WorldWideScience

Sample records for catalytic reaction studies

  1. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    OpenAIRE

    B. A. López de Mishima; H. T. Mishima; A. N. Giannuzzo; M. A. Nazareno

    2000-01-01

    The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  2. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    Directory of Open Access Journals (Sweden)

    B. A. López de Mishima

    2000-03-01

    Full Text Available The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  3. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  4. Study of catalytic effect of ammonium molybdate on the bisphthalonitrile resins curing reaction with aromatic amine

    Institute of Scientific and Technical Information of China (English)

    Wen Ting Li; Fang Zuo; Kun Jia; Xiao Bo Liu

    2009-01-01

    A kind of catalyst, ammonium molybdate was developed in this paper to promote the curing reaction of bisphthalonitrile resins with aromatic amine as curing agent, and the catalytic effect was studied by differential scanning calorimetry (DSC), rheometric measurements and thermogravimetric analysis (TGA). The results indicated that the catalyst could improve the curing rate and increase the curing degree, which could be regulated by the content of the catalyst used in the reaction.

  5. Oscillatory three-phase flow reactor for studies of bi-phasic catalytic reactions

    OpenAIRE

    Abolhasani, Milad; Bruno, Nicholas C.; Jensen, Klavs F.

    2015-01-01

    A multi-phase flow strategy, based on oscillatory motion of a bi-phasic slug within a fluorinated ethylene propylene (FEP) tubular reactor, under inert atmosphere, is designed and developed to address mixing and mass transfer limitations associated with continuous slug flow chemistry platforms for studies of bi-phasic catalytic reactions. The technique is exemplified with C–C and C–N Pd catalyzed coupling reactions.

  6. STUDIES ON THE CATALYTIC REACTION OF NITROGEN OXIDE ON METAL MODIFIED ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    FU Ruowen; DU Xiuying; LIN Yuansheng; XU Hao; HU Yiongjun

    2003-01-01

    The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF.Pt/Cu/ACF and Co/Cu/ACF have very Iow catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300 ℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400 ℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.

  7. Catalytic Hydrotreatment of Fast Pyrolysis Oil : Model Studies on Reaction Pathways for the Carbohydrate Fraction

    NARCIS (Netherlands)

    Wildschut, J.; Arentz, J.; Rasrendra, C. B.; Venderbosch, R. H.; Heeres, H. J.

    2009-01-01

    Fast pyrolysis oil can be upgraded by a catalytic hydrotreatment (250-400 degrees C, 100-200 bar) using heterogeneous catalysts such as Ru/C to hydrocarbon-like products that can serve as liquid transportation fuels. Insight into the complex reaction pathways of the various component fractions durin

  8. Catalytic Studies Featuring Palladium(II Benzoylthiourea Derivative as Catalyst in Sonogashira Reaction

    Directory of Open Access Journals (Sweden)

    Wan M. Khairul

    2014-10-01

    Full Text Available A benzoylthiourea derivative (LTU and its metal complexation of palladium(II chloride (MLTU has been successfully synthesized and characterized via typical spectroscopic and analytical techniques namely IR, 1H and 13C Nuclear Magnetic Resonance, UV-Visible and Gas Chromatography Flame Ionization Detector (GC-FID. The Infrared spectrum for LTU shows four significant bands of interest namely ν(N-H, ν(C=O, ν(C-N and ν(C=S and the values were observed within the range. The 1H NMR spectrum for the compound shows expected protons for N-H at δH 10.95 ppm and δH 11.15 ppm while the 13C NMR spectrum shows resonances of carbonyl (C=O carbon and thiones (C=S at δC 168.26 ppm and δC 180.56 ppm, respectively. From UV-Vis spectrum, it shows the presence of n-pi* and pi→pi*electronic transitions which are expected to be attributed from the phenyl ring, carbonyl (C=O and thiones (C=S chromophores. Complexation of LTU with palladium(II chloride was done to afford MLTU which in turn, was tested as homogeneous catalyst in Sonogashira cross-coupling reaction. The reaction was monitored by GC-FID at 6 hours reaction period. The percentage conversion of 4-bromoacetophenone to the coupled product was 75.73% indicated that MLTU can act as an ideal potential catalyst in the Sonogashira reaction. © 2014 BCREC UNDIP. All rights reservedReceived: 14th May 2014; Revised: 30th August 2014; Accepted: 3rd September 2014 How to Cite: Khairul, W.M., Faisol, S.L.M., Jasman, S.M., Shamsuddin, M. (2014. Catalytic Studies Featuring Palladium(II Benzoylthiourea Derivative as Catalyst in Sonogashira Reaction. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 241-248 (doi:10.9767/bcrec.9.3.6880.241-248Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6880.241-248

  9. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen;

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...

  10. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  11. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Experiments on aqueous TiO2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  12. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.

    Science.gov (United States)

    Somorjai, Gabor A; Aliaga, Cesar

    2010-11-01

    Molecular level studies of metal crystal and nanoparticle surfaces under catalytic reaction conditions at ambient pressures during turnover were made possible by the use of instruments developed at the University of California at Berkeley. Sum frequency generation vibrational spectroscopy (SFGVS), owing to its surface specificity and sensitivity, is able to identify the vibrational features of adsorbed monolayers of molecules. We identified reaction intermediates, different from reactants and products, under reaction conditions and for multipath reactions on metal single crystals and nanoparticles of varying size and shape. The high-pressure scanning tunneling microscope (HP-STM) revealed the dynamics of a catalytically active metallic surface by detecting the mobility of the adsorbed species during catalytic turnover. It also demonstrated the reversible and adsorbate-driven surface restructuring of platinum when exposed to molecules such as CO and ethylene. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) detected the reversible changes of surface composition in rhodium-palladium, platinum-palladium, and other bimetallic nanoparticles as the reactant atmosphere changed from oxidizing to reducing. It was found that metal nanoparticles of less than 2 nm in size are present in higher oxidation states, which alters and enhances their catalytic activity. The catalytic nanodiode (CND) confirmed that a catalytic reaction-induced current flow exists at oxide-metal interfaces, which correlates well with the reaction turnover.

  13. Ubiquitous "glassy" relaxation in catalytic reaction networks

    OpenAIRE

    Awazu, Akinori; Kaneko, Kunihiko

    2009-01-01

    Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the rel...

  14. Ubiquitous ``glassy'' relaxation in catalytic reaction networks

    Science.gov (United States)

    Awazu, Akinori; Kaneko, Kunihiko

    2009-10-01

    Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the relaxation-time course. The former behavior is explained by the eigenvalue distribution of a Jacobian matrix around the equilibrium state that depends on the distribution of kinetic coefficients of reactions. The latter behavior is associated with kinetic constraints rather than metastable states and is due to the absence of catalysts for chemicals in excess and the negative correlation between two chemical species. Examples are given and generality is discussed with relevance to bottleneck-type dynamics in biochemical reactions as well.

  15. A Study on the Kinetics of the Catalytic Reforming Reaction of CH4 with CO2: Determination of the Reaction Order

    Institute of Scientific and Technical Information of China (English)

    Chunyang Ji; Lihong Gong; Jiawei Zhang; Keying Shi

    2003-01-01

    The kinetics of the catalytic reforming reaction of methane with carbon dioxide to produce synthesis gas on a Ni/α-Al2O3 and a HSD-2 type commercial catalyst has been studied. The results indicate that the reaction orders are one and zero for methane and carbon dioxide, respectively, when the carbon dioxide partial pressure was about 12.5-30.0 kPa and the temperature was at 1123-1173 K. However,when the carbon dioxide partial pressure was changed to 30.0-45.0 kPa under the same temperature range of 1123 1173 K, the reaction orders of methane and carbon dioxide are one. Furthermore, average rate constants at different temperatures were determined.

  16. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  17. Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vignatti, Ch.; Avila, M.S.; Apesteguia, C.R.; Garetto, T.F. [Catalysis Science and Engineering Research Group (GICIC), Instituto de Investigaciones en Catalisis y Petroquimica - INCAPE - (UNL-CONICET), Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2010-07-15

    The water-gas shift (WGS) activity of Pt/SiO{sub 2}, Pt/CeO{sub 2} and Pt/TiO{sub 2} catalysts was studied by in-situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Samples contained a similar amount of Pt, between 0.34 and 0.50%, and were characterized by employing a variety of physical and spectroscopic techniques. The catalyst activities were evaluated through both CO conversion versus temperature and CO conversion versus time tests. The DRIFTS spectra were obtained on stream during the WGS reaction at increasing temperatures, from 303 to 573 K. Reduced ceria was the only active support and promoted the WGS reaction on surface bridging OH groups that react with CO to form formate intermediates. Pt/SiO{sub 2} was more active than CeO{sub 2} and catalyzed the WGS reaction through a monofunctional redox mechanism on metallic Pt sites. The CO conversion turnover rate was more than one order of magnitude greater on Pt/CeO{sub 2} than on Pt/SiO{sub 2} showing that the reaction proceeds faster via a bifunctional metal-support mechanism. Platinum on Pt/CeO{sub 2} increased the concentration of OH groups by increasing the ceria reduction extent and also provided a faster pathway for the formation of formate intermediates in comparison to CeO{sub 2} support. Pt/TiO{sub 2} catalysts were clearly more active than Pt/CeO{sub 2}. The WGS reaction on Pt/TiO{sub 2} was catalyzed via a bifunctional metal-support mechanism, probably involving the activation of CO and water on the metal and the support, respectively. The role of platinum on Pt/TiO{sub 2} was critical for promoting the reduction of Ti{sup 4+} ions to Ti{sup 3+} which creates oxygen vacancies in the support to efficiently activate water. (author)

  18. CO-H2-O2 reaction on a catalytic surface: A computer simulation study

    International Nuclear Information System (INIS)

    The oxidation of carbon monoxide to form carbon dioxide and the oxidation of hydrogen to form water are the reactions of environmental and industrial importance. These two reactions have been studied independently by Monte Carlo computer simulation using Langmuir-Hinshelwood mechanism but no effort has been made to study the combined CO-H2-O2 reaction on these lines. Keeping in view the importance of this 3-component system, the surface coverages and production rates are studied as a function of CO partial pressure for different ratios of H2 and O2. The diffusion of reacting species on the surface as well as their desorption from the surface is also introduced to include temperature effects. The phase diagrams of the system are drawn to observe the behavior of these atoms/molecules on the surface and the production of CO2 and H2O are determined at different concentrations of H2. The results are compared with 2-component systems.

  19. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  20. Paramagnetic relaxation enhancement solid-state NMR studies of heterogeneous catalytic reaction over HY zeolite using natural abundance reactant.

    Science.gov (United States)

    Zhou, Lei; Li, Shenhui; Su, Yongchao; Li, Bojie; Deng, Feng

    2015-01-01

    Paramagnetic relaxation enhancement solid-state NMR (PRE ssNMR) technique was used to investigate catalytic reaction over zeolite HY. After introducing paramagnetic Cu(II) ions into the zeolite, the enhancement of longitudinal relaxation rates of nearby nuclei, i.e.(29)Si of the framework and (13)C of the absorbents, was measured. It was demonstrated that the PRE ssNMR technique facilitated the fast acquisition of NMR signals to monitor the heterogeneous catalytic reaction (such as acetone to hydrocarbon) using natural abundance reactants. PMID:25616847

  1. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  2. An FTIR study on the catalytic effect of water molecules on the reaction of CO successive hydrogenation at 3 K

    International Nuclear Information System (INIS)

    Graphical abstract: This work highlights a selective catalytic action of water molecules on the reaction of CO hydrogenation at 3 K. Research highlights: → [CO/H2O] and [H/H2] are coinjected at 3 K. → H2 molecules condense rapidly at 3 K and screen the reaction mostly at the 1st step. → The observed catalytic effects on CO hydrogenation increase with water concentration. - Abstract: The reaction of successive CO hydrogenation has been performed at 3 K by coinjecting CO molecules and H atoms. The concentration of CO has been progressively reduced and replaced by water molecules to create two different environments where CO and H2O are successively the dominant species in the binary (CO/H2O) mixture. The catalytic effect of water molecules on CO hydrogenation appears clearly since the early times of the experiment and evolves with the formation of the CO/H2/H2O mixed-matrix. The process of CO hydrogenation, initially frozen at the first step of the reaction, is brought to completion through water influence. Water molecules guide the reaction toward the formation of CH3OH and promote different reaction steps depending on water concentration. Water molecules increase the probability of reactive to encounter H atoms either physically, by introducing structural changes in the matrix, or chemically, by raising the number of chemical pathways.

  3. Co-Adsorption of CO in NO-CO Reaction on a Metal Catalytic Surface Studied by Computer Simulation

    Institute of Scientific and Technical Information of China (English)

    Waqar Ahmad

    2009-01-01

    The effect of co-adsorption of CO molecules in the NO-CO reaction on a metal catalytic surface like Pt(001) is studied by applying the Langmuir-Hinshelwood mechanism using the Monte Carlo simulations.The system is investigated by two approaches of NO adsorption;dissociatively at two empty surface sites and molecularly at a single vacant site. The elementary steps are the same as those in the conventional Ziff-Gulari-Barshad model.With the additional reaction step of co-adsorption,the sustained production of CO2 is obtained,which has never been seen on a square lattice without introducing additional parameters.The most interesting result is the elimination of continuous second order phase transition,i.e.the production of CO2 starts as soon as the partial pressure of CO departs from zero,which is in accordance with the experimental observations,The effect of co-adsorption probability on the phase diagrams has also been studied.

  4. Catalytic control of diesel engine particulate emission: studies on model reactions over a EURO Pt-1 (Pt/SiO2) catalyst

    OpenAIRE

    Xue, E.; Seshan, K.; Ommen, van, B.; Ross, J.R.H.

    1993-01-01

    The catalytic oxidation of nitric oxide to nitrogen dioxide in the presence of sulphur dioxide over a standard Pt/SiO2 catalyst (EuroPt-1) was studied. The gas-phase reactions between nitric oxide, sulphur dioxide and oxygen were found to be insignificant under the experimental conditions concerned. The Pt/SiO2 catalyst was observed to be very active in catalyzing the reactions both of NO + O2 to NO2 and of SO2 + O2 to SO3. In the presence of sulphur dioxide, the catalytic activity for nitric...

  5. Studies on the Catalytic Activities of Cyclopalladated Ferrocenylimine in the Suzuki Reaction of Pyridylboronic Acid Derivative with Arylhalides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Li; YANG Liang-Ru; ZHAO Liang; GUI Xiu-Ling; GONG Jun-Fang; WU Yang-Jie

    2003-01-01

    @@ Heterobiaryls have important biologicalproperties. [1] The use of catalytic cross-coupling methodologies forpreparing aryl functionalized heterocycles with pharmaceutical, agrochemical, materials, and supermolecular appli-cations is a burgeoning field of study. [2

  6. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Jorge Soto-Delgado

    2012-11-01

    Full Text Available The mechanism of the intramolecular Diels–Alder (IMDA reaction of benzoquinone 1, in the absence and in the presence of three water molecules, 1w, has been studied by means of density functional theory (DFT methods, using the M05-2X and B3LYP functionals for exploration of the potential energy surface (PES. The energy and geometrical results obtained are complemented with a population analysis using the NBO method, and an analysis based on the global, local and group electrophilicity and nucleophilicity indices. Both implicit and explicit solvation emphasize the increase of the polarity of the reaction and the reduction of activation free energies associated with the transition states (TSs of this IMDA process. These results are reinforced by the analysis of the reactivity indices derived from the conceptual DFT, which show that the increase of the electrophilicity of the quinone framework by the hydrogen-bond formation correctly explains the high polar character of this intramolecular process. Large polarization at the TSs promoted by hydrogen-bonds and implicit solvation by water together with a high electrophilicity-nucleophilicity difference consistently explains the catalytic effects of water molecules.

  7. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  8. Structural studies of the catalytic reaction pathway of a hyperthermophilic histidinol-phosphate aminotransferase

    OpenAIRE

    Fernandez, F.J. (Francisco J.); Vega, M C; Lehmann, F; Sandmeier, E; Gehring, H; Christen, P; Wilmanns, M.

    2004-01-01

    In histidine biosynthesis, histidinol-phosphate aminotransferase catalyzes the transfer of the amino group from glutamate to imidazole acetol-phosphate producing 2-oxoglutarate and histidinol phosphate. In some organisms such as the hyperthermophile Thermotoga maritima, specific tyrosine and aromatic amino acid transaminases have not been identified to date, suggesting an additional role for histidinol-phosphate aminotransferase in other transamination reactions generating aromatic amino acid...

  9. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, Tabitha J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cheng, Lei [Argonne National Lab. (ANL), Argonne, IL (United States); Nimlos, Mark R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mukarakate, Calvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robichaud, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Assary, Rajeev S. [Argonne National Lab. (ANL), Argonne, IL (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  10. From Catalytic Reaction Networks to Protocells

    Science.gov (United States)

    Kaneko, Kunihiko

    2013-12-01

    In spite of recent advances, there still remains a large gape between a set of chemical reactions and a biological cell. Here we discuss several theoretical efforts to fill in the gap. The topics cover (i) slow relaxation to equilibrium due to glassy behavior in catalytic reaction networks (ii) consistency between molecule replication and cell growth, as well as energy metabolism (iii) control of a system by minority molecules in mutually catalytic system, which work as a carrier of genetic information, and leading to evolvability (iv) generation of a compartmentalized structure as a cluster of molecules centered around the minority molecule, and division of the cluster accompanied by the replication of minority molecule (v) sequential, logical process over several states from concurrent reaction dynamics, by taking advantage of discreteness in molecule number.

  11. Electrochemistry as a Tool for Study, Delvelopment and Promotion of Catalytic Reactions

    DEFF Research Database (Denmark)

    Petrushina, Irina

    of Fermi level by electrochemical production of promoters, reducing or oxidizing current carriers of the catalyst support (O2-, H+, Na+). This type1 was abbreviated as EEPP. In Capters 4-7, the results of my research are given as examples of use of electrochemistry as a tool for study, promotion and...

  12. A Catalytically Active Membrane Reactor for Fast, Highly Exothermic, Heterogeneous Gas Reactions. A Pilot Plant Study

    NARCIS (Netherlands)

    Veldsink, Jan W.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    Membrane reactors have been frequently studied because of their ability to combine chemical activity and separation properties into one device. Due to their thermal stability and mechanical strength, ceramic membranes are preferred over polymeric ones, but small transmembrane fluxes obstruct a wides

  13. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction

    Indian Academy of Sciences (India)

    Sankaranarayanan Nagarajan; Tanveer M Shaikh; Elango Kandasamy

    2015-09-01

    Synthesis of three Brønsted acid-based ionic liquids, namely, 1-ethyl-1,2,4-triazolium triflate (1a), 1-propyl-1,2,4-triazolium triflate (1b) and 1-butyl-1,2,4-triazolium triflate (1c), is described. These ionic liquids have been employed as catalysts for convenient and high-yielding one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 3,4-dihydropyrimidin-2(1H)-thiones, which are Biginelli reaction products. Advantages of the methodology are operational convenience, short reaction times, avoidance of chromatographic purification and non-production of toxic waste. Further, the catalysts are easily recovered and reused without any noticeable diminution in their catalytic activity.

  14. Quantum chemical study on the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process

    Institute of Scientific and Technical Information of China (English)

    Zheng-cheng WEN; Zhi-hua WANG; Jun-hu ZHOU; Ke-fa CEN

    2009-01-01

    Quantum chemical simulation was used to investigate the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process. Both NO-char and NO-NaYK reactions were considered as three-step processes in this calculation. Based on geometry optimizations made using the UB3LYP/6-31 G(d) method, the activation energies of NO-char and NO-Na/K reactions were calculated using the QC1SD(T)/6-3 i 1G(d, p) method; Results showed that the activation energy of the NO-Na/K reaction (107.9/82.0 kJ/mol) was much lower than that of the NO-char reaction (245.1 kJ/mol). The reactions of NaO/KO and Na2P/K2O reduced by char were also studied, and their thermodynamics were calculated using the UB3LYP/6-31G(d) method; Results showed that both Na and K can be refreshed easily and rapidly by char at high temperature during the coal rebuming process. Based on the calculations and analyses, the catalytic mechanism of Na/K on NO-char het-erogeneous reactions during the coal reburning process was clarified.

  15. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  16. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  17. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three...

  18. Studies of the Catalytic Activity and Deactivation of Calcined Layered Double Hydroxides in the Reaction of Ethanol with Propylene Oxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The reaction of ethanol with propylene oxide over calcined layered double hydroxides(CLDH) was investigated. The results show that CLDH has a good activity and a good selectivity, but the activity and the selectivity of CLDH decrease when CLDH reforms LDH- the so called "memory effect". The influence of the "memory effect" on the CLDH returning to LDH was studied by the hydration reaction. It is shown that the "memory effect" is not complete, and the decreases of the Mg/Al molar ratio of LDH and the crystallite size due to the increase of the hydration reaction time result in the drop of the activity and the selectivity.Keyworcds Ethanol, Propylene oxide, Calcined layered double hydroxide, "Memory effect", Hydration

  19. Developing soft X-ray spectroscopy for in situ characterization of nanocatalysts in catalytic reactions

    International Nuclear Information System (INIS)

    Understanding the mechanisms of catalytic and reactions calls for in situ/operando spectroscopic characterization. Here we report the developments of in situ reaction cells at the Advanced Light Source for soft X-ray spectroscopic studies of nanoparticle catalysts during the catalytic reactions. The operation of these various cells and their capabilities are illustrated with examples from the studies of Co-based nanocatalysts

  20. Basic research for nuclear energy : a study on photo-catalytic decomposition reactions of organics dissolved in water

    International Nuclear Information System (INIS)

    In an experiment on TiO2 photo-catalysis of five nitrogen-containing organic compounds, the changes of pH and total carbon contents were measured, and the dependence of their photo-catalytic characteristic upon their chemical structures were investigated. -- calculation of the effect of ionic carbon species in an aqueous solution on thermodynamic equilibrium, pH and conductivity showed a small quantity of organics could lead conductivity increase and pH reduction. -- Based on the results of photo-catalytic experiment of ethylamine, phenylhydrazine, pyridine, urea or EDTA, irradiated for 180 minutes after adsorption onto titanium dioxide for 60 minutes, relationship between nitrogen atomic charge and the first-order rate constant was as the following: R (1st - order rate constant) = δ (ε - a )1/3 + b where, ε : atomic charge of nitrogen in a molecular, δ, a and b : corrective coefficients

  1. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  2. Catalytic Friedel-Crafts reaction of aminocyclopropanes.

    Science.gov (United States)

    de Nanteuil, Florian; Loup, Joachim; Waser, Jérôme

    2013-07-19

    A Lewis acid catalyzed Friedel-Crafts reaction between donor-acceptor aminocyclopropanes and indoles and other electron-rich aromatic compounds is reported. Indole alkylation at the C3 position was generally obtained for a broad range of functional groups and substitution patterns. In the case of C3-substituted indoles, C2 alkylation was observed. The reaction gives a rapid access to gamma amino acid derivatives present in numerous bioactive molecules. PMID:23815365

  3. Identifying systematic DFT errors in catalytic reactions

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...

  4. [Lipases in catalytic reactions of organic chemistry].

    Science.gov (United States)

    Bezborodov, A M; Zagustina, N A

    2014-01-01

    Aspects of enzymatic catalysis in lipase-catalyzed reactions of organic synthesis are discussed in the review. The data on modern methods of protein engineering and enzyme modification allowing a broader range of used substrates are briefly summarized. The application of lipase in the preparation of pharmaceuticals and agrochemicals containing no inactive enantiomers and in the synthesis of secondary alcohol enantiomers and optically active amides is demonstrated. The subject of lipase involvement in the C-C bond formation in the Michael reaction is discussed. Data on the enzymatic synthesis of construction materials--polyesters, siloxanes, etc.--are presented. Examples demonstrating the application of lipase enzymatic catalysis in industry are given. PMID:25707112

  5. Kinetics of catalytic reactions-solutions manual

    CERN Document Server

    Vannice, M Albert

    2008-01-01

    Including countless exercises and worked examples, this advanced reference work and textbook will be extremely useful for the work of many industrial scientists. It teaches readers to design kinetic experiments involving heterogeneous catalysts, to characterize these catalysts, to acquire rate data, to find heat and mass transfer limitations in these data, to select reaction models, to derive rate expressions based on these models, and to assess the consistency of these rate equations.

  6. Studies on Zeolite-Supported Mo and Re Catalysts : Catalytic Performance in Methane Aromatization Reaction and Their Structural Characterization

    OpenAIRE

    Wang, Linsheng

    1999-01-01

    The main achievements in the present studies are summarized as 4 key points: 1) HZSM-5 supported Mo and Re catalysts are found to be quite active and selective for directly conyerting methane to benzene, naphthalene and C2 hydrocarbons. A great progress for methane aromatization has been made because of the discover of the two new catalysts. 2) Coke deposition on the catalyst for non-oxidative conversion of methane is solved by varying methane pressure combined with addition of CO2 in methane...

  7. Single-species reactions on a random catalytic chain

    Energy Technology Data Exchange (ETDEWEB)

    Oshanin, G [Laboratoire de Physique Theorique des Liquides, Universite Paris 6, 4 Place Jussieu, 75252 Paris (France); Burlatsky, S F [United Technologies Research Center, United Technologies Corporation, 411 Silver Lane, 129-21 East Hartford, CT (United States)

    2002-11-29

    We present an exact solution for a catalytically activated annihilation A+A {yields} 0 reaction taking place on a one-dimensional chain in which some segments (placed at random, with mean concentration p) possess special, catalytic properties. An annihilation reaction takes place as soon as any two A particles land from the reservoir onto two vacant sites at the extremities of the catalytic segment, or when any A particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another A particle. We find that the disorder-average pressure P{sup (quen)} per site of such a chain is given by P{sup (quen)} P{sup (Lan)} + {beta}{sup -1}F, where P{sup (Lan)}={beta}{sup -1} ln(1+z) is the Langmuir adsorption pressure, (z being the activity and {beta}{sup -1} the temperature), while {beta}{sup -1}F is the reaction-induced contribution, which can be expressed, under appropriate change of notation, as the Lyapunov exponent for the product of 2x2 random matrices, obtained exactly by Derrida and Hilhorst (1983 J. Phys. A: Math. Gen. 16 2641). Explicit asymptotic formulae for the particle mean density and the compressibility are also presented. (letter to the editor)

  8. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  9. Stereodivergent catalytic doubly diastereoselective nitroaldol reactions using heterobimetallic complexes.

    Science.gov (United States)

    Sohtome, Yoshihiro; Kato, Yuko; Handa, Shinya; Aoyama, Naohiro; Nagawa, Keita; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2008-06-01

    Stereodivergent construction of three contiguous stereocenters in catalytic doubly diastereoselective nitroaldol reactions of alpha-chiral aldehydes with nitroacetaldehyde dimethyl acetal using two types of heterobimetallic catalysts is described. A La-Li-BINOL (LLB) catalyst afforded anti,syn-nitroaldol products in >20:1-14:1 selectivity, and a Pd/La/Schiff base catalyst afforded complimentary syn,syn-nitroaldol products in 10:1-5:1 selectivity. PMID:18465868

  10. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    OpenAIRE

    Yu, Zhiyong; Ely, Robert J.; Morken, James P.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration a...

  11. Elementary steps of the catalytic NO{sub x} reduction with NH{sub 3}: Cluster studies on reaction paths and energetics at vanadium oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, M.; Hermann, K. [Inorganic Chemistry Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2013-12-28

    We consider different reaction scenarios of the selective catalytic reduction (SCR) of NO in the presence of ammonia at perfect as well as reduced vanadium oxide surfaces modeled by V{sub 2}O{sub 5}(010) without and with oxygen vacancies. Geometric and energetic details as well as reaction paths are evaluated using extended cluster models together with density-functional theory. Based on earlier work of adsorption, diffusion, and reaction of the different surface species participating in the SCR we confirm that at Brønsted acid sites (i.e., OH groups) of the perfect oxide surface nitrosamide, NH{sub 2}NO, forms a stable intermediate. Here adsorption of NH{sub 3} results in NH{sub 4} surface species which reacts with gas phase NO to produce the intermediate. Nitrosamide is also found as intermediate of the SCR near Lewis acid sites of the reduced oxide surface (i.e., near oxygen vacancies). However, here the adsorbed NH{sub 3} species is dehydrogenated to surface NH{sub 2} before it reacts with gas phase NO to produce the intermediate. The calculations suggest that reaction barriers for the SCR are overall higher near Brønsted acid sites of the perfect surface compared with Lewis acid sites of the reduced surface, examined for the first time in this work. The theoretical results are consistent with experimental findings and confirm the importance of surface reduction for the SCR process.

  12. Studies on Catalytic Conversion of Ethylene

    Institute of Scientific and Technical Information of China (English)

    Fuyu Liu; Chunyi Li; Xue Ding; Xinghua You

    2007-01-01

    FCC dry gas contains a large amount of ethylene.It is used by most of the refineries in China as fuel or simply burned in atmosphere.Few refineries make good use of the dry gas,so the precious ethylene resource in the dry gas is wasted.In this article,the possibility of catalytic conversion of ethylene to C3,C4,and some high molecular weight hydrocarbons in a fixed bed micro-reactor using LTB-1 catalyst,with pure ethylene as feedstock was studied.Effects of reaction temperature,reaction pressure,and feedstock flow rate,on the conversion of ethylene and the distribution of products were investigated to determine the proper reaction parameters to be used in practice.Good results indicate that this study may provide a new way of using the ethylene resource in the FCC dry gas.

  13. Catalytic and Gas-Solid Reactions Involving HCN over Limestone

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik; Dam-Johansen, Kim

    1997-01-01

    In coal-fired combustion systems solid calcium species may be present as ash components or limestone added to the combustion chamber. In this study heterogeneous reactions involving HCN over seven different limestones were investigated in a laboratory fixed-bed quartz reactor at 873-1,173 K....... Calcined limestone is an effective catalyst for oxidation of HCN. Under conditions with complete conversion of HCN at O-2 concentrations above about 5,000 ppmv the selectivity for formation of NO and N2O is 50-70% and below 5%, respectively. Nitric oxide can be reduced by HCN to N-2 in the absence of O-2...... and to N-2 and N2O in the presence of O-2. At low O-2 concentrations or low temperatures. HCN may react with CaO, forming calcium cyanamide, CaCN2. The selectivities for formation of NO and N2O from oxidation of CaCN2 is 20-25% for both species. The catalytic activity of limestone for oxidation of HCN...

  14. Synthesis and Catalytic Asymmetric Reaction of Chiral Pyridine Prolinol Derivatives

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao; ZHANG Yong-Xin; DU Da-Ming; HUA Wen-Ting

    2003-01-01

    @@ The enantioselective reduction of prochiral ketones with borane in the presence of a chiral ligand leading to enantiomerically pure secondary alcohols has received considerable attention in recent years. [1] Enantiomerically pure secondary alcohols are important intermediates for the synthesis of various other organic compounds such as halides, esters, ethers, ketones and amines. To the best of our knowledge, the use of pyridine prolinol derivatives in the reduction of ketones has not been reported so far. Thus, it should be of interest to investigate the catalytic a bility of such ligands. We have an ongoing project in the synthesis and application of chiral pyridine derivatives in chiral molecular recognition[2] and we want to evaluate the effect resulting from the introduction of a pyridinyl moiety onto the catalysts. We expect that the cooperation of pyridine unit and chiral prolinol unit in new ligands may result in unique properties for catalytic reaction.

  15. Preparation of Pt-Ru hydrophobic catalysts and catalytic activities for liquid phase catalytic exchange reaction

    International Nuclear Information System (INIS)

    Pt/C and Pt-Ru/C catalysts with different ratios of Pt to Ru were synthesized, using ethylene glycol as both the dispersant and reducing agent at 1-2 MPa by microwave-assisted method. The catalysts were characterized by XRD, TEM and XPS. The mean particle sizes of the Pt/C and Pt-Ru/C catalysts were 1.9-2.0 nm. Pt and Ru existed as Pt(0), Pt(II), Pt(IV), Ru(0) and Ru(IV) for Pt-Ru/C catalysts, respectively. The face-centered cubic structure of the active mental particles would be changed upon the addition of Ru gradually. Then polytetrafluoroethylene and carbon-supported Pt and Pt-Ru catalysts were supported on foamed nickel to obtain hydrophobic catalysts. The catalytic activity was increased for liquid phase catalytic exchange (LPCE) when uniform Pt based hydrophobic catalysts was mixed into appropriate Ru. Hydrogen isotope exchange reaction occurs between hydration layer(H2O)nH+(ads)(n≥2) and D atoms due to intact water molecules being on Pt surface for LPCE. Water molecules have a tendency to dissociate to OH(ads) and H(ads) on metal Ru surface, and there is the other reaction path for Pt-Ru binary catalysts, which is probably the main reason of the increase of the catalytic activity of the hydrophobic Pt-Ru catalyst. (authors)

  16. Recent developments in research on catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Roberto Serra

    2013-09-01

    Full Text Available Over the last years, analyses performed on a stochastic model of catalytic reaction networks have provided some indications about the reasons why wet-lab experiments hardly ever comply with the phase transition typically predicted by theoretical models with regard to the emergence of collectively self-replicating sets of molecule (also defined as autocatalytic sets, ACSs, a phenomenon that is often observed in nature and that is supposed to have played a major role in the emergence of the primitive forms of life. The model at issue has allowed to reveal that the emerging ACSs are characterized by a general dynamical fragility, which might explain the difficulty to observe them in lab experiments. In this work, the main results of the various analyses are reviewed, with particular regard to the factors able to affect the generic properties of catalytic reactions network, for what concerns, not only the probability of ACSs to be observed, but also the overall activity of the system, in terms of production of new species, reactions and matter.

  17. Session 6: Catalytic Dechlorination Reaction of Chlorinated Hydrocarbons with Water Using nano-structured Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Khaleel [United Arab Emirates Univ., Dept. of Chemistry, Al-Ain (United States)

    2004-07-01

    Herein, we report our recent results from a study on the catalytic dechlorination reactions of 1,2-dichloroethane (DCE) and carbon tetrachloride (CTC) with water using HSA-Al{sub 2}O{sub 3} as the catalyst. The obtained experimental results are explained. (O.M.)

  18. Catalytic reaction of cytokinin dehydrogenase : preference for quinones as electron acceptors

    NARCIS (Netherlands)

    Frébortová, Jitka; Fraaije, Marco W.; Galuszka, Petr; Šebela, Marek; Peč, Pavel; Hrbáč, Jan; Novák, Ondřej; Bilyeu, Kristin D.; English, James T.; Frébort, Ivo; Sebela, M.; Pec, P.; Hrbac, J.; Frebort, [No Value

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that

  19. Catalytic X-H insertion reactions based on carbenoids.

    Science.gov (United States)

    Gillingham, Dennis; Fei, Na

    2013-06-21

    Catalysed X-H insertion reactions into diazo compounds (where X is any heteroatom) are a powerful yet underutilized class of transformations. The following review will explore the historical development of X-H insertion and give an up-to-date account of the metal catalysts most often employed, including an assessment of their strengths and weaknesses. Despite decades of development, recent work on enantioselective variants, as well as applying catalytic X-H insertion towards problems in chemical biology indicate that this field has ample room for innovation. PMID:23407887

  20. Synthesis of (+)-discodermolide by catalytic stereoselective borylation reactions.

    Science.gov (United States)

    Yu, Zhiyong; Ely, Robert J; Morken, James P

    2014-09-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides an inspiration for new reaction development. A new synthesis of discodermolide employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for the alkylation of chiral enolates. Furthermore, this synthesis of discodermolide provides the first examples of the asymmetric 1,4-diboration of dienes and borylative diene-aldehyde couplings in complex-molecule synthesis.

  1. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    Science.gov (United States)

    Yu, Zhiyong; Ely, Robert J.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for chiral enolate alkylation. In addition, this synthesis of discodermolide provides the first examples of diene 1,4-diboration and borylative diene-aldehyde couplings in complex molecule synthesis. PMID:25045037

  2. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; XuMu

    2001-01-01

    Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals  ……

  3. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals

  4. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4o on Pt(111), and domains of c(4 x 2)-CO+C2H3, previously unobserved (4 x 2)-CO+3C2H3, and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely resemble

  5. Interactions Between Surface Reactions and Gas-phase Reactions in Catalytic Combustion and Their Influence on Ignition of HCCI Engine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The catalytic combustion of methane in a microchannel whose surface was coated with platinum(Pt)catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion process were analyzed at a high inlet pressure. A sensitivity analysis of the detailed mechanisms of the surface reaction of methane on Pt revealed that the most sensitive reactions affecting the heterogeneous ignition are oxygen adsorption/desorption and methane adsorption, and the most sensitive reactions affecting the homogeneous ignition are OH and H2O adsorption/desorption. The combustion process of the homogeneous charge compression ignition(HCCI) engine whose piston face was coated with Pt catalyst was simulated. The effects of catalysis and the most sensitive reactions on the ignition timing and the concentration of the main intermediate species during the HCCI engine combustion are discussed. The results show that the ignition timing of the HCCI engine can be increased by catalysis, and the most sensitive reactions affecting the ignition timing of the HCCI engine are OH and H2O adsorption/desorption.

  6. Modeling the Catalysis of Anti-Cocaine Catalytic Antibody: Competing Reaction Pathways and Free Energy Barriers

    OpenAIRE

    Pan, Yongmei; Gao, Daquan; Zhan, Chang-Guo

    2008-01-01

    The competing reaction pathways and the corresponding free energy barriers for cocaine hydrolysis catalyzed by an anti-cocaine catalytic antibody, mAb 15A10, were studied by using a novel computational strategy based on the binding free energy calculations on the antibody binding with cocaine and transition states. The calculated binding free energies were used to evaluate the free energy barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis for each ...

  7. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.

    Science.gov (United States)

    Lee, Hyosun; Nedrygailov, Ievgen I; Lee, Young Keun; Lee, Changhwan; Choi, Hongkyw; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-03-01

    Direct detection of hot electrons generated by exothermic surface reactions on nanocatalysts is an effective strategy to obtain insight into electronic excitation during chemical reactions. For this purpose, we fabricated a novel catalytic nanodiode based on a Schottky junction between a single layer of graphene and an n-type TiO2 layer that enables the detection of hot electron flows produced by hydrogen oxidation on Pt nanoparticles. By making a comparative analysis of data obtained from measuring the hot electron current (chemicurrent) and turnover frequency, we demonstrate that graphene's unique electronic structure and extraordinary material properties, including its atomically thin nature and ballistic electron transport, allow improved conductivity at the interface between the catalytic Pt nanoparticles and the support. Thereby, graphene-based nanodiodes offer an effective and facile way to approach the study of chemical energy conversion mechanisms in composite catalysts with carbon-based supports. PMID:26910271

  8. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  9. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    International Nuclear Information System (INIS)

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm−2 for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm−2 (the real surface area), and the reaction rate constant has an order of magnitude of 10−7–10−6 cm s−1. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER

  10. In-situ Scanning Transmission X-ray Microscopy of catalytic materials under reaction conditions

    Science.gov (United States)

    de Smit, Emiel; Creemer, J. Fredrik; Zandbergen, Henny W.; Weckhuysen, Bert M.; de Groot, Frank M. F.

    2009-11-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the ability to image materials under realistic conditions opens up new opportunities to study many chemical processes.

  11. In-situ Scanning Transmission X-ray Microscopy of catalytic materials under reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Emiel de; Weckhuysen, Bert M; Groot, Frank M F de [Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Creemer, J Fredrik [DIMES-ECTM, Delft University of Technology, 2600 GB Delft (Netherlands); Zandbergen, Henny W, E-mail: e.desmit@uu.n [Kavli Institute of NanoScience, National Centre for High Resolution Electron Microscopy, Delft University of Technology, 2600 GA Delft (Netherlands)

    2009-11-15

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the ability to image materials under realistic conditions opens up new opportunities to study many chemical processes.

  12. Design, construction and implementation of a packed reactor system to study the production of hydrogen by the catalytic reaction of reforming of oxygenated hydrocarbons

    International Nuclear Information System (INIS)

    total yield of hydrogen as study variables. Experimental results have determined that the best performance is obtained when performing the reforming of glycerin, exposing a surface of cobalt oxide (II) in the reactor, with an overall yield higher than 15,8% and an overall selectivity for hydrogen over methane 50,5 moles of hydrogen per mole of methane produced. The reaction system has shown to provide the conditions for overcoming the pressure drop generated by a filler composed of small particles of activated alumina (average diameter of 2 mm). The stability of the experimental data are studied, demonstrating the repeatability of the response variable, the percentage of hydrogen is directly affected by the conditions of the reaction system, mainly flow and particle size in the reactor filling. The use of a filler is preferred with similar morphology to the synthesized granule in the laboratory and a flow of 0,86 mL/min of glycerin solution to work with less fluctuations in the system, because under these conditions was obtained a relative standard deviation of 2,0% in the steady state associated data. (author)

  13. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. PMID:26823380

  14. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  15. Skeletal Isomerization and Inter-molecular Hydrogen Transfer Reactions in Catalytic Cracking

    Institute of Scientific and Technical Information of China (English)

    Gao Yongcan; Zhang Jiushun; Xie Chaogang; Long Jun

    2002-01-01

    Bimolecular hydrogen transfer and skeletal isomerization are the important secondary reac tions among catalytic cracking reactions, which affect product yield distribution and product quality.Catalyst properties and operating parameters have great impact on bimolecular hydrogen transfer and skeletal isomerization reactions. Bimolecular hydrogen transfer activity and skeletal isomerization activity of USY-containing catalysts are higher than that of ZSM-5-containing catalyst. Coke deposition on the active sites of catalyst may suppress bimolecular hydrogen transfer activity and skeletal isomerization activity of catalyst in different degrees. Short reaction time causes a decrease of hydrogen trans fer reaction, but an increase of skeletal isomerization reaction compared to cracking reaction in catalytic cracking process.

  16. Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-01-31

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  17. Catalytic hydrocarbon reactions over supported metal oxides. Final report, August 1, 1986--July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-10-20

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. The approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. The current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. During the course of these studies the author has: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by metathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  18. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  19. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  20. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    Science.gov (United States)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  1. A general catalytic reaction sequence to access alkaloid-inspired indole polycycles.

    Science.gov (United States)

    Danda, Adithi; Kumar, Kamal; Waldmann, Herbert

    2015-05-01

    A catalytic two-step reaction sequence was developed to access a range of complex heterocyclic frameworks based on biorelevant indole/oxindole scaffolds. The reaction sequence includes catalytic Pictet-Spengler cyclization followed by Au(I) catalyzed intramolecular hydroamination of acetylenes. A related cascade polycyclization of a designed β-carboline embodying a 1,5-enyne group yields the analogues of the alkaloid harmicine. PMID:25846800

  2. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  3. Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction

    Science.gov (United States)

    Kuznetsov, Sergey A.; Dubrovskiy, Anton R.; Rebrov, Evgeny V.; Schouten, Jaap C.

    2007-11-01

    The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm-2. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

  4. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  5. Deuterium–tritium catalytic reaction in fast ignition: Optimum parameters approach

    Indian Academy of Sciences (India)

    B Khanbabaei; A Ghasemizad; S Khoshbinfar

    2014-09-01

    One of the main concerns about the currentworking on nuclear power reactors is the potential hazard of their radioactive waste. There is hope that this issue will be reduced in next generation nuclear fusion power reactors. Reactors will release nuclear energy through microexplosions that occur in a mixture of hydrogen isotopes of deuterium and tritium. However, there exist radiological hazards due to the accumulation of tritium in the blanket layer. A catalytic fusion reaction of DT mixture may stand between DD and an equimolar DT approach in which the fusion process continues with a small amount of tritium seed. In this paper, we investigate the possibility of DT reaction in the fast ignition (FI) scheme. The kinematic study of the main mechanism of the energy gain–loss term, which may disturb the ignition and burn process, was performed in FI and the optimum values of precompressed fuel and proton beam driver were derived. The recommended values of fuel parameters are: areal density $ρ R ≥ 5\\cdot$cm-2 and initial tritium fraction ≤ 0.025. For the proton beam, the corresponding optimum interval values are proton average energy $3≤ E_p ≤ 10$ MeV, pulse duration $5 ≤ t_p ≤ 15$ ps and power $5≤ W_p ≤ 12 × 10^{22}$ (keV$\\cdot$cm3$\\cdot$ps-1). It was proved that under the above conditions, a fast ignition DT reaction stays in the catalytic regime.

  6. A computational study of detoxification of lewisite warfare agents by British anti-lewisite: catalytic effects of water and ammonia on reaction mechanism and kinetics.

