has multiple contiguous stereocentres remains a challenge. Here, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, we synthesized these amino-alcohol products using sequential, copper-hydride-catalysed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino-alcohol products, which contain up to three contiguous stereocentres. We leveraged catalyst control and stereospecificity simultaneously to attain exceptional control of the product stereochemistry. Beyond the immediate utility of this protocol, our strategy could inspire the development of methods that provide complete sets of stereoisomers for other valuable synthetic targets.

  11. Catalytic enantioselective reductions and allylations of prochiral ketones

    CERN Document Server

    Cunningham, A

    2002-01-01

    The use of LiGaH sub 4 in combination with the S,O-chelate 2-hydroxy-2'-mercapto-1,1'-binaphthyl (monothiobinaphthol, MTBH sub 2), forms an active catalyst (2 mol %) for the asymmetric reduction of prochiral ketones, when using catecholborane as the hydride source. This catalyst has successfully been applied to the enantioselective reduction of aryl/n-alkyl ketones, providing the chiral sec-alcohols in yields of 82 - 96% and with enantiomeric excess values of 59 - 93%. Alkyl/methyl ketones are reduced in yields of 72 - 93% and in 46 - 79% enantiomeric excess. Enantioface differentiation is on the basis of the steric requirements of the ketone substituents. The X-ray structure of the pre-catalyst, Li(THF) sub 3 Ga(MTB) sub 2 has been determined and in solution is in equilibrium with a dimeric species of constitution Li sub 2 Ga sub 2 (MTB) sub 4. An indium analogue whose X-ray structure was determined as Li sub 2 (THF) sub 5 lnCI(MTB) sub 2 has also been prepared. The indium- based catalyst does not form an en...

  12. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    Science.gov (United States)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  13. 柠檬酸铅在柠檬酸钠溶液中溶解行为%Dissolution behavior of lead citrate in sodium citrate solution

    Institute of Scientific and Technical Information of China (English)

    何东升; 李巧双; 杨典奇; 杨聪; 王贤晨; 杨家宽

    2014-01-01

    Lead citrate was prepared by the reaction of lead oxide and citrate. The effects of dissolution time, dissolution tempera-ture, sodium citrate concentration, and the addition amount of citric acid on the dissolution rate of lead citrate in sodium citrate solution were investigated. Experimental results show that, dissolution temperature, sodium citrate concentration, and the addition amount of citric acid are the main influencing factors. Increasing the dissolution temperature or the sodium citrate concentration can significantly improve the dissolution rate of lead citrate. The dissolution rate of lead citrate has a positive linear relation with the dissolution tempera-ture, and the fitted linear equation is Y=0.76+0.63T. Adding citric acid can inhibit the dissolution of lead citrate.%通过氧化铅与柠檬酸反应制备了柠檬酸铅,考察了溶解时间、溶解温度、柠檬酸钠浓度和柠檬酸加入量对柠檬酸铅在柠檬酸钠溶液中溶解率的影响.结果表明:温度、柠檬酸钠浓度及柠檬酸加入量是主要影响因素,升高温度和提高柠檬酸钠浓度可显著提高柠檬酸铅溶解率;温度和溶解率呈正线性关系,拟合的线性方程为Y=0.76+0.63T;加入柠檬酸则对柠檬酸铅溶解有抑制作用.

  14. Catalytic Enantioselective 1,2-Addition of Terminal 1,3-Diynes to Trifluoromethyl Ketones

    Institute of Scientific and Technical Information of China (English)

    Yan Zheng; Hai Ma; Jun-An Ma

    2016-01-01

    A facile catalytic enantioselective 1,2-addition of diynes to trifluoromethyl ketones was developed.By a combination of Me2Zn,Ti(OPr-i)4,BaF2 and quinine,the reaction of a series of terminal diynes with trifluoromethyl ketones proceeded to afford trifluoromethylated chrial tertiary alcohols with the diyne moiety in good to high yields with moderate to high enantioselectivities.Furthermore,this catalytic asymmetric diyne addition to trifluoromethylketone was applied in the synthesis of the Efavirenz analogue.

  15. Mirror symmetry breaking with limited enantioselective autocatalysis and temperature gradients: a stability survey

    CERN Document Server

    Blanco, Celia; Crusats, Joaquim; El-Hachemi, Zoubir; Moyano, Albert; Hochberg, David; 10.1039/C2CP43488A

    2012-01-01

    We analyze limited enantioselective (LES) autocatalysis in a temperature gradient and with internal flow/recycling of hot and cold material. Microreversibility forbids broken mirror symmetry for LES in the presence of a temperature gradient alone. This symmetry can be broken however when the auto-catalysis and limited enantioselective catalysis are each localized within the regions of low and high temperature, respectively. This scheme has been recently proposed as a plausible model for spontaneous emergence of chirality in abyssal hydrothermal vents. Regions in chemical parameter space are mapped out in which the racemic state is unstable and bifurcates to chiral solutions.

  16. Influence of biochar on the enantioselective behavior of the chiral fungicide metalaxyl in soil

    Science.gov (United States)

    Gámiz, Beatriz; Pignatello, Joseph J.; Hermosín, María Carmen; Cox, Lucía; Celis, Rafael

    2015-04-01

    Chiral pesticides comprise an emerging and important class of organic pollutants currently, accounting for more than a quarter of used pesticides. Consequently, the contamination problems caused by chiral pesticides are concern matter and factors affecting enantioselective processes of chiral pesticides in soil need to be understood. For example, certain soil management practices, such as the use of organic amendments, can affect the enantioselective behavior of chiral pesticides in soils. Recently, biochar (BC), i.e. organic matter subjected to pyrolysis, has been proposed as organic amendment due to beneficial properties such as its high stability against decay in soil environments and its apparent ability to influence the availability of nutrients. BC is considered to be more biologically inert as compared to otherforms of organic carbon. However, its side-effects on the enantioselectivity of processes affecting the fate of chiral pesticides is unknown. The aim of this study was to assess the effect of biochar (BC) on the enantioselectivity of sorption, degradation, and leaching of the chiral fungicide metalaxyl in an agricultural soil. Amending the soil with BC (2% w/w) resulted in 3 times higher sorption of metalaxyl enantiomers compared to unamended soil, but no enantioselectivity in the process was observed. Moreover, both enantiomers showed some resistance to be desorbed in BC-amended soil compared to unamended soil. Dissipation studies revealed that the degradation of metalaxylwas more enantioselective in the unamended soil than in BC-amended soil. In unamended soil, R-metalaxyl(biologically active) and S- metalaxyl had half-lives (t1/2) of 3 and 34 days, respectively. BC enhanced the persistence of both enantiomers in the soil, with R-metalaxyl being degraded faster (t1/2=43 days) than S-metalaxyl (t1/2= 100 days). The leaching of both S-and R-metalaxyl was almost suppressed after amending the soil with BC; less than 10% of the fungicide applied to soil

  17. Forsterite Carbonation in Wet Supercritical CO2 and Sodium Citrate

    Science.gov (United States)

    Qiu, L.; Schaef, T.; Wang, Z.; Miller, Q.; McGrail, P.

    2013-12-01

    Lin Qiu1*, Herbert T. Schaef2, Zhengrong Wang1, Quin R.S. Miller3, BP McGrail2 1. Yale University, New Haven, CT, USA 2. Pacific Northwest National Laboratory, Richland, WA, USA 3. University of Wyoming, Laramie, WY, USA Geologic reservoirs for managing carbon emissions (mostly CO2) have expanded over the last 5 years to include unconventional formations including basalts and fractured shales. Recently, ~1000 metric tons of CO2 was injected into the Columbia River Basalt (CRB) in Eastern Washington as part of the Wallula Pilot Project, Big Sky Regional Carbon Partnership. Based on reservoir conditions, the injected CO2 is present as a supercritical fluid that dissolves into the formation water over time, and reacts with basalt components to form carbonate minerals. In this paper, we discuss mineral transformation reactions occurring when the forsterite (Mg2SiO4) is exposed to wet scCO2 in equilibrium with pure water and sodium citrate solutions. Forsterite was selected as it is an important olivine group mineral present in igneous and mafic rocks. Citrate was selected as it has been shown to enhance mineral dissolution and organic ligands are possible degradation products of the microbial communities present in the formational waters of the CRB. For the supercritical phase, transformation reactions were examined by in situ high pressure x-ray diffraction (HXRD) in the presence of supercritical carbon dioxide (scCO2) in contact with water and sodium citrate solutions at conditions relevant to carbon sequestration. Experimental results show close-to-complete dissolution of forsterite in contact with scCO2 equilibrated with pure water for 90 hours (90 bar and 50°C). Under these conditions, thin films of water coated the mineral surface, providing a mechanism for silicate dissolution and transport of cations necessary for carbonate formation. The primary crystalline component initially detected with in situ HXRD was the hydrated magnesium carbonate, nesquehonite [Mg

  18. Renal uptake of /sup 67/Ga-citrate in renal amyloidosis due to Familiar Mediterranean Fever

    Energy Technology Data Exchange (ETDEWEB)

    Banzo-Marraco, J.; Abos-Olivares, M.D.; Iribar-Ibabe, M.C.; Prats-Rivera, E.; Banzo-Marraco, J.I.; Teijeiro-Vidal, J.; Nerin-Mora, E.; Nerin de la Puerta, I.

    1981-06-01

    Renal uptake of /sup 67/Ga-citrate is described in a patient with biopsy-proven amyloidosis of the kidneys, due to Familiar Mediterranean Fever. After administration 150 MBq (4mCi) /sup 67/Ga-citrate, scans were done at 48, 72, and 120 h. Intense uptake was noted in both kidneys. A renal biopsy done 5 days after the /sup 67/Ga-citrate scan revealed a pattern typical of amyloidosis. Gallium scanning can be useful in patients with fever of unknown origin. Renal amyloidosis can be considered when renal uptake of /sup 67/Ga-citrate associated with nephrotic syndrome is observed.

  19. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations.

    Directory of Open Access Journals (Sweden)

    Jennifer C Ewald

    Full Text Available Citrate is an intermediate in catabolic as well as biosynthetic pathways and is an important regulatory molecule in the control of glycolysis and lipid metabolism. Mass spectrometric and NMR based metabolomics allow measuring citrate concentrations, but only with limited spatial and temporal resolution. Methods are so far lacking to monitor citrate levels in real-time in-vivo. Here, we present a series of genetically encoded citrate sensors based on Förster resonance energy transfer (FRET. We screened databases for citrate-binding proteins and tested three candidates in vitro. The citrate binding domain of the Klebsiella pneumoniae histidine sensor kinase CitA, inserted between the FRET pair Venus/CFP, yielded a sensor highly specific for citrate. We optimized the peptide linkers to achieve maximal FRET change upon citrate binding. By modifying residues in the citrate binding pocket, we were able to construct seven sensors with different affinities spanning a concentration range of three orders of magnitude without losing specificity. In a first in vivo application we show that E. coli maintains the capacity to take up glucose or acetate within seconds even after long-term starvation.

  20. Enantioselective stable isotope analysis (ESIA) of polar Herbicides

    Science.gov (United States)

    Maier, Michael; Qiu, Shiran; Elsner, Martin

    2013-04-01

    The complexity of aquatic systems makes it challenging to assess the environmental fate of chiral micropolutants. As an example, chiral herbicides are frequently detected in the environment (Buser and Muller, 1998); however, hydrological data is needed to determine their degradability from concentration measurements. Otherwise declining concentrations cannot unequivocally be attributed to degradation, but could also be caused by dilution effects. In contrast, isotope ratios or enantiomeric ratios are elegant alternatives that are independent of dilution and can even deliver insights into reaction mechanisms. To combine the advantages of both approaches we developed an enatioselective stable isotope analysis (ESIA) method to investigate the fate of the chiral herbicides 4-CPP ((RS)-2-(4-chlorophenoxy)-propionic acid), mecoprop (2-(4-Chloro-2-methylphenoxy)-propionic acid) and dichlorprop (2-(2,4-Dichlorophenoxy)-propionic acid). After testing the applicable concentration range of the method, enantioselective isotope fractionation was investigated by microbial degradation using dichlorprop as a model compound. The method uses enantioselective gas-chromatography (GC) to separate enantiomers. Subsequently samples are combusted online to CO2 and carbon isotope ratios are determined for each enantiomer by isotope-ratio-mass-spectrometry (IRMS). Because the analytes contain a polar carboxyl-group, samples were derivatised prior to GC-IRMS analysis with methanolic BF3 solution. Precise carbon isotope analysis (2σ ≤0.5‰) was achieved with a high sensitivity of ≥ 7 ng C that is needed on column for one analysis. Microbial degradation of the model compound dichlorprop was conducted with Delftia acidovorans MC1 and pronounced enantiomer fractionation, but no isotope fractionation was detected. The absence of isotope fractionation can be explained by two scenarios: either the degrading enzyme has no isotopic preference, or another step in the reaction without an isotopic

  1. Comparison of the efficiency of clomiphene citrate and letrozole in combination with metformin in moderately obese clomiphene citrate - resistant polycystic ovarian syndrome patients

    Directory of Open Access Journals (Sweden)

    Bjelica Artur

    2016-01-01

    Full Text Available Introduction. Polycystic ovary syndrome is the most common endocrinopathy in women of reproductiveage. Therapy for those who want to get pregnant involves ovulation induction using clomiphene citrate, metformin, letrozole and gonadotropins. Objective. The aim of the study was to compare the efficacy of combinations of clomiphene citrate-metformin and letrozole-metformin in obese patients who are resistant to clomiphene citrate alone. Methods. The investigation was conducted as a retrospective study involving 60 moderately obese patients with polycystic ovary syndrome. Thirty-one of them received the clomiphene citrate-metformin, and 29 letrozole-metformin therapy. Stimulation was carried out for the procedures of intrauterine insemination (IUI. Results. The age of patients, duration of infertility, and body mass index in both groups were similar. There was statistically significant difference in the thickness of the endometrium in favor of the group having the letrozole-metformin therapy (8.9 ± 1.7 mm compared with the group receiving the clomiphene citrate-metformin treatment (6.3 ± 1.3 mm. The number of follicles was not statistically significantly different. Pregnancy rate in the first cycle of IUI in the clomiphene citrate group was 6.4%, and 17.2% in the letrozole group, which also was not statistically different. After the third IUI cycle, the pregnancy rate was significantly higher in the letrozole group (20.6%, while in the clomiphene citrate group it was (9.6%. Conclusion. This retrospective study demonstrated the advantages of the use of letrozole over clomiphene citrate in combination with metformin in moderately obese patients with polycystic ovary syndrome who are resistant to stimulation with clomiphene citrate alone.

  2. Methodology of citrate-based biomaterial development and application

    Science.gov (United States)

    Tran, M. Richard

    Biomaterials play central roles in modern strategies of regenerative medicine and tissue engineering. Attempts to find tissue-engineered solutions to cure various injuries or diseases have led to an enormous increase in the number of polymeric biomaterials over the past decade. The breadth of new materials arises from the multiplicity of anatomical locations, cell types, and mode of application, which all place application-specific requirements on the biomaterial. Unfortunately, many of the currently available biodegradable polymers are limited in their versatility to meet the wide range of requirements for tissue engineering. Therefore, a methodology of biomaterial development, which is able to address a broad spectrum of requirements, would be beneficial to the biomaterial field. This work presents a methodology of citrate-based biomaterial design and application to meet the multifaceted needs of tissue engineering. We hypothesize that (1) citric acid, a non-toxic metabolic product of the body (Krebs Cycle), can be exploited as a universal multifunctional monomer and reacted with various diols to produce a new class of soft biodegradable elastomers with the flexibility to tune the material properties of the resulting material to meet a wide range of requirements; (2) the newly developed citrate-based polymers can be used as platform biomaterials for the design of novel tissue engineering scaffolding; and (3) microengineering approaches in the form thin scaffold sheets, microchannels, and a new porogen design can be used to generate complex cell-cell and cell-microenvironment interactions to mimic tissue complexity and architecture. To test these hypotheses, we first developed a methodology of citrate-based biomaterial development through the synthesis and characterization of a family of in situ crosslinkable and urethane-doped elastomers, which are synthesized using simple, cost-effective strategies and offer a variety methods to tailor the material properties to

  3. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  4. Understanding the endocrine disruption of chiral pesticides:The enantioselectivity in estrogenic activity of synthetic pyrethroids

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Synthetic pyrethroids(SPs) ,a family of chiral insecticides consisting of multiple stereoismers,have been regarded as estrogenic endocrine-disrupting chemicals(EDCs) .In this study,we applied the yeast two-hybrid and molecular docking(MD) assay to assess the enantioselective estrogenic activities of three commonly used SPs,bifenthrin(cis-BF) ,permethrin(PM) and fenvalerate(Fen) .The β-galactosidase analyses indicated that all of the testing pyrethroids displayed significant(p<0.05) enantioselectivity.The results showed that the estrogenic potential of cis-BF was mainly attributed to 1S-cis-BF.Neither PM nor Fen showed estrogenic effects.However,two stereoisomers of PM possessed estrogenic potential activities.αR-2R-Fen and αS-2S-Fen also induced the β-galactosidase activity.The inability to initiate the reporter gene expression by the racemic chemicals may be due to the low ratios of these isomers or the antagonism among them.The strong hydrophobic interaction and the hydrogen bond between positive estrogenic isomers and ERα support our biological testing results.This research demonstrated that the enantioselective estrogenic activity of chiral SPs was due to selective binding between their isomers and the ERαreceptor.The data suggests that enantioselectivity of these chiral pesticides is significant to their estrogenic activities.