    Science.gov (United States)

    Sahu, Chandan; Pakhira, Srimanta; Sen, Kaushik; Das, Abhijit K

    2013-04-25

    trans-2-Chlorovinyldichloroarsine (lewisite, L agent, Lew-I) acts as a blistering agents. British anti-lewisite (BAL, 2,3-dimercaptopropanol) has long been used as an L-agent antidote. The main reaction channels for the detoxification proceed via breaking of As-Cl bonds and formation of As-S bonds, producing stable, nontoxic ring product [(2-methyl-1,3,2-dithiarsolan-4-yl)methanol]. M06-2X/GENECP calculations have been carried out to establish the enhanced rate of detoxification mechanism in the presence of NH3 and H2O catalysts in both gas and solvent phases, which has been modeled by use of the polarized continuum model (PCM). In addition, natural bond orbital (NBO) and atoms in molecules (AIM) analysis have been performed to characterize the intermolecular hydrogen bonding in the transition states. Transition-state theory (TST) calculation establishes that the rates of NH3-catalyzed (2.88 × 10(-11) s(-1)) and H2O-catalyzed (2.42 × 10(-11) s(-1)) reactions are reasonably faster than the uncatalyzed detoxification (5.44 × 10(-13) s(-1)). The results obtained by these techniques give new insight into the mechanism of the detoxification process, identification and thermodynamic characterization of the relevant stationary species, the proposal of alternative paths on modeled potential energy surfaces for uncatalyzed reaction, and the rationalization of the mechanistic role played by catalysts and solvents. PMID:23540856

  7. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  8. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion;

    2016-01-01

    of experiments were performed to study catalytic activity and effect of sulfur poisoning: (i) CH4 and CO2 dissociation; (ii) biogas (60% CH4 and 40% CO2) temperature-programmed reactions (TPRxn); and (iii) steady-state biogas reforming reactions followed by postmortem catalyst characterization by temperature......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...

  9. Quantitative study of catalytic activity and catalytic deactivation of Fe–Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process

    OpenAIRE

    Pirard, Sophie; Heyen, Georges; Pirard, Jean-Paul

    2010-01-01

    The catalytic deactivation during multi-walled carbon nanotube (MWNT) synthesis by the CCVD process and the influence of hydrogen on it were quantified. Initial specific reaction rate, relative specific productivity and catalytic deactivation were studied. Carbon source was ethylene, and a bimetallic iron–cobalt catalyst supported on alumina was used. The catalytic deactivation was modeled by a decreasing hyperbolic law, reflecting the progressive accumulation of amorphous carbon on active si...

  10. An ab initio study on the chemical reactions in the Cl-ClO catalytic cycle%Cl-ClO催化循环圈的从头算研究

    Institute of Scientific and Technical Information of China (English)

    毛连港; 邴单; 赵永芳; 李根全; 李新营; 蒿凤有; 刘凤丽

    2006-01-01

    One of processes of the ozone depletion in the polar stratosphere is investigated by using an ab initio calculation at the B3LYP/6-311+G (3df) and the G2 levels. The calculated result obviously supported the theory on destroying ozone mechanism of the Cl-ClO catalytic cycle, and explained basic reason of the destroying ozone from the energy point of view. The reactional energy, the enthalpy of formation, and relative Gibbs free energy of the reactions in the ClClO catalytic cycle are calculated exactly, and provided thermodynamics quantities for the reactions in the Cl-ClO catalytic cycle.%采用分子轨道从头算方法,在B3LYP/6-311+G(3df)和G2水平上研究了极地平流层臭氧损耗的一个基本过程.计算结果明显支持Cl-ClO催化循环圈机理,并且从能量角度解释了了臭氧破坏的基本原因.还对循环圈中各个反应的反应能,生成焓,相对吉布斯自由能做了计算,计算结果相互协调都说明了Cl-ClO催化循环圈破坏臭氧机理的正确性.

  11. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    Science.gov (United States)

    García, Andrés; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-01

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A →Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A .

  12. Effect of diluent and reaction parameter on selective oxidation of propane over MoVTeNb catalyst using nanoflow catalytic reactor

    Institute of Scientific and Technical Information of China (English)

    Restu Kartiko Widi; Sharifah Bee Abdul Hamid; Robert Schl(o)gl

    2008-01-01

    The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts.

  13. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl;

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac......For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling...... of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided in an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore both NO and NH3...... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  14. Process of forming catalytic surfaces for wet oxidation reactions

    Science.gov (United States)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  15. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  16. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    -ray Photoelectron Electron Spectroscopy (XPS) and in situ Transmission Electron Microscopy (TEM). The surface composition of the nanoparticles changes reversibly as the nanoparticles exposed to cycles of high-pressure oxidation and reduction (200 mbar). Furthermore, the presence of metallic Zn is observed by XPS...... process. The Ru(0 1 54) surface is studied by means of Scanning Tunneling Microscopy (STM), Temperature Programmed Desoprtion (TPD), and Oxygen Titration (OT) experiments. Real space evidence of periodic features on every second monatomic step is observed via STM when the a clean ruthenium surface...... is exposed to 5·10-10 torr CO in a temperature range from 700 K to 400 K. These features are assigned to oxygen atoms from dissociated CO. After the dissociation experiment, the carbon coverage on the surface is measured by OT and is found to be equivalent with the theoretical step density of the Ru(0 1 54...

  17. 四氯化硅催化氢化合成三氯氢硅机理研究%First Principles Study on the Reaction Mechanism of Catalytic Hydrogenation Process of Silicon Tetrachloride

    Institute of Scientific and Technical Information of China (English)

    岳晓宁; 龙雨谦; 黄韬; 蒋炜; 陈建钧; 梁斌

    2013-01-01

    针对四氯化硅催化氢化过程采用第一性原理机理对其进行模拟研究,结果表明:没有催化剂时,SiCl4与H2反应能垒为464.45 kJ/mol,反应能量为74.94 kJ/mol,与热力学计算结果71.85 kJ/mol一致.负载在HZSM-5分子筛上的氯化钡可催化四氯化硅氢化反应,其最具催化活性表面为(111)面;H2在BaCl2(111)面上表现排斥性;SiCl4表现为吸附性,可在BaCl2(111)表面稳定吸附并生成·SiCl3自由基,过程吸附能为448.33 kJ/mol;在催化剂BaCl2存在条件下,SiCl4与H2反应为自由基反应,反应步骤能垒为400.23 kJ/mol;氢化过程能垒降为184.97kJ/mol;催化氢化反应过程所需能量为64.20 kJ/mol.催化氢化过程反应条件相对无催化剂过程更为温和.%The treatment of silicon tetrachloride is the key problem for the development of polysilicon industries.Catalytic hydrogenation process is a promising alternative technology for current industrial process.However,the reaction mechanism of this process is not clear yet.In this research,hydrogenation process of silicon tetrachloride with and without catalyst was studied to determine the reaction mechanism with the first principle calculation.The calculation demonstrates that the thermo-hydrogenation without catalyst is a molecular reaction.The reaction energy of thermo-hydrogenation reaction of SiCl4 is 74.94 kJ/mol and the energy barrier is 464.45 kJ/mol,which is agreement with the results of thermo dynamic calculation.Employing barium chlorideloaded on the HZSM-5 zeolite,as catalyst,the hydrogenation process transfers into radical reactions.The best active crystal plane of BaCl2 is surface (111).Hydrogen molecular is repulsed by surface (111),meanwhile SiCl4 molecular can be adsorbed steadily to generate silicon trichloridefree radical · SiCl3,and adsorbed chloride.Then,the free radical · SiCl3 reacts with H2 to produce trichlorosilane and free hydrogen atom.The latter combines with the adsorbed chloride atom to yield

  18. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  19. Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions

    Energy Technology Data Exchange (ETDEWEB)

    Balomenou, S.; Tsiplakides, D.; Katsaounis, A.; Vayenas, C.G. [Department of Chemical Engineering, University of Patras, Caratheodory 1 St., GR-26504 Patras (Greece); Thiemann-Handler, S.; Cramer, B. [Robert Bosch GmbH Stuttgart, FV/FLC, PF 10 60 50, 70 049 Stuttgart (Germany); Foti, G.; Comninellis, Ch. [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2004-09-28

    A novel dismantlable monolithic-type electrochemically promoted catalytic reactor and 'smart' sensor-catalytic reactor unit has been constructed and tested for hydrocarbon oxidation and NO reduction by C{sub 2}H{sub 4} in presence of O{sub 2}. In this novel reactor, thin (=20-40nm) porous catalyst films made of two different materials are sputter-deposited on opposing surfaces of thin (0.25mm) parallel solid electrolyte plates supported in the grooves of a ceramic monolithic holder and serve as sensor or electropromoted catalyst elements. Using Rh/YSZ/Pt-type catalyst elements, the 22-plate reactor operated with apparent Faradaic efficiency exceeding 25 achieving near complete fuel and NO conversion at 300C in presence of up to 1.1% O{sub 2} in the feed at gas flow rates exceeding 1.3l/min. The metal catalyst dispersion was of the order of at least 15%. The novel reactor design requires only two external electrical connections and permits easy practical utilization of the electrochemical promotion of catalysis.

  20. Catalytic activities enhanced by abundant structural defects and balanced N distribution of N-doped graphene in oxygen reduction reaction

    Science.gov (United States)

    Bai, Xiaogong; Shi, Yantao; Guo, Jiahao; Gao, Liguo; Wang, Kai; Du, Yi; Ma, Tingli

    2016-02-01

    N-doped graphene (NG) is a promising candidate for oxygen reduction reaction (ORR) in the cathode of fuel cells. However, the catalytic activity of NG is lower than that of commercial Pt/C in alkaline and acidic media. In this study, NG samples were obtained using urea as N source. The structural defects and N distribution in the samples were adjusted by regulating the pyrolysis temperature. The new NG type exhibited remarkable catalytic activities for ORR in both alkaline and acidic media.

  1. Mass transfer during catalytic reaction in electroosmotically driven flow in a channel microreactor

    Science.gov (United States)

    Sharma, Himanshu; Vasu, Nadapana; de, Sirshendu

    2011-05-01

    Analytical solution for concentration profile in a microreactor is obtained during heterogeneous catalytic reaction. Reaction occurs in rectangular microchannel with catalyst-coated walls. Flow is induced electroosmotically in the microchannel. A general solution is obtained for first order reaction using a power series solution. Profiles of conversion, cup-mixing concentration of reactant, etc. and variation of Sherwood number is analyzed as function of operating variables. Analytical solution is compared with numerical results.

  2. Study and Analysis on Naphtha Catalytic Reforming Reactor Simulation

    Institute of Scientific and Technical Information of China (English)

    Liang Ke min; Song Yongji; Pan Shiwei

    2004-01-01

    A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reaction characteristics based on idealizing the complex naphtha mixture to represent the paraffin, naphthene, and aromatic groups with individual compounds. The simulation results based on above models agree very well with actual operating data of process unit.

  3. A study on naphtha catalytic reforming reactor simulation and analysis

    Institute of Scientific and Technical Information of China (English)

    LIANG Ke-min; GUO Hai-yan; PAN Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  4. The catalytic reaction mechanism of drosophilid alcohol dehydrogenases

    Directory of Open Access Journals (Sweden)

    Imin Wushur

    2015-03-01

    Full Text Available The present review describes the current knowledge about the reaction mechanism of drosophilid alcohol dehydrogenases (DADH, a member of the short chain dehydrogenase/reductase (SDR superfamily. Included is the binding order of the substrates to the enzyme, rate limiting steps, stereochemistry of the reaction, active site topology, role of important amino acids and water molecules in the reaction and pH dependence of kinetic coefficients. We focus on the contribution from steady state kinetics where alternative substrates, dead end and product inhibitors, isotopes and mutated DADHs have been used as well as on the contributions from X-ray crystallography, NMR and theoretical calculations. Furthermore, we also raise some open questions in order to fully understand the reaction mechanism of this enzyme.

  5. SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Jacinto [Queen' s University, Belfast; Fernandes, Daniel [University of Aveiro, Portugal; Aiouache, Farid [Queen' s University, Belfast; Goguet, Alexandre [Queen' s University, Belfast; Hardacdre, Christopher [Queen' s University, Belfast; Lundie, David [Hiden Analytical Ltd; Naeem, Wasif [Queen' s University, Belfast; Partridge Jr, William P [ORNL; Stere, Cristina [Queen' s University, Belfast

    2010-01-01

    Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

  6. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  7. Structural and spectroscopic study of reactions between chelating zinc-binding groups and mimics of the matrix metalloproteinase and disintegrin metalloprotease catalytic sites: the coordination chemistry of metalloprotease inhibition.

    Science.gov (United States)

    He, Hongshan; Puerta, David T; Cohen, Seth M; Rodgers, Kenton R

    2005-10-17

    To understand the coordination chemistry of zinc-binding groups (ZBGs) with catalytic zinc centers in matrix metalloproteinases (MMPs) and disintegrin metalloproteases (ADAMs), we have undertaken a model compound study centered around tris(3,5-methylphenypyrazolyl)hydroboratozinc(II) hydroxide and aqua complexes ([Tp(Ph,Me)ZnOH] and [Tp(Ph,Me)Zn(OH2)]+, respectively, wherein (Tp(Ph,Me))- = hydrotris(3,5-methylphenylpyrazolyl)borate) and the products of their reactions with a class of chelating Schiff's base ligands. The results show that the protic ligands, HL (HL = N-propyl-1-(5-methyl-2-imidazolyl)methanimine (5-Me-4-ImHPr), N-propyl-1-(4-imidazolyl)methanimine (4-ImHPr), and N-propyl-1-(2-imidazolyl)methanimine (2-ImHPr)), react with [Tp(Ph,Me)ZnOH] and give products with the general formula [Tp(Ph,Me)ZnL], whereas reactions with neutral aprotic ligands, L' (L' = N-propyl-1-(1-methyl-2-imidazolyl)methanimine (1-Me-2-ImPr) and N-propyl-1-(2-thiazolyl)methanimine (2-TaPr)), yield the corresponding [Tp(Ph,Me)ZnL]+ complexes. Although the phenol group of N-propyl-1-(2-hydroxyphenyl)methanimine (2-HOPhPr) is protic, this ligand forms a cationic four-coordinate complex containing an intraligand hydrogen bond. The solid-state structures of these complexes were determined by single-crystal X-ray diffraction, and the results showed that the protic ligands form five-membered chelates of the Zn2+ ion. All ligands displace the aqua ligand in [Tp(Ph,Me)Zn(OH2)]+ to yield complexes having 1H NMR spectra consistent with the formation of five membered chelates. The 1H resonance frequencies of the chelating ligands typically shift upfield upon coordination to the zinc center, due to ring current effects from the pendant phenyl groups of the (Tp(Ph,Me))- ligand. Thus, the 1H NMR spectra provide a convenient and sensitive means of tracking the solution reactions by titration. The resulting series of spectra showed that the stabilities of the chelates in solution depend on the

  8. Side reactions in the selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Madia, G.; Koebel, M.; Elsener, M.; Wokaun, A.

    2002-03-01

    The main and the side reactions of the SCR reaction with ammonia over TiO{sub 2}-WO{sub 3}-V{sub 2}O{sub 5} catalysts have been investigated using synthetic gas mixtures matching the composition of diesel exhaust. At high temperatures the selective catalytic oxidation of ammonia (SCO) and the formation of nitrous oxide compete with the SCR reaction. Water strongly inhibits the SCO of ammonia and the formation of nitrous oxide thus increasing the selectivity of the SCR reaction. However, water also inhibits SCR activity, most pronounced at low temperatures. (author)

  9. Modular, Catalytic Enantioselective Construction of Quaternary Carbon Stereocenters by Sequential Cross-Coupling Reactions.

    Science.gov (United States)

    Potter, Bowman; Edelstein, Emma K; Morken, James P

    2016-07-01

    The catalytic Suzuki-Miyaura cross-coupling with chiral γ,γ-disubstituted allylboronates in the presence of RuPhos ligand occurs with high regioselectivity and enantiospecificity, furnishing nonracemic compounds with quaternary centers. Mechanistic experiments suggest that the reaction occurs by transmetalation with allyl migration, followed by rapid reductive elimination.

  10. Process Intensification. Continuous Two-Phase Catalytic Reactions in a Table-Top Centrifugal Contact Separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML

    2009-01-01

    Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously

  11. In-situ scanning transmission X-ray microscopy of catalytic materials under reaction conditions

    NARCIS (Netherlands)

    de Smit, E.; Creemer, J.F.; Zandbergen, H.W.; Weckhuysen, B.M.; de Groot, F.M.F.

    2009-01-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant

  12. Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.

    Science.gov (United States)

    Paspek, Stephen C.; And Others

    1980-01-01

    Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)

  13. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  14. Nitrated Confined Imidodiphosphates Enable a Catalytic Asymmetric Oxa-Pictet-Spengler Reaction.

    Science.gov (United States)

    Das, Sayantani; Liu, Luping; Zheng, Yiying; Alachraf, M Wasim; Thiel, Walter; De, Chandra Kanta; List, Benjamin

    2016-08-01

    The development of a highly enantioselective catalytic oxa-Pictet-Spengler reaction has proven a great challenge for chemical synthesis. We now report the first example of such a process, which was realized by utilizing a nitrated confined imidodiphosphoric acid catalyst. Our approach provides substituted isochroman derivatives from both aliphatic and aromatic aldehydes with high yields and excellent enantioselectivities. DFT calculations provide insight into the reaction mechanism. PMID:27457383

  15. The Self-catalytic Esterification Reaction of O-Phosphoryl Serine Derivative

    Institute of Scientific and Technical Information of China (English)

    Jin Tang DU; Yan Mei LI; Zhong Zhou CHEN; Shi Zhong LUO; Yu Fen ZHAO

    2005-01-01

    O-Phosphoryl serine derivative can perform self-catalytic esterification reaction in the mixture of CH3OH and CHCl3 at the room temperature. The phosphoryl group participation was the key step of the esterification. This type of reactions were proposed through an intermediate of mixed phosphoric-carboxylic anhydride that might provide a clue to the function of the phosphoryl group in the phosphorylated enzymes and in the prebiotic synthesis of protein.

  16. In-situ scanning transmission X-ray microscopy of catalytic materials under reaction conditions

    OpenAIRE

    E. Smit; Creemer, J.F.; Zandbergen, H. W.; Weckhuysen, B. M.; Groot, F.M.F. de

    2009-01-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the...

  17. Direct Catalytic Asymmetric Mannich-Type Reaction of α- and β-Fluorinated Amides.

    Science.gov (United States)

    Brewitz, Lennart; Arteaga, Fernando Arteaga; Yin, Liang; Alagiri, Kaliyamoorthy; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-12-23

    The last two decades have witnessed the emergence of direct enolization protocols providing atom-economical and operationally simple methods to use enolates for stereoselective C-C bond-forming reactions, eliminating the inherent drawback of the preformation of enolates using stoichiometric amounts of reagents. In its infancy, direct enolization relied heavily on the intrinsic acidity of the latent enolates, and the reaction scope was limited to readily enolizable ketones and aldehydes. Recent advances in this field enabled the exploitation of carboxylic acid derivatives for direct enolization, offering expeditious access to synthetically versatile chiral building blocks. Despite the growing demand for enantioenriched fluorine-containing small molecules, α- and β-fluorinated carbonyl compounds have been neglected in direct enolization chemistry because of the competing and dominating defluorination pathway. Herein we present a comprehensive study on direct and highly stereoselective Mannich-type reactions of α- and β-fluorine-functionalized 7-azaindoline amides that rely on a soft Lewis acid/hard Brønsted base cooperative catalytic system to guarantee an efficient enolization while suppressing undesired defluorination. This protocol contributes to provide a series of fluorinated analogs of enantioenriched β-amino acids for medicinal chemistry. PMID:26652911

  18. Reaction kinetics study of coal catalytic gasification in lab scale fixed bed reactor%小型固定床煤催化气化动力学研究

    Institute of Scientific and Technical Information of China (English)

    高攀; 顾松园; 钟思青; 金永明; 曹勇

    2015-01-01

    K2CO3 catalytic gasification of Neimeng brown coal was studied in a fixed bed reactor. The effects of catalyst loading, temperature, gasification agents, such as H2O and H2, and partial pressure of H2O on the carbon conversion and reaction rate were investigated. The results showed that K2CO3 could accelerated the rate of coal-steam gasification obviously, and the carbon conversion reached 70% with the addition of only 10% K2CO3 by mass at 700℃, while H2 inhibited the coal-steam gasification seriously. A kinetic reaction equation was proposed based on an n order and Langmuir-Hinshewood expression by evaluating the carbon conversion behavior. The gasification activity significantly increased with steam partial pressure. In the n order expression, the order nwas 0.87 and the activation energy was 169.2kJ/mol, and, in the L-H expression, the activation energy was 121.9kJ/mol.%以K2CO3和内蒙褐煤为研究对象,在小型固定床上考察了催化剂负载量、温度,氢气以及水蒸气分压对碳转化率和气化反应速率的影响。结果表明,K2CO3对煤焦-水蒸气气化反应有明显的催化作用,700℃,当添加10%的K2CO3,碳的转化率为70%,氢气的含量对煤焦-水蒸气的反应有明显的抑制作用,并采用n级速率方程和Langmuir-Hinshelwood速率方程考察了水蒸气分压的影响,分压提高,煤焦-水蒸气气化反应活性提高,采用n级速率方程得到煤-水蒸气气化反应级数为0.87,活化能为169.2kJ/mol;采用L-H方程得到活化能为121.9kJ/mol。

  19. Catalytic synthesis of 2-methylpyrazine over Cr-promoted copper based catalyst via a cyclo-dehydrogenation reaction route

    Indian Academy of Sciences (India)

    Fangli Jing; Yuanyuan Zhang; Shizhong Luo; Wei Chu; Hui Zhang; Xinyu Shi

    2010-07-01

    The cyclo-dehydrogenation of ethylene diamine and propylene glycol to 2-methylpyrazine was performed under the atmospheric conditions at 380°C. The Cr-promoted Cu-Zn/Al2O3 catalysts were prepared by impregnation method and characterized by ICP-AES, N2 adsorption/desorption, XRD, XPS, N2O chemisorption, TPR and NH3-TPD techniques. The amorphous chromium species existing in Cu-Zn-Cr/Al2O3 catalyst enhanced the dispersion of active component Cu, promoted the reduction of catalyst. Furthermore, the catalytic performance was significantly improved. The acidity of the catalyst played an important role in increasing the 2-MP selectivity. To optimize the reaction parameters, influences of different chromium content, reaction temperature, liquid hourly space velocity (LHSV), reactants molar ratio and time on stream on the product pattern were studied. The results demonstrated that addition of chromium promoter revealed satisfying catalytic activity, stability and selectivity of 2-methylpyrazine.

  20. Catalytic Activity of Iridium Dioxide With Different Morphologies for Oxygen Reduction Reaction

    Institute of Scientific and Technical Information of China (English)

    WANG Guangjin; HUANG Fei; XU Tian; YU Yi; CHENG Feng; ZHANG Yue; PAN Mu

    2015-01-01

    Iridium dioxide with different morphologies (nanorod and nanogranular) is successfully prepared by a modiifed sol-gel and Adams methods. The catalytic activity of both samples for oxygen reduction reaction is investigated in an alkaline solution. The electrochemical results show that the catalytic activity of the nanogranular IrO2 sample is superior to that of the nanorod sample due to its higher onset potential for oxygen reduction reaction and higher electrode current density in low potential region. The results of Koutecky-Levich analysis indicate that the oxygen reduction reaction catalyzed by both samples is a mixture transfer pathway. It is dominated by four electron transfer pathway for both samples in high overpotential area, while it is controlled by two electron transfer process for both samples in low overpotential area.

  1. Catalytic Systems Containing p-Toluenesulfonic Acid for the Coupling Reaction of Formaldehyde and Methyl Formate

    Institute of Scientific and Technical Information of China (English)

    Kebing Wang; Jie Yao; Yue Wang; Gongying Wang

    2007-01-01

    The coupling reaction of formaldehyde (FA) and methyl formate (MF) to form methyl glycolate (MG) and methyl methoxy acetate(MMAc),catalyzed by p-toluenesulfonic acid(p-TsOH) as well as assisted by different kinds of solvents or Ni-containing compounds.had been investigated.The results showed that when the reaction was carried out at 140℃ with a molar ratio of FA to MF of 0.65:1,molar fraction of p-TsOH to total feedstock of 11.0%,and reaction time of 3 h,the yield of MG and MMAc Was 31.1% and 17.1%.respectively.p-TsOH catalyzed the coupling reaction by means of the synergistic catalysis of protonic acidity and soft basicity.Adding extra solvents to the reaction system Was unfavorable for the reaction.The composite catalytic system consisting of p-TsOH and NiX2(X=Cl,Br,I)exhibited a high catalytic performance for the coupling reaction,and NiX2 acted as a promoter in the reaction,whose promotion for the catalysis increased in the following order:NiCl2<NiBr2<NiI2.The present system is less corrosive when compared with the previous system,in which strong inorganic liquid acids were used as catalysts.

  2. CFD modeling of reaction and mass transfer through a single pellet:Catalytic oxidative coupling of methane

    Institute of Scientific and Technical Information of China (English)

    Siavash Seyednej adian; Nakisa Yaghobi; Ramin Maghrebi; Leila Vafajoo

    2011-01-01

    In this study a mathematical model of a small scale single pellet for the oxidative coupling of methane (OCM) over titanite pervoskité isdeveloped.The method is based on a computational fluid dynamics (CFD) code which known as Fluent may be adopted to model the reactions that take place inside the porous catalyst pellet.The steady state single pellet model is coupled with a kinetic model and the intra-pellet concentration profiles of species are provided.Subsequent to achieving this goal,a nonlinear reaction network consisting of nine catalytic reactions and one gas phase reaction as an external program is successfully implemented to CFD-code as a reaction term in solving the equations.This study is based on the experimental design which is conducted in a differential reactor with a Sn/BaTiO3 catalyst (7-8 mesh) at atmospheric pressure,GHSV of 12000 h-1,ratio of methane to oxygen of 2,and three different temperatures of 1023,1048 and 1073 K.The modeling results such as selectivity and conversion at the pellet exit are in good agreement with the experimental data.Therefore,it is suggested that to achieve high yield in OCM process the modeling of the single pellet should be considered as the heart of catalytic fixed bed reactor.

  3. Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery.

    Science.gov (United States)

    Zhu, Jinzhen; Wang, Fan; Wang, Beizhou; Wang, Youwei; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-10-28

    Unraveling the descriptor of catalytic activity, which is related to physical properties of catalysts, is a major objective of catalysis research. In the present study, the first-principles calculations based on interfacial model were performed to study the oxygen evolution reaction mechanism of Li2O2 supported on active surfaces of transition-metal compounds (TMC: oxides, carbides, and nitrides). Our studies indicate that the O2 evolution and Li(+) desorption energies show linear and volcano relationships with surface acidity of catalysts, respectively. Therefore, the charging voltage and desorption energies of Li(+) and O2 over TMC could correlate with their corresponding surface acidity. It is found that certain materials with an appropriate surface acidity can achieve the high catalytic activity in reducing charging voltage and activation barrier of rate-determinant step. According to this correlation, CoO should have as active catalysis as Co3O4 in reducing charging overpotential, which is further confirmed by our comparative experimental studies. Co3O4, Mo2C, TiC, and TiN are predicted to have a relatively high catalytic activity, which is consistent with the previous experiments. The present study enables the rational design of catalysts with greater activity for charging reactions of Li-O2 battery.

  4. Nanomaterials in Catalysis: Study of Model Reactions.

    OpenAIRE

    Chimentão, Ricardo José

    2007-01-01

    Metal nanoparticles catalysts considered in this work included systems consistingessentially of a single metal component (Ag) and bimetallic system. Bimetallic systemsof miscible (Au-Cu and Au-Ag) and immiscible components (Ir-Au) have beeninvestigated. The study of these materials with chemical probes including chemisorptionand selected catalytic reaction, in conjunction with physical and chemical methods suchas electron microscopy, X-ray diffraction (XRD), temperature programmed reduction(T...

  5. Study on the adsorptive catalytic voltammetry of aloe-emodin at a carbon paste electrode

    Institute of Scientific and Technical Information of China (English)

    LI; Ju'nan; GAO; Peng; LI; Xiangling; YAN; Zhihong; MAO; Xu

    2005-01-01

    A new catalytic voltammetric method for the determination of anthraqunone medicines at a carbon paste electrode (CPE) was described for the first time. The mechanism of the catalytic reaction was investigated by using linear sweep voltammetry, cyclic voltammetry, constant potential electrolysis and so on. The experiment results indicate that aloe-emodin was efficiently accumulated at a CPE by adsorption. In the following potential scan, aloe-emodin was reduced to homologous anthrahydroquinone compound, then the compound was immediately oxidized to aloe-emodin by the dissolved oxygen, and the aloe-emodin was again reduced at the CPE. As a result, a cyclic catalytic reaction was established. But a reversible redox reaction of aloe-emodin can only be observed at a mercury electrode, no catalytic reaction occurs there. A sensitive catalytic voltammetric peak of aloe-emodin was obtained at about -0.60 V (vs. SCE) in 0.56 mol/L NH3-NH4Cl buffer (pH 8.9). The proposed method was applied to the determination of aloe-emodin in the Radix Rhei with satisfactory results. The determination results were in good agreement with reference values obtained by the HPLC. The adsorptive catalytic voltammetry for the determination of organic compound at CPE, chemically modified electrode and other solid electrodes could be significant in the studies on pharmacology, pharmacodynamics, toxicity of medicine, clinical medicine and biochemistry.

  6. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  7. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    Science.gov (United States)

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes. PMID:27396413

  8. Lacunary Keggin Polyoxotungstate as Reaction-controlled Phasetransfer Catalyst for Catalytic Epoxidation of Olefins

    Institute of Scientific and Technical Information of China (English)

    LI,Ming-Qiang(李明强); JIAN,Xi-Gao(蹇锡高); YANG,Yong-Qiang(杨永强)

    2004-01-01

    A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as the oxidant.Infrared spectra were used to analyze the behavior of the phase transfer of catalyst. In this system, the catalyst not only can act as homogeneous catalyst but also as heterogeneous catalyst to be easily filtered and reused. The epoxidation reaction is clean and exhibits high conversion and selectivity as well as excellent catalyst stability.

  9. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my [Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  10. Continuous-flow stereoselective organocatalyzed Diels-Alder reactions in a chiral catalytic "homemade" HPLC column.

    Science.gov (United States)

    Chiroli, Valerio; Benaglia, Maurizio; Cozzi, Franco; Puglisi, Alessandra; Annunziata, Rita; Celentano, Giuseppe

    2013-07-19

    Continuous-flow organocatalyzed Diels-Alder reactions have been performed with excellent enantioselectivity for the first time in a chiral "homemade" HPLC column, packed with silica on which a MacMillan catalyst has been supported by a straightforward immobilization procedure. The versatility of the system was also proven by running with the same column continuous-flow stereoselective reactions with three different substrates, showing that the catalytic reactor may efficiently work in continuo for more than 150 h; the regeneration of the HPLC column was also demonstrated, allowing to further extend the activity of the reactor to more than 300 operating hours. PMID:23808663

  11. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  12. NO-CO-O2 Reaction on a Metal Catalytic Surface using Eley-Rideal Mechanism

    Institute of Scientific and Technical Information of China (English)

    Waqar Ahmad

    2008-01-01

    Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley-Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir-Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.

  13. Accelerated Catalytic Fenton Reaction with Traces of Iron: An Fe-Pd-Multicatalysis Approach.

    Science.gov (United States)

    Georgi, Anett; Velasco Polo, Miriam; Crincoli, Klara; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2016-06-01

    An accelerated catalytic Fenton (ACF) reaction was developed based upon a multicatalysis approach, facilitating efficient contaminant oxidation at trace levels of dissolved iron. Beside the Fe(II)/H2O2 catalyst/oxidant pair for production of OH-radicals, the ACF system contains Pd/H2 as catalyst/reductant pair for fast reduction of Fe(III) back to Fe(II) which accelerates the Fenton cycle and leads to faster contaminant degradation. By this means, the concentration of the dissolved iron catalyst can be reduced to trace levels (1 mg L(-1)) below common discharge limits, thus eliminating the need for iron sludge removal, which is one of the major drawbacks of conventional Fenton processes. ACF provides fast degradation of the model contaminant methyl tert-butyl ether (MTBE, C0 = 0.17 mM) with a half-life of 11 min with 1 mg L(-1) dissolved iron, 500 mg L(-1) H2O2, 5 mg L(-1) Pd (as suspended Pd/Al2O3 catalyst) and 0.1 MPa H2, pH 3. The effects of pH, H2 partial pressure and H2O2 concentration on MTBE degradation rates were studied. Results on kinetic deuterium isotope effect and quenching studies are in conformity with OH-radicals as main oxidant. The heterogeneous Pd/Al2O3 catalyst was reused within six cycles without significant loss in activity. PMID:27167833

  14. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  15. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  16. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor;

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt...... by the electrochemical pumping of H+ from the catalyst, i.e. at positive polarization. FTS demonstrated the highest methane production rate (11% of CO conversion) at zero fuel cell voltage.......The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt....../Ru)//PBI(H3PO4)/H-2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C-2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H-2 partial pressures. In both cases the catalytic...

  17. Catalytic activities of platinum nanotubes: a density functional study

    Science.gov (United States)

    Mukherjee, Prajna; Gupta, Bikash C.; Jena, Puru

    2015-10-01

    In this work we investigate the catalytic properties of platinum nanotubes using density functional theory based calculations. In particular, we study the dissociation of hydrogen and oxygen molecules as well as oxidation of CO molecules. The results indicate that platinum nanotubes have good catalytic properties and can be effectively used in converting CO molecule to CO2.

  18. Catalytic Transfer Hydrogenation with a Methandiide-Based Carbene Complex: An Experimental and Computational Study.

    Science.gov (United States)

    Weismann, Julia; Gessner, Viktoria H

    2015-11-01

    The transfer hydrogenation (TH) reaction of ketones with catalytic systems based on a methandiide-derived ruthenium carbene complex was investigated and optimised. The complex itself makes use of the noninnocent behaviour of the carbene ligand (M=CR2 →MH-C(H)R2 ), but showed only moderate activity, thus requiring long reaction times to achieve sufficient conversion. DFT studies on the reaction mechanism revealed high reaction barriers for both the dehydrogenation of iPrOH and the hydrogen transfer. A considerable improvement of the catalytic activity could be achieved by employing triphenylphosphine as additive. Mechanistic studies on the role of PPh3 in the catalytic cycle revealed the formation of a cyclometalated complex upon phosphine coordination. This ruthenacycle was revealed to be the active species under the reaction conditions. The use of the isolated complex resulted in high catalytic activities in the TH of aromatic as well as aliphatic ketones. The complex was also found to be active under base-free conditions, suggesting that the cyclometalation is crucial for the enhanced activity. PMID:26403918

  19. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N2O

    International Nuclear Information System (INIS)

    The catalytic supports Al2O3, La2O3 and Al2O3-La2O3 were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al2O3, La2O3 and Al2O3-La2O3 were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N2O. (Author)

  20. TiO2-sludge carbon enhanced catalytic oxidative reaction in environmental wastewaters applications.

    Science.gov (United States)

    Athalathil, Sunil; Erjavec, Boštjan; Kaplan, Renata; Stüber, Frank; Bengoa, Christophe; Font, Josep; Fortuny, Agusti; Pintar, Albin; Fabregat, Azael

    2015-12-30

    The enhanced oxidative potential of sludge carbon/TiO2 nano composites (SNCs), applied as heterogeneous catalysts in advanced oxidation processes (AOPs), was studied. Fabrification of efficient SNCs using different methods and successful evaluation of their catalytic oxidative activity is reported for the first time. Surface modification processes of hydrothermal deposition, chemical treatment and sol-gel solution resulted in improved catalytic activity and good surface chemistry of the SNCs. The solids obtained after chemical treatment and hydrothermal deposition processes exhibit excellent crystallinity and photocatalytic activity. The highest photocatalytic rate was obtained for the material prepared using hydrothermal deposition technique, compared to other nanocomposites. Further, improved removal of bisphenol A (BPA) from aqueous phase by means of catalytic ozonation and catalytic wet air oxidation processes is achieved over the solid synthesized using chemical treatment method. The present results demonstrate that the addition of TiO2 on the surface of sludge carbon (SC) increases catalytic oxidative activity of SNCs. The latter produced from harmful sludge materials can be therefore used as cost-effective and efficient sludge derived catalysts for the removal of hazardous pollutants. PMID:26223014

  1. Catalytic Activity of Dual Metal Cyanide Complex in Multi-component Coupling Reactions

    Institute of Scientific and Technical Information of China (English)

    Anaswara RAVINDRAN; Rajendra SRIVASTAVA

    2011-01-01

    Several dual metal cyanide catalysts were prepared from potassium ferrocyanide,metal chloride (where metal =Zn2+,Mn2+,Ni2+,Co2+ and Fe2+),t-butanol (complexing agent) and PEG-4000 (co-complexing agent).The catalysts were characterized by elemental analysis (CHN and X-ray fluorescence),X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,Fourier-transform infiared spectroscopy,and UV-Visible spectroscopy.The dual metal cyanide catalysts were used in several acid catalyzed multi-component coupling reactions for the synthesis of pharmaceutically important organic derivatives.In all these reactions,the Fe-Fe containing dual metal cyanide catalyst was the best catalyst.The catalysts can be recycled without loss in catalytic activity.The advantage of this method is the use of mild,efficient and reusable catalysts for various reactions,which makes them candidates for commercial use.

  2. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.

    Science.gov (United States)

    Khan, Mujeeb; Khan, Merajuddin; Kuniyil, Mufsir; Adil, Syed Farooq; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq H

    2014-06-28

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report a facile and eco-friendly method for the synthesis of palladium (Pd) nanoparticles (NPs) using an aqueous solution of Pulicaria glutinosa, a plant widely found in a large region of Saudi Arabia, as a bioreductant. The as-prepared Pd NPs were characterized using ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). The hydroxyl groups of the plant extract (PE) molecules were found mainly responsible for the reduction and growth of Pd NPs. FT-IR analysis confirmed the dual role of the PE, both as a bioreductant as well as a capping ligand, which stabilizes the surface of Pd NPs. The crystalline nature of the Pd NPs was identified using XRD analysis which confirmed the formation of a face-centered cubic structure (JCPDS: 87-0641, space group: Fm3m (225)). Furthermore, the as-synthesized Pd NPs demonstrated excellent catalytic activity towards the Suzuki coupling reaction under aqueous and aerobic conditions. Kinetic studies of the catalytic reaction monitored using GC confirmed that the reaction completes in less than 5 minutes.

  3. Synthesis of Novel Chiral Dibenzo [ a, c ] cycloheptadiene Bis(oxazoline) and Catalytic Asymmetric Reactions

    Institute of Scientific and Technical Information of China (English)

    FU Bin; DU Da-Ming; WANG Jian-Bo

    2003-01-01

    @@ Over the last decade, C2-symmetric chiral oxazoline metal complexes have been recognized as an effective classof chiral catalyst in a variety of transition metal catalyzed asymmetric reactions. [1] High catalytic activities and enantiomeric excesses have been obtained using C2-symmetric chiral ligands in conjunction with suitable transition metal ion, for example, the hydrosilylation of ketone, allylic alkylation, Michael addition, Diels-Alder cycloaddition, and cyclopropanation. Thus, the design and synthesis of new chiral oxazoline ligands have inspired many scientists to work with great efforts.

  4. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  5. Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines.

    Science.gov (United States)

    Dai, Wei; Jiang, Xiao-Li; Tao, Ji-Yu; Shi, Feng

    2016-01-01

    The first application of 3-methyl-2-vinylindoles in catalytic asymmetric Povarov reactions has been established via the three-component reactions of 3-methyl-2-vinylindoles, aldehydes, and anilines in the presence of chiral phosphoric acid, providing easy access to chiral indole-derived tetrahydroquinolines with three contiguous stereogenic centers at high yields (up to 99%) and with excellent diastereo- and enantioselectivities (all >95:5 dr, up to 96% ee). This mode of catalytic asymmetric three-component reaction offers a step-economic and atom-economic strategy for accessing enantioenriched indole-derived tetrahydroquinolines with structural diversity and complexity. PMID:26652222

  6. A New Reaction for Kinetic Spetrophotometric Determination of Trace Ruthenium--Catalytic Oxidation of Methyl Green by Bromate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-rong; XU Qiong; XIONG Yan; WEI Jia-wen

    2006-01-01

    A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solution medium at 100 ℃. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 625 nm for the catalytic reaction of methyl green. The calibration curve for the recommended reaction-rate method was linear in the concentration range over 0.00-0.80 μg/L and the detection limit of the method for Ru (Ⅲ) is 0.006μg/L. Almost no foreign ions interfered in the determination at less than 25-fold concentration of Ru (Ⅲ). The method is highly sensitive, more selective and very stable, and has been successfully applied for the determination of trace ruthenium in some ores and metallurgy products.

  7. Catalytic performance of Metal‐Organic‐Frameworks vs. extra‐large pore zeolite UTL incondensation reactions

    Directory of Open Access Journals (Sweden)

    Mariya eShamzhy

    2013-08-01

    Full Text Available Catalytic behavior of isomorphously substituted B‐, Al‐, Ga‐, and Fe‐containing extra‐large pore UTLzeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensationof 1‐naphthol with ethylacetoacetate, and Prins reaction of β‐pinene with formaldehyde andcompared with large‐pore aluminosilicate zeolite BEA and representative Metal‐Organic‐FrameworksCu3(BTC2 and Fe(BTC. The yield of the target product over the investigated catalysts in Knoevenagelcondensation increases in the following sequence: (AlBEA < (AlUTL < (GaUTL < (FeUTL < Fe(BTC <(BUTL < Cu3(BTC2 being mainly related to the improving selectivity with decreasing strength ofactive sites of the individual catalysts. The catalytic performance of Fe(BTC, containing the highestconcentration of Lewis acid sites of the appropriate strength is superior over large‐pore zeolite(AlBEA and B‐, Al‐, Ga‐, Fe‐substituted extra‐large pore zeolites UTL in Prins reaction of β‐pinene withformaldehyde and Pechmann condensation of 1‐naphthol with ethylacetoacetate.

  8. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 < l < 0.43) facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity. © 2013 American Chemical Society.

  9. Studies of Cyclohexane Catalytic Oxidation Processes over Titanium Silicate-1 Zeolite

    Institute of Scientific and Technical Information of China (English)

    Cheng Shibiao; Wu Wei; Sun Bin; Min Enze

    2003-01-01

    The catalytic oxidation processes for cyclohexane/H2O2/acetone system over the TS-1 zeolite was studied. Study results have revealed that the cyclohexane conversion was 27% after the reaction proceeded at 100C for 2 hours at a cyclohexane/H2O2 molar ratio of 0.8. The cyclohexanol/cyclohexanone molar ratio was 1.3along with a certain amount of organic acids and esters, the formation of which was closely associated with the oxidation of reaction solvent and deep oxidation of cyclohexanone and cyclohexanol contained in the reaction products. With respect to the catalytic oxidation of cyclohexane/H2O2 system the selection of appropriate solvent was critically important.

  10. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O2 to CH4 (O2/CH4 ratio) is fixed at 0.5 and the mole ratio of CO2 to O2 (CO2/O2 ratio) is in the range of 0–2. The results reveal that CO2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO2 addition are in a comparable state. Once CO2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH4 conversion in the catalyst bed; it also intensifies the H2 selectivity, H2 yield, CO2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO2 addition and heat recovery is studied. • CO2 addition has a slight effect on methane combustion. • CO2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH4 consumption when CO2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  11. Theoretical modeling study for the phosphonylation mechanisms of the catalytic triad of acetylcholinesterase by sarin.

    Science.gov (United States)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2008-03-20

    Potential energy surfaces for the process of phosphonylation of the catalytic triad of acetylcholinesterase by sarin have been explored at the B3LYP/6-311G(d,p) level of theory through a computational study. It is concluded that the phosphonylation process involves a critical addition-elimination mechanism. The first nucleophilic addition process is the rate-determining step. The following elimination process of the fluoride ion comprises a composite reaction that includes several steps, and it occurs rapidly by comparison with the rate-determining step. The mobility characteristics of histidine play an important role in the reaction. A double proton-transfer mechanism is proposed for the catalytic triad during the phosphonylation process of sarin on AChE. The effect of aqueous solvation has been considered via the polarizable continuum model (PCM). One concludes that the energy barriers are generally lowered in solvent, compared to the gas-phase reactions.

  12. In situ generation of electron acceptor for photoelectrochemical biosensing via hemin-mediated catalytic reaction.

    Science.gov (United States)

    Zang, Yang; Lei, Jianping; Zhang, Lei; Ju, Huangxian

    2014-12-16

    A novel photoelectrochemical sensing strategy is designed for DNA detection on the basis of in situ generation of an electron acceptor via the catalytic reaction of hemin toward H2O2. The photoelectrochemical platform was established by sequential assembly of near-infrared CdTe quantum dots, capture DNA, and a hemin-labeled DNA probe to form a triple-helix molecular beacon (THMB) structure on an indium tin oxide electrode. According to the highly catalytic capacity of hemin toward H2O2, a photoelectrochemical mechanism was then proposed, in which the electron acceptor of O2 was in situ-generated on the electrode surface, leading to the enhancement of the photocurrent response. The utilization of CdTe QDs can extend the absorption edge to the near-infrared band, resulting in an increase in the light-to-electricity efficiency. After introducing target DNA, the THMB structure is disassembled and releases hemin and, thus, quenches the photocurrent. Under optimized conditions, this biosensor shows high sensitivity with a linear range from 1 to 1000 pM and detection limit of 0.8 pM. Moreover, it exhibits good performance of excellent selectivity, high stability, and acceptable fabrication reproducibility. This present strategy opens an alternative avenue for photoelectrochemical signal transduction and expands the applications of hemin-based materials in photoelectrochemical biosensing and clinical diagnosis. PMID:25393151

  13. The selective catalytic reduction (SCR) of NO with NH3 at vanadium oxide catalysts: Adsorption, diffusion, reaction

    International Nuclear Information System (INIS)

    The selective catalytic reduction (SCR) of NOx with NH3 over vanadium based metal-oxide (VOx) catalysts has been proven to be one of the most effective NOx reduction processes. Even though it is widely used in commercial applications details of the reaction mechanism are still under debate. Experiments show that adsorption, diffusion, and reactions with NO and (de)hydrogenation processes at the VOx surface contribute elementary steps. These processes are examined in theoretical studies employing density-functional theory together with gradient corrected functionals. The VOx substrate is modeled by clusters cut out from the ideal V2O5(010) surface where peripheral oxygen bonds are saturated by hydrogen. Apart from the perfect oxide surface also differently reduced surfaces are considered by introducing oxygen vacancies. NH3 is found to interact only weakly with the perfect V2O5(010) surface. In the presence of OH groups (Broensted acid sites) NH3 can form a surface NH4+ species. NH3 can also interact with the surface near oxygen vacancies, adsorbing at vanadium centers of lower coordination (Lewis acid sites). In contrast, NO interacts much more weakly with the surface. Further, simultaneous NO, NH3 adsorption and SCR reaction scenarios at Broensted and Lewis acid sites are examined. They result in different reaction paths and intermediates as will be discussed in detail.

  14. FT-IR Study on the Catalytic Reaction Kinetics of Glycidyl Azide Polymer with N100%FT-IR 法研究 GAP 与 N100的催化反应动力学

    Institute of Scientific and Technical Information of China (English)

    申飞飞; Abbas Tanver; 罗运军

    2014-01-01

    The reaction kinetics of glycidyl azide polymer (GAP)with polyisocyanate (N100)was studied by the FT-IR method.Using triphenyl bismuth(TPB)and di-n-butyltin dilaurate (T12)as catalysts,the reaction mecha-nism function and activation energies of the two systems at 60,70,80 and 90℃ were obtained.The results show that the curing reaction of GAP/N100 system is determined as first order reaction.When the content of TPB and T12 is 0.015%,respectively,the whole curing reaction process using TPB as catalyst obeys the first-order kinetic law,the system using T12 as catalyst obeys the first-order kinetic law and the reaction mechanism function is g(α)=-ln(1 -α)when the degree of conversation is less than 80%,while the system obeys three-dimensional (spheri-cal symmetric)diffusion and the reaction mechanism function is g(α)=[1 -(1-α)1/3 ]2 when the degree of conver-sation is over 80%.The curing reaction time of GAP/N100 using T12 as catalyst is much less than that of GAP/N100 using TPB as catalyst.%采用傅里叶变换红外(FT-IR)研究了聚叠氮缩水甘油醚(GAP)与多异氰酸酯(N100)之间的反应动力学。得到60、70、80、90℃下分别用 TPB(三苯基铋)和 T12(二月桂酸二丁基锡)作催化剂时体系的反应机理函数和表观活化能。结果表明,GAP/N100体系的固化反应为一级动力学反应;当两种固化催化剂质量分数均为0.015%,以TPB 为催化剂时体系整个固化过程遵循一级动力学规律;以 T12为催化剂时,在转化率达80%之前,体系遵循一级反应规律,反应机理函数为 g(α)=-ln(1-α),之后反应机理函数转变为三维(球对称)扩散 g(α)=[1-(1-α)1/3]2;用 T12作催化剂时,GAP/N100固化反应结束时间远低于用 TPB 作催化剂时所用时间。

  15. Advances in the development of catalytic tethering directing groups for C-H functionalization reactions.

    Science.gov (United States)

    Sun, Huan; Guimond, Nicolas; Huang, Yong

    2016-09-28

    Transition metal-catalyzed C-H bond insertion is one of the most straightforward strategies to introduce functionalities within a hydrocarbon microenvironment. For the past two decades, selective activation and functionalization of certain inert C-H bonds have been made possible with the help of directing groups (DGs). Despite the enormous advances in the field, an overwhelming majority of systems require two extra steps from their simple precursors: installation and removal of the DGs. Recently, traceless and multitasking groups were invented as a partial solution to DG release. However, installation remains largely unsolved. Ideally, a transient, catalytic DG would circumvent this problem and increase the step- and atom-economy of C-H functionalization processes. In this review, we summarize the recent development of the transient tethering strategy for C-H activation reactions. PMID:27506568

  16. Palladium nanoparticle anchored polyphosphazene nanotubes: preparation and catalytic activity on aryl coupling reactions

    Indian Academy of Sciences (India)

    V Devi; A Ashok Kumar; S Sankar; K Dinakaran

    2015-06-01

    Highly accessible-supported palladium (Pd) nanoparticles anchored polyphosphazene (PPZ) nanotubes (NTs) having average diameter of 120 nm were synthesized rapidly at room temperature and homogeneously decorated with Pd nanoparticles. The resultant PPZ–Pd nanocomposites were morphologically and structurally characterized by means of transmission electron microscope equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction analysis. Characterization results showed that the Pd nanoparticles with good dispersibility could be well anchored onto the surfaces of the PPZ NTs. The PPZ–Pd NTs show enhanced catalytic activity for the Suzuki coupling of aryl bromides with arylboronic acid. In addition, these PPZ–Pd NTs show excellent behaviour as reusable catalysts of the Suzuki and Heck coupling reactions.

  17. Neutron diffraction studies for realtime leaching of catalytic Ni

    Energy Technology Data Exchange (ETDEWEB)

    Iles, Gail N., E-mail: gail.iles@helmholtz-berlin.de; Reinhart, Guillaume, E-mail: guillaume.reinhart@im2np.fr [European Space Agency, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble (France); Devred, François, E-mail: fdevred@ulb.ac.be [Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands); Henry, Paul F., E-mail: paul.henry@esss.se; Hansen, Thomas C., E-mail: hansen@ill.fr [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble (France)

    2014-07-21

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni{sub 2}Al{sub 3} and NiAl{sub 3} continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.

  18. Neutron diffraction studies for realtime leaching of catalytic Ni

    International Nuclear Information System (INIS)

    The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni2Al3 and NiAl3 continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials

  19. Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    WAN Jia-feng; FENG Yu-jie; CAI Wei-min; YANG Shao-xia; SUN Xiao-jun

    2004-01-01

    Four metal oxide catalysts composed of copper (Cu), stannum (Sn), copper-stannum (Cu-Sn) and copper-cerium(Cu-Ce) respectively were prepared by the co-impregnation method, and γ-alumina(γ-Al2O3) is selected as support. A first-order kinetics model was established to study the catalytic wet air oxidation of phenol at different temperature when these catalysts were used. The model simulations are good agreement with present experimental data. Results showed that the reaction rate constants can be significantly increased when catalysts were used, and the catalyst of 6% Cu-10%Ce/γ-Al2O3 showed the best catalytic activity. This is consistent with the result of catalytic wet air oxidation of phenol and the COD removal can be arrived at 98.2% at temperature 210℃, oxygen partial pressure 3 MPa and reaction time 30 min. The activation energies of each reaction with different catalysts are nearly equal, which is found to be about 42 kJ/mol and the reaction in this study is proved to be kinetics control.

  20. Studies on Nitrogen Oxides Removal Using Plasma Assisted Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    V. Ravi; Young Sun Mok; B. S. Rajanikanth; Ho-Chul Kang

    2003-01-01

    An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO+NO2)level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WOa/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/1.

  1. Catalytic Reaction of Aryldiazoacetates with Indole and Its Derivatives: Profound Effect of N-1 Substitutent on the Reaction Pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-Jing; LIU Sheng-Ping; YAN Ming

    2008-01-01

    The reaction of indole and its derivatives with aryldiazoacetates has been studied in the presence of copper and The electron-donating group favored the formation of the β-alkylation products, while the electron-withdrawing group favored the formation of the cyclopropane products. A reaction mechanism was proposed based on the experimental data and previous research results. The structure of aryl group in diazo compounds also affected the yield of the β-alkylation products or the cyclopropane products.

  2. Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3 catalyst for water gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    Yixin Lian; Huifang Wang; Quanxing Zheng; Weiping Fang; Yiquan Yang

    2009-01-01

    Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2- and S2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.

  3. An experimental study of diffusion and convection of multicomponent gases through catalytic and non-catalytic membranes

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1994-01-01

    Diffusion of binary and ternary gases through catalytic and non-catalytic membranes has been studied experimentally at atmospheric pressure. These experiments were conducted in a modified Wicke-Kallenbach diffusion cell consisting of two continuously stirred gas volumes separated by a membrane. The

  4. Synthesis of 7,7'-Disubstituted BINAP and Their Application in Asymmetric Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    Yuan Wei-Cheng; Liu Hua; Mi Ai-Qiao; Gong Liu-Zhu; Jiang Yao-Zhong

    2004-01-01

    The design of new chiral ligands plays a very important role in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands reported, BINAP was found to have been the widest application in the transition metal catalyzed reaction. Recently we have developed a novel oxovanadium (Ⅳ)complex catalyst for the oxidative coupling of naphthol with high enantioselectivity.[1] And then a series of optically pure 7,7'-disubstituted BINOLs were successfully synthesized by using the catalyst,[2] on the basis of above, the 7,7'-disubstituted BINAP ligands ( 1-5 ) were easily prepared from the 7,7'-disubstituted BINOLs with high total yields (up to 64% of 5 steps from the BINOLs ).To demonstrate the efficiency of ligands 1-5, we applied their ruthenium complexes for asymmetric hydrogenation of simple ketones with high activity (S/C up to 5000 ), high converation (up to 100%) and moderate enantioselectivity (ee up to 88.3% ) under mild conditions. In addition, in the asymmetric 1,4-addition of arylboronic acids, these ligands also provide excellent enantioselectivity (ee up to 99%) and yield ( up to 99%).

  5. Catalytic activity trends of CO oxidation – A DFT study

    DEFF Research Database (Denmark)

    Jiang, Tao

    There are two goals of this thesis, the first one is to understand the reactivity of noble metal nanoparticles for CO oxidation reaction. The second goal is to gain understanding to the second derivative (Hessian matrix) of the potential energy surfaces (PES) of adsorption systems, especially its...... eigenmodes and eigenvalues, and improving algorithms for geometry optimization in electronic structure calculations. The catalytic activity of gold nanoparticles has received wide attention since the discovery of their activity on CO oxidation by Professor Haruta in 1987. By using density functional theory...... oxidation by molecular O2 occurs via a different reaction pathway, which instead involves a meta-stable intermediate CO-O2. However, although the two oxidizing agents used proceeded via different reaction pathways on different active sites, the apparent overall activation barriers obtained from both theory...

  6. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    Science.gov (United States)

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature.

  7. Catalytic mechanism investigation of lysine-specific demethylase 1 (LSD1: a computational study.

    Directory of Open Access Journals (Sweden)

    Xiangqian Kong

    Full Text Available Lysine-specific demethylase 1 (LSD1, the first identified histone demethylase, is a flavin-dependent amine oxidase which specifically demethylates mono- or dimethylated H3K4 and H3K9 via a redox process. It participates in a broad spectrum of biological processes and is of high importance in cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. To date, as a potential drug target for discovering anti-tumor drugs, the medical significance of LSD1 has been greatly appreciated. However, the catalytic mechanism for the rate-limiting reductive half-reaction in demethylation remains controversial. By employing a combined computational approach including molecular modeling, molecular dynamics (MD simulations and quantum mechanics/molecular mechanics (QM/MM calculations, the catalytic mechanism of dimethylated H3K4 demethylation by LSD1 was characterized in details. The three-dimensional (3D model of the complex was composed of LSD1, CoREST, and histone substrate. A 30-ns MD simulation of the model highlights the pivotal role of the conserved Tyr761 and lysine-water-flavin motif in properly orienting flavin adenine dinucleotide (FAD with respect to substrate. The synergy of the two factors effectively stabilizes the catalytic environment and facilitated the demethylation reaction. On the basis of the reasonable consistence between simulation results and available mutagenesis data, QM/MM strategy was further employed to probe the catalytic mechanism of the reductive half-reaction in demethylation. The characteristics of the demethylation pathway determined by the potential energy surface and charge distribution analysis indicates that this reaction belongs to the direct hydride transfer mechanism. Our study provides insights into the LSD1 mechanism of reductive half-reaction in demethylation and has important implications for the discovery of regulators against LSD1 enzymes.

  8. Study on Synthesis and Catalytic Performance of Hierarchical Zeolite

    Institute of Scientific and Technical Information of China (English)

    Zhang Lingling; Li Fengyan; ZhaoTianbo; Sun Guida

    2007-01-01

    A kind of hierarchical zeolite catalyst was synthesized by hydrothermal method.X-ray diffraction (XRD)and nitrogen adsorption-desorption method were used to study the phase and aperture structure of the prepared catalyst.Infrared(IR)spectra of pyridine adsorbed on the sample showed that the hierarchical zeolite really had much more Bronsted and Lewis acidic sites than the HZSM-5 zeolite.The catalytic cracking of large hydrocarbon molecules showed that the hierarchical zeolite had a higher catalytic activity than the HZSM-5 zeolite.

  9. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  10. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire- Graphene Hybrids for Surface Catalytic Reactions.

    Science.gov (United States)

    Ding, Qianqian; Shi, Ying; Chen, Maodu; Li, Hui; Yang, Xianzhong; Qu, Yingqi; Liang, Wenjie; Sun, Mengtao

    2016-01-01

    Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling. PMID:27601199

  11. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions.

    Science.gov (United States)

    Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N; Song, Yu-Fei

    2015-10-12

    The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12 O40 ](3-) (PW12 ) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73 Al0.22 (OH)2 [PW12 O40 ]0.04 ⋅0.98 H2 O (Mg3 Al-PW12 ) has been successfully obtained by applying a spontaneous flocculation method. The Mg3 Al-PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT-IR, NMR, BET). XRD patterns of Mg3 Al-PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3 Al-PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z-CH2 -Z' type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2-propanol :Vwater =2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3 Al-PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3 Al-PW12 -catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction. PMID:26337902

  12. β-Alanine-DBU" A Highly Efficient Catalytic System forKnoevenageI-Doebner Reaction under Mild Conditionsβ-Alanine-DBU" A Highly Efficient Catalytic System forKnoevenageI-Doebner Reaction under Mild Conditions

    Institute of Scientific and Technical Information of China (English)

    祝令建; 雷宁; 缪震元; 盛春泉; 庄春林; 姚建忠; 张万年

    2012-01-01

    A mild and efficient Knoevenagel-Doebner reaction from malonic acid and a wide range of aldehydes was catalyzed by a catalytic system consisting offlalanine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), affording the corresponding (E)-a,fl-unsaturated carboxylic acids in good to excellent yields and with high stereoselectivity. The advantage of the method is that the reaction could proceed smoothly at ambient temperature so that it can tolerate a variety of functional groups and avoid unnecessary side reactions.

  13. A feasibility study of catalytic reduction method for tritium recovery from tritiated water

    International Nuclear Information System (INIS)

    Feasibility of catalytic reduction method for the application to the tritium recovery process in the fusion fuel cleanup system and the blanket tritium recovery system was studied by experimental work and the thermodynamic analysis. Reduction experiments of H2O vapor with Ar carrier were carried out under the following conditions: temperature; 350 -- 650 K, H2O vapor concentration in feed gas; 103 -- 104 ppm, mole ratio of CO to H2O; 1 -- 10, space velocity; 2 x 102 -- 2 x 104 hr-1. Catalyst was the mixture of CuO, ZnO and Cr2O3, which has been used as the catalyst for the water-gas shift reaction H2O(g) + CO(g) reversible H2(g) + CO2(g). Relations between the conversion factor for H2O vapor and the operating conditions such as temperature, feed composition and feed flow rate were obtained by the experiments. Catalytic reaction rate equation and the rate constants, which can be used for designing a practicable catalytic reduction bed, were also determined by the treatment of the second order reaction. Advantages of the tritium recovery system composed of the reduction bed and palladium diffusers were verified by the present experiments and the study of several tritium recovery systems. Very high recovery ratio will be obtained at low operation temperature by the systems. (author)

  14. Study of tritium labelling by solid-state catalytic reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Filikov, A.V.; Myasoedov, N.F. (AN SSSR, Moscow. Inst. Molekulyarnoj Genetiki)

    1984-04-02

    A reaction mechanism is proposed for tritium labelling by the solid-state catalytic reductive dehalogenation (SCRD) method based on hydrogen spillover. A model system (palladium membrane with a layer of the original organic compound) is used for a kinetic study of the debromination of 5-bromouracil and the isotope exchange of ..cap alpha..-alanine at pressure of 0.07-20 kPa. A kinetic model is considered for the spillover stoppage due to the contamination of penetration centres by the reaction product. Other possible causes of the spillover stoppage are discussed. 6 refs.; 3 figs.

  15. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.; Somorjai, G.A.; Perry, D.L.

    1992-12-01

    Work on catalytic steam gasification with chars and coals will be extended from atmospheric to elevated pressures using the newly built pressure unit. The novel finding that coking of petroleum in the presence of small amounts of caustic greatly improves the gasification rates and characteristics of the coke will be extended to chars; in the oxidative coupling of methane over ternary catalysts, emphasis will be placed on low temperature coupling and on the oxidative production of syngas from methane at low temperature. Experimental work will continue on the synthesis of the mixed catalyst, and they will be characterized by a number of techniques, including elemental analyses, x-ray diffraction, and surface area determination.

  16. Copper(I) complexes with trispyrazolylmethane ligands: synthesis, characterization, and catalytic activity in cross-coupling reactions.

    Science.gov (United States)

    Haldón, Estela; Álvarez, Eleuterio; Nicasio, M Carmen; Pérez, Pedro J

    2012-08-01

    Three novel Cu(I) complexes bearing tris(pyrazolyl)methane ligands, Tpm(x), have been prepared from reactions of equimolar amounts of CuI and the ligands Tpm, (HC(pz)(3)), Tpm*, (HC(3,5-Me(2)-pz)(3)), and Tpm(Ms), (HC(3-Ms-pz)(3)). X-ray diffraction studies have shown that the Tpm and Tpm(Ms) derivatives exhibit a 2:1 Cu:ligand ratio, whereas the Tpm* complex is a mononuclear species in nature. The latter has been employed as a precatalyst in the arylation of amides and aromatic thiols with good activity. The synthesis of a Tpm*Cu(I)-phthalimidate, a feasible intermediate in this catalytic process, has also been performed. Low temperature (1)H NMR studies in CDCl(3) have indicated that this complex exists in solution as a mixture of two, neutral and ionic forms. Conductivity measurements have reinforced this proposal, the ionic form predominating in a very polar solvent such as DMSO. The reaction of Tpm*Cu(I)-phthalimidate with iodobenzene afforded the expected C-N coupling product in 76% yield accounting for its role as an intermediate in this transformation.

  17. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    Science.gov (United States)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  18. Studies on Catalytic Pyrolysis of Daqing Atmospheric Residue

    Institute of Scientific and Technical Information of China (English)

    孟祥海; 徐春明; 张倩; 高金森

    2004-01-01

    Catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 was investigated in a confined fluidized bed reactor. The results show that reaction temperature, the mass ratios of catalyst to oil and steam to oil have significant effects on product distribution and yields of light olefins. The yields of light olefins show the maxima with the increase of reaction temperature, the mass ratios of catalyst to oil and steam to oil, respectively. The optimized operating conditions were determined in the laboratory, and under that condition the yields of ethylene, propylene and total light olefins by mass were 15.9%, 20.7% and 44.3% respectively. The analysis of pyrolysis gas and pyrolysis liquid indicates that CEP-1 has good capacity of converting heavy oils into light olefins, and there is a large amount of aromatics in pyrolysis liquid.

  19. Novel plasma catalytic reaction for structural-controlled growth of graphene and graphene nanoribbon

    Science.gov (United States)

    Kato, Toshiaki

    2013-09-01

    An advanced plasma chemical vapor deposition (CVD) method has outstanding advantages for the structural-controlled growth and functionalization of carbon nanotubes (CNTs) and graphene. Graphene nanoribbons combine the unique electronic and spin properties of graphene with a transport gap. This makes them an attractive candidate material for the channels of next-generation transistors. However, the reliable site and alignment control of nanoribbons with high on/off current ratios remains a challenge. We have developed a new, simple, scalable method based on novel plasma catalytic reaction for directly fabricating narrow (23 nm) graphene nanoribbon devices with a clear transport gap (58.5 meV) and a high on/off ratio (10000). Indeed, graphene nanoribbons can be grown at any desired position on an insulating substrate without any post-growth treatment, and large-scale, two- and three dimensional integration of graphene nanoribbon devices should be realizable, thereby accelerating the practical evolution of graphene nanoribbon-based electrical applications.

  20. Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction.

    Science.gov (United States)

    Benson, John; Xu, Qian; Wang, Peng; Shen, Yuting; Sun, Litao; Wang, Tanyuan; Li, Meixian; Papakonstantinou, Pagona

    2014-11-26

    Currently, the fundamental factors that control the oxygen reduction reaction (ORR) activity of graphene itself, in particular, the dependence of the ORR activity on the number of exposed edge sites remain elusive, mainly due to limited synthesis routes of achieving small size graphene. In this work, the synthesis of low oxygen content (graphene nanosheets with lateral dimensions smaller than a few hundred nanometers were achieved using a combination of ionic liquid assisted grinding of high purity graphite coupled with sequential centrifugation. We show for the first time that the graphene nanosheets possessing a plethora of edges exhibited considerably higher electron transfer numbers compared to the thicker graphene nanoplatelets. This enhanced ORR activity was accomplished by successfully exploiting the plethora of edges of the nanosized graphene as well as the efficient electron communication between the active edge sites and the electrode substrate. The graphene nanosheets were characterized by an onset potential of -0.13 V vs Ag/AgCl and a current density of -3.85 mA/cm2 at -1 V, which represent the best ORR performance ever achieved from an undoped carbon based catalyst. This work demonstrates how low oxygen content nanosized graphene synthesized by a simple route can considerably impact the ORR catalytic activity and hence it is of significance in designing and optimizing advanced metal-free ORR electrocatalysts.

  1. One-pot Solvent-free Catalytic Dimerization Reaction of Phenylacetylene to 1-Phenylnaphthalene

    Indian Academy of Sciences (India)

    Avat (Arman) Taherpour; Sepehr Taban; Ako Yari

    2015-09-01

    In this study, we report a smooth one-pot, solvent-free catalytic dimerization of phenylacetylene (1) to 1-phenylnaphthalene (2) by Cu/C at room temperature in good yield (∼100%). In the computational study, the structure of the 1-phenylnaphthalene was optimized by DFT-B3LYP/6-31G* method. The rotation barrier around C-C of the phenyl and naphthalene parts of the molecule and its UV-Visible spectrum were calculated. The modelling of the mechanism of production of 2 from 1 was performed with and without Cu/C catalyst. The data of EDS and SEM of the Cu/C catalyst surface are also reported.

  2. A new type of polarographic catalytic wave of organic compound——Studies on the polarographic catalytic wave of medroprogesterone acetate in the presence of KIO3

    Institute of Scientific and Technical Information of China (English)

    亢晓峰; 宋俊峰

    1999-01-01

    The polarographic behavior and catalytic wave mechanism of medroprogesterone acetate (MPA) were studied in both aqueous and DMF media. In 0.2 mol/L acetic acid-sodium acetate (pH 5.0) buffer solution, the C=C bond of MPA first undergoes le, lH+ reduction to form protonated free radical HMPA(?), the further reduction of HMPA(?) in le, 1H+ process is simultaneous with the dimerization reaction between HMPA(?) and neutral molecular MPA. In DMF media containing 0.1 mol/L tetrabutylammonium tetrafluoborate (TBA·BF4), the C=C bond of MPA shows two le, 1H+ reduction waves, which are ascribed to the reduction of MPA and free radical MPA, respectively. Here, no dimerization reaction occurs. These processes produce the reduction wave of MPA. In the presence of oxidant KIO3, a polarographic catalytic wave of MPA is observable due to a chemical reaction between HMPA(?) or MPA(?) and KIO3 as well as its intermediate species to regenerate MPA. The catalytic wave, which is caused by the reduction of organic com

  3. Structural and catalytic properties of a novel vanadium containing solid core mesoporous silica shell catalysts for gas phase oxidation reaction

    Indian Academy of Sciences (India)

    N Venkatathri; Vijayamohanan K Pillai; A Rajini; M Nooka Raju; I A K Reddy

    2013-01-01

    A novel vanadium containing solid core mesoporous silica shell catalyst was synthesized with different Si/V ratios by sol-gel method under neutral conditions. The synthesized materials were characterized by various techniques and gas phase diphenyl methane oxidation reaction. The mesoporosity combined with microporosity are formed by incorporation of octadecyltrichloro silane and triethylamine in the catalyst and it was found out from E-DAX and BET—surface area analysis. The material was found to be nanocrystalline. Vanadium is present as V4+ species in as-synthesized samples and convert to V5+ on calcination. Most of the vanadium is present in tetrahedral or square pyramidal environment. Incorporation of vanadium in silica framework was confirmed by 29Si MAS NMR analysis. Among the various vanadium containing solid core mesoporous silica shell catalysts, the Si/V =100 ratio exhibited maximum efficiency towards diphenyl methane to benzophenone gas phase reaction. The optimum condition required for maximum conversion and selectivity was found out from the catalytic studies.

  4. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    International Nuclear Information System (INIS)

    Highlights: • Flexible and porous paper-structured Ru(OH)x catalysts were prepared successfully. • Ru(OH)x catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O2-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors

  5. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Taichi [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Processing Development Research Laboratory, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497 (Japan); Kitaoka, Takuya, E-mail: tkitaoka@agr.kyushu-u.ac.jp [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-05-01

    Highlights: • Flexible and porous paper-structured Ru(OH){sub x} catalysts were prepared successfully. • Ru(OH){sub x} catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O{sub 2}-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors.

  6. Catalytic reactions of C4 hydrocarbons on the fluid catalytic cracking catalyst%C4烃类在催化裂化催化剂上催化转化反应的研究

    Institute of Scientific and Technical Information of China (English)

    闫平祥; 孟祥海; 徐春明; 高金森

    2008-01-01

    The catalytic reactions of C4 hydrocarbons on a fluid catalytic cracking (FCC) catalyst were studied in a confined fluidized bed reactor. The effect of reaction temperature and space velocity on product yields and distribution was investigated. The results show that the FCC catalyst has the good performance of aromatization and cracking of C4 hydrocarbons and can be used to produce propylene and aromatics under the suitable reaction conditions. It is mainly the butylene in the C4 hydrocarbons that undergoes catalytic reactions over the FCC catalyst and butane is hard to convert. Low reaction temperature favors the production of aromatics, while high reaction temperature favors the production of propylene. Low space velocity is beneficial to promote the conversion of butylene and the production of both aromatics and propylene. According to the bimolecular mechanism and reaction results, the reaction network for the catalytic reactions of C4 hydrocarbons on the FCC catalyst is proposed. The analysis on the this reaction mechanism indicates that the main reason of resulting in the lower yields of ethylene and propylene could be the poor secondary cracking performances of C5 and C6 olefins formed in the catalytic conversion of C4 hydrocarbons on the FCC catalyst.%利用小型固定流化床实验装置,对C4烃类在催化裂化催化剂上催化转化反应规律进行了实验研究,考察了不同反应温度及空速对C4烃类催化转化反应的产物分布和组成的影响.实验结果表明,催化裂化催化剂对C4烃类具有一定芳构化和裂化性能,在适宜的反应条件下,可增产芳烃和丙烯;在C4烃类催化转化过程中,丁烯是主要的反应物,而丁烷几乎不反应;低反应温度有利于增产芳烃,高反应温度有利于增产丙烯.较低的空速对增产芳烃和丙烯都有利.根据双分子反应机理和反应结果 ,建立了C4烃类在催化裂化催化剂上催化转化过程的反应网络.对C4烃类催化转化

  7. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor

    Institute of Scientific and Technical Information of China (English)

    Masoud Hasany; Mohammad Malakootikhah; Vahid Rahmanian; Soheila Yaghmaei

    2015-01-01

    A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.

  8. Catalytic conversion of chloromethane to methanol and dimethyl ether over two catalytic beds: a study of acid strength

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.R.; Leite, T.C.M.; Mota, C.J.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica], e-mail: cmota@iq.ufrj.br

    2010-07-15

    The catalytic hydrolysis of chloromethane to methanol and dimethyl ether (DME) was studied over metal-exchanged Beta and Mordenite zeolites, acidic MCM-22 and SAPO-5. The use of a second catalytic bed with HZSM-5 zeolite increased the selectivity to DME, due to methanol dehydration on the acid sites. The effect was more significant on catalysts presenting medium and weak acid site distribution, showing that dehydration of methanol to DME is accomplished over sites of higher acid strength. (author)

  9. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    OpenAIRE

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Nurul Shafeeqa Mohammad

    2015-01-01

    Carbon dioxide (CO2) in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4) gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. T...

  10. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    OpenAIRE

    Yongki Choi; Siu-Tung Yau

    2011-01-01

    Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1) the thermodynamics of the system using electrochemical setup and 2) the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed...

  11. A Monte Carlo Simulation of a Monomer Dimer CO-O2 Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice

    Institute of Scientific and Technical Information of China (English)

    K.Iqbal; A.Basit

    2011-01-01

    @@ The presence of oxygen in the subsurface in monomer-dimer reactions(CO-O2 and NO-CO)is observed experimentally.The effect of subsurface oxygen on a CO-O2 catalytic reaction on a face-centered cubic(FCC)lattice is studied using Monte Carlo simulation.The effect of adding subsurface neighbours on the phase diagram is also extensively explored.It is observed that the subsurface oxygen totally eliminates the typical second order phase transition.It is also shown that the introduction of the diffusion of O atoms and the subsurface of the FCC lattice shifts the single transition point towards the stoichiometric ratio.%The presence of oxygen in the subsurface in monomer-dimer reactions (CO-O2 and NO-CO) is observed experimentally. The effect of subsurface oxygen on a CO-O2 catalytic reaction on a face-centered cubic (FCC) lattice is studied using Monte Carlo simulation. The effect of adding subsurface neighbours on the phase diagram is also extensively explored. It is observed that the subsurface oxygen totally eliminates the typical second order phase transition. It is also shown that the introduction of the diffusion of O atoms and the subsurface of the FCC lattice shifts the single transition point towards the stoichiometric ratio.

  12. An effective route to improve the catalytic performance of SAPO-34 in the methanol-to-olefin reaction

    Institute of Scientific and Technical Information of China (English)

    Guangyu Liu; Peng Tian; Qinhua Xia; Zhongmin Liu

    2012-01-01

    An effective route to improve the catalytic performance of SAPO-34 in the methanol-to-olefin reaction by simple oxalic acid treatment was investigated.The samples were characterized by XRD,SEM,N2 adsorption-desorption,XRF,TG,29Si MAS NMR and NH3-TPD techniques.The results indicated that the external surface acidity of SAPO-34 was finely tuned by oxalic acid treatment,and the selectivity to C2H4 on SAPO-34 and the catalyst lifetime in the methanol-to-olefin reaction were greatly improved.

  13. Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method

    Institute of Scientific and Technical Information of China (English)

    K.Rida; M.A.Pe(n)a; E.Sastre; A.Martínez-Arias

    2012-01-01

    The study presented the preparation of the perovskite oxide LaNiO3 by the complex citrate method,paying particular attention to evolution of its formation from the amorphous precursor with varied calcination temperatures.The products obtained after heat treatment under air between 200 and 800 ℃ were characterized by X-ray diffraction (XRD),thermogravimetric and differential thermal analysis (TG-DTA),Fourier transform infrared spectroscopy (FTIR),SBET measurements and X-ray photoelectron spectroscopy (XPS).The results showed the formation of a single phase with perovskite structure from ca.550 ℃.Tests on the two catalytic oxidation reactions of C3H6 and CO over the system calcined between mentioned temperatures were examined on the basis of characterization results and showed that optimum catalytic properties for such reactions were achieved for the perovskite calcined at 600 ℃.In turn,correlations between redox and catalytic properties were established on the basis of thermogravimetric temperature programmed reduction (TPR) analysis.

  14. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures.

    Science.gov (United States)

    Su, Wenkang; Chang, Huazhen; Peng, Yue; Zhang, Chaozhi; Li, Junhua

    2015-01-01

    The mechanism of the selective catalytic reduction of NO with NH3 was studied using Cu/SSZ-13. The adspecies of NO and NH3 as well as the active intermediates were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy and temperature-programmed surface reaction. The results revealed that three reactions were possible between adsorbed NH3 and NOx. NO2(-) could be generated by direct formation or NO3(-) reduction via NO. In a standard selective catalytic reduction (SCR) reaction, NO3(-) was hard to form, because NO2(-) was consumed by ammonia before it could be further oxidized to nitrates. Additionally, adsorbed NH3 on the Lewis acid site was more active than NH4(+). Thus, SCR mainly followed the reaction between Lewis acid site-adsorbed NH3 and directly formed NO2(-). Higher Cu loading could favor the formation of active Cu-NH3, Cu-NO2(-), and Cu-NO3(-), improving the SCR activity at low temperature. PMID:25485842

  15. Resonance scattering spectral detection of ultratrace IgG using immunonanogold-HAuCl4-NH2OH catalytic reaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanogold particles of 10 nm were used to label goat anti-human IgG (GIgG) to obtain nanogold-labeled GIgG (AuGIgG). In a citrate-HCl buffer solution of pH 2.27,AuGIgG showed a strong catalytic effect on the reaction between HAuCl4 and NH2OH to form big gold particles that exhibited a resonance scatter-ing (RS) peak at 796 nm. Under the chosen conditions,AuGIgG combined with IgG to form immuno-complex AuGIgG-IgG that can be removed by centrifuging at 16000 r/min. AuGIgG in the centrifuging solution also showed catalytic effect on the reaction. On those grounds,an immunonanogold catalytic RS assay for IgG was designed. With addition of IgG,the amount of AuGIgG in the centrifuging solution decreased; the RS intensity at 796 nm (I796 nm) decreased linearly. The decreased intensity ΔI796 nm was linear with respect to the IgG concentration in the range of 0.08-16.0 ng·mL-1 with a detection limit of 0.02 ng·mL-1. This assay was applied to analysis of IgG in sera with satisfactory sensitivity,selectivity and rapidity.

  16. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Directory of Open Access Journals (Sweden)

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  17. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  18. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  19. Catalytic hydrogenation of uranyl nitrate - engineering scale studies

    International Nuclear Information System (INIS)

    Uranous nitrate is employed as partitioning agent for the separation of plutonium from uranium in PUREX process, the conventional process for the reprocessing of spent nuclear fuel. It is currently produced from uranyl nitrate solution by the electrochemical route. Since the conversion is only 50%, an innovative method based on catalytic hydrogenation has been developed. Parametric studies have been carried out on 5 L scale using natural uranyl nitrate solution as fed. Based on these studies, number of runs were carried out on engineering scale using contaminated uranyl nitrate solution. More than 100 kg of uranous nitrate has been made. Performance of the reduction process is described in detail. (author)

  20. Reproduction of a Protocell by Replication of Minority Molecule in Catalytic Reaction Network

    OpenAIRE

    Kamimura, Atsushi; Kaneko, Kunihiko

    2010-01-01

    For understanding the origin of life, it is essential to explain the development of a compartmentalized structure, which undergoes growth and division, from a set of chemical reactions. In this study, a hypercycle with two chemicals that mutually catalyze each other is considered in order to show that the reproduction of a protocell with a growth-division process naturally occurs when the replication speed of one chemical is considerably slower than that of the other chemical. It is observed ...

  1. Hexene catalytic cracking over 30% sapo-34 catalyst for propylene maximization: influence of reaction conditions and reaction pathway exploration

    Directory of Open Access Journals (Sweden)

    Z. Nawaz

    2009-12-01

    Full Text Available Higher olefins are produced as a by product in a number of refinery processes and are one of the potential raw materials to produce propylene. In the present study, FCC model feed compound was considered to explore the olefin cracking features and options to enhance propylene using 30% SAPO-34 zeolite as catalyst in a micro-reactor. The superior selectivity of propylene (73 wt% and higher total olefin selectivity was obtained over 30% SAPO-34 catalyst than over Y or ZSM-5 zeolite catalysts. The thermodynamical constraints were found to be relatively less serious in the case of 1-hexene conversion. Most of the 1-hexene follows a direct cracking pathway to give two propylene molecules, due to weak acid sites and better diffusion opportunities. The higher temperature and short residence time could also suppress the hydrogen transfer reactions. From OPE (olefins performance envelop the products were classified as primary, secondary, or both. Iso-hexene (2-methyl-2-pentene cracking was also analyzed in order to justify a shape selective effect of the SAPO-34 catalyst. A detailed integrated reaction network together with an associated mechanism was proposed and discussed in detail for their fundamental importance in understanding the olefin cracking processes over SAPO-34.

  2. Advances in Study on Catalysts for Phenol Synthesis via Catalytic Hydroxylation of Benzene in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhaohui

    2004-01-01

    Synthesis of phenol via direct hydroxylation of benzene as a typical reaction of atomic economy has attracted extensive attention worldwide and has also become an actively investigated domain in China. This article refers to the recent domestic advances in study on phenol synthesis via hydroxylation of benzene from the viewpoint of catalysts, and considers the TS-1/H2O2 and FeZSM-5/N2O catalytic systems to be promising ones with good prospects for commercialization along with some suggestions on future research work.

  3. DFT studies on cobalt-catalyzed cyclotrimerization reactions: the mechanism and origin of reaction improvement under microwave irradiation.

    Science.gov (United States)

    Rodriguez, Antonio M; Cebrián, Cristina; Prieto, Pilar; García, José Ignacio; de la Hoz, Antonio; Díaz-Ortiz, Ángel

    2012-05-14

    A DFT computational mechanistic study of the [2+2+2] cyclotrimerization of a diyne with benzonitrile, catalyzed by a cobalt complex, has been carried out. Three alternative catalytic cycles have been examined together with the precatalytic step (responsible for the induction period). The favored mechanism takes place by means of an intramolecular metal-assisted [4+2] cycloaddition. The beneficial role of microwave activation has been studied. It is concluded that microwave irradiation can decrease the catalytic induction period through thermal effects and can also increase the triplet lifetime and promote the reaction, thus improving the final yield.

  4. Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors

    Science.gov (United States)

    Lebedeva, Maria A.; Chamberlain, Thomas W.; Thomas, Alice; Thomas, Bradley E.; Stoppiello, Craig T.; Volkova, Evgeniya; Suyetin, Mikhail; Khlobystov, Andrei N.

    2016-06-01

    A series of explorative cross-coupling reactions have been developed to investigate the local nanoscale environment around catalytically active Pd(ii)complexes encapsulated within hollow graphitised nanofibers (GNF). Two new fullerene-containing and fullerene-free Pd(ii)Salen catalysts have been synthesised, and their activity and selectivity towards different substrates has been explored in nanoreactors. The catalysts not only show a significant increase in activity and stability upon heterogenisation at the graphitic step-edges inside the GNF channel, but also exhibit a change in selectivity affected by the confinement which alters the distribution of isomeric products of the reaction. Furthermore, the observed selectivity changes reveal unprecedented details regarding the location and orientation of the catalyst molecules inside the GNF nanoreactor, inaccessible by any spectroscopic or microscopic techniques, thus shedding light on the precise reaction environment inside the molecular catalyst-GNF nanoreactor.A series of explorative cross-coupling reactions have been developed to investigate the local nanoscale environment around catalytically active Pd(ii)complexes encapsulated within hollow graphitised nanofibers (GNF). Two new fullerene-containing and fullerene-free Pd(ii)Salen catalysts have been synthesised, and their activity and selectivity towards different substrates has been explored in nanoreactors. The catalysts not only show a significant increase in activity and stability upon heterogenisation at the graphitic step-edges inside the GNF channel, but also exhibit a change in selectivity affected by the confinement which alters the distribution of isomeric products of the reaction. Furthermore, the observed selectivity changes reveal unprecedented details regarding the location and orientation of the catalyst molecules inside the GNF nanoreactor, inaccessible by any spectroscopic or microscopic techniques, thus shedding light on the precise reaction

  5. Catalytic degradation of methylene blue by Fenton like system:model to the environmental reaction

    Institute of Scientific and Technical Information of China (English)

    Sanjay R. Thakare

    2004-01-01

    To develop more efficient chemical methods for the demineralization of organic pollutants from waterbodies, which one was also mimic to the nature, a degradation of methylene blue by Fe( Ⅲ ) and H2O2 in theabsence of light instead of Fe( Ⅱ ) and H2O2 was studied. Results showed that use of Fe ( Ⅲ ) is more promisingthan Fe( Ⅱ ). The present study reflects that Fenton reaction is more efficient, in the presence of a small amount ofsalicylic acid is added which is a one of the priority pollutant.

  6. Reforming of methane in tubes with a catalytic active wall

    International Nuclear Information System (INIS)

    The heterogeneous steam reforming process in tubes with catalytic active inner surface is studied. The purpose of this ivestigation is to find a method of predicting the reaction rate of the catalytic conversion of methane by steam. The dependency of the reaction rate upon the temperature, pressure, gas composition, Reynolds number, geometrical sizes of tubes and catalytic behaviour of the catalytic active inner wall of these tubes has been examined. It was found that the reaction rate mainly depends on the temperature. The reaction rate is limited by the catalytic behaviour and the heat resisting properties of the materials used. (author)

  7. Study of heterogeneous catalytic processes over cobalt, molybdenum and cobalt-molybdenum catalysts supported on alumina by temperature-programmed desorption and temperature-programmed reaction. 1. Adsorption of hydrozen

    International Nuclear Information System (INIS)

    Hydrogen adsorption on reduced, sulphidized and reoxidized specimens of molybdenum-and cobalt-molybdenum-containing catalysts applied on aluminium oxide has been studied by the method of thermal desorption (TD). Comparison of TD spectra of hydrogen and data of X-ray phase analysis of the specimens and mass-spectrometric analysis of the products desorbed from the surface of catalysts after their successive reduction sulphidizing, carbonizing and reoxidation permitted a correlation between various forms of hydrogen adsorption and certain centres on the surface of the catalysts. 12 refs., 2 figs

  8. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    Full Text Available In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas–solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%–11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas

  9. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  10. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    The ruthenium(II) complex [Ru(bpy)2-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  11. Monomeric Cu(Ⅱ) Complex Containing Chiral Phase-transfer Catalyst as Ligand and Its Asymmetrically Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    QU Zhi-Rong; XIONG Ren-Gen

    2008-01-01

    The thermal treatment of CuCl2 with N-(4'-vinylbenzyl)cinchonidinitim chloride(L1)afforded a monomeric discrete homochiral copper(Ⅱ)complex N-4'-(vinylbenzyl)cinchonidinium trichlorocoprate(Ⅱ)(1).Their applications to the enantioselectively catalytic alkylation reaction of N-(diphenylmethylidene)glycine tert-butyl ester(3)show that the higher ee value observed in catalyst 1 than that in the corresponding free ligand L1 is probably due to the rigidity enhancement after the coordination of N atom of quinoline ring to the copper ion.