  5. Enantioselective Formation of a Dynamic Hydrogen-Bonded Assembly Based on the Chiral Memory Concept

    NARCIS (Netherlands)

    Ishi-i, Tsutomu; Crego Calama, Mercedes; Timmerman, Peter; Reinhoudt, David N.; Shinkai, Seiji

    2002-01-01

    In this paper, we report the enantioselective formation of a dynamic noncovalent double rosette assembly 1a3·(CYA)6 composed of three 2-pyridylcalix[4]arene dimelamines (1a) and six butylcyanuric acid molecules (BuCYA). The six 2-pyridyl functionalities of the assembly interact stereoselectively wit

  6. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were co-polym

  7. Efficient and highly enantioselective formation of the all-carbon quaternary stereocentre of lyngbyatoxin A

    DEFF Research Database (Denmark)

    Vital, Paulo J.V.; Tanner, David

    2006-01-01

    Indole 25, an advanced intermediate in a projected enantioselective total synthesis of lyngbyatoxin A 1, was prepared from allylic alcohol 11 in 9 steps and >95% ee, key transformations being the enantiospecific rearrangement of vinyl epoxide 14 and the Hemetsberger-Knittel reaction of azide 24....

  8. Enantioselective total synthesis of (+)-Lingzhiol via tandem semipinacol rearrangement/Friedel-Crafts type cyclization.

    Science.gov (United States)

    Chen, Dong; Xu, Wen-Dan; Liu, Hao-Miao; Li, Ming-Ming; Yan, Yong-Min; Li, Xiao-Nian; Li, Yan; Cheng, Yong-Xian; Qin, Hong-Bo

    2016-06-30

    Enantioselective total synthesis of (+)-Lingzhiol has been achieved. It is the first example of in tandem semipinacol rearrangement reactions, the migrated aryl group further reacting with the carbonyl oxonium electrophile to furnish a polycyclic skeleton. Our synthesis involves 13 steps and proceeds in 6% overall yield. PMID:27321202

  9. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  10. Synthesis of Novel Bisoxazoline Ligands for the Enantioselective Diels-Alder Reaction

    Institute of Scientific and Technical Information of China (English)

    Qing Hua BIAN; Jun LIU; Ming Ming YIN; Min WANG

    2006-01-01

    Four novel bisoxazoline ligands 8a-d were synthesized from (S)-amino alcohols and could be formed effective catalysts (up to 77% ee for endo isomer) with Cu(OTf)2 for enantioselective Diels-Alder addition. The facility of the reaction was dependent on the nature of the substituent R in the bisoxazoline ligand.

  11. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis.

    Science.gov (United States)

    Ruiz Espelt, Laura; McPherson, Iain S; Wiensch, Eric M; Yoon, Tehshik P

    2015-02-25

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates.

  12. The Enantioselectivity of Odor Sensation: Some Examples for Undergraduate Chemistry Courses

    Science.gov (United States)

    Kraft, Philip; Mannschreck, Albrecht

    2010-01-01

    This article discusses seven chiral odorants that demonstrate the enantioselectivity of odor sensation: carvone, Celery Ketone, camphor, Florhydral, 3-methyl-3-sulfanylhexan-1-ol, muscone, and methyl jasmonate. After a general introduction of the odorant-receptor interaction and the combinatorial code of olfaction, the olfactory properties of the…

  13. Enantioselective synthesis of tertiary α-chloro esters by non-covalent catalysis

    Science.gov (United States)

    Liu, Richard Y.; Wasa, Masayuki; Jacobsen, Eric N.

    2015-01-01

    We report an enantioselective approach to tertiary α-chloro esters through the reaction of silyl ketene acetals and N-chlorosuccinimide. The reaction is promoted by a chiral squaramide catalyst, which is proposed to engage both reagents exclusively through non-covalent interactions. Application of the tertiary chloride products in stereospecific substitution reactions is demonstrated. PMID:26085694

  14. Enantioselective Synthesis of the 5-6-7 Carbocyclic Core of the Gagunin Diterpenoids

    OpenAIRE

    Shibuya, Grant M.; Enquist, John A.; Stoltz, Brian M.

    2013-01-01

    A catalytic enantioselective double allylic alkylation reaction has been employed in the synthesis of the core of the gagunin diterpenoids. Enantioenriched material was advanced in 11 steps to afford the core of the highly oxygenated target, which includes two all-carbon quaternary stereocenters.

  15. A DFT exploration of the enantioselective rearrangement of cyclohexene oxide to cyclohexenol

    DEFF Research Database (Denmark)

    Brandt, Peter; Norrby, Per-Ola; Andersson, Pher G.

    2003-01-01

    In this paper, we present computational results for the (1S,3R,4R)-3-(pyrrolidinyl)-methyl-2-azabicyclo[2.2.1]heptane mediated rearrangement of cyclohexene oxide. The results nicely explain the differences in enantioselectivities between catalytic and stoichiometric mode between different ligands...

  16. Aziridino Alcohols as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kornø, Hanne Tøfting; Guijarro, David;

    1998-01-01

    addition of diethylzinc to benzaldehyde, with up to 90% stereoselectivity. The absolute configuration of the alcohol product is dependent on the substitution pattern of the aziridine ring, and different transition state models are proposed to explain the observed switch in enantioselectivity. The C-2...

  17. Gold-Catalyzed Synthesis of Heterocycles

    Science.gov (United States)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  18. Formulation, Characterization and Physicochemical Evaluation of Potassium Citrate Effervescent Tablets

    Directory of Open Access Journals (Sweden)

    Fatemeh Fattahi

    2013-02-01

    Full Text Available Purpose: The aim of this study was to design and formulation of potassium citrate effervescent tablet for reduction of calcium oxalate and urate kidney stones in patients suffering from kidney stones. Methods: In this study, 13 formulations were prepared from potassium citrate and effervescent base in different concentration. The flowability of powders and granules was studied. Then effervescent tablets were prepared by direct compression, fusion and wet granulation methods. The prepared tablets were evaluated for hardness, friability, effervescent time, pH, content uniformity. To amend taste of formulations, different flavoring agents were used and then panel test was done by using Latin Square method by 30 volunteers. Results: Formulations obtained from direct compression and fusion methods had good flow but low hardness. Wet granulation improves flowability and other physicochemical properties such as acceptable hardness, effervescence time ≤3 minutes, pH<6, friability < 1%, water percentage < 0.5% and accurate content uniformity. In panel test, both of combination flavors; (orange - lemon and (strawberry - raspberry had good acceptability. Conclusion: The prepared tablets by wet granulation method using PVP solution had more tablet hardness. It is a reproducible process and suitable to produce granules that are compressed into effervescent tablets due to larger agglomerates.

  19. Iodine-catalyzed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, J.T.; Duffield, J.E.; Davidson, M.G. (Amoco Oil Company, Naperville, IL (USA). Research and Development Dept.)

    Coals of two different ranks were liquefied in high yields using catalytic quantities of elemental iodine or iodine compounds. Iodine monochloride was found to be especially effective for enhancing both coal conversion and product quality. It appears that enhancement in coal conversion is due to the unique ability of iodine to catalyze radical-induced bond scission and hydrogen addition to the coal macromolecule or coal-derived free radicals. The starting iodine can be fully accounted for in the reaction products as both organic-bound and water-soluble forms. Unconverted coal and the heavy product fractions contain the majority of the organic-bound iodine. The results of iodine-catalyzed coal reactions emphasize the need for efficient hydrogen atom transfer along with bond scission to achieve high conversion and product quality. 22 refs., 12 tabs.

  20. Enantioselective degradation and chiral stability of the herbicide fluazifop-butyl in soil and water.

    Science.gov (United States)

    Qi, Yanli; Liu, Donghui; Luo, Mai; Jing, Xu; Wang, Peng; Zhou, Zhiqiang

    2016-03-01

    The stereoselective degradation and transformation of the enantiomers of the herbicide fluazifop-butyl in soil and water were studied to investigate the environmental behavior and chiral stability of the optical pure product. Its main chiral metabolite fluazifop was also monitored. LC/MS/MS with Chiralpak IC chiral column was used to separate the enantiomers of fluazifop-butyl and fluazifop. Validated enantioselective residue analysis methods were established with recoveries ranging from 77.1 to 115.4% and RSDs from 0.85 to 8.9% for the enantiomers. It was found the dissipation of fluazifop-butyl was rapid in the three studied soils (Beijing, Harbin and Anhui soil), and the degradation half-lives of the enantiomers ranged from 0.136 to 2.7 d. Enantioselective degradations were found in two soils. In Beijing soil, R-fluazifop-butyl was preferentially degraded leading to relative enrichment of S-enantiomer, but in Anhui soil, S-fluazifop-butyl dissipated faster. There was no conversion of the R-fluazifop-butyl into S-fluazifop-butyl or vice versa in the soils. The formation of fluazifop in the soils was rapidly accompanied with the fast degradation of fluazifop-butyl, and the enantioselectivity and the transformation of S-fluazifop to R-fluazifop were found. The degradation of fluazifop-butyl in water was also quick, with half-lives of the enantiomers ranging from 0.34 to 2.52 d, and there was no significant enantioselectivity of the degradation of fluazifop-butyl and the formation of fluazifop. The effects of pH on the degradation showed fluazifop-butyl enantiomers degraded faster in alkaline conditions. This study showed an evidence of enantioselective behavior and enantiomerization of the chiral herbicide fluazifop-butyl.

  1. 78 FR 34648 - Citric Acid and Certain Citrate Salts: Preliminary Results of Countervailing Duty Administrative...

    Science.gov (United States)

    2013-06-10

    ... International Trade Administration Citric Acid and Certain Citrate Salts: Preliminary Results of Countervailing... review of the countervailing duty (CVD) order on citric acid and citrate salts from the People's Republic... (202) 482-1503. Scope of the Order The merchandise subject to the order is citric acid and...

  2. 78 FR 34338 - Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2013-06-07

    ...: Antidumping Duty Orders, 74 FR 25703 (May 29, 2009) (Citric Acid Duty Orders). Methodology The Department has... International Trade Administration Citric Acid and Certain Citrate Salts From Canada: Preliminary Results of... administrative review of the antidumping duty order on citric acid and certain citrate salts (citric acid)......

  3. Antiproliferative Effects of Zinc-Citrate Compound on Hormone Refractory Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Sung Hoo Hong; Yong Sun Choi; Hyuk Jin Cho; Ji Youl Lee; Joon Chul Kim; Tae Kon Hwang; Sae Woong Kim

    2012-01-01

    Objective:To investigate the antiproliferative effects of zinc-citrate compound on hormone refractory prostate cancer (HRPC).Methods:HRPC cell line (DU145) and normal prostate cell line (RWPE-1) were treated with zinc,citrate and zinc-citrate compound at different time intervals and concentrations to investigate the effect of zinc-citrate compound.Mitochondrial (m)-aconitase activity was determined using aconitase assay.DNA laddering analysis was performed to investigate apoptosis of DU145 cells.Molecular mechanism of apoptosis was investigated by Western blot analys s of P53,P21waf1,Bcl-2,Bcl-xL and Bax,and also caspase-3 activity analysis.Results:Treatment with zinc-citrate compound resulted in a time- and dose-dependent decrease in cell number of DU145 cells in comparison with RWPE-1.M-aconitase activity was significantly decreased.DNA laddering analysis indicated apoptosis of DU145 cells.Zinc-citrate compound increased the expression of P21waf1 and P53,and reduced the express on of Bcl-2 and Bcl-xL proteins but induced the expression of Bax protein.Zinc-citrate compound induced apoptosis of DU145 cells by activation of the caspase-3 pathway.Conclusion:Zinc-citrate compound can induce apoptotic cell death in DU145,by caspase-3 activation through up-regulation of apoptotic proteins and down-regulation of antiapoptotic proteins.

  4. Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.

    Science.gov (United States)

    Polen, Tino; Schluesener, Daniela; Poetsch, Ansgar; Bott, Michael; Wendisch, Volker F

    2007-08-01

    Corynebacterium glutamicum grows aerobically on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. To characterize the citrate utilization in C. glutamicum on a genomewide scale, a comparative analysis was carried out by combining transcriptome and proteome analysis. In cells grown on citrate, transcriptome analysis revealed highest expression changes for two different citrate-uptake systems encoded by citM and tctCBA, whereas genes encoding uptake systems for the glucose- (ptsG), sucrose- (ptsS) and fructose- (ptsF) specific PTS components and permeases for gluconate (gntP) and glutamate (gluC) displayed decreased mRNA levels in citrate-grown cells. This pattern was also observed when cells grown in Luria-Bertani (LB) medium plus citrate were compared with cells grown in LB medium, indicating some kind of catabolite repression. Genes encoding enzymes of the tricarboxylic acid cycle (aconitase, succinyl-CoA synthetase, succinate dehydrogenase and fumarase), malic enzyme, PEP carboxykinase, gluconeogenic glyceraldehyde-3-phosphate dehydrogenase and ATP synthase displayed increased expression in cells grown on citrate. Accordingly, proteome analysis revealed elevated protein levels of these enzymes and showed a good correlation with the mRNA levels. In conclusion, this study revealed the citrate stimulon in C. glutamicum and the regulated central metabolic genes when grown on citrate. PMID:17559405

  5. Bioavailability of zinc and phosphorus in calcareous soils as affected by citrate exudation

    NARCIS (Netherlands)

    Duffner, A.; Hoffland, E.; Temminghoff, E.J.M.

    2012-01-01

    Aims Zinc (Zn) and phosphorus (P) deficiency often occurs at the same time and limits crop production in many soils. It has been suggested that citrate root exudation is a response of plants to both deficiencies. We used white lupin (Lupinus albus L.) as a model plant to clarify if citrate exuded by

  6. Addition of senna improves quality of colonoscopy preparation with magnesium citrate

    Institute of Scientific and Technical Information of China (English)

    Stergios Vradelis; Evangelos Kalaitzakis; Yalda Sharifi; Otto Buchel; Satish Keshav; Roger W Chapman; Barbara Braden

    2009-01-01

    AIM: To prospectively investigate the effectiveness and patient's tolerance of two low-cost bowel cleansing preparation protocols based on magnesium citrate only or the combination of magnesium citrate and senna. METHODS: A total of 342 patients who were referred for colonoscopy underwent a colon cleansing protocol with magnesium citrate alone ( n = 160) or magnesium citrate and senna granules ( n = 182). The colonoscopist rated the overall efficacy of colon cleansing using an established score on a 4-point scale. Patients were questioned before undergoing colonoscopy for side effects and symptoms during bowel preparation. RESULTS: The percentage of procedures rescheduled because of insufficient colon cleansing was 7% in the magnesium citrate group and 4% in the magnesium citrate/senna group ( P = 0.44). Adequate visualization of the colonic mucosa was rated superior under the citramag/senna regimen ( P = 0.004). Both regimens were well tolerated, and did not significantly differ in the occurrence of nausea, bloating or headache. However, abdominal cramps were observed more often under the senna protocol (29.2%) compared to the magnesium citrate only protocol (9.9%, P < 0.0003). CONCLUSION: The addition of senna to the bowel preparation protocol with magnesium citrate significantly improves the cleansing outcome.