  12. 菲加氢裂化制BTX的催化反应研究%Research on Catalytic Reaction of Phenanthrene Hydrocracking to Produce Xylene

    Institute of Scientific and Technical Information of China (English)

    杨健; 吴倩; 朱志荣

    2012-01-01

    采用性能较优的6% Ni/USY催化剂,进行菲加氢裂化制取苯、甲苯、二甲苯(BTX)的反应研究.探讨了不同反应压强、反应温度及进料速率对反应的影响,实验结果表明:反应压强4MPa、反应温度420℃、进料速率<0.27mL/min时,转化率可达95%左右,且BTX的选择性约60%,并结合反应机理对实验结果进行了探讨.%The 6% Ni/USY catalyst with good performance was used for the catalytic reaction of phenanthrene hydrocracking to obtain benzene, toluene and xylene (BTX). The impact of different reaction pressure, reaction temperature and the flow rate of the feed on the reaction was studied. The results showed that the phenanthrene conversion rate could reach about 95%, and the BTX selectivity could be about 60%, when the reaction conditions were 4 MPa, 420 ℃ and 0.27 mL/min. The test results were probed into with reference to the reaction mechanism.

  13. On the Structural Context and Identification of Enzyme Catalytic Residues

    OpenAIRE

    Yu-Tung Chien; Shao-Wei Huang

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The...

  14. [Reaction mechanism studies of heavy ion induced nuclear reactions

    International Nuclear Information System (INIS)

    This report contains papers that discuss: Target Dependence of Complex Fragment Emission in 47-MeV/u La-Induced Reactions; Deconvolution of Time-of-Flight Data to Improve Mass Identification; and Study of the Reaction of La + Al at E/A = 50 MeV with Landau-Vlasov Dynamics

  15. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides. Progress report, August 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  16. Catalytic activity of MoS2 nanotubes in the hydrodesulphurization reaction of dibenzothiophene

    OpenAIRE

    F. Leonard-Deepak; R. Pérez-Hernández; Cruz-Reyes, J; Fuentes, S.; M.J. Yacaman

    2011-01-01

    In the need for developing better fuels and as a consequence better hydrodesulphurization catalysts (HDS), new generations of catalysts are necessary to reduce substantially the sulfur content in diesel and gasoline fuels. HDS are catalytic processes that involve Mo or W- based catalysts, often doped with other transition metals. We synthesized MoS 2 nanotubes by reacting MoO 3 with thiourea and used them as catalysts for the hydrodesulfurization of dibenzothiophene in a batch reactor. X-ray ...

  17. Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction

    International Nuclear Information System (INIS)

    In the present study, TiO2 nano powder was partially coated with Y2O3 precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO2 surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD) analysis, Zeta potential and surface area through N2 physisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles. (author)

  18. Synthesis, characterization and catalytic properties of nanocrystaline Y{sub 2}O{sub 3}-coated TiO{sub 2} in the ethanol dehydration reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Humberto Vieira [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Departamento de Quimica; Longo, Elson [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Departamento de Fisico-Quimica; Leite, Edson Roberto; Libanori, Rafael [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica; Probst, Luiz Fernando Dias [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica; Carreno, Neftali Lenin Villarreal [Universidade Federal de Pelotas (UFPel), RS (Brazil). Departamento de Quimica Analitica e Inorganica

    2012-03-15

    In the present study, TiO{sub 2} nano powder was partially coated with Y{sub 2}O{sub 3} precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO{sub 2} surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD) analysis, Zeta potential and surface area through N{sub 2} physisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles. (author)

  19. Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction

    Directory of Open Access Journals (Sweden)

    Humberto Vieira Fajardo

    2012-04-01

    Full Text Available In the present study, TiO2 nanopowder was partially coated with Y2O3 precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO2 surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM, X-ray diffraction (XRD analysis, Zeta potential and surface area through N2 fisisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles.

  20. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction

    Science.gov (United States)

    Lee, H.; Sekiguchi, H.

    2011-07-01

    A combination of a gliding arc discharge and a spouted catalytic bed was used to investigate a plasma-catalytic hybrid system using CH4 reforming as a model reaction. Alumina-supported catalysts that contained 0.5 wt% of Pt, Pd, Rh, and Ru (denoted as Pt/Al2O3, Pd/Al2O3, Rh/Al2O3 and Ru/Al2O3, respectively) were used. For comparison, active Al2O3 particles were also examined. The conversion of CH4 and the selectivity of the product were investigated by changing the feed flow rate and reaction time. The production of C2H2, H2 and soot was observed in the gliding arc discharge without a catalyst. Using Pt/Al2O3 and Pd/Al2O3with the gliding arc discharge, C2H4, C2H6 and C2H2 were produced. It is considered that C2H4 and C2H6 were formed by the hydrogenation of C2H2 on the active site of Pt/Al2O3 and Pd/Al2O3. A stronger resistance to deactivation was shown in the presence of Pd/Al2O3 than in the presence of Pt/Al2O3, whereas the selectivity of hydrocarbon using Rh/Al2O3 and Ru/Al2O3 showed a tendency similar to that in active Al2O3 and non-catalytic experiments. The proposed reactor has a potential to improve the selectivity of the plasma process.

  1. Resonance Scattering Spectral Determination of Trace Penicillin G Using Immunonanogold-HauCI4-NH2OH Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    WEN, Guiqing; LI, Yan; LIANG, Aihui; JIANG, Zhiliang

    2009-01-01

    Both nanogold and immunonanogold exhibit catalytic effect on the slow reaction of HAuCl4-NH2OH to form gold particles which displayed a resonance scattering (RS) peak at 580 nm. Using hapten penicillin G (PG) as a model, the nanogold in size of 9 nm was used to label rabbit anti-penicillin G antisera (RAPG) to obtain an immu- nonanogold probe (AuRAPG) for PG. The PG was combined with AuRAPG to form the immunocomplex and big- ger nanogold clusters. After centrifugation, the excess AuRAPG in the supematant exhibited catalytic effect on the reaction of HAuCl4-NH2OH, and the RS intensity at 580 nm (I580 nm) was enhanced greatly. With the addition of PG, the I580 nm decreased accordingly. Under the optimal conditions, the decreased intensity ΔI580 nm was proportional to the PG concentration in the range of 0.15-225 ng/mL, with a detection limit of 0.05 ng/mL for PG.

  2. Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network

    Science.gov (United States)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2010-12-01

    For understanding the origin of life, it is essential to explain the development of a compartmentalized structure, which undergoes growth and division, from a set of chemical reactions. In this study, a hypercycle with two chemicals that mutually catalyze each other is considered in order to show that the reproduction of a protocell with a growth-division process naturally occurs when the replication speed of one chemical is considerably slower than that of the other chemical, and molecules are crowded as a result of replication. It is observed that the protocell divides after a minority molecule is replicated at a slow synthesis rate, and thus, a synchrony between the reproduction of a cell and molecule replication is achieved. The robustness of such protocells against the invasion of parasitic molecules is also demonstrated.

  3. Copper(I Complexes of Mesoionic Carbene: Structural Characterization and Catalytic Hydrosilylation Reactions

    Directory of Open Access Journals (Sweden)

    Stephan Hohloch

    2015-04-01

    Full Text Available Two series of different Cu(I-complexes of “click” derived mesoionic carbenes are reported. Halide complexes of the type (MICCuI (with MIC = 1,4-(2,6-diisopropyl-phenyl-3-methyl-1,2,3-triazol-5-ylidene (for 1b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene (for 1c and cationic complexes of the general formula [Cu(MIC2]X (with MIC =1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = CuI2− (for 2á, 1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2a, 1,4-(2,6-diisopropylphenyl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2c have been prepared from CuI or [Cu(CH3CN4](BF4 and the corresponding ligands, respectively. All complexes were characterized by elemental analysis and standard spectroscopic methods. Complexes 2á and 1b were studied by single-crystal X-ray diffraction analysis. Structural analysis revealed 2á to adopt a cationic form as [Cu(MIC2](CuI2 and comparison of the NMR spectra of 2á and 2a confirmed this conformation in solution. In contrast, after crystallization complex 1b was found to adopt the desired neutral form. All complexes were tested for the reduction of cyclohexanone under hydrosilylation condition at elevated temperatures. These complexes were found to be efficient catalysts for this reaction. 2c was also found to catalyze this reaction at room temperature. Mechanistic studies have been carried out as well.

  4. Evidence for the powerful catalytic ability of imidozirconocene complex from its epoxide ring cleavage reactions - A DFT mechanistic view

    Indian Academy of Sciences (India)

    Dhurairajan Senthilnathan; Rajadurai Vijay Solomon; Ponnambalam Venuvanalingam

    2012-01-01

    Imidozirconocene complex is known for its bifunctional reactivity and catalytic ability and this complex mediates ring cleavage of epoxides. Cyclooctene oxide (1) Norbornene oxide (2) and 2,5-dimethyl cyclohexene oxide (3) undergo ring cleavage in the presence of imidozirconocene complex. Epoxide 1 has accessible -hydrogens (type I) while epoxide 2 and 3 do not have them (type II). Normally type I epoxides undergo elimination while type II epoxides prefer insertion. All the insertion reactions lead to five-membered metallacycle formation and elimination results in thermodynamically stable allyl-alkoxy product. The insertion is a two-step process following either diradical or zwitterionic pathway, while elimination is a one-step concerted reaction. DFT (density functional theory) modelling of these reactions at B3LYP/LANL2DZ level show that epoxide 1 undergoes elimination in agreement with experiment. However, calculations indicate that epoxide (2) proceeds through diradical intermediate in contrast to experimental observations. Surprisingly, epoxide (3) that has both the positions blocked by methyl groups undergoes elimination rather than insertion. AIM and EDA analyses offer further insights on the reaction mechanism and bifunctional reactivity of imidozirconozene complex.

  5. Studies and development of high-temperature catalytic materials for application in gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dennis; Thevenin, Philippe [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-04-01

    The catalyst system should fulfil the following conditions: (1) Low pressure drop, (2) Ignition of the fuel at the compressor outlet temperature, i.e. 300 - 400 deg C, (3) Resistance to thermal shocks, and (4) Resistance to sintering and deactivation for at least 1 year (8000 hours). As a single component can hardly retain all these properties, material science must then be combined with combustion technology and chemical reaction engineering. The work was then divided in four main tasks; material development, catalytic activity and kinetics measurement, mathematical modelling and design and engineering. The material development was devoted to the different components of a catalytic system, monolith, washcoat and active phase. The preparation method has proven to be of great importance with respect to the BET surface area of the prepared powder as well as the catalytic activity. A carbonate precipitation and a sol-gel procedure were developed at our laboratory. The use of modifiers in the sol-gel method has shown to affect the surface properties as well as the catalytic activity in ethanol and diesel combustion. Various catalytic materials have then been prepared: spinel, perovskite, hexaaluminate and pyrochlore. The hexaaluminate have the highest resistance to sintering in term of BET surface area when aged in 10% steam at temperature up to 1400 deg C for 4 hours. However, the LaAl{sub 11}O{sub 18} hexaaluminate does not have sufficient catalytic activity to ignite the fuel at 300-400 deg C. Substitution with transition metals have then been examined. In the case of ethanol combustion, the Mn-substituted La-hexaaluminate has a T{sub 50} (temperature for 50% conversion) of about 350 deg C. The noble metal-supported catalysts reveal a much higher activity with a T{sub 50} below 250 deg C. However their thermal stability may limit their use to temperatures below 900 deg C. The need of more thermal stable materials lead to the study of NZP-type material, yttrium

  6. Numerical Study of Passive Catalytic Recombiner for Hydrogen Mitigation

    Directory of Open Access Journals (Sweden)

    Pavan K Sharma

    2010-10-01

    Full Text Available A significant amount of hydrogen is expected to be released within the containment of a water cooled power reactor after a severe accident. To reduce the risk of deflagration/detonation various means for hydrogen control have been adopted all over the world. Passive catalytic recombiner with vertical flat catalytic plate is one of such hydrogen mitigating device. Passive catalytic recombiners are designed for the removal of hydrogen generated in order to limit the impact of possible hydrogen combustion. Inside a passive catalytic recombiner, numerous thin steel sheets coated with catalyst material are vertically arranged at the bottom opening of a sheet metal housing forming parallel flow channels for the surrounding gas atmosphere. Already below conventional flammability limits, hydrogen and oxygen react exothermally on the catalytic surfaces forming harmless steam. Detailed numerical simulations and experiments are required for an in-depth knowledge of such plate type catalytic recombiners. Specific finite volume based in-house CFD code has been developed to model and analyse the working of these recombiner. The code has been used to simulate the recombiner device used in the Gx-test series of Battelle-Model Containment (B-MC experiments. The present paper briefly describes the working principle of such passive catalytic recombiner and salient feature of the CFD model developed at Bhabha Atomic Research Centre (BARC. Finally results of the calculations and comparison with existing data are discussed.

  7. Synthesis of α-Amidoketones from Vinyl Esters via a Catalytic/Thermal Cascade Reaction.

    Science.gov (United States)

    Holthusen, Katharina; Leitner, Walter; Franciò, Giancarlo

    2016-06-01

    A straightforward, modular, and atom-efficient method is reported for the synthesis of α-amidoketones from vinyl esters via a cascade reaction including hydroformylation, condensation with a primary amine, and a rearrangement step giving water as the only byproduct. The reaction sequence can be performed in one pot or as a three-step procedure. The synthetic applicability is demonstrated by the preparation of different α-amidoketones in moderate to good yields. PMID:27196947

  8. Simple relationships for estimating intraparticle transport effects for catalytically promoted endothermic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.

    1998-06-16

    Relationships for estimating effectiveness factors for porous-solid-catalyzed fluid reactions can result from assuming approximations to temperature and concentration profiles. Approximations designed to simplify the outcome result in simple, explicit, analytic relationships for both isothermal and nonisothermal nth-order reaction systems. For isothermal systems, formulas developed predict effectiveness within 25% of the true isothermal effectiveness factors ({eta}`s) over the range 0.1 > {eta} > 0.99. For isothermal or endothermic reaction systems with {eta} > 0.65, errors are less than 10%. Even in the maximum-error region, estimates for endothermic systems are within a factor of two of those obtained by solution of the rigorous heat and mass transfer equations. For isothermal or endothermic systems with {eta} > 0.95, errors are less than 1%. Thus the formulas can also serve diagnostic uses that confirm presence or absence of significant internal heat or mass transport effects in porous reacting systems. Extension of the approach to non-nth-order reactions is possible; formulas are derived for simple isothermal and nonisothermal Langmuir-Hinshelwood reaction systems. Application of the work to exothermic reactions was not tested, but steeper gradients in such systems would tend to degrade accuracy of the relationships. The equations derived in this work are simpler and easier of application than any others proposed thus far.

  9. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian Xiao; Chun Mei Kang; Xiao Jun Chen; Xiao Ling Gao; Yang Ming Luo; Sheng Hu; Xiao Lin Wang

    2012-01-01

    Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-DzO gas system,with conversion equilibrium temperature reduction of 200-300 ℃.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.

  10. Spectrophotometric reaction rate method for the determination of osmium by its catalytic effect on the oxidation of gallocyanine by bromate.

    Science.gov (United States)

    Ensafi, A A; Shamss-E-Sollari, E

    1994-10-01

    A simple kinetic spectrophotometric method was developed for the determination of osmium. The method is based on the catalytic effect of osmium as osmium tetroxide on the oxidation of gallocyanine by bromate at pH 7. The reaction is monitored spectrophotometrically by measuring the decreasing absorbance of gallocyanine at 620 nm by the fixed-time method. A detection limit of 0.01 ng/ml and linear calibration curve from 0.1 to 100 and from 100 to 1200 ng/ml Os(VIII) is reported. The relative standard deviation for 0.0100 microg/ml Os(VIII) is 0.8% (N = 10). The method is free from most interferences. Osmium in synthetic samples is determined by this method, with satisfactory results. PMID:18966116

  11. Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu; Luo, Xiangyi; Kropf, A. Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J.; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-01

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt–Cu core–shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li–O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt–Cu core–shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

  12. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    Science.gov (United States)

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. PMID:27393888

  13. Intramolecular hydroarylation of aryl propargyl ethers catalyzed by indium: the mechanism of the reaction and identifying the catalytic species.

    Science.gov (United States)

    Menkir, Mengistu Gemech; Lee, Shyi-Long

    2016-07-01

    The mechanism and regioselectivity of the intramolecular hydroarylation of phenyl propargyl ether catalyzed by indium in gas and solvent phases were investigated by means of the density functional theory method. The computed results revealed that the reaction proceeds through initial π-coordination of the propargyl moiety to the catalyst, which triggers the nucleophilic attack of the phenyl ring via an exo- or endo-dig pathway in a Friedel-Crafts type mechanism. Calculation results obtained employing InI2(+) as the possible catalyst show similar activation energies for the 5-exo-dig and 6-endo-dig pathways. In contrast, the neural catalyst InI3 shows a kinetic preference for 6-endo-dig versus 5-exo-dig cyclizations leading to the experimentally observed product, 2H-chromene. The calculation results suggest that InI3 could be the real catalytic species for this reaction as it shows regioselectivity in agreement with the experimental observation. Furthermore, the 6-endo-dig cyclization through deprotonation/protonation steps is kinetically more favored than the stepwise two consecutive [1,2]-H shift steps. The rate determining step of the whole catalytic cycle is the deprotonation step with an energy barrier of 18.9 kcal mol(-1) in toluene solvent. The effects of substituents on both the phenyl ring and the propargyl moiety on the selectivity and elementary steps of the hydroarylation process were investigated. A methoxy group, particularly at the meta-position, on the phenyl ring largely decreases the energy barrier of the first step for the 6-endo path, though it shows little effect on the activation energies of the second and third steps. Our calculation results are in good agreement with the experimental results. PMID:27298068

  14. Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction

    Indian Academy of Sciences (India)

    Mohd Samim; N K Kaushik; Amarnath Maitra

    2007-10-01

    The condensation of iodobenzene to biphenyl is an industrially important reaction due to its significant role in organic synthesis as drug intermediates. The reaction takes place in the presence of copper powder as catalyst. We have shown in this paper that the size of the copper nanoparticles as well as its exposed surface area is responsible for the yield of chemical reaction. The uncapped copper powder showed a 43% conversion of iodobenzene to biphenyl in 5 h under our experimental conditions. Same amount of copper nanoparticles (size, ∼ 66 nm diameter) prepared by citrate capping showed 88% conversion of iodobenzene to biphenyl, which increased to about 95% when 8 nm diameter capped copper nanoparticles are used. Surprisingly, 5 nm size copper nanoparticles showed no change in the yield of about 95%.

  15. Submonolayer-Pt-Coated Ultrathin Au Nanowires and Their Self-Organized Nanoporous Film: SERS and Catalysis Active Substrates for Operando SERS Monitoring of Catalytic Reactions.

    Science.gov (United States)

    Liu, Rui; Liu, Jing-Fu; Zhang, Zong-Mian; Zhang, Li-Qiang; Sun, Jie-Fang; Sun, Meng-Tao; Jiang, Gui-Bin

    2014-03-20

    For their unique properties, core-shell bimetal nanostructures are currently of immense interest. However, their synthesis is not a trivial work, and most works have been conducted on nanoparticles. We report herein a new synthetic tactic for submonolyer-Pt coated ultrathin Au nanowires (NWs). Besides providing a strong electromagnetic field for Raman signal enhancing, the underlined Au NWs markedly enhanced the catalytic activity of Pt atoms through increasing their dispersity and altering their electronic state. The integration of excellent SERS and high catalytic activity within Au@Pt NWs enable it work as platform for catalyzed reaction study. As a proof of principle, the self-organized Au@Pt NWs thin film is employed in operando SERS monitoring of the p-nitrothiophenol reduction process. In addition to providing kinetic data for structure-activity relationship study, the azo-intermidate independent path is also directly witnessed. This synthetic tactic can be extended to other metals, thus offering a general approach to modulate the physical/chemical properties of both core and shell metals. PMID:26270975

  16. Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides

    Energy Technology Data Exchange (ETDEWEB)

    Boda, L.; Thernesz, A. [MOL Hungarian Oil and Gas Co. Plc., Szazhalombatta (Hungary); Onyestyak, G.; Solt, H.; Lonyi, F.; Valyon, J. [Hungarian Academy of Sciences, Budapest (Hungary). Inst. of Nanochemistry and Catalysis

    2010-07-01

    Palladium/activated carbon (Pd/C) and non-sulfided Ni,Mo/{gamma}-Al{sub 2}O{sub 3} catalysts were used. The hydroconversion was found to proceed in consecutive steps of tricaprylin (TC) hydrogenolysis (HYS) to caprylic acid (CA) and propane, and hydrodeoxygenation (HDO) of the acid intermediate to get hydrocarbon. Two HDO routes were distinguished: (i) over Pd/C the prevailing reaction route was the decarbonylation, whereas (ii) over molybdena-alumina catalysts the main reaction was the reduction of oxygen to get water. (orig.)

  17. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  18. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de

    2008-01-01

    A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze

  19. A New Type of Traveling Interface Modulations in a Catalytic Surface Reaction

    OpenAIRE

    Rafti, M.; Uecker, H.; Lovis, F.; Krupennikova, V.; Imbihl, R.

    2011-01-01

    A new type of traveling interface modulations has been observed in the NH$_3$ + O$_2$ reaction on a Rh(110) surface. A model is set up which reproduces the effect, which is attributed to diffusional mixing of two spatially separated adsorbates causing an excitability which is strictly localized to the vicinity of the interface of the adsorbate domains.

  20. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-09-30

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  1. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  2. On the study of catalytic membrane reactor for water detritiation: Membrane characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, Jérémy, E-mail: jeremy.mascarade@cea.fr [CEA, DEN, DTN/STPA/LIPC Cadarache, F-13108 Saint Paul-lez-Durance (France); Liger, Karine; Troulay, Michèle [CEA, DEN, DTN/STPA/LIPC Cadarache, F-13108 Saint Paul-lez-Durance (France); Joulia, Xavier; Meyer, Xuan-Mi [CNRS, Laboratoire de Génie Chimique, F-31030 Toulouse (France); Perrais, Christophe [CEA, DEN, DTN/STPA/LIPC Cadarache, F-13108 Saint Paul-lez-Durance (France); Tosti, Silvano [ENEA, UTFUS, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM) (Italy)

    2013-10-15

    Highlights: ► Catalytic palladium based membrane reactor is studied for ITER tritium waste management. ► Concentration polarization effect was highlighted by two-dimensional mass transfer model. ► Mass transfer resistance due to concentration polarization is reduced by the increase of fluid velocity. ► Concentration polarization phenomenon is enhanced by the decrease of non-permeable species content in the feed stream. -- Abstract: Tritium waste recycling is a real economic and ecological issue. Generally under the non-valuable Q{sub 2}O form (Q = H, D or T), waste can be converted into fuel Q{sub 2} for a fusion machine (e.g. JET, ITER) by isotope exchange reaction Q{sub 2}O + H{sub 2} = H{sub 2}O + Q{sub 2}. Such a reaction is carried out over Ni-based catalyst bed packed in a thin wall hydrogen permselective membrane tube. This catalytic membrane reactor can achieve higher conversion ratios than conventional fixed bed reactors by selective removal of reaction product Q{sub 2} by the membrane according to Le Chatelier's Law. This paper presents some preliminary permeation tests performed on a catalytic membrane reactor. Permeabilities of pure hydrogen and deuterium as well as those of binary mixtures of hydrogen, deuterium and nitrogen have been estimated by measuring permeation fluxes at temperatures ranging from 573 to 673 K, and pressure differences up to 1.5 bar. Pure component global fluxes were linked to permeation coefficient by means of Sieverts’ law. The thin membrane (150 μm), made of Pd–Ag alloy (23 wt.%{sub Ag}), showed good permeability and infinite selectivity toward protium and deuterium. Lower permeability values were obtained with mixtures containing non permeable gases highlighting the existence of gas phase resistance. The sensitivity of this concentration polarization phenomenon to the composition and the flow rate of the inlet was evaluated and fitted by a two-dimensional model.

  3. Studies on catalytic reduction of nitrate in groundwater

    Institute of Scientific and Technical Information of China (English)

    GENG Bing; ZHU Yanfang; JIN Zhaohui; LI Tielong; KANG Haiyan; WANG Shuaima

    2007-01-01

    Catalytic reduction of nitrate in groundwater by sodium formate over the catalyst was investigated.Pd-Cu/γ-Al2O3 catalyst was prepared by impregnation and characterized by brunauer-emmett-teller (BET),inductive coupled plasma (ICP),X-ray diffraction (XRD),transmission electron microscopy (TEM) and energy dispersive X-ray (EDX).It was found that total nitrogen was effectively removed from the nitrate solution (100 mg/L) and the removal efficiency was 87%.The catalytic activity was affected by pH,catalyst amount used,concentration of sodium formate,and initial concentration of nitrate.As sodium formate was used as reductant,precise control in the initial pH was needed.Excessively high or low initial pH (7.0 or 3.0) reduced catalytic activity.At initial pH of 4.5,catalytic activity was enhanced by reducing the amount of catalyst,while concentrations of sodium formate increased with a considerable decrease in N2 selectivity.In which case,catalytic reduction followed the first order kinetics.

  4. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    The electrochemical behavior of the molten V2O5-M2S2O7 (M = K, Cs, or Na) system was studied using a gold working electrode at 440 degrees C in argon and air atmosphere. The aim of the present investigation was to find a possible correlation between the promoting effect of Cs+ and Na+ ions...... on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...

  5. Compartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network

    OpenAIRE

    Atsushi Kamimura; Kunihiko Kaneko

    2014-01-01

    Explanation of the emergence of primitive cellular structures from a set of chemical reactions is necessary to unveil the origin of life and to experimentally synthesize protocells. By simulating a cellular automaton model with a two-species hypercycle, we demonstrate the reproduction of a localized cluster; that is, a protocell with a growth-division process emerges when the replication and degradation speeds of one species are respectively slower than those of the other species, because of ...

  6. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D.

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  7. A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Marco Villani

    2013-09-01

    Full Text Available In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR. In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.

  8. Spectrophotometric Determination of Trace Cyanide in Fruit Wines by the Catalytic Reaction of Ninhydrin Following Micro-Distillation

    Directory of Open Access Journals (Sweden)

    Saksit Chanthai

    2014-03-01

    Full Text Available Trace analysis of cyanide (CN based on the absorbance of the catalytic reaction of ninhydrin (NH in the presence of CN- was developed. This reaction was investigated consisting of 0.08 M NH, 0.4 M Na2CO3, 1% (v/v Tween 20 and 2.5 M NaOH in 5-mL final volume. The absorbance of the CN-NH complex was measured against the reagent blank at 598 nm. The calibration curve was widely linear over the range of 40-160 µg/L with r2 >0.99. The method recoveries of free cyanide, bound cyanide and total cyanide for wine samples were found in the range of 76.2-89.2%, 73.2-91.2% and 76.8-94.8%, respectively, at 250 µg/L CN- spiked level. Limit of detection was 6 µg/L. The reproducibility of the proposed method was less than 4.44%. This method was then applied for local Thai fruit wines. No trace amount of cyanide was detected, as if high recovery (88.4% of the micro-distillation was guaranteed. The obtained results were in agreement with those of the chloramine-T/barbituric acid-pyridine method with no statistically significant difference at 95% confidence level.

  9. Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study

    Directory of Open Access Journals (Sweden)

    Nyoman Puspa Asri

    2013-03-01

    Full Text Available Non catalytic transesterification in sub and supercritical methanol have been used to produce biodiesel from palm oil and soybean oil. A kinetic study was done under reaction condition with temperature and time control. The experiments were carried out in a batch type reactor at reaction temperatures from 210 °C (subcritical condition to 290 °C (the supercritical state in the interval ranges of temperature of 20 °C and at various molar ratios of oil to methanol. The rate constants of the reaction were determined by employing a simple method, with the overall chemical reaction followed the pseudo-first–order reaction. Based on the results, the rate constants of vegetables oil were significantly influenced by reaction temperature, which were gradually increased at subcritical temperature, but sharply increased in the supercritical state. However, the rate constants of soybean oil were slightly higher than that of palm oil. The activation energy for transesterification of soybean oil was 89.32 and 79.05 kJ/mole for palm oil. Meanwhile, the frequency factor values of both oils were 72462892 and 391210 min-1, respectively. The rate reaction for both of oil were expressed as -rTG = 72462892 exp(-89.32/RTCTG for soybean oil and -rTG = 391210 exp(-79.05/RTCTG for palm oil. © 2013 BCREC UNDIP. All rights reservedReceived: 18th October 2012; Revised: 14th December 2012; Accepted: 16th December 2012[How to Cite: N.P. Asri, S. Machmudah, W. Wahyudiono, S. Suprapto, K. Budikarjono, A. Roesyadi, M. Goto, (2013. Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 215-223. (doi:10.9767/bcrec.7.3.4060.215-223][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4060.215-223 ] View in  |

  10. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  11. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields. PMID:27657143

  12. A Ternary Catalytic System for the Room Temperature Suzuki-Miyaura Reaction in Water

    Directory of Open Access Journals (Sweden)

    Aires da Conceição Silva

    2013-01-01

    Full Text Available The formation of Pd(0 in the absence of any classical reducing agent in a medium containing Mg2+/Al3+ layered double hydroxide (LDH and N,N-dimethylformamide was evidenced. XRD analysis showed the presence of crystalline phases of palladium in the Pd/LDH composite. Suzuki-Miyaura reactions in aqueous medium were carried out at room temperature, and good yields were obtained with bromoarenes and iodoarenes using the ternary system LDH-Pd-CD (cyclodextrin as catalyst.

  13. Structural Basis on the Catalytic Reaction Mechanism of Novel 1,2-Alpha L-Fucosidase (AFCA) From Bifidobacterium Bifidum

    Energy Technology Data Exchange (ETDEWEB)

    Nagae, M.; Tsuchiya, A.; Katayama, T.; Yamamoto, K.; Wakatsuki, S.; Kato, R.

    2009-06-03

    1,2-alpha-L-fucosidase (AfcA), which hydrolyzes the glycosidic linkage of Fucalpha1-2Gal via an inverting mechanism, was recently isolated from Bifidobacterium bifidum and classified as the first member of the novel glycoside hydrolase family 95. To better understand the molecular mechanism of this enzyme, we determined the x-ray crystal structures of the AfcA catalytic (Fuc) domain in unliganded and complexed forms with deoxyfuconojirimycin (inhibitor), 2'-fucosyllactose (substrate), and L-fucose and lactose (products) at 1.12-2.10 A resolution. The AfcA Fuc domain is composed of four regions, an N-terminal beta region, a helical linker, an (alpha/alpha)6 helical barrel domain, and a C-terminal beta region, and this arrangement is similar to bacterial phosphorylases. In the complex structures, the ligands were buried in the central cavity of the helical barrel domain. Structural analyses in combination with mutational experiments revealed that the highly conserved Glu566 probably acts as a general acid catalyst. However, no carboxylic acid residue is found at the appropriate position for a general base catalyst. Instead, a water molecule stabilized by Asn423 in the substrate-bound complex is suitably located to perform a nucleophilic attack on the C1 atom of L-fucose moiety in 2'-fucosyllactose, and its location is nearly identical near the O1 atom of beta-L-fucose in the products-bound complex. Based on these data, we propose and discuss a novel catalytic reaction mechanism of AfcA.

  14. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    Science.gov (United States)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-08-01

    Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  15. Compartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network

    Directory of Open Access Journals (Sweden)

    Atsushi Kamimura

    2014-10-01

    Full Text Available Explanation of the emergence of primitive cellular structures from a set of chemical reactions is necessary to unveil the origin of life and to experimentally synthesize protocells. By simulating a cellular automaton model with a two-species hypercycle, we demonstrate the reproduction of a localized cluster; that is, a protocell with a growth-division process emerges when the replication and degradation speeds of one species are respectively slower than those of the other species, because of overcrowding of molecules as a natural outcome of the replication. The protocell exhibits synchrony between its division process and replication of the minority molecule. We discuss the effects of the crowding molecule on the formation of primitive structures. The generality of this result is demonstrated through the extension of our model to a hypercycle with three molecular species, where a localized layered structure of molecules continues to divide, triggered by the replication of a minority molecule at the center.

  16. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water

    International Nuclear Information System (INIS)

    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs

  17. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.

    Science.gov (United States)

    Lu, Yi-Chun; Gasteiger, Hubert A; Shao-Horn, Yang

    2011-11-30

    We report the intrinsic oxygen reduction reaction (ORR) activity of polycrystalline palladium, platinum, ruthenium, gold, and glassy carbon surfaces in 0.1 M LiClO(4) 1,2-dimethoxyethane via rotating disk electrode measurements. The nonaqueous Li(+)-ORR activity of these surfaces primarily correlates to oxygen adsorption energy, forming a "volcano-type" trend. The activity trend found on the polycrystalline surfaces was in good agreement with the trend in the discharge voltage of Li-O(2) cells catalyzed by nanoparticle catalysts. Our findings provide insights into Li(+)-ORR mechanisms in nonaqueous media and design of efficient air electrodes for Li-air battery applications. PMID:22044022

  18. Studies relevant to the catalytic activation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  19. A theoretical study on the catalytic effect of nanoparticle confined in carbon nanotube

    Science.gov (United States)

    Qin, Wu; Li, Xin

    2011-01-01

    We investigated the catalytic effect of CuO nanoparticles confined in carbon nanotubes using molecular dynamics simulations and density functional theory calculations. Ozone decomposition and hydroxyl radical generation were used as the probe reactions to investigate the catalytic behavior of catalyst. The effects of the confined environment of carbon nanotubes induced more reactants into the channel. Interface interactions between reactants and CuO nanoparticles in the channel and charge transfer accelerated the decomposition of ozone into oxygen molecule and atomic oxygen species. The atomic oxygen species then interacted to water molecule to generate hydroxyl radicals, which were truly identified by electron paramagnetic resonance (EPR) technique.

  20. Study on Application of Bi-directional Combination Technology Integrating Residue Hydrotreating with Catalytic Cracking RICP

    Institute of Scientific and Technical Information of China (English)

    Niu Chuanfeng; Gao Yongcan; Dai Lishun; Li Dadong

    2008-01-01

    After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an increased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.

  1. Influences of Reaction Parameters on the Product of a Geothermite Reaction: A Multi-Component Oxidation-Reduction Reaction Study

    OpenAIRE

    Faierson, Eric J.

    2009-01-01

    This study investigated an oxidation-reduction reaction involving a mixture of minerals, glass, and aluminum that exhibited thermite-type reaction behavior. Thermite reactions are a class of Self-propagating High-temperature Synthesis (SHS) reactions. Chemical reactions between raw minerals and a reducing agent, which exhibit thermite-type reaction behavior, are termed geothermite reactions by the author. Geothermite reactions have the potential for use in In-Situ Resource Utilization (ISRU...

  2. N,N,O,O-四齿配体-钯(Ⅱ)配合物的生成反应热动力学及在Suzuki反应中的催化活性%Thermokinetic Study of Formation Reaction of N,N, O, O-Tetradentate Ligand-palladium (Ⅱ) Complex and Its Catalytic Performance in Suzuki Reaction

    Institute of Scientific and Technical Information of China (English)

    申利群; 黄素玉; 雷福厚; 黄在银

    2013-01-01

    A new N-O ligand 1-(6-chloro-pyridin-2-yl)-5-hydroxy-1H-pyrazole-3-carboxylic acid methyl ester was prepared and structurally analyzed.The solid lattice of the compound at 296 K reveals one dimensional chain structure connected by intermolecular hydrogen bonds [C3—H3… O2,0.2535 (17) nm] and halogen bonds[C1—Cl1…01,0.3161 (18) nm,Cl atom as Lewis acid and oxygen atom as Lewis base] interactions.The ligand adds to palladium(Ⅱ) to give high yield of air-stable complex 1 that was fully characterized by infrared (IR) spectroscopy,nuclear magnetic resonance(NMR) spectroscopy and high resolution mass spectrum (HRMS).The dynamic thermochemistry for the formation of complex 1 in liquid-phase was explored by a microcalorimeter.Thermodynamic parameters (the activation enthalpy,the activation entropy and the activation free energy),kinetics parameters(the apparent activation energy,the pre-exponential constant and the reaction order) and rate constants of the coordination reaction were procured.Complex 1 was used as catalyst for the Suzuki cross-coupling between different aryl bromides and phenylboronic acid in water/ethanol with KOH as base under microwave irradiation and afforded the corresponding cross-coupled biaryls in 80.7%-95.9% yields.Furthermore,the reactions of aryl chlorides and phenylboronic acid were also successfully achieved in comparable yields.%合成了新型双齿配体5-羟基-1-(6-氯吡啶-2-基)-1H-吡唑-3-羧酸甲酯及其钯配合物并进行了表征.通过微热量计测定计算了配合物形成的热力学和动力学参数,计算结果显示,该配合物极易形成,在空气和溶液中稳定,可以用作Suzuki反应的催化剂.使用1%(摩尔分数)的催化剂,以2倍量的氢氧化钾为碱,乙醇-水为溶剂,在120℃微波加热2 min,使具有不同电子和空间效应的溴代芳烃和苯硼酸或对甲氧基苯硼酸反应,偶联产物的分离产率可以达到80.7% ~ 95.9%.氯代芳烃也以合适的产率得到偶联产物.

  3. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: A first-principles study

    KAUST Repository

    Liu, Xin

    2012-01-01

    The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru 13 nanoparticle on a single vacancy graphene is as high as -7.41 eV, owing to the hybridization between the dsp states of the Ru particles with the sp 2 dangling bonds at the defect sites. Doping the defective graphene with boron would further increase the binding energy to -7.52 eV. The strong interaction results in the averaged d-band center of the deposited Ru nanoparticle being upshifted toward the Fermi level from -1.41 eV to -1.10 eV. Further study reveals that the performance of the nanocomposites against hydrogen, oxygen and carbon monoxide adsorption is correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles deposited on defective graphene are expected to exhibit both high stability against sintering and superior catalytic performance in hydrogenation, oxygen reduction reaction and hydrogen evolution reaction. © 2012 The Royal Society of Chemistry.

  4. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  5. Synthesis, characterization, crystal structure determination and catalytic activity in epoxidation reaction of two new oxidovanadium(IV) Schiff base complexes

    Science.gov (United States)

    Tahmasebi, Vida; Grivani, Gholamhossein; Bruno, Giuseppe

    2016-11-01

    The five coordinated vanadium(IV) Schiff base complexes of VOL1 (1) and VOL2 (2), HL1 = 2-{(E)-[2-bromoethyl)imino]methyl}-2- naphthol, HL2 = 2-{(E)-[2-chloroethyl)imino]methyl}-2- naphthol, have been synthesized and they were characterized by using single-crystal X-ray crystallography, elemental analysis (CHN) and FT-IR spectroscopy. Crystal structure determination of these complexes shows that the Schiff base ligands (L1 and L2) act as bidentate ligands with two phenolato oxygen atoms and two imine nitrogen atoms in the trans geometry. The coordination geometry around the vanadium(IV) is distorted square pyramidal in which vanadium(IV) is coordinated by two nitrogen and two oxygen atoms of two independent ligands in the basal plane and by one oxygen atom in the apical position. The catalytic activity of the Schiff base complexes of 1 and 2 in the epoxidation of alkenes were investigated using different reaction parameters such as solvent effect, oxidant, alkene/oxidant ratio and the catalyst amount. The results showed that in the presence of TBHP as oxidant in 1: 4 and 1:3 ratio of the cyclooctene/oxidant ratio, high epoxide yield was obtained for 1 (76%) and 2 (80%) with TON(= mole of substrate/mole of catalyst) of 27 and 28.5, respectively, in epoxidation of cyclooctene.

  6. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  7. Theoretical Study on the Mechanism of Sonogashira Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-Ping; HONG San-Guo; HOU Hao-Qing

    2008-01-01

    The mechanism of palladium-catalyzed Sonogashira cross-coupling reaction has been studied theoretically by DFT (density functional theory) calculations. The model system studied consists of Pd(PH3)2 as the starting catalyst complex, phenyl bromide as the substrate and acetylene as the terminal alkyne, without regarding to the co-catalyst and base. Mechanistically and energetically plausible catalytic cycles for the cross-coupling have been identified. The DFT analysis shows that the catalytic cycle occurs in three stages: oxidative addition of phenyl bromide to the palladium center, alkynylation of palladium(II) intermediate, and reductive elimination to phenylacetylene. In the oxidative addition, the neutral and anionic pathways have been investigated, which could both give rise to cis-configured palladium(II) diphosphine intermediate. Starting from the palladium(II) diphosphine intermediate, the only identifiable pathway in alkynylation involves the dissociation of Br group and the formation of square-planar palladium(II) intermediate, in which the phenyl and alkynyl groups are oriented cis to each other. Due to the close proximity of phenyl and alkynyl groups, the reductive elimination of phenylacetylene proceeds smoothly.

  8. Catalytic Pyrolysis and a Pyrolysis Kinetic Study of Shredded Printed Circuit Board for Fuel Recovery

    Directory of Open Access Journals (Sweden)

    Salmiaton Ali

    2014-10-01

    Full Text Available Scrap printed circuit boards (PCBs are the most abundant wastes that can be found in the landfills in Malaysia and this disposal certainly poses serious detrimental to the environment. This research aims to investigate optimum temperature for pyrolyzing waste PCBs, find out the best catalyst to be used in accelerating PCBs’ pyrolysis, select suitable ratio of catalyst to PCBs for higher oil yield and examine kinetics pyrolysis of the waste PCBs’ decomposition. Operating temperatures ranged from 200 to 350 ˚C of PCB’s pyrolysis were conducted with the optimum temperature obtained was 275 ˚C. Fluid cata-lytic cracking (FCC catalyst, zeolite socony mobil-5 (ZSM-5, H-Y-type zeolite and dolomite were used to accelerate PCB’s pyrolysis at 275 ˚C and FCC was identified as the best catalyst to be used. Differ-ent ratios of FCC to waste PCBs such as 10:90, 20:80, 30:70, 40:60 and 50:50 were applied in the pyro-lysis at 275 ˚C and ratio of 10:90 was selected as the suitable ratio to be utilized for maximum yield. The kinetic study was done through thermogravimetric analysis on waste PCBs under various heating rates and different particle sizes. The GC-MS analysis revealed that compounds detected in the pyro-oil have the potential to be used as fuel. © 2014 BCREC UNDIP. All rights reservedReceived: 23rd July 2014; Revised: 14th August 2014; Accepted: 14th August 2014 How to Cite: Ng, C.H., Salmiaton, A., Hizam, H. (2014. Catalytic Pyrolysis and a Pyrolysis Kinetic Study of Shredded Printed Circuit Board for Fuel Recovery. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 224-240. (doi:10.9767/bcrec.9.3.7148.224-240 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.7148.224-240

  9. Synthesis of magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts and their catalytic performance for Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingyuan; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn; Ammar, Muhammad; Zhang, Qingmin; Yan, Junlei

    2015-03-15

    Novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 through in situ method. The structures of the catalysts were characterized by TEM, SEM, XRD, FT-IR, VSM, N{sub 2} adsorption/desorption and CO{sub 2}-TPD technology. The catalytic activity and recovery properties of the catalysts for the Knoevenagel reaction of p-chlorobenzaldehyde with malononitrile were evaluated. The results showed that the magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts had the larger surface areas, the suitable superparamagnetism, and good catalytic activity for Knoevenagel reaction. The conversion of p-chlorobenzaldehyde can reach ~98% and the selectivity of the production can reach ~99% over35.8%ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} (MZC-5) catalyst under the reaction condition of 25 °C and 4 h. The magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts also had good substrates adaptation. After reaction, the catalyst can be easily separated from the reaction mixture by an external magnet. The recovery catalyst can be reused five times and the conversion of p-chlorobenzaldehyde can be kept over 90%. - Graphical abstract: Novel magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 and the as-synthesized catalysts exhibited a good catalytic activity for the Knoevenagel reaction. - Highlights: • A series of novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized. • The catalysts had the larger surface areas and the suitable superparamagnetism. • The catalysts exhibited good catalytic activity for the Knoevenagel reaction. • After reaction the catalyst can be easily separated by an external magnet. • The recovery catalyst can be reused five times and can keep its catalytic activity.

  10. PVA降解酶催化反应的动力学方程%Kinetic Equation on the Catalytic Reaction of PVA-Degradation Enzyme

    Institute of Scientific and Technical Information of China (English)

    郭雅妮; 段士然; 周明; 崔双科

    2012-01-01

    The properties and catalytic reaction kinetics of PVA-degradation enzyme from a newly selected mixed strain that is able to fully degrade PVA were studied for its actual use. Through the determination of changes in enzymatic activities in the course of the PVA degradation process, a catalysis kinetic equation was assumed first and then verified. The results indicated that the enzymatic activities would get lower along with the PVA degradation efficiency rising when PVA was not yet completely degraded. After the degradation was completed, the enzymatic activities tended to keep at certain level. As the PVA concentration increased, the enzymatic activities enhanced gradually. Michaelis constant Kr, of PVA-degradation enzyme was 2.06×10^-3 mol/L and the highest reaction rate Vr~,x was 19.5 units per minute. Thus, the kinetic equation on the catalytic reaction could be obtained as V=19.5 [S] / (2.06×10^-3+[S]).%筛选了1种能够完全降解PVA的混合菌系,对其所生产的PVA降解酶的降解性质及其酶催化反应动力学进行了研究。通过测定在PVA降解过程中酶活的变化,采用"先假设-后验证"的方法研究酶催化动力学方程。结果表明,在PVA未完全降解时,该降解酶的酶活随着PVA降解效率的提高而降低;在完全降解后,其酶活趋于一定。随着PVA浓度的升高,酶活逐渐提高。该酶的米氏常数Km=2.06×10^-3mol/L,最大反应速率Vmax=19.5U/min,得到该酶对PVA的催化反应动力学方程,为V=19.5[S]/(2.06×10^-3+[S]),从而为混合菌系的实际应用提供理论依据。

  11. Esterification reactions by catalytic distillation method (n-pentyl acetate production

    Directory of Open Access Journals (Sweden)

    Fernando Leiva Lenis

    2010-03-01

    Full Text Available A summary of basic characteristics for n-Pentyl Acetate production in a reactive distillation column is achieved. Computer simulation was performed to study the process and to evaluate operational alternatives. Results show that the reactive system exhibits reactive azeotropy phenomena, as is displayed in the residue curves maps illustrated here. The proposed process resulted technically viable for n-Pentyl Acetate fabrication as the principal bottom's product of a reactive distrillation column.

  12. Esterification reactions by catalytic distillation method (n-pentyl acetate production)

    OpenAIRE

    Fernando Leiva Lenis; Álvaro Orjuela Londoño; Luis Alejandro Boyacá Mendivelso; Gerardo Rodríguez Niño; Luis María Carballo Suárez

    2010-01-01

    A summary of basic characteristics for n-Pentyl Acetate production in a reactive distillation column is achieved. Computer simulation was performed to study the process and to evaluate operational alternatives. Results show that the reactive system exhibits reactive azeotropy phenomena, as is displayed in the residue curves maps illustrated here. The proposed process resulted technically viable for n-Pentyl Acetate fabrication as the principal bottom's product of a reactive distrillation column.

  13. Review of study on automotive catalytic converter%汽车催化转化器研究概述

    Institute of Scientific and Technical Information of China (English)

    王亚军; 冯长根; 王丽琼; 郭新亚

    2001-01-01

    综述了近30 年来国内外在汽车催化转化器方面的研究概况,包括化学反应动力学、传热传质、气体流动、催化器暂态行为、失效、模型、设计、快速起燃和低排放技术等。%The studies on automotive catalytic converter,including reaction kinetics,heat and mass transfer,gas distribution,transient behavior,deactivation,modeling,design,fast light-off and low emission techniques,were reviewed.

  14. Isolation and Characterization of Well-Defined Silica-Supported Azametallacyclopentane: A Key Intermediate in Catalytic Hydroaminoalkylation Reactions

    KAUST Repository

    Hamzaoui, Bilel

    2015-09-25

    Intermolecular catalytic hydroaminoalkylation of unactivated alkene occurs with silica-supported azazirconacyclopropane [[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)(η2-NMeCH2)(NMe2)]. Mechanistic studies were conducted using surface organometallic chemistry (SOMC) concepts to identify the key surface intermediates. The azametallacyclopentene intermediate {[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)[η2-NMeCH2CH(Me)CH2](NMe2)} was isolated after treating with 1-propylene and characterized by FT-IR spectroscopy, elemental analysis, 1H 13C HETCOR, DARR SS-NMR and DQ TQ SS-NMR. The regeneration of the catalyst was conducted by dimethylamine protonolysis to yield the pure amine.

  15. Influence of the particle size of zeolite HZSM-5 on the catalytic performance in the ethene-to-propene reaction

    Energy Technology Data Exchange (ETDEWEB)

    Follmann, S.; Ernst, S. [Kaiserslautern Univ. (Germany). Dept. of Chemistry; Vetter, A.; Ripperger, S. [Kaiserslautern Univ. (Germany). Dept. of Mechanical and Process Engineering

    2013-11-01

    In this study, HZSM-5-type zeolites with comparable nSi/nAl-ratios but different crystallite sizes (6 {mu}m, 27 {mu}m, 40 {mu}m and 62 {mu}m) were synthesized and their physicochemical properties characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. Their catalytic properties were explored in the acid-catalyzed conversion of ethene to propene (and higher hydrocarbons). The results show that there is a significant influence of the crystallite size of the zeolite catalyst on the activity and time-on-steam stability. While the yields of short-chain olefins do not significantly differ for all materials investigated, the formation of aromatics is significantly suppressed over the catalyst with the largest crystallite size. (orig.)

  16. Characterization of the efficiency of the gas-solid contact in circulating bed at by the use of a test reaction: the cumene catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.; Gauthier, T.; Pontier, R. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Briens, C.L.; Bergougnou, M. [University of Western Ontario, London, ON (Canada). Dept. of Physics

    1995-12-31

    The gas-solid down with the stream reactor, the ``downer``, presents a main interest for the high-speed reactions because it is well adapted to hard conditions uses: very short residence times, high temperatures and feeds of catalyst. This reactor type already presents a certain advantage to estimate the charges or new catalysts potential. But, it particularly constitutes an interesting option for some processes as petroleum cuts catalytic cracking. In order to intensify the contact between the catalyst and the reagents, the temperature increase of the reagents has to be almost instantaneous and the initial contact between the gas and the solid particles particularly effective. So as to validate these two hypothesis, the test reaction of the cumene catalytic cracking is carried out in the pilot unit ``downer`` of the Western Ontario University. (O.M.). 11 refs., 3 figs.

  17. Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Study

    DEFF Research Database (Denmark)

    Hu, Qiang; Colmenares Rausseo, Luis César; Martinez, Umberto;

    2015-01-01

    combined computational and experimental study. It was found that Sb-dopant atoms prefer to segregate toward the ATO/Pt interface. The deposited Pt catalysts, interestingly, not only promote Sb segregation, but also suppress the occurrence of Sb3+ species, a charge carrier neutralizer at the interface. The...... addition, the calculation results show that the presence of Sb dopants in ATO has little effect on the catalytic activity of deposited three-layer Pt toward the oxygen reduction reaction, although subsequent alloying of Pt and Sb could lower the corresponding catalytic activity. These findings help to...

  18. Study on Selective Catalytic Reduction Reaction Properties of LaCoO3 Perovskite Catalyst for Diesel NOx Emission Removal%LaCoO3钙钛矿型催化剂对柴油机NOx净化性能研究

    Institute of Scientific and Technical Information of China (English)

    郝斌; 杨铁皂; 吕刚; 宋崇林; 宾峰

    2012-01-01

    LaCoO3 perovskite catalyst was prepared by citric acid complex method and characterized for its physic - chemical properties. Catalytic performance in the SCR of NO, by NH3 was studied and results showed that: pure LaCoO3 granule has a certain ability of catalytic reduction of NOx, especially between 250 to 45℃. However, the undesired catalytic activity for the oxidation of NH3 was too high and could be even largely promoted by a higher temperature. When LaCoO3 was used as SCR catalyst, it showed a certain degree of purification ability of NOx, below 400℃ , but if the temperature was higher than 400℃ , NOx elimination is deteriorated. Moreover, LaCo03 perovskite catalyst was highly capable of enhancing the oxidation of HC and CO regardless of their gas compositions.%采用柠檬酸络合法制备了LaCoO3钙钛矿型催化剂.对其理化特性及NH3-选择性催化还原催化性能的研究结果表明:纯LaCoO3颗粒具有一定的NOx催化还原能力,在250~450℃活性较高;但该催化剂对NH3具有较高的氧化活性,且催化活性随反应温度的升高而提高;在SCR反应中,在400℃以下时,该催化剂显示出一定的NOx净化能力,但当温度超过400℃以后,还原剂的加入反而恶化了NOx排放.不管反应气组成如何,LaCoO3钙钛矿型催化剂对HC和CO都具有良好的催化性能.

  19. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P.; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G.; Kazantzis, Nikolaos K.; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields. PMID:27657143

  20. Reaction mechanism of the reverse water-gas shift reaction using first-row middle transition metal catalysts L'M (M = Fe, Mn, Co): a computational study.

    Science.gov (United States)

    Liu, Cong; Cundari, Thomas R; Wilson, Angela K

    2011-09-19

    The mechanism of the reverse water-gas shift reaction (CO(2) + H(2) → CO + H(2)O) was investigated using the 3d transition metal complexes L'M (M = Fe, Mn, and Co, L' = parent β-diketiminate). The thermodynamics and reaction barriers of the elementary reaction pathways were studied with the B3LYP density functional and two different basis sets: 6-311+G(d) and aug-cc-pVTZ. Plausible reactants, intermediates, transition states, and products were modeled, with different conformers and multiplicities for each identified. Different reaction pathways and side reactions were also considered. Reaction Gibbs free energies and activation energies for all steps were determined for each transition metal. Calculations indicate that the most desirable mechanism involves mostly monometallic complexes. Among the three catalysts modeled, the Mn complex shows the most favorable catalytic properties. Considering the individual reaction barriers, the Fe complex shows the lowest barrier for activation of CO(2). PMID:21838224

  1. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Susumu Itoh

    2014-01-01

    Full Text Available Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented.

  2. Catalytic converter heating by reversible chemical reaction of CaO/Ca(OH)2. Simulation study of exhaust emission reduction with prototype heater; CaO/Ca(OH)2 kagyaku hannonetsu ni yoru sangen shokubai kanetsu hoshiki no kento. Prototype sochi no haishutsu gas joka seino simulation

    Energy Technology Data Exchange (ETDEWEB)

    Katashiba, H.; Kimura, H. [Mitsubishi Electric Corp., Tokyo (Japan); Morita, S. [Osaka City University, Osaka (Japan). Faculty of Engineering

    1998-07-25

    Rapid activation of three-way catalyst is very effective to reduce harmful substances in exhaust gas. For heating the catalyst of a car, feasibility study of CaO/Ca(OH)2 reversible exothermic reaction has been done. In this paper, experimental results of prototype heater with exothermic hydration and dehydration reaction are described. Furthermore, the performance of exhaust emission reduction with the prototype heater and Ca(OH)2 dehydration are estimated by simulation study. It is predicted that the prototype heater reduces unburned exhaust emission by 37% in LA-4 test cycle simulation. 6 refs., 5 figs.

  3. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  4. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  5. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily. PMID:27370473

  6. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  7. Theoretical Study on the Hetero-Diels-Alder Reactions between 3-Pyridinedithioesters and 1-Phenylsulfanylbutadiene

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanism, catalytic effect and solvent effect of the hetero-Diels-Alder reactions between 3-pyridinedithioesters and 1-phenylsulfanylbutadiene have been studied theoretically using density functional theory (DFT) at the B3LYP/6-31G(d) level. The results show that all of these reactions proceed in a concerted but asynchronous way. In some reactions the formation of C(S bond is prior to that of C-C bond and the opposite results are found in other reactions. The BF3 catalyst may lower the activation barriers by changing the energies of LUMO for 3-pyridinedithioester. THF solvent has trivial influence on the potential energy surface of these reactions. With the BF3-catalyzed reactions, regioselectivity and stereoselectivity observed experimentally were predicted correctly by calculations and these results originate probably from C-H…F interaction in two transition states.

  8. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures.

    Science.gov (United States)

    Sarina, Sarina; Zhu, Huaiyong; Jaatinen, Esa; Xiao, Qi; Liu, Hongwei; Jia, Jianfeng; Chen, Chao; Zhao, Jian

    2013-04-17

    The intrinsic catalytic activity of palladium (Pd) is significantly enhanced in gold (Au)-Pd alloy nanoparticles (NPs) under visible light irradiation at ambient temperatures. The alloy NPs strongly absorb light and efficiently enhance the conversion of several reactions, including Suzuki-Miyaura cross coupling, oxidative addition of benzylamine, selective oxidation of aromatic alcohols to corresponding aldehydes and ketones, and phenol oxidation. The Au/Pd molar ratio of the alloy NPs has an important impact on performance of the catalysts since it determines both the electronic heterogeneity and the distribution of Pd sites at the NP surface, with these two factors playing key roles in the catalytic activity. Irradiating with light produces an even more profound enhancement in the catalytic performance of the NPs. For example, the best conversion rate achieved thermally at 30 °C for Suzuki-Miyaura cross coupling was 37% at a Au/Pd ratio of 1:1.86, while under light illumination the yield increased to 96% under the same conditions. The catalytic activity of the alloy NPs depends on the intensity and wavelength of incident light. Light absorption due to the Localized Surface Plasmon Resonance of gold nanocrystals plays an important role in enhancing catalyst performance. We believe that the conduction electrons of the NPs gain the light absorbed energy producing energetic electrons at the surface Pd sites, which enhances the sites' intrinsic catalytic ability. These findings provide useful guidelines for designing efficient catalysts composed of alloys of a plasmonic metal and a catalytically active transition metal for various organic syntheses driven by sunlight. PMID:23566035

  9. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  10. LaMn1-xFe xO3 and LaMn0.1-xFe0.90Mo x O3 perovskites: synthesis, characterization and catalytic activity in H2O2 reactions

    Directory of Open Access Journals (Sweden)

    Fabiano Magalhães

    2008-09-01

    Full Text Available In this work two perovskites were prepared: LaMn1-xFe xO3, and LaMn0.1-x Fe0.90Mo xO3. XRD and Mössbauer spectroscopy suggest the formation of pure phase perovskite with the incorporation of Fe and Mo in the structure. The catalytic activity of these materials was studied in two reactions with H2O2: the decomposition to O2, and the oxidation of the model organic contaminant methylene blue. The perovskite composition strongly affects the catalytic activity, while Fe decreases the H2O2 decomposition Mo strongly improves dye oxidation.

  11. Self-catalytic degradation of ortho-chlorophenol with Fenton's reagent studied by chemiluminescence

    Institute of Scientific and Technical Information of China (English)

    Zhen Lin; HuiChen; Yun Zhou; Nobuaki Ogawa; Jin-Ming Lin

    2012-01-01

    The degradation of ortho-chlorophenol using Fenton's reagent was studied by chemiluminescence(CL).Without a special CL reagent,a weak CL emission from the mixture of ferrous ion and hydrogen peroxide was observed at room temperature.The CL intensity was increased by the addition of ortho-chlorophenol into the mixed solution.When the temperature was raised to 65℃,the CL intensity was enhanced strongly.The CL mechanisms for the system H2O2-Fe2+ with and without ortho-chlorophenol were studied by examining the CL spectrum,gas chromatography-mass spectrometry and electron spin resonance spectrum.The effects of various free radical scavengers,surfactants and fluorescence compounds on the CL intensity were also investigated.A self-catalytic oxidation mechanism was proposed.The results showed that singlet oxygen was the main emitter for the system H2O2-Fe2+.The strong CL from the system H2O2-Fe2+-ortho-chlorophenol was due to singlet oxygen and electronically excited quinone.The benzenediol-like intermediate product formed during the phenol oxidation process greatly promoted the Fenton's reaction and led to higher CL intensity.Chemiluninescence is a novel approach for the investigation of the oxidation of some organic pollutants by Fenton's reagent.

  12. A QM/MM study of the catalytic mechanism of nicotinamidase.

    Science.gov (United States)

    Sheng, Xiang; Liu, Yongjun

    2014-02-28

    Nicotinamidase (Pnc1) is a member of Zn-dependent amidohydrolases that hydrolyzes nicotinamide (NAM) to nicotinic acid (NA), which is a key step in the salvage pathway of NAD(+) biosynthesis. In this paper, the catalytic mechanism of Pnc1 has been investigated by using a combined quantum-mechanical/molecular-mechanical (QM/MM) approach based on the recently obtained crystal structure of Pnc1. The reaction pathway, the detail of each elementary step, the energetics of the whole catalytic cycle, and the roles of key residues and Zn-binding site are illuminated. Our calculation results indicate that the catalytic water molecule comes from the bulk solvent, which is then deprotonated by residue D8. D8 functions as a proton transfer station between C167 and NAM, while the activated C167 serves as the nucleophile. The residue K122 only plays a role in stabilizing intermediates and transition states. The oxyanion hole formed by the amide backbone nitrogen atoms of A163 and C167 has the function to stabilize the hydroxyl anion of nicotinamide. The Zn-binding site rather than a single Zn(2+) ion acts as a Lewis acid to influence the reaction. Two elementary steps, the activation of C167 in the deamination process and the decomposition of catalytic water in the hydrolysis process, correspond to the large energy barriers of 25.7 and 28.1 kcal mol(-1), respectively, meaning that both of them contribute a lot to the overall reaction barrier. Our results may provide useful information for the design of novel and efficient Pnc1 inhibitors and related biocatalytic applications. PMID:24413890

  13. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  14. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism.

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg(2+)-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  15. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  16. Theoretical studies of chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  17. MARS - a multidetector array for reaction studies

    International Nuclear Information System (INIS)

    The proposal for MARS, a Multidetector Array for Reaction Studies is presented. MARS consists of a large, high-vacuum vessel enclosing an array of 128 scintillation detectors for use in studies of heavy-ion collisions at TASCC. The instrument will be funded and owned jointly by AECL and NSERC

  18. Fundamental studies of catalytic processing of synthetic liquids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watson, P.R.

    1994-06-15

    Liquids derived from coal contain relatively high amounts of oxygenated organic compounds, mainly in the form of phenols and furans that are deleterious to the stability and quality of these liquids as fuels. Hydrodeoxygenation (HDO) using Mo/W sulfide catalysts is a promising method to accomplish this removal, but our understanding of the reactions occurring on the catalyst surface during HDO is very limited. Rather than attempting to examine the complexities of real liquids and catalysts we have adopted an approach here using model systems amenable to surface-sensitive techniques that enable us to probe in detail the fundamental processes occurring during HDO at the surfaces of well-defined model catalysts. The results of this work may lead to the development of more efficient, selective and stable catalysts. Above a S/Mo ratio of about 0.5 ML, furan does not adsorb on sulfided Mo surfaces; as the sulfur coverage is lowered increasing amounts of furan can be adsorbed. Temperature-programmed reaction spectroscopy (TPRS) reveals that C-H, C-C and C-O bond scission occurs on these surfaces. Auger spectra show characteristic changes in the nature and amount of surface carbon. Comparisons with experiments carried out with CO, H{sub 2} and alkenes show that reaction pathways include -- direct abstraction of CO at low temperatures; cracking and release of hydrogen below its normal desorption temperature; dehydrogenatin of adsorbed hydrocarbon fragments; recombination of C and O atoms and dissolution of carbon into the bulk at high temperatures. Performing the adsorption or thermal reaction in 10{sup {minus}5} torr of hydrogen does not change the mode of reaction significantly.

  19. Synthesis and characterization of Polyindole and its catalytic performance study as a heterogeneous catalyst

    Indian Academy of Sciences (India)

    Prakash Chhattise; Kalpana Handore; Amit Horne; Kakasaheb Mohite; Atul Chaskar; Sabrina Dallavalle; Vasant Chabukswar

    2016-03-01

    The catalytic performance study of polyindole as a heterogeneous catalyst is reported for the synthesis of 3,3'-arylmethylene-bis-1H-Indole derivatives using various substituted aldehydes and indole under reflux reaction condition with good to excellent yield. Polyindole was synthesized by chemical oxidative polymerization using citric acid as a dopant. The synthesized polymer was well characterized by various spectroscopic techniques like FT-IR, XRD, FESEM, etc. The XRD pattern confirms the partially crystalline nature of polyindole. The FESEM images of polyindole revealed the formation of irregularly shaped particulate nature with size in the range of 0.2 to 6 micron. In FT-IR spectrum, the major peak at 3400 cm-1 indicates N-H stretching and at 1564−1624 cm-1 indicates C-C stretching of benzenoid ring of indole. The presence of peak at 3400 cm-1 indicates that the polymerization does not occur at nitrogen. The present protocol has certain advantages like recyclability, low loading of the catalyst, low-cost and efficient use of polyindole as a heterogeneous catalyst.

  20. Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study.

    Science.gov (United States)

    Wang, Cheng; Wang, Jin-Liang; Lin, Wenbin

    2012-12-01

    As a new class of porous, crystalline, molecular materials, metal-organic frameworks (MOFs) have shown great promise as recyclable and reusable single-site solid catalysts. Periodic order and site isolation of the catalytic struts in MOFs facilitate the studies of their activities and reaction mechanisms. Herein we report the construction of two highly stable MOFs (1 and 2) using elongated dicarboxylate bridging ligands derived from Cp*Ir(L)Cl complexes (L = dibenzoate-substituted 2,2'-bipyridine, bpy-dc, or dibenzoate-substituted 2-phenylpyridine, ppy-dc) and Zr(6)O(4)(OH)(4)(carboxylate)(12) cuboctahedral secondary building units (SBUs) and the elucidation of water oxidation pathways of the Cp*Ir(L)Cl catalysts using these MOFs. We carried out detailed kinetic studies of Ce(4+)-driven water oxidation reactions (WORs) catalyzed by the MOFs using UV-vis spectroscopy, phosphorescent oxygen detection, and gas chromatographic analysis. These results confirmed not only water oxidation activity of the MOFs but also indicated oxidative degradation of the Cp* rings during the WOR. The (bpy-dc)Ir(H(2)O)(2)XCl (X is likely a formate or acetate group) complex resulted from the oxidative degradation process was identified as a competent catalyst responsible for the water oxidation activity of 1. Further characterization of the MOFs recovered from WORs using X-ray photoelectron, diffuse-reflectance UV-vis absorption, luminescence, and infrared spectroscopies supported the identity of (bpy-dc)Ir(H(2)O)(2)XCl as an active water oxidation catalyst. Kinetics of MOF-catalyzed WORs were monitored by Ce(4+) consumptions and fitted with a reaction-diffusion model, revealing an intricate relationship between reaction and diffusion rates. Our work underscores the opportunity in using MOFs as well-defined single-site solid catalytic systems to reveal mechanistic details that are difficult to obtain for their homogeneous counterparts. PMID:23136923

  1. Detection of „Hotspot Mutations in Catalytic Subunit of Phosphatidylinositol 3-Kinase (Pik3ca by Allele-Specific Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    A. Mendelova

    2014-09-01

    Full Text Available The phosphatidylinositol 3-kinases (PI3Ks are a family of proteins involved in the regulation of cell survival, growth, metabolism, and glucose homeostasis. Increased PI3K activity is associated with many cancers. PIK3CA gene (encoding p110 , the catalytic subunit of PI3K is commonly mutated in breast cancer. In our study we focused on the detection of “hotspot” mutations in exons 9 and 20 of the PIK3CA gene in paraffin-embedded tissue of patients with breast cancer. We optimized conditions of allele specific polymerase chain reaction (PCR and we used direct sequencing to verify our results. Overall, three “hotspot” mutations in PIK3CA gene in paraffin-embadded tissue from breast cancer were detected by allele-specific PCR. All results were verified by direct sequencing of PCR products and we observed 100% agreement between those two methods. We confirmed that allele-specific PCR assay is low cost method usefull for accurate detection of PIK3CA mutations.

  2. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  3. Tritium labeled Gentamicin C : II.- Bioradioactive products of Gentamicin by Catalytic H2O-3H exchange reaction

    International Nuclear Information System (INIS)

    The main bioradioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + C1a) in basic form, are generated by N-dimethylations in 3-N and 6'-N positions. Their structures were confirmed by HNMR and 13 CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicina are in basic form. In contrast with gentamicin sulfate, hydrolytic subproducts as garamine, gentamicine, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1 > C1a. Because of 6' -N-dimenthyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicins were studied by stron and mild hydrolysis, and by methanolysis. (author)

  4. Tritium Labeled Gentamicin C: II.- Bioradiactive Degradation Products of Gentamicin by Catalytic H2O-3H Exchange Reaction

    International Nuclear Information System (INIS)

    The main bio radioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + Cla) in basic form, are generated by N-demethylation in 3-N and 6-N positions. Their structures were confirmed by 1HNMR and 13CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicin are in basic form. In contrast with gentamicin sulfate, hydrolytic sub products as gramine, genta mines, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1> Cla. Because of 6'-N-demethyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicin were studied by strong and mild hydrolysis, and by methanolysis. (Author) 18 refs

  5. Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5

    Institute of Scientific and Technical Information of China (English)

    Hongtao Ma; Ryoichi Kojima; Satoshi Kikuchi; Masaru Ichikawa

    2005-01-01

    In this study,the effects of pre-carburization of catalyst,hydrogen addition to methane feed and the space velocity of methane on the catalytic performance in methane to benzene (MTB) reaction were discussed in detail over Mo/HZSM-5 catalyst at 1023 K and 0.3 MPa. Compared with the non-precarburized catalyst,the Mo catalyst pre-carburized under the flow of CH4+4H2 at 973 K was found to have the higher activity and better stability. Further 6% H2 addition to the methane feed suppressed the aromatic type of coke formation effectively,and improved the stability of catalyst markedly,moreover gave a much longer reaction life of catalyst (53 h at 1023 K and 5400 ml/(g·h)) and much more formation amounts of benzene and hydrogen. With increase of methane space velocity,both the naphthalene formation selectivity and the coke formation selectivity were decreased by the shortened contact time;the benzene formation selectivity and total formation amount before the complete deactivation of catalyst were increased ly,while the total naphthalene and coke formation amounts did not change much.At high methane space velocity (≥5400 ml/(g·h)),a new middle temperature coke derived from the high temperature aromatic coke was formed on the catalyst; all the coke formed could be burnt off at lower temperature in oxygen,compared with those obtained at low space velocity. Considering the benzene formation amount and catalyst stability together,5400 ml/(g·h) was proved to be the most efficient methane space velocity for benzene production.

  6. Catalytic deactivation on methane steam reforming catalysts. 2. Kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Agnelli, M.E.; Ponzi, E.N.; Yeramian, A.A.

    1987-08-01

    The kinetics of methane steam reforming reaction over an alumina-supported nickel catalyst was investigated at a temperature range of 640-740/sup 0/C in a flow reactor at atmospheric pressure. The experiments were performed varying the inlet concentration of methane, hydrogen, and water. A kinetic scheme of the Houghen-Watson type was satisfactorily proposed assuming the dissociative adsorption of CH/sub 4/ as the rate-limiting step, but this kinetic scheme can be easily replaced by a first-order kinetics (r/sub CH/4/sub / = kapparho/sub CH/4/sub /) for engineering purposes. Catalyst activation with H/sub 2/ and N/sub 2/ mixtures or with the reactant mixture results in the same extent of reaction.

  7. Theoretical study of stabilities, electronic, and catalytic performance of supported platinum on modified graphene

    Science.gov (United States)

    Hongwei, Tian; Wei, Feng; Rui, Wang; Huiling, Liu; Xuri, Huang

    2015-11-01

    The geometry, electronic structure, and catalytic properties for CO oxidation of Pt atom supported on pri-graphene (PG), Haeckelite (H), and Stone-Wales-defect-graphene are investigated by density functional theory (DFT) calculations. In contrast to a Pt atom on PG, defective graphene, especially the Haeckelite, strongly stabilises the Pt atom and makes it more positive and thus the CO poisoning. At the same time the catalytic activities are as high as the pristine one. Langmuir-Hinshelwood mechanisms are favoured as the starting state and are followed by the Eley-Rideal reaction. The results indicate the benefit of Haeckelite as a substrate for the Pt atom and validate the reactivity of catalysts on the atomic scale with low cost and high activity.

  8. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q2O+H2↔H2O+Q2 (Q=H,D or T) and selective permeation of Q2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  9. Nonaqueous catalytic fluorometric trace determination of vanadium based on the pyronine B-hydrogen peroxide reaction and flow injection after cloud point extraction.

    Science.gov (United States)

    Paleologos, E K; Koupparis, M A; Karayannis, M I; Veltsistas, P G

    2001-09-15

    The catalytic effect of vanadium on the pyronine B-H2O2 system is examined. Enhancement of the catalytic reaction rate along with the efficiency and selectivity against vanadium is achieved in a formic acid environment in the presence of a nonionic surfactant (Triton X-114). Elimination of drastic interference caused by inorganic acids and aqueous matrix along with a 50-fold preconcentration of vanadium are facilitated through cloud point extraction of its neutral complex with 8-quinolinol in an acidic solution. Subsequent flow injection analysis (FIA) with fluorometric detection renders the proposed method ideal for selective and cost-effective determination of as little as 0.020 microng L(-1) vanadium in environmental, biological, and food substrates. The preconcentration step can be applied simultaneously to multiple samples, allowing for massive preparation prior to analysis, compensating, thus, for the time-consuming procedure.

  10. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  11. Catalytic Study of Copper based Catalysts for Steam Reforming of Methanol

    OpenAIRE

    Purnama, H.

    2003-01-01

    The aim of this work is to study the catalytic properties of copper based catalysts used in the steam reforming of methanol. This method is known as one of the most favourable catalytic processes for producing hydrogen on-board. The catalysts investigated in this work are CuO/ZrO2 catalysts, which were prepared using different kinds of preparation methods and a commercial CuO/ZnO/Al2O3 catalyst which was used as a reference. The results of the studies can be divided into three sections: (i) T...

  12. Study of fusion reactions forming Cf nuclei

    Directory of Open Access Journals (Sweden)

    Khuyagbaatar J.

    2013-12-01

    Full Text Available The formation of a compound nucleus in different projectile and target combinations is a powerful method for investigating the fusion process. Recently, the dominance of quasi-fission over fusion-fission has been inferred for 34S+208Pb in comparison to 36S+206Pb; both reactions lead to the compound nucleus 242Cf*.The mass and angle distributions of the fission fragments from these reactions were studied in order to further investigate the presence of quasi-fission.

  13. Study on reformulation of fluid catalytic cracking gasoline and increasing production of light olefins

    Institute of Scientific and Technical Information of China (English)

    Pingxiang YAN; Xianghai MENG; Jinsen GAO; Chunmin XU; Zhiyu SUI

    2008-01-01

    The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction con-ditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production.

  14. In situ infrared study of adsorbed species during catalytic oxidation and carbon dioxide adsorption

    Science.gov (United States)

    Khatri, Rajesh A.

    2005-11-01

    Hydrogen is considered to be the fuel of the next century. Hydrogen can be produced by either water splitting using the solar or nuclear energy or by catalytic cracking and reforming of the fossil fuels. The water splitting process using solar energy and photovoltaics is a clean way to produce hydrogen, but it suffers from very low efficiency. A promising scheme to produce H 2 from natural gas involves following steps: (i) partial oxidation and reforming of natural gas to syngas, (ii) water-gas shift reaction to convert CO in the syngas to additional H2, (iii) separation of the H2 from CO2, and (iv) CO2 sequestration. The requirements for the above scheme are (i) a highly active coke resistant catalyst for generation of syngas by direct partial oxidation, (ii) a highly active sulfur tolerant catalyst for the water-gas shift reaction, and (iii) a low cost sorbent with high CO2 adsorption capacity for CO2 sequestration. This dissertation will address the mechanisms of partial oxidation, CO2 adsorption, and water-gas shift catalysis using in situ IR spectroscopy coupled with mass spectrometry (MS). The results from these studies will lead to a better understanding of the reaction mechanism and design of both the catalyst and sorbent for production of hydrogen with zero emissions. Partial oxidation of methane is studied over Rh/Al2O 3 catalyst to elucidate the reaction mechanism for synthesis gas formation. The product lead-lag relationship observed with in situ IR and MS results revealed that syngas is produced via a two-step reforming mechanism: the first step involving total oxidation of CH4 to CO2 and H 2O and the second step involving the reforming of unconverted methane with CO2 and H2O to form syngas. Furthermore, the Rh on the catalyst surface remains predominantly in the partially oxidized state (Rhdelta+ and Rh0). For the water-gas shift reaction, addition of Re to the Ni/CeO2 catalyst enhanced the water gas shift activity by a factor of three. The activity

  15. Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR

    Institute of Scientific and Technical Information of China (English)

    Chang Bo Lu; Jian Zhong Yao; Wei Gang Lin; Wen Li Song

    2007-01-01

    The pyrolysis of biomass is a promising way for production of bio-gasoline if the stability and quality problems of the bio-crudeoil can be solved by catalytic cracking and reforming. In this paper, an on-line infrared spectrum was used to study the characteristics of catalytic pyrolysis with the following preliminary results. The removal of C=O of organic acid is more difficult than that of aldehydes and ketones. HUSY/γ-Al2O3 and REY/γ-Al2O3 catalysts exhibited better deoxygenating activities while HZSM-5/γ-Al2O3 catalyst exhibited preferred selectivities for production of iso-alkanes and aromatics. Finally, possible mechanisms of biomass catalytic pyrolysis are discussed as well.

  16. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of 16O(e,e'p), 12C(e,e'pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in 12C(e,e'p0) and 16O(e,e'p0), comparison of the 12C(e, e'p0) and 16O(e,e'p3) reactions, quadrupole strength in the 16O(e,e'α0) reaction, quadrupole strength in the 12C(e,e'α) reaction, analysis of the 12C(e,e'p1) and 16O(e,e'p3) angular distributions, analysis of the 40Ca(e,e'x) reaction at low q, analysis of the higher-q 12C(e,e'x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments)

  17. Study on the thermal deactivation of motorcycle catalytic converters by laboratory aging tests.

    Science.gov (United States)

    Chen, Yi-Chi; Chen, Lu-Yen; Yu, Yi-Hsien; Jeng, Fu-Tien

    2010-03-01

    Catalytic converters are used to curb exhaust pollution from motorcycles in Taiwan. A number of factors, including the length of time the converter is used for and driving conditions, affect the catalysts' properties during periods of use. The goal of this study is to resolve the thermal deactivation mechanism of motorcycle catalytic converters. Fresh catalysts were treated under different aging conditions by laboratory-scale aging tests to simulate the operation conditions of motorcycle catalytic converters. The aged catalysts were characterized by analytical techniques in order to provide information for investigating deactivation phenomena. The time-dependent data of specific surface areas were subsequently used to construct kinetics of sintering at the specific temperature. According to the analytical results of the catalysts' properties, the increase in aging temperature causes an increase in pore size of the catalysts and a decrease in the specific surface area. The aged catalysts all exhibited lower performances than the fresh ones. The reduction in catalytic activity is consistent with the reduction in the loss of specific surface area. The finding of catalytic properties' dependence on temperature is consistent with the thermally activated theory. In contrast, the effect of the aging time on the specific surface area was only significant during the initial few hours. The high correlation between specific surface areas measured by the Brunauer-Emmett-Teller (BET) method and predicted by the constructed model verifies that the prediction models can predict the sintering rate reasonably under the aging conditions discussed in this study. As compared to automobile catalytic converters, the differences of structures and aging conditions are made less obvious by the deactivation phenomena of motorcycles.

  18. Upward Trend in Catalytic Efficiency of Rare-Earth Triflate Catalysts in Friedel-Crafts Aromatic Sulfonylation Reactions

    DEFF Research Database (Denmark)

    Duus, Fritz; Le, Thach Ngoc; Nguyen, Vo Thu An

    2014-01-01

    90 % were achieved for short irradiation periods. This was the case especially for Tm(OTf)3, Yb(OTf)3, and Lu(OTf)3, of which Yb(OTf)3 was the most efficient. The upward trend in catalytic efficiency therefore correlates with the lanthanide sequence in the periodic table. The results can be explained...

  19. Thieme Chemistry Journal Awardees - Where are They Now? Catalytic Transport with an Amine Carrier in a Fluorous Triphasic Reaction

    OpenAIRE

    Montanari, Vittorio; Yu, Marvin S.; Curran, Dennis P.

    2009-01-01

    Several aromatic aldehydes are transported by a fluorous amine from one organic phase through a fluorous phase to another organic phase. The derived imines react with phenylhydrazine to immobilize the transported product as a hydrazone and release the amine for reuse. In this way, catalytic transport is accomplished for the first time.

  20. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  1. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  2. Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    OpenAIRE

    Kiel, J.H.A.; De Prins, W.; Swaaij, van, W.P.M.

    1992-01-01

    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase over an inert packing. The model is derived from the separate mass heat balances for both the gas and (porous) solids phases for the case of a non-catalytic gas-solid reaction, which is first-order ...

  3. Catalytic titrations of silver(I) applying the iodide-catalysed manganese(IV)-arsenic(III) indicator reaction in the presence of sulphuric acid

    OpenAIRE

    TIBOR J. PASTOR; VOJKA V. ANTONIJEVIC; FERENC T. PASTOR

    1999-01-01

    A new catalytic potentiometric titration method for the determination of silver(I), applying the iodide-catalysed manganese(IV)-arsenic(III) indicator reaction in the presence of sulphuric acid, has been developed. The effect of the concentration of sulphuric acid and different ions, and of the mole ratio of manganese(IV) to arsenic(III) in the titrated solution, as well as of the titrand temperature on the conditions for the determination of silver(I) in solutions of various concentrations, ...

  4. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  5. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  6. Heterogeneous catalytic processes on cobalt, molybdenum and cobalt-molybdenum catalysts studied by temperature-programmed desorption and temperature-programmed reaction. 27 H-D exchange between adsorbed hydrogen and various coadsorbed molecules on the surface of Co-Mo catalysts

    International Nuclear Information System (INIS)

    The H-D-exchange between hydrogen adsorbed on the surface of reduced catalyst Co-Mo/Al2O3 and molecules of coadsorbates: D2O, benzene C6D6, cyclohexane C6D12 and propanethiol C3H7SH, has been studied under conditions of temperature-programmed reaction. It has been discovered that al the forms of hydrogen adsorbed on the catalyst take part in H-D-exchange. Spillover hydrogen adsorbed on a substrate features a high degree of Y-D-exchange with the coadsorbates mentioned. 2 refs., 6 figs

  7. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  8. Silver nanocluster catalytic microreactors for water purification

    Science.gov (United States)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  9. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    J Galin

    2001-07-01

    Recently there has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations (compression, rotation, deformation) unavoidable when using massive projectiles. Such nuclei provide an ideal testbench for probing their decay as a function of excitation energy. In these investigations, 4-detector arrays for charged particles and neutrons play a major role in the event-by-event sorting according to the excitation energy of the nucleus. Spallation reactions induced on heavy nuclei allow the conversion of the incident GeV proton into several tens of evaporated neutrons. The neutron production in thick targets has been investigated in great detail thanks to the use of high efficiency neutron detector arrays. When scattered on samples of inert or biological materials, these neutrons can be used to study details of the material structure. They could also be utilized for the transmutation of long-lived nuclear wastes or for the feeding of sub-critical nuclear reactors. The role of different types of multi-detector arrays is highlighted in this paper. Several references are also given for different uses of high efficiency neutron detectors in other contexts.

  10. A General Catalytic Enantioselective Transfer Hydrogenation Reaction of β,β-Disubstituted Nitroalkenes Promoted by a Simple Organocatalyst.

    Science.gov (United States)

    Bernardi, Luca; Fochi, Mariafrancesca

    2016-01-01

    Given its synthetic relevance, the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes has received a great deal of attention. Several bio-, metal-, and organo-catalytic methods have been developed, which however are usually applicable to single classes of nitroalkene substrates. In this paper, we present an account of our previous work on this transformation, which implemented with new disclosures and mechanistic insights results in a very general protocol for nitroalkene reductions. The proposed methodology is characterized by (i) a remarkably broad scope encompassing various nitroalkene classes; (ii) Hantzsch esters as convenient (on a preparative scale) hydrogen surrogates; (iii) a simple and commercially available thiourea as catalyst; (iv) user-friendly procedures. Overall, the proposed protocol gives a practical dimension to the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes, offering a useful and general platform for the preparation of nitroalkanes bearing a stereogenic center at the β-position in a highly enantioenriched form. A transition state model derived from control kinetic experiments combined with literature data is proposed and discussed. This model accounts and justifies the observed experimental results. PMID:27483233

  11. Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV-vis spectra: A comparative kinetic study

    Science.gov (United States)

    Ankamwar, Balaprasad; Kamble, Vaishali; Sur, Ujjal Kumar; Santra, Chittaranjan

    2016-03-01

    The development of eco-friendly and cost-effective synthetic protocol for the preparation of nanomaterials, especially metal nanoparticles is an emerging area of research in nanotechnology. These metal nanoparticles, especially silver can play a crucial role in various catalytic reactions. The biosynthesized silver nanoparticles described here was very stable up to 6 months and can be further exploited as an effective catalyst in the chemical reduction of 4-nitrophenol to 4-aminophenol. The silver nanoparticles were utilized as an efficient surface-enhanced Raman scattering (SERS) active substrate using Rhodamine 6G as Raman probe molecule. We have also carried out systematic comparative studies on the catalytic efficiency of both silver and gold nanoparticles using UV-vis spectra to monitor the above reaction spectrophotometrically. We find that the reaction follows pseudo-first order kinetics and the catalytic activity can be explained by a simple model based on Langmuir-Hinshelwood mechanism for heterogeneous catalysis. We also find that silver nanoparticles are more efficient as a catalyst compare to gold nanoparticles in the reduction of 4-nitrophenol to 4-aminophenol, which can be explained by the morphology of the nanoparticles as determined by transmission electron microscopy.

  12. Scaling behavior of optimally structured catalytic microfluidic reactors

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    In this study of catalytic microfluidic reactors we show that, when optimally structured, these reactors share underlying scaling properties. The scaling is predicted theoretically and verified numerically. Furthermore, we show how to increase the reaction rate significantly by distributing the...

  13. Nickel(II) complexes containing ONS donor ligands: Synthesis, characterization, crystal structure and catalytic application towards C-C cross-coupling reactions

    Indian Academy of Sciences (India)

    Panneerselvam Anitha; Rajendran Manikandan; Paranthaman Vijayan; Govindan Prakash; Periasamy Viswanathamurthi; Ray Jay Butcher

    2015-04-01

    Nickel(II) complexes containing thiosemicarbazone ligands [Ni(L)2] (1-3) (L = 9,10-phenanthrenequinonethiosemicarbazone (HL1), 9,10-phenanthrenequinone-N-methylthio semicarbazone (HL2) and 9, 10-phenanthrenequinone-N-phenylthiosemicarbazone (HL3)) have been synthesized and characterized by elemental analysis and spectroscopic (IR, UV-Vis, 1H, 13C-NMR and ESI mass) methods. The molecular structures of complexes 1 and 2 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate ONS fashion. The catalytic activity of complexes towards some C–C coupling reactions (viz., Kumada-Corriu, Suzuki-Miyaura and Sonogashira) has been examined. The complexes behave as efficient catalysts in the Kumada-Corriu and Sonogashira coupling reactions rather than Suzuki-Miyaura coupling.

  14. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf;

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...... and catalytic activity; this was attributed to the presence of excess amorphous carbon in the carbide powder. TEM imaging and TGA-DTA results revealed a better correlation of the activity with the carbide particle size....