  7. MECHANISM AND ENERGETICS OF A CITRATE-TRANSPORT SYSTEM OF KLEBSIELLA-PNEUMONIAE

    NARCIS (Netherlands)

    VANDERREST, ME; ABEE, T; MOLENAAR, D; KONINGS, WN

    1991-01-01

    The citrate-transport determinant of plasmid pES1 from Klebsiella pneumoniae [Schwarz, E. & Oesterhelt, D. (1985) EMBO J. 4, 1599 - 1603] has been subcloned in Escherichia coli DH1. Uptake of citrate in E. coli membrane vesicles via this uptake system is an electrogenic process, although the pH grad

  8. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transport

  9. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction

    NARCIS (Netherlands)

    I. P. Kerschgens; E. Claveau; M.J. Wanner; S. Ingemann; J.H. van Maarseveen; H. Hiemstra

    2012-01-01

    The pharmacologically interesting indole alkaloids (-)-mitragynine, (+)-paynantheine and (+)-speciogynine were synthesised in nine steps from 4-methoxytryptamine by a route featuring (i) an enantioselective thiourea-catalysed Pictet-Spengler reaction, providing the tetrahydro-β-carboline ring and (i

  10. Synthesis of chiral N-ferrocenylmethylaminoalcohols and their applica-tion in enantioselective addition of diethylzinc to aldehydes

    Institute of Scientific and Technical Information of China (English)

    Jian Feng GE; Zong Xuan SHEN; Ya Wen ZHANG

    2004-01-01

    Three chiral N-ferrocenylmethylaminoalcohols were synthesized from readily available natural L-valine, leucine and phenylanine, and used as chiral ligands in the enantioselective addition of diethylzinc to aldehydes.

  11. Enantioselective Pinacol Coupling of Aromatic Aldehydes Mediated by TiCl4(THF)2/Zn with Tartaric Ester

    Institute of Scientific and Technical Information of China (English)

    LI You-Gui李有桂; JIANG Chen江辰; ZHAO Jun赵俊; TIAN Qing-Shan田青杉; YOU Tian-Pa尤田耙

    2004-01-01

    Asymmetric pinacol coupling of aromatic aldehydes mediated by low valent titanium complexes of chiral ligands derived from natural tartaric acid provided corresponding pinacols in good yields with excellent diastereoselectivities and moderate enantioselectivities.

  12. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.; Lin, Zekai; Abney, Carter W.; Lin, Wenbin [UC

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

  13. Facile synthesis of Ag2S nanoparticles functionalized by carbon-containing citrate shell

    Science.gov (United States)

    Sadovnikov, S. I.; Gusev, A. I.; Gerasimov, E. Yu.; Rempel, A. A.

    2015-12-01

    Silver sulfide nanoparticles with non-toxic citrate shell are synthesized by chemical bath deposition from aqueous mixtures of silver nitrate and sodium sulfide in the presence of sodium citrate used as a complexing and stabilizing agent. The prepared nanoparticles have Ag2S core with monoclinic crystal structure functionalized by a carbon-containing citrate shell. By varying the concentrations of reagents it was possible to prepare core-shell nanoparticles with pre-assigned size of Ag2S core from 10 and 50 nm and pre-assigned thickness from 1.5 to 10 nm of citrate shell. A probable mechanism of formation of carbon-containing citrate shell on Ag2S core has been proposed.

  14. Radiolabeled porphyrin versus gallium-67 citrate for the detection of human melanoma in athymic mice

    International Nuclear Information System (INIS)

    We performed the biodistribution and imaging studies of 111In and 67Ga labeled tetra(4-N-methylpyridyl) porphine, (T4NMPYP), and compared it to that of 67Ga citrate in athymic mice bearing a human melanoma xenograft. The biodistribution results of both 111In and 67Ga labeled T4NMPYP (3, 6, 24, and 48 hours) were similar but differed from that of 67Ga citrate (48 hours). The optimum tumor uptake of both radiolabeled porphyrins was at 6 hours postinjection and was lower than the tumor uptake of 67Ga citrate at 48 hours postinjection. Kidney was the only organ showing higher uptake of radiolabeled porphyrin compared to that of 67Ga citrate. The imaging studies performed with 111In T4NMPYP and 67Ga citrate correspond to the biodistribution results. Osteomyelitis present in one mouse showed good localization of 111In T4NMPYP. 15 refs., 3 figs., 5 tabs

  15. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption

    OpenAIRE

    Kasten, Chelsea R.; Blasingame, Shelby N.; Boehm, Stephen L.

    2014-01-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separ...

  16. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  17. Photochemical Studies on 5-Methylbicyclo[1.1.1]pentane Derivatives: p-Orbital Overlap Controlled Enantioselectivity

    Institute of Scientific and Technical Information of China (English)

    马满玲; 杨超; 李冰; 邵玉田; 赵国磊; 夏吾炯

    2012-01-01

    The first example of the p-orbital overlap controlled enantioselectivity of Norrish type II photocyclization reaction was described. Irradiation of 5-methyl bicyclo[l. 1.1 ]pentanyl ketone with UV in the solid state as well as in the acetonitrile solution afforded the Norrish/Yang photocyclization compound as the sole product. Solid-state asymmetric photochemical studies using ionic chiral auxiliary technique led to the enantioselectivity as high as 60%. The results were rationalized by Xray single crystal structure.

  18. Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

    Energy Technology Data Exchange (ETDEWEB)

    Shafioul, Azam Sharif Mohammed [University of Science and Technology, Daejeon (Korea, Republic of); Cheong, Chan Seong [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-02-15

    Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = 80 ± 3) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = 27 ± 1) for R-(+)-2-(3- methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/ n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one.

  19. Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

    International Nuclear Information System (INIS)

    Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = 80 ± 3) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = 27 ± 1) for R-(+)-2-(3- methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/ n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one

  20. Model‐Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target

    OpenAIRE

    Z. Li; Erion, DM; Maurer, TS

    2016-01-01

    Cytoplasmic citrate serves as an important regulator of gluconeogenesis and carbon source for de novo lipogenesis in the liver. For this reason, the sodium‐coupled citrate transporter (NaCT), a plasma membrane transporter that governs hepatic influx of plasma citrate in human, is being explored as a potential therapeutic target for metabolic disorders. As cytoplasmic citrate also originates from intracellular mitochondria, the relative contribution of these two pathways represents critical in...

  1. 76 FR 17835 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Science.gov (United States)

    2011-03-31

    ... International Trade Administration A-570-937] Citric Acid and Certain Citrate Salts From the People's Republic... order on citric acid and certain citrate salts (``citric acid'') from the People's Republic of China.... See Citric Acid and Certain Citrate Salts from the People's Republic of China: Notice of Extension...

  2. 77 FR 22560 - Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of Time...

    Science.gov (United States)

    2012-04-16

    ... International Trade Administration Citric Acid and Certain Citrate Salts From the People's Republic of China... acid and certain citrate salts (``citric acid'') from the People's Republic of China (``PRC'').\\1\\ On...). \\2\\ See Citric Acid and Certain Citrate Salts From the People's Republic of China: Extension of...

  3. 77 FR 9891 - Citric Acid and Certain Citrate Salts from the People's Republic of China: Amended Final Results...

    Science.gov (United States)

    2012-02-21

    ... International Trade Administration Citric Acid and Certain Citrate Salts from the People's Republic of China... antidumping duty order on citric acid and certain citrate salts (``citric acid'') from the People's Republic... Act of 1930, as amended (``the Act''). \\1\\ See Citric Acid and Certain Citrate Salts from the...

  4. NUCLEOTIDE-SEQUENCE AND FUNCTIONAL-PROPERTIES OF A SODIUM-DEPENDENT CITRATE TRANSPORT-SYSTEM FROM KLEBSIELLA-PNEUMONIAE

    NARCIS (Netherlands)

    VANDERREST, ME; SIEWE, RM; ABEE, T; SCHWARZ, E; OESTERHELT, D; KONINGS, WN

    1992-01-01

    The gene of the sodium-dependent citrate transport system from Klebsiella pneumoniae (citS) is located on plasmid pES3 (Schwarz, E., and Oesterhelt, D. (1985) EMBO J. 4, 1599-1603) and encodes a 446-amino acid protein. Transport of citrate via this citrate transport protein (CitS) is dependent on th

  5. Effect of Nb on barium titanate prepared from citrate solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Biljana D.

    2002-01-01

    Full Text Available The influence of the addition of dopants on the microstructure development and electrical properties of BaTiO3 doped with 0.2, 0.4, 0.6, 0.8 mol% of Nb and 0.01 mol% of Mn based compounds was studied. Doped barium titanate was prepared using the polymeric precursor method from citrate solutions. The powders calcined at 700°C for 4 hours were analysed by infrared (IR spectroscopy to verify the presence of carbonates, and by X-ray diffraction (XRD for phase formation. The phase composition, microstructure and dielectric properties show a strong dependence on the amount of added niobium.

  6. Use of Blemaren citrate formula in gout patients with nephrolithiasis

    Directory of Open Access Journals (Sweden)

    M S Eliseev

    2008-01-01

    Results. After completion of a course of Blemaren therapy, there was an 8% reduction in the mean serum UA levels, which correlated with an increase in its daily excretion (by an average of 20%. The highest increase in UA excretion was observed in 20 patients with baseline hypoex-cretion (<700 mg/day: from 226,3 (range 201,6-436,8 to 635,0 (range 272,2-705,6 mg/day (p = 0,01. UA excretion substantially unchanged in patients with normal uricosuria (>700 mg/day. Side effects that could cause the agent to be discontinued were absent. Conclusion. The Blemaren citrate formula used in gout patients with nephrolithiasis causes a significant increase in the renal excretion of UA (p = 0,01, normalizes its metabolic parameters, and shows a high safety, without worsening hepatic and renal functions and electrolyte metabolism.

  7. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  8. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  9. Stau-catalyzed Nuclear Fusion

    OpenAIRE

    Hamaguchi, K.; Hatsuda, T.(Theoretical Research Division, Nishina Center, RIKEN, Saitama, 351-0198, Japan); Yanagida, T. T.

    2006-01-01

    We point out that the stau may play a role of a catalyst for nuclear fusions if the stau is a long-lived particle as in the scenario of gravitino dark matter. In this letter, we consider d d fusion under the influence of stau where the fusion is enhanced because of a short distance between the two deuterons. We find that one chain of the d d fusion may release an energy of O(10) GeV per stau. We discuss problems of making the stau-catalyzed nuclear fusion of practical use with the present tec...

  10. Gold-catalyzed naphthalene functionalization

    OpenAIRE

    Iván Rivilla; M. Mar Díaz-Requejo; Pedro J. Pérez

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either f...

  11. The Metal Chelators, Trientine and Citrate, Inhibit the Development of Cardiac Pathology in the Zucker Diabetic Rat

    Directory of Open Access Journals (Sweden)

    John W. Baynes

    2009-01-01

    Full Text Available Purpose. The objective of this study was to determine the efficacy of dietary supplementation with the metal chelators, trientine or citric acid, in preventing the development of cardiomyopathy in the Zucker diabetic rat. Hypothesis. We hypothesized that dietary chelators would attenuate metal-catalyzed oxidative stress and damage in tissues and protect against pathological changes in ventricular structure and function in type II diabetes. Methods. Animals (10 weeks old included lean control (LC, fa/+, untreated Zucker diabetic fatty (ZDF, fa/fa, and ZDF rats treated with either trientine (triethylenetetramine or citrate at 20 mg/d in drinking water, starting when rats were frankly diabetic. Cardiac functional assessment was determined using a Millar pressure/volume catheter placed in the left ventricle at 32 weeks of age. Results. End diastolic volume for the ZDF animals increased by 36% indicating LV dilatation (P<.05 and was accompanied by a 30% increase in the end diastolic pressure (P≤.05. Both trientine and citric acid prevented the increases in EDV and EDP (P<.05. Ejection fraction and myocardial relaxation were also significantly improved with chelator treatment. Conclusion. Dietary supplementation with trientine and citric acid significantly prevented structural and functional changes in the diabetic heart, supporting the merits of mild chelators for prevention of cardiovascular disease in diabetes.

  12. Sodium picosulfate/magnesium citrate: a review of its use as a colorectal cleanser.

    Science.gov (United States)

    Hoy, Sheridan M; Scott, Lesley J; Wagstaff, Antona J

    2009-01-01

    Oral sodium picosulfate/magnesium citrate (CitraFleet; Picolax), consisting of sodium picosulfate (a stimulant laxative) and magnesium citrate (an osmotic laxative), is approved for use in adults (CitraFleet; Picolax) and/or adolescents and children (Picolax) as a colorectal cleansing agent prior to any diagnostic procedure (e.g. colonoscopy or x-ray examination) requiring a clean bowel and/or surgery. It is dispensed in powder form (sodium picosulfate 0.01 g, magnesium oxide 3.5 g, citric acid 12.0 g per sachet), with the magnesium oxide and citric acid components forming magnesium citrate when the powder is dissolved in water. In adult patients, two sachets of sodium picosulfate/magnesium citrate was at least as effective and well tolerated as oral magnesium citrate 17.7 or 35.4 g, or oral polyethylene glycol 236 g in adult patients undergoing a double-contrast barium enema procedure in three large, randomized, comparative clinical studies. In contrast, sodium picosulfate/magnesium citrate was less effective than a sodium phosphate enema preparation in two studies in patients undergoing flexible sigmoidoscopy. A similar number of patients receiving two sachets of sodium picosulfate/magnesium citrate or two 45 mL doses of oral sodium phosphate the day before a double-contrast barium enema procedure achieved satisfactory barium coating and none/minimal faecal residue in one study. However, the data from three of these studies should be interpreted with caution because the administrative regimens used differed from that recommended. Sodium picosulfate/magnesium citrate is also an effective and generally well tolerated colorectal cleansing agent in children and adolescents; the preparation was more effective than oral bisacodyl 0.01 or 0.02 g plus a sodium phosphate enema preparation in this population. Further research is thus required to accurately position sodium picosulfate/magnesium citrate and fully establish its efficacy and tolerability prior to various

  13. Effect of sodium citrate on preparation of nano-sized cobalt particles by organic colloidal process

    Institute of Scientific and Technical Information of China (English)

    Huaping ZHU; Hao LI; Huiyu SONG; Shijun LIAO

    2009-01-01

    Nano-sized cobalt particles with the diameter of 2 nm were prepared via an organic colloidal process with sodium formate, ethylene glycol and sodium citrate as the reducing agent, the solvent and the complexing agent, respectively. The effects of sodium citrate on the yield, crystal structure, particle size and size distribution of the prepared nano-sized cobalt particles were then investigated. The results show that the average particle diameter decreases from 200 nm to 2 nm when the molar ratio of sodium citrate to cobalt chloride changes from 0 to 6. Furthermore, sodium citrate plays a crucial role in the controlling of size distribution of the nano-sized particles. The size distribution of the particle without sodium citrate addition is in range from tens of nanometers to 300 or 400 nm, while that with sodium citrate addition is limited in the range of (2±0.25) nm. Moreover, it is found that the addition of sodium citrate as a complex agent could decrease the yield of the nano-sized cobalt particle.