  15. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    Directory of Open Access Journals (Sweden)

    Tao Ding

    2016-01-01

    Full Text Available Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  16. Catalytic activity of Pt anchored onto graphite nanofiber-poly (3,4-ethylenedioxythiophene) composite toward oxygen reduction reaction in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Highlights: • GNF–PEDOT is explored as a catalyst support for PEFCs. • PEDOT bridges the Pt nanoparticles with GNF via π–π interaction. • Binding strength between Pt and GNF is improved and hence mitigates Pt aggregation. • GNF–PEDOT composite enhances ORR activity and durability in fuel cells. -- Abstract: The potential of graphite nanofiber (GNF)–Poly(3,4-ethylenedioxythiophene) (PEDOT) composite is explored as a catalyst support for polymer electrolyte fuel cells (PEFCs). Due to electron accepting nature of GNF and electron donating nature of PEDOT, the monomer EDOT adsorbs on the surface of GNF due to strong electrostatic π–π interaction. Pt nanoparticles are impregnated on GNF–PEDOT composite by ethylene glycol reduction method and their effects on electro catalytic activity for oxygen reduction reaction (ORR) are systemically studied. Pt particles supported on GNF–PEDOT with catalyst loading of 0.2 mg cm−2 exhibit a peak power density of 537 mW cm−2 at a load current density of 1120 mA cm−2, while it was only 338 mW cm−2 at a load current density of 720 mA cm−2 in case of Pt particles supported on pristine GNF. The superior behavior of GNF–PEDOT supported Pt catalyst could be exclusively credited to the high graphitic nature of GNF and their mild functionalization with PEDOT increasing uniform dispersion of Pt. Indeed, the non-destructive functionalization of GNF with conducting polymer, such as PEDOT, makes them promising catalyst-supports for PEFCs

  17. Theoretical study of the catalytic CO oxidation by Pt catalyst supported on Ge-doped grapheme.

    Science.gov (United States)

    Tang, Yanan; Yang, Zongxian; Dai, Xianqi; Lu, Zhansheng; Zhang, Yanxing; Fu, Zhaoming

    2014-09-01

    The geometry, electronic structure and catalytic properties of the anchored Pt atom on the Ge-doped graphene (Pt/Ge-graphene) substrates are investigated using the first-principles computations. It is found that Ge atoms can form strong covalent bonds with the carbon atoms at the vacancy site on the defective graphene. The Ge-graphene as substrate can effectively anchored Pt atoms and form supported Pt catalyst, which exhibits good catalytic activity for CO oxidation with a two-step route, starting with the Langmuir-Hinshelwood (LH) reaction followed by the Eley-Rideal (ER) reaction. The Ge dopant in graphene plays a vital role in enhancing the substrate-adsorbate interaction through facilitating the charge redistribution at their interfaces. The Ge-graphene can be used as the reactive support to control the stability and activity of the Pt catalysts. This work provides valuable guidance on fabricating carbon-based catalysts for CO oxidation, and validates the reactivity of single-atom catalyst for designing atomic-scale catalysts.

  18. Microwave-induced synthesis and characterization of nanometer Ce0.5Zr0.5O2 solid solution for the acidic catalytic reaction

    Institute of Scientific and Technical Information of China (English)

    HU Yucai; YIN Ping; LIANG Tao; JIANG Wei; DU Zhengkun; CHEN Yonghua

    2008-01-01

    Ce0.5Zr0.5O2 solid solution was successfully synthesized using cerium nitrate,zirconium nitrate,and urea as raw materials by the microwave irradiation method and charactefizde by X-ray diffraction,fluorescence spectrum,transmission electron microscopy,and infrared spectrum.Its acid catalytic activity was evaluated in the esterification reaction of acetic acid and n-butyl alcohol.The results show that Ce0.5Zr0.5O2 solid solution has cubic fluorite structure,and its particle diameter is in the nanometer scale.As a sort of solid acid,it possesses a higher acid catalytic activity and can be easily separated from reaction liquids.It can be used for several times,and basically,its activity keeps constant.The proton acid sites and Lewis acid sites exist in the structure of Ce0.5Zr0.5O2 solid solution.

  19. 四氯化碳液相催化加氢反应动力学的研究%KINETIC STUDIES ON THE CATALYTIC HYDROGENATION OF CARBON TETRACHLORIDE TO CHLOROFORM IN LIQUID PHASE

    Institute of Scientific and Technical Information of China (English)

    毛建新; 蒋晓原; 陆维敏; 郑小明

    2001-01-01

    Carbon tetrachloride is an ozone-depleting chemical, while chloroform is not. Therefore it is important for the catalytic hydrodechlorination of CCl4 to CHCl3. In this paper, kinetics on the catalytic hydrogenation of carbon tetrachloride to chloroform in liquid phase was studied. A reaction mechanism was proposed. Hydrogen molecular was activated on the surface of catalyst, the activated hydrogen atom then reacted with CCl4 in the solution and produced CHCl3. A definite kinetic equation could be deduced from the reaction mechanism. The reaction rate constant is concerned with the intial concentration of CCl4 in the solution, pressure, reaction temperature and the concentration of active center. All these factors were investigated over Pt-Pd/C catalyst and fit in with the kinetic equation. The activation energy of the reaction is 86?KJ/mol according to the experimental results.

  20. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The

  1. Density Functional Study on the Mechanism of Amadori Rearrangement Reaction

    Institute of Scientific and Technical Information of China (English)

    BAO Xiu-Xiu; CHEN Zu-Qin; XIE Hu-Jun

    2011-01-01

    The reaction mechanism of amadori rearrangement in the initial stage of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. Cyclic ribose and glycine were taken as the model in the amadori rearrangement. Reaction mechanisms have been proposed, and possibility for the formation of different compounds has been evaluated through calculating the relative energy changes for different steps of the reaction by following the total mass balance. The calculations reveal that the amadori rearrangement initialized via the intramolecular rearrangement, transferring one proton from N(3) to O(4) atom. In the next step, the second proton is also transferred from N(3) to O(4) atom,corresponding to the cleavage of C(4)-O(4) bond and the release of one water molecule. Then another proton is transferred from N(3) to C(5) atom via TS3 with the reaction barrier of 58.3kcal.mol-1 after tunneling the effect correction calculated at the B3LYP/6-31+G(d) level of theory,and this step is rate limiting for the whole catalytic cycle. Ultimately, the product is generated via keto-enolic tautomerization. Present calculation could provide insights into the reaction mechanism of Maillard reaction since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  2. Synthesis and Characterization of Benzimidazolium Salts as Novel Ionic Liquids and their Catalytic Behavior in the Reaction of Alkylation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo HUANG; Bo CHEN; Yuan Yuan WANG; Li Yi DAI; Yong Kui SHAN

    2005-01-01

    A new series of ionic liquids have been prepared containing benzimidazolium cation (abbreviated as Bim). These salts were characterized by DSC, NMR, elemental analysis and thermogravimetric analysis. They showed different properties compared to imidazolium cation due to the introduction of benzene ring. The alkylation of benzene/diphenyl ether with 1-dodecene was carried in C4eBimBr-AlCl3 ionic liquids showing high catalytic activity when the mole ratio of C4eBimB:AlCl3 was 1:2.

  3. Operando magnetic resonance: monitoring the evolution of conversion and product distribution during the heterogeneous catalytic ethene oligomerisation reaction.

    Science.gov (United States)

    Roberts, S Tegan; Renshaw, Matthew P; Lutecki, Michal; McGregor, James; Sederman, Andrew J; Mantle, Mick D; Gladden, Lynn F

    2013-11-18

    Operando magnetic resonance (MR) spectroscopy has been used to follow an ethene oligomerisation reaction performed at 110 °C, 28 barg over a 1 wt% Ni/SiO2-Al2O3 catalyst. Spectra acquired over the timecourse of the reaction allow the calculation of conversion and product distribution as a function of time-on-stream. PMID:24088715

  4. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    OpenAIRE

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic acti...

  5. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide

    Directory of Open Access Journals (Sweden)

    M.S. Fal Desai

    2015-03-01

    Full Text Available The catalytic activity of PdO/MnO2 and Rh2O3/MnO2 is investigated for NO-CO redox reaction. Supported catalysts are prepared by wet impregnation method. Among the tested catalysts, PdO/MnO2 shows higher activity for this reaction. Active metal dispersion on MnO2 enhances the selectivity for N2 over N2O in this reaction. The XRD substantiate the formation of MnO2 monophasic phase. SEM images show the formation of elongated particles. TEM images indicate nano-size rod-like morphologies. An increase in the catalytic activity is observed on supported Pd and Rh oxides on MnO2. Temperature programed desorption studies with NO and CO are undertaken to investigate the catalytic surface studies. © 2015 BCREC UNDIP. All rights reservedReceived: 22nd November 2014; Revised: 31st December 2014; Accepted: 2nd January 2015How to Cite: Fal Desai, M.S., Kunkalekar, R.K., Salker, A.V. (2015. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 98-103. (doi:10.9767/bcrec.10.1.7802.98-103Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7802.98-103 

  6. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  7. Effect of Calcination Temperature on Catalytic Activity and Textual Property of Cu/HMOR Catalysts in Dimethyl Ether Carbonylation Reaction

    Institute of Scientific and Technical Information of China (English)

    Xue Zhang; Yu-ping Li; Song-bai Qiu; Tie-jun Wang; Long-long Ma; Qi Zhang; Ming-yue Ding

    2013-01-01

    The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process.The results showed that the catalytic activity was obviously affected by the calcination temperature.The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃,1.5 MPa,and GSHV of 4883 h-1.The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction,N2 absorption,NH3 temperature program desorption,CO temperature program desorption,and Raman techniques.Proper calcination temperature was effective to promote copper ions migration and diffusion,and led the support HMOR to possess more acid activity sites,which exhibited the complete decomposing of copper nitrate,large surface area and optimum micropore structure,more amount of CO adsorption site and proper amount of weak acid centers.

  8. Start-up behaviour of a passive auto-catalytic recombiner under counter flow conditions: Results of a first orienting experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Berno, E-mail: simon@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology (LRST), 52072 Aachen (Germany); Reinecke, Ernst-Arndt, E-mail: e.reinecke@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Kubelt, Christian, E-mail: kubelt@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology (LRST), 52072 Aachen (Germany); Allelein, Hans-Josef, E-mail: allelein@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology (LRST), 52072 Aachen (Germany); Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany)

    2014-10-15

    Highlights: • We studied the start-up behaviour of a PAR located in a downward-directed flow. • We performed several identical experiments with and without counter flow. • A temporary interference of the establishing chimney flow is observed. • An earlier local start-up of the catalytic reaction occurs under downward flow. • The overall performance of the PAR is not significantly affected. - Abstract: A downward directed wall-near flow represents a typical thermal hydraulic condition inside the LWR containment during a severe accident. In order to efficiently remove hydrogen released into the containment, passive auto-catalytic recombiners (PARs) located close to the containment wall have to establish an internal upward directed chimney flow against this counter flow. In cooperation between RWTH Aachen and the Research Center Jülich, the effect of a downward directed flow on the PAR start-up has been investigated in the REKO-4 test facility at Jülich. The test series includes experiments with identical boundary conditions performed under counter flow conditions as well as in quiescent atmosphere as reference case. Under counter flow conditions, an earlier local start-up of the catalytic reaction on the upper edge of the catalyst sheets was observed. However, the establishment of full PAR operation required more time compared to the reference case. This delay is attributed to a partial inflow of the counter flow into the PAR outlet which interferes with the establishing of a chimney flow promoted by the exothermal catalytic reaction. Once a developed chimney flow inside the PAR is established, no negative effect on the PAR performance could be observed. As expected, the counter flow mixes immediately with the PAR outlet flow dissolving the characteristic plume of hot gases at the PAR outlet.

  9. Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via supercritical reaction

    International Nuclear Information System (INIS)

    Highlights: • Sea mango oil as feedstock for biodiesel via non-catalytic supercritical reaction. • Extracted sea mango oil with high FFA could produce high yield of FAME. • Employment of Response Surface Methodology for optimization of FAME. • Kinetic study for reversible transesterification and esterification reactions. - Abstract: Sea mango (Cerbera odollam) oil, which is rich in free fatty acids, was utilized to produce fatty acid methyl esters (FAME) via supercritical transesterification reaction. Sea mango oil was extracted from seeds and was subsequently reacted with methanol in a batch-type supercritical reactor. Response surface methodology (RSM) analysis was used to optimize important parameters, including reaction temperature, reaction time and the molar ratio of methanol to oil. The optimum conditions were found as 380 °C, 40 min and 45:1 mol/mol, respectively, to achieve 78% biodiesel content. The first kinetic modelling of FAME production from sea mango oil incorporating reversible transesterification and reversible esterification was verified simultaneously. The kinetic parameters, including reaction rate constants, k, the pre-exponential constant, A, and the activation energy, Ea, for transesterification and esterification were determined using an ordinary differential equation (ODE45) solver. The highest activation energy of 40 kJ/mol and the lowest reaction rate constant of 2.50 × 10−5 dm3/mol s verified that the first stepwise reaction of TG to produce DG was the rate-limiting step

  10. Study on Catalytic Cracking of VGO Derived from Kazakhstan-Russian Mixed Crude

    Institute of Scientific and Technical Information of China (English)

    Duan Yongsheng; Dong Yuancheng; Wei Gangling; Wang Jian

    2006-01-01

    The study on options for catalytic cracking of VGO derived from the Kazakhstan-Russian mixed crude was carried out in a small-scale riser FCC unit. The influence of several catalysts and the LCC-A additive for increasing propylene yield on the distribution and quality of FCC products was analyzed. This article sets forth the possible issues arising from processing the Kazakhstan-Russian mixed crude in FCC unit and the response measures to be adopted.

  11. Mössbauer study of nanodimensional nickel ferrite-mechanochemical synthesis and catalytic properties

    OpenAIRE

    Manova, Elina; Estournès, Claude; Paneva, Daniela; Rehspringer, Jean Luc; Tsoncheva, Tanya; Kunev, Boris; Mitov, Ivan

    2005-01-01

    Iron-nickel spinel oxide NiFe2O4 nanoparticles have been prepared by the combination of chemical precipitation and subsequent mechanical milling. For comparison, their analogue obtained by thermal synthesis is also studied. Phase composition and structural properties of iron-nickel oxides are investigated by X-ray diffraction and Mössbauer spectroscopy. Their catalytic behavior in methanol decomposition to CO and methane is tested. An influence of the preparation method on the reduction and c...

  12. Fuel and engine characterization study of catalytically cracked waste transformer oil

    KAUST Repository

    Prasanna Raj Yadav, S.

    2015-05-01

    This research work targets on the effective utilization of WTO (waste transformer oil) in a diesel engine and thereby, reducing the environmental problems caused by its disposal into open land. The novelty of the work lies in adoption of catalytic cracking process to chemically treat WTO, wherein waste fly ash has been considered as a catalyst for the first time. Interestingly, both the oil and catalyst used are waste products, enabling reduction in total fuel cost and providing additional benefit of effective waste management. With the considerable token that use of activated fly ash as catalyst requires lower reaction temperature, catalytic cracking was performed only in the range of 350-400°C. As a result of this fuel treatment process, the thermal and physical properties of CCWTO (catalytically cracked waste transformer oil), as determined by ASTM standard methods, were found to be agreeable for its use in a diesel engine. Further, FTIR analysis of CCWTO discerned the presence of essential hydrocarbons such as carbon and hydrogen. From the experimental investigation of CCWTO - diesel blends in a diesel engine, performance and combustion characteristics were shown to be improved, with a notable increase in BTE (brake thermal efficiency) and PHRR (peak heat release rate) for CCWTO 50 by 7.4% and 13.2%, respectively, than that of diesel at full load condition. In the same note, emissions such as smoke, HC (hydrocarbon) and CO (carbon monoxide) were noted to be reduced at the expense of increased NOx (nitrogen oxides) emission. © 2015 Elsevier Ltd. All rights reserved.

  13. Desorption and catalytic study of vanadium modified MCM-41 silica by 11C radiolabeled methanol

    International Nuclear Information System (INIS)

    Complete text of publication follows. Vanadium modified MCM-41 (V-MCM-41) materials were prepared by solid state reduction technique with V2O5 and catalytically tested in ethylacetate oxidation. In the recent study, 11C-labeling methanol is introduced as a probe molecule for characterization of the state of various catalytic active sites, which were obtained after the V-MCM-41 treatment in oxidative (V-MCM-41o) or reductive (VMCM- 41r) atmosphere. Solid state vanadium modified mesoporous MCM-41 silica is characterised by XRD, N2 physisorption, FTIR and UV-Vis spectroscopies. Novel consecutive 11C- and 12C-methanol adsorption technique was used for the elucidation of the contribution of various vanadium species in methanol conversion. The radiodetectors are placed in front of the reactor to follow the methanol desorption at different temperatures as well as for radio-GC analysis (including FID coupled on-line with radiodetector) of methanol conversion. The rates of 11C-methanol desorption was negligible for V-MCM-41o, while a sharp increase is observed for V-MCM-41r in the temperature range of 160-180 deg C, indicating the presence of various types of catalytic active sites for both materials. Radio-GC results also reveal different catalytic behaviour for these vanadium modifications. On V-MCM- 41o, at lower temperature (250-280 deg C) a small amount of dimethyl ether (DME) was registered. The selectivity to CH4, CO, CO2, HCHO and methylal was strongly increased between 280-360 deg C. On V-MCM-41r, no DME and only a negligible amount of methylal were detected. The process was carried out exclusively to HCHO, and similarly to V-MCM- 41o, at higher temperatures - to CO formation. The desorption and catalytic measurements reveal that the variation in the pretreatment medium provides the formation of catalytic centers with different redox and acidic activity. While the products of methanol decomposition (CH4, CO, HCHO, CO2) are typical of the presence of redox sites

  14. Activation of Aryl Halides by Nickel(I) Pincer Complexes: Reaction Pathways of Stoichiometric and Catalytic Dehalogenations.

    Science.gov (United States)

    Rettenmeier, Christoph A; Wenz, Jan; Wadepohl, Hubert; Gade, Lutz H

    2016-08-15

    Homolytic C-X bond cleavage of organohalides by the T-shaped nickel(I) complexes [LigNi(I)] 1 bearing the iso-PyrrMeBox ligand had been found previously to be the crucial activation step in the asymmetric hydrodehalogenation of geminal dihalides. Here, this mechanistic investigation is extended to aryl halides, which allowed a systematic study of the activation process by a combination of experimental data and density functional theory modeling. While the activation of both aryl chlorides and geminal dichlorides appears to proceed via an analogous transition state, the generation of a highly stabile nickel(II)aryl species in the reaction of the aryl chlorides for the former represents a major difference in the reactive behavior. This difference was found to have a crucial impact on the activity of these nickel pincer systems as catalysts in the dehalogenation of aryl chlorides compared to geminal dichlorides and highlights the importance of the regulatory pathways controlling the nickel(I) concentration throughout the catalysis. These results along with the identification and characterization of novel nickel(II)aryl species are presented. PMID:27483018

  15. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.

    2006-06-19

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  16. Experimental study on catalytic steam gasification of natural coke in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Changsui; Lin, Liangsheng; Pang, Keliang; Xiang, Wenguo; Chen, Xiaoping [School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu (China)

    2010-08-15

    The gasification characteristics of natural coke from Peicheng mine with steam were investigated in a fluidized bed reactor. The effects of catalyst type, composition and dosage of catalyst on the yield, components and heating value of product gas, and carbon conversion rate were examined. The results show that fluidized bed gasification technology is an effective way to gasify natural coke. Also the results indicate that individual addition of K-, Ca-, Fe-, Ni-based catalyst effectively increases the gasification reaction rate of the natural coke samples. With the increase in catalyst dosage, the yield and heating value of product gas per hour increase obviously, and carbon conversion rate is improved substantially. Each of aforementioned catalysts has similar catalytic effect and trend, among which the effect of Ca-based catalyst is a little weaker. The optimum metal atom ratio of mixed catalyst is Fe/Ni/others 35/55/10, and the mixed catalyst displays maximum catalytic performance when the catalyst dosage in the natural coke is about 4%. The experimental findings provide an interesting reference for large-scale development and utilization of natural coke. (author)

  17. Bifunctional composite microspheres of silica/lanthanide-polyoxometalates/Au: Study on luminescence and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@mail.ccnu.edu.cn; Fan, Shaohua; Zhao, Weiqian; Lu, Xuelian; Li, Wuke

    2013-12-02

    In this paper, the synthesis and properties of composite silica microspheres grafted with gold nanoparticles and lanthanide-polyoxometalates are described. This synthesis employs polyethyleneimine as the crosslink polymer to immobilize the Au nanoparticles and lanthanide-polyoxometalates on silica spheres, which results in the formation of bifunctional composite microspheres of silica/lanthanide-polyoxometalates/Au. The composite material was found to be catalytically active in the oxidation of styrene, and benzaldehyde and styrene oxide were the main products. Catalyzed oxidation of styrene demonstrates the size-dependent activity of catalysts and the smaller catalyst shows the higher selectivity. Moreover, the composite particles show bright red luminescence under UV light, which could be seen by naked eyes. The luminescence properties of composite material and the effect of Au nanoparticles on the luminescence of Eu ion were investigated, and energy could be more effectively transferred from ligand to lanthanide ion when Au nanoparticles were grafted on silica spheres. The integration of luminescent components and Au particles makes it possible to label catalyst and monitor the catalyzed reactions. - Highlights: • The bifunctional composite microspheres were fabricated. • Both polyoxometalates and Au nanoparticles could be grafted on silica spheres. • The composite particles exhibit the excellent luminescence and catalytic activity. • The Au nanoparticles affect the luminescence properties of Eu{sup 3+} ions.

  18. Study on the Carbon-Methanation and Catalytic Activity of Ru/AC for Ammonia Synthesis

    Institute of Scientific and Technical Information of China (English)

    祝一锋; 李小年; 季德春; 刘化章

    2004-01-01

    The effects of promoters K, Ba, Sm on the resistance to carbon-methanation and catalytic activity of ruthenium supported on active carbon (Ru/AC) for ammonia synthesis have been studied by means of TG-DTG (thermalgravity-differential thermalgravity), temperature-programmed desorption, and activity test. Promoters Ba,K, and Sm increased the activity of Ru/AC catalysts for ammonia synthesis significantly. Much higher activity can be reached for Ru/AC catalyst with bi- or tri-promoters. Indeed, the triply promoted catalyst showed the highest activity, coupled to a surprisingly high resistance to methanation. The ability of resistance of promoter to methanation of Ru/AC catalyst is dependent on the adsorption intensity of hydrogen. The strong adsorption of hydrogen would enhance methanation and impact the adsorption of nitrogen, which results in the decrease of catalytic activity.

  19. Synthesis of ceramic catalytic system based on CuO/CeO2 for preferential oxidation reaction of CO

    International Nuclear Information System (INIS)

    The aim this is work is to develop catalysts based on CuO/CeO2 by means two different types of synthesis methods: combustion synthesis and Pechini. CuO/CeO2 catalysts were synthesized with 0.5 mol of CuO for both synthesis methods used. The catalysts were characterized by XRD with the Rietveld refinement, EDX and textural analysis by the BET method. The results show that both methods of synthesis led to the formation of catalysts with segregated phases formed on the structures of the obtained materials, such segregated phases were formed by the presence of catalytic active species CuO and these phases had different characteristics depending on the type of method synthesis used. Small differences were observed in the evaluation of textural characteristics of the catalysts developed in this work according to the synthesis method employed. (author)

  20. Preparation and Characterization of A New Dinuclear Ruthenium Complex with BDPX Ligand and Its Catalytic Hydrogenation Reactions for Cinnamaldehyde

    Institute of Scientific and Technical Information of China (English)

    TANG,Yuan-You(唐元友); LI,Rui-Xiang(李瑞祥); LI,Xian-Jun(李贤均); WONG,Ning-Bew(黄宁表); TIN,Kim-Chung(田金忠); ZHANG,Zhe-Ying(张哲英); MAK,Thomas C.W.(麦松威)

    2004-01-01

    A new anionic dinuclear ruthenium complex bearing 1,2-bis(diphenylphosphinomethyl)benzene (BDPX)[NH2Et2][{RuCl (BDPX)}2(μ-Cl)3] (1) was synthesized and its structure was determined by an X-ray crystallographic analysis. This result indicated that complex 1 consisted of an anion dinuclear BDPX-Ru and a cationic diethylammonium. The crystal belonged to monoclinic system, C2/c space group with a=3.3552(7) nm, b= 1.8448(4)nm, c=2.4265(5) nm, β= 101.89(3)° and Z=8. The catalytic hydrogenation activities and selectivities of complex 1 for cinnamaldehyde were investigated.

  1. Catalytic Activity of Cationic and Neutral Silver(I)-XPhos Complexes with Nitrogen Ligands or Tolylsulfonate for Mannich and Aza-Diels-Alder Coupling Reactions.

    Science.gov (United States)

    Grirrane, Abdessamad; Álvarez, Eleuterio; García, Hermenegildo; Corma, Avelino

    2016-01-01

    Cationic and neutral silver(I)-L complexes (L=Buchwald-type biaryl phosphanes) with nitrogen co-ligands or organosulfonate counter ions have been synthesised and characterised through their structural and spectroscopic properties. At room temperature, both cationic and neutral silver(I)-L complexes are extremely active catalysts in the promotion of the single and double A(3) coupling of terminal (di)alkynes, pyrrolidine and formaldehyde. In addition, the aza-Diels-Alder two- and three-component coupling reactions of Danishefsky's diene with an imine or amine and aldehyde are efficiently catalysed by these cationic or neutral silver(I)-L complexes. The solvent influences the catalytic performance due to limited complex solubility or solvent decomposition and reactivity. The isolation of new silver(I)-L complexes with reagents as ligands lends support to mechanistic proposals for such catalytic processes. The activity, stability and metal-distal arene interaction of these silver(I)-L catalysts have been compared with those of analogous cationic gold(I) and copper(I) complexes. PMID:26598792

  2. The importance of hinge sequence for loop function and catalytic activity in the reaction catalyzed by triosephosphate isomerase.

    Science.gov (United States)

    Xiang, J; Sun, J; Sampson, N S

    2001-04-01

    We have determined the sequence requirements for the N-terminal protein hinge of the active-site lid of triosephosphate isomerase. The codons for the hinge (PVW) were replaced with a genetic library of all possible 8000 amino acid combinations. The most active of these 8000 mutants were selected using in vivo complementation of a triosephosphate isomerase-deficient strain of Escherichia coli, DF502. Approximately 0.3 % of the mutants complement DF502 with an activity that is between 10 and 70 % of wild-type activity. They all contain Pro at the first position. Furthermore, the sequences of these hinge mutants reveal that hydrophobic packing is very important for efficient formation of the enediol intermediate. However, the reduced catalytic activities observed are not due to increased rates of loop opening. To explore the relationship between the N-terminal and C-terminal hinges, three semi-active mutants from the N-terminal hinge selection experiment (PLH, PHS and PTF), and six active C-terminal hinge mutants from previous work (NSS, LWA, YSL, KTK, NPN, KVA) were combined to form 18 "double-hinge" mutants. The activities of these mutants suggest that the N-terminal and C-terminal hinge structures affect one another. It appears that specific side-chain interactions are important for forming a catalytically active enzyme, but not for preventing release of the unstable enediol intermediate from the active site of the enzyme. The independence of intermediate release on amino acid sequence is consistent with the absence of a "universal" hinge sequence in structurally related enzymes.

  3. Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates%Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates

    Institute of Scientific and Technical Information of China (English)

    郑爱军; 姜岚; 李争宁

    2012-01-01

    Intramolecular conjugate reduction-aldol addition reactions of β'-oxoalkyl a,fl-unsaturated carboxylates were performed in the presence of copper catalysts generated in situ from copper salts, phosphine ligands and silanes. Moderate to good yields and high diastereoselectivities were obtained in 15 min to 3 h using bis[(2-diphenyl- phosphino)phenyl] ether as the ligand.

  4. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    Science.gov (United States)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  5. Study on Mechanism for Formation of Carbon Oxides During Catalytic Cracking of High Acidic Crude

    Institute of Scientific and Technical Information of China (English)

    Wei Xiaoli; Mao Anguo; Xie Chaogang

    2007-01-01

    Based on the basis of analysis and interpretation of the products distribution of catalytic cracking of high acidic crude,the mechanism for decarboxylation of petroleum acids during FCC process was discussed.The protons originated from the Br(o)nsted acid sites can combine with oxygen of the carbonyl groups with more negative charges to form reaction intermediates that Call be subjected to cleavage at the weak bonds,leading to breaking of carboxylic groups from the carboxylic acids followed by its decomposition to form alkyl three-coordinated carbenium ions,CO and H2O.The Lewis acid as an electrophilic reagent can abstract carboxylic groups from carboxylic acids to subsequently release CO2.

  6. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    Science.gov (United States)

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-01

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O. PMID:23477804

  7. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  8. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:Model reaction for upgrading of bio-oil

    Institute of Scientific and Technical Information of China (English)

    Minghao; Zhou; Zuo; Zeng; Hongyan; Zhu; Guomin; Xiao; Rui; Xiao

    2014-01-01

    A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.

  9. EPR spectroscopy of catalytic systems based on nickel complexes of 1,4-diaza-1,3-butadiene (alpha-diimine) ligands in hydrogenation and polymerization reactions

    International Nuclear Information System (INIS)

    The catalytic systems based on .-diimine complexes of Ni(0) and Ni(II) of the general formulas NiBr2(DAD-R) (R = -C3H7 or -CH3) and Ni(DAD-CH3)2 (DAD(-C3H7) = 1,4-bis(2,6-diiso-propylphenyl)-2,3-(dimethyl-1,4-diazabuta-1,3-diene, DAD(-CH3) = 1,4-bis 2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene), with Lewis acids (AlEt3, AlEt2Cl, AlEtCl2, B(F5C6)3, BF3 centre dot OEt2) in hydrogenation and polymerization reactions were investigated by the EPR spectroscopy method. The Ni(I) complexes of a (DAD-R)NiX2AlXy(C2H5)3-y composition (instead of the aluminum atom may be a boron atom) were identified where R = -CH3 or -C3H7, X = Br, X = Cl or -C2H5. The .-diimines radical-anions are included in the derivatives of aluminum or boron. It is found that there occur oxidation reactions between Ni(DAD-CH3)2 and aluminum organic compounds or boron derivatives, resulting in the formation of paramagnetic complexes. It is shown that there is no direct relationship between activity in polymerization or hydrogenation reactions and concentration of paramagnetic particles.

  10. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    Science.gov (United States)

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-01

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O.

  11. Size-dependent catalytic kinetics and dynamics of Pd nanocubes: a single-particle study.

    Science.gov (United States)

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-08-10

    Due to the well-known significant effect of the size on the catalytic activity of nanocatalysts, here we use single-molecule fluorescence microscopy to study the size-dependent catalytic kinetics and dynamics of individual Pd nanocubes. A series of size-dependent catalytic properties were revealed in both product formation and product desorption processes. It was found that, due to the different adsorption mechanisms of substrate molecules on Pd nanocubes, H2 adsorption is independent of the size of Pd nanocubes, while the large flat resazurin molecules show stronger adsorption on larger sized Pd nanocubes. Apparently, the Pd nanocubes can be divided into three types: when the size of the Pd nanocube is small, substrate binding can prohibit product desorption and product desorption prefers the direct pathway; when the size is in an appropriate range, the product desorption process could be independent of substrate binding and shows no selectivity between two parallel desorption pathways; if the size is large enough, substrate binding can promote product desorption and product desorption prefers the indirect pathway. We also observed the surface-restructuring-induced dynamic heterogeneity of individual Pd nanocubes in both product formation and desorption processes with timescales of about tens to one hundred seconds. The activity fluctuation of individual Pd nanocubes was found to be mainly due to the spontaneous surface-restructuring rather than the catalysis. Furthermore, we estimated the size-dependent activation energies and time scales of spontaneous dynamic surface restructuring, which are fundamental to heterogeneous catalysis. The work presented here reveals new insight into nanocatalysis and exemplifies the advantages of the single-molecule approach in probing the catalytic properties of nanocatalysts. PMID:27465438

  12. An Experimental Study on Catalytic Cracking of Polyethylene and Engine Oils

    Directory of Open Access Journals (Sweden)

    S.K. Kimutai

    2014-02-01

    Full Text Available The utility of plastics and engine oils is very important due to their wide application in the packaging and automotive industries respectively and as such their continued use has led to an in increase in plastics and oil waste. However, the huge amount of plastic and engine oil waste produced may be treated with thermal catalytic methods to produce fossil fuel substitutes. In this research, the co-processing of polyethylene resin with petrol engine oil into high value hydrocarbons using thermal catalytic cracking (consisting of initial pyrolytic stage followed by a catalytic reforming stage was investigated. Plastic resins and petrol engine oil were loaded in the thermal reactor and HZSM-5 zeolite catalyst placed in the catalytic chamber. The system was purged with nitrogen at temperatures between 400 and 520oC. The resulting products were compared with those obtained in the absence of a catalyst. At temperatures greater than 460oC the conversion into liquid and gas fuels is above 70% wt. At similar temperatures and in the absence of catalyst, thermal cracking of low density polyethylene generated majorly liquid products with a low calorific value. The use of HZSM-5 as a catalyst caused a significant increase in the proportion of gaseous hydrocarbons that consisted mainly of light fraction olefins and liquid oil with calorific value of 43.9 MJ/kg and also comparable to regular petrol fuel. This study focuses on developing a method of conversion that can be adopted by industries as a means of converting waste plastics and waste oils into resources rather than waste.

  13. Kinetic study of the catalytic pyrolysis of elephant grass using Ti-MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Maria do Socorro Braga; Melo, Dulce Maria de Araujo; Rodrigues, Glicelia, E-mail: socorro.fontes@yahoo.com.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Barros, Joana Maria de Farias [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Dept. de Quimica; Braga, Renata Martins [Universidade Federal da Paraiba (UFPB/CEAR/DEER), Joao Pessoa, PB (Brazil). Centro de Energias Alternativas e Renovaveis. Dept. de Engenharia de Energia Renovaveis

    2014-08-15

    This work aimed to study the kinetics of thermal and catalytic pyrolysis using Ti-MCM-41 as catalyst in order to assess the catalytic pyrolysis efficiency compared to thermal pyrolysis of elephant grass. Ti-MCM-41 molecular sieve was synthesized by hydrothermal method from hydrogel with the following molar composition: 1.00 CTMABr: 4.00 SiO{sub 2}:X TiO{sub 2}: 1 + X Na{sub 2}O: 200.00 H{sub 2}O, which structure template used was cetyltrimethylammonium bromide (CTMABr). The materials synthesized were characterized by X-ray diffraction, IR spectroscopy, thermogravimetric analysis and specific area by the BET method, for subsequent application in the biomass pyrolysis process. The kinetic models proposed by Vyazovkin and Flynn-Wall were used to determine the apparent activation energy involved in the thermal and catalytic pyrolysis of elephant grass and the results showed that the catalyst used was effective in reducing the apparent activation energy involved in the thermal decomposition of elephant grass. (author)

  14. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH{sub 4} reforming as a model reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Sekiguchi, H, E-mail: lee.h.ac@m.titech.ac.jp [Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2011-07-13

    A combination of a gliding arc discharge and a spouted catalytic bed was used to investigate a plasma-catalytic hybrid system using CH{sub 4} reforming as a model reaction. Alumina-supported catalysts that contained 0.5 wt% of Pt, Pd, Rh, and Ru (denoted as Pt/Al{sub 2}O{sub 3}, Pd/Al{sub 2}O{sub 3}, Rh/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3}, respectively) were used. For comparison, active Al{sub 2}O{sub 3} particles were also examined. The conversion of CH{sub 4} and the selectivity of the product were investigated by changing the feed flow rate and reaction time. The production of C{sub 2}H{sub 2}, H{sub 2} and soot was observed in the gliding arc discharge without a catalyst. Using Pt/Al{sub 2}O{sub 3} and Pd/Al{sub 2}O{sub 3}with the gliding arc discharge, C{sub 2}H{sub 4}, C{sub 2}H{sub 6} and C{sub 2}H{sub 2} were produced. It is considered that C{sub 2}H{sub 4} and C{sub 2}H{sub 6} were formed by the hydrogenation of C{sub 2}H{sub 2} on the active site of Pt/Al{sub 2}O{sub 3} and Pd/Al{sub 2}O{sub 3}. A stronger resistance to deactivation was shown in the presence of Pd/Al{sub 2}O{sub 3} than in the presence of Pt/Al{sub 2}O{sub 3}, whereas the selectivity of hydrocarbon using Rh/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} showed a tendency similar to that in active Al{sub 2}O{sub 3} and non-catalytic experiments. The proposed reactor has a potential to improve the selectivity of the plasma process.

  15. Study on Disproportionation Reaction of FCC Gasoline on Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    Xu Youhao; Wang Xieqing

    2004-01-01

    Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.

  16. New Insight into the Catalytic Mechanism of Bacterial MraY from Enzyme Kinetics and Docking Studies.

    Science.gov (United States)

    Liu, Yao; Rodrigues, João P G L M; Bonvin, Alexandre M J J; Zaal, Esther A; Berkers, Celia R; Heger, Michal; Gawarecka, Katarzyna; Swiezewska, Ewa; Breukink, Eefjan; Egmond, Maarten R

    2016-07-15

    Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-MurNAc-pentapeptide and heptaprenyl phosphate (C35-P, short-chain homolog of undecaprenyl phosphate, the endogenous substrate of MraY) as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDP-MurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I and UMP. We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue in MraY (His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide. PMID:27226570

  17. Passive auto-catalytic recombiners operation in the presence of hydrogen and carbon monoxide: Experimental study and model development

    Energy Technology Data Exchange (ETDEWEB)

    Klauck, Michael, E-mail: klauck@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology, 52072 Aachen (Germany); Reinecke, Ernst-Arndt, E-mail: e.reinecke@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Kelm, Stephan, E-mail: s.kelm@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany); Meynet, Nicolas, E-mail: nicolas.meynet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SAG/BPhAG, BP 17 92262 Fontenay aux Roses (France); Bentaïb, Ahmed, E-mail: ahmed.bentaib@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SAG/BPhAG, BP 17 92262 Fontenay aux Roses (France); Allelein, Hans-Josef, E-mail: allelein@lrst.rwth-aachen.de [RWTH Aachen University, Institute for Reactor Safety and Reactor Technology, 52072 Aachen (Germany); Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research – Nuclear Waste Management and Reactor Safety (IEK-6), 52425 Jülich (Germany)

    2014-01-15

    Highlights: • We studied the hydrogen conversion in the presence of carbon monoxide (CO). • CO recombines at a lower efficiency than hydrogen. • Under the given conditions, hydrogen conversion is not affected by CO. • We used three different numerical codes to simulate the experimental findings. • All codes are reproducing the experimental data well. -- Abstract: In a LWR severe accident, carbon monoxide (CO) may be generated inside the containment due to molten corium concrete interaction (MCCI). As a component of the accident atmosphere, CO will interact with passive auto-catalytic recombiners (PARs) which are installed inside LWR containments for hydrogen (H{sub 2}) removal. Depending on the boundary conditions, CO may either react with oxygen to carbon dioxide (CO{sub 2}) or act as catalyst poison, reducing the catalyst activity and hence the hydrogen conversion efficiency. A new experimental test programme performed in co-operation between JÜLICH and RWTH investigates these aspects aiming at providing data for model development for advanced severe accident analyses. In the first test series presented here, the parallel catalytic reaction of H{sub 2} and CO on the catalyst surface has been studied, i.e. the hydrogen recombination reaction was started before CO was injected. In total, 33 steady state measurements have been performed. The test series was jointly evaluated by JÜLICH, RWTH and IRSN. The test results show that under the given conditions the conversion of CO into CO{sub 2} has no negative impact on the parallel hydrogen conversion. The efficiency of the CO recombination in terms of molar rates is significantly smaller (by a factor of ∼2) than the corresponding H{sub 2} conversion efficiency. Due to the exothermal reaction, the parallel CO conversion may also have an impact on the possible ignition of the flammable gases at hot PAR surfaces. The authors have used three different numerical codes for the simulation of the parallel CO

  18. Eco-friendly green synthesis of silver nanoparticles using salmalia malabarica: synthesis, characterization, antimicrobial, and catalytic activity studies

    Science.gov (United States)

    Murali Krishna, I.; Bhagavanth Reddy, G.; Veerabhadram, G.; Madhusudhan, A.

    2016-06-01

    An economically viable and "green" process has been developed for the synthesis of silver nanoparticles (AgNPs) with an average size of 7 nm using non-toxic and renewable salmalia malabarica gum (SMG) as reducing and capping agent without using any chemical reducing agent. The effect of various parameters such as concentration of SMG and silver nitrate and reaction time for the synthesis of AgNPs was studied. The synthesized AgNPs are systematically characterized by UV/Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Transmission electron microscopy. The resultant SMG-capped AgNPs are highly stable and had significant antibacterial action on both Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). The catalytic action of the SMG-capped AgNPs to initiate the reduction of 4-nitrophenol (4-NP) in the presence of NaBH4 has also been reported. The kinetics of the reaction was found to be of pseudo-first-order with respect to the 4-NP.

  19. Preparation of zeolite supported TiO2, ZnO and ZrO2 and the study on their catalytic activity in NOx reduction and 1-pentanol dehydration

    Science.gov (United States)

    Fatimah, Is

    2016-03-01

    Preparation of zeolite supported TiO2, ZnO and ZrO2 and their catalytic activity was studied. Activated natural zeolite from Indonesia was utilized for the preparation and catalytic activity test on NOx reduction by NH3 and also 1-pentanol dehydration were examined. Physicochemical characterization of materials was studied by x-ray diffraction (XRD) measurement, scanning electron microscope, solid acidity determination and also gas sorption analysis. The results confirmed that the preparation gives some improvements on physicochemical characters suitable for catalysis mechanism in those reactions. Solid acidity and specific surface area contributed significantly to the activity.

  20. A study on the catalytic activity of new catalysts for removal of NOx, CH and CO emitted from car exhaust

    Directory of Open Access Journals (Sweden)

    Y. Walid Bizreh

    2014-10-01

    Full Text Available Three catalysts were prepared from copper oxide carried on a matrix of a mixture of Syrian, Jordanian natural zeolite, Syrian bentonite, and Al2O3–CuO. As a simulation to the field motor car condition, a good quantity of macrosize granules of the catalyst was used, and the initial reacting agents were the car exhaust gases (C.E.G.. Catalytic experiments were conducted by means of a flow micro pulse–like reactor using the gases emitted from car exhaust. When the (ZJB–CuO, Al2O3–CuO catalyst was applied, the maximal de-CO conversion was as estimated as 60% at 250 °C, and 90% for de-CH at 400 °C, whereas the de-CH rate conversion of the (ZB–CuO, Al2O3–MoO3–CuO catalyst was as much as 80% at 360 °C and 78% for de-CO at 360 °C. The catalytic data made it possible to suggest a mechanism for each of the ongoing reactions. A maximal de-CH, conversion rate on the (ZB–CuO, Al2O3–CuO catalyst was reached at 450 °C. The N2 adsorption–desorption measurements were carried out at (−196 °C, thermal analysis, and X-ray diffraction for the catalysts were studied as well. A comparative study was conducted between the catalysts [(ZB–CuO, Al2O3–MoO3–CuO, and (ZJB–CuO, Al2O3–CuO] and a honeycomb structure commercial catalyst manufactured for use in gasoline vehicles.

  1. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  2. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers

    Institute of Scientific and Technical Information of China (English)

    Li-hua TENG; Tian-di TANG

    2008-01-01

    In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.

  3. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N{sub 2}O; Caracterizacion de soportes cataliticos basados en oxidos mixtos para reacciones de control de NO y N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Perez H, R.; Gomez C, A.; Diaz, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N{sub 2}O. (Author)

  4. Effect the conditions of the acid-thermal modification of clinoptilolite have on the catalytic properties of palladium-copper complexes anchored on it in the reaction of carbon monoxide oxidation

    Science.gov (United States)

    Rakitskaya, T. L.; Kiose, T. A.; Ennan, A. A.; Golubchik, K. O.; Oleksenko, L. P.; Gerasiova, V. G.

    2016-06-01

    The dependence of the physicochemical and structural-adsorption properties of natural and acid-thermal modified clinoptilolite, and of Pd(II)-Cu(II) catalysts based on them, on the duration of acid-thermal modification is investigated. The samples under study are described via XRD and thermal gravimetric (DTG and DTA) analysis, IR, DR UV-Vis, EPR spectroscopy, and water vapor adsorption. Values of both the specific surface area ( S sp) and pH of aqueous suspensions are determined. The resulting catalysts are tested in the reaction of low-temperature carbon monoxide oxidation with air oxygen. A conclusion is drawn about the nature of surface bimetallic Pd(II)-Cu(II) complexes. The greatest catalytic activity is shown by complexes based on clinoptilolite and modified with 3 M HNO3 for 0.5 and 1 h.

  5. Composite polymer/oxide hollow fiber contactors: versatile and scalable flow reactors for heterogeneous catalytic reactions in organic synthesis.

    Science.gov (United States)

    Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W

    2015-05-26

    Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors.

  6. An Environmentally-Friendly and Catalytic Procedure for Mukaiyama Aldol Reaction Using Organic Catalyst DBU under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    SHEN,Zhi-Liang; JI,Shun-Jun; LOH,Teck Peng

    2004-01-01

    @@ Recently, methods based exclusively on organic catalysts have become of major significance in synthetic chemistry.Mukaiyama-aldol reaction, as one of the most important and frequently utilized methods for C-C bond formation, is well documented in literatures recently. A variety of reagents, particularly metal-containing Lewis acids or bases, are known to promote the nucleophilic process. However, many of the reported strategies might have the following limitations from environmental viewpoints: (1) the use of metal-containing catalyst. Some of the catalysts are air or moisture sensitive (such as lithium amide), and crucial reaction conditions are needed; Some of the catalysts derived from poisonous metal (for example: SnCl4, SmI2 etc.) may cause harmful influence on humane body and environment; (2) the use of organic solvent (such as DMF, CH2Cl2 etc.) may bring about environmental pollution and solvent waste.