  14. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Directory of Open Access Journals (Sweden)

    JunLi Liu

    Full Text Available Collagen peptides (CPs and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone.Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8 for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg; OVX + calcium citrate (75 mg/kg. After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers.OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels.Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  15. Citrate impairs the micropore diffusion of phosphate into pure and C-coated goethite

    Science.gov (United States)

    Mikutta, Christian; Lang, Friederike; Kaupenjohann, Martin

    2006-02-01

    Anions of polycarboxylic low-molecular-weight organic acids (LMWOA) compete with phosphate for sorption sites of hydrous Fe and Al oxides. To test whether the sorption of LMWOA anions decreases the accessibility of micropores (citrate-induced changes in microporosity and the phosphate sorption kinetics of synthetic goethite in the presence and absence of citrate in batch systems for 3 weeks (500 μM of each ion, pH 5). We also used C-coated goethite obtained after sorption of dissolved organic matter in order to simulate organic coatings in the soil. We analyzed our samples with N 2 adsorption and electrophoretic mobility measurements. Citrate clogged the micropores of both adsorbents by up to 13% within 1 h of contact. The micropore volume decreased with increasing concentration and residence time of citrate. In the absence of citrate, phosphate diffused into micropores of the pure and C-coated goethite. The C coating (5.6 μmol C m -2) did not impair the intraparticle diffusion of phosphate. In the presence of citrate, the diffusion of phosphate into the micropores of both adsorbents was strongly impaired. We attribute this to the micropore clogging and the ligand-induced dissolution of goethite by citrate. While the diffusion limitation of phosphate by citrate was stronger when citrate was added before phosphate to pure goethite, the order of addition of both ions to C-coated goethite had only a minor effect on the intraparticle diffusion of phosphate. Micropore clogging and dissolution of microporous hydrous Fe and Al oxides may be regarded as potential strategies of plants to cope with phosphate deficiency in addition to ligand-exchange.

  16. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  17. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  18. Removal of polycyclic musks by anaerobic membrane bioreactor: biodegradation, biosorption, and enantioselectivity.

    Science.gov (United States)

    Wang, Lili; Wijekoon, Kaushalya C; Nghiem, Long D; Khan, Stuart J

    2014-12-01

    This study aims to investigate the performance of anaerobic membrane bioreactor (AnMBR) for removing five polycyclic musks (PCMs), which are common active ingredients of personal care and household cleaning products. A laboratory scale AnMBR system was used in this investigation. Concentrations of the PCMs in both the liquid and biosolids phase were measured to conduct a mass balance analysis and elucidate their fate during AnMBR treatment. The AnMBR was effective for removing PCMs from the aqueous phase by a combination of biotransformation and sorption onto the biosolids. However, biotransformation was observed to be the dominant removal mechanism for all five PCMs. Enantioselective analysis of the PCMs in influent, effluent and biomass samples indicated that there was negligible enantioselectivity in the removal of these PCMs. Accordingly, all enantiomers of these PCMs can be expected to be removed by AnMBR with similar efficiency. PMID:25461940

  19. Cellulose Nanocrystals as Chiral Inducers: Enantioselective Catalysis and Transmission Electron Microscopy 3D Characterization.

    Science.gov (United States)

    Kaushik, Madhu; Basu, Kaustuv; Benoit, Charles; Cirtiu, Ciprian M; Vali, Hojatollah; Moores, Audrey

    2015-05-20

    Cellulose nanocrystals (CNCs), derived from cellulose, provide us with an opportunity to devise more sustainable solutions to current technological challenges. Enantioselective catalysis, especially heterogeneous, is the preferred method for the synthesis of pure chiral molecules in the fine chemical industries. Cellulose has been long sought as a chiral inducer in enantioselective catalysis. We report herein an unprecedentedly high enantiomeric excess (ee) for Pd patches deposited onto CNCs used as catalysts for the hydrogenation of prochiral ketones in water at room temperature and 4 bar H2. Our system, where CNCs acted as support and sole chiral source, achieved an ee of 65% with 100% conversions. Cryo-electron microscopy, high-resolution transmission electron microscopy, and tomography were used for the first time to study the 3D structure of a metal functionalized CNC hybrid. It established the presence of sub-nanometer-thick Pd patches at the surface of CNCs and provided insight into the chiral induction mechanism.

  20. Enantioselective Degradation of Rac-Metolachlor and S-Metolachlor in Soil

    Institute of Scientific and Technical Information of China (English)

    MA Yun; LIU Wei-Ping; WEN Yue-Zhong

    2006-01-01

    Separation of chiral enantiomers and the dissipation of rac-metolachlor and S-metolachlor in soil were evaluated using achiral high-performance liquid chromatography (HPLC) and chiral gas chromatography (GC) methods. Under the experimental conditions the possible metabolite was considered to be N-(2-ethyl-6-methyl-phenyl)-2-hydroxy-acetamide.Because of the presence of two chiral elements (asymmetrically substituted carbon and chiral axis), the baseline separation of metolachlor enantiomers was not achieved. S-metolachlor degraded faster in soil than rac-metolachlor. After a 42-day incubation, 73.4% of rac-metolachlor and 90.0% of S-metolachlor were degraded. However, due to the absence of biological processes the degradation process in sterilized soil showed no enantioselectivity. The results indicated that enantioselective degradations could greatly affect the environmental fate of metolachlor and should be considered when the environmental behavior of these compounds was assessed.

  1. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular Michael additions to α,β-unsaturated esters.

    Science.gov (United States)

    Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J

    2015-04-13

    A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. PMID:25727215

  2. Catalytic enantioselective OFF ↔ ON activation processes initiated by hydrogen transfer: concepts and challenges.

    Science.gov (United States)

    Quintard, Adrien; Rodriguez, Jean

    2016-08-18

    Hydrogen transfer initiated processes are eco-compatible transformations allowing the reversible OFF ↔ ON activation of otherwise unreactive substrates. The minimization of stoichiometric waste as well as the unique activation modes provided by these transformations make them key players for a greener future for organic synthesis. Long limited to catalytic reactions that form racemic products, considerable progress on the development of strategies for controlling diastereo- and enantioselectivity has been made in the last decade. The aim of this review is to present the different strategies that enable enantioselective transformations of this type and to highlight how they can be used to construct key synthetic building blocks in fewer operations with less waste generation. PMID:27381644

  3. Enantioselective analysis of ibuprofen and its biotransformation products in water/sediment systems,

    DEFF Research Database (Denmark)

    Sundström, Maria; Escola, Monica; Radke, Michael;

    2015-01-01

    As ibuprofen degrades enantioselectively in activated sludge, the same process is assumed to occur in surface lake-water and in river-water based biofilms. Yet, the effects of the wastewater inflow, containing non-racemic ibuprofen, into natural systems have never been studied. The role...... and oxic) from the Baltic Sea (Tvären and B1) were collected. All systems were spiked with ibuprofen and followed during one month (aerated and in darkness). The enantiomers of ibuprofen, 2-hydroxyibuprofen, 1-hydroxyibuprofen and 3-hydroxyibuprofen as well as carboxyibuprofen, were separated by HPLC...... equipped with an enantioselective HPLC-column. The detection was performed by MS/MS. Single first-order kinetics and Weibull distribution models were fitted to the data. Both models indicated that ibuprofen degraded with half-lives around 4-5 and 5-6 days in Largen and Fyrisån respectively and 3-4 and 5...

  4. Citrate-selective electrochemical μ-sensor for early stage detection of prostate cancer

    OpenAIRE

    Azzouzi, Sawsen; Patra, Hirak K.; Ben Ali, Mounir; Abbas, Mohammed Nooredeen; Dridi, Cherif; Errachid, Abdelhamid; Turner, Anthony P. F.

    2016-01-01

    The extremely specialised anatomical function of citrate inside the prostate, make it one of the preferred biomarkers for early stage detection of prostate cancer. However, current detection methods are seriously limited due to the very low citrate concentrations that need to be measured in order to follow disease progression. In the present work, we report a novel citrate-selective μ-sensor based on iron (III) phthalocyanine chloride-C-monoamido-Poly-n-Butyl Acrylate (Fe(III)MAPcCl-P-n-BA) m...

  5. Enantioselectivity Induced by Oxazaborolidine Supported on Mesoporous Silica or by Its Analog in Homogeneous Phase

    Directory of Open Access Journals (Sweden)

    Jeremy H. Yune

    2010-05-01

    Full Text Available The impact of immobilization of oxazaborolidines supported on silica via different substituents on the boron and nitrogen atoms is evaluated in the enantioselective reduction of acetophenone. The performances of the homogeneous analog oxazaborolidines and silica supported-ones are compared by varying different parameters. This article deals with the synthesis, characterization and catalytic evaluation of silica-supported oxazaborolidines, their recycling capabilities and regeneration limitations.

  6. Enantioselective Determination of Polycyclic Musks in River and Wastewater by GC/MS/MS

    OpenAIRE

    Injung Lee; Anantha-Iyengar Gopalan; Kwang-Pill Lee

    2016-01-01

    The separation of chiral compounds is an interesting and challenging topic in analytical chemistry, especially in environmental fields. Enantioselective degradation or bioaccumulation has been observed for several chiral pollutants. Polycyclic musks are chiral and are widely used as fragrances in a variety of personal care products such as soaps, shampoos, cosmetics and perfumes. In this study, the gas chromatographic separation of chiral polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-he...

  7. Investigations into surface-confined covalent organic frameworks : towards developing novel enantioselective heterogeneous catalysts

    OpenAIRE

    Greenwood, John

    2013-01-01

    There is an increasing necessity for the pharmaceutical industry to develop enantiomerically pure drugs. Up till now, production of enantiomerically pure molecules has been provided by harvesting them from plants or utilising homogeneous catalysis and biocatalysis. None of these methods are efficient means of production, and attention is now being directed towards heterogeneous enantioselective catalysis as the preferred technique. This is on account of the high product yield a...

  8. Baker's yeast mediated reduction of substituted acenaphthenequinones: Regio- and enantioselective preparation of mono-hydroxyacenaphthenones

    Institute of Scientific and Technical Information of China (English)

    Xing Yong Wang; Jing Nan Cui; Wei Min Ren; Feng Li; Chun Liang Lu; Xu Hong Qian

    2007-01-01

    Baker's yeast mediated reduction of acenaphthenequinone within 4-10 h afforded mono-hydroxyacenaphthenone mainly with low enantioselectivity, the substrate and mono-hydroxyacenaphthenone product almost converted to dihydroxyacenaphthene after 48 h.By control of the reaction time and in the presence of DMF as co-solvent, the reduction of 6-substituted acenaphthenequinones under vigorous agitation afforded the corresponding 2-hydroxyacenaphthenones in 24-84% yields with 10-93% ee.

  9. Carbamate-directed benzylic lithiation for the diastereo- and enantioselective synthesis of diaryl ether atropisomers

    Directory of Open Access Journals (Sweden)

    Abigail Page

    2011-09-01

    Full Text Available Diaryl ethers carrying carbamoyloxymethyl groups may be desymmetrised enantio- and diastereoselectively by the use of the sec-BuLi–(−-sparteine complex in diethyl ether. Enantioselective deprotonation of one of the two benzylic positions leads to atropisomeric products with ca. 80:20 e.r.; an electrophilic quench typically provides functionalised atropisomeric diastereoisomers in up to 97:3 d.r.

  10. Enantioselective synthesis of the predominant AB ring system of the Schisandra nortriterpenoid natural products.

    Science.gov (United States)

    Gockel, Birgit; Goh, Shermin S; Puttock, Emma J; Baars, Hannah; Chaubet, Guilhem; Anderson, Edward A

    2014-09-01

    An enantioselective synthesis of the AB ring system common to the majority of the Schisandra nortriterpenoid natural products is reported. Key steps include a stereospecific ring opening of a trisubstituted epoxide and the use of a β-lactone to enable installation of the gem-dimethyl functionality of the B ring. An acetalization strategy played a key role in a late-stage biomimetic AB ring bicyclization.

  11. L-Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to trans-β-Nitroolefins.

    Science.gov (United States)

    Jin, Hui; Kim, Seung Tae; Hwang, Geum-Sook; Ryu, Do Hyun

    2016-04-15

    A series of novel L-proline derived tertiary amine bifunctional organocatalysts 9 are reported, which were applied to the asymmetric Michael addition of dithiomalonates 2 to trans-β-nitroolefins 1. The reaction proceeded in high yields (up to 99%) with high enantioselectivities (up to 97% ee). The synthetic utility of this methodology was demonstrated in the short synthesis of (R)-phenibut in high yield. PMID:26989804

  12. Enantioselective Synthesis of Isoquinolines: Merging Chiral-Phosphine and Gold Catalysis.

    Science.gov (United States)

    Gao, Yu-Ning; Shi, Feng-Chen; Xu, Qin; Shi, Min

    2016-05-10

    The highly enantioselective synthesis of dihydroisoquinoline derivatives from aromatic sulfonated imines tethered with an alkyne moiety, through a one-pot asymmetric relay catalysis of chiral-phosphine and gold catalysts, is reported. Enantiomerically enriched dihydroisoquinoline derivatives were afforded in good yields and good-to-excellent ee values under mild conditions, based on the asymmetric aza-Morita-Baylis-Hillman reaction. Dihydroisoquinoline derivatives containing two chiral centers were also synthesized through further transformations. PMID:26990120

  13. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and Enantioselective Discrimination of Chiral Fluorescence Receptors Bearing Amino Acid Units

    Institute of Scientific and Technical Information of China (English)

    XU Kuo-Xi; HE Yong-Bing; QING Guang-Yan; QIN Hai-duan; LIU Shun-Ying; MENG Ling-Zhi

    2007-01-01

    Two chiral fluorescence receptors (1, 2) were synthesized, and their structures were characterized by IR, 1H NMR, 13C NMR, mass spectra and elemental analysis. The chiral recognition of receptors was studied by 1H NMR and fluorescence spectra. The results demonstrate that receptors and dibenzoyl tartrate anion formed a 1 : 1 complex. The receptor 1 exhibited a good enantioselective recognition ability toward the enantiomers of dibenzoyl tartrate anion.

  15. Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides

    OpenAIRE

    Vizcaíno-Milla, Pascuala; Sansano Gil, José Miguel; Nájera Domingo, Carmen; Fiser, Béla; Gómez Bengoa, Enrique

    2015-01-01

    Chiral primary amines containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a pyrimidin-2-yl unit are synthesized and used as general organocatalysts for the Michael reaction of α-branched aldehydes to maleimides. The reaction takes place with 10 mol% organocatalyst loading and hexanedioic acid as cocatalyst in aqueous N,N-dimethylformamide at 10 °C affording the corresponding succinimides in good yields and enantioselectivities. DFT calculations support the stereochemica...

  16. Model‐Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target

    Science.gov (United States)

    Erion, DM; Maurer, TS

    2016-01-01

    Cytoplasmic citrate serves as an important regulator of gluconeogenesis and carbon source for de novo lipogenesis in the liver. For this reason, the sodium‐coupled citrate transporter (NaCT), a plasma membrane transporter that governs hepatic influx of plasma citrate in human, is being explored as a potential therapeutic target for metabolic disorders. As cytoplasmic citrate also originates from intracellular mitochondria, the relative contribution of these two pathways represents critical information necessary to underwrite confidence in this target. In this work, hepatic influx of plasma citrate was quantified via pharmacokinetic modeling of published clinical data. The influx was then compared to independent literature estimates of intracellular citrate flux in human liver. The results indicate that, under normal conditions, NaCT inhibition will have a limited impact on hepatic citrate concentrations across species. PMID:27069776

  17. Model-Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target.

    Science.gov (United States)

    Li, Z; Erion, D M; Maurer, T S

    2016-03-01

    Cytoplasmic citrate serves as an important regulator of gluconeogenesis and carbon source for de novo lipogenesis in the liver. For this reason, the sodium-coupled citrate transporter (NaCT), a plasma membrane transporter that governs hepatic influx of plasma citrate in human, is being explored as a potential therapeutic target for metabolic disorders. As cytoplasmic citrate also originates from intracellular mitochondria, the relative contribution of these two pathways represents critical information necessary to underwrite confidence in this target. In this work, hepatic influx of plasma citrate was quantified via pharmacokinetic modeling of published clinical data. The influx was then compared to independent literature estimates of intracellular citrate flux in human liver. The results indicate that, under normal conditions, NaCT inhibition will have a limited impact on hepatic citrate concentrations across species. PMID:27069776

  18. Investigation of Enantioselective Membrane Permeability of α-Lipoic Acid in Caco-2 and MDCKII Cell

    Directory of Open Access Journals (Sweden)

    Ryota Uchida

    2016-01-01

    Full Text Available α-Lipoic acid (LA contains a chiral carbon and exists as two enantiomers (R-α-lipoic acid (RLA and S-α-lipoic acid (SLA. We previously demonstrated that oral bioavailability of RLA is better than that of SLA. This difference arose from the fraction absorbed multiplied by gastrointestinal availability (Fa × Fg and hepatic availability (Fh in the absorption phase. However, it remains unclear whether Fa and/or Fg are involved in enantioselectivity. In this study, Caco-2 cells and Madin–Darby canine kidney strain II cells were used to assess the enantioselectivity of membrane permeability. LA was actively transported from the apical side to basal side, regardless of the differences in its steric structure. Permeability rates were proportionally increased in the range of 10–250 µg LA/mL, and the permeability coefficient did not differ significantly between enantiomers. Hence, we conclude that enantioselective pharmacokinetics arose from the metabolism (Fh or Fg × Fh, and definitely not from the membrane permeation (Fa in the absorption phase.