  7. Synthesis, characterization of amine-bridged bis (phenolate) yttrium alkyl complex and its catalytic behavior for the Tishchenko reaction

    Institute of Scientific and Technical Information of China (English)

    PANG MingLun; YAO YingMing; ZHANG Yong; SHEN Qi

    2008-01-01

    Reaction of homoleptic yttrium tris-alkyl complex YR3 (R=CH2C3H4NMe2-o) with 1 equivalent of amine bis(phenol)s LH2 (L=Me2NCH2CH2N(CH2-(2-O-C6H2-Butt2-3,5))2) afforded the solvent-free yttrium alkyl complex LYR (1), which has been characterized with elemental analysis, 1H NMR and IR spectra, and structural determination. The coordination geometry around the center metal atom can be best de-scribed as a distorted octahedron. It was found that complex 1 can be used as an efficient catalyst for the Tishchenko reaction.

  8. Synthesis and Catalytic Activity of a Two-core Ruthenium Carbene Complex: a Unique Catalyst for Ring Closing Metathesis Reaction

    Institute of Scientific and Technical Information of China (English)

    SHAO Ming-bo; WANG Jian-hui

    2011-01-01

    The reaction of a ruthenium carbide complex RuCl2(C:)(PCy3)2 with [H(Et2O)x]+[BF4]- at a molar ratio of 1:2 produced a two-core ruthenium carbene complex,{[RuCl(=HPCy3)(PCy3)]2(μ-Cl)3}+[BF4]-,in the form of a yellow-green crystalline solid in a yield of 94%.This two-core ruthenium complex is a selective catalyst for ring closing metathesis of unsubstituted terminal dienes.More importantly,no isomerized byproduct was observed for N-substrates when the two-core ruthenium complex was used as the catalyst at an elevated temperature(137 ℃),indicating that the complex is a chemo-selective catalyst for ring closing metathesis reactions.

  9. 催化裂化提升管反应器中颗粒聚团裂化反应的数值模拟%Numerical Predication of Cracking Reaction of Particle Clusters in Fluid Catalytic Cracking Riser Reactors

    Institute of Scientific and Technical Information of China (English)

    王淑彦; 陆慧林; 高金森; 徐春明; 孙丹

    2008-01-01

    Behavior of catalytic cracking reactions of particle cluster in fluid catalytic cracking(FCC)riser reac-tors was numerically analyzed using a four-lump mathematical model.Effects of the cluster porosity.inlet gas ve-locity and temperature,and coke deposition on cracking reactions of the cluster were investigated. Distributions of temperature,gases,and gasoline from both catalyst particle cluster and an isolated catalyst particle are presented.The reaction rates from vacuum gas oil(VGO)to gasoline,gas and coke of individual particle in the cluster arehigher than those of the isolated particle,but it reverses for the reaction rates from gasoline to gas and coke.Less gasoline is produccd bv particle clustering.Simulated results show that the produced mass fluxes of gas and gasolineincrease with the operating temperature and molar concentration of VGO,and decrease due to the formation of coke.

  10. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  11. Time-Resolved and Operando XAS Studies on Heterogeneous Catalysts - From the Gas Phase Towards Reactions in Supercritical Fluids

    International Nuclear Information System (INIS)

    x-ray absorption spectroscopy is a well-suited technique to uncover the structure of heterogeneous catalysts under reaction conditions. Different aspects of in situ cell design suitable for dynamic and catalytic studies are discussed. In addition, criteria are presented that allow estimating the influence external and internal mass transfer. Starting with studies on gas-solid reactions, including structure-activity relationships, this concept is extended to liquid-solid reactions, reactions at high pressure and in supercritical fluids. The following examples are discussed in more detail: partial oxidation of methane over Pt-Rh/Al2O3, reduction of a Cu/ZnO catalyst, alcohol oxidation over Bi-promoted Pd/Al2O3 in liquid phase and over Pd/Al2O3 in supercritical CO2, and batch reactions (e.g. CO2-fixation over zinc-based catalysts)

  12. Developments in catalytic asymmetric Strecker reaction of aldimines%醛亚胺的不对称Strecker反应研究进展

    Institute of Scientific and Technical Information of China (English)

    唐贝; 李高伟

    2013-01-01

    α-Aminonitriles can be easily converted to α-amino acids, and is an important intermediate for the synthesis of many biologically active natural products and drugs. The asymmetric Strecker reaction of the aldimine as a direct and affective method of synthesis of optically active α-aminonitriles has been widely accepted. In this current paper, the developments in catalytic asymmetric Strecker reaction of aldimines is introduced.%α-氨基腈不仅可以很容易地转化为α-氨基酸,而且是合成许多具有生物活性的天然产物和药物的重要中间体.醛亚胺的不对称Strecker反应作为制备光学活性α-氨基腈的直接而有效的方法之一,已被广泛接受.作者介绍了醛亚胺的不对称Strecker反应研究进展.

  13. Interaction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing

    2016-06-01

    Nitrogen doped graphene hollow microspheres (NGHSs) have been used as the supports for the growth of the CoO nanoparticles. The nitrogen doped structure favors the nucleation and growth of the CoO nanoparticles and the CoO nanoparticles are mostly anchored on the quaternary nitrogen doped sites of the NGHSs with good monodispersity since the higher electron density of the quaternary nitrogen favors the nucleation and growth of the CoO nanoparticles through its coordination and electrostatic interactions with the Co2+ ions. The resulting NGHSs supported CoO nanoparticles (CoO/NGHSs) are highly active for the oxygen reduction reaction (ORR) with activity and stability higher than the Pt/C and for the oxygen evolution reaction (OER) with activity and stability comparable to the most efficient catalysts reported to date. This indicates that the CoO/NGHSs could be used as efficient bi-functional catalysts for ORR and OER. Systematic analysis shows that the superior catalytic activities of the CoO/NGHSs for ORR and OER mainly originate from the nitrogen doped structure of the NGHSs, the small size of the CoO nanoparticles, the higher specific and electroactive surface area of the CoO/NGHSs, the good electric conductivity of the CoO/NGHSs, the strong interaction between the CoO nanoparticles and the NGHSs, etc.

  14. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjae [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2014-07-15

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H{sub 2} and O{sub 2} gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

  15. CATALYTIC FAST PYROLYSIS OF CELLULOSE MIXED WITH SULFATED TITANIA TO PRODUCE LEVOGLUCOSENONE: ANALYTICAL PY-GC/MS STUDY

    OpenAIRE

    Qiang Lu; Xu-Ming Zhang,; Zhi-Bo Zhang; Ying Zhang; Xi-Feng Zhu; Chang-Qing Dong

    2012-01-01

    Sulfated titania (SO42-/TiO2) was prepared and used for catalytic fast pyrolysis of cellulose to produce levoglucosenone (LGO), a valuable anhydrosugar product. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) technique was employed in this study to achieve the catalytic fast pyrolysis of cellulose and on-line analysis of the pyrolysis vapors. Experiments were performed to investigate the effects of several factors on the LGO production, i.e. pyrolysis temperature, cellulo...

  16. Qualitative Aspects of the Solutions of a Mathematical Model for the Dynamic Analysis of the Reversible Chemical Reaction SO2(g)+1/2O2(g)<=>SO3(g) in a Catalytic Reactor

    CERN Document Server

    Wilfredo, Angulo

    2014-01-01

    We present some qualitative aspects concerning the solution to the mathematical model describing the dynamical behavior of the reversible chemical reaction SO2(g)+1/2O2(g)SO3(g) carried out in a catalytic reactor used in the process of sulfuric acid production.

  17. Liquid Phase Hydrogenation of Benzalacetophenone:Effect of Solvent,Catalyst Support,Catalytic Metal and Reaction Conditions%Liquid Phase Hydrogenation of Benzalacetophenone: Effect of Solvent, Catalyst Support, Catalytic Metal and Reaction Conditions

    Institute of Scientific and Technical Information of China (English)

    Achim STOLLE; Christine SCHMOGER; Bernd ONDRUSCHKA; Werner BONRATH; Thomas F. KELLER; Klaus D. JANDT

    2011-01-01

    Innovative catalysts based on a “porous glass” support material were developed and investigated for the reduction of benzalacetophenone.The easy preparation conditions and possibility to use different metals (e.g.Pd,Pt,Rh) for impregnation gave a broad variety of these catalysts.Hydrogenation experiments with these supported catalysts were carried out under different hydrogen pressures and temperatures.Porous glass catalysts with Pd as the active component gave chemoselective hydrogenation of benzalacetophenone,while Pt- and Rh-catalysts tended to further reduce the carbonyl group,especially at elevated hydrogen pressures and temperatures.Kinetic analysis of the reactions revealed these had zero order kinetics,which was independent of the type of porous glass support and solvent used.

  18. Study of Single Catalytic Events at Copper-in-Charcoal: Localization of Click Activity Through Subdiffraction Observation of Single Catalytic Events.

    Science.gov (United States)

    Decan, Matthew R; Scaiano, Juan C

    2015-10-15

    Single molecule fluorescence microscopy reveals that copper-in-charcoal--a high performance click catalyst- has remarkably few catalytic sites, with 90% of the charcoal particles being inactive, and for the catalytic ones the active sites represent a minute fraction (∼0.003%) of the surface. The intermittent nature of the catalytic events enables subdiffraction resolution and mapping of the catalytic sites. PMID:26722775

  19. Modification of the adsorption and catalytic properties of micro-and mesoporous materials by reactions with organometallic complexes

    Institute of Scientific and Technical Information of China (English)

    LEFEBVRE; Frédéric; PUTAJ; Piotr; BASSET; Jean-Marie

    2010-01-01

    This review describes the work of two laboratories in the field of the modification of micro-and mesoporous molecular sieves through reactions with organometallic complexes.The modification of zeolites can occur inside the pore channels or on the external surface,depending on the size of the organometallic complex.When the modification occurs on the external surface,it results in a decrease of the pore entrance,which will lead in turn to a modification of the sorption properties of the zeolite,by decreasing the rate of the adsorption(mainly by a kinetic control).Such a material can be also used in catalysis,because the external acid sites,which are responsible for side-reactions,have been removed upon grafting.When small organometallic complexes are used,they can fill the channels and cages of the zeolite and react with internal hydroxyl groups.Due to the high acidity of zeolites,the reaction occurs very easily(for example at-100℃ on faujasite),in contrast to what is observed on the external surface,therefore leading to high metal loadings.In that case,the modification of the sorption properties will be mainly related to a thermodynamic control.The resulting materials can be useful in catalysis,by combining the activity of the organometallic complex and properties(for example shape-selectivity) of the zeolite.Modification of mesoporous molecular sieves occurs always in the pores and results in altering of the sorption properties of the solid,by changing the interaction type between the sorbent and the sorbate.For example the sorption isotherm of alkanes is changed from type II to type III according to the IUPAC nomenclature.

  20. Insight into the Catalytic Mechanism of Bimetallic Platinum-Copper Core-Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions.

    Science.gov (United States)

    Ma, Lu; Luo, Xiangyi; Kropf, A Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-13

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt-Cu core-shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li-O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (OER catalysts. PMID:26709945

  1. Study on catalytic oxidation of planar binuclear copper phthalocyanine on 2-mercaptoethanol

    Institute of Scientific and Technical Information of China (English)

    CHEN; Wenxing

    2006-01-01

    [1]Ichikawa M.JPN Patent,JP74116010,1974[2]Li X P,Yu D Y,Han X X,et al.Liquid oxidation of styrene catalyzed by metal phthalocyanines.J Petrochem U (in Chinese),1998,11(4):21-24[3]Shen Y J.Synthesis and Application of Phthalocyanine (in Chinese).Beijing:Chemical Industry Press,2000.121-122[4]Boston D R,Bailar J C,et al.Phthalocyanine derivatives from 1,2,4,5-tetracyanobenzene or pyromellitic dianhydride and metal salts.Inorg Chem,1972,11(7):1578-1583[5]Mario C,Michael H.A binuclear phthalocyanine containing two different metals.Eur J Org Chem,2003,2003(11):2080-2083[6]Shirai H,Hanabusa K,Kitamura M,et al.Functional metal porphyrazine derivatives and their polymers,14.Synthesis and properties of[bis-or tetrakis (decyloxycarbonyl) phthalocyaninanto] metal complexes.Makromol Chem,1984,185(12):2537-2542[7]Bai N,Zhang P,Guo Y H,et al.Encapsulation and catalytic activity of lipophilic soluble metallophthalocyanine derivative in MCM-41.Chem Res Chinese U (in Chinese),2001,22(8):1275-1278[8]Dennis K P Ng.Dendritic phthalocyanines:Synthesis,photophysical properties,and aggregation behavior.C R Chim,2003,6(8-10):903-910[9]Chen B,Yang S Q,Zhao C D.Study on the mechanisms of catalytic desulfurization with binuclear metallo phthalocyanine III.J Mol Sci (in Chinese),1996,12(3):204-210[10]Nemykin V N,Chernii V A,Volkov S V,et al.Further studies on theoxidation state of iron in --oxo dimeric phthalocyanine complexes.J Porphyr Phthalocya,1999,3(2):87-98[11]Shirai H,Tsuiki H,Masuda E,et al.Functional metallomacrocycles and their polymers.25.Kinetics and mechanism of the biomimetic oxidation of thiol by oxygen catalyzed by homogeneous olycarboxy-phthalocyaninato metals.J Phys Chem-US,1991,95(1):417-423[12]Chen B,Shao Y,Yang S Q,et al.Study on the mechanisms of catalytic desulfurization with binuclear metallo phthalocyanine Ⅴ.J Mol Sci (in Chinese),1996,12(3):218-223[13]Andreev A,Ivanova V,Prahov L,et al.Catalytic activity of monomeric and polymeric cobalt(II)-phthalocyanines in

  2. Staff Reactions to Challenging Behaviour: An Observation Study

    Science.gov (United States)

    Lambrechts, Greet; Van Den Noortgate, Wim; Eeman, Lieve; Maes, Bea

    2010-01-01

    Staff reactions play an important role in the development and maintaining of clients' challenging behaviour. Because there is a paucity of research on staff reactions in naturalistic settings, this study examined sequential associations between challenging behaviour and staff reactions by means of a descriptive analysis. We analysed video…

  3. Status of reaction theory for studying rare isotopes

    OpenAIRE

    Nunes, F. M.; Upadhyay, N. J.

    2012-01-01

    Reactions are an important tool to study nuclear structure and for extracting reactions relevant for astrophysics. In this paper we focus on deuteron induced reactions which can provide information on neutron shell evolution as well as neutron capture cross sections. We review recent work on the systematic comparison of the continuum discretized coupled channel method, the adiabatic wave approximation and the Faddeev momentum-space approach. We also explore other aspects of the reaction mecha...

  4. (±)Methanodibenzodiazocine tethered [C-H]+ functional site: Study towards benzoin condensation and Baylis-Hillman reactions

    Indian Academy of Sciences (India)

    Arruri Sathyanarayana; Ganesan Prabusankar

    2015-05-01

    New heterocyclic ring systems consisting of (±) methanodibenzodiazocine and imidazolium/benzimidazolium salts were synthesized in very good yield. Subsequently, these halide salts were subjected to the anion exchange reaction with KPF6 to yield the corresponding azolium salts in excellent yield. The possible applications of these newly prepared salts were investigated in homogeneous catalysis. Remarkable changes in the catalytic activity were observed by varying the bulkiness of N-substituent at imidazole. Catalytic activity of these newly prepared salts was tested for the benzoin condensation reaction. Exclusive formation of benzoin products were observed in good yield. Similarly, the dimerization of cyclohexen-1-one to Baylis-Hillman type product, 2-(3-oxocyclohexyl)-2-cyclohexen-1-one was studied.

  5. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. PMID:27061428

  6. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  7. Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: A kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Joelianingsih [National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305 8642 (Japan); Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, Tangerang 15320 (Indonesia); Department of Global Agricultural Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 8657 (Japan); Graduate School, Agricultural Engineering Science, Bogor Agricultural University, Darmaga Campus, P.O. Box 220, Bogor 16002 (Indonesia); Maeda, Hitoshi [National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305 8642 (Japan); Department of Global Agricultural Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 8657 (Japan); Hagiwara, Shoji; Nabetani, Hiroshi [National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305 8642 (Japan); Sagara, Yasuyuki [Department of Global Agricultural Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 8657 (Japan); Soerawidjaya, Tatang H. [Department of Chemical Engineering, Institut Teknologi Bandung, LABTEK X, Jl. Ganesha No. 10 Bandung 40132 (Indonesia); Tambunan, Armansyah H.; Abdullah, Kamaruddin [Graduate School, Agricultural Engineering Science, Bogor Agricultural University, Darmaga Campus, P.O. Box 220, Bogor 16002 (Indonesia)

    2008-07-15

    Biodiesel has become more attractive recently because of its environmental benefits and the fact that it is made from renewable resources. Transesterification of vegetable oils with short-chain alcohol has long been a preferred method for producing biodiesel fuel. A new reactor was developed to produce fatty acid methyl esters (FAME) by blowing bubbles of superheated methanol vapor continuously into vegetable oil without using any catalysts. A kinetic study on the non-catalytic transesterification of palm oil was made in a reactor without stirring at atmospheric pressure. The effects of reaction temperatures (523, 543, and 563 K) on the rate constant, conversion, yield of methyl esters (ME) and composition of the reaction product under semi-batch mode operation are investigated. The activation energy and the frequency factor values of the transesterification reaction obtained in this experiment are 31 kJ/mol and 4.2, respectively. The optimum reaction temperature which gives the highest ME content (95.17% w/w) in the reaction product is 523 K, while the rate constant of the total system increased with reaction temperature. (author)

  8. In situ DRIFTS studies on MnOx nanowires supported by activated semi-coke for low temperature selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Chen, Yan; Zhang, Zuotai; Liu, Lili; Mi, Liang; Wang, Xidong

    2016-03-01

    To mitigate the threat of NOx on the environment, MnOx nanowires were fabricated on activated semi-coke (MnOx NW/ASC) for the first time. The prepared MnOx NW/ASC was used for the low temperature selective catalytic reduction (SCR) of NOx with NH3, which achieved an efficiency of over 90% with a low loading content of 1.64 wt% at 150-210 °C. This high performance could be ascribed to synergistic effect between MnOx and ASC. Specifically, the large specific surface area and reducible property of ASC facilitated the dispersion of MnOx and the formation of Mn3+, respectively. Meanwhile, MnOx nanowires provided more redox sites and lattice oxygen species due to the coexistence of Mn3+ and Mn4+, which accelerated the catalytic cycle. The in situ DRIFTS studies revealed that ASC was conducive to the adsorption of NO and NH3. Most importantly, the existence of Mn3+ favored the formation of amide species and the subsequent reduction reaction. Furthermore, the Langmuir-Hinshelwood (L-H) route between coordinated NH3 and bidentate nitrate was predominating in the SCR process and responsible for the high catalytic activity at low temperature.

  9. Eukaryotic expression system Pichia pastoris affects the lipase catalytic properties: a monolayer study.

    Directory of Open Access Journals (Sweden)

    Madiha Bou Ali

    Full Text Available Recombinant DNA methods are being widely used to express proteins in both prokaryotic and eukaryotic cells for both fundamental and applied research purposes. Expressed protein must be well characterized to be sure that it retains the same properties as the native one, especially when expressed protein will be used in the pharmaceutical field. In this aim, interfacial and kinetic properties of native, untagged recombinant and tagged recombinant forms of a pancreatic lipase were compared using the monomolecular film technique. Turkey pancreatic lipase (TPL was chosen as model. A kinetic study on the dependence of the stereoselectivity of these three forms on the surface pressure was performed using three dicaprin isomers spread in the form of monomolecular films at the air-water interface. The heterologous expression and the N-His-tag extension were found to modify the pressure preference and decrease the catalytic hydrolysis rate of three dicaprin isomers. Besides, the heterologous expression was found to change the TPL regioselectivity without affecting its stereospecificity contrary to the N-tag extension which retained that regioselectivity and changed the stereospecificity at high surface pressures. The study of parameters, termed Recombinant expression Effects on Catalysis (REC, N-Tag Effects on Catalysis (TEC, and N-Tag and Recombinant expression Effects on Catalysis (TREC showed that the heterologous expression effects on the catalytic properties of the TPL were more deleterious than the presence of an N-terminal tag extension.

  10. Coupling thermogravimetric and acoustic emission measurements: its application to study the inhibition of catalytic coke deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ropital, Francois; Dascotte, Philippe; Marchand, Pierre [Institut Francais du Petrole, 1 Avenue Bois Preau, 92952 Rueil-Malmaison (France); Faure, Thierry; Lenain, Jean-Claude; Proust, Alain [Euro Physical Acoustics, 27 Rue Magellan, 94373 Sucy-en-Brie Cedex (France)

    2004-07-01

    In order to improve the knowledge on the high temperature behaviour of metallic materials, the coupling of several in situ physical analysis methods is a promising way. For this purpose a thermogravimetric balance has been equipped with a specific acoustic emission device in order to continuously measure the mass variation of the corrosion sample and the acoustic emission transient under experimental conditions of temperature and gas phase compositions that are representative of the industrial environments. The catalytic coke deposition condition that is a major problem for the refinery and petrochemical industries, has been studied with such a device. The carbon deposition on reactor walls can induce localised disruption in the process such as heat-transfer reduction and pressure drops. To prevent these perturbations, proper selections of the metallurgical or internal coating compositions of the equipment, or the injection of accurate amount of inhibitors have to be decided. The feasibility of the coupling at high temperature of thermogravimetric and acoustic emission has been demonstrated. This new technique has been applied to study the inhibition of the catalytic coke deposition on pure iron by sulphur additives in the temperature range of 650 deg. C and under different mixed atmospheres of hydrocarbon and hydrogen contents. Good correlation has been obtained between the coking rates measured by thermogravimetric measurements and the intensities of the acoustic emission parameters. (authors)

  11. Experimental Study of Stellar Reactions at CNS

    International Nuclear Information System (INIS)

    After a brief review on low-energy RI beam production technology, nuclear astrophysics programs at CNS are presented including a scope of the field in the Wako campus. The CRIB project involves a total development of the whole facility to maximize the low-energy RI beam intensities, including the ion source, the AVF cyclotron and the low-energy RI beam separator CRIB, Some recent nuclear astrophysics experiments performed with the RI beams were discussed, including the measurement of the 14O(α,p)17F reaction, the key stellar reaction for the onset of the high-temperature rp-process. The first experiment performed with a newly installed high-resolution magnetic spectrograph PA of CNS was also presented. Collaboration possibilities for nuclear astrophysics in the RIKEN campus are also touched

  12. Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors:Catalytic activity and reaction kinetics

    Institute of Scientific and Technical Information of China (English)

    Yang Qi; Zhenmin Cheng; Zhiming Zhou

    2015-01-01

    Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by in-cipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and inter-nal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overal conversion of CH4 and the conversion of CH4 to CO2 were strongly influenced by reaction temperature, residence time of reactants as wel as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment (1989) fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamical y.

  13. Monitoring Adverse Drug Reactions: A Preliminary Study

    OpenAIRE

    Reynolds, J. L.

    1981-01-01

    The feasibility of family physicians functioning as monitors of adverse drug reactions (ADR) was examined over one month in ten practices. This was done as a preliminary trial, before attempting to use the 200 family physicians of the National Reporting System of the College of Family Physicians of Canada to monitor ADRs on a national basis. Both of these trials were designed to examine the feasibility of family physicians acting as prospective monitors of ADRs in newly marketed drugs and to ...

  14. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NITRIC OXIDE (NO)

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-12-31

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. The authors have investigated the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. The silanation approach failed to stabilize Cu-ZSM-5 activity under hydrothermal condition. Silanation blocked the oxygen migration and inhibited oxygen desorption. Oxygen spillover was found to be an effective approach for promoting NO decomposition activity on Pt-based catalysts. Detailed mechanistic study revealed the oxygen inhibition in NO decomposition and reduction as the most critical issue in developing an effective catalytic approach for controlling NO emission.

  15. Some problems in adsorption and calorimetric studies of the steps of catalytic processes

    Institute of Scientific and Technical Information of China (English)

    Victor E. Ostrovskii

    2004-01-01

    Principal side factors as well as technical and procedural peculiarities capable of distorting the results of measurements of adsorbed and desorbed amounts, of falsifying the nature of the processes proceeding in the systems under study, and of promoting artifacts in calorimetric and other studies of gas chemisorption on powders are considered. Modified techniques and procedures allowing the elimination of sources of side phenomena and artifacts and freeing traditional glass static adsorption apparatuses and experimental procedures from undesirable factors and peculiarities are proposed.Some available chemisorption and calorimetric data representing artifacts and also some data that are not artifacts but,due to imperfections of chemisorption techniques, show up as artifacts are presented and discussed. Several applications of the improved techniques and procedures to calorimetric and adsorption studies of the steps of catalytic processes proceeding on the basis of natural gas and of products of its processing are presented and discussed.

  16. Modeling study on the cleavage step of the self-splicing reaction in group I introns

    Science.gov (United States)

    Setlik, R. F.; Garduno-Juarez, R.; Manchester, J. I.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1993-01-01

    A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.

  17. Three-dimensional FeSe2 microflowers assembled by nanosheets: Synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction

    Science.gov (United States)

    Chang, Xiaoying; Jian, Jikang; Cai, Gemei; Wu, Rong; Li, Jin

    2016-03-01

    Three-dimensional FeSe2 microflowers were synthesized for the first time by a facile solvothermal method, using FeCl2·4H2O and selenium powder as raw materials, along with ethanolamine as solvent. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results show that the FeSe2 microflowers consist of nanosheets with a thickness of about 50 - 80 nm. The Raman spectrum shows the characteristic peaks of Se-Se vibration modes. The optical band gap of the sample was determined to be 1.48 eV by UV-visible absorption spectroscopy. The photoluminescence properties of the FeSe2 microflowers and their catalytic activity for the hydrogen evolution reaction were also assessed. Finally, a possible growth mechanism of the FeSe2 microflowers is proposed. [Figure not available: see fulltext.

  18. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  19. Study of an anaphylactoid reaction to acetaminophen.

    Science.gov (United States)

    Liao, Chien-Ming; Chen, Wu-Charng; Lin, Ching-Yuang

    2002-01-01

    Generalized itching, urticaria and anaphylactic shock developed in a 9-year-old girl on two separate occasions after she ingested acetaminophen. She was admitted to our hospital for observation during oral challenge. Total eosinophil counts, total serum IgE, IgA, IgG, IgM, C3, and C4, specific IgE antibodies to six common allergens, and skin prick tests to purified acetaminophen and acetylsalicylic acid (aspirin) were unremarkable. No reaction occurred on open challenge with acetylsalicylic acid and mefenamic acid. However, urticaria and itching sensation occurred 45 min after ingesting 50 mg of purified acetaminophen. Dizziness, shivering, tachycardia and fainting also developed later. These symptoms resolved after treatment with a diphenhydramine injection and intravenous infusion of normal saline. There was a marked increase in the blood histamine level after challenge. In vitro histamine release before oral challenge was also abnormally as high as 50%. In summary, she had an immediate allergic reaction to acetaminophen but was tolerant to acetylsalicylic acid. PMID:12148965

  20. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  1. Application of ring-opening metathesis polymerization in study of polymer molecular weight-mediated catalytic properties of immobilized lipase

    Institute of Scientific and Technical Information of China (English)

    DU Chuang; ZHANG Guo; WANG Zhi; LI Lei; TANG Jun; WANG Lei

    2009-01-01

    Recently, significant efforts have been devoted into the study of the effect of hydrophobic supports on the catalytic properties of immobilized lipases. It seems that immobilization lipases on hydrophobic supports is a simple and efficient method to improve the catalytic activity of lipases. In this study, the hydrophobic poly(N-propyl-norbornene-exo-2,3-dicarboximide)s with well-controlled molecular weight were synthesized by the living ring-opening metathesis polymerization, and the lipases from Pseudo-monas sp. were then immobilized on these hydrophobic polymer supports through the physical ad-sorption. The immobilized lipases exhibited higher activity and enantioselectivity for the transesterifi-cation of 2-octanol than those of free lipases. Furthermore, we investigated the polymer molecular weight-mediated catalytic properties of immobilized lipases. It was found that the catalytic activity and E value of the immobilized lipases increased with the increase of the polymer molecular weight. At the polymeric molecular weight of about 40kDa, the highest E value (58 at 54.2% of conversion, enanti-omeric excess = 99%) was reached. After the molecular weight of polymers getting higher than 40 kDa, catalytic activity end E value of the immobilized lipase decreased.

  2. Comparative Study Between Ethylbenzene Disproportionation Reaction and its Ethylation Reaction with Ethanol over ZSM-5

    KAUST Repository

    Tukur, N. M.

    2009-06-23

    Ethylation of ethylbenzene with ethanol has been studied over ZSM-5 catalyst in a riser simulator that mimics the operation of a fluidized-bed reactor. The feed molar ratio of ethylbenzene:ethanol is 1:1. The study was carried out at 350, 400, 450, and 500°C for reaction times of 3, 5, 7, 10, 13, and 15 s. Comparisons are made between the results of the ethylbenzene ethylation reaction with that of ethylbenzene disproportionation reaction earlier reported. The effect of reaction conditions on ethylbenzene reactivity, p-diethylbenzene selectivity, total diethylbenzene (DEB) isomers selectivity, p-DEB-to-m-DEB ratio, benzene-to-DEB molar ratio, and benzene selectivity, are reported. Benzene selectivity is about 10 times more in the EB disproportion reaction as compared to its ethylation reaction with ethanol at 350°C. In addition, the results showed a p-DEB/m-DEB ratio for the EB ethylation reaction varying between 1.2-1.7, which is greater than the equilibrium values. Increase in temperature shifts the alkylation/dealkylation equilibrium towards dealkylation, thereby decreasing conversion and selectivity to DEB. © Springer Science+Business Media, LLC 2009.

  3. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  4. Relationship between structure and catalytic performance of dealuminated Y zeolites

    International Nuclear Information System (INIS)

    Dealuminated Y zeolites which have been prepared by hydrothermal and chemical treatments show differences in catalytic performance when tested fresh; however, these differences disappear after the zeolites have been steamed. The catalytic behavior of fresh and steamed zeolites is directly related to zeolite structural and chemical characteristics. Such characteristics determine the strength and density of acid sites for catalytic cracking. Dealuminated zeolites were characterized using x-ray diffraction, porosimetry, solid-state NMR and elemental analysis. Hexadecane cracking was used as a probe reaction to determine catalytic properties. Cracking activity was found to be proportional to total aluminum content in the zeolite. Product selectivity was dependent on unit cell size, presence of extra framework alumina and spatial distribution of active sites. The results from this study elucidate the role that zeolite structure plays in determining catalytic performance

  5. Crossed molecular beam studies of unimolecular reaction dynamics

    International Nuclear Information System (INIS)

    The study of seven radical-molecule reactions using the crossed molecular beam technique with supersonic nozzle beams is reported. Product angular and velocity distributions were obtained and compared with statistical calculations in order to identify dynamical features of the reactions. In the reaction of chlorine and fluorine atoms with vinyl bromide, the product energy distributions are found to deviate from predictions of the statistical model. A similar effect is observed in the reaction of chlorine atoms with 1, 2 and 3-bromopropene. The reaction of oxygen atoms with ICl and CF3I has been used to obtain an improved value of the IO bond energy, 55.0 +- 2.0 kcal mol-1. In all reactions studied, the product energy and angular distributions are found to be coupled, and this is attributed to a kinematic effect of the conservation of angular momentum

  6. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  7. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane.

    Science.gov (United States)

    Vamvakeros, A; Jacques, S D M; Middelkoop, V; Di Michiel, M; Egan, C K; Ismagilov, I Z; Vaughan, G B M; Gallucci, F; van Sint Annaland, M; Shearing, P R; Cernik, R J; Beale, A M

    2015-08-18

    We report the results from an operando XRD-CT study of a working catalytic membrane reactor for the oxidative coupling of methane. These results reveal the importance of the evolving solid state chemistry during catalytic reaction, particularly the chemical interaction between the catalyst and the oxygen transport membrane.

  8. Optical and electro-catalytic studies of nanostructured thulium oxide for vitamin C detection

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jay [Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Srivastava, Manish [Department of Physics, Dehradun Institute of Technology (DIT), School of Engineering, Greater Noida 201308 (India); Roychoudhury, Appan [Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110 042 (India); Lee, Dong Won [Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Lee, Seung Hee, E-mail: lsh1@jbnu.ac.kr [Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Malhotra, B.D., E-mail: bansi.malhotra@gmail.com [Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110 042 (India); Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Material Physics and Engineering Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012 (India); Center for NanoBioengineering and Spintronics, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of)

    2013-11-25

    Highlights: •Nanostructured thulium oxide has been prepared using the hydrothermal process. •Thulium oxide exhibits excellent electrochemical response towards ascorbic acid. •Thulium oxide is interesting electro-optical material. •Rare earth metal oxide offers potential application biosensing and optoelectronics. -- Abstract: In this report, the nanostructured thulium oxide (Tm{sub 2}O{sub 3}) has been prepared using the hydrothermal process without using any template and further heat treatment. The crystalline structure and morphology of prepared sample have been determined by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopic techniques. The optical properties of prepared sample have been examined by ultra-violet (UV–Vis), photoluminescence (PL), Raman and X-ray photoelectron spectroscopy (XPS) studies. Furthermore, Tm{sub 2}O{sub 3} nanoparticles have been electrophoretically deposited (EPD) onto indium–tin–oxide (ITO) glass substrate and utilized for electro-oxidation of ascorbic acid (AA). The electro-catalytic behavior of Tm{sub 2}O{sub 3}/ITO and bare ITO electrodes for AA electro-oxidation has been studied by cyclic voltammetry. Catalytic oxidation peak current shows a linear dependence on the AA concentration and a linear calibration curve is obtained in the concentration range of 0.2–8 mM of AA. The obtained results indicate that the nanostructured Tm{sub 2}O{sub 3} based electrode offers an efficient strategy and a new promising platform for application of the rare earth metal oxide material in electrochemistry and bioelectronics.

  9. Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide

    Indian Academy of Sciences (India)

    Masayuki Shirai; Osamu Sato; Norihito Hiyoshi; Aritomo Yamaguchi

    2014-03-01

    The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon dioxide. The initial rate increased with an increase in carbon dioxide pressure and became a maximum at 5 MPa. Dehydration of sorbitol proceeded in water phase at 500 K and initial dehydration rates were enhanced by addition of 30 MPa of carbon dioxide.

  10. Force-Depending Radiation Reaction study in an undulator devise

    CERN Document Server

    López, Gustavo V

    2016-01-01

    The effect of force-depending radiation reaction on charge motion traveling inside an undulator is studied using the new force approach for radiation reaction. The effect on the dynamics of a charged particle is determined with the hope that this one can be measured experimentally and can be determined whether or not this approach points on the right direction to understand the nature of radiation reaction.

  11. Kinetic modelling of hydrocracking catalytic reactions by the single events theory; Modelisation cinetique des reactions catalytiques d`hydrocraquage par la theorie des evenements constitutifs

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, J.M.

    1998-11-23

    Kinetic modelling of petroleum hydrocracking is particularly difficult given the complexity of the feedstocks. There are two distinct classes of kinetics models: lumped empirical models and detailed molecular models. The productivity of lumped empirical models is generally not very accurate, and the number of kinetic parameters increases rapidly with the number of lumps. A promising new methodology is the use of kinetic modelling based on the single events theory. Due to the molecular approach, a finite and limited number of kinetic parameters can describe the kinetic behaviour of the hydrocracking of heavy feedstock. The parameters are independent of the feedstock. However, the available analytical methods are not able to identify the products on the molecular level. This can be accounted for by means of an posteriori lamping technique, which incorporates the detailed knowledge of the elementary step network. Thus, the lumped kinetic parameters are directly calculated from the fundamental kinetic coefficients and the single event model is reduced to a re-lumped molecular model. Until now, the ability of the method to extrapolate to higher carbon numbers had not been demonstrated. In addition, no study had been published for three phase (gas-liquid-solid) systems and a complex feedstock. The objective of this work is to validate the `single events` method using a paraffinic feedstock. First of all, a series of experiments was conducted on a model compound (hexadecane) in order to estimate the fundamental kinetic parameters for acyclic molecules. To validate the single event approach, these estimated kinetic coefficients were used to simulate hydrocracking of a paraffinic mixture ranging from C11 to C18. The simulation results were then compared to the results obtained from the hydrocracking experiments. The comparison allowed to validate the model for acyclic molecules and to demonstrate that the model is applicable to compounds with higher carbon numbers. (author

  12. Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas

    Institute of Scientific and Technical Information of China (English)

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Abdul Aziz Abdul Kadir; Salmiah Jamal Mat Rosid; Nurul Shafeeqa Mohammad

    2012-01-01

    A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co( 10∶90 )/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co( 10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co( 10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis (EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co( 10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co( 10∶90)/Al2O3 catalyst.

  13. Some Aspects of the Catalytic Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Anil; K.Saikia

    2007-01-01

    1 Results Catalytic reactions are gaining importance due to its low cost, operational simplicity, high efficiency and selectivity. It is also getting much attention in green synthesis. Many useful organic reactions, including the acylation of alcohols and aldehydes, carbon-carbon, carbon-nitrogen, carbon-sulfur bond forming and oxidation reactions are carried out by catalyst. We are exploring the catalytic acylation of alcohols and aldehydes in a simple and efficient manner. Catalytic activation of unr...

  14. Matrix isolation as a tool for studying interstellar chemical reactions

    Science.gov (United States)

    Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.

    1989-01-01

    Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.

  15. Engineered materials as potential geocatalysts in deep geological nuclear waste repositories: A case study of the stainless steel catalytic effect on nitrate reduction by hydrogen

    International Nuclear Information System (INIS)

    Highlights: • We demonstrate that stainless steels (316L and Hastelloy) can catalyse nitrate reduction in the presence of hydrogen. • Hydrogen is the sole electron donor. • The reaction proceeds via nitrate sorption at the steel surface up to pH = 9 following Langmuir–Hinshelwood mechanism. • The reaction is inhibited by the presence of phosphate anions which compete with nitrate for the steel sorption sites. - Abstract: The reduction of NO3- in natural waters is commonly promoted by biological activity. In the context of deep geological nuclear waste repositories with potentially high H2 pressure, abiotic redox reactions may be envisaged. Here, the catalytic effect of “inert” metallic surfaces, in part used for nuclear waste canisters, on NO3- reduction under H2 pressure is evaluated. The study is focused on stainless steels by testing the 316L and Hastelloy C276 steels. A parametric kinetic study (0 < P(H2) < 10 bar, 0.1 < [NO3-] < 10 mM, 90 < T° < 150 °C, 4 < pHin situ < 9) reveals that NO3- reduction, in the presence of stainless steel 316L and Hastelloy C276, proceeds via a pH-independent reaction requiring H2 as an electron donor. No corrosion of these steels is observed indicating a true catalytic process. The reaction is inhibited in the presence of PO43-. Activation energies assuming a first-order reaction in the 90–150 °C temperature range are found to be 46 kJ/mol for stainless steel 316L and 186 kJ/mol for Hastelloy C276, making the reaction efficient at lower temperature and on a human time scale. Nitrate sorption at the metallic surface being thought to be the limiting step, sorption and competitive sorption isotherms of several oxyanions were performed at 90 °C on 316L. Nitrate and PO43- are more strongly sorbed than SO42-, likely as inner sphere complexes, and in a large pH range, from acidic to pH 9. The Langmuir–Hinshelwood formalism best fits the kinetic data. The nature of the surface complex, and the competition for

  16. A Study on Phase States of the Catalytic System of FeCl3-Al(i-Bu)3-pyridine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The phase states of the catalytic system of FeCl3-Al(i-Bu)3-pyridine are studied in the paper by means of the Tyndall effect, electron microscopy and super-filtration. It is found that the catalyst dispersing in the butadiene-hydrogasoline solution exists in small particles and the size of particle is 30 nm or so in diameter. The catalyst belongs to a multi-phase catalytic system. The active center of catalyst lies on the surface of nanometer particles, which are amorphous. The ratios of different components of catalyst affect the formation of the particles. With the optimum ratio, nanometer particles, which disperse more uniformly and are of highly catalytic activity, can be obtained.

  17. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions

    Science.gov (United States)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong

    2014-11-01

    Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.

  18. STUDY ON SIDE REACTION IN THE SYNTHESIS OF HYPERCROSSLINKED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bo; LI Aimin; TAO Weihua; YANG Weiben

    2008-01-01

    The systematical study about side reactions have revealed the formation mechanism of oxygen-containing groups of hypercrosslinked polymers.Surface chemistry and functionality of the polymers are characterized by Fourier-transform infrared spectroscopy (FT-IR), solid state nuclear magnetic resonance (NMR) and contact angle.The results showed that the ether groups were from chioromethylated reaction, and the alcohol groups arose from partial hydrolysis of chloromethyl groups during the post-crosslinking reaction, and the carbonyl functionality was formed by further oxidation of the alcohol groups.Catalyst and solvent used in the postcrosslinking reaction would greatly influence the surface chemistry of the polymer.

  19. Transverse flow reactor studies of the dynamics of radical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, R.G. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  20. STUDY ON SIDE REACTION IN THE SYNTHESIS OF HYPERCROSSLINKED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The systematical study about side reactions have revealed the formation mechanism of oxygen-containing groups of hypercrosslinked polymers. Surface chemistry and functionality of the polymers are characterized by Fourier-transform infrared spectroscopy (FT-IR), solid state nuclear magnetic resonance (NMR) and contact angle. The results showed that the ether groups were from chloromethylated reaction, and the alcohol groups arose from partial hydrolysis of chloromethyl groups during the post-crosslinking reaction, and the carbonyl functionality was formed by further oxidation of the alcohol groups. Catalyst and solvent used in the postcrosslinking reaction would greatly influence the surface chemistry of the polymer.

  1. Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation

  2. Electromagnetic studies of nuclear structure and reactions

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, F.W.; Dawson, J.F.; Heisenberg, J.H.; Calarco, J.R.

    1990-06-01

    This report contains papers on the following topics: giant resonance studies; deep inelastic scattering studies; high resolution nuclear structure work; and relativistic RPA; and field theory in the Schroedinger Representation.

  3. Effect of Ni+2-substituted Fe2TiO5 on the H2-reduction and CO2 Catalytic Decomposition Reactions at 500℃

    Institute of Scientific and Technical Information of China (English)

    M.H.Khedr

    2006-01-01

    CO2 is a major component of the greenhouse gases, which causes the global warming. To reduce CO2 gas,high activity nanosized Ni+2 substituted Fe2TiO5 samples were synthesized by conventional ceramic method.The effect of the composition of the synthesized ferrite on the H2-reduction and CO2-catalytic decomposition was investigated. Fe2TiO5 (iron titanate) phase that has a nanocrystallite size of ~80 nm is formed as a result of heating Fe2O3 and TiO2 while the addition of NiO leads to the formation of new phases (~80 nm)NiTiO3 and NiFe2O4, but the mixed solid of NiO and Fe2O3 results in the formation of NiFe2O4 only.Samples with Ni+2=0 shows the lowest reduction extent (20%); as the extent of Ni+2 increases, the extent of reduction increases. The increase in the reduction percent is attributed to the presence of NiTiO3 and NiFe2O4 phases, which are more reducible phases than Fe2TiO5. The CO2 decomposition reactions were monitored by thermogravimetric analysis (TGA) experiments. The oxidation of the H2-reduced Ni+2 substituted Fe2TiO5 at 500℃ was investigated. As Ni+2 increases, the rate of reoxidation increases. Samples with the highest reduction extents gave the highest reoxidation extent, which is attributed to the highly porous nature and deficiency in oxygen due to the presence of metallic Fe, Ni and/or FeNi alloy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of oxidized samples show also the presence of carbon in the sample containing Ni+2>0, which appears in the form of nanotubes (25 nm).

  4. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG).

    Science.gov (United States)

    Suarez, Javier; Ranguelova, Kalina; Jarzecki, Andrzej A; Manzerova, Julia; Krymov, Vladimir; Zhao, Xiangbo; Yu, Shengwei; Metlitsky, Leonid; Gerfen, Gary J; Magliozzo, Richard S

    2009-03-13

    A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.