  19. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  20. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand;

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin...

  1. The impact of citrate introduction at UK syringe exchange programmes: a retrospective cohort study in Cheshire and Merseyside, UK

    Directory of Open Access Journals (Sweden)

    Wareing Michelle

    2007-12-01

    Full Text Available Abstract Background In 2003, it became legal in the UK for syringe exchange programmes (SEPs to provide citrate to injecting drug users to solubilise heroin. Little work has been undertaken on the effect of policy change on SEP function. Here, we examine whether the introduction of citrate in Cheshire and Merseyside SEPs has altered the number of heroin/crack injectors accessing SEPs, the frequency at which heroin/crack injectors visited SEPs and the number of syringes dispensed. Methods Eleven SEPs in Cheshire and Merseyside commenced citrate provision in 2003. SEP-specific data for the six months before and six months after citrate was introduced were extracted from routine monitoring systems relating to heroin and crack injectors. Analyses compared all individuals attending pre and post citrate and matched analyses only those individuals attending in both periods (defined as 'longitudinal attenders'. Non-parametric tests were used throughout. Results Neither new (first seen in either six months period nor established clients visited SEPs more frequently post citrate. New clients collected significantly less syringes per visit post citrate, than pre citrate (14.5,10.0; z = 1.992, P Conclusion The introduction of citrate did not negatively affect SEP attendance. 'Longitudinal attenders' visited SEPs more frequently post citrate, providing staff with greater opportunity for intervention and referral. As the number of syringes they collected each visit remained unchanged the total number of clean syringes made available to this group of injectors increased very slightly between the pre and post citrate periods. However, new clients collected significantly less syringes post citrate than pre citrate, possibly due to staff concerns regarding the amount of citrate (and thus syringes to dispense safely to new clients. These concerns should not be allowed to negatively impact on the number of syringes dispensed.

  2. First One-step Enantioselective Reduction of á-Haloacetophenones into Styrene Oxides using Sodium Borohydride in Water

    Institute of Scientific and Technical Information of China (English)

    LI Jing-wei; XU Li-wen; XIA Chun-gu

    2004-01-01

    The synthesis of enantiomerically enriched epoxides especially styrene oxides is an interesting challenge1,2 since they are often valuable building blocks for various fine chemical products and pharmaceuticals such as (a)2-, (a)3-, and á1-adrenergic receptor agonists3, 4. In recent years,there has been a flood of papers describing the synthetical methods of the chiral non-racemic epoxides5,6. Here we firstly developed a green, simple and potential epoxidation system by enantioselective reduction of a-haloacetophenones using NaBH4 in water.The procedure of the unexpected epoxidation was firstly found accidentally in the study of L-proline-catalyzed asymmetric reduction of aldehydes, ketones in water. In that time, we observed not only reductive product a-bromophenethyl alcohol but also a small quantity of styrene oxide after three hour reduction of a-bromoacephenone in water. It is impossible to produce the epoxide in the reduction when THF acts as solvent. Then we optimized the reaction conditions and extended reaction time to 5 hr until we obtained the epoxide as a major product.Encouraged by the front results, we tried a-CD as a chiral inducement and catalyst. Cyclodextrins (CDs), a cyclic oligosaccharide composed of several D-glucose units with an a-1, 4 linkage (6, 7, 8for á-, (a)-, (a)-CD, respectively), have been recognized as versatile enzyme mimics since every one molecule of them possesses a hydrophilic outside, which can dissolve in water, and a hydrophobic cavity, which provides an apolar matrix, described as "micro heterogeneous enwronment"7. All the experiments were carried out in water under room temperature. The procedure is a green, simple and potential, although the optically active styrene oxides are obtained in only moderate ees. and yields.When á-bromoacephenone and Sodium Borohydride (1.2 equiv, to ketone) reacts in water using 150mol% (a)-CD as catalyst, a 41% chemical yield and 45% optical yield of the corresponding epoxide were obtained

  3. Efficicent (R-phenylethanol production with enantioselectivity-alerted (S-carbonyl reductase II and NADPH regeneration.

    Directory of Open Access Journals (Sweden)

    Rongzhen Zhang

    Full Text Available The NADPH-dependent (S-carbonyl reductaseII from Candida parapsilosis catalyzes acetophenone to chiral phenylethanol in a very low yield of 3.2%. Site-directed mutagenesis was used to design two mutants Ala220Asp and Glu228Ser, inside or adjacent to the substrate-binding pocket. Both mutations caused a significant enantioselectivity shift toward (R-phenylethanol in the reduction of acetophenone. The variant E228S produced (R-phenylethanol with an optical purity above 99%, in 80.2% yield. The E228S mutation resulted in a 4.6-fold decrease in the K M value, but nearly 5-fold and 21-fold increases in the k cat and k cat/K M values with respect to the wild type. For NADPH regeneration, Bacillus sp. YX-1 glucose dehydrogenase was introduced into the (R-phenylethanol pathway. A coexpression system containing E228S and glucose dehydrogenase was constructed. The system was optimized by altering the coding gene order on the plasmid and using the Shine-Dalgarno sequence and the aligned spacing sequence as a linker between them. The presence of glucose dehydrogenase increased the NADPH concentration slightly and decreased NADP(+ pool 2- to 4-fold; the NADPH/NADP(+ ratio was improved 2- to 5-fold. The recombinant Escherichia coli/pET-MS-SD-AS-G, with E228S located upstream and glucose dehydrogenase downstream, showed excellent performance, giving (R-phenylethanol of an optical purity of 99.5 % in 92.2% yield in 12 h in the absence of an external cofactor. When 0.06 mM NADP(+ was added at the beginning of the reaction, the reaction duration was reduced to 1 h. Optimization of the coexpression system stimulated an over 30-fold increase in the yield of (R-phenylethanol, and simultaneously reduced the reaction time 48-fold compared with the wild-type enzyme. This report describes possible mechanisms for alteration of the enantiopreferences of carbonyl reductases by site mutation, and cofactor rebalancing pathways for efficient chiral alcohols production.

  4. CcpA-independent regulation of expression of the Mg2+-citrate transporter gene citM by arginine metabolism in Bacillus subtilis

    NARCIS (Netherlands)

    Warner, JB; Magni, C; Lolkema, JS; Warner, Jessica B.

    2003-01-01

    Transcriptional regulation of the Mg2+ -citrate transporter, CitM, the main citrate uptake system of Bacillus subtilis, was studied during growth in rich medium. Citrate in the growth medium was required for induction under all growth conditions. In Luria-Bertani medium containing citrate, citM expr

  5. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    Science.gov (United States)

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  6. Gold-catalyzed naphthalene functionalization

    Directory of Open Access Journals (Sweden)

    Iván Rivilla

    2011-05-01

    Full Text Available The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenylimidazol-2-ylidene, M = Cu, 1a; M = Au, 1b, in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethylphenyl, catalyze the transfer of carbene groups: C(RCO2Et (R = H, Me from N2C(RCO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  7. Catalyzed electrolytic plutonium oxide dissolution

    International Nuclear Information System (INIS)

    Catalyzed electrolytic plutonium oxide dissolution (CEPOD) was first demonstrated at Pacific Northwest Laboratory (PNL) in early 1974 in work funded by the Exxon Corporation. The work, aimed at dissolution of Pu-containing residues remaining after the dissolution of spent mixed-oxide reactor fuels, was first publicly disclosed in 1981. The process dissolves PuO2 in an anolyte containing small (catalytic) amounts of elements that form kinetically fast, strongly oxidizing ions. These are continuously regenerated at the anode. Catalysts used, in their oxidized form, include Ag2+, Ce4+, Co3+, and AmO22+. This paper reviews the chemistry involved in CEPOD and the results of its application to the dissolution of the Pu content of a variety of PuO2-containing materials such as off-standard oxide, fuels dissolution residues, incinerator ash, contaminated soils, and other scraps or wastes. Results are presented for both laboratory-scale and plant-scale dissolves

  8. Hydrogen evolution catalyzed by cobaloximes.

    Science.gov (United States)

    Dempsey, Jillian L; Brunschwig, Bruce S; Winkler, Jay R; Gray, Harry B

    2009-12-21

    Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H(2)O, CO(2)) to energy-rich ones (O(2), (CH(2)O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the "Holy Grail" of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to H(2). In this Account, we report on one promising class of molecules: cobalt complexes with diglyoxime ligands (cobaloximes). Chemical, electrochemical, and photochemical methods all have been utilized to explore proton reduction catalysis by cobaloxime complexes. Reduction of a Co(II)-diglyoxime generates a Co(I) species that reacts with a proton source to produce a Co(III)-hydride. Then, in a homolytic pathway, two Co(III)-hydrides react in a bimolecular step to eliminate H(2). Alternatively, in a heterolytic pathway, protonation of the Co(III)-hydride produces H(2) and Co(III). A thermodynamic analysis of H(2) evolution pathways sheds new light on the barriers and driving forces of the elementary reaction steps involved in proton reduction by Co(I)-diglyoximes. In combination with experimental results, this analysis shows that the barriers to H(2) evolution along the heterolytic pathway are, in most cases, substantially greater than those of the homolytic route. In particular, a formidable barrier is associated with Co(III)-diglyoxime formation along the heterolytic pathway. Our investigations of cobaloxime-catalyzed H(2) evolution, coupled with the thermodynamic preference for a homolytic route, suggest that the rate-limiting step is associated with formation of the hydride. An efficient water splitting device may require the tethering of catalysts to an electrode surface in a fashion that does not inhibit association of Co(III)-hydrides. PMID:19928840

  9. 77 FR 4895 - New Animal Drugs; Chloramphenicol, Diethylcarbamazine Citrate, Hygromycin B, Methoxyflurane...

    Science.gov (United States)

    2012-02-01

    ... Drugs; Chloramphenicol, Diethylcarbamazine Citrate, Hygromycin B, Methoxyflurane, Neomycin Sulfate... Affiliate of IGI, ane, prednisolone, Inc., Box 209, tetracaine, Harding Hwy., neomycin sulfate). Buena, NJ 08310. NADA 044-655 NEOMYCANE Ophthalmic Evsco Ointment (neomycin Pharmaceuticals, an...

  10. Electrodeposition and characterisation of Ni/Cu nanostructured multilayers from citrate solutions

    CERN Document Server

    Meuleman, W R A

    2002-01-01

    A study of the effect of chemical and electrochemical parameters such as solution composition, pH, and current and potential waveforms on magnetic metal multi-layers plated from citrate electrolytes was carried out. Until now, magnetic multilayers have usually been electrodeposited mainly form sulfamate electrolytes; far less information is available on Cu-Ni multilayers obtained from citrate electrolytes. Since copper is deposited at its diffusion limiting current during multilayer deposition from citrate electrolytes, a rotating disc electrode study was carried out. It was found that the apparent diffusion coefficient changes significantly depending on the citrate ion concentration and pH, indicating the importance of metal speciation. In order to identify the rate controlling species, speciation calculations were carried out in order to model the dependence of the limiting current on the solution composition. The model is based on the assumption that complexes in solution are either labile or inert. A vert...

  11. Dietary sodium citrate supplementation enhances rehydration and recovery from rapid body mass loss in trained wrestlers.

    Science.gov (United States)

    Timpmann, Saima; Burk, Andres; Medijainen, Luule; Tamm, Maria; Kreegipuu, Kairi; Vähi, Mare; Unt, Eve; Oöpik, Vahur

    2012-12-01

    This study assessed the effects of dietary sodium citrate supplementation during a 16 h recovery from 5% rapid body mass loss (RBML) on physiological functions, affective state, and performance in trained wrestlers. Sixteen wrestlers performed an upper body intermittent sprint performance (UBISP) test under three conditions: before RBML, after RBML, and after a 16 h recovery from RBML. During recovery, the subjects ate a prescribed diet supplemented with sodium citrate (600 mg·kg(-1); CIT group, N = 8) or placebo (PLC group, N = 8) and drank water ad libitum. RBML reduced (p sodium citrate increases blood buffering capacity and PV and stimulates BM regain during a 16 h recovery from RBML in trained wrestlers. However, sodium citrate does not improve UBISP nor does it have an impact on the affective state.

  12. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.

    Science.gov (United States)

    Kumar, Pradeep; Dwivedi, Namrata

    2013-02-19

    The search for new and efficient ways to synthesize optically pure compounds is an active area of research in organic synthesis. Asymmetric catalysis provides a practical, cost-effective, and efficient method to create a variety of complex natural products containing multiple stereocenters. In recent years, chemists have become more interested in using small organic molecules to catalyze organic reactions. As a result, organocatalysis has emerged both as a promising strategy and as an alternative to catalysis with expensive proteins or toxic metals. One of the most successful and widely studied secondary amine-based organocatalysts is proline. This small molecule can catalyze numerous reactions such as the aldol, Mannich, Michael addition, Robinson annulation, Diels-Alder, α-functionalization, α-amination, and α-aminoxylation reactions. Catalytic and enantioselective α-oxygenation of carbonyl compounds is an important reaction to access a variety of useful building blocks for bioactive molecules. Proline catalyzed α-aminoxylation using nitrosobenzene as oxygen source, followed by in situ reduction, gives enantiomerically pure 1,2-diol. This molecule can then undergo a variety of organic reactions. In addition, proline organocatalysis provides access to an assortment of biologically active natural products including mevinoline (a cholesterol lowering drug), tetrahydrolipstatin (an antiobesity drug), R(+)-α-lipoic acid, and bovidic acid. In this Account, we present an iterative organocatalytic approach to synthesize both syn- and anti-1,3-polyols, both enantio- and stereoselectively. This method is primarily based on proline-catalyzed sequential α-aminoxylation and Horner-Wadsworth-Emmons (HWE) olefination of aldehyde to give a γ-hydroxy ester. In addition, we briefly illustrate the broad application of our recently developed strategy for 1,3-polyols, which serve as valuable, enantiopure building blocks for polyketides and other structurally diverse and

  13. Catalytic enantioselective 1,3-dipolar cycloadditions of azomethine ylides for biology-oriented synthesis.

    Science.gov (United States)

    Narayan, Rishikesh; Potowski, Marco; Jia, Zhi-Jun; Antonchick, Andrey P; Waldmann, Herbert

    2014-04-15

    Cycloaddition reactions are among the most powerful methods for the synthesis of complex compounds. In particular, the development and application of the 1,3-dipolar cycloaddition, an important member of this reaction class, has grown immensely due to its powerful ability to efficiently build various five-membered heterocycles. Azomethine ylides are commonly used as dipoles for the synthesis of the pyrrolidine scaffold, which is an important motif in natural products, pharmaceuticals, and biological probes. The reaction between azomethine ylides and cyclic dipolarophiles allows access to polycyclic products with considerable complexity. The extensive application of the 1,3-dipolar cycloaddition is based on the fact that the desired products can be obtained with high yield in a regio- and stereocontrolled manner. The most attractive feature of the 1,3-dipolar cycloaddition of azomethine ylides is the possibility to generate pyrrolidines with multiple stereocenters in a single step. The development of enantioselective cycloadditions became a subject of intensive and impressive studies in recent years. Among many modes of stereoinduction, the application of chiral metal-ligand complexes has emerged as the most viable option for control of enantioselectivity. In chemical biology research based on the principle of biology-oriented synthesis (BIOS), compound collections are prepared inspired by natural product scaffolds. In BIOS, biological relevance is employed as the key criterion to generate hypotheses for the design and synthesis of focused compound libraries. In particular, the underlying scaffolds of natural product classes provide inspiration for BIOS because they define the areas of chemical space explored by nature, and therefore, they can be regarded as "privileged". The scaffolds of natural products are frequently complex and rich in stereocenters, which necessitates the development of efficient enantioselective methodologies. This Account highlights examples

  14. Silicon Injection Granulomata: 67Ga Citrate Findings in Free Silicon Buttock Augmentation.

    Science.gov (United States)

    Strauss, Sara; Chun, Kwang; Benchekroun, Mohammed Taoudi; Akamnonu, Olisaemeka; Freeman, Leonard

    2016-06-01

    Ga citrate is frequently used in the workup of fever of unknown origin. Here, we report a case of avid Ga-citrate in bilateral gluteal regions of a patient with a history of free silicon injection buttock augmentation referred for suspected diagnosis of sarcoidosis. CT findings were equivocal for inflammation/infection in the buttock region, and nuclear scintigraphy allowed for more definitive diagnosis. PMID:26953658

  15. Lifesaving citrate anticoagulation to bridge ineffective danaparoid [correction of to bridge to danaparoid] treatment.

    Science.gov (United States)

    Dworschak, Martin; Hiesmayr, Jörg Michael; Lassnigg, Andrea

    2002-05-01

    A case of successful regional anticoagulation with trisodium citrate in a patient who developed heparin-induced thrombocytopenia while on continuous hemofiltration is described. Immediate citrate anticoagulation allowed for maintenance of extracorporeal circulation until effective danaparoid therapy could be established. Recommended plasma antifactor Xa levels for hemodialysis may be inadequate in some cases. Values similar to those in use during cardiopulmonary bypass could be required. PMID:12022563

  16. Citrate adsorption can decrease soluble phosphate concentration in soils : results of theoretical modeling

    OpenAIRE

    Duputel, M.; Devau, N.; Brossard, Michel; Jaillard, B; Jones, D. L.; Hinsinger, P.; F. Gerard

    2013-01-01

    A major problem for 21st century agriculture is the prospect of P scarcity. Adsorption of PO4 on the soil's solid phase is the primary mechanism regulating P availability. Release of citrate by roots is generally thought to increase the availability of P, which in turn improves P acquisition by plants. However, the interaction between citrate and PO4 remains poorly understood in soils and conflicting results are found in the literature. Here modeling is used to investigate the effects of citr...

  17. Citrate adsorption can decrease soluble phosphate concentration in soil : experimental and modeling evidence

    OpenAIRE

    Duputel, M.; Van Hoye, F.; Toucet, Joële; F. Gerard

    2013-01-01

    The adsorption/desorption of phosphate (PO4) on soil minerals is a major process regulating soluble phosphate concentrations (i.e. phosphorus availability) and ultimately PO4 bio-availability. Release of citrate by roots is widely recognized as an effective biological mechanism for increasing available phosphorus (P) in soil. However, interactions between citrate and PO4 are poorly understood and little investigated in soils. Using surface complexation modeling we recently predicted that citr...

  18. Triplet heterotopic pregnancy following ovulation induction with clomiphene citrate: a case report and review of literature

    OpenAIRE

    Maheswari S; Seetha Panicker

    2013-01-01

    Heterotopic pregnancy, though rare is a combined pregnancy in which synchronous intrauterine and extra uterine pregnancy occur. An estimated incidence of between 1/8000 to 1/30,000 has been reported following spontaneous conception. After artificial reproductive techniques, the incidence is as high as 1/100 and after ovulation induction with clomiphene citrate, it is around 1/900. We are reporting a case of 26 year old gravida 2 who conceived after ovulation induction with clomiphene citrate ...

  19. Facile Synthesis of Gold Nanoplates by Citrate Reduction of AuCl4- at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    Lan HUANG; Zhi Rui GUO; Meng WANG; Ning GU

    2006-01-01

    Single-crystalline, regular-edged gold nanoplates are synthesized through chemical reduction of AuCl4- by a suitable amount of citrate at room temperature, without additional capping agents or surfactants. The suitable molar ratio of sodium citrate to HAuCl4, low reaction temperature and the presence of natural light are critical factors for the formation of the regularly shaped nanoplates.

  20. Solute clearance effect of citrate anticoagulation hemodialysate for hemodialysis in patients with high risk of bleeding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To study the solute clearance effect of the new concentrated anticoagulation hemodialysate of citrate for hemodialysis in patients with high risk of bleeding. Methods Forty-two kidney failure patients with high risk of bleeding were divided into two groups (Group A and Group B) according to their hemodialysis manners. Patients in Group A were hemodialyzed with bicarbonate hemodialysate with low-molecular-weight heparin (dalteparin) anticoagulation and those in Group B with the new citrate anticoag...

  1. Assembly of citrate gold nanoparticles on hydrophilic monolayers

    Science.gov (United States)

    Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko

    2016-08-01

    Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.

  2. Pseudohypernatremia secondary to trisodium citrate (Citra-LockTM)

    Science.gov (United States)

    Milliere, Janice; Corriveau, Daryl; Parmar, Malvinder S.

    2016-01-01

    Introduction Hypernatremia is common among hospitalized patients especially in the intensive care units and presents an independent risk factor for mortality. Mild hypernatremia is often asymptomatic but severe hypernatremia causes central nervous system dysfunction with initial non-specific symptoms of encephalopathy that may progress to seizures, coma and death, if left untreated. Severe hypernatremia is a medical emergency and requires emergent medical attention. Materials and methods A haemodialysis patient who arrived for his scheduled haemodialysis treatment had monthly blood work drawn and was reported to have severe hypernatremia with serum sodium concentration of 183 mmol/L. The possibility of technique or laboratory error was considered and systematically evaluated. Results The serum sodium measurement using another analyser showed similar value of 182 mmolL. A repeat serum sodium level on a sample drawn 2 h later showed normal value of 139–140 mmol/L. A step-wise evaluation of the complete procedure from blood collection to analysis of the sample revealed this to be spuriously elevated serum sodium concentration secondary to contamination of the sample during sample collection with trisodium citrate, a catheter-lock solution, commonly used in dialysis units to maintain patency of dialysis catheters. Conclusions Spuriously elevated plasma sodium concentration (pseudohypernatremia) of mild degree is common but severe pseudohypernatremia is rare and the possibility of sample contaminations or laboratory error should be considered. Vigilance is required by both the medical and the laboratory staff to resolve such issues in a timely fashion to avoid unintended consequences. PMID:27346973

  3. Anticaries effect of dentifrices with calcium citrate and sodium trimetaphosphate

    Science.gov (United States)

    DELBEM, Alberto Carlos Botazzo; BERGAMASCHI, Maurício; RODRIGUES, Eliana; SASSAKI, Kikue Takebayashi; VIEIRA, Ana Elisa de Mello; MISSEL, Emilene Macario Coimbra

    2012-01-01

    Because of the growing concerns regarding fluoride ingestion by young children and dental fluorosis, it is necessary to develop new dentifrices. Objective The aim of this study was to evaluate the effect of dentifrices with calcium citrate (Cacit) and sodium trimetaphosphate (TMP) on enamel demineralization. Material and Methods Enamel blocks (n=70), previously selected through surface hardness analysis, were submitted to daily treatment with dentifrices diluted in artificial saliva and to a pH-cycling model. The fluoride concentration in dentifrices was 0, 250, 450, 550, 1,000 and 1,100 µg F/g. CrestTM was used as a positive control (1,100 mg F/g). Cacit (0.25%) and TMP (0.25%) were added to dentifrices with 450 and 1,000 µg F/g. Surface hardness was measured again and integrated loss of subsurface hardness and fluoride concentration in enamel were calculated. Parametric and correlation tests were used to determine difference (p0.05). Conclusions Dentifrices with 450 and 1,000 µg F/g, Cacit and TMP were as effective as a gold standard one. PMID:22437685

  4. /sup 67/Ga citrate scintiscanning in active inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Rheingold, O.J.; Tedesco, F.J.; Block, F.E.; Maldonado, A.; Miale, A. Jr.

    1979-05-01

    Twenty-five hospitalized patients were studied prospectively with /sup 67/Ga citrate (GA) abdominal scintillation scanning in an attempt to define its role in the evaluation of patients with active inflammatory bowel disease (IBD). There were nine patients with ulcerative colitis (UC), seven with Crohn's disease (CD), and nine controls. In four patients, two with UC and two with CD, a tissue/plasma radioactivity ratio was obtained and compared to normals. All the UC patients had positive GA scans and only one of seven of the CD patients had a positive scan. There were no false positive scans. Scans performed after a 3- or 5-day delay were more accurate than 6-hr scans alone. Well-delineated colinic radioactivity 6 hr after injection which persists for 3 to 5 days indicates the presence of UC in patients with IBD, while a negative scan is more consistent with active CD. Colonic uptake at 6 hr which clears by 48 or 72 hr is not indicative of UC. This procedure aided in following the course of UC, delineating the extent of disease, and in differentiating active CD from an intraabdominal abscess. Tissues from UC patients had increased tissue/plasma ratioactivity ratios while tissues from CD patients had normal or decreased ratios which were consistent with the imaging data.

  5. Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability.

    Science.gov (United States)

    Kapse, Sonali V; Gaikwad, Rajiv V; Samad, Abdul; Devarajan, Padma V

    2012-06-15

    We disclose a self nanoprecipitating preconcentrate (SNP) of tamoxifen citrate (TMX), which forms TMX loaded polymeric nanoparticles, on dilution with aqueous media. SNP comprised TMX, polymer (Kollidon SR) and surfactant/s dissolved in a pharmaceutically acceptable vehicle. Binary surfactant mixtures of Aerosol OT (AOT) with Tween 80 revealed synergistic reduction in surface tension to enable both high entrapment efficiency (EE) and low particle size (PS). Synergism of the surfactants was confirmed by molecular interaction parameter(β(σ)). Combination of AOT and Tween 80 resulted in EE (∼85%) and PS (nanoparticles in situ was reproducible under most experimental conditions and exhibited pH independent behavior. Dilution volume (>80mL) influenced both PS and EE while dilution temperature influenced only PS. Marginal increase in size was evident at the end of 1h nevertheless was not of concern as TMX SNP exhibited near complete release in 1h. DSC and XRD studies revealed amorphous nature of TMX in nanoparticles. FTIR imaging confirmed uniform distribution of TMX in nanoparticles. ESEM and TEM revealed spherical nanoparticles. Biodistribution studies of (99m)Tc labeled TMX SNP in rats revealed no significant absorption however oral pharmacokinetics revealed enhanced oral bioavailability of TMX (165%) compared to TMX suspension. SNP presents a new in situ approach, for design of drug loaded polymeric nanoparticles. PMID:22414426

  6. Anticaries effect of dentifrices with calcium citrate and sodium trimetaphosphate

    Directory of Open Access Journals (Sweden)

    Alberto Carlos Botazzo Delbem

    2012-02-01

    Full Text Available Because of the growing concerns regarding fluoride ingestion by young children and dental fluorosis, it is necessary to develop new dentifrices. OBJECTIVE: The aim of this study was to evaluate the effect of dentifrices with calcium citrate (Cacit and sodium trimetaphosphate (TMP on enamel demineralization. MATERIAL AND METHODS: Enamel blocks (n=70, previously selected through surface hardness analysis, were submitted to daily treatment with dentifrices diluted in artificial saliva and to a pH-cycling model. The fluoride concentration in dentifrices was 0, 250, 450, 550, 1,000 and 1,100 µg F/g. CrestTM was used as a positive control (1,100 mg F/g. Cacit (0.25% and TMP (0.25% were added to dentifrices with 450 and 1,000 µg F/g. Surface hardness was measured again and integrated loss of subsurface hardness and fluoride concentration in enamel were calculated. Parametric and correlation tests were used to determine difference (p0.05. CONCLUSIONS: Dentifrices with 450 and 1,000 µg F/g, Cacit and TMP were as effective as a gold standard one.

  7. USE OF TRANSDERMAL GEL OF SILDENAFIL CITRATE IN SEXUAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    Harshid Patel , Amit Maniyar and Hiren Patel*

    2012-11-01

    Full Text Available Premature Ejaculation (PE is one of the most common forms of Sexual Dysfunction and is thought to affect up to 30 % of men. This is the most frequently encountered sexual complaint of men and couples. The physical problem associated with premature ejaculation can be simply described as “over-sensitivity” of the penis. Psychological causes of PE are often associated with “performance anxiety” – anxiety relating to sexual intercourse. The most common treatment today is the oral treatment with phosphodiesterase -5 (PDE-5 inhibitors. There are currently three different inhibitors available Sildenafil, Vardenafil, and Tadalafil. Sildenafil citrate is a drug of choice used in the treatment of premature ejaculation disorder. It was licensed for use in the United States in 1998; Sildenafil has shown in studies that it improves ED in men regardless of disease etiology, severity of disease, or even age. Transdermal gel has gained more and more importance because the gel based formulations are better percutaneously absorbed than creams and ointment bases. Transdermal drug delivery systems are defined as self-contained, discrete dosage forms which, when applied to the intact skin, deliver the drug, through the skin, at a controlled rate to the systemic circulation. Present Status - A review by Barry in 2001 showed, the transdermal route has vied with oral treatment as the most successful innovative research area in drug delivery.

  8. Michael Addition of Thiols to á,(a)-Unsaturated Carbonyl Compounds Catalyzed by Bifunctional Organocatalysts:Asymmetric Michael Addition and Asymmetric Protonation

    Institute of Scientific and Technical Information of China (English)

    LI Bang-Jing; JIANG Lin; LIU Min; DING Li-Sheng; CHEN Ying-Chun

    2004-01-01

    Recently the hydrogen-bond activated reactions have attracted much attention.1 Takemoto2 reported a highly enantioselective Michael addition of manolate to nitroolefins catalyzed by a bifunctional organocatalyst with tertiary amine and thiourea moiety. As we known,stereoselective conjugate additions of thiols are interesting due to the standpoint of biological and synthetic importance, however, only very limited good results have been obtained except for the works of Shibasaki3, Kanemasa4 and Deng5 et al.In this letter, we report an efficient catalytic asymmetric Michael reactions of thiols to a,a-unsaturated carbonyl compounds promoted by bifunctional organocatalysts. A series of organocatalysts with chiral amine and thiourea structures were designed and synthesized and have been successfully applied in the conjugated additions of thiols to a,a-unsaturated imides and enones.The reactions got quantitative yields and the ee values were up to 84%. It is noteworthy that the a-asymmetric protonation (up to 43% ee) also could be achieved.The Michael addition between aromatic thiols and a,a-unsaturated carbonyl compounds isdescribed as follows:Works to further increase the enantioselectivity is under investigation in our laboratory.

  9. NHC-Copper(I) Halide-Catalyzed Direct Alkynylation of Trifluoromethyl Ketones on Water

    KAUST Repository

    Czerwiński, Paweł

    2016-05-04

    An efficient and easily scalable NHC-copper(I) halide-catalyzed addition of terminal alkynes to 1,1,1-trifluoromethyl ketones, carried out on water for the first time, is reported. A series of addition reactions were performed with as little as 0.1-2.0mol% of [(NHC)CuX] (X=Cl, Br, I, OAc, OTf) complexes, providing tertiary propargylic trifluoromethyl alcohols in high yields and with excellent chemoselectivity from a broad range of aryl- and more challenging alkyl-substituted trifluoromethyl ketones (TFMKs). DFT calculations were performed to rationalize the correlation between the yield of catalytic alkynylation and the sterics of N-heterocyclic carbenes (NHCs), expressed as buried volume (%VBur), indicating that steric effects dominate the yield of the reaction. Additional DFT calculations shed some light on the differential reactivity of [(NHC)CuX] complexes in the alkynylation of TFMKs. The first enantioselective version of a direct alkynylation in the presence of C1-symmetric NHC-copper(I) complexes is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Origins of stereoselectivities in chiral phosphoric acid catalyzed allylborations and propargylations of aldehydes.