  5. Theoretical Studies on N2H+O Reaction

    Institute of Scientific and Technical Information of China (English)

    L(U) Ying-wen; L(U) Wen-cai; SU Zhong-min

    2008-01-01

    The N2H+O potential energy profile was studied at the CCSD(T)/6-311G++(dfp)//MP2/6-311G(d,p) level.Reactions associated with four intermediates(cis-HNNO, trans-HNNO, NNHO, and NNOH) were investigated. The results indicate that N2H+O reaction toward H+N2O is more favored than that toward N2+OH, consistent with previous experimental studies. The pathways for the two reactions are found to go through cis-HNNO, transition state, and finally to the products. The N2H+O→NH+NO reaction was studied in detail. Product NO in such a reaction is likely to occur via cis-HNNO, followed by trans-HNNO, and finally dissociates into NH+NO. These results suggest that N2H+O→NH+NO is an important channel in NO production.

  6. Unexpected allergic reactions to food, a prospective study

    NARCIS (Netherlands)

    Michelsen-Huisman, A.D.; Os-Medendorp, H. van; Versluis, A.; Kruizinga, A.G.; Castenmiller, J.J.M.; Noteborn, H.P.J.M.; Houben, G.F.; Knulst, A.C.

    2013-01-01

    Unexpected reactions occur in patients with food allergy, but frequency data are scare. This prospective study investigates the frequency, severity and causes of unexpected allergic reactions to food in adults with a doctor's diagnosed food allergy. Participants complete an online questionnaire afte

  7. Theoretical studies on reaction mechanisms of unstable nuclei

    International Nuclear Information System (INIS)

    Recent studies on reactions of unstable nuclei by means of the continuum-discretized coupled-channels method (CDCC) are briefly reviewed. The topics covered are: four-body breakup processes for 6He induced reaction, microscopic description of projectile breakup processes, and new approach to inclusive breakup processes. (author)

  8. A comparative theoretical study of CO oxidation reaction by O2 molecule over Al- or Si-decorated graphene oxide.

    Science.gov (United States)

    Esrafili, Mehdi D; Sharifi, Fahimeh; Nematollahi, Parisa

    2016-09-01

    Using density functional theory calculations, the probable CO oxidation reaction mechanisms are investigated over Al- or Si-decorated graphene oxide (GO). The equilibrium geometry and electronic structure of these metal decorated-GOs along with the O2/CO adsorption configurations are studied in detail. The relatively large adsorption energies reveal that both Al and Si atoms can disperse on GO quite stably without clustering problem. Hence, both Al- and Si-decorated GOs are stable enough to be utilized in catalytic oxidation of CO by molecular O2. The two possible reaction pathways proposed for the oxidation of CO with O2 molecule are as follows: O2+CO→CO2+Oads and CO+Oads→CO2. The estimated energy barriers of the first oxidation reaction on Si-decorated GOs, following the Eley-Rideal (ER) reaction, are lower than that on Al-decorated ones. This is most likely due to the larger atomic charge on the Si atom than the Al one, which tends to stabilize the corresponding transition state structure. The results of this study can be useful for better understanding the chemical properties of Al- and Si-decorated GOs, and are valuable for the development of an automobile catalytic converter in order to remove the toxic CO molecule.

  9. Synthesis, spectral, characterization, catalytic and biological studies of new RuII N2O Schiff base complexes

    International Nuclear Information System (INIS)

    Complexes of the type (RuCl(CO)(B)(L)) (B = PPh3, AsPh3, py or pip; L monobasic tridentate Schiff base) have been synthesized by the reaction of equimolar amounts of (RuHCl(CO)(EPh3)2(B)) and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. An octahedral structure has been assigned to all these complexes. The new complexes have been exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant. (author)

  10. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  11. DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3.

    Science.gov (United States)

    Weng, Xiaole; Dai, Xiaoxia; Zeng, Qingshan; Liu, Yue; Wu, Zhongbiao

    2016-01-01

    Heteropoly acids (HPAs) have been effectively utilized in selective catalytic reduction (SCR) of NO to improve the NH3 absorption capacity and alkaline/alkali metal resistance for SCR catalysts. However, despite the promise on super-acidities, their other properties that would work on SCR process are still lack of exploration. In this study, a 12-tungstaphosphoric acid (H3PW12O40, HPW) was selected to modify a well-reported CeO2 catalyst. The resulted CeO2/HPW catalyst was subsequently utilized for SCR of NO with excess NH3, which revealed a significantly promoted performance in SCR reaction. DRIFT analyses showed that the unique NO2 absorption capacity of HPW could prevent the NO2 being further oxidized into nitrate species and the abundant Brønsted acid sites could effectively retain the NH3, avoiding them being over-oxidized at evaluated temperatures. The presence of NO2 was demonstrated able to induce a so called "fast SCR" reaction over the CeO2/HPW catalyst, which effectively facilitated the SCR reaction. Furthermore, we have also constructed a CeO2@HPW catalyst, which showed an enhanced SO2 poisoning resistance in SCR reaction.

  12. Selective catalytic reduction of NO with NH{sub 3} at V{sub 2}O{sub 5}(010) and silica supported vanadium oxide: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Mathis; Hermann, Klaus [Fritz-Haber-Institut der MPG, Sfb 546, Berlin (Germany)

    2011-07-01

    The selective catalytic reduction (SCR) of NO{sub x} with NH{sub 3} over vanadium based metal-oxide (VO{sub x}) catalysts has been proven to be one of the most effective NO{sub x} reduction processes. Details of the reaction mechanism are still under debate. Adsorption, (de)hydrogenation, reactions with NO, and surface water formation at the VO{sub x} catalyst contribute elementary steps. These processes are examined in theoretical studies employing density-functional theory together with gradient corrected functionals. The VO{sub x} substrate is modeled by clusters cut out from the clean V{sub 2}O{sub 5}(010) surface where peripheral oxygen bonds are saturated by hydrogen. Reduced surfaces are represented by introducing oxygen vacancies. In addition, silica supported vanadium oxide clusters are considered. NH{sub 3} is found to interact with the clean V{sub 2}O{sub 5}(010) surface only in the presence of OH groups (Boernsted acid sites) where it can form a rather stable surface NH{sub 4}{sup +} species. Further, NH{sub 3} can adsorb at vanadium centers of lower coordination at the reduced surface (Lewis acid sites). This leads to two different SCR reaction scenarios transferring NH{sub 3} and NO to N{sub 2} and H{sub 2}O which are discussed by corresponding reaction paths and intermediates.

  13. Study on catalytic synthesis of 1,3-benzodioxoles by HY zeolite

    Institute of Scientific and Technical Information of China (English)

    LIANG Xuezheng; GAO Shan; YANG Jianguo; LIU Caihua; YU Xinyu; HE Mingyuan

    2007-01-01

    The acetalization and ketalization of various aldehydes and ketones with catechol by using HY zeolite as catalyst were studied.Effect of the reaction time,mole ratio of reactants,and amount of catalyst on the yield of benzodioxoles were investigated.Results show that HY is an efficient catalyst for the acetalization and ketalization with high conversion and selectivity in mild conditions.The best reaction conditions:molar ratio of catechol to aldehydes or ketones is 1:1.4,catalyst amount is 3.5 g/1 mol catechol,reaction time is 5 h.Under these conditions,the conversion and selectivity were over 50% and 97%,respectively.

  14. Fundamental studies of retrograde reactions in direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Serio, M.A.; Solomon, P.R.; Kroo, E.; Charpenay, S.; Bassilakis, R.

    1991-12-17

    The overall objective of the program was to improve the understanding of retrograde reactions and their dependencies on coal rank and structure, and/or coal modifications and reaction conditions. Because retrograde reactions are competitive with bond breaking reactions, an understanding of both is required to shift the competition in favor of the latter. Related objectives were to clarify the conflicting observations reported in literature on such major topics as the role of oxygen groups in retrograde reactions and to provide a bridge from very fundamental studies on pure compounds to phenomenological studies on actual coal. This information was integrated into the FG-DVC model, which was improved and extended to the liquefaction context.

  15. Behavior of shungite carbon in reactions simulating thermal transformations of coal

    Energy Technology Data Exchange (ETDEWEB)

    Grigor' eva, E.N.; Rozhkova, N.N. [Russian Academy of Science, Moscow (Russian Federation)

    2000-07-01

    The catalytic activity of shungite carbon in reactions of model compounds (tetralin and benzyl phenyl ether) simulating thermolysis of coal was studied. The orders, rate constants, and activation energies of reactions were determined.

  16. Density functional study of structural and catalytic properties of free and supported metal nano cluster; Dichtefunktionalstudie der strukturellen und katalytischen Eigenschaften freier und getraegerter Metallnanocluster

    Energy Technology Data Exchange (ETDEWEB)

    Huber, B.

    2007-04-11

    The structural and catalytic properties of metal clusters were determined in the framework of density functional theory. The first part of this work investigates the electronic and geometrical structure of sodium clusters with up to 309 atoms. The ground-state structures of the clusters are determined and the corresponding electronic density of states is compared to experimental photoelectron spectras. The excellent agreement to the experimental results indicates that the correct growth motive of the sodium clusters was found. Small clusters from Na{sup -}{sub 20} to Na{sup -}{sub 42} prefer pentagonal and icosahedral structures with anti-Mackay overlayers, while clusters larger than Na{sup -}{sub 50} prefer icosahedral structures with Mackay overlayers. Clusters between the closed-shell Mackay Clusters often exhibit a twist deformation with respect to the regular Mackay positions. The second part of this work investigates the catalytic properties of free and supported palladium clusters. For both cases the oxidation of small Pd{sub N} clusters (N {<=} 9) was studied. It turned out that MgO supported Pd-clusters dissociate oxygen with a significant lower reaction energy than free clusters or supported systems with particles consisting of several thousands of atoms. The reaction with oxygen transforms the non-crystalline Pd-clusters into crystalline Pd{sub x}O{sub y} nano-oxide clusters that are in epitaxy with the underlying support. Simulations of the CO oxidation on the Pd{sub x}O{sub y} cluster predict a low-temperature reaction mechanism. By calculating the electronic density of states and CO stretch frequencies, different ways of verifying the results experimentally are discussed. (orig.)

  17. Catalytic microreactors for portable power generation

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannidis, Symeon [Paul Scherer Institute, Villigen (Switzerland)

    2011-07-01

    ''Catalytic Microreactors for Portable Power Generation'' addresses a problem of high relevance and increased complexity in energy technology. This thesis outlines an investigation into catalytic and gas-phase combustion characteristics in channel-flow, platinum-coated microreactors. The emphasis of the study is on microreactor/microturbine concepts for portable power generation and the fuels of interest are methane and propane. The author carefully describes numerical and experimental techniques, providing a new insight into the complex interactions between chemical kinetics and molecular transport processes, as well as giving the first detailed report of hetero-/homogeneous chemical reaction mechanisms for catalytic propane combustion. The outcome of this work will be widely applied to the industrial design of micro- and mesoscale combustors. (orig.)

  18. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    Science.gov (United States)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  19. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry; Schaefer, III, Henry F. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry

    2015-11-14

    This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.

  20. Theoretical Study on Reaction Mechanism of Aluminum-Water System

    Institute of Scientific and Technical Information of China (English)

    Yun-lan Sun; Yan Tian; Shu-fen Li

    2008-01-01

    A theoretical study on the reaction of aluminum with water in the gas phase was performed using the hybrid density functional B3LYP and QCISD(T) methods with the 6-311+G(d,p) and the 6-311++G(d,p) basis sets. The results show that there are three possible reaction pathways that involve four isomers, seven transition structures, and two possible products for the reaction of aluminum with water. The two most favorable reaction pathways were found, whose intermediates and products agreed quite well with experimental results. The enthalpy and Gibbs free energy change of the reaction between AI and H2O at 298 and 2000 K were calculated. Some results are also in good agreement with the previous calculations or experimental results.

  1. Experimental Study of Na based Titanium Nanofluid-Water Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gunyeop; Kim, Soo Jae; Baek, Jehyun; Kim, Hyun Soo; Oh, Sun Ryung; Park, Hyun Sun; Kim, Moo Hwan [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    In KALIMER-600, a sodium-cooled fast reactor designed by KAERI, thermal energy is transported from high-temperature liquid Na (526 .deg. C at 0.1 MPa) to low temperature water (230 .deg. C at - 19.5 MPa) through a heat exchanger. If any leakage or rupture occurs during the operation of this heat exchanger, highly pressurized liquid water can penetrate into the liquid Na channels; this contact should instantly cause SWR. As reaction continues, liquid water is soon vaporized by pressure drop and huge amount of reaction heat. This generated water vapor expands large reaction area and increases sodium-water vapor reaction process. Therefore, the rapid generation of reaction product (like H{sub 2}) and water vapor increases the system pressure that can cause the system failure in SFR. To reduce this strong chemical reaction phenomena between Na and water, some we have focused on suppressing the chemical reactivity of liquid Na by dispersing nanoparticles (NPs). For the real application of NaTiNF, the pressure change induced by NaTiNF-water reaction is compared with Na-water reaction in the present study. NaTiNF contains 100nm of Ti NPs at 0.2 vol. %. The reaction rate of NaTiNF-water reaction is also investigated as reaction temperature increases. Sodium-water vapor reaction (SVR) will occur when an SWR accident occurs in SFR. In this manner, NaTiNF-water vapor reaction is experimentally performed for ensuring the suppression of chemical reactivity of NaTiNF in contact with water vapor. In the basic step for reducing risk of an SWR in SFR, we have experimentally verified the suppressed chemical reactivity of liquid sodium using Ti NPs through SWR and SVR experiments. In SWR, Na based titanium nanofluid (NaTiNF) shows lower pressure change than Na. As T{sub R} increases, P{sub max} in Na-water reaction increases while NaTiNF does not. The reaction rate of NaTiNF shows twice slower than that of Na. In SVR, NaTiNF shows slower temperature increase than Na. The distinct

  2. CFD Study of Industrial FCC Risers: The Effect of Outlet Configurations on Hydrodynamics and Reactions

    Directory of Open Access Journals (Sweden)

    Gabriela C. Lopes

    2012-01-01

    Full Text Available Fluid catalytic cracking (FCC riser reactors have complex hydrodynamics, which depend not only on operating conditions, feedstock quality, and catalyst particles characteristics, but also on the geometric configurations of the reactor. This paper presents a numerical study of the influence of different riser outlet designs on the dynamic of the flow and reactor efficiency. A three-dimensional, three-phase flow model and a four-lump kinetic scheme were used to predict the performance of the reactor. The phenomenon of vaporization of the liquid oil droplets was also analyzed. Results showed that small changes in the outlet configuration had a significant effect on the flow patterns and consequently, on the reaction yields.

  3. Crossed molecular beam studies of atmospheric chemical reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingsong

    1993-04-01

    The dynamics of several elementary chemical reactions that are important in atmospheric chemistry are investigated. The reactive scattering of ground state chlorine or bromine atoms with ozone molecules and ground state chlorine atoms with nitrogen dioxide molecules is studied using a crossed molecular beams apparatus with a rotatable mass spectrometer detector. The Cl + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at four collision energies ranging from 6 kcal/mole to 32 kcal/mole. The derived product center-of-mass angular and translational energy distributions show that the reaction has a direct reaction mechanism and that there is a strong repulsion on the exit channel. The ClO product is sideways and forward scattered with respect to the Cl atom, and the translational energy release is large. The Cl atom is most likely to attack the terminal oxygen atom of the ozone molecule. The Br + O{sub 3} {yields} ClO + O{sub 2} reaction has been studied at five collision energies ranging from 5 kcal/mole to 26 kcal/mole. The derived product center-of-mass angular and translational energy distributions are quite similar to those in the Cl + O{sub 3} reaction. The Br + O{sub 3} reaction has a direct reaction mechanism similar to that of the Cl + O{sub 3} reaction. The electronic structure of the ozone molecule seems to play the central role in determining the reaction mechanism in atomic radical reactions with the ozone molecule. The Cl + NO{sub 2} {yields} ClO + NO reaction has been studied at three collision energies ranging from 10.6 kcal/mole to 22.4 kcal/mole. The center-of-mass angular distribution has some forward-backward symmetry, and the product translational energy release is quite large. The reaction proceeds through a short-lived complex whose lifetime is less than one rotational period. The experimental results seem to show that the Cl atom mainly attacks the oxygen atom instead of the nitrogen atom of the NO{sub 2} molecule.

  4. A study of measurement and analysis of flow distribution in a close-coupled catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.S.; Kim, D.S. [Kookmin University, Seoul (Korea); Joo, Y.C. [Soonchunhyang University, Asan (Korea)

    2001-04-01

    In this study, results from an experimental and numerical study of flow distribution in a close-coupled catalytic converter (CCC) are presented. The experiments were carried out using a flow measurement system. Flow distribution at the exit of the first monolith in the CCC was measured using a pitot tube under steady and transient flow conditions. Numerical analysis was done using a CF D code at the same test conditions, and the results were compared with the experimental results. Experimental results showed that the uniformity index of exhaust gas velocity decreases as Reynolds number increases. Under the steady flow conditions, flow through each exhaust pipe concentrates on a small region of the monolith. Under the transient flow conditions, flow through each exhaust pipe with the engine firing order interacts with each other to spread the flow over the monolith face. The numerical analysis results support the experimental results, and help explain the flow pattern in the entry region of the CCC. (author). 6 refs., 8 figs.

  5. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    Science.gov (United States)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  6. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  7. A study on the photocatalytic reaction of the metals and organics

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Jung Won; Cho, Yung Hyun; Sung, Ki Woong; Kim, Yong Ik; Hong, Kwang Bum; Kang, Heui Suk; Koo, Je Hyoo; Kim, Kwang Lak; Paek, Seung Woo; Lee, Han Soo; Chung, Heung Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chung, Yong Won [In Hah Univ., Inchun (Korea, Republic of)

    1994-12-01

    Lead metal ion was selected as the model one in the experiment for photo catalytic reaction containing EDTA. Disappearance rate of lead ion in solution was analyzed with control variables of initial pH value, concentration of chelating agent, and concentration ratio of metal ion and chelating agent. 31 figs, 6 tabs, 67 refs. (Author).

  8. CATALYTIC FAST PYROLYSIS OF CELLULOSE MIXED WITH SULFATED TITANIA TO PRODUCE LEVOGLUCOSENONE: ANALYTICAL PY-GC/MS STUDY

    Directory of Open Access Journals (Sweden)

    Qiang Lu,

    2012-05-01

    Full Text Available Sulfated titania (SO42-/TiO2 was prepared and used for catalytic fast pyrolysis of cellulose to produce levoglucosenone (LGO, a valuable anhydrosugar product. Analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS technique was employed in this study to achieve the catalytic fast pyrolysis of cellulose and on-line analysis of the pyrolysis vapors. Experiments were performed to investigate the effects of several factors on the LGO production, i.e. pyrolysis temperature, cellulose/catalyst ratio, TiO2 crystal type, and pyrolysis time. The results indicated that the SO42-/TiO2 catalyst lowered the initial cellulose decomposition temperature and altered the pyrolytic product significantly. Levoglucosan (LG was the most abundant product in the non-catalytic process, while levoglucosenone (LGO was the major product in the catalytic process. The maximal LGO yield was obtained at the set pyrolysis temperature of 400 °C, while the highest LGO content was obtained at 350 °C, with the peak area% over 50%. In addition, the SO42-/TiO2 (anatase was confirmed the best catalyst for the LGO production.

  9. Studying the triple - α reaction in hyperspherical harmonic approach

    Science.gov (United States)

    Nguyen, Ngoc; Nunes, Filomena

    2010-11-01

    The triple-α reaction is studied by using hyperspherical harmonic (HH) method [1]. Starting from three body model, we determine the 2^+ state and the 0^+ resonance as well as the quadrupole strength function B(E2). The triple-α reaction rate are calculated. We also carefully consider the contributions of the nonresonant continuum states to the reaction rate at low temperature (T Ogata, M.Kan, M.Kamimura, Prog. Theor. Phys. 122, 1055 (2009).[0pt] [3] R. de Diego, E. Garrido, D.V. Fedorov, A.S. Jensen, arXiv:1005.5647v1.

  10. Study of Carbon Nanotube Supported Co-Mo Selective Hydrodesulphurization Catalysts for Fluid Catalytic Cracking Gasoline

    Institute of Scientific and Technical Information of China (English)

    Wenkui Yin; Mei Li; Hongyan Shang; Chenguang Liu; Fei Wei

    2005-01-01

    In this paper,carbon nanotube supported Co-Mo catalysts for selective hydrodesulphurization (HDS) of fluid catalytic cracking (FCC) gasoline were studied,using di-isobutylene,cyclohexene,1-octene and thiophene as model compounds to simulate FCC gasoline. The results show that the Co-Mo/CNT has very high HDS activity and HDS/hydrogenation selectivity comparing with the Co-Mo/γ-Al2O3 and Co-Mo/AC catalyst systems. The saturation ratio of cyclohexene was lower than 50%,and the saturation ratio of 1,3-di-isobutylene lower than 60% for the Co-Mo/CNT catalysts. Co/Mo atomic ratio was found to be one of the most important key factors in influencing the hydrogenation selectivity and HDS activity,and the most suitable Co/Mo atomic ratio was 0.4. Co/CNT and Mo/CNT mono-metallic catalysts showed lower HDS activity and selectivity than the Co-Mo/CNT bi-metallic catalysts.

  11. Molecular dynamics study of the stability of a carbon nanotube atop a catalytic nanoparticle

    CERN Document Server

    Verkhovtsev, Alexey V; Solov'yov, Andrey V

    2014-01-01

    The stability of a single-walled carbon nanotube placed on top of a catalytic nickel nanoparticle is investigated by means of molecular dynamics simulations. As a case study, we consider the $(12,0)$ nanotube consisting of 720 carbon atoms and the icosahedral Ni$_{309}$ cluster. An explicit set of constant-temperature simulations is performed in order to cover a broad temperature range from 400 to 1200 K, at which a successful growth of carbon nanotubes has been achieved experimentally by means of chemical vapor deposition. The stability of the system depending on parameters of the involved interatomic interactions is analyzed. It is demonstrated that different scenarios of the nanotube dynamics atop the nanoparticle are possible depending on the parameters of the Ni-C potential. When the interaction is weak the nanotube is stable and resembles its highly symmetric structure, while an increase of the interaction energy leads to the abrupt collapse of the nanotube in the initial stage of simulation. In order t...

  12. Opportunities for nuclear reaction studies at future facilities

    CERN Document Server

    Veselsky, Martin; Vujisicova, Nikoleta; Souliotis, Georgios A

    2016-01-01

    Opportunities for investigations of nuclear reactions at the future nuclear physics facilities such as radioactive ion beam facilities and high-power laser facilities are considered. Post-accelerated radioactive ion beams offer possibilities for study of the role of isospin asymmetry in the reaction mechanisms at various beam energies. Fission barrier heights of neutron-deficient nuclei can be directly determined at low energies. Post-accelerated radioactive ion beams, specifically at the future facilities such as HIE-ISOLDE, SPIRAL-2 or RAON-RISP can be also considered as a candidate for production of very neutron-rich nuclei via mechanism of multi-nucleon transfer. High-power laser facilities such as ELI-NP offer possibilities for nuclear reaction studies with beams of unprecedented properties. Specific cases such as ternary reactions or even production of super-heavy elements are considered.

  13. Selective catalytic reduction of NO with NH3 over V2O5 supported on TiO2 and Al2O3: A comparative study

    Science.gov (United States)

    Huang, Xianming; Zhang, Shule; Chen, Huinan; Zhong, Qin

    2015-10-01

    This study aimed at investigating the interaction of V2O5 species with TiO2 and Al2O3 supports to understand the effect of supports on SCR reaction. Analysis by XRD, BET, UV-vis, and DFT theoretical calculations, XPS, EPR and in situ DRIFT showed that the two kinds of supports could interact with V2O5. The interaction of electron excitation and charge transfer of supports to V2O5 species was important to the formation of the reduced V2O5. These aspects increased the formation of superoxide ions that could improve the NO oxidation over V2O5/TiO2. It was responsible for the higher SCR catalytic activity of V2O5/TiO2 than V2O5/Al2O3.

  14. CONTRIBUTION TO THE STUDY OF HYDROXYMETYLATION REACTION OF ALKALI LIGNIN

    OpenAIRE

    Teodor Malutan; Raluca Nicu; Valentin I. Popa

    2008-01-01

    The hydroxymethylation of alkali lignin with formaldehyde in alkaline solution was studied. The influence of reaction conditions of the hydroxymethylation of alkali lignin was followed by modifying the temperature, time, and the ratios of NaOH to lignin and CH2O to lignin. Three different types of alkali lignin were utilized. The reaction was followed by total consumption of formaldehyde, and the resulting products were characterized through FTIR-spectra, thermogravimetry analysis, ash and mo...

  15. Theoretical Study on the Dark Oxidation Reaction Mechanism of Ethers

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-Xiu; ZHU Rong-Xiu; ZHANG Dong-Ju; LIU Cheng-Bu

    2006-01-01

    The dark oxidation reactions of ethers including aether, isopropyl ether, phenyl isopropyl ether, and benzyl isopropyl ether have been studied by using density functional theory calculations. The structures of initial contact charge transfer complexes (CCTCs), transition states and caged radical intermediates have been located at the B3LYP/6-31G (d) level. The bonding nature of ethers with triplet O2 in CCTCs has been analyzed, and the detailed mechanism of dark oxidation reactions of ether is presented clearly.

  16. Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part I: characterisation of the catalytic activity and surface structure

    CERN Document Server

    Walter, Christian; Vyalikh, Denis; Brüser, Volker; Quade, Antje; Weltmann, Klaus-Dieter; 10.1149/2.078208jes

    2012-01-01

    A new dual plasma coating process to produce platinum-free catalysts for the oxygen reduction reaction in a fuel cell is introduced. The catalysts thus produced were analysed with various methods. Electrochemical characterisation was carried out by cyclic voltammetry, rotating ring- and rotating ring-disk electrode. The surface porosity of the different catalysts thus obtained was characterised with the nitrogen gas adsorption technique and scanning electron microscopy was used to determine the growth mechanisms of the films. It is shown that catalytically active compounds can be produced with this dual plasma process. Furthermore, the catalytic activity can be varied significantly by changing the plasma process parameters. The amount of H$_2$O$_2$ produced was calculated and shows that a 2 electron mechanism is predominant. The plasma coating mechanism does not significantly change the surface BET area and pore size distribution of the carbon support used. Furthermore, scanning electron microscopy pictures o...

  17. Study on Immobilized Lipase Catalyzed Transesterification Reaction of Tung Oil

    Institute of Scientific and Technical Information of China (English)

    XU Gui-zhuan; ZHANG Bai-liang; LIU Sheng-yong; YUE Jian-zhi

    2006-01-01

    The transesterification reaction conditions of tung oil with methanol have been studied in this article, with immobilized lipase NOVO435 as catalyst. The response surface methodology was used to optimize the transesterification reaction of tung oil in a nonsolvent system. The optimal conditions were rotation rate 200 r/min, molar ratio of methanol to oil 2.2:1,reaction temperature 43℃, and the catalyst amount 14% (based on the weight of oil). After reacting for 18 h, 67.5% of the oil was converted to its corresponding methyl esters (the theoretical ester conversion was 73.3%). The lipase was washed by organic solvents after each reaction and was reused again. The esters conversion of tung oil was decreased by 6% after the lipase was reused for 120 h. The theoretical amount of methanol was added in two steps, 85% ester conversion was obtained after 36 h of reaction (theoretical ester conversion was 100%). The molar ratio of methanol to oil, the catalyst amount, the reaction temperature, and reaction time were all highly significant factors, and there was a relative significant interaction between every two factors.

  18. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  19. Recent direct reaction experimental studies with radioactive tin beams

    CERN Document Server

    Jones, K L; Allmond, J M; Ayres, A; Bardayan, D W; Baugher, T; Bazin, D; Berryman, J S; Bey, A; Bingham, C; Cartegni, L; Cerizza, G; Chae, K Y; Cizewski, J A; Gade, A; Galindo-Uribarri, A; Garcia-Ruiz, R F; Grzywacz, R; Howard, M E; Kozub, R L; Liang, J F; Manning, B; Matos, M; McDaniel, S; Miller, D; Nesaraja, C D; O'Malley, P D; Padgett, S; Padilla-Rodal, E; Pain, S D; Pittman, S T; Radford, D C; Ratkiewicz, A; Schmitt, K T; Shore, A; Smith, M S; Stracener, D W; Stroberg, S R; Tostevin, J; Varner, R L; Weisshaar, D; Wimmer, K; Winkler, R

    2015-01-01

    Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z=50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, N=82, and neutron-deficient, N=50, regions. Here we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in 131Sn from across the N=82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient 106,108Sn...

  20. Studies on the behaviour of different spent fluidized-bed catalytic cracking catalysts on Portland cement

    Directory of Open Access Journals (Sweden)

    Soriano, L.

    2009-12-01

    Full Text Available The fluidized-bed catalytic cracking catalyst (FCC it is a residue from the industry of the petroleum that shows a high pozzolanic reactivity and, in cementing matrix, it significantly improves their mechanical behaviour as well as durability. In this research a comparative study on residues of catalyst from different sources has been carried out, in order to know if these residues can be used jointly in an indiscriminate way or, on the contrary, it is necessary to classify them according to their characteristics. Thus, a study on five different FCC residues, supplied from different companies, has been carried out, and their physical-chemical characteristics, pozzolanic reactivity by means of thermogravimetric analysis and the evolution of the mechanical strength of mortars were studied. After analyzing all the aspects, it can be concluded that no significant differences among the different tested catalysts were found.El catalizador de craqueo catalítico (FCC es un residuo de la industria del petróleo que posee una elevada reactividad puzolánica y en matrices cementicias mejora de manera importante los aspectos mecánicos así como de durabilidad. En este trabajo se realiza un estudio comparativo sobre residuos de catalizador de distintos orígenes, para poder conocer si se pueden utilizar conjuntamente de forma indiscriminada o por el contrario hay que catalogarlos según su origen. Para ello, se realizó un estudio sobre cinco residuos de catalizador de craqueo catalítico distintos, suministrados por diferentes empresas y se estudiaron sus características fisicoquímicas, reactividad puzolánica a través de estudios termogravimétricos y la evolución de las resistencias mecánicas en morteros. Tras analizar todos los aspectos se concluye que no existen diferencias significativas entre los distintos catalizadores empleados.

  1. Docking and molecular dynamics simulations studies of human protein kinase catalytic subunit alpha with antagonist

    Directory of Open Access Journals (Sweden)

    S. Sandeep

    2012-02-01

    Full Text Available Background: Cyclic adenosine monophosphate (cAMP dependent protein kinase A plays major role in cell signalling to undergo many cellular functions. Over expression of extracellular cAMP dependent protein kinase catalytic subunit alpha (PRKACA causes severe tumorgenesis in prostate. Thus, computer aided high throughput virtual screening and molecular dynamics simulations studies were implemented to identify the potent leads for human PRKACA.Methods: The human PRKACA crystal structure was optimized in Maestro v9.2. Fifteen recently published PRKACA inhibitors were selected for compiling 5388 structural analogs from Ligand.Info database, these were pre- pared using LigPrep. Molecular docking from lesser to higher stringency towards minor steric classes was applied subsequently to the prepared ligand dataset into PRKACA active site using Glide v5.7. Molecular dynamics simulation studies were done using Desmond v3.0 to predict the activity of PRKACA-leptosidin complex.Results: Twenty lead molecules were identified. Lead-1 was observed to have relatively the least docking score compared to the identified lead molecules and 15 published inhibitors. The PRKACA- leptosidin complex deciphered that leptosidin blocked the active site residues Thr-51, Glu-121, Val- 123, Glu-127 and Thr-183 directly through intermolecular hydrogen bonds. In molecular dynamics simulations, trajectory analysis also showed existence of water bridges between PRKACA and leptosidin.Conclusions: Docking and molecular dynamics studies revealed the better binding interaction of leptosidin with PRKACA. Leptosidin is having the better pharmacological properties thus it could be a futuristic perspective chemical compound for prostate cancer therapy.

  2. Catalytic hydro desulphurization study of heavy petroleum residue through in situ generated hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Shakirullah, Mohammad; Ahmad, Imtiaz; Ishaq, Mohammad; Ahmad, Waqas [Institute of Chemical Sciences, N.W.F.P., University of Peshawar, 25120 Peshawar (Pakistan)

    2010-05-15

    Hydrodesulphurization of heavy residue was carried out using various catalysts in the presence of co-reactants as the internal sources of hydrogen. Reactions were carried out in a micro autoclave at 320 C and 10 kg f/cm{sup 2} pressure inert atmosphere of N{sub 2} for 3 h reaction time. Tetralin, propane, methanol, ethylene glycol and formic acid were separately used as co-reactants as hydrogen donors. Among the solvents studied, methanol gave the highest hydrodesulphurization yield (52%). The reaction was then carried out in the presence of various catalysts to view the influence of each individual catalyst on the desulphurization yield under the same conditions of pressure and temperature. The catalysts used were Mo-Montmorillonite, Co-Montmorillonite, nickel oxide (NiO), cadmium oxide (CdO), Zn-ZSM5, kaolin and montmorillonite clays. The results show that all the catalysts exhibited desulphurization activity. In case of Mo-Montmorillonite and Co-Montmorillonite charges, the desulfurization yields of 63% and 46% were obtained, respectively. NiO, CdO, Zn-ZSM5, kaolin and montmorillonite clays gave desulphurization yields of 54%, 50%, 56%, 20% and 36%, respectively. The desulphurization activities of Mo-Montmorillonite and Co-Montmorillonite were compared with other catalysts used. The results show that Mo-Montmorillonite gave the highest hydrodesulphurization yield. FTIR studies also confirmed the hydrodesulphurization efficiency of the Mo-Montmorillonite. (author)

  3. Molecular modeling of Mycobacterium tuberculosis dUTpase: docking and catalytic mechanism studies.

    Science.gov (United States)

    Ramalho, Teodorico C; Caetano, Melissa S; Josa, Daniela; Luz, Gustavo P; Freitas, Elisangela A; da Cunha, Elaine F F

    2011-06-01

    Mycobacterium tuberculosis is a leading cause of infectious disease in the world today. This outlook is aggravated by a growing number of M. tuberculosis infections in individuals who are immunocompromised as a result of HIV infections. Thus, new and more potent anti-TB agents are necessary. Therefore, dUTpase was selected as a target enzyme to combat M. tuberculosis. In this work, molecular modeling methods involving docking and QM/MM calculations were carried out to investigate the binding orientation and predict binding affinities of some potential dUTpase inhibitors. Our results suggest that the best potential inhibitor investigated, among the compounds studied in this work, is the compound dUPNPP. Regarding the reaction mechanism, we concluded that the decisive stage for the reaction is the stage 1. Furthermore, it was also observed that the compounds with a -1 electrostatic charge presented lower activation energy in relation to the compounds with a -2 charge.

  4. Preparation of Rh-TPPTS complex intercalated layered double hydroxide and influences of host and guest compositions on its catalytic performances in hydroformylation reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian; LU Jun; JIN Lan; WEI Min

    2008-01-01

    Based on the concept of intercalation chemistry of layered double hydroxides (LDHs), RhCI(GO)-(TPPTS)2 (TPPTS: P(m-C6H4SO3Na)3) and TPPTS co-intercalated LDHs were successfully synthesized by in situ complexation method. Characterizations of structure and composition of composite materials by powder XRD, FT-IR, and ICP-AES techniques confirmed the supramolecular structures of the catalytic species intercalated LDHs. The correlation between catalytic performance of intercalated catalyst and the composition of both host layers and interlayer guest species was also investigated.

  5. Method and apparatus for a catalytic firebox reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  6. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  7. Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-12-01

    Full Text Available Catalytic ozonation is a new and promising process used to remove the contaminants from drinking water and wastewater. This study aimed to evaluate the catalytic potential of nano-magnesium oxide (nano-MgO for the removal of humic acids (HA from water. Mg (NO32 solution was used to prepare MgO powder by the calcination method. In a semi-batch reactor, the catalytic ozonation was carried out. The effects of the various operating parameters, including pH, reaction time, T-butyl alcohol (TBA and phosphate on HA degradation were evaluated. Experimental results indicated that degradation of HA was increased as the pH solution and reaction time were increased. Maximum HA degradation was obtained at pH = 10 and the reaction time of 10 minutes in the catalytic process. The calculated catalytic potential of nano-MgO on ozonation of HA was 60%. Moreover, catalytic ozonation process was not affected by TBA and the main reaction on HA degradation HA have effect take place on MgO surface. According to the results of this study, the developed MgO catalyst is the active and proficient catalyst in HA degradation using the catalytic ozonation process.

  8. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2005-01-01

    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential a

  9. Immobilization of rhodium complexes at thiolate monolayers on gold surfaces : Catalytic and structural studies

    NARCIS (Netherlands)

    Belser, T; Stöhr, Meike; Pfaltz, A

    2005-01-01

    Chiral rhodium-diphosphine complexes have been incorporated into self-assembled thiolate monolayers (SAMS) on gold colloids. Catalysts of this type are of interest because they combine properties of homogeneous and heterogeneous systems. In addition, it should be possible to influence the catalytic

  10. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and X-ra

  11. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek

    2011-02-18

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A product study of the isoprene+NO3 reaction

    Directory of Open Access Journals (Sweden)

    A. Hansel

    2009-02-01

    Full Text Available Oxidation of isoprene through reaction with NO3 is a significant sink for isoprene that persists after dark. The products of the reaction are multifunctional nitrates. These nitrates constitute a significant NOx sink in the nocturnal boundary layer and they likely play an important role in formation of secondary organic aerosol. Products of the isoprene+NO3 reaction will, in many locations, be abundant enough to affect nighttime radical chemistry and to persist into daytime where they may represent a source of NOx. Product formation in the isoprene+NO3 reaction was studied in a smog chamber at Purdue University. Isoprene nitrates and other hydrocarbon products were observed using Proton Transfer Reaction-Mass Spectrometry (PTR-MS and reactive nitrogen products were observed using Thermal Dissociation–Laser Induced Fluorescence (TD-LIF. The organic nitrate yield is found to be 62±6% and the combined yield of MACR+MVK is found to be ~10%. Additional hydrocarbon products, thought to be primarily C4 and C5 carbonyl compounds, were observed by the PTR-MS at various m/z ratios and their yields quantified. These other oxidation products are used as additional constraints on the reaction mechanism.

  13. A product study of the isoprene+NO3 reaction

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2009-07-01

    Full Text Available Oxidation of isoprene through reaction with NO3 radicals is a significant sink for isoprene that persists after dark. The main products of the reaction are multifunctional nitrates. These nitrates constitute a significant NOx sink in the nocturnal boundary layer and they likely play an important role in formation of secondary organic aerosol. Products of the isoprene+NO3 reaction will, in many locations, be abundant enough to affect nighttime radical chemistry and to persist into daytime where they may represent a source of NOx. Product formation in the isoprene + NO3 reaction was studied in a smog chamber at Purdue University. Isoprene nitrates and other hydrocarbon products were observed using Proton Transfer Reaction-Mass Spectrometry (PTR-MS and reactive nitrogen products were observed using Thermal Dissociation–Laser Induced Fluorescence (TD-LIF. The organic nitrate yield is found to be 65±12% of which the majority was nitrooxy carbonyls and the combined yield of methacrolein and methyl vinyl ketone (MACR+MVK is found to be ∼10%. PTR-MS measurements of nitrooxy carbonyls and TD-LIF measurements of total organic nitrates agreed well. The PTR-MS also observed a series of minor oxidation products which were tentatively identified and their yields quantified These other oxidation products are used as additional constraints on the reaction mechanism.

  14. Reaction studies of hot silicon, germanium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, P.P.

    1990-11-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

  15. Sustainability Study on Heavy Metal Uptake in Neem Biodiesel Using Selective Catalytic Preparation and Hyphenated Mass Spectrometry

    OpenAIRE

    Mirella Elkadi; Avin Pillay; Johnson Manuel; Mohammad Zubair Khan; Sasi Stephen; Arman Molki

    2014-01-01

    It is common knowledge that the presence of trace metals in biofuels can be detrimental to the environment and long-term sustainable development. This study provides an insight into selective catalytic preparation of biofuel to compare uptake of trace metals in the biodiesel fraction with preferential base catalysts. The role of specific metal hydroxides in controlling trace metal content in biofuel production is relatively unexplored, and the effect of different homogeneous catalysts (NaOH, ...

  16. Studies on Hydrogen Selective Silica Membranes and the Catalytic Reforming of CH4 with CO2 in a Membrane Reactor

    OpenAIRE

    Lee, Doohwan

    2003-01-01

    In this work the synthesis, characterization, and gas transport properties of hydrogen selective silica membranes were studied along with the catalytic reforming of CH4 with CO2 (CH4 + CO z 2 CO + 2 H2) in a hydrogen separation membrane reactor. The silica membranes were prepared by chemical vapor deposition (CVD) of a thin SiO2 layer on porous supports (Vycor glass and alumina) using thermal decomposition of tetraethylorthosilicate (TEOS) in an inert atmosphere. These membranes displayed h...

  17. Picosecond pulse radiolysis study of primary reactions in solutions

    International Nuclear Information System (INIS)

    Following the discovery of ionizing radiations and their chemical effects, it was important to study and comprehend the formation mechanisms of short lived free radicals and molecular products. In order to perform such studies, researchers and research groups worked on developing tools allowing both formation and detection of those species at short time scales. Nowadays, pulse radiolysis imposed itself as a fundamental and efficient tool allowing scientists to probe chemical effects as well as reaction mechanisms in studied media. The Laboratoire de Chimie Physique d'Orsay 'LCP' is an interdisciplinary laboratory hosting the platform of fast kinetics known as 'ELYSE'. Due to its femtosecond laser and its picosecond electron accelerator, we have the possibility to study chemical effects of ionizing radiations interaction with media at ultrashort times up to ∼5 ps.Knowing that we are interested in primary reactions induced in aqueous media by ionizing radiations, ELYSE represents the essential tool in performing our studies. The obtained results concern:- First direct determination of hydroxyl radical 'HO*' radiolytic yield as function of time at picosecond time scale;- Direct effect of ionizing radiation in highly concentrated aqueous solutions as well as investigation of the ultrafast electron transfer reaction between solute molecules and positive holes 'H2O*+' formed upon water radiolysis;- Study at room temperature of electron transfer reaction between solvated electron (electron donor) and organic solutes (electron acceptors) en viscous medium;- Study at room temperature of electron's solvation dynamics in ethylene glycol and 2-propanol. (author)

  18. Quantum Chemical Study on Reaction of Acetaldehyde with Hydroxyl Radical

    Institute of Scientific and Technical Information of China (English)

    LI,Ming(李明); ZHANG,Jin-Sheng(张金生); SHEN,Wei(申伟); MENG,Qing-Xi(孟庆喜)

    2004-01-01

    The reaction of acetaldehyde with hydroxyl radical was studied by means of quantum chemical methods. The geometries for all the stationary points on the potential energy surfaces were optimized fully, respectively, at the G3MP2, G3, and MP2/6-311++G(d,p) levels. Single-point energies of all the species were calculated at the QCISD/6-311 + +G(d,p) level. The mechanism of the reaction studied was confirmed. The predicted product is acetyl radical that is in agreement with the experiment.

  19. Studies relevant to the catalytic activation of carbon monoxide. Technical progress report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  20. Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications

    Science.gov (United States)

    Glazoff, Michael V.

    2016-04-01

    Transition aluminas doped with Cr find widespread application in the dehydrogenation catalysis industry, while La-stabilized transition aluminas are used extensively for high-temperature application as catalytic supports (Wefers and Misra in Oxides and hydroxides of aluminum, Alcoa Laboratories, Pittsburgh, 1987). In this work, detailed synchrotron XAFS spectroscopy studies were conducted to shed light upon the atomic mechanisms of surface and subsurface reconstructions and/or catalytic support stabilization of doped aluminas. It was demonstrated that in four transition aluminas doped with Cr, it is the atoms which are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and chi-alumina). In the transition series aluminas: "gamma- chi- theta- eta-alumina," the change of properties (in particular, the dramatic increase in dehydrogenation catalytic activity and catalyst longevity and the coloration of samples) takes place because of the reduction in the average size of Cr clusters and their appearance on the Al2O3 surface, probably responsible for change in catalytic activity. It was demonstrated that in the samples of gamma-alumina doped with La any substantial change in the local coordination of the La atoms takes place only upon heating up to 1400 °C. This makes the La-stabilized gamma-alumina a perfect catalytic support for the numerous applications, e.g., catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). Furthermore, it was demonstrated that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amount of this rare earth material is required to achieve full