    Science.gov (United States)

    Wang, Hao; Jain, Pankaj; Antilla, Jon C; Houk, K N

    2013-02-01

    The chiral BINOL-phosphoric acid catalyzed allylboration and propargylation reactions are studied with density functional theory (B3LYP and B3LYP-D3). Two different models were recently proposed for these reactions by Goodman and our group, respectively. In Goodman's model for allylborations, the catalyst interacts with the boronate pseudoaxial oxygen. By contrast, our model for propargylations predicts that the catalyst interacts with the boronate pseudoequatorial oxygen. In both models, the phosphoric acid stabilizes the transition state by forming a strong hydrogen bond with the oxygen of the boronate and is oriented by a formyl hydrogen bond (Goodman model) and by other electrostatic attractions in our model. Both of these models have now been reinvestigated for both allylborations and propargylations. For the most effective catalyst for these reactions, the lowest energy transition state corresponds to Goodman's axial model, while the best transition state leading to the minor enantiomer involves the equatorial model. The high enantioselectivity observed with only the bulkiest catalyst arises from the steric interactions between the substrates and the bulky groups on the catalyst, and the resulting necessity for distortion of the catalyst in the disfavored transition state. PMID:23298338

  11. Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters

    Directory of Open Access Journals (Sweden)

    Lukas Hintermann

    2011-10-01

    Full Text Available Titanium-based Lewis acids catalyze the α-fluorination of β-ketoesters by electrophilic N–F-fluorinating reagents. Asymmetric catalysis with TADDOLato–titanium(IV dichloride (TADDOL = α,α,α',α'-tetraaryl-(1,3-dioxolane-4,5-diyl-dimethanol Lewis acids produces enantiomerically enriched α-fluorinated β-ketoesters in up to 91% enantiomeric excess, with either F–TEDA (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate in acetonitrile solution or NFSI (N-fluorobenzenesulfonimide in dichloromethane solution as fluorinating reagents. The effects of various reaction parameters and of the TADDOL ligand structure on the catalytic activity and enantioselectivity were investigated. The absolute configuration of several fluorination products was assigned through correlation. Evidence for ionization of the catalyst complex by chloride dissociation, followed by generation of titanium β-ketoenolates as key reaction intermediates, was obtained. Based on the experimental findings, a general mechanistic sketch and a steric model of induction are proposed.

  12. Bench-to-bedside review: Citrate for continuous renal replacement therapy, from science to practice.

    Science.gov (United States)

    Oudemans-van Straaten, Heleen M; Ostermann, Marlies

    2012-12-07

    To prevent clotting in the extracorporeal circuit during continuous renal replacement therapy (CRRT) anticoagulation is required. Heparin is still the most commonly used anticoagulant. However, heparins increase the risk of bleeding, especially in critically ill patients. Evidence has accumulated that regional anticoagulation of the CRRT circuit with citrate is feasible and safe. Compared to heparin, citrate anticoagulation reduces the risk of bleeding and requirement for blood products, not only in patients with coagulopathy, but also in those without. Metabolic complications are largely prevented by the use of a strict protocol, comprehensive training and integrated citrate software. Recent studies indicate that citrate can even be used in patients with significant liver disease provided that monitoring is intensified and the dose is carefully adjusted. Since the citric acid cycle is oxygen dependent, patients at greatest risk of accumulation seem to be those with persistent lactic acidosis due to poor tissue perfusion. The use of citrate may also be associated with less inflammation due to hypocalcemia-induced suppression of intracellular signaling at the membrane and avoidance of heparin, which may have proinflammatory properties. Whether these beneficial effects increase patient survival needs to be confirmed. However, other benefits are the reason that citrate should become the first choice anticoagulant for CRRT provided that its safe use can be guaranteed.

  13. Preparation and Quality Control of 68Ga-Citrate for PET Applications

    Directory of Open Access Journals (Sweden)

    Ayuob Aghanejad

    2015-07-01

    Full Text Available Objective(s: In nuclear medicine studies, gallium-68 (68Ga citrate has been recently known as a suitable infection agent in positron emission tomography (PET. In this study, by applying an in-house produced 68Ge/68Ga generator, a simple technique for the synthesis and quality control of 68Ga-citrate was introduced; followed by preliminary animal studies. Methods: 68GaCl3 eluted from the generator was studied in terms of quality control factors including radiochemical purity (assessed by HPLC and RTLC, chemical purity (assessed by ICP-EOS, radionuclide purity (evaluated by HPGe, and breakthrough. 68Ga-citrate was prepared from eluted 68GaCl3 and sodium citrate under various reaction conditions. Stability of the complex was evaluated in human serum for 2 h at 370C, followed by biodistribution studies in rats for 120 min. Results: 68Ga-citrate was prepared with acceptable radiochemical purity (>97 ITLC and >98% HPLC, specific activity (4-6 GBq/mM, chemical purity (Sn, FeConclusion: This study demonstrated the possible in-house preparation and quality control of 68Ga-citrate, using a commercially available 68Ge/68Ga generator for PET imaging throughout the country.

  14. Citrate versus unfractionated heparin for anticoagulation in continuous renal replacement therapy

    Institute of Scientific and Technical Information of China (English)

    LIAO Yu-jie; ZHANG Ling; ZENG Xiao-xi; FU Ping

    2013-01-01

    Background Unfractionated heparin is the most commonly used anticoagulant in continuous renal replacement therapy (CRRT),but it can increase the risk of bleeding.Citrate is a promising substitute.Our study was to assess the efficacy and safety of citrate versus unfractionated heparin in CRRT.Methods We searched the MEDLINE,the EMBASE,the Cochrane Central Register of Controlled Trials,and the China National Knowledge Infrastructure Database until up to November 2011 for randomized controlled trials comparing citrate with unfractionated heparin in adult patients with acute kidney injury prescribed CRRT.The primary outcome was mortality and the secondary outcomes included circuit survival,control of uremia,risk of bleeding,transfusion rates,acid-base statuses,and disturbance of sodium and calcium homeostasis.Results Four trials met the inclusion criteria.Meta-analysis found no significant difference between two anticoagulants on mortality.Less bleeding and more hypocalcemic episodes were with citrate.Citrate was superior or comparable to unfractionated heparin in circuit life.Conclusions Citrate anticoagulation in CRRT seems to be superior in reducing bleeding risk and with a longer or similar circuit life,although there is more metabolic derangement.Mortality superiority has not been approved.

  15. Is it safe to prescribe clomiphene citrate without ultrasound monitoring facilities?

    LENUS (Irish Health Repository)

    Coughlan, C

    2010-05-01

    The majority of triplet and higher order multiple pregnancies now result from ovulation induction\\/superovulation rather than in vitro fertilisation. However, clomiphene citrate is still widely prescribed by gynaecologists and general practitioners who do not have access to ultrasound monitoring. The objective of our study was to determine the prevalence of multifollicular development with different doses of clomiphene citrate. A retrospective review of transvaginal ultrasound monitoring of 425 cycles in 182 women receiving clomiphene citrate from January 2002 to December 2003, was studied. Three or more follicles of >or= 14 mm were identified in 58 cycles (14%). Patients received 50 mg of clomiphene citrate in 52 of these 58 cycles and 25 mg in the remaining six. One patient was noted to have developed five follicles and 10 patients developed four follicles. One patient developed six follicles, despite receiving only 25 mg clomiphene citrate daily. It was concluded that a significant number of women (14%) developed three or more follicles, despite receiving low doses of clomiphene citrate.

  16. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots.

    Science.gov (United States)

    Ryan, Peter R; Raman, Harsh; Gupta, Sanjay; Horst, Walter J; Delhaize, Emmanuel

    2009-01-01

    The first confirmed mechanism for aluminum (Al) resistance in plants is encoded by the wheat (Triticum aestivum) gene, TaALMT1, on chromosome 4DL. TaALMT1 controls the Al-activated efflux of malate from roots, and this mechanism is widespread among Al-resistant genotypes of diverse genetic origins. This study describes a second mechanism for Al resistance in wheat that relies on citrate efflux. Citrate efflux occurred constitutively from the roots of Brazilian cultivars Carazinho, Maringa, Toropi, and Trintecinco. Examination of two populations segregating for this trait showed that citrate efflux was controlled by a single locus. Whole-genome linkage mapping using an F(2) population derived from a cross between Carazinho (citrate efflux) and the cultivar EGA-Burke (no citrate efflux) identified a major locus on chromosome 4BL, Xce(c), which accounts for more than 50% of the phenotypic variation in citrate efflux. Mendelizing the quantitative variation in citrate efflux into qualitative data, the Xce(c) locus was mapped within 6.3 cM of the microsatellite marker Xgwm495 locus. This linkage was validated in a second population of F(2:3) families derived from a cross between Carazinho and the cultivar Egret (no citrate efflux). We show that expression of an expressed sequence tag, belonging to the multidrug and toxin efflux (MATE) gene family, correlates with the citrate efflux phenotype. This study provides genetic and physiological evidence that citrate efflux is a second mechanism for Al resistance in wheat.

  17. A COMPARISON OF CLOMIPHENE CITRATE AND SEQUENTIAL CLOMIPHENE CITRATE PLUS HUMAN MENOPAUSAL GONADOTROPIN FOR USE IN CONJUNCTION WITH INTRAUTERINE INSEMINATION

    Directory of Open Access Journals (Sweden)

    B. H. Rashidi

    2005-06-01

    Full Text Available There are currently ‎many different protocols in use for controlled ovarian hyperstimulation (COH, but the optimal method has ‎not yet been determined. To compare the outcome of COH using ‎clomiphene citrate (CC versus CC plus human menopausal gonadotropin (hMG in conjunction with intrauterine insemination (IUI, we studied 117 infertile couples‎. IUI with CC was used in 92 cycles ‎(group A and IUI with CC plus hMG was used in 66 cycles (group B. ‎Data analysis demonstrated no significant difference between the two ‎groups with respect to patients’ age, duration and type of infertility, prior COH and endometrial thickness and pattern. Group A had a little ‎longer follicular phase length than group B. ‎Pregnancy rate for group A and B were 6.52% and 12.12%, respectively (P= 0.22. ‎Endometrial pattern and thickness had no impact on pregnancy rate. ‎There were no multiple gestation and obvious hyperstimulation syndrome. ‎For patients undergoing controlled ovarian hyperstimulation with IUI, ‎CC plus hMG protocol yields higher pregnancy rate than one using CC, although this ‎difference was not statistically significant because of limitation of number of ‎cycles.

  18. Redox properties and activity of iron-citrate complexes: evidence for redox cycling.

    Science.gov (United States)

    Adam, Fatima I; Bounds, Patricia L; Kissner, Reinhard; Koppenol, Willem H

    2015-04-20

    Iron in iron overload disease is present as non-transferrin-bound iron, consisting of iron, citrate, and albumin. We investigated the redox properties of iron citrate by electrochemistry, by the kinetics of its reaction with ascorbate, by ESR, and by analyzing the products of reactions of ascorbate with iron citrate complexes in the presence of H2O2 with 4-hydroxybenzoic acid as a reporter molecule for hydroxylation. We report -0.03 V +0.01 V for the (Fe(3+)-cit/Fe(2+)-cit) couple. The first step in the reaction of iron citrate with ascorbate is the rapid formation of mixed complexes of iron with citrate and ascorbate, followed by slow reduction to Fe(2+)-citrate with k = ca. 3 M(-1) s(-1). The ascorbyl radical is formed by iron citrate oxidation of Hasc(-) with k = ca. 0.02 M(-1) s(-1); the majority of the ascorbyl radical formed is sequestered by complexation with iron and remains EPR silent. The hydroxylation of 4-hydroxybenzoic acid driven by the Fenton reduction of iron citrate by ascorbate in the presence of H2O2 proceeds in three phases: the first phase, which is independent of the presence of O2, is revealed as a nonzero intercept that reflects the rapid reaction of accumulated Fe(2+) with H2O2; the intermediate oxygen-dependent phase fits a first-order accumulation of product with k = 5 M(-1) s(-1) under aerobic and k = 13 M(-1) s(-1) under anaerobic conditions; the slope of the final linear phase is ca. k = 5 × 10(-2) M(-1) s(-1) under both aerobic and anaerobic conditions. Product yields under aerobic conditions are greater than predicted from the initial concentration of iron, but they are less than predicted for continuous redox cycling in the presence of excess ascorbate. The ongoing formation of hydroxylated product supports slow redox cycling by iron citrate. Thus, when H2O2 is available, iron-citrate complexes may contribute to pathophysiological manifestations of iron overload diseases. PMID:25654270

  19. A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination

    Science.gov (United States)

    Zhu, Shaolin; Niljianskul, Nootaree; Buchwald, Stephen L.

    2016-02-01

    Amines with remote stereocentres (stereocentres that are three or more bonds away from the C-N bond) are important structural elements in many pharmaceutical agents and natural products. However, previously reported methods to prepare these compounds in an enantioselective manner are indirect and require multistep synthesis. Here, we report a copper-hydride-catalysed, enantioselective synthesis of γ- or δ-chiral amines from readily available allylic alcohols, esters and ethers using a reductive relay hydroamination strategy (a net reductive process in which an amino group is installed at a site remote from the original carbon-carbon double bond). The protocol was suitable for substrates containing a wide range of functional groups and provided remote chiral amine products with high levels of regio- and enantioselectivity. Sequential amination of substrates containing several carbon-carbon double bonds could be achieved, demonstrating the high chemoselectivity of this process.

  20. Transport of citrate-coated silver nanoparticles in unsaturated sand

    Energy Technology Data Exchange (ETDEWEB)

    Kumahor, Samuel K., E-mail: samuel.kumahor@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Hron, Pavel, E-mail: pavel.hron@iwr.uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, Raum 422, 69120 Heidelberg (Germany); Metreveli, George, E-mail: metreveli@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Schaumann, Gabriele E., E-mail: schaumann@uni-landau.de [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Vogel, Hans-Jörg, E-mail: hans-joerg.vogel@ufz.de [Department of Soil Physics, Helmholtz Centre for Environmental Research–UFZ, Theodor-Lieser-Strasse 4, 06120 Halle-Saale (Germany); Institute of Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle-Saale (Germany)

    2015-12-01

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO{sub 3} as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  1. Transport of citrate-coated silver nanoparticles in unsaturated sand

    International Nuclear Information System (INIS)

    Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO3 as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the

  2. Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin

    DEFF Research Database (Denmark)

    Tomasi, Nicola; Kretzschmar, Tobias; Espen, Luca;

    2009-01-01

    the rhizosphere.The relationship between acidification and carboxylate exudation is still largely unknown. In the present work,we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation......,an activator of the plasmamembrane (PM)H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of theLHA1PMH+-ATPase gene,an increased amount of H+-ATPase protein, a shift...... in pH optimum of the enzymeand post-translational modification of an H ++-ATPase protein involving binding of activating 14-3-3 protein.Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton...

  3. Effects and mechanisms of action of sildenafil citrate in human chorionic arteries.

    LENUS (Irish Health Repository)

    Maharaj, Chrisen H

    2009-01-01

    OBJECTIVES: Sildenafil citrate, a specific phosphodiesterase-5 inhibitor, is increasingly used for pulmonary hypertension in pregnancy. Sildenafil is also emerging as a potential candidate for the treatment of intra-uterine growth retardation and for premature labor. Its effects in the feto-placental circulation are not known. Our objectives were to determine whether phosphodiesterase-5 is present in the human feto-placental circulation, and to characterize the effects and mechanisms of action of sildenafil citrate in this circulation. STUDY DESIGN: Ex vivo human chorionic plate arterial rings were used in all experiments. The presence of phosphodiesterase-5 in the feto-placental circulation was determined by western blotting and immunohistochemical staining. In a subsequent series of pharmacologic studies, the effects of sildenafil citrate in pre-constricted chorionic plate arterial rings were determined. Additional studies examined the role of cGMP and nitric oxide in mediating the effects of sildenafil. RESULTS: Phosphodiesterase-5 mRNA and protein was demonstrated in human chorionic plate arteries. Immunohistochemistry demonstrated phosphodiesterase-5 within the arterial muscle layer. Sildenafil citrate produced dose dependent vasodilatation at concentrations at and greater than 10 nM. Both the direct cGMP inhibitor methylene blue and the cGMP-dependent protein kinase inhibitor Rp-8-Br-PET-cGMPS significantly attenuated the vasodilation produced by sildenafil citrate. Inhibition of NO production with L-NAME did not attenuate the vasodilator effects of sildenafil. In contrast, sildenafil citrate significantly enhanced the vasodilation produced by the NO donor sodium nitroprusside. CONCLUSION: Phosphodiesterase-5 is present in the feto-placental circulation. Sildenafil citrate vasodilates the feto-placental circulation via a cGMP dependent mechanism involving increased responsiveness to NO.

  4. Dissolution kinetics and biodurability of tremolite particles in mimicked lung fluids: Effect of citrate and oxalate

    Science.gov (United States)

    Rozalen, Marisa; Ramos, M. Elena; Huertas, F. Javier; Fiore, Saverio; Gervilla, Fernando

    2013-11-01

    The effect of citrate and oxalate on tremolite dissolution rate was measured at 37 °C in non-stirred flow-through reactors, using modified Gamble's solutions at pH 4 (macrophages), 7.4 (interstitial fluids) and 5.5 (intermediate check point) containing 0, 0.15, 1.5 and 15 mmol L-1 of citrate or oxalate. The dissolution rates calculated from Si concentration in the output solutions without organic ligands depend on pH, decreasing when the pH increases from -13.00 (pH 4) to -13.35 (pH 7.4) mol g-1 s-1 and following a proton-promoted mechanism. The presence of both ligands enhances dissolution rates at every pH, increasing this effect when the ligand concentration increases. Citrate produces a stronger effect as a catalyst than oxalate, mainly at more acidic pHs and enhances dissolution rates until 20 times for solutions with 15 mmol L-1 citrate. However, at pH 7.4 the effect is lighter and oxalate solutions (15 mmol L-1) only enhances dissolution rates eight times respect to free organic ligand solutions. Dissolution is promoted by the attack to protons and organic ligands to the tremolite surface. Magnesium speciation in oxalate and citrate solutions shows that Mg citrate complexes are more effective than oxalate ones during the alteration of tremolite in magrophages, but this tendency is the opposite for interstitial fluids, being oxalate magnesium complexes stronger. The biodurability estimations show that the destruction of the fibers is faster in acidic conditions (macrophages) than in the neutral solutions (interstitial fluid). At pH 4, both ligands oxalate and citrate reduce the residence time of the fibers with respect to that calculated in absence of ligands. Nevertheless, at pH 7.4 the presence of ligands does not reduce significantly the lifetime of the fibers.

  5. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  6. Enantioselective Synthesis of N-PMP-1,2-dihydropyridines via Formal [4 + 2] Cycloaddition between Aqueous Glutaraldehyde and Imines.

    Science.gov (United States)

    Ramaraju, Panduga; Mir, Nisar A; Singh, Deepika; Gupta, Vivek K; Kant, Rajni; Kumar, Indresh

    2015-11-20

    A simple and highly practical one-pot formal [4 + 2] cycloaddition approach for the enantioselective synthesis of N-PMP-1,2-dihydropyridines (DHPs) is described. This chemistry involves an amino-catalytic direct Mannich reaction/cyclization followed by IBX-mediated chemo- and regioselective oxidation sequence between readily available aqueous glutaraldehyde and imines under very mild conditions. A series of N-PMP-1,2-DHPs have been prepared in high yields and excellent enantioselectivity. This method also gives access to both enantiomers of 1,2-DHPs in surplus amount by shifting the catalyst configuration.

  7. Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3

    OpenAIRE

    Zhou, Gaofeng; Pereira, Jorge F.; Delhaize, Emmanuel; Zhou, Meixue; Magalhaes, Jurandir V.; Ryan, Peter R.

    2014-01-01

    Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approa...

  8. Improved gate effect enantioselectivity of phenylalanine-imprinted polymers in water by blending crosslinkers

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, Yasuo, E-mail: yosimi@sic.shibaura-it.ac.jp; Ishii, Noriyuki

    2015-03-03

    Highlights: • We tried amperometric sensing by gate effect of molecularly imprinted polymer. • Chiral-selective sensing in water by gate effect was performed successfully. • The success was realized by blending hydrophobic and hydrophilic crosslinkers. • The blending effect is probably based on the regulation of flexibility of the site. - Abstract: In this work, the anodic current at an electrode grafted with a molecularly imprinted polymer (MIP) crosslinked via a combination of hydrophobic ethyleneglycol dimethacrylate (EDMA) and hydrophilic methylene bisacrylamide (MBAA) was found to exhibit enantioselective sensitivity to the phenylalanine template in aqueous solution. An MIP-grafted electrode crosslinked with a 2:1 mixture of EDMA and MBAA was observed to respond to the template with the highest enantioselectivity, such that the change in current induced by the imprinted template was more than four times that induced by the enantiomer of the template. The contact angle of a water droplet on an MIP-coated electrode prepared using the optimal crosslinker blending ratio was also sensitive to the template and again exhibited chiral selectivity. The change in the contact angle induced by the template was more than twice as large as that obtained from the template’s enantiomer. Atomic force microscopy showed that the surface of the MIP layer fabricated using a mixture of crosslinkers was rougher than that made with a single crosslinking agent, although there was no apparent correlation between the roughness and the enantioselectivity of the layer. These results indicate that the appropriate combination of crosslinkers enables the chiral-selective gate effect by modulating the flexibility and hydrophilicity of the MIP layer. The approach described herein therefore represents a new means of improving the selectivity of MIPs by blending crosslinkers having different chemical properties.

  9. Can citrate efflux from roots improve phosphorus uptake by plants? Testing the hypothesis with near-isogenic lines of wheat.

    Science.gov (United States)

    Ryan, Peter R; James, Richard A; Weligama, Chandrakumara; Delhaize, Emmanuel; Rattey, Allan; Lewis, David C; Bovill, William D; McDonald, Glenn; Rathjen, Tina M; Wang, Enli; Fettell, Neil A; Richardson, Alan E

    2014-07-01

    Phosphorus (P) deficiency in some plant species triggers the release of organic anions such as citrate and malate from roots. These anions are widely suggested to enhance the availability of phosphate for plant uptake by mobilizing sparingly-soluble forms in the soil. Carazinho is an old wheat (Triticum aestivum) cultivar from Brazil, which secretes citrate constitutively from its root apices, and here we show that it also produces relatively more biomass on soils with low P availability than two recent Australian cultivars that lack citrate efflux. To test whether citrate efflux explains this phenotype, we generated two sets of near-isogenic lines that differ in citrate efflux and compared their biomass production in different soil types and with different P treatments in glasshouse experiments and field trials. Citrate efflux improved relative biomass production in two of six glasshouse trials but only at the lowest P treatments where growth was most severely limited by P availability. Furthermore, citrate efflux provided no consistent advantage for biomass production or yield in multiple field trials. Theoretical modeling indicates that the effectiveness of citrate efflux in mobilizing soil P is greater as the volume of soil into which it diffuses increases. As efflux from these wheat plants is restricted to the root apices, the potential for citrate to mobilize sufficient P to increase shoot biomass may be limited. We conclude that Carazinho has other attributes that contribute to its comparatively good performance in low-P soils.

  10. A comparison of two sodium citrate concentrations in two evacuated blood collection systems for prothrombin time and ISI determination.

    Science.gov (United States)

    van den Besselaar, A M; Chantarangkul, V; Tripodi, A

    2000-10-01

    The prothrombin time is usually measured in citrated plasma. The W.H.O. recommended concentration of sodium citrate for blood collection for laboratory control of oral anticoagulant therapy is 0.109 M. Some evacuated blood collection systems include 0.105 M sodium citrate. The purpose of the present study was to establish the difference in ISI calibration between 0.109 and 0.105 M citrate, using 7 types of thromboplastin and various types of instrumentation. The two citrate concentrations were provided in both evacuated siliconised glass tubes and in evacuated polyethylene terephtalate (PET) tubes. The ISI difference between the two citrate concentrations was 5.4% for one system but not greater than 3% for all other systems when blood samples were collected with either siliconized glass or PET tubes. Most of the ISI differences between the two citrate concentrations were not significant at the 5% level. It is concluded that the ISI differences between 0.105 M and 0.109 M citrate are not of practical importance. In contrast, ISI differences between siliconised glass and PET tubes, using either 0.105 or 0.109 M citrate, were significant (p <0.05) for most thromboplastin systems and amounted to 7%. ISI interchange between these glass and PET tubes could induce INR differences amounting to 14%, which could affect clinical dosage of oral anticoagulants. PMID:11057867

  11. Application of citrate as a tricarboxylic acid (TCA cycle intermediate, prevents diabetic-induced heart damages in mice

    Directory of Open Access Journals (Sweden)

    Qianqian Liang

    2016-01-01

    Conclusion: Results indicate that application of citrate, a tricarboxylic acid (TCA cycle intermediate, might alleviate cardiac dysfunction by reducing cardiac inflammation, apoptosis, and increasing cardiac EC.

  12. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    Science.gov (United States)

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes. PMID:27396413

  13. Enantioselective Synthesis of Both Epimers at C-21 in the Proposed Structure of Cytotoxic Macrolide Callyspongiolide.

    Science.gov (United States)

    Ghosh, Arun K; Kassekert, Luke A

    2016-07-01

    Both epimers at C-21 in the proposed structure of (+)-callyspongiolide have been synthesized in a convergent and enantioselective manner. The 14-membered macrolide with a sensitive C2-C3 cis-olefin functionality was installed by a Yamaguchi macrolactonization of hydroxyl alkynoic acid followed by hydrogenation over Lindlar's catalyst. The C5 methyl stereocenter was constructed by a ring-closing olefin metathesis followed by addition of methyl cuprate to an α,β-unsaturated δ-lactone. Other key reactions are chiral Corey-Bakshi-Shibata (CBS) reduction and Sonogashira coupling to conjoin the macrocyclic core and side chain. PMID:27331421

  14. Enzymatic Kinetic Resolution of 2-Piperidineethanol for the Enantioselective Targeted and Diversity Oriented Synthesis

    Directory of Open Access Journals (Sweden)

    Dario Perdicchia

    2015-12-01

    Full Text Available 2-Piperidineethanol (1 and its corresponding N-protected aldehyde (2 were used for the synthesis of several natural and synthetic compounds. The existence of a stereocenter at position 2 of the piperidine skeleton and the presence of an easily-functionalized group, such as the alcohol, set 1 as a valuable starting material for enantioselective synthesis. Herein, are presented both synthetic and enzymatic methods for the resolution of the racemic 1, as well as an overview of synthesized natural products starting from the enantiopure 1.

  15. Organocatalytic Enantioselective Nucleophilic Alkynylation of Allyl Fluorides Affording Chiral Skipped Ene-ynes.

    Science.gov (United States)

    Okusu, Satoshi; Okazaki, Hiroki; Tokunaga, Etsuko; Soloshonok, Vadim A; Shibata, Norio

    2016-06-01

    Asymmetric methods for preparation of chiral alkynyl-containing compounds are in extremely high demand in many sectors of chemical research. In this work, we report the discovery of a general organocatalytic enantioselective alkynylation based on the idea of Si/F activation of the allylic C-F bond. This approach features reasonably broad substrate scope, functional group tolerance, and relatively neutral, mild, and operationally convenient reaction conditions; all of which bode well for the synthetic value of the discovered method. In particular, this method provides unique chiral skipped 1,4-ene-ynes having two kinds of versatile functional groups. PMID:27111713

  16. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    Directory of Open Access Journals (Sweden)

    Katherine M. Byrd

    2015-04-01

    Full Text Available The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  17. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shulin, E-mail: shulin@zju.edu.cn [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Zhang, Zhisheng [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Wenjing; Bao, Lingling [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang, Hu [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 210021 (China)

    2015-02-15

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  18. Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte

    Science.gov (United States)

    Weaver, Matthew L.; Qiu, S. Roger; Hoyer, John R.; Casey, William H.; Nancollas, George H.; De Yoreo, James J.

    2007-08-01

    Pathological mineralization is a common phenomenon in broad range of plants and animals. In humans, kidney stone formation is a well-known example that afflicts approximately 10% of the population. Of the various calcium salt phases that comprise human kidney stones, the primary component is calcium oxalate monohydrate (COM). Citrate, a naturally occurring molecule in the urinary system and a common therapeutic agent for treating stone disease, is a known inhibitor of COM. Understanding the physical mechanisms of citrate inhibition requires quantification of the effects of both background electrolytes and citrate on COM step kinetics. Here we report the results of an in situ AFM study of these effects, in which we measure the effect of the electrolytes LiCl, NaCl, KCl, RbCl, and CsCl, and the dependence of step speed on citrate concentration for a range of COM supersaturations. We find that varying the background electrolyte results in significant differences in the measured step speeds and in step morphology, with KCl clearly producing the smallest impact and NaCl the largest. The kinetic coefficient for the former is nearly three times larger than for the latter, while the steps change from smooth to highly serrated when KCl is changed to NaCl. The results on the dependence of step speed on citrate concentration show that citrate produces a dead zone whose width increases with citrate concentration as well as a continual reduction in kinetic coefficient with increasing citrate level. We relate these results to a molecular-scale view of inhibition that invokes a combination of kink blocking and step pinning. Furthermore, we demonstrate that the classic step-pinning model of Cabrera and Vermilyea (C-V model) does an excellent job of predicting the effect of citrate on COM step kinetics provided the model is reformulated to more realistically account for impurity adsorption, include an expression for the Gibbs-Thomson effect that is correct for all supersaturations

  19. Direct separation of 67Ga citrate from zinc and copper target materials by an ion exchange

    International Nuclear Information System (INIS)

    The separation of 67Ga from zinc and copper target materials using an anion- f:exchanger (Dowex21K) and 0.1 M citrate buffer at pH 6 is described. The gallium-67 was separated in citrate solution and can be directly used for medical applications. Gallium-67 with a half-life of 78.3 h and gamma-rays with energies of 93, 185 and 300 keV is a cyclotron produced radioisotope for which a considerable demand exists. 67Ga is frequently produced through proton or deuteron bombardment of natural or enriched Zn targets (Helus and Maier-Borst, 1973). It is usually separated from Zn by ion exchange chromatography (Helus and Maier-Borst, 1973; van der Walt and Strelow, 1983) or by liquid extraction Helus and Maier-Borst, 1973; Hupf and Beaver, 1970). The isotope is usually supplied in citrate solution which is widely used as 67Ga Gallium citrate which is a well-established radiopharmaceutical for imaging soft tissue tumors and abscesses. Several routes for large scale production of 67Ga and the development of medical applications have been reported (Silvester and Thakur, 1970; Dahl and Tilbury, 1972; Steyn and Meyer,1973; Vlatkovic et al., 1975; Neirinckx, 1976; Thakur, 1977). Various attempts were carried out to separate gallium-67 by using different ion exchange methods (Strelow et al., 1971; Das and Ramamoorthy, 1995; Boothe et al.,1991) through the labelling of citrate by using 67Ga was carried out for medical applications

  20. [Influence of PO4(3-) and citrate on REE accumulation and fractionation in wheat].

    Science.gov (United States)

    Yan, Jun-Cai; Liang, Tao; Zhang, Zi-Li; Ding, Shi-Ming

    2005-09-01

    This paper has studied the influence of phosphate (Pi, one of inorganic ligands) and citrate (Cit, one of organic ligands) on accumulation and fractionation of REEs in wheat based on aqueous culture, added with extraneous mixed REEs (MRE) and ICP-MS analysis technology. The results show that initial phosphate (Pi) solution of different levels followed by exposure to fixed-MRE solution has no significant effects on accumulation of the total concentrations of REEs (sigma REE) in the wheat roots, but it decrease the REE dramatically in the wheat leaves. Simultaneous culture of wheat with mixture of MRE and citrate solution caused obvious decreases of the sigma REE both in wheat roots and leaves. Compared to the control (no Pi or citrate was added), the distribution and fractionation characters of MRE had M-type tetrad effect and MREE enrichment in wheat roots, and W-type tetrad effect and HREE enrichment in wheat leaves. Different levels of Pi had no significant effects on the tetrad effect of MRE, but it notable increased the enrichment of HREE in wheat leaves. Added with citrate of different levels led the fractionation of REE decreasing gradually in wheat roots and leaves, as the concentration of citrate > or = 150 micromol x L(-1), light REE (LREE) enrichment both existed in the roots and leaves.